]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgrtl.c
cfgrtl.c (try_redirect_by_replacing_jump): Speed up the check that tests if all edges...
[thirdparty/gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains low level functions to manipulate the CFG and analyze it
23 that are aware of the RTL intermediate language.
24
25 Available functionality:
26 - Basic CFG/RTL manipulation API documented in cfghooks.h
27 - CFG-aware instruction chain manipulation
28 delete_insn, delete_insn_chain
29 - Edge splitting and committing to edges
30 insert_insn_on_edge, commit_edge_insertions
31 - CFG updating after insn simplification
32 purge_dead_edges, purge_all_dead_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "tm.h"
44 #include "tree.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "basic-block.h"
48 #include "regs.h"
49 #include "flags.h"
50 #include "output.h"
51 #include "function.h"
52 #include "except.h"
53 #include "toplev.h"
54 #include "tm_p.h"
55 #include "obstack.h"
56 #include "insn-config.h"
57 #include "cfglayout.h"
58 #include "expr.h"
59 #include "target.h"
60
61
62 /* The labels mentioned in non-jump rtl. Valid during find_basic_blocks. */
63 /* ??? Should probably be using LABEL_NUSES instead. It would take a
64 bit of surgery to be able to use or co-opt the routines in jump. */
65 rtx label_value_list;
66
67 static int can_delete_note_p (rtx);
68 static int can_delete_label_p (rtx);
69 static void commit_one_edge_insertion (edge, int);
70 static rtx last_loop_beg_note (rtx);
71 static bool back_edge_of_syntactic_loop_p (basic_block, basic_block);
72 static basic_block rtl_split_edge (edge);
73 static bool rtl_move_block_after (basic_block, basic_block);
74 static int rtl_verify_flow_info (void);
75 static basic_block cfg_layout_split_block (basic_block, void *);
76 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
77 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
78 static void cfg_layout_delete_block (basic_block);
79 static void rtl_delete_block (basic_block);
80 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
81 static edge rtl_redirect_edge_and_branch (edge, basic_block);
82 static basic_block rtl_split_block (basic_block, void *);
83 static void rtl_dump_bb (basic_block, FILE *, int);
84 static int rtl_verify_flow_info_1 (void);
85 static void mark_killed_regs (rtx, rtx, void *);
86 static void rtl_make_forwarder_block (edge);
87 \f
88 /* Return true if NOTE is not one of the ones that must be kept paired,
89 so that we may simply delete it. */
90
91 static int
92 can_delete_note_p (rtx note)
93 {
94 return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
95 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK
96 || NOTE_LINE_NUMBER (note) == NOTE_INSN_UNLIKELY_EXECUTED_CODE);
97 }
98
99 /* True if a given label can be deleted. */
100
101 static int
102 can_delete_label_p (rtx label)
103 {
104 return (!LABEL_PRESERVE_P (label)
105 /* User declared labels must be preserved. */
106 && LABEL_NAME (label) == 0
107 && !in_expr_list_p (forced_labels, label)
108 && !in_expr_list_p (label_value_list, label));
109 }
110
111 /* Delete INSN by patching it out. Return the next insn. */
112
113 rtx
114 delete_insn (rtx insn)
115 {
116 rtx next = NEXT_INSN (insn);
117 rtx note;
118 bool really_delete = true;
119
120 if (LABEL_P (insn))
121 {
122 /* Some labels can't be directly removed from the INSN chain, as they
123 might be references via variables, constant pool etc.
124 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
125 if (! can_delete_label_p (insn))
126 {
127 const char *name = LABEL_NAME (insn);
128
129 really_delete = false;
130 PUT_CODE (insn, NOTE);
131 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
132 NOTE_DELETED_LABEL_NAME (insn) = name;
133 }
134
135 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
136 }
137
138 if (really_delete)
139 {
140 /* If this insn has already been deleted, something is very wrong. */
141 gcc_assert (!INSN_DELETED_P (insn));
142 remove_insn (insn);
143 INSN_DELETED_P (insn) = 1;
144 }
145
146 /* If deleting a jump, decrement the use count of the label. Deleting
147 the label itself should happen in the normal course of block merging. */
148 if (JUMP_P (insn)
149 && JUMP_LABEL (insn)
150 && LABEL_P (JUMP_LABEL (insn)))
151 LABEL_NUSES (JUMP_LABEL (insn))--;
152
153 /* Also if deleting an insn that references a label. */
154 else
155 {
156 while ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
157 && LABEL_P (XEXP (note, 0)))
158 {
159 LABEL_NUSES (XEXP (note, 0))--;
160 remove_note (insn, note);
161 }
162 }
163
164 if (JUMP_P (insn)
165 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
166 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
167 {
168 rtx pat = PATTERN (insn);
169 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
170 int len = XVECLEN (pat, diff_vec_p);
171 int i;
172
173 for (i = 0; i < len; i++)
174 {
175 rtx label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
176
177 /* When deleting code in bulk (e.g. removing many unreachable
178 blocks) we can delete a label that's a target of the vector
179 before deleting the vector itself. */
180 if (!NOTE_P (label))
181 LABEL_NUSES (label)--;
182 }
183 }
184
185 return next;
186 }
187
188 /* Like delete_insn but also purge dead edges from BB. */
189 rtx
190 delete_insn_and_edges (rtx insn)
191 {
192 rtx x;
193 bool purge = false;
194
195 if (INSN_P (insn)
196 && BLOCK_FOR_INSN (insn)
197 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
198 purge = true;
199 x = delete_insn (insn);
200 if (purge)
201 purge_dead_edges (BLOCK_FOR_INSN (insn));
202 return x;
203 }
204
205 /* Unlink a chain of insns between START and FINISH, leaving notes
206 that must be paired. */
207
208 void
209 delete_insn_chain (rtx start, rtx finish)
210 {
211 rtx next;
212
213 /* Unchain the insns one by one. It would be quicker to delete all of these
214 with a single unchaining, rather than one at a time, but we need to keep
215 the NOTE's. */
216 while (1)
217 {
218 next = NEXT_INSN (start);
219 if (NOTE_P (start) && !can_delete_note_p (start))
220 ;
221 else
222 next = delete_insn (start);
223
224 if (start == finish)
225 break;
226 start = next;
227 }
228 }
229
230 /* Like delete_insn but also purge dead edges from BB. */
231 void
232 delete_insn_chain_and_edges (rtx first, rtx last)
233 {
234 bool purge = false;
235
236 if (INSN_P (last)
237 && BLOCK_FOR_INSN (last)
238 && BB_END (BLOCK_FOR_INSN (last)) == last)
239 purge = true;
240 delete_insn_chain (first, last);
241 if (purge)
242 purge_dead_edges (BLOCK_FOR_INSN (last));
243 }
244 \f
245 /* Create a new basic block consisting of the instructions between HEAD and END
246 inclusive. This function is designed to allow fast BB construction - reuses
247 the note and basic block struct in BB_NOTE, if any and do not grow
248 BASIC_BLOCK chain and should be used directly only by CFG construction code.
249 END can be NULL in to create new empty basic block before HEAD. Both END
250 and HEAD can be NULL to create basic block at the end of INSN chain.
251 AFTER is the basic block we should be put after. */
252
253 basic_block
254 create_basic_block_structure (rtx head, rtx end, rtx bb_note, basic_block after)
255 {
256 basic_block bb;
257
258 if (bb_note
259 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
260 && bb->aux == NULL)
261 {
262 /* If we found an existing note, thread it back onto the chain. */
263
264 rtx after;
265
266 if (LABEL_P (head))
267 after = head;
268 else
269 {
270 after = PREV_INSN (head);
271 head = bb_note;
272 }
273
274 if (after != bb_note && NEXT_INSN (after) != bb_note)
275 reorder_insns_nobb (bb_note, bb_note, after);
276 }
277 else
278 {
279 /* Otherwise we must create a note and a basic block structure. */
280
281 bb = alloc_block ();
282
283 if (!head && !end)
284 head = end = bb_note
285 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
286 else if (LABEL_P (head) && end)
287 {
288 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
289 if (head == end)
290 end = bb_note;
291 }
292 else
293 {
294 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
295 head = bb_note;
296 if (!end)
297 end = head;
298 }
299
300 NOTE_BASIC_BLOCK (bb_note) = bb;
301 }
302
303 /* Always include the bb note in the block. */
304 if (NEXT_INSN (end) == bb_note)
305 end = bb_note;
306
307 BB_HEAD (bb) = head;
308 BB_END (bb) = end;
309 bb->index = last_basic_block++;
310 bb->flags = BB_NEW;
311 link_block (bb, after);
312 BASIC_BLOCK (bb->index) = bb;
313 update_bb_for_insn (bb);
314 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
315
316 /* Tag the block so that we know it has been used when considering
317 other basic block notes. */
318 bb->aux = bb;
319
320 return bb;
321 }
322
323 /* Create new basic block consisting of instructions in between HEAD and END
324 and place it to the BB chain after block AFTER. END can be NULL in to
325 create new empty basic block before HEAD. Both END and HEAD can be NULL to
326 create basic block at the end of INSN chain. */
327
328 static basic_block
329 rtl_create_basic_block (void *headp, void *endp, basic_block after)
330 {
331 rtx head = headp, end = endp;
332 basic_block bb;
333
334 /* Grow the basic block array if needed. */
335 if ((size_t) last_basic_block >= VARRAY_SIZE (basic_block_info))
336 {
337 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
338 VARRAY_GROW (basic_block_info, new_size);
339 }
340
341 n_basic_blocks++;
342
343 bb = create_basic_block_structure (head, end, NULL, after);
344 bb->aux = NULL;
345 return bb;
346 }
347
348 static basic_block
349 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
350 {
351 basic_block newbb = rtl_create_basic_block (head, end, after);
352
353 initialize_bb_rbi (newbb);
354 return newbb;
355 }
356 \f
357 /* Delete the insns in a (non-live) block. We physically delete every
358 non-deleted-note insn, and update the flow graph appropriately.
359
360 Return nonzero if we deleted an exception handler. */
361
362 /* ??? Preserving all such notes strikes me as wrong. It would be nice
363 to post-process the stream to remove empty blocks, loops, ranges, etc. */
364
365 static void
366 rtl_delete_block (basic_block b)
367 {
368 rtx insn, end, tmp;
369
370 /* If the head of this block is a CODE_LABEL, then it might be the
371 label for an exception handler which can't be reached. We need
372 to remove the label from the exception_handler_label list. */
373 insn = BB_HEAD (b);
374 if (LABEL_P (insn))
375 maybe_remove_eh_handler (insn);
376
377 /* Include any jump table following the basic block. */
378 end = BB_END (b);
379 if (tablejump_p (end, NULL, &tmp))
380 end = tmp;
381
382 /* Include any barrier that may follow the basic block. */
383 tmp = next_nonnote_insn (end);
384 if (tmp && BARRIER_P (tmp))
385 end = tmp;
386
387 /* Selectively delete the entire chain. */
388 BB_HEAD (b) = NULL;
389 delete_insn_chain (insn, end);
390 }
391 \f
392 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
393
394 void
395 compute_bb_for_insn (void)
396 {
397 basic_block bb;
398
399 FOR_EACH_BB (bb)
400 {
401 rtx end = BB_END (bb);
402 rtx insn;
403
404 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
405 {
406 BLOCK_FOR_INSN (insn) = bb;
407 if (insn == end)
408 break;
409 }
410 }
411 }
412
413 /* Release the basic_block_for_insn array. */
414
415 void
416 free_bb_for_insn (void)
417 {
418 rtx insn;
419 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
420 if (!BARRIER_P (insn))
421 BLOCK_FOR_INSN (insn) = NULL;
422 }
423
424 /* Return RTX to emit after when we want to emit code on the entry of function. */
425 rtx
426 entry_of_function (void)
427 {
428 return (n_basic_blocks ? BB_HEAD (ENTRY_BLOCK_PTR->next_bb) : get_insns ());
429 }
430
431 /* Update insns block within BB. */
432
433 void
434 update_bb_for_insn (basic_block bb)
435 {
436 rtx insn;
437
438 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
439 {
440 if (!BARRIER_P (insn))
441 set_block_for_insn (insn, bb);
442 if (insn == BB_END (bb))
443 break;
444 }
445 }
446 \f
447 /* Creates a new basic block just after basic block B by splitting
448 everything after specified instruction I. */
449
450 static basic_block
451 rtl_split_block (basic_block bb, void *insnp)
452 {
453 basic_block new_bb;
454 rtx insn = insnp;
455 edge e;
456 edge_iterator ei;
457
458 if (!insn)
459 {
460 insn = first_insn_after_basic_block_note (bb);
461
462 if (insn)
463 insn = PREV_INSN (insn);
464 else
465 insn = get_last_insn ();
466 }
467
468 /* We probably should check type of the insn so that we do not create
469 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
470 bother. */
471 if (insn == BB_END (bb))
472 emit_note_after (NOTE_INSN_DELETED, insn);
473
474 /* Create the new basic block. */
475 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
476 BB_COPY_PARTITION (new_bb, bb);
477 BB_END (bb) = insn;
478
479 /* Redirect the outgoing edges. */
480 new_bb->succs = bb->succs;
481 bb->succs = NULL;
482 FOR_EACH_EDGE (e, ei, new_bb->succs)
483 e->src = new_bb;
484
485 if (bb->global_live_at_start)
486 {
487 new_bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
488 new_bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
489 COPY_REG_SET (new_bb->global_live_at_end, bb->global_live_at_end);
490
491 /* We now have to calculate which registers are live at the end
492 of the split basic block and at the start of the new basic
493 block. Start with those registers that are known to be live
494 at the end of the original basic block and get
495 propagate_block to determine which registers are live. */
496 COPY_REG_SET (new_bb->global_live_at_start, bb->global_live_at_end);
497 propagate_block (new_bb, new_bb->global_live_at_start, NULL, NULL, 0);
498 COPY_REG_SET (bb->global_live_at_end,
499 new_bb->global_live_at_start);
500 #ifdef HAVE_conditional_execution
501 /* In the presence of conditional execution we are not able to update
502 liveness precisely. */
503 if (reload_completed)
504 {
505 bb->flags |= BB_DIRTY;
506 new_bb->flags |= BB_DIRTY;
507 }
508 #endif
509 }
510
511 return new_bb;
512 }
513
514 /* Blocks A and B are to be merged into a single block A. The insns
515 are already contiguous. */
516
517 static void
518 rtl_merge_blocks (basic_block a, basic_block b)
519 {
520 rtx b_head = BB_HEAD (b), b_end = BB_END (b), a_end = BB_END (a);
521 rtx del_first = NULL_RTX, del_last = NULL_RTX;
522 int b_empty = 0;
523
524 /* If there was a CODE_LABEL beginning B, delete it. */
525 if (LABEL_P (b_head))
526 {
527 /* Detect basic blocks with nothing but a label. This can happen
528 in particular at the end of a function. */
529 if (b_head == b_end)
530 b_empty = 1;
531
532 del_first = del_last = b_head;
533 b_head = NEXT_INSN (b_head);
534 }
535
536 /* Delete the basic block note and handle blocks containing just that
537 note. */
538 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
539 {
540 if (b_head == b_end)
541 b_empty = 1;
542 if (! del_last)
543 del_first = b_head;
544
545 del_last = b_head;
546 b_head = NEXT_INSN (b_head);
547 }
548
549 /* If there was a jump out of A, delete it. */
550 if (JUMP_P (a_end))
551 {
552 rtx prev;
553
554 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
555 if (!NOTE_P (prev)
556 || NOTE_LINE_NUMBER (prev) == NOTE_INSN_BASIC_BLOCK
557 || prev == BB_HEAD (a))
558 break;
559
560 del_first = a_end;
561
562 #ifdef HAVE_cc0
563 /* If this was a conditional jump, we need to also delete
564 the insn that set cc0. */
565 if (only_sets_cc0_p (prev))
566 {
567 rtx tmp = prev;
568
569 prev = prev_nonnote_insn (prev);
570 if (!prev)
571 prev = BB_HEAD (a);
572 del_first = tmp;
573 }
574 #endif
575
576 a_end = PREV_INSN (del_first);
577 }
578 else if (BARRIER_P (NEXT_INSN (a_end)))
579 del_first = NEXT_INSN (a_end);
580
581 /* Delete everything marked above as well as crap that might be
582 hanging out between the two blocks. */
583 BB_HEAD (b) = NULL;
584 delete_insn_chain (del_first, del_last);
585
586 /* Reassociate the insns of B with A. */
587 if (!b_empty)
588 {
589 rtx x;
590
591 for (x = a_end; x != b_end; x = NEXT_INSN (x))
592 set_block_for_insn (x, a);
593
594 set_block_for_insn (b_end, a);
595
596 a_end = b_end;
597 }
598
599 BB_END (a) = a_end;
600 }
601
602 /* Return true when block A and B can be merged. */
603 static bool
604 rtl_can_merge_blocks (basic_block a,basic_block b)
605 {
606 /* If we are partitioning hot/cold basic blocks, we don't want to
607 mess up unconditional or indirect jumps that cross between hot
608 and cold sections.
609
610 Basic block partitioning may result in some jumps that appear to
611 be optimizable (or blocks that appear to be mergeable), but which really
612 must be left untouched (they are required to make it safely across
613 partition boundaries). See the comments at the top of
614 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
615
616 if (flag_reorder_blocks_and_partition
617 && (find_reg_note (BB_END (a), REG_CROSSING_JUMP, NULL_RTX)
618 || find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
619 || BB_PARTITION (a) != BB_PARTITION (b)))
620 return false;
621
622 /* There must be exactly one edge in between the blocks. */
623 return (EDGE_COUNT (a->succs) == 1
624 && EDGE_SUCC (a, 0)->dest == b
625 && EDGE_COUNT (b->preds) == 1
626 && a != b
627 /* Must be simple edge. */
628 && !(EDGE_SUCC (a, 0)->flags & EDGE_COMPLEX)
629 && a->next_bb == b
630 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
631 /* If the jump insn has side effects,
632 we can't kill the edge. */
633 && (!JUMP_P (BB_END (a))
634 || (reload_completed
635 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
636 }
637 \f
638 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
639 exist. */
640
641 rtx
642 block_label (basic_block block)
643 {
644 if (block == EXIT_BLOCK_PTR)
645 return NULL_RTX;
646
647 if (!LABEL_P (BB_HEAD (block)))
648 {
649 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
650 }
651
652 return BB_HEAD (block);
653 }
654
655 /* Attempt to perform edge redirection by replacing possibly complex jump
656 instruction by unconditional jump or removing jump completely. This can
657 apply only if all edges now point to the same block. The parameters and
658 return values are equivalent to redirect_edge_and_branch. */
659
660 edge
661 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
662 {
663 basic_block src = e->src;
664 rtx insn = BB_END (src), kill_from;
665 rtx set;
666 int fallthru = 0;
667
668 /* If we are partitioning hot/cold basic blocks, we don't want to
669 mess up unconditional or indirect jumps that cross between hot
670 and cold sections.
671
672 Basic block partitioning may result in some jumps that appear to
673 be optimizable (or blocks that appear to be mergeable), but which really
674 must be left untouched (they are required to make it safely across
675 partition boundaries). See the comments at the top of
676 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
677
678 if (flag_reorder_blocks_and_partition
679 && (find_reg_note (insn, REG_CROSSING_JUMP, NULL_RTX)
680 || BB_PARTITION (src) != BB_PARTITION (target)))
681 return NULL;
682
683 /* We can replace or remove a complex jump only when we have exactly
684 two edges. Also, if we have exactly one outgoing edge, we can
685 redirect that. */
686 if (EDGE_COUNT (src->succs) >= 3
687 /* Verify that all targets will be TARGET. Specifically, the
688 edge that is not E must also go to TARGET. */
689 || (EDGE_COUNT (src->succs) == 2
690 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
691 return NULL;
692
693 if (!onlyjump_p (insn))
694 return NULL;
695 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
696 return NULL;
697
698 /* Avoid removing branch with side effects. */
699 set = single_set (insn);
700 if (!set || side_effects_p (set))
701 return NULL;
702
703 /* In case we zap a conditional jump, we'll need to kill
704 the cc0 setter too. */
705 kill_from = insn;
706 #ifdef HAVE_cc0
707 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
708 kill_from = PREV_INSN (insn);
709 #endif
710
711 /* See if we can create the fallthru edge. */
712 if (in_cfglayout || can_fallthru (src, target))
713 {
714 if (dump_file)
715 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
716 fallthru = 1;
717
718 /* Selectively unlink whole insn chain. */
719 if (in_cfglayout)
720 {
721 rtx insn = src->rbi->footer;
722
723 delete_insn_chain (kill_from, BB_END (src));
724
725 /* Remove barriers but keep jumptables. */
726 while (insn)
727 {
728 if (BARRIER_P (insn))
729 {
730 if (PREV_INSN (insn))
731 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
732 else
733 src->rbi->footer = NEXT_INSN (insn);
734 if (NEXT_INSN (insn))
735 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
736 }
737 if (LABEL_P (insn))
738 break;
739 insn = NEXT_INSN (insn);
740 }
741 }
742 else
743 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)));
744 }
745
746 /* If this already is simplejump, redirect it. */
747 else if (simplejump_p (insn))
748 {
749 if (e->dest == target)
750 return NULL;
751 if (dump_file)
752 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
753 INSN_UID (insn), e->dest->index, target->index);
754 if (!redirect_jump (insn, block_label (target), 0))
755 {
756 gcc_assert (target == EXIT_BLOCK_PTR);
757 return NULL;
758 }
759 }
760
761 /* Cannot do anything for target exit block. */
762 else if (target == EXIT_BLOCK_PTR)
763 return NULL;
764
765 /* Or replace possibly complicated jump insn by simple jump insn. */
766 else
767 {
768 rtx target_label = block_label (target);
769 rtx barrier, label, table;
770
771 emit_jump_insn_after_noloc (gen_jump (target_label), insn);
772 JUMP_LABEL (BB_END (src)) = target_label;
773 LABEL_NUSES (target_label)++;
774 if (dump_file)
775 fprintf (dump_file, "Replacing insn %i by jump %i\n",
776 INSN_UID (insn), INSN_UID (BB_END (src)));
777
778
779 delete_insn_chain (kill_from, insn);
780
781 /* Recognize a tablejump that we are converting to a
782 simple jump and remove its associated CODE_LABEL
783 and ADDR_VEC or ADDR_DIFF_VEC. */
784 if (tablejump_p (insn, &label, &table))
785 delete_insn_chain (label, table);
786
787 barrier = next_nonnote_insn (BB_END (src));
788 if (!barrier || !BARRIER_P (barrier))
789 emit_barrier_after (BB_END (src));
790 else
791 {
792 if (barrier != NEXT_INSN (BB_END (src)))
793 {
794 /* Move the jump before barrier so that the notes
795 which originally were or were created before jump table are
796 inside the basic block. */
797 rtx new_insn = BB_END (src);
798 rtx tmp;
799
800 for (tmp = NEXT_INSN (BB_END (src)); tmp != barrier;
801 tmp = NEXT_INSN (tmp))
802 set_block_for_insn (tmp, src);
803
804 NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
805 PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
806
807 NEXT_INSN (new_insn) = barrier;
808 NEXT_INSN (PREV_INSN (barrier)) = new_insn;
809
810 PREV_INSN (new_insn) = PREV_INSN (barrier);
811 PREV_INSN (barrier) = new_insn;
812 }
813 }
814 }
815
816 /* Keep only one edge out and set proper flags. */
817 while (EDGE_COUNT (src->succs) > 1)
818 remove_edge (e);
819
820 e = EDGE_SUCC (src, 0);
821 if (fallthru)
822 e->flags = EDGE_FALLTHRU;
823 else
824 e->flags = 0;
825
826 e->probability = REG_BR_PROB_BASE;
827 e->count = src->count;
828
829 /* We don't want a block to end on a line-number note since that has
830 the potential of changing the code between -g and not -g. */
831 while (NOTE_P (BB_END (e->src))
832 && NOTE_LINE_NUMBER (BB_END (e->src)) >= 0)
833 delete_insn (BB_END (e->src));
834
835 if (e->dest != target)
836 redirect_edge_succ (e, target);
837
838 return e;
839 }
840
841 /* Return last loop_beg note appearing after INSN, before start of next
842 basic block. Return INSN if there are no such notes.
843
844 When emitting jump to redirect a fallthru edge, it should always appear
845 after the LOOP_BEG notes, as loop optimizer expect loop to either start by
846 fallthru edge or jump following the LOOP_BEG note jumping to the loop exit
847 test. */
848
849 static rtx
850 last_loop_beg_note (rtx insn)
851 {
852 rtx last = insn;
853
854 for (insn = NEXT_INSN (insn); insn && NOTE_P (insn)
855 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK;
856 insn = NEXT_INSN (insn))
857 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
858 last = insn;
859
860 return last;
861 }
862
863 /* Redirect edge representing branch of (un)conditional jump or tablejump,
864 NULL on failure */
865 static edge
866 redirect_branch_edge (edge e, basic_block target)
867 {
868 rtx tmp;
869 rtx old_label = BB_HEAD (e->dest);
870 basic_block src = e->src;
871 rtx insn = BB_END (src);
872
873 /* We can only redirect non-fallthru edges of jump insn. */
874 if (e->flags & EDGE_FALLTHRU)
875 return NULL;
876 else if (!JUMP_P (insn))
877 return NULL;
878
879 /* Recognize a tablejump and adjust all matching cases. */
880 if (tablejump_p (insn, NULL, &tmp))
881 {
882 rtvec vec;
883 int j;
884 rtx new_label = block_label (target);
885
886 if (target == EXIT_BLOCK_PTR)
887 return NULL;
888 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
889 vec = XVEC (PATTERN (tmp), 0);
890 else
891 vec = XVEC (PATTERN (tmp), 1);
892
893 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
894 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
895 {
896 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
897 --LABEL_NUSES (old_label);
898 ++LABEL_NUSES (new_label);
899 }
900
901 /* Handle casesi dispatch insns. */
902 if ((tmp = single_set (insn)) != NULL
903 && SET_DEST (tmp) == pc_rtx
904 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
905 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
906 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
907 {
908 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (VOIDmode,
909 new_label);
910 --LABEL_NUSES (old_label);
911 ++LABEL_NUSES (new_label);
912 }
913 }
914 else
915 {
916 /* ?? We may play the games with moving the named labels from
917 one basic block to the other in case only one computed_jump is
918 available. */
919 if (computed_jump_p (insn)
920 /* A return instruction can't be redirected. */
921 || returnjump_p (insn))
922 return NULL;
923
924 /* If the insn doesn't go where we think, we're confused. */
925 gcc_assert (JUMP_LABEL (insn) == old_label);
926
927 /* If the substitution doesn't succeed, die. This can happen
928 if the back end emitted unrecognizable instructions or if
929 target is exit block on some arches. */
930 if (!redirect_jump (insn, block_label (target), 0))
931 {
932 gcc_assert (target == EXIT_BLOCK_PTR);
933 return NULL;
934 }
935 }
936
937 if (dump_file)
938 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
939 e->src->index, e->dest->index, target->index);
940
941 if (e->dest != target)
942 e = redirect_edge_succ_nodup (e, target);
943 return e;
944 }
945
946 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
947 expense of adding new instructions or reordering basic blocks.
948
949 Function can be also called with edge destination equivalent to the TARGET.
950 Then it should try the simplifications and do nothing if none is possible.
951
952 Return edge representing the branch if transformation succeeded. Return NULL
953 on failure.
954 We still return NULL in case E already destinated TARGET and we didn't
955 managed to simplify instruction stream. */
956
957 static edge
958 rtl_redirect_edge_and_branch (edge e, basic_block target)
959 {
960 edge ret;
961 basic_block src = e->src;
962
963 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
964 return NULL;
965
966 if (e->dest == target)
967 return e;
968
969 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
970 {
971 src->flags |= BB_DIRTY;
972 return ret;
973 }
974
975 ret = redirect_branch_edge (e, target);
976 if (!ret)
977 return NULL;
978
979 src->flags |= BB_DIRTY;
980 return ret;
981 }
982
983 /* Like force_nonfallthru below, but additionally performs redirection
984 Used by redirect_edge_and_branch_force. */
985
986 static basic_block
987 force_nonfallthru_and_redirect (edge e, basic_block target)
988 {
989 basic_block jump_block, new_bb = NULL, src = e->src;
990 rtx note;
991 edge new_edge;
992 int abnormal_edge_flags = 0;
993
994 /* In the case the last instruction is conditional jump to the next
995 instruction, first redirect the jump itself and then continue
996 by creating a basic block afterwards to redirect fallthru edge. */
997 if (e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR
998 && any_condjump_p (BB_END (e->src))
999 /* When called from cfglayout, fallthru edges do not
1000 necessarily go to the next block. */
1001 && e->src->next_bb == e->dest
1002 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1003 {
1004 rtx note;
1005 edge b = unchecked_make_edge (e->src, target, 0);
1006 bool redirected;
1007
1008 redirected = redirect_jump (BB_END (e->src), block_label (target), 0);
1009 gcc_assert (redirected);
1010
1011 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1012 if (note)
1013 {
1014 int prob = INTVAL (XEXP (note, 0));
1015
1016 b->probability = prob;
1017 b->count = e->count * prob / REG_BR_PROB_BASE;
1018 e->probability -= e->probability;
1019 e->count -= b->count;
1020 if (e->probability < 0)
1021 e->probability = 0;
1022 if (e->count < 0)
1023 e->count = 0;
1024 }
1025 }
1026
1027 if (e->flags & EDGE_ABNORMAL)
1028 {
1029 /* Irritating special case - fallthru edge to the same block as abnormal
1030 edge.
1031 We can't redirect abnormal edge, but we still can split the fallthru
1032 one and create separate abnormal edge to original destination.
1033 This allows bb-reorder to make such edge non-fallthru. */
1034 gcc_assert (e->dest == target);
1035 abnormal_edge_flags = e->flags & ~(EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
1036 e->flags &= EDGE_FALLTHRU | EDGE_CAN_FALLTHRU;
1037 }
1038 else
1039 {
1040 gcc_assert (e->flags & EDGE_FALLTHRU);
1041 if (e->src == ENTRY_BLOCK_PTR)
1042 {
1043 /* We can't redirect the entry block. Create an empty block
1044 at the start of the function which we use to add the new
1045 jump. */
1046 edge tmp;
1047 edge_iterator ei;
1048 bool found = false;
1049
1050 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL, ENTRY_BLOCK_PTR);
1051
1052 /* Change the existing edge's source to be the new block, and add
1053 a new edge from the entry block to the new block. */
1054 e->src = bb;
1055 for (ei = ei_start (ENTRY_BLOCK_PTR->succs); (tmp = ei_safe_edge (ei)); )
1056 {
1057 if (tmp == e)
1058 {
1059 VEC_unordered_remove (edge, ENTRY_BLOCK_PTR->succs, ei.index);
1060 found = true;
1061 break;
1062 }
1063 else
1064 ei_next (&ei);
1065 }
1066
1067 gcc_assert (found);
1068
1069 VEC_safe_push (edge, bb->succs, e);
1070 make_single_succ_edge (ENTRY_BLOCK_PTR, bb, EDGE_FALLTHRU);
1071 }
1072 }
1073
1074 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags)
1075 {
1076 /* Create the new structures. */
1077
1078 /* If the old block ended with a tablejump, skip its table
1079 by searching forward from there. Otherwise start searching
1080 forward from the last instruction of the old block. */
1081 if (!tablejump_p (BB_END (e->src), NULL, &note))
1082 note = BB_END (e->src);
1083
1084 /* Position the new block correctly relative to loop notes. */
1085 note = last_loop_beg_note (note);
1086 note = NEXT_INSN (note);
1087
1088 jump_block = create_basic_block (note, NULL, e->src);
1089 jump_block->count = e->count;
1090 jump_block->frequency = EDGE_FREQUENCY (e);
1091 jump_block->loop_depth = target->loop_depth;
1092
1093 if (target->global_live_at_start)
1094 {
1095 jump_block->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1096 jump_block->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1097 COPY_REG_SET (jump_block->global_live_at_start,
1098 target->global_live_at_start);
1099 COPY_REG_SET (jump_block->global_live_at_end,
1100 target->global_live_at_start);
1101 }
1102
1103 /* Make sure new block ends up in correct hot/cold section. */
1104
1105 BB_COPY_PARTITION (jump_block, e->src);
1106 if (flag_reorder_blocks_and_partition
1107 && targetm.have_named_sections)
1108 {
1109 if (BB_PARTITION (jump_block) == BB_COLD_PARTITION)
1110 {
1111 rtx bb_note, new_note;
1112 for (bb_note = BB_HEAD (jump_block);
1113 bb_note && bb_note != NEXT_INSN (BB_END (jump_block));
1114 bb_note = NEXT_INSN (bb_note))
1115 if (NOTE_P (bb_note)
1116 && NOTE_LINE_NUMBER (bb_note) == NOTE_INSN_BASIC_BLOCK)
1117 break;
1118 new_note = emit_note_after (NOTE_INSN_UNLIKELY_EXECUTED_CODE,
1119 bb_note);
1120 NOTE_BASIC_BLOCK (new_note) = jump_block;
1121 }
1122 if (JUMP_P (BB_END (jump_block))
1123 && !any_condjump_p (BB_END (jump_block))
1124 && (EDGE_SUCC (jump_block, 0)->flags & EDGE_CROSSING))
1125 REG_NOTES (BB_END (jump_block)) = gen_rtx_EXPR_LIST
1126 (REG_CROSSING_JUMP, NULL_RTX,
1127 REG_NOTES (BB_END (jump_block)));
1128 }
1129
1130 /* Wire edge in. */
1131 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1132 new_edge->probability = e->probability;
1133 new_edge->count = e->count;
1134
1135 /* Redirect old edge. */
1136 redirect_edge_pred (e, jump_block);
1137 e->probability = REG_BR_PROB_BASE;
1138
1139 new_bb = jump_block;
1140 }
1141 else
1142 jump_block = e->src;
1143
1144 e->flags &= ~EDGE_FALLTHRU;
1145 if (target == EXIT_BLOCK_PTR)
1146 {
1147 #ifdef HAVE_return
1148 emit_jump_insn_after_noloc (gen_return (), BB_END (jump_block));
1149 #else
1150 gcc_unreachable ();
1151 #endif
1152 }
1153 else
1154 {
1155 rtx label = block_label (target);
1156 emit_jump_insn_after_noloc (gen_jump (label), BB_END (jump_block));
1157 JUMP_LABEL (BB_END (jump_block)) = label;
1158 LABEL_NUSES (label)++;
1159 }
1160
1161 emit_barrier_after (BB_END (jump_block));
1162 redirect_edge_succ_nodup (e, target);
1163
1164 if (abnormal_edge_flags)
1165 make_edge (src, target, abnormal_edge_flags);
1166
1167 return new_bb;
1168 }
1169
1170 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1171 (and possibly create new basic block) to make edge non-fallthru.
1172 Return newly created BB or NULL if none. */
1173
1174 basic_block
1175 force_nonfallthru (edge e)
1176 {
1177 return force_nonfallthru_and_redirect (e, e->dest);
1178 }
1179
1180 /* Redirect edge even at the expense of creating new jump insn or
1181 basic block. Return new basic block if created, NULL otherwise.
1182 Abort if conversion is impossible. */
1183
1184 static basic_block
1185 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1186 {
1187 if (redirect_edge_and_branch (e, target)
1188 || e->dest == target)
1189 return NULL;
1190
1191 /* In case the edge redirection failed, try to force it to be non-fallthru
1192 and redirect newly created simplejump. */
1193 return force_nonfallthru_and_redirect (e, target);
1194 }
1195
1196 /* The given edge should potentially be a fallthru edge. If that is in
1197 fact true, delete the jump and barriers that are in the way. */
1198
1199 static void
1200 rtl_tidy_fallthru_edge (edge e)
1201 {
1202 rtx q;
1203 basic_block b = e->src, c = b->next_bb;
1204 edge e2;
1205 edge_iterator ei;
1206
1207 FOR_EACH_EDGE (e2, ei, b->succs)
1208 if (e == e2)
1209 break;
1210
1211 /* ??? In a late-running flow pass, other folks may have deleted basic
1212 blocks by nopping out blocks, leaving multiple BARRIERs between here
1213 and the target label. They ought to be chastized and fixed.
1214
1215 We can also wind up with a sequence of undeletable labels between
1216 one block and the next.
1217
1218 So search through a sequence of barriers, labels, and notes for
1219 the head of block C and assert that we really do fall through. */
1220
1221 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1222 if (INSN_P (q))
1223 return;
1224
1225 /* Remove what will soon cease being the jump insn from the source block.
1226 If block B consisted only of this single jump, turn it into a deleted
1227 note. */
1228 q = BB_END (b);
1229 if (JUMP_P (q)
1230 && onlyjump_p (q)
1231 && (any_uncondjump_p (q)
1232 || (EDGE_SUCC (b, 0) == e && ei.index == EDGE_COUNT (b->succs) - 1)))
1233 {
1234 #ifdef HAVE_cc0
1235 /* If this was a conditional jump, we need to also delete
1236 the insn that set cc0. */
1237 if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1238 q = PREV_INSN (q);
1239 #endif
1240
1241 q = PREV_INSN (q);
1242
1243 /* We don't want a block to end on a line-number note since that has
1244 the potential of changing the code between -g and not -g. */
1245 while (NOTE_P (q) && NOTE_LINE_NUMBER (q) >= 0)
1246 q = PREV_INSN (q);
1247 }
1248
1249 /* Selectively unlink the sequence. */
1250 if (q != PREV_INSN (BB_HEAD (c)))
1251 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)));
1252
1253 e->flags |= EDGE_FALLTHRU;
1254 }
1255 \f
1256 /* Helper function for split_edge. Return true in case edge BB2 to BB1
1257 is back edge of syntactic loop. */
1258
1259 static bool
1260 back_edge_of_syntactic_loop_p (basic_block bb1, basic_block bb2)
1261 {
1262 rtx insn;
1263 int count = 0;
1264 basic_block bb;
1265
1266 if (bb1 == bb2)
1267 return true;
1268
1269 /* ??? Could we guarantee that bb indices are monotone, so that we could
1270 just compare them? */
1271 for (bb = bb1; bb && bb != bb2; bb = bb->next_bb)
1272 continue;
1273
1274 if (!bb)
1275 return false;
1276
1277 for (insn = BB_END (bb1); insn != BB_HEAD (bb2) && count >= 0;
1278 insn = NEXT_INSN (insn))
1279 if (NOTE_P (insn))
1280 {
1281 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1282 count++;
1283 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1284 count--;
1285 }
1286
1287 return count >= 0;
1288 }
1289
1290 /* Should move basic block BB after basic block AFTER. NIY. */
1291
1292 static bool
1293 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1294 basic_block after ATTRIBUTE_UNUSED)
1295 {
1296 return false;
1297 }
1298
1299 /* Split a (typically critical) edge. Return the new block.
1300 Abort on abnormal edges.
1301
1302 ??? The code generally expects to be called on critical edges.
1303 The case of a block ending in an unconditional jump to a
1304 block with multiple predecessors is not handled optimally. */
1305
1306 static basic_block
1307 rtl_split_edge (edge edge_in)
1308 {
1309 basic_block bb;
1310 rtx before;
1311
1312 /* Abnormal edges cannot be split. */
1313 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1314
1315 /* We are going to place the new block in front of edge destination.
1316 Avoid existence of fallthru predecessors. */
1317 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1318 {
1319 edge e;
1320 edge_iterator ei;
1321
1322 FOR_EACH_EDGE (e, ei, edge_in->dest->preds)
1323 if (e->flags & EDGE_FALLTHRU)
1324 break;
1325
1326 if (e)
1327 force_nonfallthru (e);
1328 }
1329
1330 /* Create the basic block note.
1331
1332 Where we place the note can have a noticeable impact on the generated
1333 code. Consider this cfg:
1334
1335 E
1336 |
1337 0
1338 / \
1339 +->1-->2--->E
1340 | |
1341 +--+
1342
1343 If we need to insert an insn on the edge from block 0 to block 1,
1344 we want to ensure the instructions we insert are outside of any
1345 loop notes that physically sit between block 0 and block 1. Otherwise
1346 we confuse the loop optimizer into thinking the loop is a phony. */
1347
1348 if (edge_in->dest != EXIT_BLOCK_PTR
1349 && PREV_INSN (BB_HEAD (edge_in->dest))
1350 && NOTE_P (PREV_INSN (BB_HEAD (edge_in->dest)))
1351 && (NOTE_LINE_NUMBER (PREV_INSN (BB_HEAD (edge_in->dest)))
1352 == NOTE_INSN_LOOP_BEG)
1353 && !back_edge_of_syntactic_loop_p (edge_in->dest, edge_in->src))
1354 before = PREV_INSN (BB_HEAD (edge_in->dest));
1355 else if (edge_in->dest != EXIT_BLOCK_PTR)
1356 before = BB_HEAD (edge_in->dest);
1357 else
1358 before = NULL_RTX;
1359
1360 /* If this is a fall through edge to the exit block, the blocks might be
1361 not adjacent, and the right place is the after the source. */
1362 if (edge_in->flags & EDGE_FALLTHRU && edge_in->dest == EXIT_BLOCK_PTR)
1363 {
1364 before = NEXT_INSN (BB_END (edge_in->src));
1365 if (before
1366 && NOTE_P (before)
1367 && NOTE_LINE_NUMBER (before) == NOTE_INSN_LOOP_END)
1368 before = NEXT_INSN (before);
1369 bb = create_basic_block (before, NULL, edge_in->src);
1370 BB_COPY_PARTITION (bb, edge_in->src);
1371 }
1372 else
1373 {
1374 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1375 /* ??? Why not edge_in->dest->prev_bb here? */
1376 BB_COPY_PARTITION (bb, edge_in->dest);
1377 }
1378
1379 /* ??? This info is likely going to be out of date very soon. */
1380 if (edge_in->dest->global_live_at_start)
1381 {
1382 bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1383 bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1384 COPY_REG_SET (bb->global_live_at_start,
1385 edge_in->dest->global_live_at_start);
1386 COPY_REG_SET (bb->global_live_at_end,
1387 edge_in->dest->global_live_at_start);
1388 }
1389
1390 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1391
1392 /* For non-fallthru edges, we must adjust the predecessor's
1393 jump instruction to target our new block. */
1394 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1395 {
1396 edge redirected = redirect_edge_and_branch (edge_in, bb);
1397 gcc_assert (redirected);
1398 }
1399 else
1400 redirect_edge_succ (edge_in, bb);
1401
1402 return bb;
1403 }
1404
1405 /* Queue instructions for insertion on an edge between two basic blocks.
1406 The new instructions and basic blocks (if any) will not appear in the
1407 CFG until commit_edge_insertions is called. */
1408
1409 void
1410 insert_insn_on_edge (rtx pattern, edge e)
1411 {
1412 /* We cannot insert instructions on an abnormal critical edge.
1413 It will be easier to find the culprit if we die now. */
1414 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1415
1416 if (e->insns.r == NULL_RTX)
1417 start_sequence ();
1418 else
1419 push_to_sequence (e->insns.r);
1420
1421 emit_insn (pattern);
1422
1423 e->insns.r = get_insns ();
1424 end_sequence ();
1425 }
1426
1427 /* Called from safe_insert_insn_on_edge through note_stores, marks live
1428 registers that are killed by the store. */
1429 static void
1430 mark_killed_regs (rtx reg, rtx set ATTRIBUTE_UNUSED, void *data)
1431 {
1432 regset killed = data;
1433 int regno, i;
1434
1435 if (GET_CODE (reg) == SUBREG)
1436 reg = SUBREG_REG (reg);
1437 if (!REG_P (reg))
1438 return;
1439 regno = REGNO (reg);
1440 if (regno >= FIRST_PSEUDO_REGISTER)
1441 SET_REGNO_REG_SET (killed, regno);
1442 else
1443 {
1444 for (i = 0; i < (int) hard_regno_nregs[regno][GET_MODE (reg)]; i++)
1445 SET_REGNO_REG_SET (killed, regno + i);
1446 }
1447 }
1448
1449 /* Similar to insert_insn_on_edge, tries to put INSN to edge E. Additionally
1450 it checks whether this will not clobber the registers that are live on the
1451 edge (i.e. it requires liveness information to be up-to-date) and if there
1452 are some, then it tries to save and restore them. Returns true if
1453 successful. */
1454 bool
1455 safe_insert_insn_on_edge (rtx insn, edge e)
1456 {
1457 rtx x;
1458 regset killed;
1459 rtx save_regs = NULL_RTX;
1460 unsigned regno;
1461 int noccmode;
1462 enum machine_mode mode;
1463 reg_set_iterator rsi;
1464
1465 #ifdef AVOID_CCMODE_COPIES
1466 noccmode = true;
1467 #else
1468 noccmode = false;
1469 #endif
1470
1471 killed = ALLOC_REG_SET (&reg_obstack);
1472
1473 for (x = insn; x; x = NEXT_INSN (x))
1474 if (INSN_P (x))
1475 note_stores (PATTERN (x), mark_killed_regs, killed);
1476 bitmap_and_into (killed, e->dest->global_live_at_start);
1477
1478 EXECUTE_IF_SET_IN_REG_SET (killed, 0, regno, rsi)
1479 {
1480 mode = regno < FIRST_PSEUDO_REGISTER
1481 ? reg_raw_mode[regno]
1482 : GET_MODE (regno_reg_rtx[regno]);
1483 if (mode == VOIDmode)
1484 return false;
1485
1486 if (noccmode && mode == CCmode)
1487 return false;
1488
1489 save_regs = alloc_EXPR_LIST (0,
1490 alloc_EXPR_LIST (0,
1491 gen_reg_rtx (mode),
1492 gen_raw_REG (mode, regno)),
1493 save_regs);
1494 }
1495
1496 if (save_regs)
1497 {
1498 rtx from, to;
1499
1500 start_sequence ();
1501 for (x = save_regs; x; x = XEXP (x, 1))
1502 {
1503 from = XEXP (XEXP (x, 0), 1);
1504 to = XEXP (XEXP (x, 0), 0);
1505 emit_move_insn (to, from);
1506 }
1507 emit_insn (insn);
1508 for (x = save_regs; x; x = XEXP (x, 1))
1509 {
1510 from = XEXP (XEXP (x, 0), 0);
1511 to = XEXP (XEXP (x, 0), 1);
1512 emit_move_insn (to, from);
1513 }
1514 insn = get_insns ();
1515 end_sequence ();
1516 free_EXPR_LIST_list (&save_regs);
1517 }
1518 insert_insn_on_edge (insn, e);
1519
1520 FREE_REG_SET (killed);
1521 return true;
1522 }
1523
1524 /* Update the CFG for the instructions queued on edge E. */
1525
1526 static void
1527 commit_one_edge_insertion (edge e, int watch_calls)
1528 {
1529 rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1530 basic_block bb = NULL;
1531
1532 /* Pull the insns off the edge now since the edge might go away. */
1533 insns = e->insns.r;
1534 e->insns.r = NULL_RTX;
1535
1536 /* Special case -- avoid inserting code between call and storing
1537 its return value. */
1538 if (watch_calls && (e->flags & EDGE_FALLTHRU)
1539 && EDGE_COUNT (e->dest->preds) == 1
1540 && e->src != ENTRY_BLOCK_PTR
1541 && CALL_P (BB_END (e->src)))
1542 {
1543 rtx next = next_nonnote_insn (BB_END (e->src));
1544
1545 after = BB_HEAD (e->dest);
1546 /* The first insn after the call may be a stack pop, skip it. */
1547 while (next
1548 && keep_with_call_p (next))
1549 {
1550 after = next;
1551 next = next_nonnote_insn (next);
1552 }
1553 bb = e->dest;
1554 }
1555 if (!before && !after)
1556 {
1557 /* Figure out where to put these things. If the destination has
1558 one predecessor, insert there. Except for the exit block. */
1559 if (EDGE_COUNT (e->dest->preds) == 1 && e->dest != EXIT_BLOCK_PTR)
1560 {
1561 bb = e->dest;
1562
1563 /* Get the location correct wrt a code label, and "nice" wrt
1564 a basic block note, and before everything else. */
1565 tmp = BB_HEAD (bb);
1566 if (LABEL_P (tmp))
1567 tmp = NEXT_INSN (tmp);
1568 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1569 tmp = NEXT_INSN (tmp);
1570 if (tmp
1571 && NOTE_P (tmp)
1572 && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1573 tmp = NEXT_INSN (tmp);
1574 if (tmp == BB_HEAD (bb))
1575 before = tmp;
1576 else if (tmp)
1577 after = PREV_INSN (tmp);
1578 else
1579 after = get_last_insn ();
1580 }
1581
1582 /* If the source has one successor and the edge is not abnormal,
1583 insert there. Except for the entry block. */
1584 else if ((e->flags & EDGE_ABNORMAL) == 0
1585 && EDGE_COUNT (e->src->succs) == 1
1586 && e->src != ENTRY_BLOCK_PTR)
1587 {
1588 bb = e->src;
1589
1590 /* It is possible to have a non-simple jump here. Consider a target
1591 where some forms of unconditional jumps clobber a register. This
1592 happens on the fr30 for example.
1593
1594 We know this block has a single successor, so we can just emit
1595 the queued insns before the jump. */
1596 if (JUMP_P (BB_END (bb)))
1597 for (before = BB_END (bb);
1598 NOTE_P (PREV_INSN (before))
1599 && NOTE_LINE_NUMBER (PREV_INSN (before)) ==
1600 NOTE_INSN_LOOP_BEG; before = PREV_INSN (before))
1601 ;
1602 else
1603 {
1604 /* We'd better be fallthru, or we've lost track of
1605 what's what. */
1606 gcc_assert (e->flags & EDGE_FALLTHRU);
1607
1608 after = BB_END (bb);
1609 }
1610 }
1611 /* Otherwise we must split the edge. */
1612 else
1613 {
1614 bb = split_edge (e);
1615 after = BB_END (bb);
1616
1617 if (flag_reorder_blocks_and_partition
1618 && targetm.have_named_sections
1619 && e->src != ENTRY_BLOCK_PTR
1620 && BB_PARTITION (e->src) == BB_COLD_PARTITION
1621 && !(e->flags & EDGE_CROSSING))
1622 {
1623 rtx bb_note, new_note, cur_insn;
1624
1625 bb_note = NULL_RTX;
1626 for (cur_insn = BB_HEAD (bb); cur_insn != NEXT_INSN (BB_END (bb));
1627 cur_insn = NEXT_INSN (cur_insn))
1628 if (NOTE_P (cur_insn)
1629 && NOTE_LINE_NUMBER (cur_insn) == NOTE_INSN_BASIC_BLOCK)
1630 {
1631 bb_note = cur_insn;
1632 break;
1633 }
1634
1635 new_note = emit_note_after (NOTE_INSN_UNLIKELY_EXECUTED_CODE,
1636 bb_note);
1637 NOTE_BASIC_BLOCK (new_note) = bb;
1638 if (JUMP_P (BB_END (bb))
1639 && !any_condjump_p (BB_END (bb))
1640 && (EDGE_SUCC (bb, 0)->flags & EDGE_CROSSING))
1641 REG_NOTES (BB_END (bb)) = gen_rtx_EXPR_LIST
1642 (REG_CROSSING_JUMP, NULL_RTX, REG_NOTES (BB_END (bb)));
1643 if (after == bb_note)
1644 after = new_note;
1645 }
1646 }
1647 }
1648
1649 /* Now that we've found the spot, do the insertion. */
1650
1651 if (before)
1652 {
1653 emit_insn_before_noloc (insns, before);
1654 last = prev_nonnote_insn (before);
1655 }
1656 else
1657 last = emit_insn_after_noloc (insns, after);
1658
1659 if (returnjump_p (last))
1660 {
1661 /* ??? Remove all outgoing edges from BB and add one for EXIT.
1662 This is not currently a problem because this only happens
1663 for the (single) epilogue, which already has a fallthru edge
1664 to EXIT. */
1665
1666 e = EDGE_SUCC (bb, 0);
1667 gcc_assert (e->dest == EXIT_BLOCK_PTR
1668 && EDGE_COUNT (bb->succs) == 1 && (e->flags & EDGE_FALLTHRU));
1669
1670 e->flags &= ~EDGE_FALLTHRU;
1671 emit_barrier_after (last);
1672
1673 if (before)
1674 delete_insn (before);
1675 }
1676 else
1677 gcc_assert (!JUMP_P (last));
1678
1679 /* Mark the basic block for find_sub_basic_blocks. */
1680 bb->aux = &bb->aux;
1681 }
1682
1683 /* Update the CFG for all queued instructions. */
1684
1685 void
1686 commit_edge_insertions (void)
1687 {
1688 basic_block bb;
1689 sbitmap blocks;
1690 bool changed = false;
1691
1692 #ifdef ENABLE_CHECKING
1693 verify_flow_info ();
1694 #endif
1695
1696 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1697 {
1698 edge e;
1699 edge_iterator ei;
1700
1701 FOR_EACH_EDGE (e, ei, bb->succs)
1702 if (e->insns.r)
1703 {
1704 changed = true;
1705 commit_one_edge_insertion (e, false);
1706 }
1707 }
1708
1709 if (!changed)
1710 return;
1711
1712 blocks = sbitmap_alloc (last_basic_block);
1713 sbitmap_zero (blocks);
1714 FOR_EACH_BB (bb)
1715 if (bb->aux)
1716 {
1717 SET_BIT (blocks, bb->index);
1718 /* Check for forgotten bb->aux values before commit_edge_insertions
1719 call. */
1720 gcc_assert (bb->aux == &bb->aux);
1721 bb->aux = NULL;
1722 }
1723 find_many_sub_basic_blocks (blocks);
1724 sbitmap_free (blocks);
1725 }
1726 \f
1727 /* Update the CFG for all queued instructions, taking special care of inserting
1728 code on edges between call and storing its return value. */
1729
1730 void
1731 commit_edge_insertions_watch_calls (void)
1732 {
1733 basic_block bb;
1734 sbitmap blocks;
1735 bool changed = false;
1736
1737 #ifdef ENABLE_CHECKING
1738 verify_flow_info ();
1739 #endif
1740
1741 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1742 {
1743 edge e;
1744 edge_iterator ei;
1745
1746 FOR_EACH_EDGE (e, ei, bb->succs)
1747 if (e->insns.r)
1748 {
1749 changed = true;
1750 commit_one_edge_insertion (e, true);
1751 }
1752 }
1753
1754 if (!changed)
1755 return;
1756
1757 blocks = sbitmap_alloc (last_basic_block);
1758 sbitmap_zero (blocks);
1759 FOR_EACH_BB (bb)
1760 if (bb->aux)
1761 {
1762 SET_BIT (blocks, bb->index);
1763 /* Check for forgotten bb->aux values before commit_edge_insertions
1764 call. */
1765 gcc_assert (bb->aux == &bb->aux);
1766 bb->aux = NULL;
1767 }
1768 find_many_sub_basic_blocks (blocks);
1769 sbitmap_free (blocks);
1770 }
1771 \f
1772 /* Print out RTL-specific basic block information (live information
1773 at start and end). */
1774
1775 static void
1776 rtl_dump_bb (basic_block bb, FILE *outf, int indent)
1777 {
1778 rtx insn;
1779 rtx last;
1780 char *s_indent;
1781
1782 s_indent = alloca ((size_t) indent + 1);
1783 memset (s_indent, ' ', (size_t) indent);
1784 s_indent[indent] = '\0';
1785
1786 fprintf (outf, ";;%s Registers live at start: ", s_indent);
1787 dump_regset (bb->global_live_at_start, outf);
1788 putc ('\n', outf);
1789
1790 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
1791 insn = NEXT_INSN (insn))
1792 print_rtl_single (outf, insn);
1793
1794 fprintf (outf, ";;%s Registers live at end: ", s_indent);
1795 dump_regset (bb->global_live_at_end, outf);
1796 putc ('\n', outf);
1797 }
1798 \f
1799 /* Like print_rtl, but also print out live information for the start of each
1800 basic block. */
1801
1802 void
1803 print_rtl_with_bb (FILE *outf, rtx rtx_first)
1804 {
1805 rtx tmp_rtx;
1806
1807 if (rtx_first == 0)
1808 fprintf (outf, "(nil)\n");
1809 else
1810 {
1811 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
1812 int max_uid = get_max_uid ();
1813 basic_block *start = xcalloc (max_uid, sizeof (basic_block));
1814 basic_block *end = xcalloc (max_uid, sizeof (basic_block));
1815 enum bb_state *in_bb_p = xcalloc (max_uid, sizeof (enum bb_state));
1816
1817 basic_block bb;
1818
1819 FOR_EACH_BB_REVERSE (bb)
1820 {
1821 rtx x;
1822
1823 start[INSN_UID (BB_HEAD (bb))] = bb;
1824 end[INSN_UID (BB_END (bb))] = bb;
1825 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
1826 {
1827 enum bb_state state = IN_MULTIPLE_BB;
1828
1829 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
1830 state = IN_ONE_BB;
1831 in_bb_p[INSN_UID (x)] = state;
1832
1833 if (x == BB_END (bb))
1834 break;
1835 }
1836 }
1837
1838 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
1839 {
1840 int did_output;
1841
1842 if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
1843 {
1844 fprintf (outf, ";; Start of basic block %d, registers live:",
1845 bb->index);
1846 dump_regset (bb->global_live_at_start, outf);
1847 putc ('\n', outf);
1848 }
1849
1850 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
1851 && !NOTE_P (tmp_rtx)
1852 && !BARRIER_P (tmp_rtx))
1853 fprintf (outf, ";; Insn is not within a basic block\n");
1854 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
1855 fprintf (outf, ";; Insn is in multiple basic blocks\n");
1856
1857 did_output = print_rtl_single (outf, tmp_rtx);
1858
1859 if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
1860 {
1861 fprintf (outf, ";; End of basic block %d, registers live:\n",
1862 bb->index);
1863 dump_regset (bb->global_live_at_end, outf);
1864 putc ('\n', outf);
1865 }
1866
1867 if (did_output)
1868 putc ('\n', outf);
1869 }
1870
1871 free (start);
1872 free (end);
1873 free (in_bb_p);
1874 }
1875
1876 if (current_function_epilogue_delay_list != 0)
1877 {
1878 fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
1879 for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
1880 tmp_rtx = XEXP (tmp_rtx, 1))
1881 print_rtl_single (outf, XEXP (tmp_rtx, 0));
1882 }
1883 }
1884 \f
1885 void
1886 update_br_prob_note (basic_block bb)
1887 {
1888 rtx note;
1889 if (!JUMP_P (BB_END (bb)))
1890 return;
1891 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
1892 if (!note || INTVAL (XEXP (note, 0)) == BRANCH_EDGE (bb)->probability)
1893 return;
1894 XEXP (note, 0) = GEN_INT (BRANCH_EDGE (bb)->probability);
1895 }
1896 \f
1897 /* Verify the CFG and RTL consistency common for both underlying RTL and
1898 cfglayout RTL.
1899
1900 Currently it does following checks:
1901
1902 - test head/end pointers
1903 - overlapping of basic blocks
1904 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
1905 - tails of basic blocks (ensure that boundary is necessary)
1906 - scans body of the basic block for JUMP_INSN, CODE_LABEL
1907 and NOTE_INSN_BASIC_BLOCK
1908 - verify that no fall_thru edge crosses hot/cold partition boundaries
1909
1910 In future it can be extended check a lot of other stuff as well
1911 (reachability of basic blocks, life information, etc. etc.). */
1912
1913 static int
1914 rtl_verify_flow_info_1 (void)
1915 {
1916 const int max_uid = get_max_uid ();
1917 rtx last_head = get_last_insn ();
1918 basic_block *bb_info;
1919 rtx x;
1920 int err = 0;
1921 basic_block bb, last_bb_seen;
1922
1923 bb_info = xcalloc (max_uid, sizeof (basic_block));
1924
1925 /* Check bb chain & numbers. */
1926 last_bb_seen = ENTRY_BLOCK_PTR;
1927
1928 FOR_EACH_BB_REVERSE (bb)
1929 {
1930 rtx head = BB_HEAD (bb);
1931 rtx end = BB_END (bb);
1932
1933 /* Verify the end of the basic block is in the INSN chain. */
1934 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
1935 if (x == end)
1936 break;
1937
1938 if (!x)
1939 {
1940 error ("end insn %d for block %d not found in the insn stream",
1941 INSN_UID (end), bb->index);
1942 err = 1;
1943 }
1944
1945 /* Work backwards from the end to the head of the basic block
1946 to verify the head is in the RTL chain. */
1947 for (; x != NULL_RTX; x = PREV_INSN (x))
1948 {
1949 /* While walking over the insn chain, verify insns appear
1950 in only one basic block and initialize the BB_INFO array
1951 used by other passes. */
1952 if (bb_info[INSN_UID (x)] != NULL)
1953 {
1954 error ("insn %d is in multiple basic blocks (%d and %d)",
1955 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
1956 err = 1;
1957 }
1958
1959 bb_info[INSN_UID (x)] = bb;
1960
1961 if (x == head)
1962 break;
1963 }
1964 if (!x)
1965 {
1966 error ("head insn %d for block %d not found in the insn stream",
1967 INSN_UID (head), bb->index);
1968 err = 1;
1969 }
1970
1971 last_head = x;
1972 }
1973
1974 /* Now check the basic blocks (boundaries etc.) */
1975 FOR_EACH_BB_REVERSE (bb)
1976 {
1977 int n_fallthru = 0, n_eh = 0, n_call = 0, n_abnormal = 0, n_branch = 0;
1978 edge e, fallthru = NULL;
1979 rtx note;
1980 edge_iterator ei;
1981
1982 if (INSN_P (BB_END (bb))
1983 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
1984 && EDGE_COUNT (bb->succs) >= 2
1985 && any_condjump_p (BB_END (bb)))
1986 {
1987 if (INTVAL (XEXP (note, 0)) != BRANCH_EDGE (bb)->probability
1988 && profile_status != PROFILE_ABSENT)
1989 {
1990 error ("verify_flow_info: REG_BR_PROB does not match cfg %wi %i",
1991 INTVAL (XEXP (note, 0)), BRANCH_EDGE (bb)->probability);
1992 err = 1;
1993 }
1994 }
1995 FOR_EACH_EDGE (e, ei, bb->succs)
1996 {
1997 if (e->flags & EDGE_FALLTHRU)
1998 {
1999 n_fallthru++, fallthru = e;
2000 if ((e->flags & EDGE_CROSSING)
2001 || (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
2002 && e->src != ENTRY_BLOCK_PTR
2003 && e->dest != EXIT_BLOCK_PTR))
2004 {
2005 error ("Fallthru edge crosses section boundary (bb %i)",
2006 e->src->index);
2007 err = 1;
2008 }
2009 }
2010
2011 if ((e->flags & ~(EDGE_DFS_BACK
2012 | EDGE_CAN_FALLTHRU
2013 | EDGE_IRREDUCIBLE_LOOP
2014 | EDGE_LOOP_EXIT
2015 | EDGE_CROSSING)) == 0)
2016 n_branch++;
2017
2018 if (e->flags & EDGE_ABNORMAL_CALL)
2019 n_call++;
2020
2021 if (e->flags & EDGE_EH)
2022 n_eh++;
2023 else if (e->flags & EDGE_ABNORMAL)
2024 n_abnormal++;
2025 }
2026
2027 if (n_eh && GET_CODE (PATTERN (BB_END (bb))) != RESX
2028 && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2029 {
2030 error ("Missing REG_EH_REGION note in the end of bb %i", bb->index);
2031 err = 1;
2032 }
2033 if (n_branch
2034 && (!JUMP_P (BB_END (bb))
2035 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2036 || any_condjump_p (BB_END (bb))))))
2037 {
2038 error ("Too many outgoing branch edges from bb %i", bb->index);
2039 err = 1;
2040 }
2041 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2042 {
2043 error ("Fallthru edge after unconditional jump %i", bb->index);
2044 err = 1;
2045 }
2046 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2047 {
2048 error ("Wrong amount of branch edges after unconditional jump %i", bb->index);
2049 err = 1;
2050 }
2051 if (n_branch != 1 && any_condjump_p (BB_END (bb))
2052 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
2053 {
2054 error ("Wrong amount of branch edges after conditional jump %i", bb->index);
2055 err = 1;
2056 }
2057 if (n_call && !CALL_P (BB_END (bb)))
2058 {
2059 error ("Call edges for non-call insn in bb %i", bb->index);
2060 err = 1;
2061 }
2062 if (n_abnormal
2063 && (!CALL_P (BB_END (bb)) && n_call != n_abnormal)
2064 && (!JUMP_P (BB_END (bb))
2065 || any_condjump_p (BB_END (bb))
2066 || any_uncondjump_p (BB_END (bb))))
2067 {
2068 error ("Abnormal edges for no purpose in bb %i", bb->index);
2069 err = 1;
2070 }
2071
2072 for (x = BB_HEAD (bb); x != NEXT_INSN (BB_END (bb)); x = NEXT_INSN (x))
2073 /* We may have a barrier inside a basic block before dead code
2074 elimination. There is no BLOCK_FOR_INSN field in a barrier. */
2075 if (!BARRIER_P (x) && BLOCK_FOR_INSN (x) != bb)
2076 {
2077 debug_rtx (x);
2078 if (! BLOCK_FOR_INSN (x))
2079 error
2080 ("insn %d inside basic block %d but block_for_insn is NULL",
2081 INSN_UID (x), bb->index);
2082 else
2083 error
2084 ("insn %d inside basic block %d but block_for_insn is %i",
2085 INSN_UID (x), bb->index, BLOCK_FOR_INSN (x)->index);
2086
2087 err = 1;
2088 }
2089
2090 /* OK pointers are correct. Now check the header of basic
2091 block. It ought to contain optional CODE_LABEL followed
2092 by NOTE_BASIC_BLOCK. */
2093 x = BB_HEAD (bb);
2094 if (LABEL_P (x))
2095 {
2096 if (BB_END (bb) == x)
2097 {
2098 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2099 bb->index);
2100 err = 1;
2101 }
2102
2103 x = NEXT_INSN (x);
2104 }
2105
2106 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2107 {
2108 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2109 bb->index);
2110 err = 1;
2111 }
2112
2113 if (BB_END (bb) == x)
2114 /* Do checks for empty blocks here. */
2115 ;
2116 else
2117 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2118 {
2119 if (NOTE_INSN_BASIC_BLOCK_P (x))
2120 {
2121 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2122 INSN_UID (x), bb->index);
2123 err = 1;
2124 }
2125
2126 if (x == BB_END (bb))
2127 break;
2128
2129 if (control_flow_insn_p (x))
2130 {
2131 error ("in basic block %d:", bb->index);
2132 fatal_insn ("flow control insn inside a basic block", x);
2133 }
2134 }
2135 }
2136
2137 /* Clean up. */
2138 free (bb_info);
2139 return err;
2140 }
2141
2142 /* Verify the CFG and RTL consistency common for both underlying RTL and
2143 cfglayout RTL.
2144
2145 Currently it does following checks:
2146 - all checks of rtl_verify_flow_info_1
2147 - check that all insns are in the basic blocks
2148 (except the switch handling code, barriers and notes)
2149 - check that all returns are followed by barriers
2150 - check that all fallthru edge points to the adjacent blocks. */
2151 static int
2152 rtl_verify_flow_info (void)
2153 {
2154 basic_block bb;
2155 int err = rtl_verify_flow_info_1 ();
2156 rtx x;
2157 int num_bb_notes;
2158 const rtx rtx_first = get_insns ();
2159 basic_block last_bb_seen = ENTRY_BLOCK_PTR, curr_bb = NULL;
2160
2161 FOR_EACH_BB_REVERSE (bb)
2162 {
2163 edge e;
2164 edge_iterator ei;
2165
2166 FOR_EACH_EDGE (e, ei, bb->succs)
2167 if (e->flags & EDGE_FALLTHRU)
2168 break;
2169 if (!e)
2170 {
2171 rtx insn;
2172
2173 /* Ensure existence of barrier in BB with no fallthru edges. */
2174 for (insn = BB_END (bb); !insn || !BARRIER_P (insn);
2175 insn = NEXT_INSN (insn))
2176 if (!insn
2177 || (NOTE_P (insn)
2178 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK))
2179 {
2180 error ("missing barrier after block %i", bb->index);
2181 err = 1;
2182 break;
2183 }
2184 }
2185 else if (e->src != ENTRY_BLOCK_PTR
2186 && e->dest != EXIT_BLOCK_PTR)
2187 {
2188 rtx insn;
2189
2190 if (e->src->next_bb != e->dest)
2191 {
2192 error
2193 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2194 e->src->index, e->dest->index);
2195 err = 1;
2196 }
2197 else
2198 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2199 insn = NEXT_INSN (insn))
2200 if (BARRIER_P (insn)
2201 #ifndef CASE_DROPS_THROUGH
2202 || INSN_P (insn)
2203 #else
2204 || (INSN_P (insn) && ! JUMP_TABLE_DATA_P (insn))
2205 #endif
2206 )
2207 {
2208 error ("verify_flow_info: Incorrect fallthru %i->%i",
2209 e->src->index, e->dest->index);
2210 fatal_insn ("wrong insn in the fallthru edge", insn);
2211 err = 1;
2212 }
2213 }
2214 }
2215
2216 num_bb_notes = 0;
2217 last_bb_seen = ENTRY_BLOCK_PTR;
2218
2219 for (x = rtx_first; x; x = NEXT_INSN (x))
2220 {
2221 if (NOTE_INSN_BASIC_BLOCK_P (x))
2222 {
2223 bb = NOTE_BASIC_BLOCK (x);
2224
2225 num_bb_notes++;
2226 if (bb != last_bb_seen->next_bb)
2227 internal_error ("basic blocks not laid down consecutively");
2228
2229 curr_bb = last_bb_seen = bb;
2230 }
2231
2232 if (!curr_bb)
2233 {
2234 switch (GET_CODE (x))
2235 {
2236 case BARRIER:
2237 case NOTE:
2238 break;
2239
2240 case CODE_LABEL:
2241 /* An addr_vec is placed outside any basic block. */
2242 if (NEXT_INSN (x)
2243 && JUMP_P (NEXT_INSN (x))
2244 && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
2245 || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
2246 x = NEXT_INSN (x);
2247
2248 /* But in any case, non-deletable labels can appear anywhere. */
2249 break;
2250
2251 default:
2252 fatal_insn ("insn outside basic block", x);
2253 }
2254 }
2255
2256 if (JUMP_P (x)
2257 && returnjump_p (x) && ! condjump_p (x)
2258 && ! (NEXT_INSN (x) && BARRIER_P (NEXT_INSN (x))))
2259 fatal_insn ("return not followed by barrier", x);
2260 if (curr_bb && x == BB_END (curr_bb))
2261 curr_bb = NULL;
2262 }
2263
2264 if (num_bb_notes != n_basic_blocks)
2265 internal_error
2266 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2267 num_bb_notes, n_basic_blocks);
2268
2269 return err;
2270 }
2271 \f
2272 /* Assume that the preceding pass has possibly eliminated jump instructions
2273 or converted the unconditional jumps. Eliminate the edges from CFG.
2274 Return true if any edges are eliminated. */
2275
2276 bool
2277 purge_dead_edges (basic_block bb)
2278 {
2279 edge e;
2280 rtx insn = BB_END (bb), note;
2281 bool purged = false;
2282 bool found;
2283 edge_iterator ei;
2284
2285 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
2286 if (NONJUMP_INSN_P (insn)
2287 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
2288 {
2289 rtx eqnote;
2290
2291 if (! may_trap_p (PATTERN (insn))
2292 || ((eqnote = find_reg_equal_equiv_note (insn))
2293 && ! may_trap_p (XEXP (eqnote, 0))))
2294 remove_note (insn, note);
2295 }
2296
2297 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
2298 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2299 {
2300 if (e->flags & EDGE_EH)
2301 {
2302 if (can_throw_internal (BB_END (bb)))
2303 {
2304 ei_next (&ei);
2305 continue;
2306 }
2307 }
2308 else if (e->flags & EDGE_ABNORMAL_CALL)
2309 {
2310 if (CALL_P (BB_END (bb))
2311 && (! (note = find_reg_note (insn, REG_EH_REGION, NULL))
2312 || INTVAL (XEXP (note, 0)) >= 0))
2313 {
2314 ei_next (&ei);
2315 continue;
2316 }
2317 }
2318 else
2319 {
2320 ei_next (&ei);
2321 continue;
2322 }
2323
2324 remove_edge (e);
2325 bb->flags |= BB_DIRTY;
2326 purged = true;
2327 }
2328
2329 if (JUMP_P (insn))
2330 {
2331 rtx note;
2332 edge b,f;
2333 edge_iterator ei;
2334
2335 /* We do care only about conditional jumps and simplejumps. */
2336 if (!any_condjump_p (insn)
2337 && !returnjump_p (insn)
2338 && !simplejump_p (insn))
2339 return purged;
2340
2341 /* Branch probability/prediction notes are defined only for
2342 condjumps. We've possibly turned condjump into simplejump. */
2343 if (simplejump_p (insn))
2344 {
2345 note = find_reg_note (insn, REG_BR_PROB, NULL);
2346 if (note)
2347 remove_note (insn, note);
2348 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
2349 remove_note (insn, note);
2350 }
2351
2352 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2353 {
2354 /* Avoid abnormal flags to leak from computed jumps turned
2355 into simplejumps. */
2356
2357 e->flags &= ~EDGE_ABNORMAL;
2358
2359 /* See if this edge is one we should keep. */
2360 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
2361 /* A conditional jump can fall through into the next
2362 block, so we should keep the edge. */
2363 {
2364 ei_next (&ei);
2365 continue;
2366 }
2367 else if (e->dest != EXIT_BLOCK_PTR
2368 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
2369 /* If the destination block is the target of the jump,
2370 keep the edge. */
2371 {
2372 ei_next (&ei);
2373 continue;
2374 }
2375 else if (e->dest == EXIT_BLOCK_PTR && returnjump_p (insn))
2376 /* If the destination block is the exit block, and this
2377 instruction is a return, then keep the edge. */
2378 {
2379 ei_next (&ei);
2380 continue;
2381 }
2382 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
2383 /* Keep the edges that correspond to exceptions thrown by
2384 this instruction and rematerialize the EDGE_ABNORMAL
2385 flag we just cleared above. */
2386 {
2387 e->flags |= EDGE_ABNORMAL;
2388 ei_next (&ei);
2389 continue;
2390 }
2391
2392 /* We do not need this edge. */
2393 bb->flags |= BB_DIRTY;
2394 purged = true;
2395 remove_edge (e);
2396 }
2397
2398 if (EDGE_COUNT (bb->succs) == 0 || !purged)
2399 return purged;
2400
2401 if (dump_file)
2402 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
2403
2404 if (!optimize)
2405 return purged;
2406
2407 /* Redistribute probabilities. */
2408 if (EDGE_COUNT (bb->succs) == 1)
2409 {
2410 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
2411 EDGE_SUCC (bb, 0)->count = bb->count;
2412 }
2413 else
2414 {
2415 note = find_reg_note (insn, REG_BR_PROB, NULL);
2416 if (!note)
2417 return purged;
2418
2419 b = BRANCH_EDGE (bb);
2420 f = FALLTHRU_EDGE (bb);
2421 b->probability = INTVAL (XEXP (note, 0));
2422 f->probability = REG_BR_PROB_BASE - b->probability;
2423 b->count = bb->count * b->probability / REG_BR_PROB_BASE;
2424 f->count = bb->count * f->probability / REG_BR_PROB_BASE;
2425 }
2426
2427 return purged;
2428 }
2429 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
2430 {
2431 /* First, there should not be any EH or ABCALL edges resulting
2432 from non-local gotos and the like. If there were, we shouldn't
2433 have created the sibcall in the first place. Second, there
2434 should of course never have been a fallthru edge. */
2435 gcc_assert (EDGE_COUNT (bb->succs) == 1);
2436 gcc_assert (EDGE_SUCC (bb, 0)->flags == (EDGE_SIBCALL | EDGE_ABNORMAL));
2437
2438 return 0;
2439 }
2440
2441 /* If we don't see a jump insn, we don't know exactly why the block would
2442 have been broken at this point. Look for a simple, non-fallthru edge,
2443 as these are only created by conditional branches. If we find such an
2444 edge we know that there used to be a jump here and can then safely
2445 remove all non-fallthru edges. */
2446 found = false;
2447 FOR_EACH_EDGE (e, ei, bb->succs)
2448 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
2449 {
2450 found = true;
2451 break;
2452 }
2453
2454 if (!found)
2455 return purged;
2456
2457 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2458 {
2459 if (!(e->flags & EDGE_FALLTHRU))
2460 {
2461 bb->flags |= BB_DIRTY;
2462 remove_edge (e);
2463 purged = true;
2464 }
2465 else
2466 ei_next (&ei);
2467 }
2468
2469 gcc_assert (EDGE_COUNT (bb->succs) == 1);
2470
2471 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
2472 EDGE_SUCC (bb, 0)->count = bb->count;
2473
2474 if (dump_file)
2475 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
2476 bb->index);
2477 return purged;
2478 }
2479
2480 /* Search all basic blocks for potentially dead edges and purge them. Return
2481 true if some edge has been eliminated. */
2482
2483 bool
2484 purge_all_dead_edges (int update_life_p)
2485 {
2486 int purged = false;
2487 sbitmap blocks = 0;
2488 basic_block bb;
2489
2490 if (update_life_p)
2491 {
2492 blocks = sbitmap_alloc (last_basic_block);
2493 sbitmap_zero (blocks);
2494 }
2495
2496 FOR_EACH_BB (bb)
2497 {
2498 bool purged_here = purge_dead_edges (bb);
2499
2500 purged |= purged_here;
2501 if (purged_here && update_life_p)
2502 SET_BIT (blocks, bb->index);
2503 }
2504
2505 if (update_life_p && purged)
2506 update_life_info (blocks, UPDATE_LIFE_GLOBAL,
2507 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
2508 | PROP_KILL_DEAD_CODE);
2509
2510 if (update_life_p)
2511 sbitmap_free (blocks);
2512 return purged;
2513 }
2514
2515 /* Same as split_block but update cfg_layout structures. */
2516
2517 static basic_block
2518 cfg_layout_split_block (basic_block bb, void *insnp)
2519 {
2520 rtx insn = insnp;
2521 basic_block new_bb = rtl_split_block (bb, insn);
2522
2523 new_bb->rbi->footer = bb->rbi->footer;
2524 bb->rbi->footer = NULL;
2525
2526 return new_bb;
2527 }
2528
2529
2530 /* Redirect Edge to DEST. */
2531 static edge
2532 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
2533 {
2534 basic_block src = e->src;
2535 edge ret;
2536
2537 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
2538 return NULL;
2539
2540 if (e->dest == dest)
2541 return e;
2542
2543 if (e->src != ENTRY_BLOCK_PTR
2544 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
2545 {
2546 src->flags |= BB_DIRTY;
2547 return ret;
2548 }
2549
2550 if (e->src == ENTRY_BLOCK_PTR
2551 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
2552 {
2553 if (dump_file)
2554 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
2555 e->src->index, dest->index);
2556
2557 e->src->flags |= BB_DIRTY;
2558 redirect_edge_succ (e, dest);
2559 return e;
2560 }
2561
2562 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
2563 in the case the basic block appears to be in sequence. Avoid this
2564 transformation. */
2565
2566 if (e->flags & EDGE_FALLTHRU)
2567 {
2568 /* Redirect any branch edges unified with the fallthru one. */
2569 if (JUMP_P (BB_END (src))
2570 && label_is_jump_target_p (BB_HEAD (e->dest),
2571 BB_END (src)))
2572 {
2573 edge redirected;
2574
2575 if (dump_file)
2576 fprintf (dump_file, "Fallthru edge unified with branch "
2577 "%i->%i redirected to %i\n",
2578 e->src->index, e->dest->index, dest->index);
2579 e->flags &= ~EDGE_FALLTHRU;
2580 redirected = redirect_branch_edge (e, dest);
2581 gcc_assert (redirected);
2582 e->flags |= EDGE_FALLTHRU;
2583 e->src->flags |= BB_DIRTY;
2584 return e;
2585 }
2586 /* In case we are redirecting fallthru edge to the branch edge
2587 of conditional jump, remove it. */
2588 if (EDGE_COUNT (src->succs) == 2)
2589 {
2590 bool found = false;
2591 unsigned ix = 0;
2592 edge tmp, s;
2593 edge_iterator ei;
2594
2595 FOR_EACH_EDGE (tmp, ei, src->succs)
2596 if (e == tmp)
2597 {
2598 found = true;
2599 ix = ei.index;
2600 break;
2601 }
2602
2603 gcc_assert (found);
2604
2605 if (EDGE_COUNT (src->succs) > (ix + 1))
2606 s = EDGE_SUCC (src, ix + 1);
2607 else
2608 s = EDGE_SUCC (src, 0);
2609
2610 if (s->dest == dest
2611 && any_condjump_p (BB_END (src))
2612 && onlyjump_p (BB_END (src)))
2613 delete_insn (BB_END (src));
2614 }
2615 ret = redirect_edge_succ_nodup (e, dest);
2616 if (dump_file)
2617 fprintf (dump_file, "Fallthru edge %i->%i redirected to %i\n",
2618 e->src->index, e->dest->index, dest->index);
2619 }
2620 else
2621 ret = redirect_branch_edge (e, dest);
2622
2623 /* We don't want simplejumps in the insn stream during cfglayout. */
2624 gcc_assert (!simplejump_p (BB_END (src)));
2625
2626 src->flags |= BB_DIRTY;
2627 return ret;
2628 }
2629
2630 /* Simple wrapper as we always can redirect fallthru edges. */
2631 static basic_block
2632 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
2633 {
2634 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
2635
2636 gcc_assert (redirected);
2637 return NULL;
2638 }
2639
2640 /* Same as delete_basic_block but update cfg_layout structures. */
2641
2642 static void
2643 cfg_layout_delete_block (basic_block bb)
2644 {
2645 rtx insn, next, prev = PREV_INSN (BB_HEAD (bb)), *to, remaints;
2646
2647 if (bb->rbi->header)
2648 {
2649 next = BB_HEAD (bb);
2650 if (prev)
2651 NEXT_INSN (prev) = bb->rbi->header;
2652 else
2653 set_first_insn (bb->rbi->header);
2654 PREV_INSN (bb->rbi->header) = prev;
2655 insn = bb->rbi->header;
2656 while (NEXT_INSN (insn))
2657 insn = NEXT_INSN (insn);
2658 NEXT_INSN (insn) = next;
2659 PREV_INSN (next) = insn;
2660 }
2661 next = NEXT_INSN (BB_END (bb));
2662 if (bb->rbi->footer)
2663 {
2664 insn = bb->rbi->footer;
2665 while (insn)
2666 {
2667 if (BARRIER_P (insn))
2668 {
2669 if (PREV_INSN (insn))
2670 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2671 else
2672 bb->rbi->footer = NEXT_INSN (insn);
2673 if (NEXT_INSN (insn))
2674 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2675 }
2676 if (LABEL_P (insn))
2677 break;
2678 insn = NEXT_INSN (insn);
2679 }
2680 if (bb->rbi->footer)
2681 {
2682 insn = BB_END (bb);
2683 NEXT_INSN (insn) = bb->rbi->footer;
2684 PREV_INSN (bb->rbi->footer) = insn;
2685 while (NEXT_INSN (insn))
2686 insn = NEXT_INSN (insn);
2687 NEXT_INSN (insn) = next;
2688 if (next)
2689 PREV_INSN (next) = insn;
2690 else
2691 set_last_insn (insn);
2692 }
2693 }
2694 if (bb->next_bb != EXIT_BLOCK_PTR)
2695 to = &bb->next_bb->rbi->header;
2696 else
2697 to = &cfg_layout_function_footer;
2698 rtl_delete_block (bb);
2699
2700 if (prev)
2701 prev = NEXT_INSN (prev);
2702 else
2703 prev = get_insns ();
2704 if (next)
2705 next = PREV_INSN (next);
2706 else
2707 next = get_last_insn ();
2708
2709 if (next && NEXT_INSN (next) != prev)
2710 {
2711 remaints = unlink_insn_chain (prev, next);
2712 insn = remaints;
2713 while (NEXT_INSN (insn))
2714 insn = NEXT_INSN (insn);
2715 NEXT_INSN (insn) = *to;
2716 if (*to)
2717 PREV_INSN (*to) = insn;
2718 *to = remaints;
2719 }
2720 }
2721
2722 /* Return true when blocks A and B can be safely merged. */
2723 static bool
2724 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
2725 {
2726 /* If we are partitioning hot/cold basic blocks, we don't want to
2727 mess up unconditional or indirect jumps that cross between hot
2728 and cold sections.
2729
2730 Basic block partitioning may result in some jumps that appear to
2731 be optimizable (or blocks that appear to be mergeable), but which really
2732 must be left untouched (they are required to make it safely across
2733 partition boundaries). See the comments at the top of
2734 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2735
2736 if (flag_reorder_blocks_and_partition
2737 && (find_reg_note (BB_END (a), REG_CROSSING_JUMP, NULL_RTX)
2738 || find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
2739 || BB_PARTITION (a) != BB_PARTITION (b)))
2740 return false;
2741
2742 /* There must be exactly one edge in between the blocks. */
2743 return (EDGE_COUNT (a->succs) == 1
2744 && EDGE_SUCC (a, 0)->dest == b
2745 && EDGE_COUNT (b->preds) == 1
2746 && a != b
2747 /* Must be simple edge. */
2748 && !(EDGE_SUCC (a, 0)->flags & EDGE_COMPLEX)
2749 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
2750 /* If the jump insn has side effects,
2751 we can't kill the edge. */
2752 && (!JUMP_P (BB_END (a))
2753 || (reload_completed
2754 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
2755 }
2756
2757 /* Merge block A and B, abort when it is not possible. */
2758 static void
2759 cfg_layout_merge_blocks (basic_block a, basic_block b)
2760 {
2761 #ifdef ENABLE_CHECKING
2762 gcc_assert (cfg_layout_can_merge_blocks_p (a, b));
2763 #endif
2764
2765 /* If there was a CODE_LABEL beginning B, delete it. */
2766 if (LABEL_P (BB_HEAD (b)))
2767 delete_insn (BB_HEAD (b));
2768
2769 /* We should have fallthru edge in a, or we can do dummy redirection to get
2770 it cleaned up. */
2771 if (JUMP_P (BB_END (a)))
2772 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
2773 gcc_assert (!JUMP_P (BB_END (a)));
2774
2775 /* Possible line number notes should appear in between. */
2776 if (b->rbi->header)
2777 {
2778 rtx first = BB_END (a), last;
2779
2780 last = emit_insn_after_noloc (b->rbi->header, BB_END (a));
2781 delete_insn_chain (NEXT_INSN (first), last);
2782 b->rbi->header = NULL;
2783 }
2784
2785 /* In the case basic blocks are not adjacent, move them around. */
2786 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
2787 {
2788 rtx first = unlink_insn_chain (BB_HEAD (b), BB_END (b));
2789
2790 emit_insn_after_noloc (first, BB_END (a));
2791 /* Skip possible DELETED_LABEL insn. */
2792 if (!NOTE_INSN_BASIC_BLOCK_P (first))
2793 first = NEXT_INSN (first);
2794 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (first));
2795 BB_HEAD (b) = NULL;
2796 delete_insn (first);
2797 }
2798 /* Otherwise just re-associate the instructions. */
2799 else
2800 {
2801 rtx insn;
2802
2803 for (insn = BB_HEAD (b);
2804 insn != NEXT_INSN (BB_END (b));
2805 insn = NEXT_INSN (insn))
2806 set_block_for_insn (insn, a);
2807 insn = BB_HEAD (b);
2808 /* Skip possible DELETED_LABEL insn. */
2809 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
2810 insn = NEXT_INSN (insn);
2811 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
2812 BB_HEAD (b) = NULL;
2813 BB_END (a) = BB_END (b);
2814 delete_insn (insn);
2815 }
2816
2817 /* Possible tablejumps and barriers should appear after the block. */
2818 if (b->rbi->footer)
2819 {
2820 if (!a->rbi->footer)
2821 a->rbi->footer = b->rbi->footer;
2822 else
2823 {
2824 rtx last = a->rbi->footer;
2825
2826 while (NEXT_INSN (last))
2827 last = NEXT_INSN (last);
2828 NEXT_INSN (last) = b->rbi->footer;
2829 PREV_INSN (b->rbi->footer) = last;
2830 }
2831 b->rbi->footer = NULL;
2832 }
2833
2834 if (dump_file)
2835 fprintf (dump_file, "Merged blocks %d and %d.\n",
2836 a->index, b->index);
2837 }
2838
2839 /* Split edge E. */
2840
2841 static basic_block
2842 cfg_layout_split_edge (edge e)
2843 {
2844 edge new_e;
2845 basic_block new_bb =
2846 create_basic_block (e->src != ENTRY_BLOCK_PTR
2847 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
2848 NULL_RTX, e->src);
2849
2850 /* ??? This info is likely going to be out of date very soon, but we must
2851 create it to avoid getting an ICE later. */
2852 if (e->dest->global_live_at_start)
2853 {
2854 new_bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
2855 new_bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
2856 COPY_REG_SET (new_bb->global_live_at_start,
2857 e->dest->global_live_at_start);
2858 COPY_REG_SET (new_bb->global_live_at_end,
2859 e->dest->global_live_at_start);
2860 }
2861
2862 new_e = make_edge (new_bb, e->dest, EDGE_FALLTHRU);
2863 redirect_edge_and_branch_force (e, new_bb);
2864
2865 return new_bb;
2866 }
2867
2868 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
2869
2870 static void
2871 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
2872 {
2873 }
2874
2875 /* Return 1 if BB ends with a call, possibly followed by some
2876 instructions that must stay with the call, 0 otherwise. */
2877
2878 static bool
2879 rtl_block_ends_with_call_p (basic_block bb)
2880 {
2881 rtx insn = BB_END (bb);
2882
2883 while (!CALL_P (insn)
2884 && insn != BB_HEAD (bb)
2885 && keep_with_call_p (insn))
2886 insn = PREV_INSN (insn);
2887 return (CALL_P (insn));
2888 }
2889
2890 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
2891
2892 static bool
2893 rtl_block_ends_with_condjump_p (basic_block bb)
2894 {
2895 return any_condjump_p (BB_END (bb));
2896 }
2897
2898 /* Return true if we need to add fake edge to exit.
2899 Helper function for rtl_flow_call_edges_add. */
2900
2901 static bool
2902 need_fake_edge_p (rtx insn)
2903 {
2904 if (!INSN_P (insn))
2905 return false;
2906
2907 if ((CALL_P (insn)
2908 && !SIBLING_CALL_P (insn)
2909 && !find_reg_note (insn, REG_NORETURN, NULL)
2910 && !find_reg_note (insn, REG_ALWAYS_RETURN, NULL)
2911 && !CONST_OR_PURE_CALL_P (insn)))
2912 return true;
2913
2914 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2915 && MEM_VOLATILE_P (PATTERN (insn)))
2916 || (GET_CODE (PATTERN (insn)) == PARALLEL
2917 && asm_noperands (insn) != -1
2918 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
2919 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2920 }
2921
2922 /* Add fake edges to the function exit for any non constant and non noreturn
2923 calls, volatile inline assembly in the bitmap of blocks specified by
2924 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
2925 that were split.
2926
2927 The goal is to expose cases in which entering a basic block does not imply
2928 that all subsequent instructions must be executed. */
2929
2930 static int
2931 rtl_flow_call_edges_add (sbitmap blocks)
2932 {
2933 int i;
2934 int blocks_split = 0;
2935 int last_bb = last_basic_block;
2936 bool check_last_block = false;
2937
2938 if (n_basic_blocks == 0)
2939 return 0;
2940
2941 if (! blocks)
2942 check_last_block = true;
2943 else
2944 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
2945
2946 /* In the last basic block, before epilogue generation, there will be
2947 a fallthru edge to EXIT. Special care is required if the last insn
2948 of the last basic block is a call because make_edge folds duplicate
2949 edges, which would result in the fallthru edge also being marked
2950 fake, which would result in the fallthru edge being removed by
2951 remove_fake_edges, which would result in an invalid CFG.
2952
2953 Moreover, we can't elide the outgoing fake edge, since the block
2954 profiler needs to take this into account in order to solve the minimal
2955 spanning tree in the case that the call doesn't return.
2956
2957 Handle this by adding a dummy instruction in a new last basic block. */
2958 if (check_last_block)
2959 {
2960 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
2961 rtx insn = BB_END (bb);
2962
2963 /* Back up past insns that must be kept in the same block as a call. */
2964 while (insn != BB_HEAD (bb)
2965 && keep_with_call_p (insn))
2966 insn = PREV_INSN (insn);
2967
2968 if (need_fake_edge_p (insn))
2969 {
2970 edge e;
2971
2972 e = find_edge (bb, EXIT_BLOCK_PTR);
2973 if (e)
2974 {
2975 insert_insn_on_edge (gen_rtx_USE (VOIDmode, const0_rtx), e);
2976 commit_edge_insertions ();
2977 }
2978 }
2979 }
2980
2981 /* Now add fake edges to the function exit for any non constant
2982 calls since there is no way that we can determine if they will
2983 return or not... */
2984
2985 for (i = 0; i < last_bb; i++)
2986 {
2987 basic_block bb = BASIC_BLOCK (i);
2988 rtx insn;
2989 rtx prev_insn;
2990
2991 if (!bb)
2992 continue;
2993
2994 if (blocks && !TEST_BIT (blocks, i))
2995 continue;
2996
2997 for (insn = BB_END (bb); ; insn = prev_insn)
2998 {
2999 prev_insn = PREV_INSN (insn);
3000 if (need_fake_edge_p (insn))
3001 {
3002 edge e;
3003 rtx split_at_insn = insn;
3004
3005 /* Don't split the block between a call and an insn that should
3006 remain in the same block as the call. */
3007 if (CALL_P (insn))
3008 while (split_at_insn != BB_END (bb)
3009 && keep_with_call_p (NEXT_INSN (split_at_insn)))
3010 split_at_insn = NEXT_INSN (split_at_insn);
3011
3012 /* The handling above of the final block before the epilogue
3013 should be enough to verify that there is no edge to the exit
3014 block in CFG already. Calling make_edge in such case would
3015 cause us to mark that edge as fake and remove it later. */
3016
3017 #ifdef ENABLE_CHECKING
3018 if (split_at_insn == BB_END (bb))
3019 {
3020 e = find_edge (bb, EXIT_BLOCK_PTR);
3021 gcc_assert (e == NULL);
3022 }
3023 #endif
3024
3025 /* Note that the following may create a new basic block
3026 and renumber the existing basic blocks. */
3027 if (split_at_insn != BB_END (bb))
3028 {
3029 e = split_block (bb, split_at_insn);
3030 if (e)
3031 blocks_split++;
3032 }
3033
3034 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
3035 }
3036
3037 if (insn == BB_HEAD (bb))
3038 break;
3039 }
3040 }
3041
3042 if (blocks_split)
3043 verify_flow_info ();
3044
3045 return blocks_split;
3046 }
3047
3048 /* Implementation of CFG manipulation for linearized RTL. */
3049 struct cfg_hooks rtl_cfg_hooks = {
3050 "rtl",
3051 rtl_verify_flow_info,
3052 rtl_dump_bb,
3053 rtl_create_basic_block,
3054 rtl_redirect_edge_and_branch,
3055 rtl_redirect_edge_and_branch_force,
3056 rtl_delete_block,
3057 rtl_split_block,
3058 rtl_move_block_after,
3059 rtl_can_merge_blocks, /* can_merge_blocks_p */
3060 rtl_merge_blocks,
3061 rtl_predict_edge,
3062 rtl_predicted_by_p,
3063 NULL, /* can_duplicate_block_p */
3064 NULL, /* duplicate_block */
3065 rtl_split_edge,
3066 rtl_make_forwarder_block,
3067 rtl_tidy_fallthru_edge,
3068 rtl_block_ends_with_call_p,
3069 rtl_block_ends_with_condjump_p,
3070 rtl_flow_call_edges_add,
3071 NULL, /* execute_on_growing_pred */
3072 NULL /* execute_on_shrinking_pred */
3073 };
3074
3075 /* Implementation of CFG manipulation for cfg layout RTL, where
3076 basic block connected via fallthru edges does not have to be adjacent.
3077 This representation will hopefully become the default one in future
3078 version of the compiler. */
3079
3080 /* We do not want to declare these functions in a header file, since they
3081 should only be used through the cfghooks interface, and we do not want to
3082 move them here since it would require also moving quite a lot of related
3083 code. */
3084 extern bool cfg_layout_can_duplicate_bb_p (basic_block);
3085 extern basic_block cfg_layout_duplicate_bb (basic_block);
3086
3087 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
3088 "cfglayout mode",
3089 rtl_verify_flow_info_1,
3090 rtl_dump_bb,
3091 cfg_layout_create_basic_block,
3092 cfg_layout_redirect_edge_and_branch,
3093 cfg_layout_redirect_edge_and_branch_force,
3094 cfg_layout_delete_block,
3095 cfg_layout_split_block,
3096 rtl_move_block_after,
3097 cfg_layout_can_merge_blocks_p,
3098 cfg_layout_merge_blocks,
3099 rtl_predict_edge,
3100 rtl_predicted_by_p,
3101 cfg_layout_can_duplicate_bb_p,
3102 cfg_layout_duplicate_bb,
3103 cfg_layout_split_edge,
3104 rtl_make_forwarder_block,
3105 NULL,
3106 rtl_block_ends_with_call_p,
3107 rtl_block_ends_with_condjump_p,
3108 rtl_flow_call_edges_add,
3109 NULL, /* execute_on_growing_pred */
3110 NULL /* execute_on_shrinking_pred */
3111 };
3112