]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgrtl.c
Remove quite obvious dead assignments.
[thirdparty/gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains low level functions to manipulate the CFG and analyze it
21 that are aware of the RTL intermediate language.
22
23 Available functionality:
24 - Basic CFG/RTL manipulation API documented in cfghooks.h
25 - CFG-aware instruction chain manipulation
26 delete_insn, delete_insn_chain
27 - Edge splitting and committing to edges
28 insert_insn_on_edge, commit_edge_insertions
29 - CFG updating after insn simplification
30 purge_dead_edges, purge_all_dead_edges
31 - CFG fixing after coarse manipulation
32 fixup_abnormal_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "backend.h"
44 #include "target.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "cfghooks.h"
48 #include "df.h"
49 #include "insn-config.h"
50 #include "memmodel.h"
51 #include "emit-rtl.h"
52 #include "cfgrtl.h"
53 #include "cfganal.h"
54 #include "cfgbuild.h"
55 #include "cfgcleanup.h"
56 #include "bb-reorder.h"
57 #include "rtl-error.h"
58 #include "insn-attr.h"
59 #include "dojump.h"
60 #include "expr.h"
61 #include "cfgloop.h"
62 #include "tree-pass.h"
63 #include "print-rtl.h"
64
65 /* Disable warnings about missing quoting in GCC diagnostics. */
66 #if __GNUC__ >= 10
67 # pragma GCC diagnostic push
68 # pragma GCC diagnostic ignored "-Wformat-diag"
69 #endif
70
71 /* Holds the interesting leading and trailing notes for the function.
72 Only applicable if the CFG is in cfglayout mode. */
73 static GTY(()) rtx_insn *cfg_layout_function_footer;
74 static GTY(()) rtx_insn *cfg_layout_function_header;
75
76 static rtx_insn *skip_insns_after_block (basic_block);
77 static void record_effective_endpoints (void);
78 static void fixup_reorder_chain (void);
79
80 void verify_insn_chain (void);
81 static void fixup_fallthru_exit_predecessor (void);
82 static int can_delete_note_p (const rtx_note *);
83 static int can_delete_label_p (const rtx_code_label *);
84 static basic_block rtl_split_edge (edge);
85 static bool rtl_move_block_after (basic_block, basic_block);
86 static int rtl_verify_flow_info (void);
87 static basic_block cfg_layout_split_block (basic_block, void *);
88 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
89 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
90 static void cfg_layout_delete_block (basic_block);
91 static void rtl_delete_block (basic_block);
92 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
93 static edge rtl_redirect_edge_and_branch (edge, basic_block);
94 static basic_block rtl_split_block (basic_block, void *);
95 static void rtl_dump_bb (FILE *, basic_block, int, dump_flags_t);
96 static int rtl_verify_flow_info_1 (void);
97 static void rtl_make_forwarder_block (edge);
98 \f
99 /* Return true if NOTE is not one of the ones that must be kept paired,
100 so that we may simply delete it. */
101
102 static int
103 can_delete_note_p (const rtx_note *note)
104 {
105 switch (NOTE_KIND (note))
106 {
107 case NOTE_INSN_DELETED:
108 case NOTE_INSN_BASIC_BLOCK:
109 case NOTE_INSN_EPILOGUE_BEG:
110 return true;
111
112 default:
113 return false;
114 }
115 }
116
117 /* True if a given label can be deleted. */
118
119 static int
120 can_delete_label_p (const rtx_code_label *label)
121 {
122 return (!LABEL_PRESERVE_P (label)
123 /* User declared labels must be preserved. */
124 && LABEL_NAME (label) == 0
125 && !vec_safe_contains<rtx_insn *> (forced_labels,
126 const_cast<rtx_code_label *> (label)));
127 }
128
129 /* Delete INSN by patching it out. */
130
131 void
132 delete_insn (rtx_insn *insn)
133 {
134 rtx note;
135 bool really_delete = true;
136
137 if (LABEL_P (insn))
138 {
139 /* Some labels can't be directly removed from the INSN chain, as they
140 might be references via variables, constant pool etc.
141 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
142 if (! can_delete_label_p (as_a <rtx_code_label *> (insn)))
143 {
144 const char *name = LABEL_NAME (insn);
145 basic_block bb = BLOCK_FOR_INSN (insn);
146 rtx_insn *bb_note = NEXT_INSN (insn);
147
148 really_delete = false;
149 PUT_CODE (insn, NOTE);
150 NOTE_KIND (insn) = NOTE_INSN_DELETED_LABEL;
151 NOTE_DELETED_LABEL_NAME (insn) = name;
152
153 /* If the note following the label starts a basic block, and the
154 label is a member of the same basic block, interchange the two. */
155 if (bb_note != NULL_RTX
156 && NOTE_INSN_BASIC_BLOCK_P (bb_note)
157 && bb != NULL
158 && bb == BLOCK_FOR_INSN (bb_note))
159 {
160 reorder_insns_nobb (insn, insn, bb_note);
161 BB_HEAD (bb) = bb_note;
162 if (BB_END (bb) == bb_note)
163 BB_END (bb) = insn;
164 }
165 }
166
167 remove_node_from_insn_list (insn, &nonlocal_goto_handler_labels);
168 }
169
170 if (really_delete)
171 {
172 /* If this insn has already been deleted, something is very wrong. */
173 gcc_assert (!insn->deleted ());
174 if (INSN_P (insn))
175 df_insn_delete (insn);
176 remove_insn (insn);
177 insn->set_deleted ();
178 }
179
180 /* If deleting a jump, decrement the use count of the label. Deleting
181 the label itself should happen in the normal course of block merging. */
182 if (JUMP_P (insn))
183 {
184 if (JUMP_LABEL (insn)
185 && LABEL_P (JUMP_LABEL (insn)))
186 LABEL_NUSES (JUMP_LABEL (insn))--;
187
188 /* If there are more targets, remove them too. */
189 while ((note
190 = find_reg_note (insn, REG_LABEL_TARGET, NULL_RTX)) != NULL_RTX
191 && LABEL_P (XEXP (note, 0)))
192 {
193 LABEL_NUSES (XEXP (note, 0))--;
194 remove_note (insn, note);
195 }
196 }
197
198 /* Also if deleting any insn that references a label as an operand. */
199 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX)) != NULL_RTX
200 && LABEL_P (XEXP (note, 0)))
201 {
202 LABEL_NUSES (XEXP (note, 0))--;
203 remove_note (insn, note);
204 }
205
206 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
207 {
208 rtvec vec = table->get_labels ();
209 int len = GET_NUM_ELEM (vec);
210 int i;
211
212 for (i = 0; i < len; i++)
213 {
214 rtx label = XEXP (RTVEC_ELT (vec, i), 0);
215
216 /* When deleting code in bulk (e.g. removing many unreachable
217 blocks) we can delete a label that's a target of the vector
218 before deleting the vector itself. */
219 if (!NOTE_P (label))
220 LABEL_NUSES (label)--;
221 }
222 }
223 }
224
225 /* Like delete_insn but also purge dead edges from BB.
226 Return true if any edges are eliminated. */
227
228 bool
229 delete_insn_and_edges (rtx_insn *insn)
230 {
231 bool purge = false;
232
233 if (INSN_P (insn)
234 && BLOCK_FOR_INSN (insn)
235 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
236 purge = true;
237 delete_insn (insn);
238 if (purge)
239 return purge_dead_edges (BLOCK_FOR_INSN (insn));
240 return false;
241 }
242
243 /* Unlink a chain of insns between START and FINISH, leaving notes
244 that must be paired. If CLEAR_BB is true, we set bb field for
245 insns that cannot be removed to NULL. */
246
247 void
248 delete_insn_chain (rtx start, rtx_insn *finish, bool clear_bb)
249 {
250 /* Unchain the insns one by one. It would be quicker to delete all of these
251 with a single unchaining, rather than one at a time, but we need to keep
252 the NOTE's. */
253 rtx_insn *current = finish;
254 while (1)
255 {
256 rtx_insn *prev = PREV_INSN (current);
257 if (NOTE_P (current) && !can_delete_note_p (as_a <rtx_note *> (current)))
258 ;
259 else
260 delete_insn (current);
261
262 if (clear_bb && !current->deleted ())
263 set_block_for_insn (current, NULL);
264
265 if (current == start)
266 break;
267 current = prev;
268 }
269 }
270 \f
271 /* Create a new basic block consisting of the instructions between HEAD and END
272 inclusive. This function is designed to allow fast BB construction - reuses
273 the note and basic block struct in BB_NOTE, if any and do not grow
274 BASIC_BLOCK chain and should be used directly only by CFG construction code.
275 END can be NULL in to create new empty basic block before HEAD. Both END
276 and HEAD can be NULL to create basic block at the end of INSN chain.
277 AFTER is the basic block we should be put after. */
278
279 basic_block
280 create_basic_block_structure (rtx_insn *head, rtx_insn *end, rtx_note *bb_note,
281 basic_block after)
282 {
283 basic_block bb;
284
285 if (bb_note
286 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
287 && bb->aux == NULL)
288 {
289 /* If we found an existing note, thread it back onto the chain. */
290
291 rtx_insn *after;
292
293 if (LABEL_P (head))
294 after = head;
295 else
296 {
297 after = PREV_INSN (head);
298 head = bb_note;
299 }
300
301 if (after != bb_note && NEXT_INSN (after) != bb_note)
302 reorder_insns_nobb (bb_note, bb_note, after);
303 }
304 else
305 {
306 /* Otherwise we must create a note and a basic block structure. */
307
308 bb = alloc_block ();
309
310 init_rtl_bb_info (bb);
311 if (!head && !end)
312 head = end = bb_note
313 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
314 else if (LABEL_P (head) && end)
315 {
316 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
317 if (head == end)
318 end = bb_note;
319 }
320 else
321 {
322 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
323 head = bb_note;
324 if (!end)
325 end = head;
326 }
327
328 NOTE_BASIC_BLOCK (bb_note) = bb;
329 }
330
331 /* Always include the bb note in the block. */
332 if (NEXT_INSN (end) == bb_note)
333 end = bb_note;
334
335 BB_HEAD (bb) = head;
336 BB_END (bb) = end;
337 bb->index = last_basic_block_for_fn (cfun)++;
338 bb->flags = BB_NEW | BB_RTL;
339 link_block (bb, after);
340 SET_BASIC_BLOCK_FOR_FN (cfun, bb->index, bb);
341 df_bb_refs_record (bb->index, false);
342 update_bb_for_insn (bb);
343 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
344
345 /* Tag the block so that we know it has been used when considering
346 other basic block notes. */
347 bb->aux = bb;
348
349 return bb;
350 }
351
352 /* Create new basic block consisting of instructions in between HEAD and END
353 and place it to the BB chain after block AFTER. END can be NULL to
354 create a new empty basic block before HEAD. Both END and HEAD can be
355 NULL to create basic block at the end of INSN chain. */
356
357 static basic_block
358 rtl_create_basic_block (void *headp, void *endp, basic_block after)
359 {
360 rtx_insn *head = (rtx_insn *) headp;
361 rtx_insn *end = (rtx_insn *) endp;
362 basic_block bb;
363
364 /* Grow the basic block array if needed. */
365 if ((size_t) last_basic_block_for_fn (cfun)
366 >= basic_block_info_for_fn (cfun)->length ())
367 {
368 size_t new_size =
369 (last_basic_block_for_fn (cfun)
370 + (last_basic_block_for_fn (cfun) + 3) / 4);
371 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
372 }
373
374 n_basic_blocks_for_fn (cfun)++;
375
376 bb = create_basic_block_structure (head, end, NULL, after);
377 bb->aux = NULL;
378 return bb;
379 }
380
381 static basic_block
382 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
383 {
384 basic_block newbb = rtl_create_basic_block (head, end, after);
385
386 return newbb;
387 }
388 \f
389 /* Delete the insns in a (non-live) block. We physically delete every
390 non-deleted-note insn, and update the flow graph appropriately.
391
392 Return nonzero if we deleted an exception handler. */
393
394 /* ??? Preserving all such notes strikes me as wrong. It would be nice
395 to post-process the stream to remove empty blocks, loops, ranges, etc. */
396
397 static void
398 rtl_delete_block (basic_block b)
399 {
400 rtx_insn *insn, *end;
401
402 /* If the head of this block is a CODE_LABEL, then it might be the
403 label for an exception handler which can't be reached. We need
404 to remove the label from the exception_handler_label list. */
405 insn = BB_HEAD (b);
406
407 end = get_last_bb_insn (b);
408
409 /* Selectively delete the entire chain. */
410 BB_HEAD (b) = NULL;
411 delete_insn_chain (insn, end, true);
412
413
414 if (dump_file)
415 fprintf (dump_file, "deleting block %d\n", b->index);
416 df_bb_delete (b->index);
417 }
418 \f
419 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
420
421 void
422 compute_bb_for_insn (void)
423 {
424 basic_block bb;
425
426 FOR_EACH_BB_FN (bb, cfun)
427 {
428 rtx_insn *end = BB_END (bb);
429 rtx_insn *insn;
430
431 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
432 {
433 BLOCK_FOR_INSN (insn) = bb;
434 if (insn == end)
435 break;
436 }
437 }
438 }
439
440 /* Release the basic_block_for_insn array. */
441
442 unsigned int
443 free_bb_for_insn (void)
444 {
445 rtx_insn *insn;
446 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
447 if (!BARRIER_P (insn))
448 BLOCK_FOR_INSN (insn) = NULL;
449 return 0;
450 }
451
452 namespace {
453
454 const pass_data pass_data_free_cfg =
455 {
456 RTL_PASS, /* type */
457 "*free_cfg", /* name */
458 OPTGROUP_NONE, /* optinfo_flags */
459 TV_NONE, /* tv_id */
460 0, /* properties_required */
461 0, /* properties_provided */
462 PROP_cfg, /* properties_destroyed */
463 0, /* todo_flags_start */
464 0, /* todo_flags_finish */
465 };
466
467 class pass_free_cfg : public rtl_opt_pass
468 {
469 public:
470 pass_free_cfg (gcc::context *ctxt)
471 : rtl_opt_pass (pass_data_free_cfg, ctxt)
472 {}
473
474 /* opt_pass methods: */
475 virtual unsigned int execute (function *);
476
477 }; // class pass_free_cfg
478
479 unsigned int
480 pass_free_cfg::execute (function *)
481 {
482 /* The resource.c machinery uses DF but the CFG isn't guaranteed to be
483 valid at that point so it would be too late to call df_analyze. */
484 if (DELAY_SLOTS && optimize > 0 && flag_delayed_branch)
485 {
486 df_note_add_problem ();
487 df_analyze ();
488 }
489
490 if (crtl->has_bb_partition)
491 insert_section_boundary_note ();
492
493 free_bb_for_insn ();
494 return 0;
495 }
496
497 } // anon namespace
498
499 rtl_opt_pass *
500 make_pass_free_cfg (gcc::context *ctxt)
501 {
502 return new pass_free_cfg (ctxt);
503 }
504
505 /* Return RTX to emit after when we want to emit code on the entry of function. */
506 rtx_insn *
507 entry_of_function (void)
508 {
509 return (n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS ?
510 BB_HEAD (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) : get_insns ());
511 }
512
513 /* Emit INSN at the entry point of the function, ensuring that it is only
514 executed once per function. */
515 void
516 emit_insn_at_entry (rtx insn)
517 {
518 edge_iterator ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
519 edge e = ei_safe_edge (ei);
520 gcc_assert (e->flags & EDGE_FALLTHRU);
521
522 insert_insn_on_edge (insn, e);
523 commit_edge_insertions ();
524 }
525
526 /* Update BLOCK_FOR_INSN of insns between BEGIN and END
527 (or BARRIER if found) and notify df of the bb change.
528 The insn chain range is inclusive
529 (i.e. both BEGIN and END will be updated. */
530
531 static void
532 update_bb_for_insn_chain (rtx_insn *begin, rtx_insn *end, basic_block bb)
533 {
534 rtx_insn *insn;
535
536 end = NEXT_INSN (end);
537 for (insn = begin; insn != end; insn = NEXT_INSN (insn))
538 if (!BARRIER_P (insn))
539 df_insn_change_bb (insn, bb);
540 }
541
542 /* Update BLOCK_FOR_INSN of insns in BB to BB,
543 and notify df of the change. */
544
545 void
546 update_bb_for_insn (basic_block bb)
547 {
548 update_bb_for_insn_chain (BB_HEAD (bb), BB_END (bb), bb);
549 }
550
551 \f
552 /* Like active_insn_p, except keep the return value use or clobber around
553 even after reload. */
554
555 static bool
556 flow_active_insn_p (const rtx_insn *insn)
557 {
558 if (active_insn_p (insn))
559 return true;
560
561 /* A clobber of the function return value exists for buggy
562 programs that fail to return a value. Its effect is to
563 keep the return value from being live across the entire
564 function. If we allow it to be skipped, we introduce the
565 possibility for register lifetime confusion.
566 Similarly, keep a USE of the function return value, otherwise
567 the USE is dropped and we could fail to thread jump if USE
568 appears on some paths and not on others, see PR90257. */
569 if ((GET_CODE (PATTERN (insn)) == CLOBBER
570 || GET_CODE (PATTERN (insn)) == USE)
571 && REG_P (XEXP (PATTERN (insn), 0))
572 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
573 return true;
574
575 return false;
576 }
577
578 /* Return true if the block has no effect and only forwards control flow to
579 its single destination. */
580
581 bool
582 contains_no_active_insn_p (const_basic_block bb)
583 {
584 rtx_insn *insn;
585
586 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
587 || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
588 || !single_succ_p (bb)
589 || (single_succ_edge (bb)->flags & EDGE_FAKE) != 0)
590 return false;
591
592 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
593 if (INSN_P (insn) && flow_active_insn_p (insn))
594 return false;
595
596 return (!INSN_P (insn)
597 || (JUMP_P (insn) && simplejump_p (insn))
598 || !flow_active_insn_p (insn));
599 }
600
601 /* Likewise, but protect loop latches, headers and preheaders. */
602 /* FIXME: Make this a cfg hook. */
603
604 bool
605 forwarder_block_p (const_basic_block bb)
606 {
607 if (!contains_no_active_insn_p (bb))
608 return false;
609
610 /* Protect loop latches, headers and preheaders. */
611 if (current_loops)
612 {
613 basic_block dest;
614 if (bb->loop_father->header == bb)
615 return false;
616 dest = EDGE_SUCC (bb, 0)->dest;
617 if (dest->loop_father->header == dest)
618 return false;
619 }
620
621 return true;
622 }
623
624 /* Return nonzero if we can reach target from src by falling through. */
625 /* FIXME: Make this a cfg hook, the result is only valid in cfgrtl mode. */
626
627 bool
628 can_fallthru (basic_block src, basic_block target)
629 {
630 rtx_insn *insn = BB_END (src);
631 rtx_insn *insn2;
632 edge e;
633 edge_iterator ei;
634
635 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
636 return true;
637 if (src->next_bb != target)
638 return false;
639
640 /* ??? Later we may add code to move jump tables offline. */
641 if (tablejump_p (insn, NULL, NULL))
642 return false;
643
644 FOR_EACH_EDGE (e, ei, src->succs)
645 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
646 && e->flags & EDGE_FALLTHRU)
647 return false;
648
649 insn2 = BB_HEAD (target);
650 if (!active_insn_p (insn2))
651 insn2 = next_active_insn (insn2);
652
653 return next_active_insn (insn) == insn2;
654 }
655
656 /* Return nonzero if we could reach target from src by falling through,
657 if the target was made adjacent. If we already have a fall-through
658 edge to the exit block, we can't do that. */
659 static bool
660 could_fall_through (basic_block src, basic_block target)
661 {
662 edge e;
663 edge_iterator ei;
664
665 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
666 return true;
667 FOR_EACH_EDGE (e, ei, src->succs)
668 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
669 && e->flags & EDGE_FALLTHRU)
670 return 0;
671 return true;
672 }
673 \f
674 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
675 rtx_note *
676 bb_note (basic_block bb)
677 {
678 rtx_insn *note;
679
680 note = BB_HEAD (bb);
681 if (LABEL_P (note))
682 note = NEXT_INSN (note);
683
684 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
685 return as_a <rtx_note *> (note);
686 }
687
688 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
689 note associated with the BLOCK. */
690
691 static rtx_insn *
692 first_insn_after_basic_block_note (basic_block block)
693 {
694 rtx_insn *insn;
695
696 /* Get the first instruction in the block. */
697 insn = BB_HEAD (block);
698
699 if (insn == NULL_RTX)
700 return NULL;
701 if (LABEL_P (insn))
702 insn = NEXT_INSN (insn);
703 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
704
705 return NEXT_INSN (insn);
706 }
707
708 /* Creates a new basic block just after basic block BB by splitting
709 everything after specified instruction INSNP. */
710
711 static basic_block
712 rtl_split_block (basic_block bb, void *insnp)
713 {
714 basic_block new_bb;
715 rtx_insn *insn = (rtx_insn *) insnp;
716 edge e;
717 edge_iterator ei;
718
719 if (!insn)
720 {
721 insn = first_insn_after_basic_block_note (bb);
722
723 if (insn)
724 {
725 rtx_insn *next = insn;
726
727 insn = PREV_INSN (insn);
728
729 /* If the block contains only debug insns, insn would have
730 been NULL in a non-debug compilation, and then we'd end
731 up emitting a DELETED note. For -fcompare-debug
732 stability, emit the note too. */
733 if (insn != BB_END (bb)
734 && DEBUG_INSN_P (next)
735 && DEBUG_INSN_P (BB_END (bb)))
736 {
737 while (next != BB_END (bb) && DEBUG_INSN_P (next))
738 next = NEXT_INSN (next);
739
740 if (next == BB_END (bb))
741 emit_note_after (NOTE_INSN_DELETED, next);
742 }
743 }
744 else
745 insn = get_last_insn ();
746 }
747
748 /* We probably should check type of the insn so that we do not create
749 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
750 bother. */
751 if (insn == BB_END (bb))
752 emit_note_after (NOTE_INSN_DELETED, insn);
753
754 /* Create the new basic block. */
755 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
756 BB_COPY_PARTITION (new_bb, bb);
757 BB_END (bb) = insn;
758
759 /* Redirect the outgoing edges. */
760 new_bb->succs = bb->succs;
761 bb->succs = NULL;
762 FOR_EACH_EDGE (e, ei, new_bb->succs)
763 e->src = new_bb;
764
765 /* The new block starts off being dirty. */
766 df_set_bb_dirty (bb);
767 return new_bb;
768 }
769
770 /* Return true if the single edge between blocks A and B is the only place
771 in RTL which holds some unique locus. */
772
773 static bool
774 unique_locus_on_edge_between_p (basic_block a, basic_block b)
775 {
776 const location_t goto_locus = EDGE_SUCC (a, 0)->goto_locus;
777 rtx_insn *insn, *end;
778
779 if (LOCATION_LOCUS (goto_locus) == UNKNOWN_LOCATION)
780 return false;
781
782 /* First scan block A backward. */
783 insn = BB_END (a);
784 end = PREV_INSN (BB_HEAD (a));
785 while (insn != end && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
786 insn = PREV_INSN (insn);
787
788 if (insn != end && INSN_LOCATION (insn) == goto_locus)
789 return false;
790
791 /* Then scan block B forward. */
792 insn = BB_HEAD (b);
793 if (insn)
794 {
795 end = NEXT_INSN (BB_END (b));
796 while (insn != end && !NONDEBUG_INSN_P (insn))
797 insn = NEXT_INSN (insn);
798
799 if (insn != end && INSN_HAS_LOCATION (insn)
800 && INSN_LOCATION (insn) == goto_locus)
801 return false;
802 }
803
804 return true;
805 }
806
807 /* If the single edge between blocks A and B is the only place in RTL which
808 holds some unique locus, emit a nop with that locus between the blocks. */
809
810 static void
811 emit_nop_for_unique_locus_between (basic_block a, basic_block b)
812 {
813 if (!unique_locus_on_edge_between_p (a, b))
814 return;
815
816 BB_END (a) = emit_insn_after_noloc (gen_nop (), BB_END (a), a);
817 INSN_LOCATION (BB_END (a)) = EDGE_SUCC (a, 0)->goto_locus;
818 }
819
820 /* Blocks A and B are to be merged into a single block A. The insns
821 are already contiguous. */
822
823 static void
824 rtl_merge_blocks (basic_block a, basic_block b)
825 {
826 /* If B is a forwarder block whose outgoing edge has no location, we'll
827 propagate the locus of the edge between A and B onto it. */
828 const bool forward_edge_locus
829 = (b->flags & BB_FORWARDER_BLOCK) != 0
830 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION;
831 rtx_insn *b_head = BB_HEAD (b), *b_end = BB_END (b), *a_end = BB_END (a);
832 rtx_insn *del_first = NULL, *del_last = NULL;
833 rtx_insn *b_debug_start = b_end, *b_debug_end = b_end;
834 int b_empty = 0;
835
836 if (dump_file)
837 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
838 a->index);
839
840 while (DEBUG_INSN_P (b_end))
841 b_end = PREV_INSN (b_debug_start = b_end);
842
843 /* If there was a CODE_LABEL beginning B, delete it. */
844 if (LABEL_P (b_head))
845 {
846 /* Detect basic blocks with nothing but a label. This can happen
847 in particular at the end of a function. */
848 if (b_head == b_end)
849 b_empty = 1;
850
851 del_first = del_last = b_head;
852 b_head = NEXT_INSN (b_head);
853 }
854
855 /* Delete the basic block note and handle blocks containing just that
856 note. */
857 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
858 {
859 if (b_head == b_end)
860 b_empty = 1;
861 if (! del_last)
862 del_first = b_head;
863
864 del_last = b_head;
865 b_head = NEXT_INSN (b_head);
866 }
867
868 /* If there was a jump out of A, delete it. */
869 if (JUMP_P (a_end))
870 {
871 rtx_insn *prev;
872
873 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
874 if (!NOTE_P (prev)
875 || NOTE_INSN_BASIC_BLOCK_P (prev)
876 || prev == BB_HEAD (a))
877 break;
878
879 del_first = a_end;
880
881 /* If this was a conditional jump, we need to also delete
882 the insn that set cc0. */
883 if (HAVE_cc0 && only_sets_cc0_p (prev))
884 {
885 rtx_insn *tmp = prev;
886
887 prev = prev_nonnote_insn (prev);
888 if (!prev)
889 prev = BB_HEAD (a);
890 del_first = tmp;
891 }
892
893 a_end = PREV_INSN (del_first);
894 }
895 else if (BARRIER_P (NEXT_INSN (a_end)))
896 del_first = NEXT_INSN (a_end);
897
898 /* Delete everything marked above as well as crap that might be
899 hanging out between the two blocks. */
900 BB_END (a) = a_end;
901 BB_HEAD (b) = b_empty ? NULL : b_head;
902 delete_insn_chain (del_first, del_last, true);
903
904 /* If not optimizing, preserve the locus of the single edge between
905 blocks A and B if necessary by emitting a nop. */
906 if (!optimize
907 && !forward_edge_locus
908 && !DECL_IGNORED_P (current_function_decl))
909 {
910 emit_nop_for_unique_locus_between (a, b);
911 a_end = BB_END (a);
912 }
913
914 /* Reassociate the insns of B with A. */
915 if (!b_empty)
916 {
917 update_bb_for_insn_chain (a_end, b_debug_end, a);
918
919 BB_END (a) = b_debug_end;
920 BB_HEAD (b) = NULL;
921 }
922 else if (b_end != b_debug_end)
923 {
924 /* Move any deleted labels and other notes between the end of A
925 and the debug insns that make up B after the debug insns,
926 bringing the debug insns into A while keeping the notes after
927 the end of A. */
928 if (NEXT_INSN (a_end) != b_debug_start)
929 reorder_insns_nobb (NEXT_INSN (a_end), PREV_INSN (b_debug_start),
930 b_debug_end);
931 update_bb_for_insn_chain (b_debug_start, b_debug_end, a);
932 BB_END (a) = b_debug_end;
933 }
934
935 df_bb_delete (b->index);
936
937 if (forward_edge_locus)
938 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
939
940 if (dump_file)
941 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
942 }
943
944
945 /* Return true when block A and B can be merged. */
946
947 static bool
948 rtl_can_merge_blocks (basic_block a, basic_block b)
949 {
950 /* If we are partitioning hot/cold basic blocks, we don't want to
951 mess up unconditional or indirect jumps that cross between hot
952 and cold sections.
953
954 Basic block partitioning may result in some jumps that appear to
955 be optimizable (or blocks that appear to be mergeable), but which really
956 must be left untouched (they are required to make it safely across
957 partition boundaries). See the comments at the top of
958 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
959
960 if (BB_PARTITION (a) != BB_PARTITION (b))
961 return false;
962
963 /* Protect the loop latches. */
964 if (current_loops && b->loop_father->latch == b)
965 return false;
966
967 /* There must be exactly one edge in between the blocks. */
968 return (single_succ_p (a)
969 && single_succ (a) == b
970 && single_pred_p (b)
971 && a != b
972 /* Must be simple edge. */
973 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
974 && a->next_bb == b
975 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
976 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
977 /* If the jump insn has side effects,
978 we can't kill the edge. */
979 && (!JUMP_P (BB_END (a))
980 || (reload_completed
981 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
982 }
983 \f
984 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
985 exist. */
986
987 rtx_code_label *
988 block_label (basic_block block)
989 {
990 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
991 return NULL;
992
993 if (!LABEL_P (BB_HEAD (block)))
994 {
995 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
996 }
997
998 return as_a <rtx_code_label *> (BB_HEAD (block));
999 }
1000
1001 /* Remove all barriers from BB_FOOTER of a BB. */
1002
1003 static void
1004 remove_barriers_from_footer (basic_block bb)
1005 {
1006 rtx_insn *insn = BB_FOOTER (bb);
1007
1008 /* Remove barriers but keep jumptables. */
1009 while (insn)
1010 {
1011 if (BARRIER_P (insn))
1012 {
1013 if (PREV_INSN (insn))
1014 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1015 else
1016 BB_FOOTER (bb) = NEXT_INSN (insn);
1017 if (NEXT_INSN (insn))
1018 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1019 }
1020 if (LABEL_P (insn))
1021 return;
1022 insn = NEXT_INSN (insn);
1023 }
1024 }
1025
1026 /* Attempt to perform edge redirection by replacing possibly complex jump
1027 instruction by unconditional jump or removing jump completely. This can
1028 apply only if all edges now point to the same block. The parameters and
1029 return values are equivalent to redirect_edge_and_branch. */
1030
1031 edge
1032 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
1033 {
1034 basic_block src = e->src;
1035 rtx_insn *insn = BB_END (src), *kill_from;
1036 rtx set;
1037 int fallthru = 0;
1038
1039 /* If we are partitioning hot/cold basic blocks, we don't want to
1040 mess up unconditional or indirect jumps that cross between hot
1041 and cold sections.
1042
1043 Basic block partitioning may result in some jumps that appear to
1044 be optimizable (or blocks that appear to be mergeable), but which really
1045 must be left untouched (they are required to make it safely across
1046 partition boundaries). See the comments at the top of
1047 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1048
1049 if (BB_PARTITION (src) != BB_PARTITION (target))
1050 return NULL;
1051
1052 /* We can replace or remove a complex jump only when we have exactly
1053 two edges. Also, if we have exactly one outgoing edge, we can
1054 redirect that. */
1055 if (EDGE_COUNT (src->succs) >= 3
1056 /* Verify that all targets will be TARGET. Specifically, the
1057 edge that is not E must also go to TARGET. */
1058 || (EDGE_COUNT (src->succs) == 2
1059 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
1060 return NULL;
1061
1062 if (!onlyjump_p (insn))
1063 return NULL;
1064 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
1065 return NULL;
1066
1067 /* Avoid removing branch with side effects. */
1068 set = single_set (insn);
1069 if (!set || side_effects_p (set))
1070 return NULL;
1071
1072 /* In case we zap a conditional jump, we'll need to kill
1073 the cc0 setter too. */
1074 kill_from = insn;
1075 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn))
1076 && only_sets_cc0_p (PREV_INSN (insn)))
1077 kill_from = PREV_INSN (insn);
1078
1079 /* See if we can create the fallthru edge. */
1080 if (in_cfglayout || can_fallthru (src, target))
1081 {
1082 if (dump_file)
1083 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
1084 fallthru = 1;
1085
1086 /* Selectively unlink whole insn chain. */
1087 if (in_cfglayout)
1088 {
1089 delete_insn_chain (kill_from, BB_END (src), false);
1090 remove_barriers_from_footer (src);
1091 }
1092 else
1093 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)),
1094 false);
1095 }
1096
1097 /* If this already is simplejump, redirect it. */
1098 else if (simplejump_p (insn))
1099 {
1100 if (e->dest == target)
1101 return NULL;
1102 if (dump_file)
1103 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
1104 INSN_UID (insn), e->dest->index, target->index);
1105 if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
1106 block_label (target), 0))
1107 {
1108 gcc_assert (target == EXIT_BLOCK_PTR_FOR_FN (cfun));
1109 return NULL;
1110 }
1111 }
1112
1113 /* Cannot do anything for target exit block. */
1114 else if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1115 return NULL;
1116
1117 /* Or replace possibly complicated jump insn by simple jump insn. */
1118 else
1119 {
1120 rtx_code_label *target_label = block_label (target);
1121 rtx_insn *barrier;
1122 rtx_insn *label;
1123 rtx_jump_table_data *table;
1124
1125 emit_jump_insn_after_noloc (targetm.gen_jump (target_label), insn);
1126 JUMP_LABEL (BB_END (src)) = target_label;
1127 LABEL_NUSES (target_label)++;
1128 if (dump_file)
1129 fprintf (dump_file, "Replacing insn %i by jump %i\n",
1130 INSN_UID (insn), INSN_UID (BB_END (src)));
1131
1132
1133 delete_insn_chain (kill_from, insn, false);
1134
1135 /* Recognize a tablejump that we are converting to a
1136 simple jump and remove its associated CODE_LABEL
1137 and ADDR_VEC or ADDR_DIFF_VEC. */
1138 if (tablejump_p (insn, &label, &table))
1139 delete_insn_chain (label, table, false);
1140
1141 barrier = next_nonnote_nondebug_insn (BB_END (src));
1142 if (!barrier || !BARRIER_P (barrier))
1143 emit_barrier_after (BB_END (src));
1144 else
1145 {
1146 if (barrier != NEXT_INSN (BB_END (src)))
1147 {
1148 /* Move the jump before barrier so that the notes
1149 which originally were or were created before jump table are
1150 inside the basic block. */
1151 rtx_insn *new_insn = BB_END (src);
1152
1153 update_bb_for_insn_chain (NEXT_INSN (BB_END (src)),
1154 PREV_INSN (barrier), src);
1155
1156 SET_NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
1157 SET_PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
1158
1159 SET_NEXT_INSN (new_insn) = barrier;
1160 SET_NEXT_INSN (PREV_INSN (barrier)) = new_insn;
1161
1162 SET_PREV_INSN (new_insn) = PREV_INSN (barrier);
1163 SET_PREV_INSN (barrier) = new_insn;
1164 }
1165 }
1166 }
1167
1168 /* Keep only one edge out and set proper flags. */
1169 if (!single_succ_p (src))
1170 remove_edge (e);
1171 gcc_assert (single_succ_p (src));
1172
1173 e = single_succ_edge (src);
1174 if (fallthru)
1175 e->flags = EDGE_FALLTHRU;
1176 else
1177 e->flags = 0;
1178
1179 e->probability = profile_probability::always ();
1180
1181 if (e->dest != target)
1182 redirect_edge_succ (e, target);
1183 return e;
1184 }
1185
1186 /* Subroutine of redirect_branch_edge that tries to patch the jump
1187 instruction INSN so that it reaches block NEW. Do this
1188 only when it originally reached block OLD. Return true if this
1189 worked or the original target wasn't OLD, return false if redirection
1190 doesn't work. */
1191
1192 static bool
1193 patch_jump_insn (rtx_insn *insn, rtx_insn *old_label, basic_block new_bb)
1194 {
1195 rtx_jump_table_data *table;
1196 rtx tmp;
1197 /* Recognize a tablejump and adjust all matching cases. */
1198 if (tablejump_p (insn, NULL, &table))
1199 {
1200 rtvec vec;
1201 int j;
1202 rtx_code_label *new_label = block_label (new_bb);
1203
1204 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1205 return false;
1206 vec = table->get_labels ();
1207
1208 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1209 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
1210 {
1211 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
1212 --LABEL_NUSES (old_label);
1213 ++LABEL_NUSES (new_label);
1214 }
1215
1216 /* Handle casesi dispatch insns. */
1217 if ((tmp = single_set (insn)) != NULL
1218 && SET_DEST (tmp) == pc_rtx
1219 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1220 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
1221 && label_ref_label (XEXP (SET_SRC (tmp), 2)) == old_label)
1222 {
1223 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
1224 new_label);
1225 --LABEL_NUSES (old_label);
1226 ++LABEL_NUSES (new_label);
1227 }
1228 }
1229 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
1230 {
1231 int i, n = ASM_OPERANDS_LABEL_LENGTH (tmp);
1232 rtx note;
1233
1234 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1235 return false;
1236 rtx_code_label *new_label = block_label (new_bb);
1237
1238 for (i = 0; i < n; ++i)
1239 {
1240 rtx old_ref = ASM_OPERANDS_LABEL (tmp, i);
1241 gcc_assert (GET_CODE (old_ref) == LABEL_REF);
1242 if (XEXP (old_ref, 0) == old_label)
1243 {
1244 ASM_OPERANDS_LABEL (tmp, i)
1245 = gen_rtx_LABEL_REF (Pmode, new_label);
1246 --LABEL_NUSES (old_label);
1247 ++LABEL_NUSES (new_label);
1248 }
1249 }
1250
1251 if (JUMP_LABEL (insn) == old_label)
1252 {
1253 JUMP_LABEL (insn) = new_label;
1254 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1255 if (note)
1256 remove_note (insn, note);
1257 }
1258 else
1259 {
1260 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1261 if (note)
1262 remove_note (insn, note);
1263 if (JUMP_LABEL (insn) != new_label
1264 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1265 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1266 }
1267 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1268 != NULL_RTX)
1269 XEXP (note, 0) = new_label;
1270 }
1271 else
1272 {
1273 /* ?? We may play the games with moving the named labels from
1274 one basic block to the other in case only one computed_jump is
1275 available. */
1276 if (computed_jump_p (insn)
1277 /* A return instruction can't be redirected. */
1278 || returnjump_p (insn))
1279 return false;
1280
1281 if (!currently_expanding_to_rtl || JUMP_LABEL (insn) == old_label)
1282 {
1283 /* If the insn doesn't go where we think, we're confused. */
1284 gcc_assert (JUMP_LABEL (insn) == old_label);
1285
1286 /* If the substitution doesn't succeed, die. This can happen
1287 if the back end emitted unrecognizable instructions or if
1288 target is exit block on some arches. Or for crossing
1289 jumps. */
1290 if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
1291 block_label (new_bb), 0))
1292 {
1293 gcc_assert (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
1294 || CROSSING_JUMP_P (insn));
1295 return false;
1296 }
1297 }
1298 }
1299 return true;
1300 }
1301
1302
1303 /* Redirect edge representing branch of (un)conditional jump or tablejump,
1304 NULL on failure */
1305 static edge
1306 redirect_branch_edge (edge e, basic_block target)
1307 {
1308 rtx_insn *old_label = BB_HEAD (e->dest);
1309 basic_block src = e->src;
1310 rtx_insn *insn = BB_END (src);
1311
1312 /* We can only redirect non-fallthru edges of jump insn. */
1313 if (e->flags & EDGE_FALLTHRU)
1314 return NULL;
1315 else if (!JUMP_P (insn) && !currently_expanding_to_rtl)
1316 return NULL;
1317
1318 if (!currently_expanding_to_rtl)
1319 {
1320 if (!patch_jump_insn (as_a <rtx_jump_insn *> (insn), old_label, target))
1321 return NULL;
1322 }
1323 else
1324 /* When expanding this BB might actually contain multiple
1325 jumps (i.e. not yet split by find_many_sub_basic_blocks).
1326 Redirect all of those that match our label. */
1327 FOR_BB_INSNS (src, insn)
1328 if (JUMP_P (insn) && !patch_jump_insn (as_a <rtx_jump_insn *> (insn),
1329 old_label, target))
1330 return NULL;
1331
1332 if (dump_file)
1333 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
1334 e->src->index, e->dest->index, target->index);
1335
1336 if (e->dest != target)
1337 e = redirect_edge_succ_nodup (e, target);
1338
1339 return e;
1340 }
1341
1342 /* Called when edge E has been redirected to a new destination,
1343 in order to update the region crossing flag on the edge and
1344 jump. */
1345
1346 static void
1347 fixup_partition_crossing (edge e)
1348 {
1349 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun) || e->dest
1350 == EXIT_BLOCK_PTR_FOR_FN (cfun))
1351 return;
1352 /* If we redirected an existing edge, it may already be marked
1353 crossing, even though the new src is missing a reg crossing note.
1354 But make sure reg crossing note doesn't already exist before
1355 inserting. */
1356 if (BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1357 {
1358 e->flags |= EDGE_CROSSING;
1359 if (JUMP_P (BB_END (e->src)))
1360 CROSSING_JUMP_P (BB_END (e->src)) = 1;
1361 }
1362 else if (BB_PARTITION (e->src) == BB_PARTITION (e->dest))
1363 {
1364 e->flags &= ~EDGE_CROSSING;
1365 /* Remove the section crossing note from jump at end of
1366 src if it exists, and if no other successors are
1367 still crossing. */
1368 if (JUMP_P (BB_END (e->src)) && CROSSING_JUMP_P (BB_END (e->src)))
1369 {
1370 bool has_crossing_succ = false;
1371 edge e2;
1372 edge_iterator ei;
1373 FOR_EACH_EDGE (e2, ei, e->src->succs)
1374 {
1375 has_crossing_succ |= (e2->flags & EDGE_CROSSING);
1376 if (has_crossing_succ)
1377 break;
1378 }
1379 if (!has_crossing_succ)
1380 CROSSING_JUMP_P (BB_END (e->src)) = 0;
1381 }
1382 }
1383 }
1384
1385 /* Called when block BB has been reassigned to the cold partition,
1386 because it is now dominated by another cold block,
1387 to ensure that the region crossing attributes are updated. */
1388
1389 static void
1390 fixup_new_cold_bb (basic_block bb)
1391 {
1392 edge e;
1393 edge_iterator ei;
1394
1395 /* This is called when a hot bb is found to now be dominated
1396 by a cold bb and therefore needs to become cold. Therefore,
1397 its preds will no longer be region crossing. Any non-dominating
1398 preds that were previously hot would also have become cold
1399 in the caller for the same region. Any preds that were previously
1400 region-crossing will be adjusted in fixup_partition_crossing. */
1401 FOR_EACH_EDGE (e, ei, bb->preds)
1402 {
1403 fixup_partition_crossing (e);
1404 }
1405
1406 /* Possibly need to make bb's successor edges region crossing,
1407 or remove stale region crossing. */
1408 FOR_EACH_EDGE (e, ei, bb->succs)
1409 {
1410 /* We can't have fall-through edges across partition boundaries.
1411 Note that force_nonfallthru will do any necessary partition
1412 boundary fixup by calling fixup_partition_crossing itself. */
1413 if ((e->flags & EDGE_FALLTHRU)
1414 && BB_PARTITION (bb) != BB_PARTITION (e->dest)
1415 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1416 force_nonfallthru (e);
1417 else
1418 fixup_partition_crossing (e);
1419 }
1420 }
1421
1422 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
1423 expense of adding new instructions or reordering basic blocks.
1424
1425 Function can be also called with edge destination equivalent to the TARGET.
1426 Then it should try the simplifications and do nothing if none is possible.
1427
1428 Return edge representing the branch if transformation succeeded. Return NULL
1429 on failure.
1430 We still return NULL in case E already destinated TARGET and we didn't
1431 managed to simplify instruction stream. */
1432
1433 static edge
1434 rtl_redirect_edge_and_branch (edge e, basic_block target)
1435 {
1436 edge ret;
1437 basic_block src = e->src;
1438 basic_block dest = e->dest;
1439
1440 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1441 return NULL;
1442
1443 if (dest == target)
1444 return e;
1445
1446 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
1447 {
1448 df_set_bb_dirty (src);
1449 fixup_partition_crossing (ret);
1450 return ret;
1451 }
1452
1453 ret = redirect_branch_edge (e, target);
1454 if (!ret)
1455 return NULL;
1456
1457 df_set_bb_dirty (src);
1458 fixup_partition_crossing (ret);
1459 return ret;
1460 }
1461
1462 /* Emit a barrier after BB, into the footer if we are in CFGLAYOUT mode. */
1463
1464 void
1465 emit_barrier_after_bb (basic_block bb)
1466 {
1467 rtx_barrier *barrier = emit_barrier_after (BB_END (bb));
1468 gcc_assert (current_ir_type () == IR_RTL_CFGRTL
1469 || current_ir_type () == IR_RTL_CFGLAYOUT);
1470 if (current_ir_type () == IR_RTL_CFGLAYOUT)
1471 {
1472 rtx_insn *insn = unlink_insn_chain (barrier, barrier);
1473
1474 if (BB_FOOTER (bb))
1475 {
1476 rtx_insn *footer_tail = BB_FOOTER (bb);
1477
1478 while (NEXT_INSN (footer_tail))
1479 footer_tail = NEXT_INSN (footer_tail);
1480 if (!BARRIER_P (footer_tail))
1481 {
1482 SET_NEXT_INSN (footer_tail) = insn;
1483 SET_PREV_INSN (insn) = footer_tail;
1484 }
1485 }
1486 else
1487 BB_FOOTER (bb) = insn;
1488 }
1489 }
1490
1491 /* Like force_nonfallthru below, but additionally performs redirection
1492 Used by redirect_edge_and_branch_force. JUMP_LABEL is used only
1493 when redirecting to the EXIT_BLOCK, it is either ret_rtx or
1494 simple_return_rtx, indicating which kind of returnjump to create.
1495 It should be NULL otherwise. */
1496
1497 basic_block
1498 force_nonfallthru_and_redirect (edge e, basic_block target, rtx jump_label)
1499 {
1500 basic_block jump_block, new_bb = NULL, src = e->src;
1501 rtx note;
1502 edge new_edge;
1503 int abnormal_edge_flags = 0;
1504 bool asm_goto_edge = false;
1505 int loc;
1506
1507 /* In the case the last instruction is conditional jump to the next
1508 instruction, first redirect the jump itself and then continue
1509 by creating a basic block afterwards to redirect fallthru edge. */
1510 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1511 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1512 && any_condjump_p (BB_END (e->src))
1513 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1514 {
1515 rtx note;
1516 edge b = unchecked_make_edge (e->src, target, 0);
1517 bool redirected;
1518
1519 redirected = redirect_jump (as_a <rtx_jump_insn *> (BB_END (e->src)),
1520 block_label (target), 0);
1521 gcc_assert (redirected);
1522
1523 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1524 if (note)
1525 {
1526 int prob = XINT (note, 0);
1527
1528 b->probability = profile_probability::from_reg_br_prob_note (prob);
1529 e->probability -= e->probability;
1530 }
1531 }
1532
1533 if (e->flags & EDGE_ABNORMAL)
1534 {
1535 /* Irritating special case - fallthru edge to the same block as abnormal
1536 edge.
1537 We can't redirect abnormal edge, but we still can split the fallthru
1538 one and create separate abnormal edge to original destination.
1539 This allows bb-reorder to make such edge non-fallthru. */
1540 gcc_assert (e->dest == target);
1541 abnormal_edge_flags = e->flags & ~EDGE_FALLTHRU;
1542 e->flags &= EDGE_FALLTHRU;
1543 }
1544 else
1545 {
1546 gcc_assert (e->flags & EDGE_FALLTHRU);
1547 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1548 {
1549 /* We can't redirect the entry block. Create an empty block
1550 at the start of the function which we use to add the new
1551 jump. */
1552 edge tmp;
1553 edge_iterator ei;
1554 bool found = false;
1555
1556 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL,
1557 ENTRY_BLOCK_PTR_FOR_FN (cfun));
1558 bb->count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
1559
1560 /* Make sure new block ends up in correct hot/cold section. */
1561 BB_COPY_PARTITION (bb, e->dest);
1562
1563 /* Change the existing edge's source to be the new block, and add
1564 a new edge from the entry block to the new block. */
1565 e->src = bb;
1566 for (ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
1567 (tmp = ei_safe_edge (ei)); )
1568 {
1569 if (tmp == e)
1570 {
1571 ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs->unordered_remove (ei.index);
1572 found = true;
1573 break;
1574 }
1575 else
1576 ei_next (&ei);
1577 }
1578
1579 gcc_assert (found);
1580
1581 vec_safe_push (bb->succs, e);
1582 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb,
1583 EDGE_FALLTHRU);
1584 }
1585 }
1586
1587 /* If e->src ends with asm goto, see if any of the ASM_OPERANDS_LABELs
1588 don't point to the target or fallthru label. */
1589 if (JUMP_P (BB_END (e->src))
1590 && target != EXIT_BLOCK_PTR_FOR_FN (cfun)
1591 && (e->flags & EDGE_FALLTHRU)
1592 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
1593 {
1594 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
1595 bool adjust_jump_target = false;
1596
1597 for (i = 0; i < n; ++i)
1598 {
1599 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (e->dest))
1600 {
1601 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))--;
1602 XEXP (ASM_OPERANDS_LABEL (note, i), 0) = block_label (target);
1603 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))++;
1604 adjust_jump_target = true;
1605 }
1606 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (target))
1607 asm_goto_edge = true;
1608 }
1609 if (adjust_jump_target)
1610 {
1611 rtx_insn *insn = BB_END (e->src);
1612 rtx note;
1613 rtx_insn *old_label = BB_HEAD (e->dest);
1614 rtx_insn *new_label = BB_HEAD (target);
1615
1616 if (JUMP_LABEL (insn) == old_label)
1617 {
1618 JUMP_LABEL (insn) = new_label;
1619 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1620 if (note)
1621 remove_note (insn, note);
1622 }
1623 else
1624 {
1625 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1626 if (note)
1627 remove_note (insn, note);
1628 if (JUMP_LABEL (insn) != new_label
1629 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1630 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1631 }
1632 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1633 != NULL_RTX)
1634 XEXP (note, 0) = new_label;
1635 }
1636 }
1637
1638 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags || asm_goto_edge)
1639 {
1640 rtx_insn *new_head;
1641 profile_count count = e->count ();
1642 profile_probability probability = e->probability;
1643 /* Create the new structures. */
1644
1645 /* If the old block ended with a tablejump, skip its table
1646 by searching forward from there. Otherwise start searching
1647 forward from the last instruction of the old block. */
1648 rtx_jump_table_data *table;
1649 if (tablejump_p (BB_END (e->src), NULL, &table))
1650 new_head = table;
1651 else
1652 new_head = BB_END (e->src);
1653 new_head = NEXT_INSN (new_head);
1654
1655 jump_block = create_basic_block (new_head, NULL, e->src);
1656 jump_block->count = count;
1657
1658 /* Make sure new block ends up in correct hot/cold section. */
1659
1660 BB_COPY_PARTITION (jump_block, e->src);
1661
1662 /* Wire edge in. */
1663 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1664 new_edge->probability = probability;
1665
1666 /* Redirect old edge. */
1667 redirect_edge_pred (e, jump_block);
1668 e->probability = profile_probability::always ();
1669
1670 /* If e->src was previously region crossing, it no longer is
1671 and the reg crossing note should be removed. */
1672 fixup_partition_crossing (new_edge);
1673
1674 /* If asm goto has any label refs to target's label,
1675 add also edge from asm goto bb to target. */
1676 if (asm_goto_edge)
1677 {
1678 new_edge->probability = new_edge->probability.apply_scale (1, 2);
1679 jump_block->count = jump_block->count.apply_scale (1, 2);
1680 edge new_edge2 = make_edge (new_edge->src, target,
1681 e->flags & ~EDGE_FALLTHRU);
1682 new_edge2->probability = probability - new_edge->probability;
1683 }
1684
1685 new_bb = jump_block;
1686 }
1687 else
1688 jump_block = e->src;
1689
1690 loc = e->goto_locus;
1691 e->flags &= ~EDGE_FALLTHRU;
1692 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1693 {
1694 if (jump_label == ret_rtx)
1695 emit_jump_insn_after_setloc (targetm.gen_return (),
1696 BB_END (jump_block), loc);
1697 else
1698 {
1699 gcc_assert (jump_label == simple_return_rtx);
1700 emit_jump_insn_after_setloc (targetm.gen_simple_return (),
1701 BB_END (jump_block), loc);
1702 }
1703 set_return_jump_label (BB_END (jump_block));
1704 }
1705 else
1706 {
1707 rtx_code_label *label = block_label (target);
1708 emit_jump_insn_after_setloc (targetm.gen_jump (label),
1709 BB_END (jump_block), loc);
1710 JUMP_LABEL (BB_END (jump_block)) = label;
1711 LABEL_NUSES (label)++;
1712 }
1713
1714 /* We might be in cfg layout mode, and if so, the following routine will
1715 insert the barrier correctly. */
1716 emit_barrier_after_bb (jump_block);
1717 redirect_edge_succ_nodup (e, target);
1718
1719 if (abnormal_edge_flags)
1720 make_edge (src, target, abnormal_edge_flags);
1721
1722 df_mark_solutions_dirty ();
1723 fixup_partition_crossing (e);
1724 return new_bb;
1725 }
1726
1727 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1728 (and possibly create new basic block) to make edge non-fallthru.
1729 Return newly created BB or NULL if none. */
1730
1731 static basic_block
1732 rtl_force_nonfallthru (edge e)
1733 {
1734 return force_nonfallthru_and_redirect (e, e->dest, NULL_RTX);
1735 }
1736
1737 /* Redirect edge even at the expense of creating new jump insn or
1738 basic block. Return new basic block if created, NULL otherwise.
1739 Conversion must be possible. */
1740
1741 static basic_block
1742 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1743 {
1744 if (redirect_edge_and_branch (e, target)
1745 || e->dest == target)
1746 return NULL;
1747
1748 /* In case the edge redirection failed, try to force it to be non-fallthru
1749 and redirect newly created simplejump. */
1750 df_set_bb_dirty (e->src);
1751 return force_nonfallthru_and_redirect (e, target, NULL_RTX);
1752 }
1753
1754 /* The given edge should potentially be a fallthru edge. If that is in
1755 fact true, delete the jump and barriers that are in the way. */
1756
1757 static void
1758 rtl_tidy_fallthru_edge (edge e)
1759 {
1760 rtx_insn *q;
1761 basic_block b = e->src, c = b->next_bb;
1762
1763 /* ??? In a late-running flow pass, other folks may have deleted basic
1764 blocks by nopping out blocks, leaving multiple BARRIERs between here
1765 and the target label. They ought to be chastised and fixed.
1766
1767 We can also wind up with a sequence of undeletable labels between
1768 one block and the next.
1769
1770 So search through a sequence of barriers, labels, and notes for
1771 the head of block C and assert that we really do fall through. */
1772
1773 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1774 if (NONDEBUG_INSN_P (q))
1775 return;
1776
1777 /* Remove what will soon cease being the jump insn from the source block.
1778 If block B consisted only of this single jump, turn it into a deleted
1779 note. */
1780 q = BB_END (b);
1781 if (JUMP_P (q)
1782 && onlyjump_p (q)
1783 && (any_uncondjump_p (q)
1784 || single_succ_p (b)))
1785 {
1786 rtx_insn *label;
1787 rtx_jump_table_data *table;
1788
1789 if (tablejump_p (q, &label, &table))
1790 {
1791 /* The label is likely mentioned in some instruction before
1792 the tablejump and might not be DCEd, so turn it into
1793 a note instead and move before the tablejump that is going to
1794 be deleted. */
1795 const char *name = LABEL_NAME (label);
1796 PUT_CODE (label, NOTE);
1797 NOTE_KIND (label) = NOTE_INSN_DELETED_LABEL;
1798 NOTE_DELETED_LABEL_NAME (label) = name;
1799 reorder_insns (label, label, PREV_INSN (q));
1800 delete_insn (table);
1801 }
1802
1803 /* If this was a conditional jump, we need to also delete
1804 the insn that set cc0. */
1805 if (HAVE_cc0 && any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1806 q = PREV_INSN (q);
1807
1808 q = PREV_INSN (q);
1809 }
1810 /* Unconditional jumps with side-effects (i.e. which we can't just delete
1811 together with the barrier) should never have a fallthru edge. */
1812 else if (JUMP_P (q) && any_uncondjump_p (q))
1813 return;
1814
1815 /* Selectively unlink the sequence. */
1816 if (q != PREV_INSN (BB_HEAD (c)))
1817 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)), false);
1818
1819 e->flags |= EDGE_FALLTHRU;
1820 }
1821 \f
1822 /* Should move basic block BB after basic block AFTER. NIY. */
1823
1824 static bool
1825 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1826 basic_block after ATTRIBUTE_UNUSED)
1827 {
1828 return false;
1829 }
1830
1831 /* Locate the last bb in the same partition as START_BB. */
1832
1833 static basic_block
1834 last_bb_in_partition (basic_block start_bb)
1835 {
1836 basic_block bb;
1837 FOR_BB_BETWEEN (bb, start_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1838 {
1839 if (BB_PARTITION (start_bb) != BB_PARTITION (bb->next_bb))
1840 return bb;
1841 }
1842 /* Return bb before the exit block. */
1843 return bb->prev_bb;
1844 }
1845
1846 /* Split a (typically critical) edge. Return the new block.
1847 The edge must not be abnormal.
1848
1849 ??? The code generally expects to be called on critical edges.
1850 The case of a block ending in an unconditional jump to a
1851 block with multiple predecessors is not handled optimally. */
1852
1853 static basic_block
1854 rtl_split_edge (edge edge_in)
1855 {
1856 basic_block bb, new_bb;
1857 rtx_insn *before;
1858
1859 /* Abnormal edges cannot be split. */
1860 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1861
1862 /* We are going to place the new block in front of edge destination.
1863 Avoid existence of fallthru predecessors. */
1864 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1865 {
1866 edge e = find_fallthru_edge (edge_in->dest->preds);
1867
1868 if (e)
1869 force_nonfallthru (e);
1870 }
1871
1872 /* Create the basic block note. */
1873 if (edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1874 before = BB_HEAD (edge_in->dest);
1875 else
1876 before = NULL;
1877
1878 /* If this is a fall through edge to the exit block, the blocks might be
1879 not adjacent, and the right place is after the source. */
1880 if ((edge_in->flags & EDGE_FALLTHRU)
1881 && edge_in->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1882 {
1883 before = NEXT_INSN (BB_END (edge_in->src));
1884 bb = create_basic_block (before, NULL, edge_in->src);
1885 BB_COPY_PARTITION (bb, edge_in->src);
1886 }
1887 else
1888 {
1889 if (edge_in->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1890 {
1891 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1892 BB_COPY_PARTITION (bb, edge_in->dest);
1893 }
1894 else
1895 {
1896 basic_block after = edge_in->dest->prev_bb;
1897 /* If this is post-bb reordering, and the edge crosses a partition
1898 boundary, the new block needs to be inserted in the bb chain
1899 at the end of the src partition (since we put the new bb into
1900 that partition, see below). Otherwise we may end up creating
1901 an extra partition crossing in the chain, which is illegal.
1902 It can't go after the src, because src may have a fall-through
1903 to a different block. */
1904 if (crtl->bb_reorder_complete
1905 && (edge_in->flags & EDGE_CROSSING))
1906 {
1907 after = last_bb_in_partition (edge_in->src);
1908 before = get_last_bb_insn (after);
1909 /* The instruction following the last bb in partition should
1910 be a barrier, since it cannot end in a fall-through. */
1911 gcc_checking_assert (BARRIER_P (before));
1912 before = NEXT_INSN (before);
1913 }
1914 bb = create_basic_block (before, NULL, after);
1915 /* Put the split bb into the src partition, to avoid creating
1916 a situation where a cold bb dominates a hot bb, in the case
1917 where src is cold and dest is hot. The src will dominate
1918 the new bb (whereas it might not have dominated dest). */
1919 BB_COPY_PARTITION (bb, edge_in->src);
1920 }
1921 }
1922
1923 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1924
1925 /* Can't allow a region crossing edge to be fallthrough. */
1926 if (BB_PARTITION (bb) != BB_PARTITION (edge_in->dest)
1927 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1928 {
1929 new_bb = force_nonfallthru (single_succ_edge (bb));
1930 gcc_assert (!new_bb);
1931 }
1932
1933 /* For non-fallthru edges, we must adjust the predecessor's
1934 jump instruction to target our new block. */
1935 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1936 {
1937 edge redirected = redirect_edge_and_branch (edge_in, bb);
1938 gcc_assert (redirected);
1939 }
1940 else
1941 {
1942 if (edge_in->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1943 {
1944 /* For asm goto even splitting of fallthru edge might
1945 need insn patching, as other labels might point to the
1946 old label. */
1947 rtx_insn *last = BB_END (edge_in->src);
1948 if (last
1949 && JUMP_P (last)
1950 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1951 && (extract_asm_operands (PATTERN (last))
1952 || JUMP_LABEL (last) == before)
1953 && patch_jump_insn (last, before, bb))
1954 df_set_bb_dirty (edge_in->src);
1955 }
1956 redirect_edge_succ (edge_in, bb);
1957 }
1958
1959 return bb;
1960 }
1961
1962 /* Queue instructions for insertion on an edge between two basic blocks.
1963 The new instructions and basic blocks (if any) will not appear in the
1964 CFG until commit_edge_insertions is called. */
1965
1966 void
1967 insert_insn_on_edge (rtx pattern, edge e)
1968 {
1969 /* We cannot insert instructions on an abnormal critical edge.
1970 It will be easier to find the culprit if we die now. */
1971 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1972
1973 if (e->insns.r == NULL_RTX)
1974 start_sequence ();
1975 else
1976 push_to_sequence (e->insns.r);
1977
1978 emit_insn (pattern);
1979
1980 e->insns.r = get_insns ();
1981 end_sequence ();
1982 }
1983
1984 /* Update the CFG for the instructions queued on edge E. */
1985
1986 void
1987 commit_one_edge_insertion (edge e)
1988 {
1989 rtx_insn *before = NULL, *after = NULL, *insns, *tmp, *last;
1990 basic_block bb;
1991
1992 /* Pull the insns off the edge now since the edge might go away. */
1993 insns = e->insns.r;
1994 e->insns.r = NULL;
1995
1996 /* Figure out where to put these insns. If the destination has
1997 one predecessor, insert there. Except for the exit block. */
1998 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1999 {
2000 bb = e->dest;
2001
2002 /* Get the location correct wrt a code label, and "nice" wrt
2003 a basic block note, and before everything else. */
2004 tmp = BB_HEAD (bb);
2005 if (LABEL_P (tmp))
2006 tmp = NEXT_INSN (tmp);
2007 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
2008 tmp = NEXT_INSN (tmp);
2009 if (tmp == BB_HEAD (bb))
2010 before = tmp;
2011 else if (tmp)
2012 after = PREV_INSN (tmp);
2013 else
2014 after = get_last_insn ();
2015 }
2016
2017 /* If the source has one successor and the edge is not abnormal,
2018 insert there. Except for the entry block.
2019 Don't do this if the predecessor ends in a jump other than
2020 unconditional simple jump. E.g. for asm goto that points all
2021 its labels at the fallthru basic block, we can't insert instructions
2022 before the asm goto, as the asm goto can have various of side effects,
2023 and can't emit instructions after the asm goto, as it must end
2024 the basic block. */
2025 else if ((e->flags & EDGE_ABNORMAL) == 0
2026 && single_succ_p (e->src)
2027 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2028 && (!JUMP_P (BB_END (e->src))
2029 || simplejump_p (BB_END (e->src))))
2030 {
2031 bb = e->src;
2032
2033 /* It is possible to have a non-simple jump here. Consider a target
2034 where some forms of unconditional jumps clobber a register. This
2035 happens on the fr30 for example.
2036
2037 We know this block has a single successor, so we can just emit
2038 the queued insns before the jump. */
2039 if (JUMP_P (BB_END (bb)))
2040 before = BB_END (bb);
2041 else
2042 {
2043 /* We'd better be fallthru, or we've lost track of what's what. */
2044 gcc_assert (e->flags & EDGE_FALLTHRU);
2045
2046 after = BB_END (bb);
2047 }
2048 }
2049
2050 /* Otherwise we must split the edge. */
2051 else
2052 {
2053 bb = split_edge (e);
2054
2055 /* If E crossed a partition boundary, we needed to make bb end in
2056 a region-crossing jump, even though it was originally fallthru. */
2057 if (JUMP_P (BB_END (bb)))
2058 before = BB_END (bb);
2059 else
2060 after = BB_END (bb);
2061 }
2062
2063 /* Now that we've found the spot, do the insertion. */
2064 if (before)
2065 {
2066 emit_insn_before_noloc (insns, before, bb);
2067 last = prev_nonnote_insn (before);
2068 }
2069 else
2070 last = emit_insn_after_noloc (insns, after, bb);
2071
2072 if (returnjump_p (last))
2073 {
2074 /* ??? Remove all outgoing edges from BB and add one for EXIT.
2075 This is not currently a problem because this only happens
2076 for the (single) epilogue, which already has a fallthru edge
2077 to EXIT. */
2078
2079 e = single_succ_edge (bb);
2080 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2081 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
2082
2083 e->flags &= ~EDGE_FALLTHRU;
2084 emit_barrier_after (last);
2085
2086 if (before)
2087 delete_insn (before);
2088 }
2089 else
2090 gcc_assert (!JUMP_P (last));
2091 }
2092
2093 /* Update the CFG for all queued instructions. */
2094
2095 void
2096 commit_edge_insertions (void)
2097 {
2098 basic_block bb;
2099
2100 /* Optimization passes that invoke this routine can cause hot blocks
2101 previously reached by both hot and cold blocks to become dominated only
2102 by cold blocks. This will cause the verification below to fail,
2103 and lead to now cold code in the hot section. In some cases this
2104 may only be visible after newly unreachable blocks are deleted,
2105 which will be done by fixup_partitions. */
2106 fixup_partitions ();
2107
2108 checking_verify_flow_info ();
2109
2110 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
2111 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
2112 {
2113 edge e;
2114 edge_iterator ei;
2115
2116 FOR_EACH_EDGE (e, ei, bb->succs)
2117 if (e->insns.r)
2118 commit_one_edge_insertion (e);
2119 }
2120 }
2121 \f
2122
2123 /* Print out RTL-specific basic block information (live information
2124 at start and end with TDF_DETAILS). FLAGS are the TDF_* masks
2125 documented in dumpfile.h. */
2126
2127 static void
2128 rtl_dump_bb (FILE *outf, basic_block bb, int indent, dump_flags_t flags)
2129 {
2130 char *s_indent;
2131
2132 s_indent = (char *) alloca ((size_t) indent + 1);
2133 memset (s_indent, ' ', (size_t) indent);
2134 s_indent[indent] = '\0';
2135
2136 if (df && (flags & TDF_DETAILS))
2137 {
2138 df_dump_top (bb, outf);
2139 putc ('\n', outf);
2140 }
2141
2142 if (bb->index != ENTRY_BLOCK && bb->index != EXIT_BLOCK)
2143 {
2144 rtx_insn *last = BB_END (bb);
2145 if (last)
2146 last = NEXT_INSN (last);
2147 for (rtx_insn *insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
2148 {
2149 if (flags & TDF_DETAILS)
2150 df_dump_insn_top (insn, outf);
2151 if (! (flags & TDF_SLIM))
2152 print_rtl_single (outf, insn);
2153 else
2154 dump_insn_slim (outf, insn);
2155 if (flags & TDF_DETAILS)
2156 df_dump_insn_bottom (insn, outf);
2157 }
2158 }
2159
2160 if (df && (flags & TDF_DETAILS))
2161 {
2162 df_dump_bottom (bb, outf);
2163 putc ('\n', outf);
2164 }
2165
2166 }
2167 \f
2168 /* Like dump_function_to_file, but for RTL. Print out dataflow information
2169 for the start of each basic block. FLAGS are the TDF_* masks documented
2170 in dumpfile.h. */
2171
2172 void
2173 print_rtl_with_bb (FILE *outf, const rtx_insn *rtx_first, dump_flags_t flags)
2174 {
2175 const rtx_insn *tmp_rtx;
2176 if (rtx_first == 0)
2177 fprintf (outf, "(nil)\n");
2178 else
2179 {
2180 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
2181 int max_uid = get_max_uid ();
2182 basic_block *start = XCNEWVEC (basic_block, max_uid);
2183 basic_block *end = XCNEWVEC (basic_block, max_uid);
2184 enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid);
2185 basic_block bb;
2186
2187 /* After freeing the CFG, we still have BLOCK_FOR_INSN set on most
2188 insns, but the CFG is not maintained so the basic block info
2189 is not reliable. Therefore it's omitted from the dumps. */
2190 if (! (cfun->curr_properties & PROP_cfg))
2191 flags &= ~TDF_BLOCKS;
2192
2193 if (df)
2194 df_dump_start (outf);
2195
2196 if (flags & TDF_BLOCKS)
2197 {
2198 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2199 {
2200 rtx_insn *x;
2201
2202 start[INSN_UID (BB_HEAD (bb))] = bb;
2203 end[INSN_UID (BB_END (bb))] = bb;
2204 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
2205 {
2206 enum bb_state state = IN_MULTIPLE_BB;
2207
2208 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
2209 state = IN_ONE_BB;
2210 in_bb_p[INSN_UID (x)] = state;
2211
2212 if (x == BB_END (bb))
2213 break;
2214 }
2215 }
2216 }
2217
2218 for (tmp_rtx = rtx_first; tmp_rtx != NULL; tmp_rtx = NEXT_INSN (tmp_rtx))
2219 {
2220 if (flags & TDF_BLOCKS)
2221 {
2222 bb = start[INSN_UID (tmp_rtx)];
2223 if (bb != NULL)
2224 {
2225 dump_bb_info (outf, bb, 0, dump_flags, true, false);
2226 if (df && (flags & TDF_DETAILS))
2227 df_dump_top (bb, outf);
2228 }
2229
2230 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
2231 && !NOTE_P (tmp_rtx)
2232 && !BARRIER_P (tmp_rtx))
2233 fprintf (outf, ";; Insn is not within a basic block\n");
2234 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
2235 fprintf (outf, ";; Insn is in multiple basic blocks\n");
2236 }
2237
2238 if (flags & TDF_DETAILS)
2239 df_dump_insn_top (tmp_rtx, outf);
2240 if (! (flags & TDF_SLIM))
2241 print_rtl_single (outf, tmp_rtx);
2242 else
2243 dump_insn_slim (outf, tmp_rtx);
2244 if (flags & TDF_DETAILS)
2245 df_dump_insn_bottom (tmp_rtx, outf);
2246
2247 if (flags & TDF_BLOCKS)
2248 {
2249 bb = end[INSN_UID (tmp_rtx)];
2250 if (bb != NULL)
2251 {
2252 dump_bb_info (outf, bb, 0, dump_flags, false, true);
2253 if (df && (flags & TDF_DETAILS))
2254 df_dump_bottom (bb, outf);
2255 putc ('\n', outf);
2256 }
2257 }
2258 }
2259
2260 free (start);
2261 free (end);
2262 free (in_bb_p);
2263 }
2264 }
2265 \f
2266 /* Update the branch probability of BB if a REG_BR_PROB is present. */
2267
2268 void
2269 update_br_prob_note (basic_block bb)
2270 {
2271 rtx note;
2272 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
2273 if (!JUMP_P (BB_END (bb)) || !BRANCH_EDGE (bb)->probability.initialized_p ())
2274 {
2275 if (note)
2276 {
2277 rtx *note_link, this_rtx;
2278
2279 note_link = &REG_NOTES (BB_END (bb));
2280 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
2281 if (this_rtx == note)
2282 {
2283 *note_link = XEXP (this_rtx, 1);
2284 break;
2285 }
2286 }
2287 return;
2288 }
2289 if (!note
2290 || XINT (note, 0) == BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ())
2291 return;
2292 XINT (note, 0) = BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ();
2293 }
2294
2295 /* Get the last insn associated with block BB (that includes barriers and
2296 tablejumps after BB). */
2297 rtx_insn *
2298 get_last_bb_insn (basic_block bb)
2299 {
2300 rtx_jump_table_data *table;
2301 rtx_insn *tmp;
2302 rtx_insn *end = BB_END (bb);
2303
2304 /* Include any jump table following the basic block. */
2305 if (tablejump_p (end, NULL, &table))
2306 end = table;
2307
2308 /* Include any barriers that may follow the basic block. */
2309 tmp = next_nonnote_nondebug_insn_bb (end);
2310 while (tmp && BARRIER_P (tmp))
2311 {
2312 end = tmp;
2313 tmp = next_nonnote_nondebug_insn_bb (end);
2314 }
2315
2316 return end;
2317 }
2318
2319 /* Add all BBs reachable from entry via hot paths into the SET. */
2320
2321 void
2322 find_bbs_reachable_by_hot_paths (hash_set<basic_block> *set)
2323 {
2324 auto_vec<basic_block, 64> worklist;
2325
2326 set->add (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2327 worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2328
2329 while (worklist.length () > 0)
2330 {
2331 basic_block bb = worklist.pop ();
2332 edge_iterator ei;
2333 edge e;
2334
2335 FOR_EACH_EDGE (e, ei, bb->succs)
2336 if (BB_PARTITION (e->dest) != BB_COLD_PARTITION
2337 && !set->add (e->dest))
2338 worklist.safe_push (e->dest);
2339 }
2340 }
2341
2342 /* Sanity check partition hotness to ensure that basic blocks in
2343   the cold partition don't dominate basic blocks in the hot partition.
2344 If FLAG_ONLY is true, report violations as errors. Otherwise
2345 re-mark the dominated blocks as cold, since this is run after
2346 cfg optimizations that may make hot blocks previously reached
2347 by both hot and cold blocks now only reachable along cold paths. */
2348
2349 static vec<basic_block>
2350 find_partition_fixes (bool flag_only)
2351 {
2352 basic_block bb;
2353 vec<basic_block> bbs_in_cold_partition = vNULL;
2354 vec<basic_block> bbs_to_fix = vNULL;
2355 hash_set<basic_block> set;
2356
2357 /* Callers check this. */
2358 gcc_checking_assert (crtl->has_bb_partition);
2359
2360 find_bbs_reachable_by_hot_paths (&set);
2361
2362 FOR_EACH_BB_FN (bb, cfun)
2363 if (!set.contains (bb)
2364 && BB_PARTITION (bb) != BB_COLD_PARTITION)
2365 {
2366 if (flag_only)
2367 error ("non-cold basic block %d reachable only "
2368 "by paths crossing the cold partition", bb->index);
2369 else
2370 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
2371 bbs_to_fix.safe_push (bb);
2372 bbs_in_cold_partition.safe_push (bb);
2373 }
2374
2375 return bbs_to_fix;
2376 }
2377
2378 /* Perform cleanup on the hot/cold bb partitioning after optimization
2379 passes that modify the cfg. */
2380
2381 void
2382 fixup_partitions (void)
2383 {
2384 basic_block bb;
2385
2386 if (!crtl->has_bb_partition)
2387 return;
2388
2389 /* Delete any blocks that became unreachable and weren't
2390 already cleaned up, for example during edge forwarding
2391 and convert_jumps_to_returns. This will expose more
2392 opportunities for fixing the partition boundaries here.
2393 Also, the calculation of the dominance graph during verification
2394 will assert if there are unreachable nodes. */
2395 delete_unreachable_blocks ();
2396
2397 /* If there are partitions, do a sanity check on them: A basic block in
2398   a cold partition cannot dominate a basic block in a hot partition.
2399 Fixup any that now violate this requirement, as a result of edge
2400 forwarding and unreachable block deletion.  */
2401 vec<basic_block> bbs_to_fix = find_partition_fixes (false);
2402
2403 /* Do the partition fixup after all necessary blocks have been converted to
2404 cold, so that we only update the region crossings the minimum number of
2405 places, which can require forcing edges to be non fallthru. */
2406 while (! bbs_to_fix.is_empty ())
2407 {
2408 bb = bbs_to_fix.pop ();
2409 fixup_new_cold_bb (bb);
2410 }
2411 }
2412
2413 /* Verify, in the basic block chain, that there is at most one switch
2414 between hot/cold partitions. This condition will not be true until
2415 after reorder_basic_blocks is called. */
2416
2417 static int
2418 verify_hot_cold_block_grouping (void)
2419 {
2420 basic_block bb;
2421 int err = 0;
2422 bool switched_sections = false;
2423 int current_partition = BB_UNPARTITIONED;
2424
2425 /* Even after bb reordering is complete, we go into cfglayout mode
2426 again (in compgoto). Ensure we don't call this before going back
2427 into linearized RTL when any layout fixes would have been committed. */
2428 if (!crtl->bb_reorder_complete
2429 || current_ir_type () != IR_RTL_CFGRTL)
2430 return err;
2431
2432 FOR_EACH_BB_FN (bb, cfun)
2433 {
2434 if (current_partition != BB_UNPARTITIONED
2435 && BB_PARTITION (bb) != current_partition)
2436 {
2437 if (switched_sections)
2438 {
2439 error ("multiple hot/cold transitions found (bb %i)",
2440 bb->index);
2441 err = 1;
2442 }
2443 else
2444 switched_sections = true;
2445
2446 if (!crtl->has_bb_partition)
2447 error ("partition found but function partition flag not set");
2448 }
2449 current_partition = BB_PARTITION (bb);
2450 }
2451
2452 return err;
2453 }
2454 \f
2455
2456 /* Perform several checks on the edges out of each block, such as
2457 the consistency of the branch probabilities, the correctness
2458 of hot/cold partition crossing edges, and the number of expected
2459 successor edges. Also verify that the dominance relationship
2460 between hot/cold blocks is sane. */
2461
2462 static int
2463 rtl_verify_edges (void)
2464 {
2465 int err = 0;
2466 basic_block bb;
2467
2468 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2469 {
2470 int n_fallthru = 0, n_branch = 0, n_abnormal_call = 0, n_sibcall = 0;
2471 int n_eh = 0, n_abnormal = 0;
2472 edge e, fallthru = NULL;
2473 edge_iterator ei;
2474 rtx note;
2475 bool has_crossing_edge = false;
2476
2477 if (JUMP_P (BB_END (bb))
2478 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
2479 && EDGE_COUNT (bb->succs) >= 2
2480 && any_condjump_p (BB_END (bb)))
2481 {
2482 if (!BRANCH_EDGE (bb)->probability.initialized_p ())
2483 {
2484 if (profile_status_for_fn (cfun) != PROFILE_ABSENT)
2485 {
2486 error ("verify_flow_info: "
2487 "REG_BR_PROB is set but cfg probability is not");
2488 err = 1;
2489 }
2490 }
2491 else if (XINT (note, 0)
2492 != BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ()
2493 && profile_status_for_fn (cfun) != PROFILE_ABSENT)
2494 {
2495 error ("verify_flow_info: REG_BR_PROB does not match cfg %i %i",
2496 XINT (note, 0),
2497 BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ());
2498 err = 1;
2499 }
2500 }
2501
2502 FOR_EACH_EDGE (e, ei, bb->succs)
2503 {
2504 bool is_crossing;
2505
2506 if (e->flags & EDGE_FALLTHRU)
2507 n_fallthru++, fallthru = e;
2508
2509 is_crossing = (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
2510 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2511 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun));
2512 has_crossing_edge |= is_crossing;
2513 if (e->flags & EDGE_CROSSING)
2514 {
2515 if (!is_crossing)
2516 {
2517 error ("EDGE_CROSSING incorrectly set across same section");
2518 err = 1;
2519 }
2520 if (e->flags & EDGE_FALLTHRU)
2521 {
2522 error ("fallthru edge crosses section boundary in bb %i",
2523 e->src->index);
2524 err = 1;
2525 }
2526 if (e->flags & EDGE_EH)
2527 {
2528 error ("EH edge crosses section boundary in bb %i",
2529 e->src->index);
2530 err = 1;
2531 }
2532 if (JUMP_P (BB_END (bb)) && !CROSSING_JUMP_P (BB_END (bb)))
2533 {
2534 error ("No region crossing jump at section boundary in bb %i",
2535 bb->index);
2536 err = 1;
2537 }
2538 }
2539 else if (is_crossing)
2540 {
2541 error ("EDGE_CROSSING missing across section boundary");
2542 err = 1;
2543 }
2544
2545 if ((e->flags & ~(EDGE_DFS_BACK
2546 | EDGE_CAN_FALLTHRU
2547 | EDGE_IRREDUCIBLE_LOOP
2548 | EDGE_LOOP_EXIT
2549 | EDGE_CROSSING
2550 | EDGE_PRESERVE)) == 0)
2551 n_branch++;
2552
2553 if (e->flags & EDGE_ABNORMAL_CALL)
2554 n_abnormal_call++;
2555
2556 if (e->flags & EDGE_SIBCALL)
2557 n_sibcall++;
2558
2559 if (e->flags & EDGE_EH)
2560 n_eh++;
2561
2562 if (e->flags & EDGE_ABNORMAL)
2563 n_abnormal++;
2564 }
2565
2566 if (!has_crossing_edge
2567 && JUMP_P (BB_END (bb))
2568 && CROSSING_JUMP_P (BB_END (bb)))
2569 {
2570 print_rtl_with_bb (stderr, get_insns (), TDF_BLOCKS | TDF_DETAILS);
2571 error ("Region crossing jump across same section in bb %i",
2572 bb->index);
2573 err = 1;
2574 }
2575
2576 if (n_eh && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2577 {
2578 error ("missing REG_EH_REGION note at the end of bb %i", bb->index);
2579 err = 1;
2580 }
2581 if (n_eh > 1)
2582 {
2583 error ("too many exception handling edges in bb %i", bb->index);
2584 err = 1;
2585 }
2586 if (n_branch
2587 && (!JUMP_P (BB_END (bb))
2588 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2589 || any_condjump_p (BB_END (bb))))))
2590 {
2591 error ("too many outgoing branch edges from bb %i", bb->index);
2592 err = 1;
2593 }
2594 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2595 {
2596 error ("fallthru edge after unconditional jump in bb %i", bb->index);
2597 err = 1;
2598 }
2599 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2600 {
2601 error ("wrong number of branch edges after unconditional jump"
2602 " in bb %i", bb->index);
2603 err = 1;
2604 }
2605 if (n_branch != 1 && any_condjump_p (BB_END (bb))
2606 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
2607 {
2608 error ("wrong amount of branch edges after conditional jump"
2609 " in bb %i", bb->index);
2610 err = 1;
2611 }
2612 if (n_abnormal_call && !CALL_P (BB_END (bb)))
2613 {
2614 error ("abnormal call edges for non-call insn in bb %i", bb->index);
2615 err = 1;
2616 }
2617 if (n_sibcall && !CALL_P (BB_END (bb)))
2618 {
2619 error ("sibcall edges for non-call insn in bb %i", bb->index);
2620 err = 1;
2621 }
2622 if (n_abnormal > n_eh
2623 && !(CALL_P (BB_END (bb))
2624 && n_abnormal == n_abnormal_call + n_sibcall)
2625 && (!JUMP_P (BB_END (bb))
2626 || any_condjump_p (BB_END (bb))
2627 || any_uncondjump_p (BB_END (bb))))
2628 {
2629 error ("abnormal edges for no purpose in bb %i", bb->index);
2630 err = 1;
2631 }
2632
2633 int has_eh = -1;
2634 FOR_EACH_EDGE (e, ei, bb->preds)
2635 {
2636 if (has_eh == -1)
2637 has_eh = (e->flags & EDGE_EH);
2638 if ((e->flags & EDGE_EH) == has_eh)
2639 continue;
2640 error ("EH incoming edge mixed with non-EH incoming edges "
2641 "in bb %i", bb->index);
2642 err = 1;
2643 break;
2644 }
2645 }
2646
2647 /* If there are partitions, do a sanity check on them: A basic block in
2648   a cold partition cannot dominate a basic block in a hot partition.  */
2649 if (crtl->has_bb_partition && !err
2650 && current_ir_type () == IR_RTL_CFGLAYOUT)
2651 {
2652 vec<basic_block> bbs_to_fix = find_partition_fixes (true);
2653 err = !bbs_to_fix.is_empty ();
2654 }
2655
2656 /* Clean up. */
2657 return err;
2658 }
2659
2660 /* Checks on the instructions within blocks. Currently checks that each
2661 block starts with a basic block note, and that basic block notes and
2662 control flow jumps are not found in the middle of the block. */
2663
2664 static int
2665 rtl_verify_bb_insns (void)
2666 {
2667 rtx_insn *x;
2668 int err = 0;
2669 basic_block bb;
2670
2671 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2672 {
2673 /* Now check the header of basic
2674 block. It ought to contain optional CODE_LABEL followed
2675 by NOTE_BASIC_BLOCK. */
2676 x = BB_HEAD (bb);
2677 if (LABEL_P (x))
2678 {
2679 if (BB_END (bb) == x)
2680 {
2681 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2682 bb->index);
2683 err = 1;
2684 }
2685
2686 x = NEXT_INSN (x);
2687 }
2688
2689 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2690 {
2691 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2692 bb->index);
2693 err = 1;
2694 }
2695
2696 if (BB_END (bb) == x)
2697 /* Do checks for empty blocks here. */
2698 ;
2699 else
2700 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2701 {
2702 if (NOTE_INSN_BASIC_BLOCK_P (x))
2703 {
2704 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2705 INSN_UID (x), bb->index);
2706 err = 1;
2707 }
2708
2709 if (x == BB_END (bb))
2710 break;
2711
2712 if (control_flow_insn_p (x))
2713 {
2714 error ("in basic block %d:", bb->index);
2715 fatal_insn ("flow control insn inside a basic block", x);
2716 }
2717 }
2718 }
2719
2720 /* Clean up. */
2721 return err;
2722 }
2723
2724 /* Verify that block pointers for instructions in basic blocks, headers and
2725 footers are set appropriately. */
2726
2727 static int
2728 rtl_verify_bb_pointers (void)
2729 {
2730 int err = 0;
2731 basic_block bb;
2732
2733 /* Check the general integrity of the basic blocks. */
2734 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2735 {
2736 rtx_insn *insn;
2737
2738 if (!(bb->flags & BB_RTL))
2739 {
2740 error ("BB_RTL flag not set for block %d", bb->index);
2741 err = 1;
2742 }
2743
2744 FOR_BB_INSNS (bb, insn)
2745 if (BLOCK_FOR_INSN (insn) != bb)
2746 {
2747 error ("insn %d basic block pointer is %d, should be %d",
2748 INSN_UID (insn),
2749 BLOCK_FOR_INSN (insn) ? BLOCK_FOR_INSN (insn)->index : 0,
2750 bb->index);
2751 err = 1;
2752 }
2753
2754 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
2755 if (!BARRIER_P (insn)
2756 && BLOCK_FOR_INSN (insn) != NULL)
2757 {
2758 error ("insn %d in header of bb %d has non-NULL basic block",
2759 INSN_UID (insn), bb->index);
2760 err = 1;
2761 }
2762 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2763 if (!BARRIER_P (insn)
2764 && BLOCK_FOR_INSN (insn) != NULL)
2765 {
2766 error ("insn %d in footer of bb %d has non-NULL basic block",
2767 INSN_UID (insn), bb->index);
2768 err = 1;
2769 }
2770 }
2771
2772 /* Clean up. */
2773 return err;
2774 }
2775
2776 /* Verify the CFG and RTL consistency common for both underlying RTL and
2777 cfglayout RTL.
2778
2779 Currently it does following checks:
2780
2781 - overlapping of basic blocks
2782 - insns with wrong BLOCK_FOR_INSN pointers
2783 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
2784 - tails of basic blocks (ensure that boundary is necessary)
2785 - scans body of the basic block for JUMP_INSN, CODE_LABEL
2786 and NOTE_INSN_BASIC_BLOCK
2787 - verify that no fall_thru edge crosses hot/cold partition boundaries
2788 - verify that there are no pending RTL branch predictions
2789 - verify that hot blocks are not dominated by cold blocks
2790
2791 In future it can be extended check a lot of other stuff as well
2792 (reachability of basic blocks, life information, etc. etc.). */
2793
2794 static int
2795 rtl_verify_flow_info_1 (void)
2796 {
2797 int err = 0;
2798
2799 err |= rtl_verify_bb_pointers ();
2800
2801 err |= rtl_verify_bb_insns ();
2802
2803 err |= rtl_verify_edges ();
2804
2805 return err;
2806 }
2807
2808 /* Walk the instruction chain and verify that bb head/end pointers
2809 are correct, and that instructions are in exactly one bb and have
2810 correct block pointers. */
2811
2812 static int
2813 rtl_verify_bb_insn_chain (void)
2814 {
2815 basic_block bb;
2816 int err = 0;
2817 rtx_insn *x;
2818 rtx_insn *last_head = get_last_insn ();
2819 basic_block *bb_info;
2820 const int max_uid = get_max_uid ();
2821
2822 bb_info = XCNEWVEC (basic_block, max_uid);
2823
2824 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2825 {
2826 rtx_insn *head = BB_HEAD (bb);
2827 rtx_insn *end = BB_END (bb);
2828
2829 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2830 {
2831 /* Verify the end of the basic block is in the INSN chain. */
2832 if (x == end)
2833 break;
2834
2835 /* And that the code outside of basic blocks has NULL bb field. */
2836 if (!BARRIER_P (x)
2837 && BLOCK_FOR_INSN (x) != NULL)
2838 {
2839 error ("insn %d outside of basic blocks has non-NULL bb field",
2840 INSN_UID (x));
2841 err = 1;
2842 }
2843 }
2844
2845 if (!x)
2846 {
2847 error ("end insn %d for block %d not found in the insn stream",
2848 INSN_UID (end), bb->index);
2849 err = 1;
2850 }
2851
2852 /* Work backwards from the end to the head of the basic block
2853 to verify the head is in the RTL chain. */
2854 for (; x != NULL_RTX; x = PREV_INSN (x))
2855 {
2856 /* While walking over the insn chain, verify insns appear
2857 in only one basic block. */
2858 if (bb_info[INSN_UID (x)] != NULL)
2859 {
2860 error ("insn %d is in multiple basic blocks (%d and %d)",
2861 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
2862 err = 1;
2863 }
2864
2865 bb_info[INSN_UID (x)] = bb;
2866
2867 if (x == head)
2868 break;
2869 }
2870 if (!x)
2871 {
2872 error ("head insn %d for block %d not found in the insn stream",
2873 INSN_UID (head), bb->index);
2874 err = 1;
2875 }
2876
2877 last_head = PREV_INSN (x);
2878 }
2879
2880 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2881 {
2882 /* Check that the code before the first basic block has NULL
2883 bb field. */
2884 if (!BARRIER_P (x)
2885 && BLOCK_FOR_INSN (x) != NULL)
2886 {
2887 error ("insn %d outside of basic blocks has non-NULL bb field",
2888 INSN_UID (x));
2889 err = 1;
2890 }
2891 }
2892 free (bb_info);
2893
2894 return err;
2895 }
2896
2897 /* Verify that fallthru edges point to adjacent blocks in layout order and
2898 that barriers exist after non-fallthru blocks. */
2899
2900 static int
2901 rtl_verify_fallthru (void)
2902 {
2903 basic_block bb;
2904 int err = 0;
2905
2906 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2907 {
2908 edge e;
2909
2910 e = find_fallthru_edge (bb->succs);
2911 if (!e)
2912 {
2913 rtx_insn *insn;
2914
2915 /* Ensure existence of barrier in BB with no fallthru edges. */
2916 for (insn = NEXT_INSN (BB_END (bb)); ; insn = NEXT_INSN (insn))
2917 {
2918 if (!insn || NOTE_INSN_BASIC_BLOCK_P (insn))
2919 {
2920 error ("missing barrier after block %i", bb->index);
2921 err = 1;
2922 break;
2923 }
2924 if (BARRIER_P (insn))
2925 break;
2926 }
2927 }
2928 else if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2929 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2930 {
2931 rtx_insn *insn;
2932
2933 if (e->src->next_bb != e->dest)
2934 {
2935 error
2936 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2937 e->src->index, e->dest->index);
2938 err = 1;
2939 }
2940 else
2941 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2942 insn = NEXT_INSN (insn))
2943 if (BARRIER_P (insn) || NONDEBUG_INSN_P (insn))
2944 {
2945 error ("verify_flow_info: Incorrect fallthru %i->%i",
2946 e->src->index, e->dest->index);
2947 fatal_insn ("wrong insn in the fallthru edge", insn);
2948 err = 1;
2949 }
2950 }
2951 }
2952
2953 return err;
2954 }
2955
2956 /* Verify that blocks are laid out in consecutive order. While walking the
2957 instructions, verify that all expected instructions are inside the basic
2958 blocks, and that all returns are followed by barriers. */
2959
2960 static int
2961 rtl_verify_bb_layout (void)
2962 {
2963 basic_block bb;
2964 int err = 0;
2965 rtx_insn *x, *y;
2966 int num_bb_notes;
2967 rtx_insn * const rtx_first = get_insns ();
2968 basic_block last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun), curr_bb = NULL;
2969
2970 num_bb_notes = 0;
2971
2972 for (x = rtx_first; x; x = NEXT_INSN (x))
2973 {
2974 if (NOTE_INSN_BASIC_BLOCK_P (x))
2975 {
2976 bb = NOTE_BASIC_BLOCK (x);
2977
2978 num_bb_notes++;
2979 if (bb != last_bb_seen->next_bb)
2980 internal_error ("basic blocks not laid down consecutively");
2981
2982 curr_bb = last_bb_seen = bb;
2983 }
2984
2985 if (!curr_bb)
2986 {
2987 switch (GET_CODE (x))
2988 {
2989 case BARRIER:
2990 case NOTE:
2991 break;
2992
2993 case CODE_LABEL:
2994 /* An ADDR_VEC is placed outside any basic block. */
2995 if (NEXT_INSN (x)
2996 && JUMP_TABLE_DATA_P (NEXT_INSN (x)))
2997 x = NEXT_INSN (x);
2998
2999 /* But in any case, non-deletable labels can appear anywhere. */
3000 break;
3001
3002 default:
3003 fatal_insn ("insn outside basic block", x);
3004 }
3005 }
3006
3007 if (JUMP_P (x)
3008 && returnjump_p (x) && ! condjump_p (x)
3009 && ! ((y = next_nonnote_nondebug_insn (x))
3010 && BARRIER_P (y)))
3011 fatal_insn ("return not followed by barrier", x);
3012
3013 if (curr_bb && x == BB_END (curr_bb))
3014 curr_bb = NULL;
3015 }
3016
3017 if (num_bb_notes != n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS)
3018 internal_error
3019 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
3020 num_bb_notes, n_basic_blocks_for_fn (cfun));
3021
3022 return err;
3023 }
3024
3025 /* Verify the CFG and RTL consistency common for both underlying RTL and
3026 cfglayout RTL, plus consistency checks specific to linearized RTL mode.
3027
3028 Currently it does following checks:
3029 - all checks of rtl_verify_flow_info_1
3030 - test head/end pointers
3031 - check that blocks are laid out in consecutive order
3032 - check that all insns are in the basic blocks
3033 (except the switch handling code, barriers and notes)
3034 - check that all returns are followed by barriers
3035 - check that all fallthru edge points to the adjacent blocks
3036 - verify that there is a single hot/cold partition boundary after bbro */
3037
3038 static int
3039 rtl_verify_flow_info (void)
3040 {
3041 int err = 0;
3042
3043 err |= rtl_verify_flow_info_1 ();
3044
3045 err |= rtl_verify_bb_insn_chain ();
3046
3047 err |= rtl_verify_fallthru ();
3048
3049 err |= rtl_verify_bb_layout ();
3050
3051 err |= verify_hot_cold_block_grouping ();
3052
3053 return err;
3054 }
3055 \f
3056 /* Assume that the preceding pass has possibly eliminated jump instructions
3057 or converted the unconditional jumps. Eliminate the edges from CFG.
3058 Return true if any edges are eliminated. */
3059
3060 bool
3061 purge_dead_edges (basic_block bb)
3062 {
3063 edge e;
3064 rtx_insn *insn = BB_END (bb);
3065 rtx note;
3066 bool purged = false;
3067 bool found;
3068 edge_iterator ei;
3069
3070 if (DEBUG_INSN_P (insn) && insn != BB_HEAD (bb))
3071 do
3072 insn = PREV_INSN (insn);
3073 while ((DEBUG_INSN_P (insn) || NOTE_P (insn)) && insn != BB_HEAD (bb));
3074
3075 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
3076 if (NONJUMP_INSN_P (insn)
3077 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
3078 {
3079 rtx eqnote;
3080
3081 if (! may_trap_p (PATTERN (insn))
3082 || ((eqnote = find_reg_equal_equiv_note (insn))
3083 && ! may_trap_p (XEXP (eqnote, 0))))
3084 remove_note (insn, note);
3085 }
3086
3087 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
3088 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3089 {
3090 bool remove = false;
3091
3092 /* There are three types of edges we need to handle correctly here: EH
3093 edges, abnormal call EH edges, and abnormal call non-EH edges. The
3094 latter can appear when nonlocal gotos are used. */
3095 if (e->flags & EDGE_ABNORMAL_CALL)
3096 {
3097 if (!CALL_P (insn))
3098 remove = true;
3099 else if (can_nonlocal_goto (insn))
3100 ;
3101 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3102 ;
3103 else if (flag_tm && find_reg_note (insn, REG_TM, NULL))
3104 ;
3105 else
3106 remove = true;
3107 }
3108 else if (e->flags & EDGE_EH)
3109 remove = !can_throw_internal (insn);
3110
3111 if (remove)
3112 {
3113 remove_edge (e);
3114 df_set_bb_dirty (bb);
3115 purged = true;
3116 }
3117 else
3118 ei_next (&ei);
3119 }
3120
3121 if (JUMP_P (insn))
3122 {
3123 rtx note;
3124 edge b,f;
3125 edge_iterator ei;
3126
3127 /* We do care only about conditional jumps and simplejumps. */
3128 if (!any_condjump_p (insn)
3129 && !returnjump_p (insn)
3130 && !simplejump_p (insn))
3131 return purged;
3132
3133 /* Branch probability/prediction notes are defined only for
3134 condjumps. We've possibly turned condjump into simplejump. */
3135 if (simplejump_p (insn))
3136 {
3137 note = find_reg_note (insn, REG_BR_PROB, NULL);
3138 if (note)
3139 remove_note (insn, note);
3140 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
3141 remove_note (insn, note);
3142 }
3143
3144 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3145 {
3146 /* Avoid abnormal flags to leak from computed jumps turned
3147 into simplejumps. */
3148
3149 e->flags &= ~EDGE_ABNORMAL;
3150
3151 /* See if this edge is one we should keep. */
3152 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
3153 /* A conditional jump can fall through into the next
3154 block, so we should keep the edge. */
3155 {
3156 ei_next (&ei);
3157 continue;
3158 }
3159 else if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
3160 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
3161 /* If the destination block is the target of the jump,
3162 keep the edge. */
3163 {
3164 ei_next (&ei);
3165 continue;
3166 }
3167 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
3168 && returnjump_p (insn))
3169 /* If the destination block is the exit block, and this
3170 instruction is a return, then keep the edge. */
3171 {
3172 ei_next (&ei);
3173 continue;
3174 }
3175 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3176 /* Keep the edges that correspond to exceptions thrown by
3177 this instruction and rematerialize the EDGE_ABNORMAL
3178 flag we just cleared above. */
3179 {
3180 e->flags |= EDGE_ABNORMAL;
3181 ei_next (&ei);
3182 continue;
3183 }
3184
3185 /* We do not need this edge. */
3186 df_set_bb_dirty (bb);
3187 purged = true;
3188 remove_edge (e);
3189 }
3190
3191 if (EDGE_COUNT (bb->succs) == 0 || !purged)
3192 return purged;
3193
3194 if (dump_file)
3195 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
3196
3197 if (!optimize)
3198 return purged;
3199
3200 /* Redistribute probabilities. */
3201 if (single_succ_p (bb))
3202 {
3203 single_succ_edge (bb)->probability = profile_probability::always ();
3204 }
3205 else
3206 {
3207 note = find_reg_note (insn, REG_BR_PROB, NULL);
3208 if (!note)
3209 return purged;
3210
3211 b = BRANCH_EDGE (bb);
3212 f = FALLTHRU_EDGE (bb);
3213 b->probability = profile_probability::from_reg_br_prob_note
3214 (XINT (note, 0));
3215 f->probability = b->probability.invert ();
3216 }
3217
3218 return purged;
3219 }
3220 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
3221 {
3222 /* First, there should not be any EH or ABCALL edges resulting
3223 from non-local gotos and the like. If there were, we shouldn't
3224 have created the sibcall in the first place. Second, there
3225 should of course never have been a fallthru edge. */
3226 gcc_assert (single_succ_p (bb));
3227 gcc_assert (single_succ_edge (bb)->flags
3228 == (EDGE_SIBCALL | EDGE_ABNORMAL));
3229
3230 return 0;
3231 }
3232
3233 /* If we don't see a jump insn, we don't know exactly why the block would
3234 have been broken at this point. Look for a simple, non-fallthru edge,
3235 as these are only created by conditional branches. If we find such an
3236 edge we know that there used to be a jump here and can then safely
3237 remove all non-fallthru edges. */
3238 found = false;
3239 FOR_EACH_EDGE (e, ei, bb->succs)
3240 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
3241 {
3242 found = true;
3243 break;
3244 }
3245
3246 if (!found)
3247 return purged;
3248
3249 /* Remove all but the fake and fallthru edges. The fake edge may be
3250 the only successor for this block in the case of noreturn
3251 calls. */
3252 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3253 {
3254 if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
3255 {
3256 df_set_bb_dirty (bb);
3257 remove_edge (e);
3258 purged = true;
3259 }
3260 else
3261 ei_next (&ei);
3262 }
3263
3264 gcc_assert (single_succ_p (bb));
3265
3266 single_succ_edge (bb)->probability = profile_probability::always ();
3267
3268 if (dump_file)
3269 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
3270 bb->index);
3271 return purged;
3272 }
3273
3274 /* Search all basic blocks for potentially dead edges and purge them. Return
3275 true if some edge has been eliminated. */
3276
3277 bool
3278 purge_all_dead_edges (void)
3279 {
3280 int purged = false;
3281 basic_block bb;
3282
3283 FOR_EACH_BB_FN (bb, cfun)
3284 {
3285 bool purged_here = purge_dead_edges (bb);
3286
3287 purged |= purged_here;
3288 }
3289
3290 return purged;
3291 }
3292
3293 /* This is used by a few passes that emit some instructions after abnormal
3294 calls, moving the basic block's end, while they in fact do want to emit
3295 them on the fallthru edge. Look for abnormal call edges, find backward
3296 the call in the block and insert the instructions on the edge instead.
3297
3298 Similarly, handle instructions throwing exceptions internally.
3299
3300 Return true when instructions have been found and inserted on edges. */
3301
3302 bool
3303 fixup_abnormal_edges (void)
3304 {
3305 bool inserted = false;
3306 basic_block bb;
3307
3308 FOR_EACH_BB_FN (bb, cfun)
3309 {
3310 edge e;
3311 edge_iterator ei;
3312
3313 /* Look for cases we are interested in - calls or instructions causing
3314 exceptions. */
3315 FOR_EACH_EDGE (e, ei, bb->succs)
3316 if ((e->flags & EDGE_ABNORMAL_CALL)
3317 || ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
3318 == (EDGE_ABNORMAL | EDGE_EH)))
3319 break;
3320
3321 if (e && !CALL_P (BB_END (bb)) && !can_throw_internal (BB_END (bb)))
3322 {
3323 rtx_insn *insn;
3324
3325 /* Get past the new insns generated. Allow notes, as the insns
3326 may be already deleted. */
3327 insn = BB_END (bb);
3328 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
3329 && !can_throw_internal (insn)
3330 && insn != BB_HEAD (bb))
3331 insn = PREV_INSN (insn);
3332
3333 if (CALL_P (insn) || can_throw_internal (insn))
3334 {
3335 rtx_insn *stop, *next;
3336
3337 e = find_fallthru_edge (bb->succs);
3338
3339 stop = NEXT_INSN (BB_END (bb));
3340 BB_END (bb) = insn;
3341
3342 for (insn = NEXT_INSN (insn); insn != stop; insn = next)
3343 {
3344 next = NEXT_INSN (insn);
3345 if (INSN_P (insn))
3346 {
3347 delete_insn (insn);
3348
3349 /* Sometimes there's still the return value USE.
3350 If it's placed after a trapping call (i.e. that
3351 call is the last insn anyway), we have no fallthru
3352 edge. Simply delete this use and don't try to insert
3353 on the non-existent edge.
3354 Similarly, sometimes a call that can throw is
3355 followed in the source with __builtin_unreachable (),
3356 meaning that there is UB if the call returns rather
3357 than throws. If there weren't any instructions
3358 following such calls before, supposedly even the ones
3359 we've deleted aren't significant and can be
3360 removed. */
3361 if (e)
3362 {
3363 /* We're not deleting it, we're moving it. */
3364 insn->set_undeleted ();
3365 SET_PREV_INSN (insn) = NULL_RTX;
3366 SET_NEXT_INSN (insn) = NULL_RTX;
3367
3368 insert_insn_on_edge (insn, e);
3369 inserted = true;
3370 }
3371 }
3372 else if (!BARRIER_P (insn))
3373 set_block_for_insn (insn, NULL);
3374 }
3375 }
3376
3377 /* It may be that we don't find any trapping insn. In this
3378 case we discovered quite late that the insn that had been
3379 marked as can_throw_internal in fact couldn't trap at all.
3380 So we should in fact delete the EH edges out of the block. */
3381 else
3382 purge_dead_edges (bb);
3383 }
3384 }
3385
3386 return inserted;
3387 }
3388 \f
3389 /* Cut the insns from FIRST to LAST out of the insns stream. */
3390
3391 rtx_insn *
3392 unlink_insn_chain (rtx_insn *first, rtx_insn *last)
3393 {
3394 rtx_insn *prevfirst = PREV_INSN (first);
3395 rtx_insn *nextlast = NEXT_INSN (last);
3396
3397 SET_PREV_INSN (first) = NULL;
3398 SET_NEXT_INSN (last) = NULL;
3399 if (prevfirst)
3400 SET_NEXT_INSN (prevfirst) = nextlast;
3401 if (nextlast)
3402 SET_PREV_INSN (nextlast) = prevfirst;
3403 else
3404 set_last_insn (prevfirst);
3405 if (!prevfirst)
3406 set_first_insn (nextlast);
3407 return first;
3408 }
3409 \f
3410 /* Skip over inter-block insns occurring after BB which are typically
3411 associated with BB (e.g., barriers). If there are any such insns,
3412 we return the last one. Otherwise, we return the end of BB. */
3413
3414 static rtx_insn *
3415 skip_insns_after_block (basic_block bb)
3416 {
3417 rtx_insn *insn, *last_insn, *next_head, *prev;
3418
3419 next_head = NULL;
3420 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3421 next_head = BB_HEAD (bb->next_bb);
3422
3423 for (last_insn = insn = BB_END (bb); (insn = NEXT_INSN (insn)) != 0; )
3424 {
3425 if (insn == next_head)
3426 break;
3427
3428 switch (GET_CODE (insn))
3429 {
3430 case BARRIER:
3431 last_insn = insn;
3432 continue;
3433
3434 case NOTE:
3435 switch (NOTE_KIND (insn))
3436 {
3437 case NOTE_INSN_BLOCK_END:
3438 gcc_unreachable ();
3439 continue;
3440 default:
3441 continue;
3442 break;
3443 }
3444 break;
3445
3446 case CODE_LABEL:
3447 if (NEXT_INSN (insn)
3448 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
3449 {
3450 insn = NEXT_INSN (insn);
3451 last_insn = insn;
3452 continue;
3453 }
3454 break;
3455
3456 default:
3457 break;
3458 }
3459
3460 break;
3461 }
3462
3463 /* It is possible to hit contradictory sequence. For instance:
3464
3465 jump_insn
3466 NOTE_INSN_BLOCK_BEG
3467 barrier
3468
3469 Where barrier belongs to jump_insn, but the note does not. This can be
3470 created by removing the basic block originally following
3471 NOTE_INSN_BLOCK_BEG. In such case reorder the notes. */
3472
3473 for (insn = last_insn; insn != BB_END (bb); insn = prev)
3474 {
3475 prev = PREV_INSN (insn);
3476 if (NOTE_P (insn))
3477 switch (NOTE_KIND (insn))
3478 {
3479 case NOTE_INSN_BLOCK_END:
3480 gcc_unreachable ();
3481 break;
3482 case NOTE_INSN_DELETED:
3483 case NOTE_INSN_DELETED_LABEL:
3484 case NOTE_INSN_DELETED_DEBUG_LABEL:
3485 continue;
3486 default:
3487 reorder_insns (insn, insn, last_insn);
3488 }
3489 }
3490
3491 return last_insn;
3492 }
3493
3494 /* Locate or create a label for a given basic block. */
3495
3496 static rtx_insn *
3497 label_for_bb (basic_block bb)
3498 {
3499 rtx_insn *label = BB_HEAD (bb);
3500
3501 if (!LABEL_P (label))
3502 {
3503 if (dump_file)
3504 fprintf (dump_file, "Emitting label for block %d\n", bb->index);
3505
3506 label = block_label (bb);
3507 }
3508
3509 return label;
3510 }
3511
3512 /* Locate the effective beginning and end of the insn chain for each
3513 block, as defined by skip_insns_after_block above. */
3514
3515 static void
3516 record_effective_endpoints (void)
3517 {
3518 rtx_insn *next_insn;
3519 basic_block bb;
3520 rtx_insn *insn;
3521
3522 for (insn = get_insns ();
3523 insn
3524 && NOTE_P (insn)
3525 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK;
3526 insn = NEXT_INSN (insn))
3527 continue;
3528 /* No basic blocks at all? */
3529 gcc_assert (insn);
3530
3531 if (PREV_INSN (insn))
3532 cfg_layout_function_header =
3533 unlink_insn_chain (get_insns (), PREV_INSN (insn));
3534 else
3535 cfg_layout_function_header = NULL;
3536
3537 next_insn = get_insns ();
3538 FOR_EACH_BB_FN (bb, cfun)
3539 {
3540 rtx_insn *end;
3541
3542 if (PREV_INSN (BB_HEAD (bb)) && next_insn != BB_HEAD (bb))
3543 BB_HEADER (bb) = unlink_insn_chain (next_insn,
3544 PREV_INSN (BB_HEAD (bb)));
3545 end = skip_insns_after_block (bb);
3546 if (NEXT_INSN (BB_END (bb)) && BB_END (bb) != end)
3547 BB_FOOTER (bb) = unlink_insn_chain (NEXT_INSN (BB_END (bb)), end);
3548 next_insn = NEXT_INSN (BB_END (bb));
3549 }
3550
3551 cfg_layout_function_footer = next_insn;
3552 if (cfg_layout_function_footer)
3553 cfg_layout_function_footer = unlink_insn_chain (cfg_layout_function_footer, get_last_insn ());
3554 }
3555 \f
3556 namespace {
3557
3558 const pass_data pass_data_into_cfg_layout_mode =
3559 {
3560 RTL_PASS, /* type */
3561 "into_cfglayout", /* name */
3562 OPTGROUP_NONE, /* optinfo_flags */
3563 TV_CFG, /* tv_id */
3564 0, /* properties_required */
3565 PROP_cfglayout, /* properties_provided */
3566 0, /* properties_destroyed */
3567 0, /* todo_flags_start */
3568 0, /* todo_flags_finish */
3569 };
3570
3571 class pass_into_cfg_layout_mode : public rtl_opt_pass
3572 {
3573 public:
3574 pass_into_cfg_layout_mode (gcc::context *ctxt)
3575 : rtl_opt_pass (pass_data_into_cfg_layout_mode, ctxt)
3576 {}
3577
3578 /* opt_pass methods: */
3579 virtual unsigned int execute (function *)
3580 {
3581 cfg_layout_initialize (0);
3582 return 0;
3583 }
3584
3585 }; // class pass_into_cfg_layout_mode
3586
3587 } // anon namespace
3588
3589 rtl_opt_pass *
3590 make_pass_into_cfg_layout_mode (gcc::context *ctxt)
3591 {
3592 return new pass_into_cfg_layout_mode (ctxt);
3593 }
3594
3595 namespace {
3596
3597 const pass_data pass_data_outof_cfg_layout_mode =
3598 {
3599 RTL_PASS, /* type */
3600 "outof_cfglayout", /* name */
3601 OPTGROUP_NONE, /* optinfo_flags */
3602 TV_CFG, /* tv_id */
3603 0, /* properties_required */
3604 0, /* properties_provided */
3605 PROP_cfglayout, /* properties_destroyed */
3606 0, /* todo_flags_start */
3607 0, /* todo_flags_finish */
3608 };
3609
3610 class pass_outof_cfg_layout_mode : public rtl_opt_pass
3611 {
3612 public:
3613 pass_outof_cfg_layout_mode (gcc::context *ctxt)
3614 : rtl_opt_pass (pass_data_outof_cfg_layout_mode, ctxt)
3615 {}
3616
3617 /* opt_pass methods: */
3618 virtual unsigned int execute (function *);
3619
3620 }; // class pass_outof_cfg_layout_mode
3621
3622 unsigned int
3623 pass_outof_cfg_layout_mode::execute (function *fun)
3624 {
3625 basic_block bb;
3626
3627 FOR_EACH_BB_FN (bb, fun)
3628 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3629 bb->aux = bb->next_bb;
3630
3631 cfg_layout_finalize ();
3632
3633 return 0;
3634 }
3635
3636 } // anon namespace
3637
3638 rtl_opt_pass *
3639 make_pass_outof_cfg_layout_mode (gcc::context *ctxt)
3640 {
3641 return new pass_outof_cfg_layout_mode (ctxt);
3642 }
3643 \f
3644
3645 /* Link the basic blocks in the correct order, compacting the basic
3646 block queue while at it. If STAY_IN_CFGLAYOUT_MODE is false, this
3647 function also clears the basic block header and footer fields.
3648
3649 This function is usually called after a pass (e.g. tracer) finishes
3650 some transformations while in cfglayout mode. The required sequence
3651 of the basic blocks is in a linked list along the bb->aux field.
3652 This functions re-links the basic block prev_bb and next_bb pointers
3653 accordingly, and it compacts and renumbers the blocks.
3654
3655 FIXME: This currently works only for RTL, but the only RTL-specific
3656 bits are the STAY_IN_CFGLAYOUT_MODE bits. The tracer pass was moved
3657 to GIMPLE a long time ago, but it doesn't relink the basic block
3658 chain. It could do that (to give better initial RTL) if this function
3659 is made IR-agnostic (and moved to cfganal.c or cfg.c while at it). */
3660
3661 void
3662 relink_block_chain (bool stay_in_cfglayout_mode)
3663 {
3664 basic_block bb, prev_bb;
3665 int index;
3666
3667 /* Maybe dump the re-ordered sequence. */
3668 if (dump_file)
3669 {
3670 fprintf (dump_file, "Reordered sequence:\n");
3671 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, index =
3672 NUM_FIXED_BLOCKS;
3673 bb;
3674 bb = (basic_block) bb->aux, index++)
3675 {
3676 fprintf (dump_file, " %i ", index);
3677 if (get_bb_original (bb))
3678 fprintf (dump_file, "duplicate of %i ",
3679 get_bb_original (bb)->index);
3680 else if (forwarder_block_p (bb)
3681 && !LABEL_P (BB_HEAD (bb)))
3682 fprintf (dump_file, "compensation ");
3683 else
3684 fprintf (dump_file, "bb %i ", bb->index);
3685 }
3686 }
3687
3688 /* Now reorder the blocks. */
3689 prev_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3690 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
3691 for (; bb; prev_bb = bb, bb = (basic_block) bb->aux)
3692 {
3693 bb->prev_bb = prev_bb;
3694 prev_bb->next_bb = bb;
3695 }
3696 prev_bb->next_bb = EXIT_BLOCK_PTR_FOR_FN (cfun);
3697 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb = prev_bb;
3698
3699 /* Then, clean up the aux fields. */
3700 FOR_ALL_BB_FN (bb, cfun)
3701 {
3702 bb->aux = NULL;
3703 if (!stay_in_cfglayout_mode)
3704 BB_HEADER (bb) = BB_FOOTER (bb) = NULL;
3705 }
3706
3707 /* Maybe reset the original copy tables, they are not valid anymore
3708 when we renumber the basic blocks in compact_blocks. If we are
3709 are going out of cfglayout mode, don't re-allocate the tables. */
3710 if (original_copy_tables_initialized_p ())
3711 free_original_copy_tables ();
3712 if (stay_in_cfglayout_mode)
3713 initialize_original_copy_tables ();
3714
3715 /* Finally, put basic_block_info in the new order. */
3716 compact_blocks ();
3717 }
3718 \f
3719
3720 /* Given a reorder chain, rearrange the code to match. */
3721
3722 static void
3723 fixup_reorder_chain (void)
3724 {
3725 basic_block bb;
3726 rtx_insn *insn = NULL;
3727
3728 if (cfg_layout_function_header)
3729 {
3730 set_first_insn (cfg_layout_function_header);
3731 insn = cfg_layout_function_header;
3732 while (NEXT_INSN (insn))
3733 insn = NEXT_INSN (insn);
3734 }
3735
3736 /* First do the bulk reordering -- rechain the blocks without regard to
3737 the needed changes to jumps and labels. */
3738
3739 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb; bb = (basic_block)
3740 bb->aux)
3741 {
3742 if (BB_HEADER (bb))
3743 {
3744 if (insn)
3745 SET_NEXT_INSN (insn) = BB_HEADER (bb);
3746 else
3747 set_first_insn (BB_HEADER (bb));
3748 SET_PREV_INSN (BB_HEADER (bb)) = insn;
3749 insn = BB_HEADER (bb);
3750 while (NEXT_INSN (insn))
3751 insn = NEXT_INSN (insn);
3752 }
3753 if (insn)
3754 SET_NEXT_INSN (insn) = BB_HEAD (bb);
3755 else
3756 set_first_insn (BB_HEAD (bb));
3757 SET_PREV_INSN (BB_HEAD (bb)) = insn;
3758 insn = BB_END (bb);
3759 if (BB_FOOTER (bb))
3760 {
3761 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
3762 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
3763 while (NEXT_INSN (insn))
3764 insn = NEXT_INSN (insn);
3765 }
3766 }
3767
3768 SET_NEXT_INSN (insn) = cfg_layout_function_footer;
3769 if (cfg_layout_function_footer)
3770 SET_PREV_INSN (cfg_layout_function_footer) = insn;
3771
3772 while (NEXT_INSN (insn))
3773 insn = NEXT_INSN (insn);
3774
3775 set_last_insn (insn);
3776 if (flag_checking)
3777 verify_insn_chain ();
3778
3779 /* Now add jumps and labels as needed to match the blocks new
3780 outgoing edges. */
3781
3782 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb ; bb = (basic_block)
3783 bb->aux)
3784 {
3785 edge e_fall, e_taken, e;
3786 rtx_insn *bb_end_insn;
3787 rtx ret_label = NULL_RTX;
3788 basic_block nb;
3789 edge_iterator ei;
3790
3791 if (EDGE_COUNT (bb->succs) == 0)
3792 continue;
3793
3794 /* Find the old fallthru edge, and another non-EH edge for
3795 a taken jump. */
3796 e_taken = e_fall = NULL;
3797
3798 FOR_EACH_EDGE (e, ei, bb->succs)
3799 if (e->flags & EDGE_FALLTHRU)
3800 e_fall = e;
3801 else if (! (e->flags & EDGE_EH))
3802 e_taken = e;
3803
3804 bb_end_insn = BB_END (bb);
3805 if (rtx_jump_insn *bb_end_jump = dyn_cast <rtx_jump_insn *> (bb_end_insn))
3806 {
3807 ret_label = JUMP_LABEL (bb_end_jump);
3808 if (any_condjump_p (bb_end_jump))
3809 {
3810 /* This might happen if the conditional jump has side
3811 effects and could therefore not be optimized away.
3812 Make the basic block to end with a barrier in order
3813 to prevent rtl_verify_flow_info from complaining. */
3814 if (!e_fall)
3815 {
3816 gcc_assert (!onlyjump_p (bb_end_jump)
3817 || returnjump_p (bb_end_jump)
3818 || (e_taken->flags & EDGE_CROSSING));
3819 emit_barrier_after (bb_end_jump);
3820 continue;
3821 }
3822
3823 /* If the old fallthru is still next, nothing to do. */
3824 if (bb->aux == e_fall->dest
3825 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3826 continue;
3827
3828 /* The degenerated case of conditional jump jumping to the next
3829 instruction can happen for jumps with side effects. We need
3830 to construct a forwarder block and this will be done just
3831 fine by force_nonfallthru below. */
3832 if (!e_taken)
3833 ;
3834
3835 /* There is another special case: if *neither* block is next,
3836 such as happens at the very end of a function, then we'll
3837 need to add a new unconditional jump. Choose the taken
3838 edge based on known or assumed probability. */
3839 else if (bb->aux != e_taken->dest)
3840 {
3841 rtx note = find_reg_note (bb_end_jump, REG_BR_PROB, 0);
3842
3843 if (note
3844 && profile_probability::from_reg_br_prob_note
3845 (XINT (note, 0)) < profile_probability::even ()
3846 && invert_jump (bb_end_jump,
3847 (e_fall->dest
3848 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3849 ? NULL_RTX
3850 : label_for_bb (e_fall->dest)), 0))
3851 {
3852 e_fall->flags &= ~EDGE_FALLTHRU;
3853 gcc_checking_assert (could_fall_through
3854 (e_taken->src, e_taken->dest));
3855 e_taken->flags |= EDGE_FALLTHRU;
3856 update_br_prob_note (bb);
3857 e = e_fall, e_fall = e_taken, e_taken = e;
3858 }
3859 }
3860
3861 /* If the "jumping" edge is a crossing edge, and the fall
3862 through edge is non-crossing, leave things as they are. */
3863 else if ((e_taken->flags & EDGE_CROSSING)
3864 && !(e_fall->flags & EDGE_CROSSING))
3865 continue;
3866
3867 /* Otherwise we can try to invert the jump. This will
3868 basically never fail, however, keep up the pretense. */
3869 else if (invert_jump (bb_end_jump,
3870 (e_fall->dest
3871 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3872 ? NULL_RTX
3873 : label_for_bb (e_fall->dest)), 0))
3874 {
3875 e_fall->flags &= ~EDGE_FALLTHRU;
3876 gcc_checking_assert (could_fall_through
3877 (e_taken->src, e_taken->dest));
3878 e_taken->flags |= EDGE_FALLTHRU;
3879 update_br_prob_note (bb);
3880 if (LABEL_NUSES (ret_label) == 0
3881 && single_pred_p (e_taken->dest))
3882 delete_insn (as_a<rtx_insn *> (ret_label));
3883 continue;
3884 }
3885 }
3886 else if (extract_asm_operands (PATTERN (bb_end_insn)) != NULL)
3887 {
3888 /* If the old fallthru is still next or if
3889 asm goto doesn't have a fallthru (e.g. when followed by
3890 __builtin_unreachable ()), nothing to do. */
3891 if (! e_fall
3892 || bb->aux == e_fall->dest
3893 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3894 continue;
3895
3896 /* Otherwise we'll have to use the fallthru fixup below. */
3897 }
3898 else
3899 {
3900 /* Otherwise we have some return, switch or computed
3901 jump. In the 99% case, there should not have been a
3902 fallthru edge. */
3903 gcc_assert (returnjump_p (bb_end_insn) || !e_fall);
3904 continue;
3905 }
3906 }
3907 else
3908 {
3909 /* No fallthru implies a noreturn function with EH edges, or
3910 something similarly bizarre. In any case, we don't need to
3911 do anything. */
3912 if (! e_fall)
3913 continue;
3914
3915 /* If the fallthru block is still next, nothing to do. */
3916 if (bb->aux == e_fall->dest)
3917 continue;
3918
3919 /* A fallthru to exit block. */
3920 if (e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3921 continue;
3922 }
3923
3924 /* We got here if we need to add a new jump insn.
3925 Note force_nonfallthru can delete E_FALL and thus we have to
3926 save E_FALL->src prior to the call to force_nonfallthru. */
3927 nb = force_nonfallthru_and_redirect (e_fall, e_fall->dest, ret_label);
3928 if (nb)
3929 {
3930 nb->aux = bb->aux;
3931 bb->aux = nb;
3932 /* Don't process this new block. */
3933 bb = nb;
3934 }
3935 }
3936
3937 relink_block_chain (/*stay_in_cfglayout_mode=*/false);
3938
3939 /* Annoying special case - jump around dead jumptables left in the code. */
3940 FOR_EACH_BB_FN (bb, cfun)
3941 {
3942 edge e = find_fallthru_edge (bb->succs);
3943
3944 if (e && !can_fallthru (e->src, e->dest))
3945 force_nonfallthru (e);
3946 }
3947
3948 /* Ensure goto_locus from edges has some instructions with that locus in RTL
3949 when not optimizing. */
3950 if (!optimize && !DECL_IGNORED_P (current_function_decl))
3951 FOR_EACH_BB_FN (bb, cfun)
3952 {
3953 edge e;
3954 edge_iterator ei;
3955
3956 FOR_EACH_EDGE (e, ei, bb->succs)
3957 if (LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
3958 && !(e->flags & EDGE_ABNORMAL))
3959 {
3960 edge e2;
3961 edge_iterator ei2;
3962 basic_block dest, nb;
3963 rtx_insn *end;
3964
3965 insn = BB_END (e->src);
3966 end = PREV_INSN (BB_HEAD (e->src));
3967 while (insn != end
3968 && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
3969 insn = PREV_INSN (insn);
3970 if (insn != end
3971 && INSN_LOCATION (insn) == e->goto_locus)
3972 continue;
3973 if (simplejump_p (BB_END (e->src))
3974 && !INSN_HAS_LOCATION (BB_END (e->src)))
3975 {
3976 INSN_LOCATION (BB_END (e->src)) = e->goto_locus;
3977 continue;
3978 }
3979 dest = e->dest;
3980 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3981 {
3982 /* Non-fallthru edges to the exit block cannot be split. */
3983 if (!(e->flags & EDGE_FALLTHRU))
3984 continue;
3985 }
3986 else
3987 {
3988 insn = BB_HEAD (dest);
3989 end = NEXT_INSN (BB_END (dest));
3990 while (insn != end && !NONDEBUG_INSN_P (insn))
3991 insn = NEXT_INSN (insn);
3992 if (insn != end && INSN_HAS_LOCATION (insn)
3993 && INSN_LOCATION (insn) == e->goto_locus)
3994 continue;
3995 }
3996 nb = split_edge (e);
3997 if (!INSN_P (BB_END (nb)))
3998 BB_END (nb) = emit_insn_after_noloc (gen_nop (), BB_END (nb),
3999 nb);
4000 INSN_LOCATION (BB_END (nb)) = e->goto_locus;
4001
4002 /* If there are other incoming edges to the destination block
4003 with the same goto locus, redirect them to the new block as
4004 well, this can prevent other such blocks from being created
4005 in subsequent iterations of the loop. */
4006 for (ei2 = ei_start (dest->preds); (e2 = ei_safe_edge (ei2)); )
4007 if (LOCATION_LOCUS (e2->goto_locus) != UNKNOWN_LOCATION
4008 && !(e2->flags & (EDGE_ABNORMAL | EDGE_FALLTHRU))
4009 && e->goto_locus == e2->goto_locus)
4010 redirect_edge_and_branch (e2, nb);
4011 else
4012 ei_next (&ei2);
4013 }
4014 }
4015 }
4016 \f
4017 /* Perform sanity checks on the insn chain.
4018 1. Check that next/prev pointers are consistent in both the forward and
4019 reverse direction.
4020 2. Count insns in chain, going both directions, and check if equal.
4021 3. Check that get_last_insn () returns the actual end of chain. */
4022
4023 DEBUG_FUNCTION void
4024 verify_insn_chain (void)
4025 {
4026 rtx_insn *x, *prevx, *nextx;
4027 int insn_cnt1, insn_cnt2;
4028
4029 for (prevx = NULL, insn_cnt1 = 1, x = get_insns ();
4030 x != 0;
4031 prevx = x, insn_cnt1++, x = NEXT_INSN (x))
4032 gcc_assert (PREV_INSN (x) == prevx);
4033
4034 gcc_assert (prevx == get_last_insn ());
4035
4036 for (nextx = NULL, insn_cnt2 = 1, x = get_last_insn ();
4037 x != 0;
4038 nextx = x, insn_cnt2++, x = PREV_INSN (x))
4039 gcc_assert (NEXT_INSN (x) == nextx);
4040
4041 gcc_assert (insn_cnt1 == insn_cnt2);
4042 }
4043 \f
4044 /* If we have assembler epilogues, the block falling through to exit must
4045 be the last one in the reordered chain when we reach final. Ensure
4046 that this condition is met. */
4047 static void
4048 fixup_fallthru_exit_predecessor (void)
4049 {
4050 edge e;
4051 basic_block bb = NULL;
4052
4053 /* This transformation is not valid before reload, because we might
4054 separate a call from the instruction that copies the return
4055 value. */
4056 gcc_assert (reload_completed);
4057
4058 e = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4059 if (e)
4060 bb = e->src;
4061
4062 if (bb && bb->aux)
4063 {
4064 basic_block c = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
4065
4066 /* If the very first block is the one with the fall-through exit
4067 edge, we have to split that block. */
4068 if (c == bb)
4069 {
4070 bb = split_block_after_labels (bb)->dest;
4071 bb->aux = c->aux;
4072 c->aux = bb;
4073 BB_FOOTER (bb) = BB_FOOTER (c);
4074 BB_FOOTER (c) = NULL;
4075 }
4076
4077 while (c->aux != bb)
4078 c = (basic_block) c->aux;
4079
4080 c->aux = bb->aux;
4081 while (c->aux)
4082 c = (basic_block) c->aux;
4083
4084 c->aux = bb;
4085 bb->aux = NULL;
4086 }
4087 }
4088
4089 /* In case there are more than one fallthru predecessors of exit, force that
4090 there is only one. */
4091
4092 static void
4093 force_one_exit_fallthru (void)
4094 {
4095 edge e, predecessor = NULL;
4096 bool more = false;
4097 edge_iterator ei;
4098 basic_block forwarder, bb;
4099
4100 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4101 if (e->flags & EDGE_FALLTHRU)
4102 {
4103 if (predecessor == NULL)
4104 predecessor = e;
4105 else
4106 {
4107 more = true;
4108 break;
4109 }
4110 }
4111
4112 if (!more)
4113 return;
4114
4115 /* Exit has several fallthru predecessors. Create a forwarder block for
4116 them. */
4117 forwarder = split_edge (predecessor);
4118 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4119 (e = ei_safe_edge (ei)); )
4120 {
4121 if (e->src == forwarder
4122 || !(e->flags & EDGE_FALLTHRU))
4123 ei_next (&ei);
4124 else
4125 redirect_edge_and_branch_force (e, forwarder);
4126 }
4127
4128 /* Fix up the chain of blocks -- make FORWARDER immediately precede the
4129 exit block. */
4130 FOR_EACH_BB_FN (bb, cfun)
4131 {
4132 if (bb->aux == NULL && bb != forwarder)
4133 {
4134 bb->aux = forwarder;
4135 break;
4136 }
4137 }
4138 }
4139 \f
4140 /* Return true in case it is possible to duplicate the basic block BB. */
4141
4142 static bool
4143 cfg_layout_can_duplicate_bb_p (const_basic_block bb)
4144 {
4145 /* Do not attempt to duplicate tablejumps, as we need to unshare
4146 the dispatch table. This is difficult to do, as the instructions
4147 computing jump destination may be hoisted outside the basic block. */
4148 if (tablejump_p (BB_END (bb), NULL, NULL))
4149 return false;
4150
4151 /* Do not duplicate blocks containing insns that can't be copied. */
4152 if (targetm.cannot_copy_insn_p)
4153 {
4154 rtx_insn *insn = BB_HEAD (bb);
4155 while (1)
4156 {
4157 if (INSN_P (insn) && targetm.cannot_copy_insn_p (insn))
4158 return false;
4159 if (insn == BB_END (bb))
4160 break;
4161 insn = NEXT_INSN (insn);
4162 }
4163 }
4164
4165 return true;
4166 }
4167
4168 rtx_insn *
4169 duplicate_insn_chain (rtx_insn *from, rtx_insn *to)
4170 {
4171 rtx_insn *insn, *next, *copy;
4172 rtx_note *last;
4173
4174 /* Avoid updating of boundaries of previous basic block. The
4175 note will get removed from insn stream in fixup. */
4176 last = emit_note (NOTE_INSN_DELETED);
4177
4178 /* Create copy at the end of INSN chain. The chain will
4179 be reordered later. */
4180 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
4181 {
4182 switch (GET_CODE (insn))
4183 {
4184 case DEBUG_INSN:
4185 /* Don't duplicate label debug insns. */
4186 if (DEBUG_BIND_INSN_P (insn)
4187 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL)
4188 break;
4189 /* FALLTHRU */
4190 case INSN:
4191 case CALL_INSN:
4192 case JUMP_INSN:
4193 copy = emit_copy_of_insn_after (insn, get_last_insn ());
4194 if (JUMP_P (insn) && JUMP_LABEL (insn) != NULL_RTX
4195 && ANY_RETURN_P (JUMP_LABEL (insn)))
4196 JUMP_LABEL (copy) = JUMP_LABEL (insn);
4197 maybe_copy_prologue_epilogue_insn (insn, copy);
4198 break;
4199
4200 case JUMP_TABLE_DATA:
4201 /* Avoid copying of dispatch tables. We never duplicate
4202 tablejumps, so this can hit only in case the table got
4203 moved far from original jump.
4204 Avoid copying following barrier as well if any
4205 (and debug insns in between). */
4206 for (next = NEXT_INSN (insn);
4207 next != NEXT_INSN (to);
4208 next = NEXT_INSN (next))
4209 if (!DEBUG_INSN_P (next))
4210 break;
4211 if (next != NEXT_INSN (to) && BARRIER_P (next))
4212 insn = next;
4213 break;
4214
4215 case CODE_LABEL:
4216 break;
4217
4218 case BARRIER:
4219 emit_barrier ();
4220 break;
4221
4222 case NOTE:
4223 switch (NOTE_KIND (insn))
4224 {
4225 /* In case prologue is empty and function contain label
4226 in first BB, we may want to copy the block. */
4227 case NOTE_INSN_PROLOGUE_END:
4228
4229 case NOTE_INSN_DELETED:
4230 case NOTE_INSN_DELETED_LABEL:
4231 case NOTE_INSN_DELETED_DEBUG_LABEL:
4232 /* No problem to strip these. */
4233 case NOTE_INSN_FUNCTION_BEG:
4234 /* There is always just single entry to function. */
4235 case NOTE_INSN_BASIC_BLOCK:
4236 /* We should only switch text sections once. */
4237 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4238 break;
4239
4240 case NOTE_INSN_EPILOGUE_BEG:
4241 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
4242 emit_note_copy (as_a <rtx_note *> (insn));
4243 break;
4244
4245 default:
4246 /* All other notes should have already been eliminated. */
4247 gcc_unreachable ();
4248 }
4249 break;
4250 default:
4251 gcc_unreachable ();
4252 }
4253 }
4254 insn = NEXT_INSN (last);
4255 delete_insn (last);
4256 return insn;
4257 }
4258
4259 /* Create a duplicate of the basic block BB. */
4260
4261 static basic_block
4262 cfg_layout_duplicate_bb (basic_block bb, copy_bb_data *)
4263 {
4264 rtx_insn *insn;
4265 basic_block new_bb;
4266
4267 insn = duplicate_insn_chain (BB_HEAD (bb), BB_END (bb));
4268 new_bb = create_basic_block (insn,
4269 insn ? get_last_insn () : NULL,
4270 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
4271
4272 BB_COPY_PARTITION (new_bb, bb);
4273 if (BB_HEADER (bb))
4274 {
4275 insn = BB_HEADER (bb);
4276 while (NEXT_INSN (insn))
4277 insn = NEXT_INSN (insn);
4278 insn = duplicate_insn_chain (BB_HEADER (bb), insn);
4279 if (insn)
4280 BB_HEADER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4281 }
4282
4283 if (BB_FOOTER (bb))
4284 {
4285 insn = BB_FOOTER (bb);
4286 while (NEXT_INSN (insn))
4287 insn = NEXT_INSN (insn);
4288 insn = duplicate_insn_chain (BB_FOOTER (bb), insn);
4289 if (insn)
4290 BB_FOOTER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4291 }
4292
4293 return new_bb;
4294 }
4295
4296 \f
4297 /* Main entry point to this module - initialize the datastructures for
4298 CFG layout changes. It keeps LOOPS up-to-date if not null.
4299
4300 FLAGS is a set of additional flags to pass to cleanup_cfg(). */
4301
4302 void
4303 cfg_layout_initialize (int flags)
4304 {
4305 rtx_insn_list *x;
4306 basic_block bb;
4307
4308 /* Once bb partitioning is complete, cfg layout mode should not be
4309 re-entered. Entering cfg layout mode may require fixups. As an
4310 example, if edge forwarding performed when optimizing the cfg
4311 layout required moving a block from the hot to the cold
4312 section. This would create an illegal partitioning unless some
4313 manual fixup was performed. */
4314 gcc_assert (!crtl->bb_reorder_complete || !crtl->has_bb_partition);
4315
4316 initialize_original_copy_tables ();
4317
4318 cfg_layout_rtl_register_cfg_hooks ();
4319
4320 record_effective_endpoints ();
4321
4322 /* Make sure that the targets of non local gotos are marked. */
4323 for (x = nonlocal_goto_handler_labels; x; x = x->next ())
4324 {
4325 bb = BLOCK_FOR_INSN (x->insn ());
4326 bb->flags |= BB_NON_LOCAL_GOTO_TARGET;
4327 }
4328
4329 cleanup_cfg (CLEANUP_CFGLAYOUT | flags);
4330 }
4331
4332 /* Splits superblocks. */
4333 void
4334 break_superblocks (void)
4335 {
4336 bool need = false;
4337 basic_block bb;
4338
4339 auto_sbitmap superblocks (last_basic_block_for_fn (cfun));
4340 bitmap_clear (superblocks);
4341
4342 FOR_EACH_BB_FN (bb, cfun)
4343 if (bb->flags & BB_SUPERBLOCK)
4344 {
4345 bb->flags &= ~BB_SUPERBLOCK;
4346 bitmap_set_bit (superblocks, bb->index);
4347 need = true;
4348 }
4349
4350 if (need)
4351 {
4352 rebuild_jump_labels (get_insns ());
4353 find_many_sub_basic_blocks (superblocks);
4354 }
4355 }
4356
4357 /* Finalize the changes: reorder insn list according to the sequence specified
4358 by aux pointers, enter compensation code, rebuild scope forest. */
4359
4360 void
4361 cfg_layout_finalize (void)
4362 {
4363 free_dominance_info (CDI_DOMINATORS);
4364 force_one_exit_fallthru ();
4365 rtl_register_cfg_hooks ();
4366 if (reload_completed && !targetm.have_epilogue ())
4367 fixup_fallthru_exit_predecessor ();
4368 fixup_reorder_chain ();
4369
4370 rebuild_jump_labels (get_insns ());
4371 delete_dead_jumptables ();
4372
4373 if (flag_checking)
4374 verify_insn_chain ();
4375 checking_verify_flow_info ();
4376 }
4377
4378
4379 /* Same as split_block but update cfg_layout structures. */
4380
4381 static basic_block
4382 cfg_layout_split_block (basic_block bb, void *insnp)
4383 {
4384 rtx insn = (rtx) insnp;
4385 basic_block new_bb = rtl_split_block (bb, insn);
4386
4387 BB_FOOTER (new_bb) = BB_FOOTER (bb);
4388 BB_FOOTER (bb) = NULL;
4389
4390 return new_bb;
4391 }
4392
4393 /* Redirect Edge to DEST. */
4394 static edge
4395 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
4396 {
4397 basic_block src = e->src;
4398 edge ret;
4399
4400 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4401 return NULL;
4402
4403 if (e->dest == dest)
4404 return e;
4405
4406 if (e->flags & EDGE_CROSSING
4407 && BB_PARTITION (e->src) == BB_PARTITION (dest)
4408 && simplejump_p (BB_END (src)))
4409 {
4410 if (dump_file)
4411 fprintf (dump_file,
4412 "Removing crossing jump while redirecting edge form %i to %i\n",
4413 e->src->index, dest->index);
4414 delete_insn (BB_END (src));
4415 remove_barriers_from_footer (src);
4416 e->flags |= EDGE_FALLTHRU;
4417 }
4418
4419 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4420 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
4421 {
4422 df_set_bb_dirty (src);
4423 return ret;
4424 }
4425
4426 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4427 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
4428 {
4429 if (dump_file)
4430 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
4431 e->src->index, dest->index);
4432
4433 df_set_bb_dirty (e->src);
4434 redirect_edge_succ (e, dest);
4435 return e;
4436 }
4437
4438 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
4439 in the case the basic block appears to be in sequence. Avoid this
4440 transformation. */
4441
4442 if (e->flags & EDGE_FALLTHRU)
4443 {
4444 /* Redirect any branch edges unified with the fallthru one. */
4445 if (JUMP_P (BB_END (src))
4446 && label_is_jump_target_p (BB_HEAD (e->dest),
4447 BB_END (src)))
4448 {
4449 edge redirected;
4450
4451 if (dump_file)
4452 fprintf (dump_file, "Fallthru edge unified with branch "
4453 "%i->%i redirected to %i\n",
4454 e->src->index, e->dest->index, dest->index);
4455 e->flags &= ~EDGE_FALLTHRU;
4456 redirected = redirect_branch_edge (e, dest);
4457 gcc_assert (redirected);
4458 redirected->flags |= EDGE_FALLTHRU;
4459 df_set_bb_dirty (redirected->src);
4460 return redirected;
4461 }
4462 /* In case we are redirecting fallthru edge to the branch edge
4463 of conditional jump, remove it. */
4464 if (EDGE_COUNT (src->succs) == 2)
4465 {
4466 /* Find the edge that is different from E. */
4467 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
4468
4469 if (s->dest == dest
4470 && any_condjump_p (BB_END (src))
4471 && onlyjump_p (BB_END (src)))
4472 delete_insn (BB_END (src));
4473 }
4474 if (dump_file)
4475 fprintf (dump_file, "Redirecting fallthru edge %i->%i to %i\n",
4476 e->src->index, e->dest->index, dest->index);
4477 ret = redirect_edge_succ_nodup (e, dest);
4478 }
4479 else
4480 ret = redirect_branch_edge (e, dest);
4481
4482 if (!ret)
4483 return NULL;
4484
4485 fixup_partition_crossing (ret);
4486 /* We don't want simplejumps in the insn stream during cfglayout. */
4487 gcc_assert (!simplejump_p (BB_END (src)) || CROSSING_JUMP_P (BB_END (src)));
4488
4489 df_set_bb_dirty (src);
4490 return ret;
4491 }
4492
4493 /* Simple wrapper as we always can redirect fallthru edges. */
4494 static basic_block
4495 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
4496 {
4497 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
4498
4499 gcc_assert (redirected);
4500 return NULL;
4501 }
4502
4503 /* Same as delete_basic_block but update cfg_layout structures. */
4504
4505 static void
4506 cfg_layout_delete_block (basic_block bb)
4507 {
4508 rtx_insn *insn, *next, *prev = PREV_INSN (BB_HEAD (bb)), *remaints;
4509 rtx_insn **to;
4510
4511 if (BB_HEADER (bb))
4512 {
4513 next = BB_HEAD (bb);
4514 if (prev)
4515 SET_NEXT_INSN (prev) = BB_HEADER (bb);
4516 else
4517 set_first_insn (BB_HEADER (bb));
4518 SET_PREV_INSN (BB_HEADER (bb)) = prev;
4519 insn = BB_HEADER (bb);
4520 while (NEXT_INSN (insn))
4521 insn = NEXT_INSN (insn);
4522 SET_NEXT_INSN (insn) = next;
4523 SET_PREV_INSN (next) = insn;
4524 }
4525 next = NEXT_INSN (BB_END (bb));
4526 if (BB_FOOTER (bb))
4527 {
4528 insn = BB_FOOTER (bb);
4529 while (insn)
4530 {
4531 if (BARRIER_P (insn))
4532 {
4533 if (PREV_INSN (insn))
4534 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
4535 else
4536 BB_FOOTER (bb) = NEXT_INSN (insn);
4537 if (NEXT_INSN (insn))
4538 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
4539 }
4540 if (LABEL_P (insn))
4541 break;
4542 insn = NEXT_INSN (insn);
4543 }
4544 if (BB_FOOTER (bb))
4545 {
4546 insn = BB_END (bb);
4547 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
4548 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
4549 while (NEXT_INSN (insn))
4550 insn = NEXT_INSN (insn);
4551 SET_NEXT_INSN (insn) = next;
4552 if (next)
4553 SET_PREV_INSN (next) = insn;
4554 else
4555 set_last_insn (insn);
4556 }
4557 }
4558 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4559 to = &BB_HEADER (bb->next_bb);
4560 else
4561 to = &cfg_layout_function_footer;
4562
4563 rtl_delete_block (bb);
4564
4565 if (prev)
4566 prev = NEXT_INSN (prev);
4567 else
4568 prev = get_insns ();
4569 if (next)
4570 next = PREV_INSN (next);
4571 else
4572 next = get_last_insn ();
4573
4574 if (next && NEXT_INSN (next) != prev)
4575 {
4576 remaints = unlink_insn_chain (prev, next);
4577 insn = remaints;
4578 while (NEXT_INSN (insn))
4579 insn = NEXT_INSN (insn);
4580 SET_NEXT_INSN (insn) = *to;
4581 if (*to)
4582 SET_PREV_INSN (*to) = insn;
4583 *to = remaints;
4584 }
4585 }
4586
4587 /* Return true when blocks A and B can be safely merged. */
4588
4589 static bool
4590 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
4591 {
4592 /* If we are partitioning hot/cold basic blocks, we don't want to
4593 mess up unconditional or indirect jumps that cross between hot
4594 and cold sections.
4595
4596 Basic block partitioning may result in some jumps that appear to
4597 be optimizable (or blocks that appear to be mergeable), but which really
4598 must be left untouched (they are required to make it safely across
4599 partition boundaries). See the comments at the top of
4600 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4601
4602 if (BB_PARTITION (a) != BB_PARTITION (b))
4603 return false;
4604
4605 /* Protect the loop latches. */
4606 if (current_loops && b->loop_father->latch == b)
4607 return false;
4608
4609 /* If we would end up moving B's instructions, make sure it doesn't fall
4610 through into the exit block, since we cannot recover from a fallthrough
4611 edge into the exit block occurring in the middle of a function. */
4612 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4613 {
4614 edge e = find_fallthru_edge (b->succs);
4615 if (e && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4616 return false;
4617 }
4618
4619 /* There must be exactly one edge in between the blocks. */
4620 return (single_succ_p (a)
4621 && single_succ (a) == b
4622 && single_pred_p (b) == 1
4623 && a != b
4624 /* Must be simple edge. */
4625 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
4626 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4627 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
4628 /* If the jump insn has side effects, we can't kill the edge.
4629 When not optimizing, try_redirect_by_replacing_jump will
4630 not allow us to redirect an edge by replacing a table jump. */
4631 && (!JUMP_P (BB_END (a))
4632 || ((!optimize || reload_completed)
4633 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
4634 }
4635
4636 /* Merge block A and B. The blocks must be mergeable. */
4637
4638 static void
4639 cfg_layout_merge_blocks (basic_block a, basic_block b)
4640 {
4641 /* If B is a forwarder block whose outgoing edge has no location, we'll
4642 propagate the locus of the edge between A and B onto it. */
4643 const bool forward_edge_locus
4644 = (b->flags & BB_FORWARDER_BLOCK) != 0
4645 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION;
4646 rtx_insn *insn;
4647
4648 gcc_checking_assert (cfg_layout_can_merge_blocks_p (a, b));
4649
4650 if (dump_file)
4651 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
4652 a->index);
4653
4654 /* If there was a CODE_LABEL beginning B, delete it. */
4655 if (LABEL_P (BB_HEAD (b)))
4656 {
4657 delete_insn (BB_HEAD (b));
4658 }
4659
4660 /* We should have fallthru edge in a, or we can do dummy redirection to get
4661 it cleaned up. */
4662 if (JUMP_P (BB_END (a)))
4663 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
4664 gcc_assert (!JUMP_P (BB_END (a)));
4665
4666 /* If not optimizing, preserve the locus of the single edge between
4667 blocks A and B if necessary by emitting a nop. */
4668 if (!optimize
4669 && !forward_edge_locus
4670 && !DECL_IGNORED_P (current_function_decl))
4671 emit_nop_for_unique_locus_between (a, b);
4672
4673 /* Move things from b->footer after a->footer. */
4674 if (BB_FOOTER (b))
4675 {
4676 if (!BB_FOOTER (a))
4677 BB_FOOTER (a) = BB_FOOTER (b);
4678 else
4679 {
4680 rtx_insn *last = BB_FOOTER (a);
4681
4682 while (NEXT_INSN (last))
4683 last = NEXT_INSN (last);
4684 SET_NEXT_INSN (last) = BB_FOOTER (b);
4685 SET_PREV_INSN (BB_FOOTER (b)) = last;
4686 }
4687 BB_FOOTER (b) = NULL;
4688 }
4689
4690 /* Move things from b->header before a->footer.
4691 Note that this may include dead tablejump data, but we don't clean
4692 those up until we go out of cfglayout mode. */
4693 if (BB_HEADER (b))
4694 {
4695 if (! BB_FOOTER (a))
4696 BB_FOOTER (a) = BB_HEADER (b);
4697 else
4698 {
4699 rtx_insn *last = BB_HEADER (b);
4700
4701 while (NEXT_INSN (last))
4702 last = NEXT_INSN (last);
4703 SET_NEXT_INSN (last) = BB_FOOTER (a);
4704 SET_PREV_INSN (BB_FOOTER (a)) = last;
4705 BB_FOOTER (a) = BB_HEADER (b);
4706 }
4707 BB_HEADER (b) = NULL;
4708 }
4709
4710 /* In the case basic blocks are not adjacent, move them around. */
4711 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4712 {
4713 insn = unlink_insn_chain (BB_HEAD (b), BB_END (b));
4714
4715 emit_insn_after_noloc (insn, BB_END (a), a);
4716 }
4717 /* Otherwise just re-associate the instructions. */
4718 else
4719 {
4720 insn = BB_HEAD (b);
4721 BB_END (a) = BB_END (b);
4722 }
4723
4724 /* emit_insn_after_noloc doesn't call df_insn_change_bb.
4725 We need to explicitly call. */
4726 update_bb_for_insn_chain (insn, BB_END (b), a);
4727
4728 /* Skip possible DELETED_LABEL insn. */
4729 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
4730 insn = NEXT_INSN (insn);
4731 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4732 BB_HEAD (b) = BB_END (b) = NULL;
4733 delete_insn (insn);
4734
4735 df_bb_delete (b->index);
4736
4737 if (forward_edge_locus)
4738 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
4739
4740 if (dump_file)
4741 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
4742 }
4743
4744 /* Split edge E. */
4745
4746 static basic_block
4747 cfg_layout_split_edge (edge e)
4748 {
4749 basic_block new_bb =
4750 create_basic_block (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4751 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
4752 NULL_RTX, e->src);
4753
4754 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4755 BB_COPY_PARTITION (new_bb, e->src);
4756 else
4757 BB_COPY_PARTITION (new_bb, e->dest);
4758 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
4759 redirect_edge_and_branch_force (e, new_bb);
4760
4761 return new_bb;
4762 }
4763
4764 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
4765
4766 static void
4767 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
4768 {
4769 }
4770
4771 /* Return true if BB contains only labels or non-executable
4772 instructions. */
4773
4774 static bool
4775 rtl_block_empty_p (basic_block bb)
4776 {
4777 rtx_insn *insn;
4778
4779 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4780 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4781 return true;
4782
4783 FOR_BB_INSNS (bb, insn)
4784 if (NONDEBUG_INSN_P (insn) && !any_uncondjump_p (insn))
4785 return false;
4786
4787 return true;
4788 }
4789
4790 /* Split a basic block if it ends with a conditional branch and if
4791 the other part of the block is not empty. */
4792
4793 static basic_block
4794 rtl_split_block_before_cond_jump (basic_block bb)
4795 {
4796 rtx_insn *insn;
4797 rtx_insn *split_point = NULL;
4798 rtx_insn *last = NULL;
4799 bool found_code = false;
4800
4801 FOR_BB_INSNS (bb, insn)
4802 {
4803 if (any_condjump_p (insn))
4804 split_point = last;
4805 else if (NONDEBUG_INSN_P (insn))
4806 found_code = true;
4807 last = insn;
4808 }
4809
4810 /* Did not find everything. */
4811 if (found_code && split_point)
4812 return split_block (bb, split_point)->dest;
4813 else
4814 return NULL;
4815 }
4816
4817 /* Return 1 if BB ends with a call, possibly followed by some
4818 instructions that must stay with the call, 0 otherwise. */
4819
4820 static bool
4821 rtl_block_ends_with_call_p (basic_block bb)
4822 {
4823 rtx_insn *insn = BB_END (bb);
4824
4825 while (!CALL_P (insn)
4826 && insn != BB_HEAD (bb)
4827 && (keep_with_call_p (insn)
4828 || NOTE_P (insn)
4829 || DEBUG_INSN_P (insn)))
4830 insn = PREV_INSN (insn);
4831 return (CALL_P (insn));
4832 }
4833
4834 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
4835
4836 static bool
4837 rtl_block_ends_with_condjump_p (const_basic_block bb)
4838 {
4839 return any_condjump_p (BB_END (bb));
4840 }
4841
4842 /* Return true if we need to add fake edge to exit.
4843 Helper function for rtl_flow_call_edges_add. */
4844
4845 static bool
4846 need_fake_edge_p (const rtx_insn *insn)
4847 {
4848 if (!INSN_P (insn))
4849 return false;
4850
4851 if ((CALL_P (insn)
4852 && !SIBLING_CALL_P (insn)
4853 && !find_reg_note (insn, REG_NORETURN, NULL)
4854 && !(RTL_CONST_OR_PURE_CALL_P (insn))))
4855 return true;
4856
4857 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
4858 && MEM_VOLATILE_P (PATTERN (insn)))
4859 || (GET_CODE (PATTERN (insn)) == PARALLEL
4860 && asm_noperands (insn) != -1
4861 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
4862 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
4863 }
4864
4865 /* Add fake edges to the function exit for any non constant and non noreturn
4866 calls, volatile inline assembly in the bitmap of blocks specified by
4867 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
4868 that were split.
4869
4870 The goal is to expose cases in which entering a basic block does not imply
4871 that all subsequent instructions must be executed. */
4872
4873 static int
4874 rtl_flow_call_edges_add (sbitmap blocks)
4875 {
4876 int i;
4877 int blocks_split = 0;
4878 int last_bb = last_basic_block_for_fn (cfun);
4879 bool check_last_block = false;
4880
4881 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
4882 return 0;
4883
4884 if (! blocks)
4885 check_last_block = true;
4886 else
4887 check_last_block = bitmap_bit_p (blocks,
4888 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
4889
4890 /* In the last basic block, before epilogue generation, there will be
4891 a fallthru edge to EXIT. Special care is required if the last insn
4892 of the last basic block is a call because make_edge folds duplicate
4893 edges, which would result in the fallthru edge also being marked
4894 fake, which would result in the fallthru edge being removed by
4895 remove_fake_edges, which would result in an invalid CFG.
4896
4897 Moreover, we can't elide the outgoing fake edge, since the block
4898 profiler needs to take this into account in order to solve the minimal
4899 spanning tree in the case that the call doesn't return.
4900
4901 Handle this by adding a dummy instruction in a new last basic block. */
4902 if (check_last_block)
4903 {
4904 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
4905 rtx_insn *insn = BB_END (bb);
4906
4907 /* Back up past insns that must be kept in the same block as a call. */
4908 while (insn != BB_HEAD (bb)
4909 && keep_with_call_p (insn))
4910 insn = PREV_INSN (insn);
4911
4912 if (need_fake_edge_p (insn))
4913 {
4914 edge e;
4915
4916 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4917 if (e)
4918 {
4919 insert_insn_on_edge (gen_use (const0_rtx), e);
4920 commit_edge_insertions ();
4921 }
4922 }
4923 }
4924
4925 /* Now add fake edges to the function exit for any non constant
4926 calls since there is no way that we can determine if they will
4927 return or not... */
4928
4929 for (i = NUM_FIXED_BLOCKS; i < last_bb; i++)
4930 {
4931 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
4932 rtx_insn *insn;
4933 rtx_insn *prev_insn;
4934
4935 if (!bb)
4936 continue;
4937
4938 if (blocks && !bitmap_bit_p (blocks, i))
4939 continue;
4940
4941 for (insn = BB_END (bb); ; insn = prev_insn)
4942 {
4943 prev_insn = PREV_INSN (insn);
4944 if (need_fake_edge_p (insn))
4945 {
4946 edge e;
4947 rtx_insn *split_at_insn = insn;
4948
4949 /* Don't split the block between a call and an insn that should
4950 remain in the same block as the call. */
4951 if (CALL_P (insn))
4952 while (split_at_insn != BB_END (bb)
4953 && keep_with_call_p (NEXT_INSN (split_at_insn)))
4954 split_at_insn = NEXT_INSN (split_at_insn);
4955
4956 /* The handling above of the final block before the epilogue
4957 should be enough to verify that there is no edge to the exit
4958 block in CFG already. Calling make_edge in such case would
4959 cause us to mark that edge as fake and remove it later. */
4960
4961 if (flag_checking && split_at_insn == BB_END (bb))
4962 {
4963 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4964 gcc_assert (e == NULL);
4965 }
4966
4967 /* Note that the following may create a new basic block
4968 and renumber the existing basic blocks. */
4969 if (split_at_insn != BB_END (bb))
4970 {
4971 e = split_block (bb, split_at_insn);
4972 if (e)
4973 blocks_split++;
4974 }
4975
4976 edge ne = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
4977 ne->probability = profile_probability::guessed_never ();
4978 }
4979
4980 if (insn == BB_HEAD (bb))
4981 break;
4982 }
4983 }
4984
4985 if (blocks_split)
4986 verify_flow_info ();
4987
4988 return blocks_split;
4989 }
4990
4991 /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
4992 the conditional branch target, SECOND_HEAD should be the fall-thru
4993 there is no need to handle this here the loop versioning code handles
4994 this. the reason for SECON_HEAD is that it is needed for condition
4995 in trees, and this should be of the same type since it is a hook. */
4996 static void
4997 rtl_lv_add_condition_to_bb (basic_block first_head ,
4998 basic_block second_head ATTRIBUTE_UNUSED,
4999 basic_block cond_bb, void *comp_rtx)
5000 {
5001 rtx_code_label *label;
5002 rtx_insn *seq, *jump;
5003 rtx op0 = XEXP ((rtx)comp_rtx, 0);
5004 rtx op1 = XEXP ((rtx)comp_rtx, 1);
5005 enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
5006 machine_mode mode;
5007
5008
5009 label = block_label (first_head);
5010 mode = GET_MODE (op0);
5011 if (mode == VOIDmode)
5012 mode = GET_MODE (op1);
5013
5014 start_sequence ();
5015 op0 = force_operand (op0, NULL_RTX);
5016 op1 = force_operand (op1, NULL_RTX);
5017 do_compare_rtx_and_jump (op0, op1, comp, 0, mode, NULL_RTX, NULL, label,
5018 profile_probability::uninitialized ());
5019 jump = get_last_insn ();
5020 JUMP_LABEL (jump) = label;
5021 LABEL_NUSES (label)++;
5022 seq = get_insns ();
5023 end_sequence ();
5024
5025 /* Add the new cond, in the new head. */
5026 emit_insn_after (seq, BB_END (cond_bb));
5027 }
5028
5029
5030 /* Given a block B with unconditional branch at its end, get the
5031 store the return the branch edge and the fall-thru edge in
5032 BRANCH_EDGE and FALLTHRU_EDGE respectively. */
5033 static void
5034 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
5035 edge *fallthru_edge)
5036 {
5037 edge e = EDGE_SUCC (b, 0);
5038
5039 if (e->flags & EDGE_FALLTHRU)
5040 {
5041 *fallthru_edge = e;
5042 *branch_edge = EDGE_SUCC (b, 1);
5043 }
5044 else
5045 {
5046 *branch_edge = e;
5047 *fallthru_edge = EDGE_SUCC (b, 1);
5048 }
5049 }
5050
5051 void
5052 init_rtl_bb_info (basic_block bb)
5053 {
5054 gcc_assert (!bb->il.x.rtl);
5055 bb->il.x.head_ = NULL;
5056 bb->il.x.rtl = ggc_cleared_alloc<rtl_bb_info> ();
5057 }
5058
5059 /* Returns true if it is possible to remove edge E by redirecting
5060 it to the destination of the other edge from E->src. */
5061
5062 static bool
5063 rtl_can_remove_branch_p (const_edge e)
5064 {
5065 const_basic_block src = e->src;
5066 const_basic_block target = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest;
5067 const rtx_insn *insn = BB_END (src);
5068 rtx set;
5069
5070 /* The conditions are taken from try_redirect_by_replacing_jump. */
5071 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
5072 return false;
5073
5074 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
5075 return false;
5076
5077 if (BB_PARTITION (src) != BB_PARTITION (target))
5078 return false;
5079
5080 if (!onlyjump_p (insn)
5081 || tablejump_p (insn, NULL, NULL))
5082 return false;
5083
5084 set = single_set (insn);
5085 if (!set || side_effects_p (set))
5086 return false;
5087
5088 return true;
5089 }
5090
5091 static basic_block
5092 rtl_duplicate_bb (basic_block bb, copy_bb_data *id)
5093 {
5094 bb = cfg_layout_duplicate_bb (bb, id);
5095 bb->aux = NULL;
5096 return bb;
5097 }
5098
5099 /* Do book-keeping of basic block BB for the profile consistency checker.
5100 Store the counting in RECORD. */
5101 static void
5102 rtl_account_profile_record (basic_block bb, struct profile_record *record)
5103 {
5104 rtx_insn *insn;
5105 FOR_BB_INSNS (bb, insn)
5106 if (INSN_P (insn))
5107 {
5108 record->size += insn_cost (insn, false);
5109 if (bb->count.initialized_p ())
5110 record->time
5111 += insn_cost (insn, true) * bb->count.to_gcov_type ();
5112 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
5113 record->time
5114 += insn_cost (insn, true) * bb->count.to_frequency (cfun);
5115 }
5116 }
5117
5118 /* Implementation of CFG manipulation for linearized RTL. */
5119 struct cfg_hooks rtl_cfg_hooks = {
5120 "rtl",
5121 rtl_verify_flow_info,
5122 rtl_dump_bb,
5123 rtl_dump_bb_for_graph,
5124 rtl_create_basic_block,
5125 rtl_redirect_edge_and_branch,
5126 rtl_redirect_edge_and_branch_force,
5127 rtl_can_remove_branch_p,
5128 rtl_delete_block,
5129 rtl_split_block,
5130 rtl_move_block_after,
5131 rtl_can_merge_blocks, /* can_merge_blocks_p */
5132 rtl_merge_blocks,
5133 rtl_predict_edge,
5134 rtl_predicted_by_p,
5135 cfg_layout_can_duplicate_bb_p,
5136 rtl_duplicate_bb,
5137 rtl_split_edge,
5138 rtl_make_forwarder_block,
5139 rtl_tidy_fallthru_edge,
5140 rtl_force_nonfallthru,
5141 rtl_block_ends_with_call_p,
5142 rtl_block_ends_with_condjump_p,
5143 rtl_flow_call_edges_add,
5144 NULL, /* execute_on_growing_pred */
5145 NULL, /* execute_on_shrinking_pred */
5146 NULL, /* duplicate loop for trees */
5147 NULL, /* lv_add_condition_to_bb */
5148 NULL, /* lv_adjust_loop_header_phi*/
5149 NULL, /* extract_cond_bb_edges */
5150 NULL, /* flush_pending_stmts */
5151 rtl_block_empty_p, /* block_empty_p */
5152 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5153 rtl_account_profile_record,
5154 };
5155
5156 /* Implementation of CFG manipulation for cfg layout RTL, where
5157 basic block connected via fallthru edges does not have to be adjacent.
5158 This representation will hopefully become the default one in future
5159 version of the compiler. */
5160
5161 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
5162 "cfglayout mode",
5163 rtl_verify_flow_info_1,
5164 rtl_dump_bb,
5165 rtl_dump_bb_for_graph,
5166 cfg_layout_create_basic_block,
5167 cfg_layout_redirect_edge_and_branch,
5168 cfg_layout_redirect_edge_and_branch_force,
5169 rtl_can_remove_branch_p,
5170 cfg_layout_delete_block,
5171 cfg_layout_split_block,
5172 rtl_move_block_after,
5173 cfg_layout_can_merge_blocks_p,
5174 cfg_layout_merge_blocks,
5175 rtl_predict_edge,
5176 rtl_predicted_by_p,
5177 cfg_layout_can_duplicate_bb_p,
5178 cfg_layout_duplicate_bb,
5179 cfg_layout_split_edge,
5180 rtl_make_forwarder_block,
5181 NULL, /* tidy_fallthru_edge */
5182 rtl_force_nonfallthru,
5183 rtl_block_ends_with_call_p,
5184 rtl_block_ends_with_condjump_p,
5185 rtl_flow_call_edges_add,
5186 NULL, /* execute_on_growing_pred */
5187 NULL, /* execute_on_shrinking_pred */
5188 duplicate_loop_to_header_edge, /* duplicate loop for trees */
5189 rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
5190 NULL, /* lv_adjust_loop_header_phi*/
5191 rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
5192 NULL, /* flush_pending_stmts */
5193 rtl_block_empty_p, /* block_empty_p */
5194 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5195 rtl_account_profile_record,
5196 };
5197
5198 #include "gt-cfgrtl.h"
5199
5200 #if __GNUC__ >= 10
5201 # pragma GCC diagnostic pop
5202 #endif