]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgrtl.c
cfghooks.c (lv_flush_pending_stmts, [...]): New.
[thirdparty/gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains low level functions to manipulate the CFG and analyze it
23 that are aware of the RTL intermediate language.
24
25 Available functionality:
26 - Basic CFG/RTL manipulation API documented in cfghooks.h
27 - CFG-aware instruction chain manipulation
28 delete_insn, delete_insn_chain
29 - Edge splitting and committing to edges
30 insert_insn_on_edge, commit_edge_insertions
31 - CFG updating after insn simplification
32 purge_dead_edges, purge_all_dead_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "tm.h"
44 #include "tree.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "basic-block.h"
48 #include "regs.h"
49 #include "flags.h"
50 #include "output.h"
51 #include "function.h"
52 #include "except.h"
53 #include "toplev.h"
54 #include "tm_p.h"
55 #include "obstack.h"
56 #include "insn-config.h"
57 #include "cfglayout.h"
58 #include "expr.h"
59 #include "target.h"
60 #include "cfgloop.h"
61
62 /* The labels mentioned in non-jump rtl. Valid during find_basic_blocks. */
63 /* ??? Should probably be using LABEL_NUSES instead. It would take a
64 bit of surgery to be able to use or co-opt the routines in jump. */
65 rtx label_value_list;
66
67 static int can_delete_note_p (rtx);
68 static int can_delete_label_p (rtx);
69 static void commit_one_edge_insertion (edge, int);
70 static rtx last_loop_beg_note (rtx);
71 static bool back_edge_of_syntactic_loop_p (basic_block, basic_block);
72 static basic_block rtl_split_edge (edge);
73 static bool rtl_move_block_after (basic_block, basic_block);
74 static int rtl_verify_flow_info (void);
75 static basic_block cfg_layout_split_block (basic_block, void *);
76 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
77 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
78 static void cfg_layout_delete_block (basic_block);
79 static void rtl_delete_block (basic_block);
80 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
81 static edge rtl_redirect_edge_and_branch (edge, basic_block);
82 static basic_block rtl_split_block (basic_block, void *);
83 static void rtl_dump_bb (basic_block, FILE *, int);
84 static int rtl_verify_flow_info_1 (void);
85 static void mark_killed_regs (rtx, rtx, void *);
86 static void rtl_make_forwarder_block (edge);
87 \f
88 /* Return true if NOTE is not one of the ones that must be kept paired,
89 so that we may simply delete it. */
90
91 static int
92 can_delete_note_p (rtx note)
93 {
94 return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
95 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK);
96 }
97
98 /* True if a given label can be deleted. */
99
100 static int
101 can_delete_label_p (rtx label)
102 {
103 return (!LABEL_PRESERVE_P (label)
104 /* User declared labels must be preserved. */
105 && LABEL_NAME (label) == 0
106 && !in_expr_list_p (forced_labels, label)
107 && !in_expr_list_p (label_value_list, label));
108 }
109
110 /* Delete INSN by patching it out. Return the next insn. */
111
112 rtx
113 delete_insn (rtx insn)
114 {
115 rtx next = NEXT_INSN (insn);
116 rtx note;
117 bool really_delete = true;
118
119 if (LABEL_P (insn))
120 {
121 /* Some labels can't be directly removed from the INSN chain, as they
122 might be references via variables, constant pool etc.
123 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
124 if (! can_delete_label_p (insn))
125 {
126 const char *name = LABEL_NAME (insn);
127
128 really_delete = false;
129 PUT_CODE (insn, NOTE);
130 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
131 NOTE_DELETED_LABEL_NAME (insn) = name;
132 }
133
134 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
135 }
136
137 if (really_delete)
138 {
139 /* If this insn has already been deleted, something is very wrong. */
140 gcc_assert (!INSN_DELETED_P (insn));
141 remove_insn (insn);
142 INSN_DELETED_P (insn) = 1;
143 }
144
145 /* If deleting a jump, decrement the use count of the label. Deleting
146 the label itself should happen in the normal course of block merging. */
147 if (JUMP_P (insn)
148 && JUMP_LABEL (insn)
149 && LABEL_P (JUMP_LABEL (insn)))
150 LABEL_NUSES (JUMP_LABEL (insn))--;
151
152 /* Also if deleting an insn that references a label. */
153 else
154 {
155 while ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
156 && LABEL_P (XEXP (note, 0)))
157 {
158 LABEL_NUSES (XEXP (note, 0))--;
159 remove_note (insn, note);
160 }
161 }
162
163 if (JUMP_P (insn)
164 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
165 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
166 {
167 rtx pat = PATTERN (insn);
168 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
169 int len = XVECLEN (pat, diff_vec_p);
170 int i;
171
172 for (i = 0; i < len; i++)
173 {
174 rtx label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
175
176 /* When deleting code in bulk (e.g. removing many unreachable
177 blocks) we can delete a label that's a target of the vector
178 before deleting the vector itself. */
179 if (!NOTE_P (label))
180 LABEL_NUSES (label)--;
181 }
182 }
183
184 return next;
185 }
186
187 /* Like delete_insn but also purge dead edges from BB. */
188 rtx
189 delete_insn_and_edges (rtx insn)
190 {
191 rtx x;
192 bool purge = false;
193
194 if (INSN_P (insn)
195 && BLOCK_FOR_INSN (insn)
196 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
197 purge = true;
198 x = delete_insn (insn);
199 if (purge)
200 purge_dead_edges (BLOCK_FOR_INSN (insn));
201 return x;
202 }
203
204 /* Unlink a chain of insns between START and FINISH, leaving notes
205 that must be paired. */
206
207 void
208 delete_insn_chain (rtx start, rtx finish)
209 {
210 rtx next;
211
212 /* Unchain the insns one by one. It would be quicker to delete all of these
213 with a single unchaining, rather than one at a time, but we need to keep
214 the NOTE's. */
215 while (1)
216 {
217 next = NEXT_INSN (start);
218 if (NOTE_P (start) && !can_delete_note_p (start))
219 ;
220 else
221 next = delete_insn (start);
222
223 if (start == finish)
224 break;
225 start = next;
226 }
227 }
228
229 /* Like delete_insn but also purge dead edges from BB. */
230 void
231 delete_insn_chain_and_edges (rtx first, rtx last)
232 {
233 bool purge = false;
234
235 if (INSN_P (last)
236 && BLOCK_FOR_INSN (last)
237 && BB_END (BLOCK_FOR_INSN (last)) == last)
238 purge = true;
239 delete_insn_chain (first, last);
240 if (purge)
241 purge_dead_edges (BLOCK_FOR_INSN (last));
242 }
243 \f
244 /* Create a new basic block consisting of the instructions between HEAD and END
245 inclusive. This function is designed to allow fast BB construction - reuses
246 the note and basic block struct in BB_NOTE, if any and do not grow
247 BASIC_BLOCK chain and should be used directly only by CFG construction code.
248 END can be NULL in to create new empty basic block before HEAD. Both END
249 and HEAD can be NULL to create basic block at the end of INSN chain.
250 AFTER is the basic block we should be put after. */
251
252 basic_block
253 create_basic_block_structure (rtx head, rtx end, rtx bb_note, basic_block after)
254 {
255 basic_block bb;
256
257 if (bb_note
258 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
259 && bb->aux == NULL)
260 {
261 /* If we found an existing note, thread it back onto the chain. */
262
263 rtx after;
264
265 if (LABEL_P (head))
266 after = head;
267 else
268 {
269 after = PREV_INSN (head);
270 head = bb_note;
271 }
272
273 if (after != bb_note && NEXT_INSN (after) != bb_note)
274 reorder_insns_nobb (bb_note, bb_note, after);
275 }
276 else
277 {
278 /* Otherwise we must create a note and a basic block structure. */
279
280 bb = alloc_block ();
281
282 if (!head && !end)
283 head = end = bb_note
284 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
285 else if (LABEL_P (head) && end)
286 {
287 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
288 if (head == end)
289 end = bb_note;
290 }
291 else
292 {
293 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
294 head = bb_note;
295 if (!end)
296 end = head;
297 }
298
299 NOTE_BASIC_BLOCK (bb_note) = bb;
300 }
301
302 /* Always include the bb note in the block. */
303 if (NEXT_INSN (end) == bb_note)
304 end = bb_note;
305
306 BB_HEAD (bb) = head;
307 BB_END (bb) = end;
308 bb->index = last_basic_block++;
309 bb->flags = BB_NEW;
310 link_block (bb, after);
311 BASIC_BLOCK (bb->index) = bb;
312 update_bb_for_insn (bb);
313 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
314
315 /* Tag the block so that we know it has been used when considering
316 other basic block notes. */
317 bb->aux = bb;
318
319 return bb;
320 }
321
322 /* Create new basic block consisting of instructions in between HEAD and END
323 and place it to the BB chain after block AFTER. END can be NULL in to
324 create new empty basic block before HEAD. Both END and HEAD can be NULL to
325 create basic block at the end of INSN chain. */
326
327 static basic_block
328 rtl_create_basic_block (void *headp, void *endp, basic_block after)
329 {
330 rtx head = headp, end = endp;
331 basic_block bb;
332
333 /* Grow the basic block array if needed. */
334 if ((size_t) last_basic_block >= VARRAY_SIZE (basic_block_info))
335 {
336 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
337 VARRAY_GROW (basic_block_info, new_size);
338 }
339
340 n_basic_blocks++;
341
342 bb = create_basic_block_structure (head, end, NULL, after);
343 bb->aux = NULL;
344 return bb;
345 }
346
347 static basic_block
348 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
349 {
350 basic_block newbb = rtl_create_basic_block (head, end, after);
351
352 initialize_bb_rbi (newbb);
353 return newbb;
354 }
355 \f
356 /* Delete the insns in a (non-live) block. We physically delete every
357 non-deleted-note insn, and update the flow graph appropriately.
358
359 Return nonzero if we deleted an exception handler. */
360
361 /* ??? Preserving all such notes strikes me as wrong. It would be nice
362 to post-process the stream to remove empty blocks, loops, ranges, etc. */
363
364 static void
365 rtl_delete_block (basic_block b)
366 {
367 rtx insn, end, tmp;
368
369 /* If the head of this block is a CODE_LABEL, then it might be the
370 label for an exception handler which can't be reached. We need
371 to remove the label from the exception_handler_label list. */
372 insn = BB_HEAD (b);
373 if (LABEL_P (insn))
374 maybe_remove_eh_handler (insn);
375
376 /* Include any jump table following the basic block. */
377 end = BB_END (b);
378 if (tablejump_p (end, NULL, &tmp))
379 end = tmp;
380
381 /* Include any barriers that may follow the basic block. */
382 tmp = next_nonnote_insn (end);
383 while (tmp && BARRIER_P (tmp))
384 {
385 end = tmp;
386 tmp = next_nonnote_insn (end);
387 }
388
389 /* Selectively delete the entire chain. */
390 BB_HEAD (b) = NULL;
391 delete_insn_chain (insn, end);
392 }
393 \f
394 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
395
396 void
397 compute_bb_for_insn (void)
398 {
399 basic_block bb;
400
401 FOR_EACH_BB (bb)
402 {
403 rtx end = BB_END (bb);
404 rtx insn;
405
406 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
407 {
408 BLOCK_FOR_INSN (insn) = bb;
409 if (insn == end)
410 break;
411 }
412 }
413 }
414
415 /* Release the basic_block_for_insn array. */
416
417 void
418 free_bb_for_insn (void)
419 {
420 rtx insn;
421 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
422 if (!BARRIER_P (insn))
423 BLOCK_FOR_INSN (insn) = NULL;
424 }
425
426 /* Return RTX to emit after when we want to emit code on the entry of function. */
427 rtx
428 entry_of_function (void)
429 {
430 return (n_basic_blocks ? BB_HEAD (ENTRY_BLOCK_PTR->next_bb) : get_insns ());
431 }
432
433 /* Update insns block within BB. */
434
435 void
436 update_bb_for_insn (basic_block bb)
437 {
438 rtx insn;
439
440 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
441 {
442 if (!BARRIER_P (insn))
443 set_block_for_insn (insn, bb);
444 if (insn == BB_END (bb))
445 break;
446 }
447 }
448 \f
449 /* Creates a new basic block just after basic block B by splitting
450 everything after specified instruction I. */
451
452 static basic_block
453 rtl_split_block (basic_block bb, void *insnp)
454 {
455 basic_block new_bb;
456 rtx insn = insnp;
457 edge e;
458 edge_iterator ei;
459
460 if (!insn)
461 {
462 insn = first_insn_after_basic_block_note (bb);
463
464 if (insn)
465 insn = PREV_INSN (insn);
466 else
467 insn = get_last_insn ();
468 }
469
470 /* We probably should check type of the insn so that we do not create
471 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
472 bother. */
473 if (insn == BB_END (bb))
474 emit_note_after (NOTE_INSN_DELETED, insn);
475
476 /* Create the new basic block. */
477 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
478 BB_COPY_PARTITION (new_bb, bb);
479 BB_END (bb) = insn;
480
481 /* Redirect the outgoing edges. */
482 new_bb->succs = bb->succs;
483 bb->succs = NULL;
484 FOR_EACH_EDGE (e, ei, new_bb->succs)
485 e->src = new_bb;
486
487 if (bb->global_live_at_start)
488 {
489 new_bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
490 new_bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
491 COPY_REG_SET (new_bb->global_live_at_end, bb->global_live_at_end);
492
493 /* We now have to calculate which registers are live at the end
494 of the split basic block and at the start of the new basic
495 block. Start with those registers that are known to be live
496 at the end of the original basic block and get
497 propagate_block to determine which registers are live. */
498 COPY_REG_SET (new_bb->global_live_at_start, bb->global_live_at_end);
499 propagate_block (new_bb, new_bb->global_live_at_start, NULL, NULL, 0);
500 COPY_REG_SET (bb->global_live_at_end,
501 new_bb->global_live_at_start);
502 #ifdef HAVE_conditional_execution
503 /* In the presence of conditional execution we are not able to update
504 liveness precisely. */
505 if (reload_completed)
506 {
507 bb->flags |= BB_DIRTY;
508 new_bb->flags |= BB_DIRTY;
509 }
510 #endif
511 }
512
513 return new_bb;
514 }
515
516 /* Blocks A and B are to be merged into a single block A. The insns
517 are already contiguous. */
518
519 static void
520 rtl_merge_blocks (basic_block a, basic_block b)
521 {
522 rtx b_head = BB_HEAD (b), b_end = BB_END (b), a_end = BB_END (a);
523 rtx del_first = NULL_RTX, del_last = NULL_RTX;
524 int b_empty = 0;
525
526 /* If there was a CODE_LABEL beginning B, delete it. */
527 if (LABEL_P (b_head))
528 {
529 /* Detect basic blocks with nothing but a label. This can happen
530 in particular at the end of a function. */
531 if (b_head == b_end)
532 b_empty = 1;
533
534 del_first = del_last = b_head;
535 b_head = NEXT_INSN (b_head);
536 }
537
538 /* Delete the basic block note and handle blocks containing just that
539 note. */
540 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
541 {
542 if (b_head == b_end)
543 b_empty = 1;
544 if (! del_last)
545 del_first = b_head;
546
547 del_last = b_head;
548 b_head = NEXT_INSN (b_head);
549 }
550
551 /* If there was a jump out of A, delete it. */
552 if (JUMP_P (a_end))
553 {
554 rtx prev;
555
556 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
557 if (!NOTE_P (prev)
558 || NOTE_LINE_NUMBER (prev) == NOTE_INSN_BASIC_BLOCK
559 || prev == BB_HEAD (a))
560 break;
561
562 del_first = a_end;
563
564 #ifdef HAVE_cc0
565 /* If this was a conditional jump, we need to also delete
566 the insn that set cc0. */
567 if (only_sets_cc0_p (prev))
568 {
569 rtx tmp = prev;
570
571 prev = prev_nonnote_insn (prev);
572 if (!prev)
573 prev = BB_HEAD (a);
574 del_first = tmp;
575 }
576 #endif
577
578 a_end = PREV_INSN (del_first);
579 }
580 else if (BARRIER_P (NEXT_INSN (a_end)))
581 del_first = NEXT_INSN (a_end);
582
583 /* Delete everything marked above as well as crap that might be
584 hanging out between the two blocks. */
585 BB_HEAD (b) = NULL;
586 delete_insn_chain (del_first, del_last);
587
588 /* Reassociate the insns of B with A. */
589 if (!b_empty)
590 {
591 rtx x;
592
593 for (x = a_end; x != b_end; x = NEXT_INSN (x))
594 set_block_for_insn (x, a);
595
596 set_block_for_insn (b_end, a);
597
598 a_end = b_end;
599 }
600
601 BB_END (a) = a_end;
602 }
603
604 /* Return true when block A and B can be merged. */
605 static bool
606 rtl_can_merge_blocks (basic_block a,basic_block b)
607 {
608 /* If we are partitioning hot/cold basic blocks, we don't want to
609 mess up unconditional or indirect jumps that cross between hot
610 and cold sections.
611
612 Basic block partitioning may result in some jumps that appear to
613 be optimizable (or blocks that appear to be mergeable), but which really
614 must be left untouched (they are required to make it safely across
615 partition boundaries). See the comments at the top of
616 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
617
618 if (BB_PARTITION (a) != BB_PARTITION (b))
619 return false;
620
621 /* There must be exactly one edge in between the blocks. */
622 return (single_succ_p (a)
623 && single_succ (a) == b
624 && single_pred_p (b)
625 && a != b
626 /* Must be simple edge. */
627 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
628 && a->next_bb == b
629 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
630 /* If the jump insn has side effects,
631 we can't kill the edge. */
632 && (!JUMP_P (BB_END (a))
633 || (reload_completed
634 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
635 }
636 \f
637 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
638 exist. */
639
640 rtx
641 block_label (basic_block block)
642 {
643 if (block == EXIT_BLOCK_PTR)
644 return NULL_RTX;
645
646 if (!LABEL_P (BB_HEAD (block)))
647 {
648 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
649 }
650
651 return BB_HEAD (block);
652 }
653
654 /* Attempt to perform edge redirection by replacing possibly complex jump
655 instruction by unconditional jump or removing jump completely. This can
656 apply only if all edges now point to the same block. The parameters and
657 return values are equivalent to redirect_edge_and_branch. */
658
659 edge
660 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
661 {
662 basic_block src = e->src;
663 rtx insn = BB_END (src), kill_from;
664 rtx set;
665 int fallthru = 0;
666
667 /* If we are partitioning hot/cold basic blocks, we don't want to
668 mess up unconditional or indirect jumps that cross between hot
669 and cold sections.
670
671 Basic block partitioning may result in some jumps that appear to
672 be optimizable (or blocks that appear to be mergeable), but which really
673 must be left untouched (they are required to make it safely across
674 partition boundaries). See the comments at the top of
675 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
676
677 if (find_reg_note (insn, REG_CROSSING_JUMP, NULL_RTX)
678 || BB_PARTITION (src) != BB_PARTITION (target))
679 return NULL;
680
681 /* We can replace or remove a complex jump only when we have exactly
682 two edges. Also, if we have exactly one outgoing edge, we can
683 redirect that. */
684 if (EDGE_COUNT (src->succs) >= 3
685 /* Verify that all targets will be TARGET. Specifically, the
686 edge that is not E must also go to TARGET. */
687 || (EDGE_COUNT (src->succs) == 2
688 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
689 return NULL;
690
691 if (!onlyjump_p (insn))
692 return NULL;
693 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
694 return NULL;
695
696 /* Avoid removing branch with side effects. */
697 set = single_set (insn);
698 if (!set || side_effects_p (set))
699 return NULL;
700
701 /* In case we zap a conditional jump, we'll need to kill
702 the cc0 setter too. */
703 kill_from = insn;
704 #ifdef HAVE_cc0
705 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
706 kill_from = PREV_INSN (insn);
707 #endif
708
709 /* See if we can create the fallthru edge. */
710 if (in_cfglayout || can_fallthru (src, target))
711 {
712 if (dump_file)
713 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
714 fallthru = 1;
715
716 /* Selectively unlink whole insn chain. */
717 if (in_cfglayout)
718 {
719 rtx insn = src->rbi->footer;
720
721 delete_insn_chain (kill_from, BB_END (src));
722
723 /* Remove barriers but keep jumptables. */
724 while (insn)
725 {
726 if (BARRIER_P (insn))
727 {
728 if (PREV_INSN (insn))
729 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
730 else
731 src->rbi->footer = NEXT_INSN (insn);
732 if (NEXT_INSN (insn))
733 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
734 }
735 if (LABEL_P (insn))
736 break;
737 insn = NEXT_INSN (insn);
738 }
739 }
740 else
741 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)));
742 }
743
744 /* If this already is simplejump, redirect it. */
745 else if (simplejump_p (insn))
746 {
747 if (e->dest == target)
748 return NULL;
749 if (dump_file)
750 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
751 INSN_UID (insn), e->dest->index, target->index);
752 if (!redirect_jump (insn, block_label (target), 0))
753 {
754 gcc_assert (target == EXIT_BLOCK_PTR);
755 return NULL;
756 }
757 }
758
759 /* Cannot do anything for target exit block. */
760 else if (target == EXIT_BLOCK_PTR)
761 return NULL;
762
763 /* Or replace possibly complicated jump insn by simple jump insn. */
764 else
765 {
766 rtx target_label = block_label (target);
767 rtx barrier, label, table;
768
769 emit_jump_insn_after_noloc (gen_jump (target_label), insn);
770 JUMP_LABEL (BB_END (src)) = target_label;
771 LABEL_NUSES (target_label)++;
772 if (dump_file)
773 fprintf (dump_file, "Replacing insn %i by jump %i\n",
774 INSN_UID (insn), INSN_UID (BB_END (src)));
775
776
777 delete_insn_chain (kill_from, insn);
778
779 /* Recognize a tablejump that we are converting to a
780 simple jump and remove its associated CODE_LABEL
781 and ADDR_VEC or ADDR_DIFF_VEC. */
782 if (tablejump_p (insn, &label, &table))
783 delete_insn_chain (label, table);
784
785 barrier = next_nonnote_insn (BB_END (src));
786 if (!barrier || !BARRIER_P (barrier))
787 emit_barrier_after (BB_END (src));
788 else
789 {
790 if (barrier != NEXT_INSN (BB_END (src)))
791 {
792 /* Move the jump before barrier so that the notes
793 which originally were or were created before jump table are
794 inside the basic block. */
795 rtx new_insn = BB_END (src);
796 rtx tmp;
797
798 for (tmp = NEXT_INSN (BB_END (src)); tmp != barrier;
799 tmp = NEXT_INSN (tmp))
800 set_block_for_insn (tmp, src);
801
802 NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
803 PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
804
805 NEXT_INSN (new_insn) = barrier;
806 NEXT_INSN (PREV_INSN (barrier)) = new_insn;
807
808 PREV_INSN (new_insn) = PREV_INSN (barrier);
809 PREV_INSN (barrier) = new_insn;
810 }
811 }
812 }
813
814 /* Keep only one edge out and set proper flags. */
815 if (!single_succ_p (src))
816 remove_edge (e);
817 gcc_assert (single_succ_p (src));
818
819 e = single_succ_edge (src);
820 if (fallthru)
821 e->flags = EDGE_FALLTHRU;
822 else
823 e->flags = 0;
824
825 e->probability = REG_BR_PROB_BASE;
826 e->count = src->count;
827
828 /* We don't want a block to end on a line-number note since that has
829 the potential of changing the code between -g and not -g. */
830 while (NOTE_P (BB_END (e->src))
831 && NOTE_LINE_NUMBER (BB_END (e->src)) >= 0)
832 delete_insn (BB_END (e->src));
833
834 if (e->dest != target)
835 redirect_edge_succ (e, target);
836
837 return e;
838 }
839
840 /* Return last loop_beg note appearing after INSN, before start of next
841 basic block. Return INSN if there are no such notes.
842
843 When emitting jump to redirect a fallthru edge, it should always appear
844 after the LOOP_BEG notes, as loop optimizer expect loop to either start by
845 fallthru edge or jump following the LOOP_BEG note jumping to the loop exit
846 test. */
847
848 static rtx
849 last_loop_beg_note (rtx insn)
850 {
851 rtx last = insn;
852
853 for (insn = NEXT_INSN (insn); insn && NOTE_P (insn)
854 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK;
855 insn = NEXT_INSN (insn))
856 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
857 last = insn;
858
859 return last;
860 }
861
862 /* Redirect edge representing branch of (un)conditional jump or tablejump,
863 NULL on failure */
864 static edge
865 redirect_branch_edge (edge e, basic_block target)
866 {
867 rtx tmp;
868 rtx old_label = BB_HEAD (e->dest);
869 basic_block src = e->src;
870 rtx insn = BB_END (src);
871
872 /* We can only redirect non-fallthru edges of jump insn. */
873 if (e->flags & EDGE_FALLTHRU)
874 return NULL;
875 else if (!JUMP_P (insn))
876 return NULL;
877
878 /* Recognize a tablejump and adjust all matching cases. */
879 if (tablejump_p (insn, NULL, &tmp))
880 {
881 rtvec vec;
882 int j;
883 rtx new_label = block_label (target);
884
885 if (target == EXIT_BLOCK_PTR)
886 return NULL;
887 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
888 vec = XVEC (PATTERN (tmp), 0);
889 else
890 vec = XVEC (PATTERN (tmp), 1);
891
892 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
893 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
894 {
895 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
896 --LABEL_NUSES (old_label);
897 ++LABEL_NUSES (new_label);
898 }
899
900 /* Handle casesi dispatch insns. */
901 if ((tmp = single_set (insn)) != NULL
902 && SET_DEST (tmp) == pc_rtx
903 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
904 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
905 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
906 {
907 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (VOIDmode,
908 new_label);
909 --LABEL_NUSES (old_label);
910 ++LABEL_NUSES (new_label);
911 }
912 }
913 else
914 {
915 /* ?? We may play the games with moving the named labels from
916 one basic block to the other in case only one computed_jump is
917 available. */
918 if (computed_jump_p (insn)
919 /* A return instruction can't be redirected. */
920 || returnjump_p (insn))
921 return NULL;
922
923 /* If the insn doesn't go where we think, we're confused. */
924 gcc_assert (JUMP_LABEL (insn) == old_label);
925
926 /* If the substitution doesn't succeed, die. This can happen
927 if the back end emitted unrecognizable instructions or if
928 target is exit block on some arches. */
929 if (!redirect_jump (insn, block_label (target), 0))
930 {
931 gcc_assert (target == EXIT_BLOCK_PTR);
932 return NULL;
933 }
934 }
935
936 if (dump_file)
937 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
938 e->src->index, e->dest->index, target->index);
939
940 if (e->dest != target)
941 e = redirect_edge_succ_nodup (e, target);
942 return e;
943 }
944
945 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
946 expense of adding new instructions or reordering basic blocks.
947
948 Function can be also called with edge destination equivalent to the TARGET.
949 Then it should try the simplifications and do nothing if none is possible.
950
951 Return edge representing the branch if transformation succeeded. Return NULL
952 on failure.
953 We still return NULL in case E already destinated TARGET and we didn't
954 managed to simplify instruction stream. */
955
956 static edge
957 rtl_redirect_edge_and_branch (edge e, basic_block target)
958 {
959 edge ret;
960 basic_block src = e->src;
961
962 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
963 return NULL;
964
965 if (e->dest == target)
966 return e;
967
968 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
969 {
970 src->flags |= BB_DIRTY;
971 return ret;
972 }
973
974 ret = redirect_branch_edge (e, target);
975 if (!ret)
976 return NULL;
977
978 src->flags |= BB_DIRTY;
979 return ret;
980 }
981
982 /* Like force_nonfallthru below, but additionally performs redirection
983 Used by redirect_edge_and_branch_force. */
984
985 static basic_block
986 force_nonfallthru_and_redirect (edge e, basic_block target)
987 {
988 basic_block jump_block, new_bb = NULL, src = e->src;
989 rtx note;
990 edge new_edge;
991 int abnormal_edge_flags = 0;
992
993 /* In the case the last instruction is conditional jump to the next
994 instruction, first redirect the jump itself and then continue
995 by creating a basic block afterwards to redirect fallthru edge. */
996 if (e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR
997 && any_condjump_p (BB_END (e->src))
998 /* When called from cfglayout, fallthru edges do not
999 necessarily go to the next block. */
1000 && e->src->next_bb == e->dest
1001 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1002 {
1003 rtx note;
1004 edge b = unchecked_make_edge (e->src, target, 0);
1005 bool redirected;
1006
1007 redirected = redirect_jump (BB_END (e->src), block_label (target), 0);
1008 gcc_assert (redirected);
1009
1010 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1011 if (note)
1012 {
1013 int prob = INTVAL (XEXP (note, 0));
1014
1015 b->probability = prob;
1016 b->count = e->count * prob / REG_BR_PROB_BASE;
1017 e->probability -= e->probability;
1018 e->count -= b->count;
1019 if (e->probability < 0)
1020 e->probability = 0;
1021 if (e->count < 0)
1022 e->count = 0;
1023 }
1024 }
1025
1026 if (e->flags & EDGE_ABNORMAL)
1027 {
1028 /* Irritating special case - fallthru edge to the same block as abnormal
1029 edge.
1030 We can't redirect abnormal edge, but we still can split the fallthru
1031 one and create separate abnormal edge to original destination.
1032 This allows bb-reorder to make such edge non-fallthru. */
1033 gcc_assert (e->dest == target);
1034 abnormal_edge_flags = e->flags & ~(EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
1035 e->flags &= EDGE_FALLTHRU | EDGE_CAN_FALLTHRU;
1036 }
1037 else
1038 {
1039 gcc_assert (e->flags & EDGE_FALLTHRU);
1040 if (e->src == ENTRY_BLOCK_PTR)
1041 {
1042 /* We can't redirect the entry block. Create an empty block
1043 at the start of the function which we use to add the new
1044 jump. */
1045 edge tmp;
1046 edge_iterator ei;
1047 bool found = false;
1048
1049 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL, ENTRY_BLOCK_PTR);
1050
1051 /* Change the existing edge's source to be the new block, and add
1052 a new edge from the entry block to the new block. */
1053 e->src = bb;
1054 for (ei = ei_start (ENTRY_BLOCK_PTR->succs); (tmp = ei_safe_edge (ei)); )
1055 {
1056 if (tmp == e)
1057 {
1058 VEC_unordered_remove (edge, ENTRY_BLOCK_PTR->succs, ei.index);
1059 found = true;
1060 break;
1061 }
1062 else
1063 ei_next (&ei);
1064 }
1065
1066 gcc_assert (found);
1067
1068 VEC_safe_push (edge, bb->succs, e);
1069 make_single_succ_edge (ENTRY_BLOCK_PTR, bb, EDGE_FALLTHRU);
1070 }
1071 }
1072
1073 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags)
1074 {
1075 /* Create the new structures. */
1076
1077 /* If the old block ended with a tablejump, skip its table
1078 by searching forward from there. Otherwise start searching
1079 forward from the last instruction of the old block. */
1080 if (!tablejump_p (BB_END (e->src), NULL, &note))
1081 note = BB_END (e->src);
1082
1083 /* Position the new block correctly relative to loop notes. */
1084 note = last_loop_beg_note (note);
1085 note = NEXT_INSN (note);
1086
1087 jump_block = create_basic_block (note, NULL, e->src);
1088 jump_block->count = e->count;
1089 jump_block->frequency = EDGE_FREQUENCY (e);
1090 jump_block->loop_depth = target->loop_depth;
1091
1092 if (target->global_live_at_start)
1093 {
1094 jump_block->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1095 jump_block->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1096 COPY_REG_SET (jump_block->global_live_at_start,
1097 target->global_live_at_start);
1098 COPY_REG_SET (jump_block->global_live_at_end,
1099 target->global_live_at_start);
1100 }
1101
1102 /* Make sure new block ends up in correct hot/cold section. */
1103
1104 BB_COPY_PARTITION (jump_block, e->src);
1105 if (flag_reorder_blocks_and_partition
1106 && targetm.have_named_sections
1107 && JUMP_P (BB_END (jump_block))
1108 && !any_condjump_p (BB_END (jump_block))
1109 && (EDGE_SUCC (jump_block, 0)->flags & EDGE_CROSSING))
1110 REG_NOTES (BB_END (jump_block)) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
1111 NULL_RTX,
1112 REG_NOTES
1113 (BB_END
1114 (jump_block)));
1115
1116 /* Wire edge in. */
1117 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1118 new_edge->probability = e->probability;
1119 new_edge->count = e->count;
1120
1121 /* Redirect old edge. */
1122 redirect_edge_pred (e, jump_block);
1123 e->probability = REG_BR_PROB_BASE;
1124
1125 new_bb = jump_block;
1126 }
1127 else
1128 jump_block = e->src;
1129
1130 e->flags &= ~EDGE_FALLTHRU;
1131 if (target == EXIT_BLOCK_PTR)
1132 {
1133 #ifdef HAVE_return
1134 emit_jump_insn_after_noloc (gen_return (), BB_END (jump_block));
1135 #else
1136 gcc_unreachable ();
1137 #endif
1138 }
1139 else
1140 {
1141 rtx label = block_label (target);
1142 emit_jump_insn_after_noloc (gen_jump (label), BB_END (jump_block));
1143 JUMP_LABEL (BB_END (jump_block)) = label;
1144 LABEL_NUSES (label)++;
1145 }
1146
1147 emit_barrier_after (BB_END (jump_block));
1148 redirect_edge_succ_nodup (e, target);
1149
1150 if (abnormal_edge_flags)
1151 make_edge (src, target, abnormal_edge_flags);
1152
1153 return new_bb;
1154 }
1155
1156 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1157 (and possibly create new basic block) to make edge non-fallthru.
1158 Return newly created BB or NULL if none. */
1159
1160 basic_block
1161 force_nonfallthru (edge e)
1162 {
1163 return force_nonfallthru_and_redirect (e, e->dest);
1164 }
1165
1166 /* Redirect edge even at the expense of creating new jump insn or
1167 basic block. Return new basic block if created, NULL otherwise.
1168 Abort if conversion is impossible. */
1169
1170 static basic_block
1171 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1172 {
1173 if (redirect_edge_and_branch (e, target)
1174 || e->dest == target)
1175 return NULL;
1176
1177 /* In case the edge redirection failed, try to force it to be non-fallthru
1178 and redirect newly created simplejump. */
1179 return force_nonfallthru_and_redirect (e, target);
1180 }
1181
1182 /* The given edge should potentially be a fallthru edge. If that is in
1183 fact true, delete the jump and barriers that are in the way. */
1184
1185 static void
1186 rtl_tidy_fallthru_edge (edge e)
1187 {
1188 rtx q;
1189 basic_block b = e->src, c = b->next_bb;
1190
1191 /* ??? In a late-running flow pass, other folks may have deleted basic
1192 blocks by nopping out blocks, leaving multiple BARRIERs between here
1193 and the target label. They ought to be chastized and fixed.
1194
1195 We can also wind up with a sequence of undeletable labels between
1196 one block and the next.
1197
1198 So search through a sequence of barriers, labels, and notes for
1199 the head of block C and assert that we really do fall through. */
1200
1201 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1202 if (INSN_P (q))
1203 return;
1204
1205 /* Remove what will soon cease being the jump insn from the source block.
1206 If block B consisted only of this single jump, turn it into a deleted
1207 note. */
1208 q = BB_END (b);
1209 if (JUMP_P (q)
1210 && onlyjump_p (q)
1211 && (any_uncondjump_p (q)
1212 || single_succ_p (b)))
1213 {
1214 #ifdef HAVE_cc0
1215 /* If this was a conditional jump, we need to also delete
1216 the insn that set cc0. */
1217 if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1218 q = PREV_INSN (q);
1219 #endif
1220
1221 q = PREV_INSN (q);
1222
1223 /* We don't want a block to end on a line-number note since that has
1224 the potential of changing the code between -g and not -g. */
1225 while (NOTE_P (q) && NOTE_LINE_NUMBER (q) >= 0)
1226 q = PREV_INSN (q);
1227 }
1228
1229 /* Selectively unlink the sequence. */
1230 if (q != PREV_INSN (BB_HEAD (c)))
1231 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)));
1232
1233 e->flags |= EDGE_FALLTHRU;
1234 }
1235 \f
1236 /* Helper function for split_edge. Return true in case edge BB2 to BB1
1237 is back edge of syntactic loop. */
1238
1239 static bool
1240 back_edge_of_syntactic_loop_p (basic_block bb1, basic_block bb2)
1241 {
1242 rtx insn;
1243 int count = 0;
1244 basic_block bb;
1245
1246 if (bb1 == bb2)
1247 return true;
1248
1249 /* ??? Could we guarantee that bb indices are monotone, so that we could
1250 just compare them? */
1251 for (bb = bb1; bb && bb != bb2; bb = bb->next_bb)
1252 continue;
1253
1254 if (!bb)
1255 return false;
1256
1257 for (insn = BB_END (bb1); insn != BB_HEAD (bb2) && count >= 0;
1258 insn = NEXT_INSN (insn))
1259 if (NOTE_P (insn))
1260 {
1261 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1262 count++;
1263 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1264 count--;
1265 }
1266
1267 return count >= 0;
1268 }
1269
1270 /* Should move basic block BB after basic block AFTER. NIY. */
1271
1272 static bool
1273 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1274 basic_block after ATTRIBUTE_UNUSED)
1275 {
1276 return false;
1277 }
1278
1279 /* Split a (typically critical) edge. Return the new block.
1280 Abort on abnormal edges.
1281
1282 ??? The code generally expects to be called on critical edges.
1283 The case of a block ending in an unconditional jump to a
1284 block with multiple predecessors is not handled optimally. */
1285
1286 static basic_block
1287 rtl_split_edge (edge edge_in)
1288 {
1289 basic_block bb;
1290 rtx before;
1291
1292 /* Abnormal edges cannot be split. */
1293 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1294
1295 /* We are going to place the new block in front of edge destination.
1296 Avoid existence of fallthru predecessors. */
1297 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1298 {
1299 edge e;
1300 edge_iterator ei;
1301
1302 FOR_EACH_EDGE (e, ei, edge_in->dest->preds)
1303 if (e->flags & EDGE_FALLTHRU)
1304 break;
1305
1306 if (e)
1307 force_nonfallthru (e);
1308 }
1309
1310 /* Create the basic block note.
1311
1312 Where we place the note can have a noticeable impact on the generated
1313 code. Consider this cfg:
1314
1315 E
1316 |
1317 0
1318 / \
1319 +->1-->2--->E
1320 | |
1321 +--+
1322
1323 If we need to insert an insn on the edge from block 0 to block 1,
1324 we want to ensure the instructions we insert are outside of any
1325 loop notes that physically sit between block 0 and block 1. Otherwise
1326 we confuse the loop optimizer into thinking the loop is a phony. */
1327
1328 if (edge_in->dest != EXIT_BLOCK_PTR
1329 && PREV_INSN (BB_HEAD (edge_in->dest))
1330 && NOTE_P (PREV_INSN (BB_HEAD (edge_in->dest)))
1331 && (NOTE_LINE_NUMBER (PREV_INSN (BB_HEAD (edge_in->dest)))
1332 == NOTE_INSN_LOOP_BEG)
1333 && !back_edge_of_syntactic_loop_p (edge_in->dest, edge_in->src))
1334 before = PREV_INSN (BB_HEAD (edge_in->dest));
1335 else if (edge_in->dest != EXIT_BLOCK_PTR)
1336 before = BB_HEAD (edge_in->dest);
1337 else
1338 before = NULL_RTX;
1339
1340 /* If this is a fall through edge to the exit block, the blocks might be
1341 not adjacent, and the right place is the after the source. */
1342 if (edge_in->flags & EDGE_FALLTHRU && edge_in->dest == EXIT_BLOCK_PTR)
1343 {
1344 before = NEXT_INSN (BB_END (edge_in->src));
1345 if (before
1346 && NOTE_P (before)
1347 && NOTE_LINE_NUMBER (before) == NOTE_INSN_LOOP_END)
1348 before = NEXT_INSN (before);
1349 bb = create_basic_block (before, NULL, edge_in->src);
1350 BB_COPY_PARTITION (bb, edge_in->src);
1351 }
1352 else
1353 {
1354 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1355 /* ??? Why not edge_in->dest->prev_bb here? */
1356 BB_COPY_PARTITION (bb, edge_in->dest);
1357 }
1358
1359 /* ??? This info is likely going to be out of date very soon. */
1360 if (edge_in->dest->global_live_at_start)
1361 {
1362 bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1363 bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1364 COPY_REG_SET (bb->global_live_at_start,
1365 edge_in->dest->global_live_at_start);
1366 COPY_REG_SET (bb->global_live_at_end,
1367 edge_in->dest->global_live_at_start);
1368 }
1369
1370 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1371
1372 /* For non-fallthru edges, we must adjust the predecessor's
1373 jump instruction to target our new block. */
1374 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1375 {
1376 edge redirected = redirect_edge_and_branch (edge_in, bb);
1377 gcc_assert (redirected);
1378 }
1379 else
1380 redirect_edge_succ (edge_in, bb);
1381
1382 return bb;
1383 }
1384
1385 /* Queue instructions for insertion on an edge between two basic blocks.
1386 The new instructions and basic blocks (if any) will not appear in the
1387 CFG until commit_edge_insertions is called. */
1388
1389 void
1390 insert_insn_on_edge (rtx pattern, edge e)
1391 {
1392 /* We cannot insert instructions on an abnormal critical edge.
1393 It will be easier to find the culprit if we die now. */
1394 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1395
1396 if (e->insns.r == NULL_RTX)
1397 start_sequence ();
1398 else
1399 push_to_sequence (e->insns.r);
1400
1401 emit_insn (pattern);
1402
1403 e->insns.r = get_insns ();
1404 end_sequence ();
1405 }
1406
1407 /* Called from safe_insert_insn_on_edge through note_stores, marks live
1408 registers that are killed by the store. */
1409 static void
1410 mark_killed_regs (rtx reg, rtx set ATTRIBUTE_UNUSED, void *data)
1411 {
1412 regset killed = data;
1413 int regno, i;
1414
1415 if (GET_CODE (reg) == SUBREG)
1416 reg = SUBREG_REG (reg);
1417 if (!REG_P (reg))
1418 return;
1419 regno = REGNO (reg);
1420 if (regno >= FIRST_PSEUDO_REGISTER)
1421 SET_REGNO_REG_SET (killed, regno);
1422 else
1423 {
1424 for (i = 0; i < (int) hard_regno_nregs[regno][GET_MODE (reg)]; i++)
1425 SET_REGNO_REG_SET (killed, regno + i);
1426 }
1427 }
1428
1429 /* Similar to insert_insn_on_edge, tries to put INSN to edge E. Additionally
1430 it checks whether this will not clobber the registers that are live on the
1431 edge (i.e. it requires liveness information to be up-to-date) and if there
1432 are some, then it tries to save and restore them. Returns true if
1433 successful. */
1434 bool
1435 safe_insert_insn_on_edge (rtx insn, edge e)
1436 {
1437 rtx x;
1438 regset killed;
1439 rtx save_regs = NULL_RTX;
1440 unsigned regno;
1441 int noccmode;
1442 enum machine_mode mode;
1443 reg_set_iterator rsi;
1444
1445 #ifdef AVOID_CCMODE_COPIES
1446 noccmode = true;
1447 #else
1448 noccmode = false;
1449 #endif
1450
1451 killed = ALLOC_REG_SET (&reg_obstack);
1452
1453 for (x = insn; x; x = NEXT_INSN (x))
1454 if (INSN_P (x))
1455 note_stores (PATTERN (x), mark_killed_regs, killed);
1456
1457 /* Mark all hard registers as killed. Register allocator/reload cannot
1458 cope with the situation when life range of hard register spans operation
1459 for that the appropriate register is needed, i.e. it would be unsafe to
1460 extend the life ranges of hard registers. */
1461 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1462 if (!fixed_regs[regno]
1463 && !REGNO_PTR_FRAME_P (regno))
1464 SET_REGNO_REG_SET (killed, regno);
1465
1466 bitmap_and_into (killed, e->dest->global_live_at_start);
1467
1468 EXECUTE_IF_SET_IN_REG_SET (killed, 0, regno, rsi)
1469 {
1470 mode = regno < FIRST_PSEUDO_REGISTER
1471 ? reg_raw_mode[regno]
1472 : GET_MODE (regno_reg_rtx[regno]);
1473 if (mode == VOIDmode)
1474 return false;
1475
1476 if (noccmode && mode == CCmode)
1477 return false;
1478
1479 save_regs = alloc_EXPR_LIST (0,
1480 alloc_EXPR_LIST (0,
1481 gen_reg_rtx (mode),
1482 gen_raw_REG (mode, regno)),
1483 save_regs);
1484 }
1485
1486 if (save_regs)
1487 {
1488 rtx from, to;
1489
1490 start_sequence ();
1491 for (x = save_regs; x; x = XEXP (x, 1))
1492 {
1493 from = XEXP (XEXP (x, 0), 1);
1494 to = XEXP (XEXP (x, 0), 0);
1495 emit_move_insn (to, from);
1496 }
1497 emit_insn (insn);
1498 for (x = save_regs; x; x = XEXP (x, 1))
1499 {
1500 from = XEXP (XEXP (x, 0), 0);
1501 to = XEXP (XEXP (x, 0), 1);
1502 emit_move_insn (to, from);
1503 }
1504 insn = get_insns ();
1505 end_sequence ();
1506 free_EXPR_LIST_list (&save_regs);
1507 }
1508 insert_insn_on_edge (insn, e);
1509
1510 FREE_REG_SET (killed);
1511
1512 return true;
1513 }
1514
1515 /* Update the CFG for the instructions queued on edge E. */
1516
1517 static void
1518 commit_one_edge_insertion (edge e, int watch_calls)
1519 {
1520 rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1521 basic_block bb = NULL;
1522
1523 /* Pull the insns off the edge now since the edge might go away. */
1524 insns = e->insns.r;
1525 e->insns.r = NULL_RTX;
1526
1527 /* Special case -- avoid inserting code between call and storing
1528 its return value. */
1529 if (watch_calls && (e->flags & EDGE_FALLTHRU)
1530 && single_pred_p (e->dest)
1531 && e->src != ENTRY_BLOCK_PTR
1532 && CALL_P (BB_END (e->src)))
1533 {
1534 rtx next = next_nonnote_insn (BB_END (e->src));
1535
1536 after = BB_HEAD (e->dest);
1537 /* The first insn after the call may be a stack pop, skip it. */
1538 while (next
1539 && keep_with_call_p (next))
1540 {
1541 after = next;
1542 next = next_nonnote_insn (next);
1543 }
1544 bb = e->dest;
1545 }
1546 if (!before && !after)
1547 {
1548 /* Figure out where to put these things. If the destination has
1549 one predecessor, insert there. Except for the exit block. */
1550 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR)
1551 {
1552 bb = e->dest;
1553
1554 /* Get the location correct wrt a code label, and "nice" wrt
1555 a basic block note, and before everything else. */
1556 tmp = BB_HEAD (bb);
1557 if (LABEL_P (tmp))
1558 tmp = NEXT_INSN (tmp);
1559 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1560 tmp = NEXT_INSN (tmp);
1561 if (tmp == BB_HEAD (bb))
1562 before = tmp;
1563 else if (tmp)
1564 after = PREV_INSN (tmp);
1565 else
1566 after = get_last_insn ();
1567 }
1568
1569 /* If the source has one successor and the edge is not abnormal,
1570 insert there. Except for the entry block. */
1571 else if ((e->flags & EDGE_ABNORMAL) == 0
1572 && single_succ_p (e->src)
1573 && e->src != ENTRY_BLOCK_PTR)
1574 {
1575 bb = e->src;
1576
1577 /* It is possible to have a non-simple jump here. Consider a target
1578 where some forms of unconditional jumps clobber a register. This
1579 happens on the fr30 for example.
1580
1581 We know this block has a single successor, so we can just emit
1582 the queued insns before the jump. */
1583 if (JUMP_P (BB_END (bb)))
1584 for (before = BB_END (bb);
1585 NOTE_P (PREV_INSN (before))
1586 && NOTE_LINE_NUMBER (PREV_INSN (before)) ==
1587 NOTE_INSN_LOOP_BEG; before = PREV_INSN (before))
1588 ;
1589 else
1590 {
1591 /* We'd better be fallthru, or we've lost track of
1592 what's what. */
1593 gcc_assert (e->flags & EDGE_FALLTHRU);
1594
1595 after = BB_END (bb);
1596 }
1597 }
1598 /* Otherwise we must split the edge. */
1599 else
1600 {
1601 bb = split_edge (e);
1602 after = BB_END (bb);
1603
1604 if (flag_reorder_blocks_and_partition
1605 && targetm.have_named_sections
1606 && e->src != ENTRY_BLOCK_PTR
1607 && BB_PARTITION (e->src) == BB_COLD_PARTITION
1608 && !(e->flags & EDGE_CROSSING))
1609 {
1610 rtx bb_note, cur_insn;
1611
1612 bb_note = NULL_RTX;
1613 for (cur_insn = BB_HEAD (bb); cur_insn != NEXT_INSN (BB_END (bb));
1614 cur_insn = NEXT_INSN (cur_insn))
1615 if (NOTE_P (cur_insn)
1616 && NOTE_LINE_NUMBER (cur_insn) == NOTE_INSN_BASIC_BLOCK)
1617 {
1618 bb_note = cur_insn;
1619 break;
1620 }
1621
1622 if (JUMP_P (BB_END (bb))
1623 && !any_condjump_p (BB_END (bb))
1624 && (single_succ_edge (bb)->flags & EDGE_CROSSING))
1625 REG_NOTES (BB_END (bb)) = gen_rtx_EXPR_LIST
1626 (REG_CROSSING_JUMP, NULL_RTX, REG_NOTES (BB_END (bb)));
1627 }
1628 }
1629 }
1630
1631 /* Now that we've found the spot, do the insertion. */
1632
1633 if (before)
1634 {
1635 emit_insn_before_noloc (insns, before);
1636 last = prev_nonnote_insn (before);
1637 }
1638 else
1639 last = emit_insn_after_noloc (insns, after);
1640
1641 if (returnjump_p (last))
1642 {
1643 /* ??? Remove all outgoing edges from BB and add one for EXIT.
1644 This is not currently a problem because this only happens
1645 for the (single) epilogue, which already has a fallthru edge
1646 to EXIT. */
1647
1648 e = single_succ_edge (bb);
1649 gcc_assert (e->dest == EXIT_BLOCK_PTR
1650 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
1651
1652 e->flags &= ~EDGE_FALLTHRU;
1653 emit_barrier_after (last);
1654
1655 if (before)
1656 delete_insn (before);
1657 }
1658 else
1659 gcc_assert (!JUMP_P (last));
1660
1661 /* Mark the basic block for find_many_sub_basic_blocks. */
1662 bb->aux = &bb->aux;
1663 }
1664
1665 /* Update the CFG for all queued instructions. */
1666
1667 void
1668 commit_edge_insertions (void)
1669 {
1670 basic_block bb;
1671 sbitmap blocks;
1672 bool changed = false;
1673
1674 #ifdef ENABLE_CHECKING
1675 verify_flow_info ();
1676 #endif
1677
1678 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1679 {
1680 edge e;
1681 edge_iterator ei;
1682
1683 FOR_EACH_EDGE (e, ei, bb->succs)
1684 if (e->insns.r)
1685 {
1686 changed = true;
1687 commit_one_edge_insertion (e, false);
1688 }
1689 }
1690
1691 if (!changed)
1692 return;
1693
1694 blocks = sbitmap_alloc (last_basic_block);
1695 sbitmap_zero (blocks);
1696 FOR_EACH_BB (bb)
1697 if (bb->aux)
1698 {
1699 SET_BIT (blocks, bb->index);
1700 /* Check for forgotten bb->aux values before commit_edge_insertions
1701 call. */
1702 gcc_assert (bb->aux == &bb->aux);
1703 bb->aux = NULL;
1704 }
1705 find_many_sub_basic_blocks (blocks);
1706 sbitmap_free (blocks);
1707 }
1708 \f
1709 /* Update the CFG for all queued instructions, taking special care of inserting
1710 code on edges between call and storing its return value. */
1711
1712 void
1713 commit_edge_insertions_watch_calls (void)
1714 {
1715 basic_block bb;
1716 sbitmap blocks;
1717 bool changed = false;
1718
1719 #ifdef ENABLE_CHECKING
1720 verify_flow_info ();
1721 #endif
1722
1723 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1724 {
1725 edge e;
1726 edge_iterator ei;
1727
1728 FOR_EACH_EDGE (e, ei, bb->succs)
1729 if (e->insns.r)
1730 {
1731 changed = true;
1732 commit_one_edge_insertion (e, true);
1733 }
1734 }
1735
1736 if (!changed)
1737 return;
1738
1739 blocks = sbitmap_alloc (last_basic_block);
1740 sbitmap_zero (blocks);
1741 FOR_EACH_BB (bb)
1742 if (bb->aux)
1743 {
1744 SET_BIT (blocks, bb->index);
1745 /* Check for forgotten bb->aux values before commit_edge_insertions
1746 call. */
1747 gcc_assert (bb->aux == &bb->aux);
1748 bb->aux = NULL;
1749 }
1750 find_many_sub_basic_blocks (blocks);
1751 sbitmap_free (blocks);
1752 }
1753 \f
1754 /* Print out RTL-specific basic block information (live information
1755 at start and end). */
1756
1757 static void
1758 rtl_dump_bb (basic_block bb, FILE *outf, int indent)
1759 {
1760 rtx insn;
1761 rtx last;
1762 char *s_indent;
1763
1764 s_indent = alloca ((size_t) indent + 1);
1765 memset (s_indent, ' ', (size_t) indent);
1766 s_indent[indent] = '\0';
1767
1768 fprintf (outf, ";;%s Registers live at start: ", s_indent);
1769 dump_regset (bb->global_live_at_start, outf);
1770 putc ('\n', outf);
1771
1772 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
1773 insn = NEXT_INSN (insn))
1774 print_rtl_single (outf, insn);
1775
1776 fprintf (outf, ";;%s Registers live at end: ", s_indent);
1777 dump_regset (bb->global_live_at_end, outf);
1778 putc ('\n', outf);
1779 }
1780 \f
1781 /* Like print_rtl, but also print out live information for the start of each
1782 basic block. */
1783
1784 void
1785 print_rtl_with_bb (FILE *outf, rtx rtx_first)
1786 {
1787 rtx tmp_rtx;
1788
1789 if (rtx_first == 0)
1790 fprintf (outf, "(nil)\n");
1791 else
1792 {
1793 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
1794 int max_uid = get_max_uid ();
1795 basic_block *start = xcalloc (max_uid, sizeof (basic_block));
1796 basic_block *end = xcalloc (max_uid, sizeof (basic_block));
1797 enum bb_state *in_bb_p = xcalloc (max_uid, sizeof (enum bb_state));
1798
1799 basic_block bb;
1800
1801 FOR_EACH_BB_REVERSE (bb)
1802 {
1803 rtx x;
1804
1805 start[INSN_UID (BB_HEAD (bb))] = bb;
1806 end[INSN_UID (BB_END (bb))] = bb;
1807 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
1808 {
1809 enum bb_state state = IN_MULTIPLE_BB;
1810
1811 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
1812 state = IN_ONE_BB;
1813 in_bb_p[INSN_UID (x)] = state;
1814
1815 if (x == BB_END (bb))
1816 break;
1817 }
1818 }
1819
1820 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
1821 {
1822 int did_output;
1823
1824 if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
1825 {
1826 fprintf (outf, ";; Start of basic block %d, registers live:",
1827 bb->index);
1828 dump_regset (bb->global_live_at_start, outf);
1829 putc ('\n', outf);
1830 }
1831
1832 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
1833 && !NOTE_P (tmp_rtx)
1834 && !BARRIER_P (tmp_rtx))
1835 fprintf (outf, ";; Insn is not within a basic block\n");
1836 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
1837 fprintf (outf, ";; Insn is in multiple basic blocks\n");
1838
1839 did_output = print_rtl_single (outf, tmp_rtx);
1840
1841 if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
1842 {
1843 fprintf (outf, ";; End of basic block %d, registers live:\n",
1844 bb->index);
1845 dump_regset (bb->global_live_at_end, outf);
1846 putc ('\n', outf);
1847 }
1848
1849 if (did_output)
1850 putc ('\n', outf);
1851 }
1852
1853 free (start);
1854 free (end);
1855 free (in_bb_p);
1856 }
1857
1858 if (current_function_epilogue_delay_list != 0)
1859 {
1860 fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
1861 for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
1862 tmp_rtx = XEXP (tmp_rtx, 1))
1863 print_rtl_single (outf, XEXP (tmp_rtx, 0));
1864 }
1865 }
1866 \f
1867 void
1868 update_br_prob_note (basic_block bb)
1869 {
1870 rtx note;
1871 if (!JUMP_P (BB_END (bb)))
1872 return;
1873 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
1874 if (!note || INTVAL (XEXP (note, 0)) == BRANCH_EDGE (bb)->probability)
1875 return;
1876 XEXP (note, 0) = GEN_INT (BRANCH_EDGE (bb)->probability);
1877 }
1878 \f
1879 /* Verify the CFG and RTL consistency common for both underlying RTL and
1880 cfglayout RTL.
1881
1882 Currently it does following checks:
1883
1884 - test head/end pointers
1885 - overlapping of basic blocks
1886 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
1887 - tails of basic blocks (ensure that boundary is necessary)
1888 - scans body of the basic block for JUMP_INSN, CODE_LABEL
1889 and NOTE_INSN_BASIC_BLOCK
1890 - verify that no fall_thru edge crosses hot/cold partition boundaries
1891
1892 In future it can be extended check a lot of other stuff as well
1893 (reachability of basic blocks, life information, etc. etc.). */
1894
1895 static int
1896 rtl_verify_flow_info_1 (void)
1897 {
1898 const int max_uid = get_max_uid ();
1899 rtx last_head = get_last_insn ();
1900 basic_block *bb_info;
1901 rtx x;
1902 int err = 0;
1903 basic_block bb;
1904
1905 bb_info = xcalloc (max_uid, sizeof (basic_block));
1906
1907 FOR_EACH_BB_REVERSE (bb)
1908 {
1909 rtx head = BB_HEAD (bb);
1910 rtx end = BB_END (bb);
1911
1912 /* Verify the end of the basic block is in the INSN chain. */
1913 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
1914 if (x == end)
1915 break;
1916
1917 if (!x)
1918 {
1919 error ("end insn %d for block %d not found in the insn stream",
1920 INSN_UID (end), bb->index);
1921 err = 1;
1922 }
1923
1924 /* Work backwards from the end to the head of the basic block
1925 to verify the head is in the RTL chain. */
1926 for (; x != NULL_RTX; x = PREV_INSN (x))
1927 {
1928 /* While walking over the insn chain, verify insns appear
1929 in only one basic block and initialize the BB_INFO array
1930 used by other passes. */
1931 if (bb_info[INSN_UID (x)] != NULL)
1932 {
1933 error ("insn %d is in multiple basic blocks (%d and %d)",
1934 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
1935 err = 1;
1936 }
1937
1938 bb_info[INSN_UID (x)] = bb;
1939
1940 if (x == head)
1941 break;
1942 }
1943 if (!x)
1944 {
1945 error ("head insn %d for block %d not found in the insn stream",
1946 INSN_UID (head), bb->index);
1947 err = 1;
1948 }
1949
1950 last_head = x;
1951 }
1952
1953 /* Now check the basic blocks (boundaries etc.) */
1954 FOR_EACH_BB_REVERSE (bb)
1955 {
1956 int n_fallthru = 0, n_eh = 0, n_call = 0, n_abnormal = 0, n_branch = 0;
1957 edge e, fallthru = NULL;
1958 rtx note;
1959 edge_iterator ei;
1960
1961 if (JUMP_P (BB_END (bb))
1962 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
1963 && EDGE_COUNT (bb->succs) >= 2
1964 && any_condjump_p (BB_END (bb)))
1965 {
1966 if (INTVAL (XEXP (note, 0)) != BRANCH_EDGE (bb)->probability
1967 && profile_status != PROFILE_ABSENT)
1968 {
1969 error ("verify_flow_info: REG_BR_PROB does not match cfg %wi %i",
1970 INTVAL (XEXP (note, 0)), BRANCH_EDGE (bb)->probability);
1971 err = 1;
1972 }
1973 }
1974 FOR_EACH_EDGE (e, ei, bb->succs)
1975 {
1976 if (e->flags & EDGE_FALLTHRU)
1977 {
1978 n_fallthru++, fallthru = e;
1979 if ((e->flags & EDGE_CROSSING)
1980 || (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
1981 && e->src != ENTRY_BLOCK_PTR
1982 && e->dest != EXIT_BLOCK_PTR))
1983 {
1984 error ("Fallthru edge crosses section boundary (bb %i)",
1985 e->src->index);
1986 err = 1;
1987 }
1988 }
1989
1990 if ((e->flags & ~(EDGE_DFS_BACK
1991 | EDGE_CAN_FALLTHRU
1992 | EDGE_IRREDUCIBLE_LOOP
1993 | EDGE_LOOP_EXIT
1994 | EDGE_CROSSING)) == 0)
1995 n_branch++;
1996
1997 if (e->flags & EDGE_ABNORMAL_CALL)
1998 n_call++;
1999
2000 if (e->flags & EDGE_EH)
2001 n_eh++;
2002 else if (e->flags & EDGE_ABNORMAL)
2003 n_abnormal++;
2004 }
2005
2006 if (n_eh && GET_CODE (PATTERN (BB_END (bb))) != RESX
2007 && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2008 {
2009 error ("Missing REG_EH_REGION note in the end of bb %i", bb->index);
2010 err = 1;
2011 }
2012 if (n_branch
2013 && (!JUMP_P (BB_END (bb))
2014 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2015 || any_condjump_p (BB_END (bb))))))
2016 {
2017 error ("Too many outgoing branch edges from bb %i", bb->index);
2018 err = 1;
2019 }
2020 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2021 {
2022 error ("Fallthru edge after unconditional jump %i", bb->index);
2023 err = 1;
2024 }
2025 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2026 {
2027 error ("Wrong amount of branch edges after unconditional jump %i", bb->index);
2028 err = 1;
2029 }
2030 if (n_branch != 1 && any_condjump_p (BB_END (bb))
2031 && JUMP_LABEL (BB_END (bb)) == BB_HEAD (fallthru->dest))
2032 {
2033 error ("Wrong amount of branch edges after conditional jump %i", bb->index);
2034 err = 1;
2035 }
2036 if (n_call && !CALL_P (BB_END (bb)))
2037 {
2038 error ("Call edges for non-call insn in bb %i", bb->index);
2039 err = 1;
2040 }
2041 if (n_abnormal
2042 && (!CALL_P (BB_END (bb)) && n_call != n_abnormal)
2043 && (!JUMP_P (BB_END (bb))
2044 || any_condjump_p (BB_END (bb))
2045 || any_uncondjump_p (BB_END (bb))))
2046 {
2047 error ("Abnormal edges for no purpose in bb %i", bb->index);
2048 err = 1;
2049 }
2050
2051 for (x = BB_HEAD (bb); x != NEXT_INSN (BB_END (bb)); x = NEXT_INSN (x))
2052 /* We may have a barrier inside a basic block before dead code
2053 elimination. There is no BLOCK_FOR_INSN field in a barrier. */
2054 if (!BARRIER_P (x) && BLOCK_FOR_INSN (x) != bb)
2055 {
2056 debug_rtx (x);
2057 if (! BLOCK_FOR_INSN (x))
2058 error
2059 ("insn %d inside basic block %d but block_for_insn is NULL",
2060 INSN_UID (x), bb->index);
2061 else
2062 error
2063 ("insn %d inside basic block %d but block_for_insn is %i",
2064 INSN_UID (x), bb->index, BLOCK_FOR_INSN (x)->index);
2065
2066 err = 1;
2067 }
2068
2069 /* OK pointers are correct. Now check the header of basic
2070 block. It ought to contain optional CODE_LABEL followed
2071 by NOTE_BASIC_BLOCK. */
2072 x = BB_HEAD (bb);
2073 if (LABEL_P (x))
2074 {
2075 if (BB_END (bb) == x)
2076 {
2077 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2078 bb->index);
2079 err = 1;
2080 }
2081
2082 x = NEXT_INSN (x);
2083 }
2084
2085 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2086 {
2087 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2088 bb->index);
2089 err = 1;
2090 }
2091
2092 if (BB_END (bb) == x)
2093 /* Do checks for empty blocks here. */
2094 ;
2095 else
2096 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2097 {
2098 if (NOTE_INSN_BASIC_BLOCK_P (x))
2099 {
2100 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2101 INSN_UID (x), bb->index);
2102 err = 1;
2103 }
2104
2105 if (x == BB_END (bb))
2106 break;
2107
2108 if (control_flow_insn_p (x))
2109 {
2110 error ("in basic block %d:", bb->index);
2111 fatal_insn ("flow control insn inside a basic block", x);
2112 }
2113 }
2114 }
2115
2116 /* Clean up. */
2117 free (bb_info);
2118 return err;
2119 }
2120
2121 /* Verify the CFG and RTL consistency common for both underlying RTL and
2122 cfglayout RTL.
2123
2124 Currently it does following checks:
2125 - all checks of rtl_verify_flow_info_1
2126 - check that all insns are in the basic blocks
2127 (except the switch handling code, barriers and notes)
2128 - check that all returns are followed by barriers
2129 - check that all fallthru edge points to the adjacent blocks. */
2130 static int
2131 rtl_verify_flow_info (void)
2132 {
2133 basic_block bb;
2134 int err = rtl_verify_flow_info_1 ();
2135 rtx x;
2136 int num_bb_notes;
2137 const rtx rtx_first = get_insns ();
2138 basic_block last_bb_seen = ENTRY_BLOCK_PTR, curr_bb = NULL;
2139
2140 FOR_EACH_BB_REVERSE (bb)
2141 {
2142 edge e;
2143 edge_iterator ei;
2144
2145 FOR_EACH_EDGE (e, ei, bb->succs)
2146 if (e->flags & EDGE_FALLTHRU)
2147 break;
2148 if (!e)
2149 {
2150 rtx insn;
2151
2152 /* Ensure existence of barrier in BB with no fallthru edges. */
2153 for (insn = BB_END (bb); !insn || !BARRIER_P (insn);
2154 insn = NEXT_INSN (insn))
2155 if (!insn
2156 || (NOTE_P (insn)
2157 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK))
2158 {
2159 error ("missing barrier after block %i", bb->index);
2160 err = 1;
2161 break;
2162 }
2163 }
2164 else if (e->src != ENTRY_BLOCK_PTR
2165 && e->dest != EXIT_BLOCK_PTR)
2166 {
2167 rtx insn;
2168
2169 if (e->src->next_bb != e->dest)
2170 {
2171 error
2172 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2173 e->src->index, e->dest->index);
2174 err = 1;
2175 }
2176 else
2177 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2178 insn = NEXT_INSN (insn))
2179 if (BARRIER_P (insn) || INSN_P (insn))
2180 {
2181 error ("verify_flow_info: Incorrect fallthru %i->%i",
2182 e->src->index, e->dest->index);
2183 fatal_insn ("wrong insn in the fallthru edge", insn);
2184 err = 1;
2185 }
2186 }
2187 }
2188
2189 num_bb_notes = 0;
2190 last_bb_seen = ENTRY_BLOCK_PTR;
2191
2192 for (x = rtx_first; x; x = NEXT_INSN (x))
2193 {
2194 if (NOTE_INSN_BASIC_BLOCK_P (x))
2195 {
2196 bb = NOTE_BASIC_BLOCK (x);
2197
2198 num_bb_notes++;
2199 if (bb != last_bb_seen->next_bb)
2200 internal_error ("basic blocks not laid down consecutively");
2201
2202 curr_bb = last_bb_seen = bb;
2203 }
2204
2205 if (!curr_bb)
2206 {
2207 switch (GET_CODE (x))
2208 {
2209 case BARRIER:
2210 case NOTE:
2211 break;
2212
2213 case CODE_LABEL:
2214 /* An addr_vec is placed outside any basic block. */
2215 if (NEXT_INSN (x)
2216 && JUMP_P (NEXT_INSN (x))
2217 && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
2218 || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
2219 x = NEXT_INSN (x);
2220
2221 /* But in any case, non-deletable labels can appear anywhere. */
2222 break;
2223
2224 default:
2225 fatal_insn ("insn outside basic block", x);
2226 }
2227 }
2228
2229 if (JUMP_P (x)
2230 && returnjump_p (x) && ! condjump_p (x)
2231 && ! (NEXT_INSN (x) && BARRIER_P (NEXT_INSN (x))))
2232 fatal_insn ("return not followed by barrier", x);
2233 if (curr_bb && x == BB_END (curr_bb))
2234 curr_bb = NULL;
2235 }
2236
2237 if (num_bb_notes != n_basic_blocks)
2238 internal_error
2239 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2240 num_bb_notes, n_basic_blocks);
2241
2242 return err;
2243 }
2244 \f
2245 /* Assume that the preceding pass has possibly eliminated jump instructions
2246 or converted the unconditional jumps. Eliminate the edges from CFG.
2247 Return true if any edges are eliminated. */
2248
2249 bool
2250 purge_dead_edges (basic_block bb)
2251 {
2252 edge e;
2253 rtx insn = BB_END (bb), note;
2254 bool purged = false;
2255 bool found;
2256 edge_iterator ei;
2257
2258 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
2259 if (NONJUMP_INSN_P (insn)
2260 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
2261 {
2262 rtx eqnote;
2263
2264 if (! may_trap_p (PATTERN (insn))
2265 || ((eqnote = find_reg_equal_equiv_note (insn))
2266 && ! may_trap_p (XEXP (eqnote, 0))))
2267 remove_note (insn, note);
2268 }
2269
2270 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
2271 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2272 {
2273 if (e->flags & EDGE_EH)
2274 {
2275 if (can_throw_internal (BB_END (bb)))
2276 {
2277 ei_next (&ei);
2278 continue;
2279 }
2280 }
2281 else if (e->flags & EDGE_ABNORMAL_CALL)
2282 {
2283 if (CALL_P (BB_END (bb))
2284 && (! (note = find_reg_note (insn, REG_EH_REGION, NULL))
2285 || INTVAL (XEXP (note, 0)) >= 0))
2286 {
2287 ei_next (&ei);
2288 continue;
2289 }
2290 }
2291 else
2292 {
2293 ei_next (&ei);
2294 continue;
2295 }
2296
2297 remove_edge (e);
2298 bb->flags |= BB_DIRTY;
2299 purged = true;
2300 }
2301
2302 if (JUMP_P (insn))
2303 {
2304 rtx note;
2305 edge b,f;
2306 edge_iterator ei;
2307
2308 /* We do care only about conditional jumps and simplejumps. */
2309 if (!any_condjump_p (insn)
2310 && !returnjump_p (insn)
2311 && !simplejump_p (insn))
2312 return purged;
2313
2314 /* Branch probability/prediction notes are defined only for
2315 condjumps. We've possibly turned condjump into simplejump. */
2316 if (simplejump_p (insn))
2317 {
2318 note = find_reg_note (insn, REG_BR_PROB, NULL);
2319 if (note)
2320 remove_note (insn, note);
2321 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
2322 remove_note (insn, note);
2323 }
2324
2325 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2326 {
2327 /* Avoid abnormal flags to leak from computed jumps turned
2328 into simplejumps. */
2329
2330 e->flags &= ~EDGE_ABNORMAL;
2331
2332 /* See if this edge is one we should keep. */
2333 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
2334 /* A conditional jump can fall through into the next
2335 block, so we should keep the edge. */
2336 {
2337 ei_next (&ei);
2338 continue;
2339 }
2340 else if (e->dest != EXIT_BLOCK_PTR
2341 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
2342 /* If the destination block is the target of the jump,
2343 keep the edge. */
2344 {
2345 ei_next (&ei);
2346 continue;
2347 }
2348 else if (e->dest == EXIT_BLOCK_PTR && returnjump_p (insn))
2349 /* If the destination block is the exit block, and this
2350 instruction is a return, then keep the edge. */
2351 {
2352 ei_next (&ei);
2353 continue;
2354 }
2355 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
2356 /* Keep the edges that correspond to exceptions thrown by
2357 this instruction and rematerialize the EDGE_ABNORMAL
2358 flag we just cleared above. */
2359 {
2360 e->flags |= EDGE_ABNORMAL;
2361 ei_next (&ei);
2362 continue;
2363 }
2364
2365 /* We do not need this edge. */
2366 bb->flags |= BB_DIRTY;
2367 purged = true;
2368 remove_edge (e);
2369 }
2370
2371 if (EDGE_COUNT (bb->succs) == 0 || !purged)
2372 return purged;
2373
2374 if (dump_file)
2375 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
2376
2377 if (!optimize)
2378 return purged;
2379
2380 /* Redistribute probabilities. */
2381 if (single_succ_p (bb))
2382 {
2383 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2384 single_succ_edge (bb)->count = bb->count;
2385 }
2386 else
2387 {
2388 note = find_reg_note (insn, REG_BR_PROB, NULL);
2389 if (!note)
2390 return purged;
2391
2392 b = BRANCH_EDGE (bb);
2393 f = FALLTHRU_EDGE (bb);
2394 b->probability = INTVAL (XEXP (note, 0));
2395 f->probability = REG_BR_PROB_BASE - b->probability;
2396 b->count = bb->count * b->probability / REG_BR_PROB_BASE;
2397 f->count = bb->count * f->probability / REG_BR_PROB_BASE;
2398 }
2399
2400 return purged;
2401 }
2402 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
2403 {
2404 /* First, there should not be any EH or ABCALL edges resulting
2405 from non-local gotos and the like. If there were, we shouldn't
2406 have created the sibcall in the first place. Second, there
2407 should of course never have been a fallthru edge. */
2408 gcc_assert (single_succ_p (bb));
2409 gcc_assert (single_succ_edge (bb)->flags
2410 == (EDGE_SIBCALL | EDGE_ABNORMAL));
2411
2412 return 0;
2413 }
2414
2415 /* If we don't see a jump insn, we don't know exactly why the block would
2416 have been broken at this point. Look for a simple, non-fallthru edge,
2417 as these are only created by conditional branches. If we find such an
2418 edge we know that there used to be a jump here and can then safely
2419 remove all non-fallthru edges. */
2420 found = false;
2421 FOR_EACH_EDGE (e, ei, bb->succs)
2422 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
2423 {
2424 found = true;
2425 break;
2426 }
2427
2428 if (!found)
2429 return purged;
2430
2431 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2432 {
2433 if (!(e->flags & EDGE_FALLTHRU))
2434 {
2435 bb->flags |= BB_DIRTY;
2436 remove_edge (e);
2437 purged = true;
2438 }
2439 else
2440 ei_next (&ei);
2441 }
2442
2443 gcc_assert (single_succ_p (bb));
2444
2445 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2446 single_succ_edge (bb)->count = bb->count;
2447
2448 if (dump_file)
2449 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
2450 bb->index);
2451 return purged;
2452 }
2453
2454 /* Search all basic blocks for potentially dead edges and purge them. Return
2455 true if some edge has been eliminated. */
2456
2457 bool
2458 purge_all_dead_edges (int update_life_p)
2459 {
2460 int purged = false;
2461 sbitmap blocks = 0;
2462 basic_block bb;
2463
2464 if (update_life_p)
2465 {
2466 blocks = sbitmap_alloc (last_basic_block);
2467 sbitmap_zero (blocks);
2468 }
2469
2470 FOR_EACH_BB (bb)
2471 {
2472 bool purged_here = purge_dead_edges (bb);
2473
2474 purged |= purged_here;
2475 if (purged_here && update_life_p)
2476 SET_BIT (blocks, bb->index);
2477 }
2478
2479 if (update_life_p && purged)
2480 update_life_info (blocks, UPDATE_LIFE_GLOBAL,
2481 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
2482 | PROP_KILL_DEAD_CODE);
2483
2484 if (update_life_p)
2485 sbitmap_free (blocks);
2486 return purged;
2487 }
2488
2489 /* Same as split_block but update cfg_layout structures. */
2490
2491 static basic_block
2492 cfg_layout_split_block (basic_block bb, void *insnp)
2493 {
2494 rtx insn = insnp;
2495 basic_block new_bb = rtl_split_block (bb, insn);
2496
2497 new_bb->rbi->footer = bb->rbi->footer;
2498 bb->rbi->footer = NULL;
2499
2500 return new_bb;
2501 }
2502
2503
2504 /* Redirect Edge to DEST. */
2505 static edge
2506 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
2507 {
2508 basic_block src = e->src;
2509 edge ret;
2510
2511 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
2512 return NULL;
2513
2514 if (e->dest == dest)
2515 return e;
2516
2517 if (e->src != ENTRY_BLOCK_PTR
2518 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
2519 {
2520 src->flags |= BB_DIRTY;
2521 return ret;
2522 }
2523
2524 if (e->src == ENTRY_BLOCK_PTR
2525 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
2526 {
2527 if (dump_file)
2528 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
2529 e->src->index, dest->index);
2530
2531 e->src->flags |= BB_DIRTY;
2532 redirect_edge_succ (e, dest);
2533 return e;
2534 }
2535
2536 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
2537 in the case the basic block appears to be in sequence. Avoid this
2538 transformation. */
2539
2540 if (e->flags & EDGE_FALLTHRU)
2541 {
2542 /* Redirect any branch edges unified with the fallthru one. */
2543 if (JUMP_P (BB_END (src))
2544 && label_is_jump_target_p (BB_HEAD (e->dest),
2545 BB_END (src)))
2546 {
2547 edge redirected;
2548
2549 if (dump_file)
2550 fprintf (dump_file, "Fallthru edge unified with branch "
2551 "%i->%i redirected to %i\n",
2552 e->src->index, e->dest->index, dest->index);
2553 e->flags &= ~EDGE_FALLTHRU;
2554 redirected = redirect_branch_edge (e, dest);
2555 gcc_assert (redirected);
2556 e->flags |= EDGE_FALLTHRU;
2557 e->src->flags |= BB_DIRTY;
2558 return e;
2559 }
2560 /* In case we are redirecting fallthru edge to the branch edge
2561 of conditional jump, remove it. */
2562 if (EDGE_COUNT (src->succs) == 2)
2563 {
2564 /* Find the edge that is different from E. */
2565 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
2566
2567 if (s->dest == dest
2568 && any_condjump_p (BB_END (src))
2569 && onlyjump_p (BB_END (src)))
2570 delete_insn (BB_END (src));
2571 }
2572 ret = redirect_edge_succ_nodup (e, dest);
2573 if (dump_file)
2574 fprintf (dump_file, "Fallthru edge %i->%i redirected to %i\n",
2575 e->src->index, e->dest->index, dest->index);
2576 }
2577 else
2578 ret = redirect_branch_edge (e, dest);
2579
2580 /* We don't want simplejumps in the insn stream during cfglayout. */
2581 gcc_assert (!simplejump_p (BB_END (src)));
2582
2583 src->flags |= BB_DIRTY;
2584 return ret;
2585 }
2586
2587 /* Simple wrapper as we always can redirect fallthru edges. */
2588 static basic_block
2589 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
2590 {
2591 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
2592
2593 gcc_assert (redirected);
2594 return NULL;
2595 }
2596
2597 /* Same as delete_basic_block but update cfg_layout structures. */
2598
2599 static void
2600 cfg_layout_delete_block (basic_block bb)
2601 {
2602 rtx insn, next, prev = PREV_INSN (BB_HEAD (bb)), *to, remaints;
2603
2604 if (bb->rbi->header)
2605 {
2606 next = BB_HEAD (bb);
2607 if (prev)
2608 NEXT_INSN (prev) = bb->rbi->header;
2609 else
2610 set_first_insn (bb->rbi->header);
2611 PREV_INSN (bb->rbi->header) = prev;
2612 insn = bb->rbi->header;
2613 while (NEXT_INSN (insn))
2614 insn = NEXT_INSN (insn);
2615 NEXT_INSN (insn) = next;
2616 PREV_INSN (next) = insn;
2617 }
2618 next = NEXT_INSN (BB_END (bb));
2619 if (bb->rbi->footer)
2620 {
2621 insn = bb->rbi->footer;
2622 while (insn)
2623 {
2624 if (BARRIER_P (insn))
2625 {
2626 if (PREV_INSN (insn))
2627 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2628 else
2629 bb->rbi->footer = NEXT_INSN (insn);
2630 if (NEXT_INSN (insn))
2631 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2632 }
2633 if (LABEL_P (insn))
2634 break;
2635 insn = NEXT_INSN (insn);
2636 }
2637 if (bb->rbi->footer)
2638 {
2639 insn = BB_END (bb);
2640 NEXT_INSN (insn) = bb->rbi->footer;
2641 PREV_INSN (bb->rbi->footer) = insn;
2642 while (NEXT_INSN (insn))
2643 insn = NEXT_INSN (insn);
2644 NEXT_INSN (insn) = next;
2645 if (next)
2646 PREV_INSN (next) = insn;
2647 else
2648 set_last_insn (insn);
2649 }
2650 }
2651 if (bb->next_bb != EXIT_BLOCK_PTR)
2652 to = &bb->next_bb->rbi->header;
2653 else
2654 to = &cfg_layout_function_footer;
2655 rtl_delete_block (bb);
2656
2657 if (prev)
2658 prev = NEXT_INSN (prev);
2659 else
2660 prev = get_insns ();
2661 if (next)
2662 next = PREV_INSN (next);
2663 else
2664 next = get_last_insn ();
2665
2666 if (next && NEXT_INSN (next) != prev)
2667 {
2668 remaints = unlink_insn_chain (prev, next);
2669 insn = remaints;
2670 while (NEXT_INSN (insn))
2671 insn = NEXT_INSN (insn);
2672 NEXT_INSN (insn) = *to;
2673 if (*to)
2674 PREV_INSN (*to) = insn;
2675 *to = remaints;
2676 }
2677 }
2678
2679 /* Return true when blocks A and B can be safely merged. */
2680 static bool
2681 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
2682 {
2683 /* If we are partitioning hot/cold basic blocks, we don't want to
2684 mess up unconditional or indirect jumps that cross between hot
2685 and cold sections.
2686
2687 Basic block partitioning may result in some jumps that appear to
2688 be optimizable (or blocks that appear to be mergeable), but which really
2689 must be left untouched (they are required to make it safely across
2690 partition boundaries). See the comments at the top of
2691 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2692
2693 if (BB_PARTITION (a) != BB_PARTITION (b))
2694 return false;
2695
2696 /* There must be exactly one edge in between the blocks. */
2697 return (single_succ_p (a)
2698 && single_succ (a) == b
2699 && single_pred_p (b) == 1
2700 && a != b
2701 /* Must be simple edge. */
2702 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
2703 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
2704 /* If the jump insn has side effects,
2705 we can't kill the edge. */
2706 && (!JUMP_P (BB_END (a))
2707 || (reload_completed
2708 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
2709 }
2710
2711 /* Merge block A and B, abort when it is not possible. */
2712 static void
2713 cfg_layout_merge_blocks (basic_block a, basic_block b)
2714 {
2715 #ifdef ENABLE_CHECKING
2716 gcc_assert (cfg_layout_can_merge_blocks_p (a, b));
2717 #endif
2718
2719 /* If there was a CODE_LABEL beginning B, delete it. */
2720 if (LABEL_P (BB_HEAD (b)))
2721 delete_insn (BB_HEAD (b));
2722
2723 /* We should have fallthru edge in a, or we can do dummy redirection to get
2724 it cleaned up. */
2725 if (JUMP_P (BB_END (a)))
2726 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
2727 gcc_assert (!JUMP_P (BB_END (a)));
2728
2729 /* Possible line number notes should appear in between. */
2730 if (b->rbi->header)
2731 {
2732 rtx first = BB_END (a), last;
2733
2734 last = emit_insn_after_noloc (b->rbi->header, BB_END (a));
2735 delete_insn_chain (NEXT_INSN (first), last);
2736 b->rbi->header = NULL;
2737 }
2738
2739 /* In the case basic blocks are not adjacent, move them around. */
2740 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
2741 {
2742 rtx first = unlink_insn_chain (BB_HEAD (b), BB_END (b));
2743
2744 emit_insn_after_noloc (first, BB_END (a));
2745 /* Skip possible DELETED_LABEL insn. */
2746 if (!NOTE_INSN_BASIC_BLOCK_P (first))
2747 first = NEXT_INSN (first);
2748 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (first));
2749 BB_HEAD (b) = NULL;
2750 delete_insn (first);
2751 }
2752 /* Otherwise just re-associate the instructions. */
2753 else
2754 {
2755 rtx insn;
2756
2757 for (insn = BB_HEAD (b);
2758 insn != NEXT_INSN (BB_END (b));
2759 insn = NEXT_INSN (insn))
2760 set_block_for_insn (insn, a);
2761 insn = BB_HEAD (b);
2762 /* Skip possible DELETED_LABEL insn. */
2763 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
2764 insn = NEXT_INSN (insn);
2765 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
2766 BB_HEAD (b) = NULL;
2767 BB_END (a) = BB_END (b);
2768 delete_insn (insn);
2769 }
2770
2771 /* Possible tablejumps and barriers should appear after the block. */
2772 if (b->rbi->footer)
2773 {
2774 if (!a->rbi->footer)
2775 a->rbi->footer = b->rbi->footer;
2776 else
2777 {
2778 rtx last = a->rbi->footer;
2779
2780 while (NEXT_INSN (last))
2781 last = NEXT_INSN (last);
2782 NEXT_INSN (last) = b->rbi->footer;
2783 PREV_INSN (b->rbi->footer) = last;
2784 }
2785 b->rbi->footer = NULL;
2786 }
2787
2788 if (dump_file)
2789 fprintf (dump_file, "Merged blocks %d and %d.\n",
2790 a->index, b->index);
2791 }
2792
2793 /* Split edge E. */
2794
2795 static basic_block
2796 cfg_layout_split_edge (edge e)
2797 {
2798 basic_block new_bb =
2799 create_basic_block (e->src != ENTRY_BLOCK_PTR
2800 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
2801 NULL_RTX, e->src);
2802
2803 /* ??? This info is likely going to be out of date very soon, but we must
2804 create it to avoid getting an ICE later. */
2805 if (e->dest->global_live_at_start)
2806 {
2807 new_bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
2808 new_bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
2809 COPY_REG_SET (new_bb->global_live_at_start,
2810 e->dest->global_live_at_start);
2811 COPY_REG_SET (new_bb->global_live_at_end,
2812 e->dest->global_live_at_start);
2813 }
2814
2815 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
2816 redirect_edge_and_branch_force (e, new_bb);
2817
2818 return new_bb;
2819 }
2820
2821 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
2822
2823 static void
2824 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
2825 {
2826 }
2827
2828 /* Return 1 if BB ends with a call, possibly followed by some
2829 instructions that must stay with the call, 0 otherwise. */
2830
2831 static bool
2832 rtl_block_ends_with_call_p (basic_block bb)
2833 {
2834 rtx insn = BB_END (bb);
2835
2836 while (!CALL_P (insn)
2837 && insn != BB_HEAD (bb)
2838 && keep_with_call_p (insn))
2839 insn = PREV_INSN (insn);
2840 return (CALL_P (insn));
2841 }
2842
2843 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
2844
2845 static bool
2846 rtl_block_ends_with_condjump_p (basic_block bb)
2847 {
2848 return any_condjump_p (BB_END (bb));
2849 }
2850
2851 /* Return true if we need to add fake edge to exit.
2852 Helper function for rtl_flow_call_edges_add. */
2853
2854 static bool
2855 need_fake_edge_p (rtx insn)
2856 {
2857 if (!INSN_P (insn))
2858 return false;
2859
2860 if ((CALL_P (insn)
2861 && !SIBLING_CALL_P (insn)
2862 && !find_reg_note (insn, REG_NORETURN, NULL)
2863 && !CONST_OR_PURE_CALL_P (insn)))
2864 return true;
2865
2866 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2867 && MEM_VOLATILE_P (PATTERN (insn)))
2868 || (GET_CODE (PATTERN (insn)) == PARALLEL
2869 && asm_noperands (insn) != -1
2870 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
2871 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2872 }
2873
2874 /* Add fake edges to the function exit for any non constant and non noreturn
2875 calls, volatile inline assembly in the bitmap of blocks specified by
2876 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
2877 that were split.
2878
2879 The goal is to expose cases in which entering a basic block does not imply
2880 that all subsequent instructions must be executed. */
2881
2882 static int
2883 rtl_flow_call_edges_add (sbitmap blocks)
2884 {
2885 int i;
2886 int blocks_split = 0;
2887 int last_bb = last_basic_block;
2888 bool check_last_block = false;
2889
2890 if (n_basic_blocks == 0)
2891 return 0;
2892
2893 if (! blocks)
2894 check_last_block = true;
2895 else
2896 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
2897
2898 /* In the last basic block, before epilogue generation, there will be
2899 a fallthru edge to EXIT. Special care is required if the last insn
2900 of the last basic block is a call because make_edge folds duplicate
2901 edges, which would result in the fallthru edge also being marked
2902 fake, which would result in the fallthru edge being removed by
2903 remove_fake_edges, which would result in an invalid CFG.
2904
2905 Moreover, we can't elide the outgoing fake edge, since the block
2906 profiler needs to take this into account in order to solve the minimal
2907 spanning tree in the case that the call doesn't return.
2908
2909 Handle this by adding a dummy instruction in a new last basic block. */
2910 if (check_last_block)
2911 {
2912 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
2913 rtx insn = BB_END (bb);
2914
2915 /* Back up past insns that must be kept in the same block as a call. */
2916 while (insn != BB_HEAD (bb)
2917 && keep_with_call_p (insn))
2918 insn = PREV_INSN (insn);
2919
2920 if (need_fake_edge_p (insn))
2921 {
2922 edge e;
2923
2924 e = find_edge (bb, EXIT_BLOCK_PTR);
2925 if (e)
2926 {
2927 insert_insn_on_edge (gen_rtx_USE (VOIDmode, const0_rtx), e);
2928 commit_edge_insertions ();
2929 }
2930 }
2931 }
2932
2933 /* Now add fake edges to the function exit for any non constant
2934 calls since there is no way that we can determine if they will
2935 return or not... */
2936
2937 for (i = 0; i < last_bb; i++)
2938 {
2939 basic_block bb = BASIC_BLOCK (i);
2940 rtx insn;
2941 rtx prev_insn;
2942
2943 if (!bb)
2944 continue;
2945
2946 if (blocks && !TEST_BIT (blocks, i))
2947 continue;
2948
2949 for (insn = BB_END (bb); ; insn = prev_insn)
2950 {
2951 prev_insn = PREV_INSN (insn);
2952 if (need_fake_edge_p (insn))
2953 {
2954 edge e;
2955 rtx split_at_insn = insn;
2956
2957 /* Don't split the block between a call and an insn that should
2958 remain in the same block as the call. */
2959 if (CALL_P (insn))
2960 while (split_at_insn != BB_END (bb)
2961 && keep_with_call_p (NEXT_INSN (split_at_insn)))
2962 split_at_insn = NEXT_INSN (split_at_insn);
2963
2964 /* The handling above of the final block before the epilogue
2965 should be enough to verify that there is no edge to the exit
2966 block in CFG already. Calling make_edge in such case would
2967 cause us to mark that edge as fake and remove it later. */
2968
2969 #ifdef ENABLE_CHECKING
2970 if (split_at_insn == BB_END (bb))
2971 {
2972 e = find_edge (bb, EXIT_BLOCK_PTR);
2973 gcc_assert (e == NULL);
2974 }
2975 #endif
2976
2977 /* Note that the following may create a new basic block
2978 and renumber the existing basic blocks. */
2979 if (split_at_insn != BB_END (bb))
2980 {
2981 e = split_block (bb, split_at_insn);
2982 if (e)
2983 blocks_split++;
2984 }
2985
2986 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
2987 }
2988
2989 if (insn == BB_HEAD (bb))
2990 break;
2991 }
2992 }
2993
2994 if (blocks_split)
2995 verify_flow_info ();
2996
2997 return blocks_split;
2998 }
2999
3000 /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
3001 the conditional branch traget, SECOND_HEAD should be the fall-thru
3002 there is no need to handle this here the loop versioning code handles
3003 this. the reason for SECON_HEAD is that it is needed for condition
3004 in trees, and this should be of the same type since it is a hook. */
3005 static void
3006 rtl_lv_add_condition_to_bb (basic_block first_head ,
3007 basic_block second_head ATTRIBUTE_UNUSED,
3008 basic_block cond_bb, void *comp_rtx)
3009 {
3010 rtx label, seq, jump;
3011 rtx op0 = XEXP ((rtx)comp_rtx, 0);
3012 rtx op1 = XEXP ((rtx)comp_rtx, 1);
3013 enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
3014 enum machine_mode mode;
3015
3016
3017 label = block_label (first_head);
3018 mode = GET_MODE (op0);
3019 if (mode == VOIDmode)
3020 mode = GET_MODE (op1);
3021
3022 start_sequence ();
3023 op0 = force_operand (op0, NULL_RTX);
3024 op1 = force_operand (op1, NULL_RTX);
3025 do_compare_rtx_and_jump (op0, op1, comp, 0,
3026 mode, NULL_RTX, NULL_RTX, label);
3027 jump = get_last_insn ();
3028 JUMP_LABEL (jump) = label;
3029 LABEL_NUSES (label)++;
3030 seq = get_insns ();
3031 end_sequence ();
3032
3033 /* Add the new cond , in the new head. */
3034 emit_insn_after(seq, BB_END(cond_bb));
3035 }
3036
3037
3038 /* Given a block B with unconditional branch at its end, get the
3039 store the return the branch edge and the fall-thru edge in
3040 BRANCH_EDGE and FALLTHRU_EDGE respectively. */
3041 static void
3042 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
3043 edge *fallthru_edge)
3044 {
3045 edge e = EDGE_SUCC (b, 0);
3046
3047 if (e->flags & EDGE_FALLTHRU)
3048 {
3049 *fallthru_edge = e;
3050 *branch_edge = EDGE_SUCC (b, 1);
3051 }
3052 else
3053 {
3054 *branch_edge = e;
3055 *fallthru_edge = EDGE_SUCC (b, 1);
3056 }
3057 }
3058
3059
3060 /* Implementation of CFG manipulation for linearized RTL. */
3061 struct cfg_hooks rtl_cfg_hooks = {
3062 "rtl",
3063 rtl_verify_flow_info,
3064 rtl_dump_bb,
3065 rtl_create_basic_block,
3066 rtl_redirect_edge_and_branch,
3067 rtl_redirect_edge_and_branch_force,
3068 rtl_delete_block,
3069 rtl_split_block,
3070 rtl_move_block_after,
3071 rtl_can_merge_blocks, /* can_merge_blocks_p */
3072 rtl_merge_blocks,
3073 rtl_predict_edge,
3074 rtl_predicted_by_p,
3075 NULL, /* can_duplicate_block_p */
3076 NULL, /* duplicate_block */
3077 rtl_split_edge,
3078 rtl_make_forwarder_block,
3079 rtl_tidy_fallthru_edge,
3080 rtl_block_ends_with_call_p,
3081 rtl_block_ends_with_condjump_p,
3082 rtl_flow_call_edges_add,
3083 NULL, /* execute_on_growing_pred */
3084 NULL, /* execute_on_shrinking_pred */
3085 NULL, /* duplicate loop for trees */
3086 NULL, /* lv_add_condition_to_bb */
3087 NULL, /* lv_adjust_loop_header_phi*/
3088 NULL, /* extract_cond_bb_edges */
3089 NULL /* flush_pending_stmts */
3090 };
3091
3092 /* Implementation of CFG manipulation for cfg layout RTL, where
3093 basic block connected via fallthru edges does not have to be adjacent.
3094 This representation will hopefully become the default one in future
3095 version of the compiler. */
3096
3097 /* We do not want to declare these functions in a header file, since they
3098 should only be used through the cfghooks interface, and we do not want to
3099 move them here since it would require also moving quite a lot of related
3100 code. */
3101 extern bool cfg_layout_can_duplicate_bb_p (basic_block);
3102 extern basic_block cfg_layout_duplicate_bb (basic_block);
3103
3104 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
3105 "cfglayout mode",
3106 rtl_verify_flow_info_1,
3107 rtl_dump_bb,
3108 cfg_layout_create_basic_block,
3109 cfg_layout_redirect_edge_and_branch,
3110 cfg_layout_redirect_edge_and_branch_force,
3111 cfg_layout_delete_block,
3112 cfg_layout_split_block,
3113 rtl_move_block_after,
3114 cfg_layout_can_merge_blocks_p,
3115 cfg_layout_merge_blocks,
3116 rtl_predict_edge,
3117 rtl_predicted_by_p,
3118 cfg_layout_can_duplicate_bb_p,
3119 cfg_layout_duplicate_bb,
3120 cfg_layout_split_edge,
3121 rtl_make_forwarder_block,
3122 NULL,
3123 rtl_block_ends_with_call_p,
3124 rtl_block_ends_with_condjump_p,
3125 rtl_flow_call_edges_add,
3126 NULL, /* execute_on_growing_pred */
3127 NULL, /* execute_on_shrinking_pred */
3128 duplicate_loop_to_header_edge, /* duplicate loop for trees */
3129 rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
3130 NULL, /* lv_adjust_loop_header_phi*/
3131 rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
3132 NULL /* flush_pending_stmts */
3133 };
3134