]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgrtl.c
alias.c: Reorder #include statements and remove duplicates.
[thirdparty/gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains low level functions to manipulate the CFG and analyze it
21 that are aware of the RTL intermediate language.
22
23 Available functionality:
24 - Basic CFG/RTL manipulation API documented in cfghooks.h
25 - CFG-aware instruction chain manipulation
26 delete_insn, delete_insn_chain
27 - Edge splitting and committing to edges
28 insert_insn_on_edge, commit_edge_insertions
29 - CFG updating after insn simplification
30 purge_dead_edges, purge_all_dead_edges
31 - CFG fixing after coarse manipulation
32 fixup_abnormal_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "backend.h"
44 #include "target.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "cfghooks.h"
48 #include "df.h"
49 #include "tm_p.h"
50 #include "expmed.h"
51 #include "insn-config.h"
52 #include "regs.h"
53 #include "emit-rtl.h"
54 #include "alias.h"
55 #include "cfgrtl.h"
56 #include "cfganal.h"
57 #include "cfgbuild.h"
58 #include "cfgcleanup.h"
59 #include "bb-reorder.h"
60 #include "flags.h"
61 #include "except.h"
62 #include "rtl-error.h"
63 #include "insn-attr.h"
64 #include "dojump.h"
65 #include "explow.h"
66 #include "calls.h"
67 #include "varasm.h"
68 #include "stmt.h"
69 #include "expr.h"
70 #include "common/common-target.h"
71 #include "cfgloop.h"
72 #include "tree-pass.h"
73 #include "print-rtl.h"
74
75 /* Holds the interesting leading and trailing notes for the function.
76 Only applicable if the CFG is in cfglayout mode. */
77 static GTY(()) rtx_insn *cfg_layout_function_footer;
78 static GTY(()) rtx_insn *cfg_layout_function_header;
79
80 static rtx_insn *skip_insns_after_block (basic_block);
81 static void record_effective_endpoints (void);
82 static void fixup_reorder_chain (void);
83
84 void verify_insn_chain (void);
85 static void fixup_fallthru_exit_predecessor (void);
86 static int can_delete_note_p (const rtx_note *);
87 static int can_delete_label_p (const rtx_code_label *);
88 static basic_block rtl_split_edge (edge);
89 static bool rtl_move_block_after (basic_block, basic_block);
90 static int rtl_verify_flow_info (void);
91 static basic_block cfg_layout_split_block (basic_block, void *);
92 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
93 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
94 static void cfg_layout_delete_block (basic_block);
95 static void rtl_delete_block (basic_block);
96 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
97 static edge rtl_redirect_edge_and_branch (edge, basic_block);
98 static basic_block rtl_split_block (basic_block, void *);
99 static void rtl_dump_bb (FILE *, basic_block, int, int);
100 static int rtl_verify_flow_info_1 (void);
101 static void rtl_make_forwarder_block (edge);
102 \f
103 /* Return true if NOTE is not one of the ones that must be kept paired,
104 so that we may simply delete it. */
105
106 static int
107 can_delete_note_p (const rtx_note *note)
108 {
109 switch (NOTE_KIND (note))
110 {
111 case NOTE_INSN_DELETED:
112 case NOTE_INSN_BASIC_BLOCK:
113 case NOTE_INSN_EPILOGUE_BEG:
114 return true;
115
116 default:
117 return false;
118 }
119 }
120
121 /* True if a given label can be deleted. */
122
123 static int
124 can_delete_label_p (const rtx_code_label *label)
125 {
126 return (!LABEL_PRESERVE_P (label)
127 /* User declared labels must be preserved. */
128 && LABEL_NAME (label) == 0
129 && !in_insn_list_p (forced_labels, label));
130 }
131
132 /* Delete INSN by patching it out. */
133
134 void
135 delete_insn (rtx uncast_insn)
136 {
137 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
138 rtx note;
139 bool really_delete = true;
140
141 if (LABEL_P (insn))
142 {
143 /* Some labels can't be directly removed from the INSN chain, as they
144 might be references via variables, constant pool etc.
145 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
146 if (! can_delete_label_p (as_a <rtx_code_label *> (insn)))
147 {
148 const char *name = LABEL_NAME (insn);
149 basic_block bb = BLOCK_FOR_INSN (insn);
150 rtx_insn *bb_note = NEXT_INSN (insn);
151
152 really_delete = false;
153 PUT_CODE (insn, NOTE);
154 NOTE_KIND (insn) = NOTE_INSN_DELETED_LABEL;
155 NOTE_DELETED_LABEL_NAME (insn) = name;
156
157 /* If the note following the label starts a basic block, and the
158 label is a member of the same basic block, interchange the two. */
159 if (bb_note != NULL_RTX
160 && NOTE_INSN_BASIC_BLOCK_P (bb_note)
161 && bb != NULL
162 && bb == BLOCK_FOR_INSN (bb_note))
163 {
164 reorder_insns_nobb (insn, insn, bb_note);
165 BB_HEAD (bb) = bb_note;
166 if (BB_END (bb) == bb_note)
167 BB_END (bb) = insn;
168 }
169 }
170
171 remove_node_from_insn_list (insn, &nonlocal_goto_handler_labels);
172 }
173
174 if (really_delete)
175 {
176 /* If this insn has already been deleted, something is very wrong. */
177 gcc_assert (!insn->deleted ());
178 if (INSN_P (insn))
179 df_insn_delete (insn);
180 remove_insn (insn);
181 insn->set_deleted ();
182 }
183
184 /* If deleting a jump, decrement the use count of the label. Deleting
185 the label itself should happen in the normal course of block merging. */
186 if (JUMP_P (insn))
187 {
188 if (JUMP_LABEL (insn)
189 && LABEL_P (JUMP_LABEL (insn)))
190 LABEL_NUSES (JUMP_LABEL (insn))--;
191
192 /* If there are more targets, remove them too. */
193 while ((note
194 = find_reg_note (insn, REG_LABEL_TARGET, NULL_RTX)) != NULL_RTX
195 && LABEL_P (XEXP (note, 0)))
196 {
197 LABEL_NUSES (XEXP (note, 0))--;
198 remove_note (insn, note);
199 }
200 }
201
202 /* Also if deleting any insn that references a label as an operand. */
203 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX)) != NULL_RTX
204 && LABEL_P (XEXP (note, 0)))
205 {
206 LABEL_NUSES (XEXP (note, 0))--;
207 remove_note (insn, note);
208 }
209
210 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
211 {
212 rtvec vec = table->get_labels ();
213 int len = GET_NUM_ELEM (vec);
214 int i;
215
216 for (i = 0; i < len; i++)
217 {
218 rtx label = XEXP (RTVEC_ELT (vec, i), 0);
219
220 /* When deleting code in bulk (e.g. removing many unreachable
221 blocks) we can delete a label that's a target of the vector
222 before deleting the vector itself. */
223 if (!NOTE_P (label))
224 LABEL_NUSES (label)--;
225 }
226 }
227 }
228
229 /* Like delete_insn but also purge dead edges from BB. */
230
231 void
232 delete_insn_and_edges (rtx_insn *insn)
233 {
234 bool purge = false;
235
236 if (INSN_P (insn)
237 && BLOCK_FOR_INSN (insn)
238 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
239 purge = true;
240 delete_insn (insn);
241 if (purge)
242 purge_dead_edges (BLOCK_FOR_INSN (insn));
243 }
244
245 /* Unlink a chain of insns between START and FINISH, leaving notes
246 that must be paired. If CLEAR_BB is true, we set bb field for
247 insns that cannot be removed to NULL. */
248
249 void
250 delete_insn_chain (rtx start, rtx finish, bool clear_bb)
251 {
252 rtx_insn *prev, *current;
253
254 /* Unchain the insns one by one. It would be quicker to delete all of these
255 with a single unchaining, rather than one at a time, but we need to keep
256 the NOTE's. */
257 current = safe_as_a <rtx_insn *> (finish);
258 while (1)
259 {
260 prev = PREV_INSN (current);
261 if (NOTE_P (current) && !can_delete_note_p (as_a <rtx_note *> (current)))
262 ;
263 else
264 delete_insn (current);
265
266 if (clear_bb && !current->deleted ())
267 set_block_for_insn (current, NULL);
268
269 if (current == start)
270 break;
271 current = prev;
272 }
273 }
274 \f
275 /* Create a new basic block consisting of the instructions between HEAD and END
276 inclusive. This function is designed to allow fast BB construction - reuses
277 the note and basic block struct in BB_NOTE, if any and do not grow
278 BASIC_BLOCK chain and should be used directly only by CFG construction code.
279 END can be NULL in to create new empty basic block before HEAD. Both END
280 and HEAD can be NULL to create basic block at the end of INSN chain.
281 AFTER is the basic block we should be put after. */
282
283 basic_block
284 create_basic_block_structure (rtx_insn *head, rtx_insn *end, rtx_note *bb_note,
285 basic_block after)
286 {
287 basic_block bb;
288
289 if (bb_note
290 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
291 && bb->aux == NULL)
292 {
293 /* If we found an existing note, thread it back onto the chain. */
294
295 rtx_insn *after;
296
297 if (LABEL_P (head))
298 after = head;
299 else
300 {
301 after = PREV_INSN (head);
302 head = bb_note;
303 }
304
305 if (after != bb_note && NEXT_INSN (after) != bb_note)
306 reorder_insns_nobb (bb_note, bb_note, after);
307 }
308 else
309 {
310 /* Otherwise we must create a note and a basic block structure. */
311
312 bb = alloc_block ();
313
314 init_rtl_bb_info (bb);
315 if (!head && !end)
316 head = end = bb_note
317 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
318 else if (LABEL_P (head) && end)
319 {
320 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
321 if (head == end)
322 end = bb_note;
323 }
324 else
325 {
326 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
327 head = bb_note;
328 if (!end)
329 end = head;
330 }
331
332 NOTE_BASIC_BLOCK (bb_note) = bb;
333 }
334
335 /* Always include the bb note in the block. */
336 if (NEXT_INSN (end) == bb_note)
337 end = bb_note;
338
339 BB_HEAD (bb) = head;
340 BB_END (bb) = end;
341 bb->index = last_basic_block_for_fn (cfun)++;
342 bb->flags = BB_NEW | BB_RTL;
343 link_block (bb, after);
344 SET_BASIC_BLOCK_FOR_FN (cfun, bb->index, bb);
345 df_bb_refs_record (bb->index, false);
346 update_bb_for_insn (bb);
347 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
348
349 /* Tag the block so that we know it has been used when considering
350 other basic block notes. */
351 bb->aux = bb;
352
353 return bb;
354 }
355
356 /* Create new basic block consisting of instructions in between HEAD and END
357 and place it to the BB chain after block AFTER. END can be NULL to
358 create a new empty basic block before HEAD. Both END and HEAD can be
359 NULL to create basic block at the end of INSN chain. */
360
361 static basic_block
362 rtl_create_basic_block (void *headp, void *endp, basic_block after)
363 {
364 rtx_insn *head = (rtx_insn *) headp;
365 rtx_insn *end = (rtx_insn *) endp;
366 basic_block bb;
367
368 /* Grow the basic block array if needed. */
369 if ((size_t) last_basic_block_for_fn (cfun)
370 >= basic_block_info_for_fn (cfun)->length ())
371 {
372 size_t new_size =
373 (last_basic_block_for_fn (cfun)
374 + (last_basic_block_for_fn (cfun) + 3) / 4);
375 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
376 }
377
378 n_basic_blocks_for_fn (cfun)++;
379
380 bb = create_basic_block_structure (head, end, NULL, after);
381 bb->aux = NULL;
382 return bb;
383 }
384
385 static basic_block
386 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
387 {
388 basic_block newbb = rtl_create_basic_block (head, end, after);
389
390 return newbb;
391 }
392 \f
393 /* Delete the insns in a (non-live) block. We physically delete every
394 non-deleted-note insn, and update the flow graph appropriately.
395
396 Return nonzero if we deleted an exception handler. */
397
398 /* ??? Preserving all such notes strikes me as wrong. It would be nice
399 to post-process the stream to remove empty blocks, loops, ranges, etc. */
400
401 static void
402 rtl_delete_block (basic_block b)
403 {
404 rtx_insn *insn, *end;
405
406 /* If the head of this block is a CODE_LABEL, then it might be the
407 label for an exception handler which can't be reached. We need
408 to remove the label from the exception_handler_label list. */
409 insn = BB_HEAD (b);
410
411 end = get_last_bb_insn (b);
412
413 /* Selectively delete the entire chain. */
414 BB_HEAD (b) = NULL;
415 delete_insn_chain (insn, end, true);
416
417
418 if (dump_file)
419 fprintf (dump_file, "deleting block %d\n", b->index);
420 df_bb_delete (b->index);
421 }
422 \f
423 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
424
425 void
426 compute_bb_for_insn (void)
427 {
428 basic_block bb;
429
430 FOR_EACH_BB_FN (bb, cfun)
431 {
432 rtx_insn *end = BB_END (bb);
433 rtx_insn *insn;
434
435 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
436 {
437 BLOCK_FOR_INSN (insn) = bb;
438 if (insn == end)
439 break;
440 }
441 }
442 }
443
444 /* Release the basic_block_for_insn array. */
445
446 unsigned int
447 free_bb_for_insn (void)
448 {
449 rtx_insn *insn;
450 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
451 if (!BARRIER_P (insn))
452 BLOCK_FOR_INSN (insn) = NULL;
453 return 0;
454 }
455
456 namespace {
457
458 const pass_data pass_data_free_cfg =
459 {
460 RTL_PASS, /* type */
461 "*free_cfg", /* name */
462 OPTGROUP_NONE, /* optinfo_flags */
463 TV_NONE, /* tv_id */
464 0, /* properties_required */
465 0, /* properties_provided */
466 PROP_cfg, /* properties_destroyed */
467 0, /* todo_flags_start */
468 0, /* todo_flags_finish */
469 };
470
471 class pass_free_cfg : public rtl_opt_pass
472 {
473 public:
474 pass_free_cfg (gcc::context *ctxt)
475 : rtl_opt_pass (pass_data_free_cfg, ctxt)
476 {}
477
478 /* opt_pass methods: */
479 virtual unsigned int execute (function *);
480
481 }; // class pass_free_cfg
482
483 unsigned int
484 pass_free_cfg::execute (function *)
485 {
486 /* The resource.c machinery uses DF but the CFG isn't guaranteed to be
487 valid at that point so it would be too late to call df_analyze. */
488 if (DELAY_SLOTS && optimize > 0 && flag_delayed_branch)
489 {
490 df_note_add_problem ();
491 df_analyze ();
492 }
493
494 if (crtl->has_bb_partition)
495 insert_section_boundary_note ();
496
497 free_bb_for_insn ();
498 return 0;
499 }
500
501 } // anon namespace
502
503 rtl_opt_pass *
504 make_pass_free_cfg (gcc::context *ctxt)
505 {
506 return new pass_free_cfg (ctxt);
507 }
508
509 /* Return RTX to emit after when we want to emit code on the entry of function. */
510 rtx_insn *
511 entry_of_function (void)
512 {
513 return (n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS ?
514 BB_HEAD (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) : get_insns ());
515 }
516
517 /* Emit INSN at the entry point of the function, ensuring that it is only
518 executed once per function. */
519 void
520 emit_insn_at_entry (rtx insn)
521 {
522 edge_iterator ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
523 edge e = ei_safe_edge (ei);
524 gcc_assert (e->flags & EDGE_FALLTHRU);
525
526 insert_insn_on_edge (insn, e);
527 commit_edge_insertions ();
528 }
529
530 /* Update BLOCK_FOR_INSN of insns between BEGIN and END
531 (or BARRIER if found) and notify df of the bb change.
532 The insn chain range is inclusive
533 (i.e. both BEGIN and END will be updated. */
534
535 static void
536 update_bb_for_insn_chain (rtx_insn *begin, rtx_insn *end, basic_block bb)
537 {
538 rtx_insn *insn;
539
540 end = NEXT_INSN (end);
541 for (insn = begin; insn != end; insn = NEXT_INSN (insn))
542 if (!BARRIER_P (insn))
543 df_insn_change_bb (insn, bb);
544 }
545
546 /* Update BLOCK_FOR_INSN of insns in BB to BB,
547 and notify df of the change. */
548
549 void
550 update_bb_for_insn (basic_block bb)
551 {
552 update_bb_for_insn_chain (BB_HEAD (bb), BB_END (bb), bb);
553 }
554
555 \f
556 /* Like active_insn_p, except keep the return value clobber around
557 even after reload. */
558
559 static bool
560 flow_active_insn_p (const rtx_insn *insn)
561 {
562 if (active_insn_p (insn))
563 return true;
564
565 /* A clobber of the function return value exists for buggy
566 programs that fail to return a value. Its effect is to
567 keep the return value from being live across the entire
568 function. If we allow it to be skipped, we introduce the
569 possibility for register lifetime confusion. */
570 if (GET_CODE (PATTERN (insn)) == CLOBBER
571 && REG_P (XEXP (PATTERN (insn), 0))
572 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
573 return true;
574
575 return false;
576 }
577
578 /* Return true if the block has no effect and only forwards control flow to
579 its single destination. */
580
581 bool
582 contains_no_active_insn_p (const_basic_block bb)
583 {
584 rtx_insn *insn;
585
586 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
587 || !single_succ_p (bb))
588 return false;
589
590 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
591 if (INSN_P (insn) && flow_active_insn_p (insn))
592 return false;
593
594 return (!INSN_P (insn)
595 || (JUMP_P (insn) && simplejump_p (insn))
596 || !flow_active_insn_p (insn));
597 }
598
599 /* Likewise, but protect loop latches, headers and preheaders. */
600 /* FIXME: Make this a cfg hook. */
601
602 bool
603 forwarder_block_p (const_basic_block bb)
604 {
605 if (!contains_no_active_insn_p (bb))
606 return false;
607
608 /* Protect loop latches, headers and preheaders. */
609 if (current_loops)
610 {
611 basic_block dest;
612 if (bb->loop_father->header == bb)
613 return false;
614 dest = EDGE_SUCC (bb, 0)->dest;
615 if (dest->loop_father->header == dest)
616 return false;
617 }
618
619 return true;
620 }
621
622 /* Return nonzero if we can reach target from src by falling through. */
623 /* FIXME: Make this a cfg hook, the result is only valid in cfgrtl mode. */
624
625 bool
626 can_fallthru (basic_block src, basic_block target)
627 {
628 rtx_insn *insn = BB_END (src);
629 rtx_insn *insn2;
630 edge e;
631 edge_iterator ei;
632
633 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
634 return true;
635 if (src->next_bb != target)
636 return false;
637
638 /* ??? Later we may add code to move jump tables offline. */
639 if (tablejump_p (insn, NULL, NULL))
640 return false;
641
642 FOR_EACH_EDGE (e, ei, src->succs)
643 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
644 && e->flags & EDGE_FALLTHRU)
645 return false;
646
647 insn2 = BB_HEAD (target);
648 if (!active_insn_p (insn2))
649 insn2 = next_active_insn (insn2);
650
651 return next_active_insn (insn) == insn2;
652 }
653
654 /* Return nonzero if we could reach target from src by falling through,
655 if the target was made adjacent. If we already have a fall-through
656 edge to the exit block, we can't do that. */
657 static bool
658 could_fall_through (basic_block src, basic_block target)
659 {
660 edge e;
661 edge_iterator ei;
662
663 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
664 return true;
665 FOR_EACH_EDGE (e, ei, src->succs)
666 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
667 && e->flags & EDGE_FALLTHRU)
668 return 0;
669 return true;
670 }
671 \f
672 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
673 rtx_note *
674 bb_note (basic_block bb)
675 {
676 rtx_insn *note;
677
678 note = BB_HEAD (bb);
679 if (LABEL_P (note))
680 note = NEXT_INSN (note);
681
682 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
683 return as_a <rtx_note *> (note);
684 }
685
686 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
687 note associated with the BLOCK. */
688
689 static rtx_insn *
690 first_insn_after_basic_block_note (basic_block block)
691 {
692 rtx_insn *insn;
693
694 /* Get the first instruction in the block. */
695 insn = BB_HEAD (block);
696
697 if (insn == NULL_RTX)
698 return NULL;
699 if (LABEL_P (insn))
700 insn = NEXT_INSN (insn);
701 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
702
703 return NEXT_INSN (insn);
704 }
705
706 /* Creates a new basic block just after basic block BB by splitting
707 everything after specified instruction INSNP. */
708
709 static basic_block
710 rtl_split_block (basic_block bb, void *insnp)
711 {
712 basic_block new_bb;
713 rtx_insn *insn = (rtx_insn *) insnp;
714 edge e;
715 edge_iterator ei;
716
717 if (!insn)
718 {
719 insn = first_insn_after_basic_block_note (bb);
720
721 if (insn)
722 {
723 rtx_insn *next = insn;
724
725 insn = PREV_INSN (insn);
726
727 /* If the block contains only debug insns, insn would have
728 been NULL in a non-debug compilation, and then we'd end
729 up emitting a DELETED note. For -fcompare-debug
730 stability, emit the note too. */
731 if (insn != BB_END (bb)
732 && DEBUG_INSN_P (next)
733 && DEBUG_INSN_P (BB_END (bb)))
734 {
735 while (next != BB_END (bb) && DEBUG_INSN_P (next))
736 next = NEXT_INSN (next);
737
738 if (next == BB_END (bb))
739 emit_note_after (NOTE_INSN_DELETED, next);
740 }
741 }
742 else
743 insn = get_last_insn ();
744 }
745
746 /* We probably should check type of the insn so that we do not create
747 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
748 bother. */
749 if (insn == BB_END (bb))
750 emit_note_after (NOTE_INSN_DELETED, insn);
751
752 /* Create the new basic block. */
753 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
754 BB_COPY_PARTITION (new_bb, bb);
755 BB_END (bb) = insn;
756
757 /* Redirect the outgoing edges. */
758 new_bb->succs = bb->succs;
759 bb->succs = NULL;
760 FOR_EACH_EDGE (e, ei, new_bb->succs)
761 e->src = new_bb;
762
763 /* The new block starts off being dirty. */
764 df_set_bb_dirty (bb);
765 return new_bb;
766 }
767
768 /* Return true if the single edge between blocks A and B is the only place
769 in RTL which holds some unique locus. */
770
771 static bool
772 unique_locus_on_edge_between_p (basic_block a, basic_block b)
773 {
774 const location_t goto_locus = EDGE_SUCC (a, 0)->goto_locus;
775 rtx_insn *insn, *end;
776
777 if (LOCATION_LOCUS (goto_locus) == UNKNOWN_LOCATION)
778 return false;
779
780 /* First scan block A backward. */
781 insn = BB_END (a);
782 end = PREV_INSN (BB_HEAD (a));
783 while (insn != end && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
784 insn = PREV_INSN (insn);
785
786 if (insn != end && INSN_LOCATION (insn) == goto_locus)
787 return false;
788
789 /* Then scan block B forward. */
790 insn = BB_HEAD (b);
791 if (insn)
792 {
793 end = NEXT_INSN (BB_END (b));
794 while (insn != end && !NONDEBUG_INSN_P (insn))
795 insn = NEXT_INSN (insn);
796
797 if (insn != end && INSN_HAS_LOCATION (insn)
798 && INSN_LOCATION (insn) == goto_locus)
799 return false;
800 }
801
802 return true;
803 }
804
805 /* If the single edge between blocks A and B is the only place in RTL which
806 holds some unique locus, emit a nop with that locus between the blocks. */
807
808 static void
809 emit_nop_for_unique_locus_between (basic_block a, basic_block b)
810 {
811 if (!unique_locus_on_edge_between_p (a, b))
812 return;
813
814 BB_END (a) = emit_insn_after_noloc (gen_nop (), BB_END (a), a);
815 INSN_LOCATION (BB_END (a)) = EDGE_SUCC (a, 0)->goto_locus;
816 }
817
818 /* Blocks A and B are to be merged into a single block A. The insns
819 are already contiguous. */
820
821 static void
822 rtl_merge_blocks (basic_block a, basic_block b)
823 {
824 rtx_insn *b_head = BB_HEAD (b), *b_end = BB_END (b), *a_end = BB_END (a);
825 rtx_insn *del_first = NULL, *del_last = NULL;
826 rtx_insn *b_debug_start = b_end, *b_debug_end = b_end;
827 bool forwarder_p = (b->flags & BB_FORWARDER_BLOCK) != 0;
828 int b_empty = 0;
829
830 if (dump_file)
831 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
832 a->index);
833
834 while (DEBUG_INSN_P (b_end))
835 b_end = PREV_INSN (b_debug_start = b_end);
836
837 /* If there was a CODE_LABEL beginning B, delete it. */
838 if (LABEL_P (b_head))
839 {
840 /* Detect basic blocks with nothing but a label. This can happen
841 in particular at the end of a function. */
842 if (b_head == b_end)
843 b_empty = 1;
844
845 del_first = del_last = b_head;
846 b_head = NEXT_INSN (b_head);
847 }
848
849 /* Delete the basic block note and handle blocks containing just that
850 note. */
851 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
852 {
853 if (b_head == b_end)
854 b_empty = 1;
855 if (! del_last)
856 del_first = b_head;
857
858 del_last = b_head;
859 b_head = NEXT_INSN (b_head);
860 }
861
862 /* If there was a jump out of A, delete it. */
863 if (JUMP_P (a_end))
864 {
865 rtx_insn *prev;
866
867 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
868 if (!NOTE_P (prev)
869 || NOTE_INSN_BASIC_BLOCK_P (prev)
870 || prev == BB_HEAD (a))
871 break;
872
873 del_first = a_end;
874
875 /* If this was a conditional jump, we need to also delete
876 the insn that set cc0. */
877 if (HAVE_cc0 && only_sets_cc0_p (prev))
878 {
879 rtx_insn *tmp = prev;
880
881 prev = prev_nonnote_insn (prev);
882 if (!prev)
883 prev = BB_HEAD (a);
884 del_first = tmp;
885 }
886
887 a_end = PREV_INSN (del_first);
888 }
889 else if (BARRIER_P (NEXT_INSN (a_end)))
890 del_first = NEXT_INSN (a_end);
891
892 /* Delete everything marked above as well as crap that might be
893 hanging out between the two blocks. */
894 BB_END (a) = a_end;
895 BB_HEAD (b) = b_empty ? NULL : b_head;
896 delete_insn_chain (del_first, del_last, true);
897
898 /* When not optimizing and the edge is the only place in RTL which holds
899 some unique locus, emit a nop with that locus in between. */
900 if (!optimize)
901 {
902 emit_nop_for_unique_locus_between (a, b);
903 a_end = BB_END (a);
904 }
905
906 /* Reassociate the insns of B with A. */
907 if (!b_empty)
908 {
909 update_bb_for_insn_chain (a_end, b_debug_end, a);
910
911 BB_END (a) = b_debug_end;
912 BB_HEAD (b) = NULL;
913 }
914 else if (b_end != b_debug_end)
915 {
916 /* Move any deleted labels and other notes between the end of A
917 and the debug insns that make up B after the debug insns,
918 bringing the debug insns into A while keeping the notes after
919 the end of A. */
920 if (NEXT_INSN (a_end) != b_debug_start)
921 reorder_insns_nobb (NEXT_INSN (a_end), PREV_INSN (b_debug_start),
922 b_debug_end);
923 update_bb_for_insn_chain (b_debug_start, b_debug_end, a);
924 BB_END (a) = b_debug_end;
925 }
926
927 df_bb_delete (b->index);
928
929 /* If B was a forwarder block, propagate the locus on the edge. */
930 if (forwarder_p
931 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION)
932 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
933
934 if (dump_file)
935 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
936 }
937
938
939 /* Return true when block A and B can be merged. */
940
941 static bool
942 rtl_can_merge_blocks (basic_block a, basic_block b)
943 {
944 /* If we are partitioning hot/cold basic blocks, we don't want to
945 mess up unconditional or indirect jumps that cross between hot
946 and cold sections.
947
948 Basic block partitioning may result in some jumps that appear to
949 be optimizable (or blocks that appear to be mergeable), but which really
950 must be left untouched (they are required to make it safely across
951 partition boundaries). See the comments at the top of
952 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
953
954 if (BB_PARTITION (a) != BB_PARTITION (b))
955 return false;
956
957 /* Protect the loop latches. */
958 if (current_loops && b->loop_father->latch == b)
959 return false;
960
961 /* There must be exactly one edge in between the blocks. */
962 return (single_succ_p (a)
963 && single_succ (a) == b
964 && single_pred_p (b)
965 && a != b
966 /* Must be simple edge. */
967 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
968 && a->next_bb == b
969 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
970 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
971 /* If the jump insn has side effects,
972 we can't kill the edge. */
973 && (!JUMP_P (BB_END (a))
974 || (reload_completed
975 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
976 }
977 \f
978 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
979 exist. */
980
981 rtx_code_label *
982 block_label (basic_block block)
983 {
984 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
985 return NULL;
986
987 if (!LABEL_P (BB_HEAD (block)))
988 {
989 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
990 }
991
992 return as_a <rtx_code_label *> (BB_HEAD (block));
993 }
994
995 /* Attempt to perform edge redirection by replacing possibly complex jump
996 instruction by unconditional jump or removing jump completely. This can
997 apply only if all edges now point to the same block. The parameters and
998 return values are equivalent to redirect_edge_and_branch. */
999
1000 edge
1001 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
1002 {
1003 basic_block src = e->src;
1004 rtx_insn *insn = BB_END (src), *kill_from;
1005 rtx set;
1006 int fallthru = 0;
1007
1008 /* If we are partitioning hot/cold basic blocks, we don't want to
1009 mess up unconditional or indirect jumps that cross between hot
1010 and cold sections.
1011
1012 Basic block partitioning may result in some jumps that appear to
1013 be optimizable (or blocks that appear to be mergeable), but which really
1014 must be left untouched (they are required to make it safely across
1015 partition boundaries). See the comments at the top of
1016 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1017
1018 if (BB_PARTITION (src) != BB_PARTITION (target))
1019 return NULL;
1020
1021 /* We can replace or remove a complex jump only when we have exactly
1022 two edges. Also, if we have exactly one outgoing edge, we can
1023 redirect that. */
1024 if (EDGE_COUNT (src->succs) >= 3
1025 /* Verify that all targets will be TARGET. Specifically, the
1026 edge that is not E must also go to TARGET. */
1027 || (EDGE_COUNT (src->succs) == 2
1028 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
1029 return NULL;
1030
1031 if (!onlyjump_p (insn))
1032 return NULL;
1033 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
1034 return NULL;
1035
1036 /* Avoid removing branch with side effects. */
1037 set = single_set (insn);
1038 if (!set || side_effects_p (set))
1039 return NULL;
1040
1041 /* In case we zap a conditional jump, we'll need to kill
1042 the cc0 setter too. */
1043 kill_from = insn;
1044 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn))
1045 && only_sets_cc0_p (PREV_INSN (insn)))
1046 kill_from = PREV_INSN (insn);
1047
1048 /* See if we can create the fallthru edge. */
1049 if (in_cfglayout || can_fallthru (src, target))
1050 {
1051 if (dump_file)
1052 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
1053 fallthru = 1;
1054
1055 /* Selectively unlink whole insn chain. */
1056 if (in_cfglayout)
1057 {
1058 rtx_insn *insn = BB_FOOTER (src);
1059
1060 delete_insn_chain (kill_from, BB_END (src), false);
1061
1062 /* Remove barriers but keep jumptables. */
1063 while (insn)
1064 {
1065 if (BARRIER_P (insn))
1066 {
1067 if (PREV_INSN (insn))
1068 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1069 else
1070 BB_FOOTER (src) = NEXT_INSN (insn);
1071 if (NEXT_INSN (insn))
1072 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1073 }
1074 if (LABEL_P (insn))
1075 break;
1076 insn = NEXT_INSN (insn);
1077 }
1078 }
1079 else
1080 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)),
1081 false);
1082 }
1083
1084 /* If this already is simplejump, redirect it. */
1085 else if (simplejump_p (insn))
1086 {
1087 if (e->dest == target)
1088 return NULL;
1089 if (dump_file)
1090 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
1091 INSN_UID (insn), e->dest->index, target->index);
1092 if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
1093 block_label (target), 0))
1094 {
1095 gcc_assert (target == EXIT_BLOCK_PTR_FOR_FN (cfun));
1096 return NULL;
1097 }
1098 }
1099
1100 /* Cannot do anything for target exit block. */
1101 else if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1102 return NULL;
1103
1104 /* Or replace possibly complicated jump insn by simple jump insn. */
1105 else
1106 {
1107 rtx_code_label *target_label = block_label (target);
1108 rtx_insn *barrier;
1109 rtx label;
1110 rtx_jump_table_data *table;
1111
1112 emit_jump_insn_after_noloc (targetm.gen_jump (target_label), insn);
1113 JUMP_LABEL (BB_END (src)) = target_label;
1114 LABEL_NUSES (target_label)++;
1115 if (dump_file)
1116 fprintf (dump_file, "Replacing insn %i by jump %i\n",
1117 INSN_UID (insn), INSN_UID (BB_END (src)));
1118
1119
1120 delete_insn_chain (kill_from, insn, false);
1121
1122 /* Recognize a tablejump that we are converting to a
1123 simple jump and remove its associated CODE_LABEL
1124 and ADDR_VEC or ADDR_DIFF_VEC. */
1125 if (tablejump_p (insn, &label, &table))
1126 delete_insn_chain (label, table, false);
1127
1128 barrier = next_nonnote_insn (BB_END (src));
1129 if (!barrier || !BARRIER_P (barrier))
1130 emit_barrier_after (BB_END (src));
1131 else
1132 {
1133 if (barrier != NEXT_INSN (BB_END (src)))
1134 {
1135 /* Move the jump before barrier so that the notes
1136 which originally were or were created before jump table are
1137 inside the basic block. */
1138 rtx_insn *new_insn = BB_END (src);
1139
1140 update_bb_for_insn_chain (NEXT_INSN (BB_END (src)),
1141 PREV_INSN (barrier), src);
1142
1143 SET_NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
1144 SET_PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
1145
1146 SET_NEXT_INSN (new_insn) = barrier;
1147 SET_NEXT_INSN (PREV_INSN (barrier)) = new_insn;
1148
1149 SET_PREV_INSN (new_insn) = PREV_INSN (barrier);
1150 SET_PREV_INSN (barrier) = new_insn;
1151 }
1152 }
1153 }
1154
1155 /* Keep only one edge out and set proper flags. */
1156 if (!single_succ_p (src))
1157 remove_edge (e);
1158 gcc_assert (single_succ_p (src));
1159
1160 e = single_succ_edge (src);
1161 if (fallthru)
1162 e->flags = EDGE_FALLTHRU;
1163 else
1164 e->flags = 0;
1165
1166 e->probability = REG_BR_PROB_BASE;
1167 e->count = src->count;
1168
1169 if (e->dest != target)
1170 redirect_edge_succ (e, target);
1171 return e;
1172 }
1173
1174 /* Subroutine of redirect_branch_edge that tries to patch the jump
1175 instruction INSN so that it reaches block NEW. Do this
1176 only when it originally reached block OLD. Return true if this
1177 worked or the original target wasn't OLD, return false if redirection
1178 doesn't work. */
1179
1180 static bool
1181 patch_jump_insn (rtx_insn *insn, rtx_insn *old_label, basic_block new_bb)
1182 {
1183 rtx_jump_table_data *table;
1184 rtx tmp;
1185 /* Recognize a tablejump and adjust all matching cases. */
1186 if (tablejump_p (insn, NULL, &table))
1187 {
1188 rtvec vec;
1189 int j;
1190 rtx_code_label *new_label = block_label (new_bb);
1191
1192 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1193 return false;
1194 vec = table->get_labels ();
1195
1196 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1197 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
1198 {
1199 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
1200 --LABEL_NUSES (old_label);
1201 ++LABEL_NUSES (new_label);
1202 }
1203
1204 /* Handle casesi dispatch insns. */
1205 if ((tmp = single_set (insn)) != NULL
1206 && SET_DEST (tmp) == pc_rtx
1207 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1208 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
1209 && LABEL_REF_LABEL (XEXP (SET_SRC (tmp), 2)) == old_label)
1210 {
1211 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
1212 new_label);
1213 --LABEL_NUSES (old_label);
1214 ++LABEL_NUSES (new_label);
1215 }
1216 }
1217 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
1218 {
1219 int i, n = ASM_OPERANDS_LABEL_LENGTH (tmp);
1220 rtx note;
1221
1222 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1223 return false;
1224 rtx_code_label *new_label = block_label (new_bb);
1225
1226 for (i = 0; i < n; ++i)
1227 {
1228 rtx old_ref = ASM_OPERANDS_LABEL (tmp, i);
1229 gcc_assert (GET_CODE (old_ref) == LABEL_REF);
1230 if (XEXP (old_ref, 0) == old_label)
1231 {
1232 ASM_OPERANDS_LABEL (tmp, i)
1233 = gen_rtx_LABEL_REF (Pmode, new_label);
1234 --LABEL_NUSES (old_label);
1235 ++LABEL_NUSES (new_label);
1236 }
1237 }
1238
1239 if (JUMP_LABEL (insn) == old_label)
1240 {
1241 JUMP_LABEL (insn) = new_label;
1242 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1243 if (note)
1244 remove_note (insn, note);
1245 }
1246 else
1247 {
1248 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1249 if (note)
1250 remove_note (insn, note);
1251 if (JUMP_LABEL (insn) != new_label
1252 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1253 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1254 }
1255 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1256 != NULL_RTX)
1257 XEXP (note, 0) = new_label;
1258 }
1259 else
1260 {
1261 /* ?? We may play the games with moving the named labels from
1262 one basic block to the other in case only one computed_jump is
1263 available. */
1264 if (computed_jump_p (insn)
1265 /* A return instruction can't be redirected. */
1266 || returnjump_p (insn))
1267 return false;
1268
1269 if (!currently_expanding_to_rtl || JUMP_LABEL (insn) == old_label)
1270 {
1271 /* If the insn doesn't go where we think, we're confused. */
1272 gcc_assert (JUMP_LABEL (insn) == old_label);
1273
1274 /* If the substitution doesn't succeed, die. This can happen
1275 if the back end emitted unrecognizable instructions or if
1276 target is exit block on some arches. */
1277 if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
1278 block_label (new_bb), 0))
1279 {
1280 gcc_assert (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun));
1281 return false;
1282 }
1283 }
1284 }
1285 return true;
1286 }
1287
1288
1289 /* Redirect edge representing branch of (un)conditional jump or tablejump,
1290 NULL on failure */
1291 static edge
1292 redirect_branch_edge (edge e, basic_block target)
1293 {
1294 rtx_insn *old_label = BB_HEAD (e->dest);
1295 basic_block src = e->src;
1296 rtx_insn *insn = BB_END (src);
1297
1298 /* We can only redirect non-fallthru edges of jump insn. */
1299 if (e->flags & EDGE_FALLTHRU)
1300 return NULL;
1301 else if (!JUMP_P (insn) && !currently_expanding_to_rtl)
1302 return NULL;
1303
1304 if (!currently_expanding_to_rtl)
1305 {
1306 if (!patch_jump_insn (as_a <rtx_jump_insn *> (insn), old_label, target))
1307 return NULL;
1308 }
1309 else
1310 /* When expanding this BB might actually contain multiple
1311 jumps (i.e. not yet split by find_many_sub_basic_blocks).
1312 Redirect all of those that match our label. */
1313 FOR_BB_INSNS (src, insn)
1314 if (JUMP_P (insn) && !patch_jump_insn (as_a <rtx_jump_insn *> (insn),
1315 old_label, target))
1316 return NULL;
1317
1318 if (dump_file)
1319 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
1320 e->src->index, e->dest->index, target->index);
1321
1322 if (e->dest != target)
1323 e = redirect_edge_succ_nodup (e, target);
1324
1325 return e;
1326 }
1327
1328 /* Called when edge E has been redirected to a new destination,
1329 in order to update the region crossing flag on the edge and
1330 jump. */
1331
1332 static void
1333 fixup_partition_crossing (edge e)
1334 {
1335 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun) || e->dest
1336 == EXIT_BLOCK_PTR_FOR_FN (cfun))
1337 return;
1338 /* If we redirected an existing edge, it may already be marked
1339 crossing, even though the new src is missing a reg crossing note.
1340 But make sure reg crossing note doesn't already exist before
1341 inserting. */
1342 if (BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1343 {
1344 e->flags |= EDGE_CROSSING;
1345 if (JUMP_P (BB_END (e->src))
1346 && !CROSSING_JUMP_P (BB_END (e->src)))
1347 CROSSING_JUMP_P (BB_END (e->src)) = 1;
1348 }
1349 else if (BB_PARTITION (e->src) == BB_PARTITION (e->dest))
1350 {
1351 e->flags &= ~EDGE_CROSSING;
1352 /* Remove the section crossing note from jump at end of
1353 src if it exists, and if no other successors are
1354 still crossing. */
1355 if (JUMP_P (BB_END (e->src)) && CROSSING_JUMP_P (BB_END (e->src)))
1356 {
1357 bool has_crossing_succ = false;
1358 edge e2;
1359 edge_iterator ei;
1360 FOR_EACH_EDGE (e2, ei, e->src->succs)
1361 {
1362 has_crossing_succ |= (e2->flags & EDGE_CROSSING);
1363 if (has_crossing_succ)
1364 break;
1365 }
1366 if (!has_crossing_succ)
1367 CROSSING_JUMP_P (BB_END (e->src)) = 0;
1368 }
1369 }
1370 }
1371
1372 /* Called when block BB has been reassigned to the cold partition,
1373 because it is now dominated by another cold block,
1374 to ensure that the region crossing attributes are updated. */
1375
1376 static void
1377 fixup_new_cold_bb (basic_block bb)
1378 {
1379 edge e;
1380 edge_iterator ei;
1381
1382 /* This is called when a hot bb is found to now be dominated
1383 by a cold bb and therefore needs to become cold. Therefore,
1384 its preds will no longer be region crossing. Any non-dominating
1385 preds that were previously hot would also have become cold
1386 in the caller for the same region. Any preds that were previously
1387 region-crossing will be adjusted in fixup_partition_crossing. */
1388 FOR_EACH_EDGE (e, ei, bb->preds)
1389 {
1390 fixup_partition_crossing (e);
1391 }
1392
1393 /* Possibly need to make bb's successor edges region crossing,
1394 or remove stale region crossing. */
1395 FOR_EACH_EDGE (e, ei, bb->succs)
1396 {
1397 /* We can't have fall-through edges across partition boundaries.
1398 Note that force_nonfallthru will do any necessary partition
1399 boundary fixup by calling fixup_partition_crossing itself. */
1400 if ((e->flags & EDGE_FALLTHRU)
1401 && BB_PARTITION (bb) != BB_PARTITION (e->dest)
1402 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1403 force_nonfallthru (e);
1404 else
1405 fixup_partition_crossing (e);
1406 }
1407 }
1408
1409 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
1410 expense of adding new instructions or reordering basic blocks.
1411
1412 Function can be also called with edge destination equivalent to the TARGET.
1413 Then it should try the simplifications and do nothing if none is possible.
1414
1415 Return edge representing the branch if transformation succeeded. Return NULL
1416 on failure.
1417 We still return NULL in case E already destinated TARGET and we didn't
1418 managed to simplify instruction stream. */
1419
1420 static edge
1421 rtl_redirect_edge_and_branch (edge e, basic_block target)
1422 {
1423 edge ret;
1424 basic_block src = e->src;
1425 basic_block dest = e->dest;
1426
1427 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1428 return NULL;
1429
1430 if (dest == target)
1431 return e;
1432
1433 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
1434 {
1435 df_set_bb_dirty (src);
1436 fixup_partition_crossing (ret);
1437 return ret;
1438 }
1439
1440 ret = redirect_branch_edge (e, target);
1441 if (!ret)
1442 return NULL;
1443
1444 df_set_bb_dirty (src);
1445 fixup_partition_crossing (ret);
1446 return ret;
1447 }
1448
1449 /* Emit a barrier after BB, into the footer if we are in CFGLAYOUT mode. */
1450
1451 void
1452 emit_barrier_after_bb (basic_block bb)
1453 {
1454 rtx_barrier *barrier = emit_barrier_after (BB_END (bb));
1455 gcc_assert (current_ir_type () == IR_RTL_CFGRTL
1456 || current_ir_type () == IR_RTL_CFGLAYOUT);
1457 if (current_ir_type () == IR_RTL_CFGLAYOUT)
1458 {
1459 rtx_insn *insn = unlink_insn_chain (barrier, barrier);
1460
1461 if (BB_FOOTER (bb))
1462 {
1463 rtx_insn *footer_tail = BB_FOOTER (bb);
1464
1465 while (NEXT_INSN (footer_tail))
1466 footer_tail = NEXT_INSN (footer_tail);
1467 if (!BARRIER_P (footer_tail))
1468 {
1469 SET_NEXT_INSN (footer_tail) = insn;
1470 SET_PREV_INSN (insn) = footer_tail;
1471 }
1472 }
1473 else
1474 BB_FOOTER (bb) = insn;
1475 }
1476 }
1477
1478 /* Like force_nonfallthru below, but additionally performs redirection
1479 Used by redirect_edge_and_branch_force. JUMP_LABEL is used only
1480 when redirecting to the EXIT_BLOCK, it is either ret_rtx or
1481 simple_return_rtx, indicating which kind of returnjump to create.
1482 It should be NULL otherwise. */
1483
1484 basic_block
1485 force_nonfallthru_and_redirect (edge e, basic_block target, rtx jump_label)
1486 {
1487 basic_block jump_block, new_bb = NULL, src = e->src;
1488 rtx note;
1489 edge new_edge;
1490 int abnormal_edge_flags = 0;
1491 bool asm_goto_edge = false;
1492 int loc;
1493
1494 /* In the case the last instruction is conditional jump to the next
1495 instruction, first redirect the jump itself and then continue
1496 by creating a basic block afterwards to redirect fallthru edge. */
1497 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1498 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1499 && any_condjump_p (BB_END (e->src))
1500 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1501 {
1502 rtx note;
1503 edge b = unchecked_make_edge (e->src, target, 0);
1504 bool redirected;
1505
1506 redirected = redirect_jump (as_a <rtx_jump_insn *> (BB_END (e->src)),
1507 block_label (target), 0);
1508 gcc_assert (redirected);
1509
1510 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1511 if (note)
1512 {
1513 int prob = XINT (note, 0);
1514
1515 b->probability = prob;
1516 /* Update this to use GCOV_COMPUTE_SCALE. */
1517 b->count = e->count * prob / REG_BR_PROB_BASE;
1518 e->probability -= e->probability;
1519 e->count -= b->count;
1520 if (e->probability < 0)
1521 e->probability = 0;
1522 if (e->count < 0)
1523 e->count = 0;
1524 }
1525 }
1526
1527 if (e->flags & EDGE_ABNORMAL)
1528 {
1529 /* Irritating special case - fallthru edge to the same block as abnormal
1530 edge.
1531 We can't redirect abnormal edge, but we still can split the fallthru
1532 one and create separate abnormal edge to original destination.
1533 This allows bb-reorder to make such edge non-fallthru. */
1534 gcc_assert (e->dest == target);
1535 abnormal_edge_flags = e->flags & ~EDGE_FALLTHRU;
1536 e->flags &= EDGE_FALLTHRU;
1537 }
1538 else
1539 {
1540 gcc_assert (e->flags & EDGE_FALLTHRU);
1541 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1542 {
1543 /* We can't redirect the entry block. Create an empty block
1544 at the start of the function which we use to add the new
1545 jump. */
1546 edge tmp;
1547 edge_iterator ei;
1548 bool found = false;
1549
1550 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL,
1551 ENTRY_BLOCK_PTR_FOR_FN (cfun));
1552
1553 /* Change the existing edge's source to be the new block, and add
1554 a new edge from the entry block to the new block. */
1555 e->src = bb;
1556 for (ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
1557 (tmp = ei_safe_edge (ei)); )
1558 {
1559 if (tmp == e)
1560 {
1561 ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs->unordered_remove (ei.index);
1562 found = true;
1563 break;
1564 }
1565 else
1566 ei_next (&ei);
1567 }
1568
1569 gcc_assert (found);
1570
1571 vec_safe_push (bb->succs, e);
1572 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb,
1573 EDGE_FALLTHRU);
1574 }
1575 }
1576
1577 /* If e->src ends with asm goto, see if any of the ASM_OPERANDS_LABELs
1578 don't point to the target or fallthru label. */
1579 if (JUMP_P (BB_END (e->src))
1580 && target != EXIT_BLOCK_PTR_FOR_FN (cfun)
1581 && (e->flags & EDGE_FALLTHRU)
1582 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
1583 {
1584 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
1585 bool adjust_jump_target = false;
1586
1587 for (i = 0; i < n; ++i)
1588 {
1589 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (e->dest))
1590 {
1591 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))--;
1592 XEXP (ASM_OPERANDS_LABEL (note, i), 0) = block_label (target);
1593 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))++;
1594 adjust_jump_target = true;
1595 }
1596 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (target))
1597 asm_goto_edge = true;
1598 }
1599 if (adjust_jump_target)
1600 {
1601 rtx_insn *insn = BB_END (e->src);
1602 rtx note;
1603 rtx_insn *old_label = BB_HEAD (e->dest);
1604 rtx_insn *new_label = BB_HEAD (target);
1605
1606 if (JUMP_LABEL (insn) == old_label)
1607 {
1608 JUMP_LABEL (insn) = new_label;
1609 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1610 if (note)
1611 remove_note (insn, note);
1612 }
1613 else
1614 {
1615 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1616 if (note)
1617 remove_note (insn, note);
1618 if (JUMP_LABEL (insn) != new_label
1619 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1620 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1621 }
1622 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1623 != NULL_RTX)
1624 XEXP (note, 0) = new_label;
1625 }
1626 }
1627
1628 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags || asm_goto_edge)
1629 {
1630 rtx_insn *new_head;
1631 gcov_type count = e->count;
1632 int probability = e->probability;
1633 /* Create the new structures. */
1634
1635 /* If the old block ended with a tablejump, skip its table
1636 by searching forward from there. Otherwise start searching
1637 forward from the last instruction of the old block. */
1638 rtx_jump_table_data *table;
1639 if (tablejump_p (BB_END (e->src), NULL, &table))
1640 new_head = table;
1641 else
1642 new_head = BB_END (e->src);
1643 new_head = NEXT_INSN (new_head);
1644
1645 jump_block = create_basic_block (new_head, NULL, e->src);
1646 jump_block->count = count;
1647 jump_block->frequency = EDGE_FREQUENCY (e);
1648
1649 /* Make sure new block ends up in correct hot/cold section. */
1650
1651 BB_COPY_PARTITION (jump_block, e->src);
1652
1653 /* Wire edge in. */
1654 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1655 new_edge->probability = probability;
1656 new_edge->count = count;
1657
1658 /* Redirect old edge. */
1659 redirect_edge_pred (e, jump_block);
1660 e->probability = REG_BR_PROB_BASE;
1661
1662 /* If e->src was previously region crossing, it no longer is
1663 and the reg crossing note should be removed. */
1664 fixup_partition_crossing (new_edge);
1665
1666 /* If asm goto has any label refs to target's label,
1667 add also edge from asm goto bb to target. */
1668 if (asm_goto_edge)
1669 {
1670 new_edge->probability /= 2;
1671 new_edge->count /= 2;
1672 jump_block->count /= 2;
1673 jump_block->frequency /= 2;
1674 new_edge = make_edge (new_edge->src, target,
1675 e->flags & ~EDGE_FALLTHRU);
1676 new_edge->probability = probability - probability / 2;
1677 new_edge->count = count - count / 2;
1678 }
1679
1680 new_bb = jump_block;
1681 }
1682 else
1683 jump_block = e->src;
1684
1685 loc = e->goto_locus;
1686 e->flags &= ~EDGE_FALLTHRU;
1687 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1688 {
1689 if (jump_label == ret_rtx)
1690 emit_jump_insn_after_setloc (targetm.gen_return (),
1691 BB_END (jump_block), loc);
1692 else
1693 {
1694 gcc_assert (jump_label == simple_return_rtx);
1695 emit_jump_insn_after_setloc (targetm.gen_simple_return (),
1696 BB_END (jump_block), loc);
1697 }
1698 set_return_jump_label (BB_END (jump_block));
1699 }
1700 else
1701 {
1702 rtx_code_label *label = block_label (target);
1703 emit_jump_insn_after_setloc (targetm.gen_jump (label),
1704 BB_END (jump_block), loc);
1705 JUMP_LABEL (BB_END (jump_block)) = label;
1706 LABEL_NUSES (label)++;
1707 }
1708
1709 /* We might be in cfg layout mode, and if so, the following routine will
1710 insert the barrier correctly. */
1711 emit_barrier_after_bb (jump_block);
1712 redirect_edge_succ_nodup (e, target);
1713
1714 if (abnormal_edge_flags)
1715 make_edge (src, target, abnormal_edge_flags);
1716
1717 df_mark_solutions_dirty ();
1718 fixup_partition_crossing (e);
1719 return new_bb;
1720 }
1721
1722 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1723 (and possibly create new basic block) to make edge non-fallthru.
1724 Return newly created BB or NULL if none. */
1725
1726 static basic_block
1727 rtl_force_nonfallthru (edge e)
1728 {
1729 return force_nonfallthru_and_redirect (e, e->dest, NULL_RTX);
1730 }
1731
1732 /* Redirect edge even at the expense of creating new jump insn or
1733 basic block. Return new basic block if created, NULL otherwise.
1734 Conversion must be possible. */
1735
1736 static basic_block
1737 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1738 {
1739 if (redirect_edge_and_branch (e, target)
1740 || e->dest == target)
1741 return NULL;
1742
1743 /* In case the edge redirection failed, try to force it to be non-fallthru
1744 and redirect newly created simplejump. */
1745 df_set_bb_dirty (e->src);
1746 return force_nonfallthru_and_redirect (e, target, NULL_RTX);
1747 }
1748
1749 /* The given edge should potentially be a fallthru edge. If that is in
1750 fact true, delete the jump and barriers that are in the way. */
1751
1752 static void
1753 rtl_tidy_fallthru_edge (edge e)
1754 {
1755 rtx_insn *q;
1756 basic_block b = e->src, c = b->next_bb;
1757
1758 /* ??? In a late-running flow pass, other folks may have deleted basic
1759 blocks by nopping out blocks, leaving multiple BARRIERs between here
1760 and the target label. They ought to be chastised and fixed.
1761
1762 We can also wind up with a sequence of undeletable labels between
1763 one block and the next.
1764
1765 So search through a sequence of barriers, labels, and notes for
1766 the head of block C and assert that we really do fall through. */
1767
1768 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1769 if (INSN_P (q))
1770 return;
1771
1772 /* Remove what will soon cease being the jump insn from the source block.
1773 If block B consisted only of this single jump, turn it into a deleted
1774 note. */
1775 q = BB_END (b);
1776 if (JUMP_P (q)
1777 && onlyjump_p (q)
1778 && (any_uncondjump_p (q)
1779 || single_succ_p (b)))
1780 {
1781 rtx label;
1782 rtx_jump_table_data *table;
1783
1784 if (tablejump_p (q, &label, &table))
1785 {
1786 /* The label is likely mentioned in some instruction before
1787 the tablejump and might not be DCEd, so turn it into
1788 a note instead and move before the tablejump that is going to
1789 be deleted. */
1790 const char *name = LABEL_NAME (label);
1791 PUT_CODE (label, NOTE);
1792 NOTE_KIND (label) = NOTE_INSN_DELETED_LABEL;
1793 NOTE_DELETED_LABEL_NAME (label) = name;
1794 rtx_insn *lab = safe_as_a <rtx_insn *> (label);
1795 reorder_insns (lab, lab, PREV_INSN (q));
1796 delete_insn (table);
1797 }
1798
1799 /* If this was a conditional jump, we need to also delete
1800 the insn that set cc0. */
1801 if (HAVE_cc0 && any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1802 q = PREV_INSN (q);
1803
1804 q = PREV_INSN (q);
1805 }
1806
1807 /* Selectively unlink the sequence. */
1808 if (q != PREV_INSN (BB_HEAD (c)))
1809 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)), false);
1810
1811 e->flags |= EDGE_FALLTHRU;
1812 }
1813 \f
1814 /* Should move basic block BB after basic block AFTER. NIY. */
1815
1816 static bool
1817 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1818 basic_block after ATTRIBUTE_UNUSED)
1819 {
1820 return false;
1821 }
1822
1823 /* Locate the last bb in the same partition as START_BB. */
1824
1825 static basic_block
1826 last_bb_in_partition (basic_block start_bb)
1827 {
1828 basic_block bb;
1829 FOR_BB_BETWEEN (bb, start_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1830 {
1831 if (BB_PARTITION (start_bb) != BB_PARTITION (bb->next_bb))
1832 return bb;
1833 }
1834 /* Return bb before the exit block. */
1835 return bb->prev_bb;
1836 }
1837
1838 /* Split a (typically critical) edge. Return the new block.
1839 The edge must not be abnormal.
1840
1841 ??? The code generally expects to be called on critical edges.
1842 The case of a block ending in an unconditional jump to a
1843 block with multiple predecessors is not handled optimally. */
1844
1845 static basic_block
1846 rtl_split_edge (edge edge_in)
1847 {
1848 basic_block bb, new_bb;
1849 rtx_insn *before;
1850
1851 /* Abnormal edges cannot be split. */
1852 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1853
1854 /* We are going to place the new block in front of edge destination.
1855 Avoid existence of fallthru predecessors. */
1856 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1857 {
1858 edge e = find_fallthru_edge (edge_in->dest->preds);
1859
1860 if (e)
1861 force_nonfallthru (e);
1862 }
1863
1864 /* Create the basic block note. */
1865 if (edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1866 before = BB_HEAD (edge_in->dest);
1867 else
1868 before = NULL;
1869
1870 /* If this is a fall through edge to the exit block, the blocks might be
1871 not adjacent, and the right place is after the source. */
1872 if ((edge_in->flags & EDGE_FALLTHRU)
1873 && edge_in->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1874 {
1875 before = NEXT_INSN (BB_END (edge_in->src));
1876 bb = create_basic_block (before, NULL, edge_in->src);
1877 BB_COPY_PARTITION (bb, edge_in->src);
1878 }
1879 else
1880 {
1881 if (edge_in->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1882 {
1883 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1884 BB_COPY_PARTITION (bb, edge_in->dest);
1885 }
1886 else
1887 {
1888 basic_block after = edge_in->dest->prev_bb;
1889 /* If this is post-bb reordering, and the edge crosses a partition
1890 boundary, the new block needs to be inserted in the bb chain
1891 at the end of the src partition (since we put the new bb into
1892 that partition, see below). Otherwise we may end up creating
1893 an extra partition crossing in the chain, which is illegal.
1894 It can't go after the src, because src may have a fall-through
1895 to a different block. */
1896 if (crtl->bb_reorder_complete
1897 && (edge_in->flags & EDGE_CROSSING))
1898 {
1899 after = last_bb_in_partition (edge_in->src);
1900 before = get_last_bb_insn (after);
1901 /* The instruction following the last bb in partition should
1902 be a barrier, since it cannot end in a fall-through. */
1903 gcc_checking_assert (BARRIER_P (before));
1904 before = NEXT_INSN (before);
1905 }
1906 bb = create_basic_block (before, NULL, after);
1907 /* Put the split bb into the src partition, to avoid creating
1908 a situation where a cold bb dominates a hot bb, in the case
1909 where src is cold and dest is hot. The src will dominate
1910 the new bb (whereas it might not have dominated dest). */
1911 BB_COPY_PARTITION (bb, edge_in->src);
1912 }
1913 }
1914
1915 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1916
1917 /* Can't allow a region crossing edge to be fallthrough. */
1918 if (BB_PARTITION (bb) != BB_PARTITION (edge_in->dest)
1919 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1920 {
1921 new_bb = force_nonfallthru (single_succ_edge (bb));
1922 gcc_assert (!new_bb);
1923 }
1924
1925 /* For non-fallthru edges, we must adjust the predecessor's
1926 jump instruction to target our new block. */
1927 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1928 {
1929 edge redirected = redirect_edge_and_branch (edge_in, bb);
1930 gcc_assert (redirected);
1931 }
1932 else
1933 {
1934 if (edge_in->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1935 {
1936 /* For asm goto even splitting of fallthru edge might
1937 need insn patching, as other labels might point to the
1938 old label. */
1939 rtx_insn *last = BB_END (edge_in->src);
1940 if (last
1941 && JUMP_P (last)
1942 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1943 && extract_asm_operands (PATTERN (last)) != NULL_RTX
1944 && patch_jump_insn (last, before, bb))
1945 df_set_bb_dirty (edge_in->src);
1946 }
1947 redirect_edge_succ (edge_in, bb);
1948 }
1949
1950 return bb;
1951 }
1952
1953 /* Queue instructions for insertion on an edge between two basic blocks.
1954 The new instructions and basic blocks (if any) will not appear in the
1955 CFG until commit_edge_insertions is called. */
1956
1957 void
1958 insert_insn_on_edge (rtx pattern, edge e)
1959 {
1960 /* We cannot insert instructions on an abnormal critical edge.
1961 It will be easier to find the culprit if we die now. */
1962 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1963
1964 if (e->insns.r == NULL_RTX)
1965 start_sequence ();
1966 else
1967 push_to_sequence (e->insns.r);
1968
1969 emit_insn (pattern);
1970
1971 e->insns.r = get_insns ();
1972 end_sequence ();
1973 }
1974
1975 /* Update the CFG for the instructions queued on edge E. */
1976
1977 void
1978 commit_one_edge_insertion (edge e)
1979 {
1980 rtx_insn *before = NULL, *after = NULL, *insns, *tmp, *last;
1981 basic_block bb;
1982
1983 /* Pull the insns off the edge now since the edge might go away. */
1984 insns = e->insns.r;
1985 e->insns.r = NULL;
1986
1987 /* Figure out where to put these insns. If the destination has
1988 one predecessor, insert there. Except for the exit block. */
1989 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1990 {
1991 bb = e->dest;
1992
1993 /* Get the location correct wrt a code label, and "nice" wrt
1994 a basic block note, and before everything else. */
1995 tmp = BB_HEAD (bb);
1996 if (LABEL_P (tmp))
1997 tmp = NEXT_INSN (tmp);
1998 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1999 tmp = NEXT_INSN (tmp);
2000 if (tmp == BB_HEAD (bb))
2001 before = tmp;
2002 else if (tmp)
2003 after = PREV_INSN (tmp);
2004 else
2005 after = get_last_insn ();
2006 }
2007
2008 /* If the source has one successor and the edge is not abnormal,
2009 insert there. Except for the entry block.
2010 Don't do this if the predecessor ends in a jump other than
2011 unconditional simple jump. E.g. for asm goto that points all
2012 its labels at the fallthru basic block, we can't insert instructions
2013 before the asm goto, as the asm goto can have various of side effects,
2014 and can't emit instructions after the asm goto, as it must end
2015 the basic block. */
2016 else if ((e->flags & EDGE_ABNORMAL) == 0
2017 && single_succ_p (e->src)
2018 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2019 && (!JUMP_P (BB_END (e->src))
2020 || simplejump_p (BB_END (e->src))))
2021 {
2022 bb = e->src;
2023
2024 /* It is possible to have a non-simple jump here. Consider a target
2025 where some forms of unconditional jumps clobber a register. This
2026 happens on the fr30 for example.
2027
2028 We know this block has a single successor, so we can just emit
2029 the queued insns before the jump. */
2030 if (JUMP_P (BB_END (bb)))
2031 before = BB_END (bb);
2032 else
2033 {
2034 /* We'd better be fallthru, or we've lost track of what's what. */
2035 gcc_assert (e->flags & EDGE_FALLTHRU);
2036
2037 after = BB_END (bb);
2038 }
2039 }
2040
2041 /* Otherwise we must split the edge. */
2042 else
2043 {
2044 bb = split_edge (e);
2045
2046 /* If E crossed a partition boundary, we needed to make bb end in
2047 a region-crossing jump, even though it was originally fallthru. */
2048 if (JUMP_P (BB_END (bb)))
2049 before = BB_END (bb);
2050 else
2051 after = BB_END (bb);
2052 }
2053
2054 /* Now that we've found the spot, do the insertion. */
2055 if (before)
2056 {
2057 emit_insn_before_noloc (insns, before, bb);
2058 last = prev_nonnote_insn (before);
2059 }
2060 else
2061 last = emit_insn_after_noloc (insns, after, bb);
2062
2063 if (returnjump_p (last))
2064 {
2065 /* ??? Remove all outgoing edges from BB and add one for EXIT.
2066 This is not currently a problem because this only happens
2067 for the (single) epilogue, which already has a fallthru edge
2068 to EXIT. */
2069
2070 e = single_succ_edge (bb);
2071 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2072 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
2073
2074 e->flags &= ~EDGE_FALLTHRU;
2075 emit_barrier_after (last);
2076
2077 if (before)
2078 delete_insn (before);
2079 }
2080 else
2081 gcc_assert (!JUMP_P (last));
2082 }
2083
2084 /* Update the CFG for all queued instructions. */
2085
2086 void
2087 commit_edge_insertions (void)
2088 {
2089 basic_block bb;
2090
2091 /* Optimization passes that invoke this routine can cause hot blocks
2092 previously reached by both hot and cold blocks to become dominated only
2093 by cold blocks. This will cause the verification below to fail,
2094 and lead to now cold code in the hot section. In some cases this
2095 may only be visible after newly unreachable blocks are deleted,
2096 which will be done by fixup_partitions. */
2097 fixup_partitions ();
2098
2099 checking_verify_flow_info ();
2100
2101 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
2102 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
2103 {
2104 edge e;
2105 edge_iterator ei;
2106
2107 FOR_EACH_EDGE (e, ei, bb->succs)
2108 if (e->insns.r)
2109 commit_one_edge_insertion (e);
2110 }
2111 }
2112 \f
2113
2114 /* Print out RTL-specific basic block information (live information
2115 at start and end with TDF_DETAILS). FLAGS are the TDF_* masks
2116 documented in dumpfile.h. */
2117
2118 static void
2119 rtl_dump_bb (FILE *outf, basic_block bb, int indent, int flags)
2120 {
2121 rtx_insn *insn;
2122 rtx_insn *last;
2123 char *s_indent;
2124
2125 s_indent = (char *) alloca ((size_t) indent + 1);
2126 memset (s_indent, ' ', (size_t) indent);
2127 s_indent[indent] = '\0';
2128
2129 if (df && (flags & TDF_DETAILS))
2130 {
2131 df_dump_top (bb, outf);
2132 putc ('\n', outf);
2133 }
2134
2135 if (bb->index != ENTRY_BLOCK && bb->index != EXIT_BLOCK)
2136 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
2137 insn = NEXT_INSN (insn))
2138 {
2139 if (flags & TDF_DETAILS)
2140 df_dump_insn_top (insn, outf);
2141 if (! (flags & TDF_SLIM))
2142 print_rtl_single (outf, insn);
2143 else
2144 dump_insn_slim (outf, insn);
2145 if (flags & TDF_DETAILS)
2146 df_dump_insn_bottom (insn, outf);
2147 }
2148
2149 if (df && (flags & TDF_DETAILS))
2150 {
2151 df_dump_bottom (bb, outf);
2152 putc ('\n', outf);
2153 }
2154
2155 }
2156 \f
2157 /* Like dump_function_to_file, but for RTL. Print out dataflow information
2158 for the start of each basic block. FLAGS are the TDF_* masks documented
2159 in dumpfile.h. */
2160
2161 void
2162 print_rtl_with_bb (FILE *outf, const rtx_insn *rtx_first, int flags)
2163 {
2164 const rtx_insn *tmp_rtx;
2165 if (rtx_first == 0)
2166 fprintf (outf, "(nil)\n");
2167 else
2168 {
2169 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
2170 int max_uid = get_max_uid ();
2171 basic_block *start = XCNEWVEC (basic_block, max_uid);
2172 basic_block *end = XCNEWVEC (basic_block, max_uid);
2173 enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid);
2174 basic_block bb;
2175
2176 /* After freeing the CFG, we still have BLOCK_FOR_INSN set on most
2177 insns, but the CFG is not maintained so the basic block info
2178 is not reliable. Therefore it's omitted from the dumps. */
2179 if (! (cfun->curr_properties & PROP_cfg))
2180 flags &= ~TDF_BLOCKS;
2181
2182 if (df)
2183 df_dump_start (outf);
2184
2185 if (flags & TDF_BLOCKS)
2186 {
2187 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2188 {
2189 rtx_insn *x;
2190
2191 start[INSN_UID (BB_HEAD (bb))] = bb;
2192 end[INSN_UID (BB_END (bb))] = bb;
2193 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
2194 {
2195 enum bb_state state = IN_MULTIPLE_BB;
2196
2197 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
2198 state = IN_ONE_BB;
2199 in_bb_p[INSN_UID (x)] = state;
2200
2201 if (x == BB_END (bb))
2202 break;
2203 }
2204 }
2205 }
2206
2207 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
2208 {
2209 if (flags & TDF_BLOCKS)
2210 {
2211 bb = start[INSN_UID (tmp_rtx)];
2212 if (bb != NULL)
2213 {
2214 dump_bb_info (outf, bb, 0, dump_flags | TDF_COMMENT, true, false);
2215 if (df && (flags & TDF_DETAILS))
2216 df_dump_top (bb, outf);
2217 }
2218
2219 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
2220 && !NOTE_P (tmp_rtx)
2221 && !BARRIER_P (tmp_rtx))
2222 fprintf (outf, ";; Insn is not within a basic block\n");
2223 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
2224 fprintf (outf, ";; Insn is in multiple basic blocks\n");
2225 }
2226
2227 if (flags & TDF_DETAILS)
2228 df_dump_insn_top (tmp_rtx, outf);
2229 if (! (flags & TDF_SLIM))
2230 print_rtl_single (outf, tmp_rtx);
2231 else
2232 dump_insn_slim (outf, tmp_rtx);
2233 if (flags & TDF_DETAILS)
2234 df_dump_insn_bottom (tmp_rtx, outf);
2235
2236 if (flags & TDF_BLOCKS)
2237 {
2238 bb = end[INSN_UID (tmp_rtx)];
2239 if (bb != NULL)
2240 {
2241 dump_bb_info (outf, bb, 0, dump_flags | TDF_COMMENT, false, true);
2242 if (df && (flags & TDF_DETAILS))
2243 df_dump_bottom (bb, outf);
2244 putc ('\n', outf);
2245 }
2246 }
2247 }
2248
2249 free (start);
2250 free (end);
2251 free (in_bb_p);
2252 }
2253 }
2254 \f
2255 /* Update the branch probability of BB if a REG_BR_PROB is present. */
2256
2257 void
2258 update_br_prob_note (basic_block bb)
2259 {
2260 rtx note;
2261 if (!JUMP_P (BB_END (bb)))
2262 return;
2263 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
2264 if (!note || XINT (note, 0) == BRANCH_EDGE (bb)->probability)
2265 return;
2266 XINT (note, 0) = BRANCH_EDGE (bb)->probability;
2267 }
2268
2269 /* Get the last insn associated with block BB (that includes barriers and
2270 tablejumps after BB). */
2271 rtx_insn *
2272 get_last_bb_insn (basic_block bb)
2273 {
2274 rtx_jump_table_data *table;
2275 rtx_insn *tmp;
2276 rtx_insn *end = BB_END (bb);
2277
2278 /* Include any jump table following the basic block. */
2279 if (tablejump_p (end, NULL, &table))
2280 end = table;
2281
2282 /* Include any barriers that may follow the basic block. */
2283 tmp = next_nonnote_insn_bb (end);
2284 while (tmp && BARRIER_P (tmp))
2285 {
2286 end = tmp;
2287 tmp = next_nonnote_insn_bb (end);
2288 }
2289
2290 return end;
2291 }
2292
2293 /* Sanity check partition hotness to ensure that basic blocks in
2294   the cold partition don't dominate basic blocks in the hot partition.
2295 If FLAG_ONLY is true, report violations as errors. Otherwise
2296 re-mark the dominated blocks as cold, since this is run after
2297 cfg optimizations that may make hot blocks previously reached
2298 by both hot and cold blocks now only reachable along cold paths. */
2299
2300 static vec<basic_block>
2301 find_partition_fixes (bool flag_only)
2302 {
2303 basic_block bb;
2304 vec<basic_block> bbs_in_cold_partition = vNULL;
2305 vec<basic_block> bbs_to_fix = vNULL;
2306
2307 /* Callers check this. */
2308 gcc_checking_assert (crtl->has_bb_partition);
2309
2310 FOR_EACH_BB_FN (bb, cfun)
2311 if ((BB_PARTITION (bb) == BB_COLD_PARTITION))
2312 bbs_in_cold_partition.safe_push (bb);
2313
2314 if (bbs_in_cold_partition.is_empty ())
2315 return vNULL;
2316
2317 bool dom_calculated_here = !dom_info_available_p (CDI_DOMINATORS);
2318
2319 if (dom_calculated_here)
2320 calculate_dominance_info (CDI_DOMINATORS);
2321
2322 while (! bbs_in_cold_partition.is_empty ())
2323 {
2324 bb = bbs_in_cold_partition.pop ();
2325 /* Any blocks dominated by a block in the cold section
2326 must also be cold. */
2327 basic_block son;
2328 for (son = first_dom_son (CDI_DOMINATORS, bb);
2329 son;
2330 son = next_dom_son (CDI_DOMINATORS, son))
2331 {
2332 /* If son is not yet cold, then mark it cold here and
2333 enqueue it for further processing. */
2334 if ((BB_PARTITION (son) != BB_COLD_PARTITION))
2335 {
2336 if (flag_only)
2337 error ("non-cold basic block %d dominated "
2338 "by a block in the cold partition (%d)", son->index, bb->index);
2339 else
2340 BB_SET_PARTITION (son, BB_COLD_PARTITION);
2341 bbs_to_fix.safe_push (son);
2342 bbs_in_cold_partition.safe_push (son);
2343 }
2344 }
2345 }
2346
2347 if (dom_calculated_here)
2348 free_dominance_info (CDI_DOMINATORS);
2349
2350 return bbs_to_fix;
2351 }
2352
2353 /* Perform cleanup on the hot/cold bb partitioning after optimization
2354 passes that modify the cfg. */
2355
2356 void
2357 fixup_partitions (void)
2358 {
2359 basic_block bb;
2360
2361 if (!crtl->has_bb_partition)
2362 return;
2363
2364 /* Delete any blocks that became unreachable and weren't
2365 already cleaned up, for example during edge forwarding
2366 and convert_jumps_to_returns. This will expose more
2367 opportunities for fixing the partition boundaries here.
2368 Also, the calculation of the dominance graph during verification
2369 will assert if there are unreachable nodes. */
2370 delete_unreachable_blocks ();
2371
2372 /* If there are partitions, do a sanity check on them: A basic block in
2373   a cold partition cannot dominate a basic block in a hot partition.
2374 Fixup any that now violate this requirement, as a result of edge
2375 forwarding and unreachable block deletion.  */
2376 vec<basic_block> bbs_to_fix = find_partition_fixes (false);
2377
2378 /* Do the partition fixup after all necessary blocks have been converted to
2379 cold, so that we only update the region crossings the minimum number of
2380 places, which can require forcing edges to be non fallthru. */
2381 while (! bbs_to_fix.is_empty ())
2382 {
2383 bb = bbs_to_fix.pop ();
2384 fixup_new_cold_bb (bb);
2385 }
2386 }
2387
2388 /* Verify, in the basic block chain, that there is at most one switch
2389 between hot/cold partitions. This condition will not be true until
2390 after reorder_basic_blocks is called. */
2391
2392 static int
2393 verify_hot_cold_block_grouping (void)
2394 {
2395 basic_block bb;
2396 int err = 0;
2397 bool switched_sections = false;
2398 int current_partition = BB_UNPARTITIONED;
2399
2400 /* Even after bb reordering is complete, we go into cfglayout mode
2401 again (in compgoto). Ensure we don't call this before going back
2402 into linearized RTL when any layout fixes would have been committed. */
2403 if (!crtl->bb_reorder_complete
2404 || current_ir_type () != IR_RTL_CFGRTL)
2405 return err;
2406
2407 FOR_EACH_BB_FN (bb, cfun)
2408 {
2409 if (current_partition != BB_UNPARTITIONED
2410 && BB_PARTITION (bb) != current_partition)
2411 {
2412 if (switched_sections)
2413 {
2414 error ("multiple hot/cold transitions found (bb %i)",
2415 bb->index);
2416 err = 1;
2417 }
2418 else
2419 switched_sections = true;
2420
2421 if (!crtl->has_bb_partition)
2422 error ("partition found but function partition flag not set");
2423 }
2424 current_partition = BB_PARTITION (bb);
2425 }
2426
2427 return err;
2428 }
2429 \f
2430
2431 /* Perform several checks on the edges out of each block, such as
2432 the consistency of the branch probabilities, the correctness
2433 of hot/cold partition crossing edges, and the number of expected
2434 successor edges. Also verify that the dominance relationship
2435 between hot/cold blocks is sane. */
2436
2437 static int
2438 rtl_verify_edges (void)
2439 {
2440 int err = 0;
2441 basic_block bb;
2442
2443 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2444 {
2445 int n_fallthru = 0, n_branch = 0, n_abnormal_call = 0, n_sibcall = 0;
2446 int n_eh = 0, n_abnormal = 0;
2447 edge e, fallthru = NULL;
2448 edge_iterator ei;
2449 rtx note;
2450 bool has_crossing_edge = false;
2451
2452 if (JUMP_P (BB_END (bb))
2453 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
2454 && EDGE_COUNT (bb->succs) >= 2
2455 && any_condjump_p (BB_END (bb)))
2456 {
2457 if (XINT (note, 0) != BRANCH_EDGE (bb)->probability
2458 && profile_status_for_fn (cfun) != PROFILE_ABSENT)
2459 {
2460 error ("verify_flow_info: REG_BR_PROB does not match cfg %i %i",
2461 XINT (note, 0), BRANCH_EDGE (bb)->probability);
2462 err = 1;
2463 }
2464 }
2465
2466 FOR_EACH_EDGE (e, ei, bb->succs)
2467 {
2468 bool is_crossing;
2469
2470 if (e->flags & EDGE_FALLTHRU)
2471 n_fallthru++, fallthru = e;
2472
2473 is_crossing = (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
2474 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2475 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun));
2476 has_crossing_edge |= is_crossing;
2477 if (e->flags & EDGE_CROSSING)
2478 {
2479 if (!is_crossing)
2480 {
2481 error ("EDGE_CROSSING incorrectly set across same section");
2482 err = 1;
2483 }
2484 if (e->flags & EDGE_FALLTHRU)
2485 {
2486 error ("fallthru edge crosses section boundary in bb %i",
2487 e->src->index);
2488 err = 1;
2489 }
2490 if (e->flags & EDGE_EH)
2491 {
2492 error ("EH edge crosses section boundary in bb %i",
2493 e->src->index);
2494 err = 1;
2495 }
2496 if (JUMP_P (BB_END (bb)) && !CROSSING_JUMP_P (BB_END (bb)))
2497 {
2498 error ("No region crossing jump at section boundary in bb %i",
2499 bb->index);
2500 err = 1;
2501 }
2502 }
2503 else if (is_crossing)
2504 {
2505 error ("EDGE_CROSSING missing across section boundary");
2506 err = 1;
2507 }
2508
2509 if ((e->flags & ~(EDGE_DFS_BACK
2510 | EDGE_CAN_FALLTHRU
2511 | EDGE_IRREDUCIBLE_LOOP
2512 | EDGE_LOOP_EXIT
2513 | EDGE_CROSSING
2514 | EDGE_PRESERVE)) == 0)
2515 n_branch++;
2516
2517 if (e->flags & EDGE_ABNORMAL_CALL)
2518 n_abnormal_call++;
2519
2520 if (e->flags & EDGE_SIBCALL)
2521 n_sibcall++;
2522
2523 if (e->flags & EDGE_EH)
2524 n_eh++;
2525
2526 if (e->flags & EDGE_ABNORMAL)
2527 n_abnormal++;
2528 }
2529
2530 if (!has_crossing_edge
2531 && JUMP_P (BB_END (bb))
2532 && CROSSING_JUMP_P (BB_END (bb)))
2533 {
2534 print_rtl_with_bb (stderr, get_insns (), TDF_RTL | TDF_BLOCKS | TDF_DETAILS);
2535 error ("Region crossing jump across same section in bb %i",
2536 bb->index);
2537 err = 1;
2538 }
2539
2540 if (n_eh && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2541 {
2542 error ("missing REG_EH_REGION note at the end of bb %i", bb->index);
2543 err = 1;
2544 }
2545 if (n_eh > 1)
2546 {
2547 error ("too many exception handling edges in bb %i", bb->index);
2548 err = 1;
2549 }
2550 if (n_branch
2551 && (!JUMP_P (BB_END (bb))
2552 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2553 || any_condjump_p (BB_END (bb))))))
2554 {
2555 error ("too many outgoing branch edges from bb %i", bb->index);
2556 err = 1;
2557 }
2558 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2559 {
2560 error ("fallthru edge after unconditional jump in bb %i", bb->index);
2561 err = 1;
2562 }
2563 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2564 {
2565 error ("wrong number of branch edges after unconditional jump"
2566 " in bb %i", bb->index);
2567 err = 1;
2568 }
2569 if (n_branch != 1 && any_condjump_p (BB_END (bb))
2570 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
2571 {
2572 error ("wrong amount of branch edges after conditional jump"
2573 " in bb %i", bb->index);
2574 err = 1;
2575 }
2576 if (n_abnormal_call && !CALL_P (BB_END (bb)))
2577 {
2578 error ("abnormal call edges for non-call insn in bb %i", bb->index);
2579 err = 1;
2580 }
2581 if (n_sibcall && !CALL_P (BB_END (bb)))
2582 {
2583 error ("sibcall edges for non-call insn in bb %i", bb->index);
2584 err = 1;
2585 }
2586 if (n_abnormal > n_eh
2587 && !(CALL_P (BB_END (bb))
2588 && n_abnormal == n_abnormal_call + n_sibcall)
2589 && (!JUMP_P (BB_END (bb))
2590 || any_condjump_p (BB_END (bb))
2591 || any_uncondjump_p (BB_END (bb))))
2592 {
2593 error ("abnormal edges for no purpose in bb %i", bb->index);
2594 err = 1;
2595 }
2596 }
2597
2598 /* If there are partitions, do a sanity check on them: A basic block in
2599   a cold partition cannot dominate a basic block in a hot partition.  */
2600 if (crtl->has_bb_partition && !err)
2601 {
2602 vec<basic_block> bbs_to_fix = find_partition_fixes (true);
2603 err = !bbs_to_fix.is_empty ();
2604 }
2605
2606 /* Clean up. */
2607 return err;
2608 }
2609
2610 /* Checks on the instructions within blocks. Currently checks that each
2611 block starts with a basic block note, and that basic block notes and
2612 control flow jumps are not found in the middle of the block. */
2613
2614 static int
2615 rtl_verify_bb_insns (void)
2616 {
2617 rtx_insn *x;
2618 int err = 0;
2619 basic_block bb;
2620
2621 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2622 {
2623 /* Now check the header of basic
2624 block. It ought to contain optional CODE_LABEL followed
2625 by NOTE_BASIC_BLOCK. */
2626 x = BB_HEAD (bb);
2627 if (LABEL_P (x))
2628 {
2629 if (BB_END (bb) == x)
2630 {
2631 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2632 bb->index);
2633 err = 1;
2634 }
2635
2636 x = NEXT_INSN (x);
2637 }
2638
2639 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2640 {
2641 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2642 bb->index);
2643 err = 1;
2644 }
2645
2646 if (BB_END (bb) == x)
2647 /* Do checks for empty blocks here. */
2648 ;
2649 else
2650 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2651 {
2652 if (NOTE_INSN_BASIC_BLOCK_P (x))
2653 {
2654 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2655 INSN_UID (x), bb->index);
2656 err = 1;
2657 }
2658
2659 if (x == BB_END (bb))
2660 break;
2661
2662 if (control_flow_insn_p (x))
2663 {
2664 error ("in basic block %d:", bb->index);
2665 fatal_insn ("flow control insn inside a basic block", x);
2666 }
2667 }
2668 }
2669
2670 /* Clean up. */
2671 return err;
2672 }
2673
2674 /* Verify that block pointers for instructions in basic blocks, headers and
2675 footers are set appropriately. */
2676
2677 static int
2678 rtl_verify_bb_pointers (void)
2679 {
2680 int err = 0;
2681 basic_block bb;
2682
2683 /* Check the general integrity of the basic blocks. */
2684 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2685 {
2686 rtx_insn *insn;
2687
2688 if (!(bb->flags & BB_RTL))
2689 {
2690 error ("BB_RTL flag not set for block %d", bb->index);
2691 err = 1;
2692 }
2693
2694 FOR_BB_INSNS (bb, insn)
2695 if (BLOCK_FOR_INSN (insn) != bb)
2696 {
2697 error ("insn %d basic block pointer is %d, should be %d",
2698 INSN_UID (insn),
2699 BLOCK_FOR_INSN (insn) ? BLOCK_FOR_INSN (insn)->index : 0,
2700 bb->index);
2701 err = 1;
2702 }
2703
2704 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
2705 if (!BARRIER_P (insn)
2706 && BLOCK_FOR_INSN (insn) != NULL)
2707 {
2708 error ("insn %d in header of bb %d has non-NULL basic block",
2709 INSN_UID (insn), bb->index);
2710 err = 1;
2711 }
2712 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2713 if (!BARRIER_P (insn)
2714 && BLOCK_FOR_INSN (insn) != NULL)
2715 {
2716 error ("insn %d in footer of bb %d has non-NULL basic block",
2717 INSN_UID (insn), bb->index);
2718 err = 1;
2719 }
2720 }
2721
2722 /* Clean up. */
2723 return err;
2724 }
2725
2726 /* Verify the CFG and RTL consistency common for both underlying RTL and
2727 cfglayout RTL.
2728
2729 Currently it does following checks:
2730
2731 - overlapping of basic blocks
2732 - insns with wrong BLOCK_FOR_INSN pointers
2733 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
2734 - tails of basic blocks (ensure that boundary is necessary)
2735 - scans body of the basic block for JUMP_INSN, CODE_LABEL
2736 and NOTE_INSN_BASIC_BLOCK
2737 - verify that no fall_thru edge crosses hot/cold partition boundaries
2738 - verify that there are no pending RTL branch predictions
2739 - verify that hot blocks are not dominated by cold blocks
2740
2741 In future it can be extended check a lot of other stuff as well
2742 (reachability of basic blocks, life information, etc. etc.). */
2743
2744 static int
2745 rtl_verify_flow_info_1 (void)
2746 {
2747 int err = 0;
2748
2749 err |= rtl_verify_bb_pointers ();
2750
2751 err |= rtl_verify_bb_insns ();
2752
2753 err |= rtl_verify_edges ();
2754
2755 return err;
2756 }
2757
2758 /* Walk the instruction chain and verify that bb head/end pointers
2759 are correct, and that instructions are in exactly one bb and have
2760 correct block pointers. */
2761
2762 static int
2763 rtl_verify_bb_insn_chain (void)
2764 {
2765 basic_block bb;
2766 int err = 0;
2767 rtx_insn *x;
2768 rtx_insn *last_head = get_last_insn ();
2769 basic_block *bb_info;
2770 const int max_uid = get_max_uid ();
2771
2772 bb_info = XCNEWVEC (basic_block, max_uid);
2773
2774 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2775 {
2776 rtx_insn *head = BB_HEAD (bb);
2777 rtx_insn *end = BB_END (bb);
2778
2779 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2780 {
2781 /* Verify the end of the basic block is in the INSN chain. */
2782 if (x == end)
2783 break;
2784
2785 /* And that the code outside of basic blocks has NULL bb field. */
2786 if (!BARRIER_P (x)
2787 && BLOCK_FOR_INSN (x) != NULL)
2788 {
2789 error ("insn %d outside of basic blocks has non-NULL bb field",
2790 INSN_UID (x));
2791 err = 1;
2792 }
2793 }
2794
2795 if (!x)
2796 {
2797 error ("end insn %d for block %d not found in the insn stream",
2798 INSN_UID (end), bb->index);
2799 err = 1;
2800 }
2801
2802 /* Work backwards from the end to the head of the basic block
2803 to verify the head is in the RTL chain. */
2804 for (; x != NULL_RTX; x = PREV_INSN (x))
2805 {
2806 /* While walking over the insn chain, verify insns appear
2807 in only one basic block. */
2808 if (bb_info[INSN_UID (x)] != NULL)
2809 {
2810 error ("insn %d is in multiple basic blocks (%d and %d)",
2811 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
2812 err = 1;
2813 }
2814
2815 bb_info[INSN_UID (x)] = bb;
2816
2817 if (x == head)
2818 break;
2819 }
2820 if (!x)
2821 {
2822 error ("head insn %d for block %d not found in the insn stream",
2823 INSN_UID (head), bb->index);
2824 err = 1;
2825 }
2826
2827 last_head = PREV_INSN (x);
2828 }
2829
2830 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2831 {
2832 /* Check that the code before the first basic block has NULL
2833 bb field. */
2834 if (!BARRIER_P (x)
2835 && BLOCK_FOR_INSN (x) != NULL)
2836 {
2837 error ("insn %d outside of basic blocks has non-NULL bb field",
2838 INSN_UID (x));
2839 err = 1;
2840 }
2841 }
2842 free (bb_info);
2843
2844 return err;
2845 }
2846
2847 /* Verify that fallthru edges point to adjacent blocks in layout order and
2848 that barriers exist after non-fallthru blocks. */
2849
2850 static int
2851 rtl_verify_fallthru (void)
2852 {
2853 basic_block bb;
2854 int err = 0;
2855
2856 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2857 {
2858 edge e;
2859
2860 e = find_fallthru_edge (bb->succs);
2861 if (!e)
2862 {
2863 rtx_insn *insn;
2864
2865 /* Ensure existence of barrier in BB with no fallthru edges. */
2866 for (insn = NEXT_INSN (BB_END (bb)); ; insn = NEXT_INSN (insn))
2867 {
2868 if (!insn || NOTE_INSN_BASIC_BLOCK_P (insn))
2869 {
2870 error ("missing barrier after block %i", bb->index);
2871 err = 1;
2872 break;
2873 }
2874 if (BARRIER_P (insn))
2875 break;
2876 }
2877 }
2878 else if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2879 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2880 {
2881 rtx_insn *insn;
2882
2883 if (e->src->next_bb != e->dest)
2884 {
2885 error
2886 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2887 e->src->index, e->dest->index);
2888 err = 1;
2889 }
2890 else
2891 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2892 insn = NEXT_INSN (insn))
2893 if (BARRIER_P (insn) || INSN_P (insn))
2894 {
2895 error ("verify_flow_info: Incorrect fallthru %i->%i",
2896 e->src->index, e->dest->index);
2897 fatal_insn ("wrong insn in the fallthru edge", insn);
2898 err = 1;
2899 }
2900 }
2901 }
2902
2903 return err;
2904 }
2905
2906 /* Verify that blocks are laid out in consecutive order. While walking the
2907 instructions, verify that all expected instructions are inside the basic
2908 blocks, and that all returns are followed by barriers. */
2909
2910 static int
2911 rtl_verify_bb_layout (void)
2912 {
2913 basic_block bb;
2914 int err = 0;
2915 rtx_insn *x;
2916 int num_bb_notes;
2917 rtx_insn * const rtx_first = get_insns ();
2918 basic_block last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun), curr_bb = NULL;
2919
2920 num_bb_notes = 0;
2921 last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun);
2922
2923 for (x = rtx_first; x; x = NEXT_INSN (x))
2924 {
2925 if (NOTE_INSN_BASIC_BLOCK_P (x))
2926 {
2927 bb = NOTE_BASIC_BLOCK (x);
2928
2929 num_bb_notes++;
2930 if (bb != last_bb_seen->next_bb)
2931 internal_error ("basic blocks not laid down consecutively");
2932
2933 curr_bb = last_bb_seen = bb;
2934 }
2935
2936 if (!curr_bb)
2937 {
2938 switch (GET_CODE (x))
2939 {
2940 case BARRIER:
2941 case NOTE:
2942 break;
2943
2944 case CODE_LABEL:
2945 /* An ADDR_VEC is placed outside any basic block. */
2946 if (NEXT_INSN (x)
2947 && JUMP_TABLE_DATA_P (NEXT_INSN (x)))
2948 x = NEXT_INSN (x);
2949
2950 /* But in any case, non-deletable labels can appear anywhere. */
2951 break;
2952
2953 default:
2954 fatal_insn ("insn outside basic block", x);
2955 }
2956 }
2957
2958 if (JUMP_P (x)
2959 && returnjump_p (x) && ! condjump_p (x)
2960 && ! (next_nonnote_insn (x) && BARRIER_P (next_nonnote_insn (x))))
2961 fatal_insn ("return not followed by barrier", x);
2962
2963 if (curr_bb && x == BB_END (curr_bb))
2964 curr_bb = NULL;
2965 }
2966
2967 if (num_bb_notes != n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS)
2968 internal_error
2969 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2970 num_bb_notes, n_basic_blocks_for_fn (cfun));
2971
2972 return err;
2973 }
2974
2975 /* Verify the CFG and RTL consistency common for both underlying RTL and
2976 cfglayout RTL, plus consistency checks specific to linearized RTL mode.
2977
2978 Currently it does following checks:
2979 - all checks of rtl_verify_flow_info_1
2980 - test head/end pointers
2981 - check that blocks are laid out in consecutive order
2982 - check that all insns are in the basic blocks
2983 (except the switch handling code, barriers and notes)
2984 - check that all returns are followed by barriers
2985 - check that all fallthru edge points to the adjacent blocks
2986 - verify that there is a single hot/cold partition boundary after bbro */
2987
2988 static int
2989 rtl_verify_flow_info (void)
2990 {
2991 int err = 0;
2992
2993 err |= rtl_verify_flow_info_1 ();
2994
2995 err |= rtl_verify_bb_insn_chain ();
2996
2997 err |= rtl_verify_fallthru ();
2998
2999 err |= rtl_verify_bb_layout ();
3000
3001 err |= verify_hot_cold_block_grouping ();
3002
3003 return err;
3004 }
3005 \f
3006 /* Assume that the preceding pass has possibly eliminated jump instructions
3007 or converted the unconditional jumps. Eliminate the edges from CFG.
3008 Return true if any edges are eliminated. */
3009
3010 bool
3011 purge_dead_edges (basic_block bb)
3012 {
3013 edge e;
3014 rtx_insn *insn = BB_END (bb);
3015 rtx note;
3016 bool purged = false;
3017 bool found;
3018 edge_iterator ei;
3019
3020 if (DEBUG_INSN_P (insn) && insn != BB_HEAD (bb))
3021 do
3022 insn = PREV_INSN (insn);
3023 while ((DEBUG_INSN_P (insn) || NOTE_P (insn)) && insn != BB_HEAD (bb));
3024
3025 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
3026 if (NONJUMP_INSN_P (insn)
3027 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
3028 {
3029 rtx eqnote;
3030
3031 if (! may_trap_p (PATTERN (insn))
3032 || ((eqnote = find_reg_equal_equiv_note (insn))
3033 && ! may_trap_p (XEXP (eqnote, 0))))
3034 remove_note (insn, note);
3035 }
3036
3037 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
3038 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3039 {
3040 bool remove = false;
3041
3042 /* There are three types of edges we need to handle correctly here: EH
3043 edges, abnormal call EH edges, and abnormal call non-EH edges. The
3044 latter can appear when nonlocal gotos are used. */
3045 if (e->flags & EDGE_ABNORMAL_CALL)
3046 {
3047 if (!CALL_P (insn))
3048 remove = true;
3049 else if (can_nonlocal_goto (insn))
3050 ;
3051 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3052 ;
3053 else if (flag_tm && find_reg_note (insn, REG_TM, NULL))
3054 ;
3055 else
3056 remove = true;
3057 }
3058 else if (e->flags & EDGE_EH)
3059 remove = !can_throw_internal (insn);
3060
3061 if (remove)
3062 {
3063 remove_edge (e);
3064 df_set_bb_dirty (bb);
3065 purged = true;
3066 }
3067 else
3068 ei_next (&ei);
3069 }
3070
3071 if (JUMP_P (insn))
3072 {
3073 rtx note;
3074 edge b,f;
3075 edge_iterator ei;
3076
3077 /* We do care only about conditional jumps and simplejumps. */
3078 if (!any_condjump_p (insn)
3079 && !returnjump_p (insn)
3080 && !simplejump_p (insn))
3081 return purged;
3082
3083 /* Branch probability/prediction notes are defined only for
3084 condjumps. We've possibly turned condjump into simplejump. */
3085 if (simplejump_p (insn))
3086 {
3087 note = find_reg_note (insn, REG_BR_PROB, NULL);
3088 if (note)
3089 remove_note (insn, note);
3090 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
3091 remove_note (insn, note);
3092 }
3093
3094 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3095 {
3096 /* Avoid abnormal flags to leak from computed jumps turned
3097 into simplejumps. */
3098
3099 e->flags &= ~EDGE_ABNORMAL;
3100
3101 /* See if this edge is one we should keep. */
3102 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
3103 /* A conditional jump can fall through into the next
3104 block, so we should keep the edge. */
3105 {
3106 ei_next (&ei);
3107 continue;
3108 }
3109 else if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
3110 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
3111 /* If the destination block is the target of the jump,
3112 keep the edge. */
3113 {
3114 ei_next (&ei);
3115 continue;
3116 }
3117 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
3118 && returnjump_p (insn))
3119 /* If the destination block is the exit block, and this
3120 instruction is a return, then keep the edge. */
3121 {
3122 ei_next (&ei);
3123 continue;
3124 }
3125 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3126 /* Keep the edges that correspond to exceptions thrown by
3127 this instruction and rematerialize the EDGE_ABNORMAL
3128 flag we just cleared above. */
3129 {
3130 e->flags |= EDGE_ABNORMAL;
3131 ei_next (&ei);
3132 continue;
3133 }
3134
3135 /* We do not need this edge. */
3136 df_set_bb_dirty (bb);
3137 purged = true;
3138 remove_edge (e);
3139 }
3140
3141 if (EDGE_COUNT (bb->succs) == 0 || !purged)
3142 return purged;
3143
3144 if (dump_file)
3145 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
3146
3147 if (!optimize)
3148 return purged;
3149
3150 /* Redistribute probabilities. */
3151 if (single_succ_p (bb))
3152 {
3153 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
3154 single_succ_edge (bb)->count = bb->count;
3155 }
3156 else
3157 {
3158 note = find_reg_note (insn, REG_BR_PROB, NULL);
3159 if (!note)
3160 return purged;
3161
3162 b = BRANCH_EDGE (bb);
3163 f = FALLTHRU_EDGE (bb);
3164 b->probability = XINT (note, 0);
3165 f->probability = REG_BR_PROB_BASE - b->probability;
3166 /* Update these to use GCOV_COMPUTE_SCALE. */
3167 b->count = bb->count * b->probability / REG_BR_PROB_BASE;
3168 f->count = bb->count * f->probability / REG_BR_PROB_BASE;
3169 }
3170
3171 return purged;
3172 }
3173 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
3174 {
3175 /* First, there should not be any EH or ABCALL edges resulting
3176 from non-local gotos and the like. If there were, we shouldn't
3177 have created the sibcall in the first place. Second, there
3178 should of course never have been a fallthru edge. */
3179 gcc_assert (single_succ_p (bb));
3180 gcc_assert (single_succ_edge (bb)->flags
3181 == (EDGE_SIBCALL | EDGE_ABNORMAL));
3182
3183 return 0;
3184 }
3185
3186 /* If we don't see a jump insn, we don't know exactly why the block would
3187 have been broken at this point. Look for a simple, non-fallthru edge,
3188 as these are only created by conditional branches. If we find such an
3189 edge we know that there used to be a jump here and can then safely
3190 remove all non-fallthru edges. */
3191 found = false;
3192 FOR_EACH_EDGE (e, ei, bb->succs)
3193 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
3194 {
3195 found = true;
3196 break;
3197 }
3198
3199 if (!found)
3200 return purged;
3201
3202 /* Remove all but the fake and fallthru edges. The fake edge may be
3203 the only successor for this block in the case of noreturn
3204 calls. */
3205 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3206 {
3207 if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
3208 {
3209 df_set_bb_dirty (bb);
3210 remove_edge (e);
3211 purged = true;
3212 }
3213 else
3214 ei_next (&ei);
3215 }
3216
3217 gcc_assert (single_succ_p (bb));
3218
3219 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
3220 single_succ_edge (bb)->count = bb->count;
3221
3222 if (dump_file)
3223 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
3224 bb->index);
3225 return purged;
3226 }
3227
3228 /* Search all basic blocks for potentially dead edges and purge them. Return
3229 true if some edge has been eliminated. */
3230
3231 bool
3232 purge_all_dead_edges (void)
3233 {
3234 int purged = false;
3235 basic_block bb;
3236
3237 FOR_EACH_BB_FN (bb, cfun)
3238 {
3239 bool purged_here = purge_dead_edges (bb);
3240
3241 purged |= purged_here;
3242 }
3243
3244 return purged;
3245 }
3246
3247 /* This is used by a few passes that emit some instructions after abnormal
3248 calls, moving the basic block's end, while they in fact do want to emit
3249 them on the fallthru edge. Look for abnormal call edges, find backward
3250 the call in the block and insert the instructions on the edge instead.
3251
3252 Similarly, handle instructions throwing exceptions internally.
3253
3254 Return true when instructions have been found and inserted on edges. */
3255
3256 bool
3257 fixup_abnormal_edges (void)
3258 {
3259 bool inserted = false;
3260 basic_block bb;
3261
3262 FOR_EACH_BB_FN (bb, cfun)
3263 {
3264 edge e;
3265 edge_iterator ei;
3266
3267 /* Look for cases we are interested in - calls or instructions causing
3268 exceptions. */
3269 FOR_EACH_EDGE (e, ei, bb->succs)
3270 if ((e->flags & EDGE_ABNORMAL_CALL)
3271 || ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
3272 == (EDGE_ABNORMAL | EDGE_EH)))
3273 break;
3274
3275 if (e && !CALL_P (BB_END (bb)) && !can_throw_internal (BB_END (bb)))
3276 {
3277 rtx_insn *insn;
3278
3279 /* Get past the new insns generated. Allow notes, as the insns
3280 may be already deleted. */
3281 insn = BB_END (bb);
3282 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
3283 && !can_throw_internal (insn)
3284 && insn != BB_HEAD (bb))
3285 insn = PREV_INSN (insn);
3286
3287 if (CALL_P (insn) || can_throw_internal (insn))
3288 {
3289 rtx_insn *stop, *next;
3290
3291 e = find_fallthru_edge (bb->succs);
3292
3293 stop = NEXT_INSN (BB_END (bb));
3294 BB_END (bb) = insn;
3295
3296 for (insn = NEXT_INSN (insn); insn != stop; insn = next)
3297 {
3298 next = NEXT_INSN (insn);
3299 if (INSN_P (insn))
3300 {
3301 delete_insn (insn);
3302
3303 /* Sometimes there's still the return value USE.
3304 If it's placed after a trapping call (i.e. that
3305 call is the last insn anyway), we have no fallthru
3306 edge. Simply delete this use and don't try to insert
3307 on the non-existent edge. */
3308 if (GET_CODE (PATTERN (insn)) != USE)
3309 {
3310 /* We're not deleting it, we're moving it. */
3311 insn->set_undeleted ();
3312 SET_PREV_INSN (insn) = NULL_RTX;
3313 SET_NEXT_INSN (insn) = NULL_RTX;
3314
3315 insert_insn_on_edge (insn, e);
3316 inserted = true;
3317 }
3318 }
3319 else if (!BARRIER_P (insn))
3320 set_block_for_insn (insn, NULL);
3321 }
3322 }
3323
3324 /* It may be that we don't find any trapping insn. In this
3325 case we discovered quite late that the insn that had been
3326 marked as can_throw_internal in fact couldn't trap at all.
3327 So we should in fact delete the EH edges out of the block. */
3328 else
3329 purge_dead_edges (bb);
3330 }
3331 }
3332
3333 return inserted;
3334 }
3335 \f
3336 /* Cut the insns from FIRST to LAST out of the insns stream. */
3337
3338 rtx_insn *
3339 unlink_insn_chain (rtx_insn *first, rtx_insn *last)
3340 {
3341 rtx_insn *prevfirst = PREV_INSN (first);
3342 rtx_insn *nextlast = NEXT_INSN (last);
3343
3344 SET_PREV_INSN (first) = NULL;
3345 SET_NEXT_INSN (last) = NULL;
3346 if (prevfirst)
3347 SET_NEXT_INSN (prevfirst) = nextlast;
3348 if (nextlast)
3349 SET_PREV_INSN (nextlast) = prevfirst;
3350 else
3351 set_last_insn (prevfirst);
3352 if (!prevfirst)
3353 set_first_insn (nextlast);
3354 return first;
3355 }
3356 \f
3357 /* Skip over inter-block insns occurring after BB which are typically
3358 associated with BB (e.g., barriers). If there are any such insns,
3359 we return the last one. Otherwise, we return the end of BB. */
3360
3361 static rtx_insn *
3362 skip_insns_after_block (basic_block bb)
3363 {
3364 rtx_insn *insn, *last_insn, *next_head, *prev;
3365
3366 next_head = NULL;
3367 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3368 next_head = BB_HEAD (bb->next_bb);
3369
3370 for (last_insn = insn = BB_END (bb); (insn = NEXT_INSN (insn)) != 0; )
3371 {
3372 if (insn == next_head)
3373 break;
3374
3375 switch (GET_CODE (insn))
3376 {
3377 case BARRIER:
3378 last_insn = insn;
3379 continue;
3380
3381 case NOTE:
3382 switch (NOTE_KIND (insn))
3383 {
3384 case NOTE_INSN_BLOCK_END:
3385 gcc_unreachable ();
3386 continue;
3387 default:
3388 continue;
3389 break;
3390 }
3391 break;
3392
3393 case CODE_LABEL:
3394 if (NEXT_INSN (insn)
3395 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
3396 {
3397 insn = NEXT_INSN (insn);
3398 last_insn = insn;
3399 continue;
3400 }
3401 break;
3402
3403 default:
3404 break;
3405 }
3406
3407 break;
3408 }
3409
3410 /* It is possible to hit contradictory sequence. For instance:
3411
3412 jump_insn
3413 NOTE_INSN_BLOCK_BEG
3414 barrier
3415
3416 Where barrier belongs to jump_insn, but the note does not. This can be
3417 created by removing the basic block originally following
3418 NOTE_INSN_BLOCK_BEG. In such case reorder the notes. */
3419
3420 for (insn = last_insn; insn != BB_END (bb); insn = prev)
3421 {
3422 prev = PREV_INSN (insn);
3423 if (NOTE_P (insn))
3424 switch (NOTE_KIND (insn))
3425 {
3426 case NOTE_INSN_BLOCK_END:
3427 gcc_unreachable ();
3428 break;
3429 case NOTE_INSN_DELETED:
3430 case NOTE_INSN_DELETED_LABEL:
3431 case NOTE_INSN_DELETED_DEBUG_LABEL:
3432 continue;
3433 default:
3434 reorder_insns (insn, insn, last_insn);
3435 }
3436 }
3437
3438 return last_insn;
3439 }
3440
3441 /* Locate or create a label for a given basic block. */
3442
3443 static rtx_insn *
3444 label_for_bb (basic_block bb)
3445 {
3446 rtx_insn *label = BB_HEAD (bb);
3447
3448 if (!LABEL_P (label))
3449 {
3450 if (dump_file)
3451 fprintf (dump_file, "Emitting label for block %d\n", bb->index);
3452
3453 label = block_label (bb);
3454 }
3455
3456 return label;
3457 }
3458
3459 /* Locate the effective beginning and end of the insn chain for each
3460 block, as defined by skip_insns_after_block above. */
3461
3462 static void
3463 record_effective_endpoints (void)
3464 {
3465 rtx_insn *next_insn;
3466 basic_block bb;
3467 rtx_insn *insn;
3468
3469 for (insn = get_insns ();
3470 insn
3471 && NOTE_P (insn)
3472 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK;
3473 insn = NEXT_INSN (insn))
3474 continue;
3475 /* No basic blocks at all? */
3476 gcc_assert (insn);
3477
3478 if (PREV_INSN (insn))
3479 cfg_layout_function_header =
3480 unlink_insn_chain (get_insns (), PREV_INSN (insn));
3481 else
3482 cfg_layout_function_header = NULL;
3483
3484 next_insn = get_insns ();
3485 FOR_EACH_BB_FN (bb, cfun)
3486 {
3487 rtx_insn *end;
3488
3489 if (PREV_INSN (BB_HEAD (bb)) && next_insn != BB_HEAD (bb))
3490 BB_HEADER (bb) = unlink_insn_chain (next_insn,
3491 PREV_INSN (BB_HEAD (bb)));
3492 end = skip_insns_after_block (bb);
3493 if (NEXT_INSN (BB_END (bb)) && BB_END (bb) != end)
3494 BB_FOOTER (bb) = unlink_insn_chain (NEXT_INSN (BB_END (bb)), end);
3495 next_insn = NEXT_INSN (BB_END (bb));
3496 }
3497
3498 cfg_layout_function_footer = next_insn;
3499 if (cfg_layout_function_footer)
3500 cfg_layout_function_footer = unlink_insn_chain (cfg_layout_function_footer, get_last_insn ());
3501 }
3502 \f
3503 namespace {
3504
3505 const pass_data pass_data_into_cfg_layout_mode =
3506 {
3507 RTL_PASS, /* type */
3508 "into_cfglayout", /* name */
3509 OPTGROUP_NONE, /* optinfo_flags */
3510 TV_CFG, /* tv_id */
3511 0, /* properties_required */
3512 PROP_cfglayout, /* properties_provided */
3513 0, /* properties_destroyed */
3514 0, /* todo_flags_start */
3515 0, /* todo_flags_finish */
3516 };
3517
3518 class pass_into_cfg_layout_mode : public rtl_opt_pass
3519 {
3520 public:
3521 pass_into_cfg_layout_mode (gcc::context *ctxt)
3522 : rtl_opt_pass (pass_data_into_cfg_layout_mode, ctxt)
3523 {}
3524
3525 /* opt_pass methods: */
3526 virtual unsigned int execute (function *)
3527 {
3528 cfg_layout_initialize (0);
3529 return 0;
3530 }
3531
3532 }; // class pass_into_cfg_layout_mode
3533
3534 } // anon namespace
3535
3536 rtl_opt_pass *
3537 make_pass_into_cfg_layout_mode (gcc::context *ctxt)
3538 {
3539 return new pass_into_cfg_layout_mode (ctxt);
3540 }
3541
3542 namespace {
3543
3544 const pass_data pass_data_outof_cfg_layout_mode =
3545 {
3546 RTL_PASS, /* type */
3547 "outof_cfglayout", /* name */
3548 OPTGROUP_NONE, /* optinfo_flags */
3549 TV_CFG, /* tv_id */
3550 0, /* properties_required */
3551 0, /* properties_provided */
3552 PROP_cfglayout, /* properties_destroyed */
3553 0, /* todo_flags_start */
3554 0, /* todo_flags_finish */
3555 };
3556
3557 class pass_outof_cfg_layout_mode : public rtl_opt_pass
3558 {
3559 public:
3560 pass_outof_cfg_layout_mode (gcc::context *ctxt)
3561 : rtl_opt_pass (pass_data_outof_cfg_layout_mode, ctxt)
3562 {}
3563
3564 /* opt_pass methods: */
3565 virtual unsigned int execute (function *);
3566
3567 }; // class pass_outof_cfg_layout_mode
3568
3569 unsigned int
3570 pass_outof_cfg_layout_mode::execute (function *fun)
3571 {
3572 basic_block bb;
3573
3574 FOR_EACH_BB_FN (bb, fun)
3575 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3576 bb->aux = bb->next_bb;
3577
3578 cfg_layout_finalize ();
3579
3580 return 0;
3581 }
3582
3583 } // anon namespace
3584
3585 rtl_opt_pass *
3586 make_pass_outof_cfg_layout_mode (gcc::context *ctxt)
3587 {
3588 return new pass_outof_cfg_layout_mode (ctxt);
3589 }
3590 \f
3591
3592 /* Link the basic blocks in the correct order, compacting the basic
3593 block queue while at it. If STAY_IN_CFGLAYOUT_MODE is false, this
3594 function also clears the basic block header and footer fields.
3595
3596 This function is usually called after a pass (e.g. tracer) finishes
3597 some transformations while in cfglayout mode. The required sequence
3598 of the basic blocks is in a linked list along the bb->aux field.
3599 This functions re-links the basic block prev_bb and next_bb pointers
3600 accordingly, and it compacts and renumbers the blocks.
3601
3602 FIXME: This currently works only for RTL, but the only RTL-specific
3603 bits are the STAY_IN_CFGLAYOUT_MODE bits. The tracer pass was moved
3604 to GIMPLE a long time ago, but it doesn't relink the basic block
3605 chain. It could do that (to give better initial RTL) if this function
3606 is made IR-agnostic (and moved to cfganal.c or cfg.c while at it). */
3607
3608 void
3609 relink_block_chain (bool stay_in_cfglayout_mode)
3610 {
3611 basic_block bb, prev_bb;
3612 int index;
3613
3614 /* Maybe dump the re-ordered sequence. */
3615 if (dump_file)
3616 {
3617 fprintf (dump_file, "Reordered sequence:\n");
3618 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, index =
3619 NUM_FIXED_BLOCKS;
3620 bb;
3621 bb = (basic_block) bb->aux, index++)
3622 {
3623 fprintf (dump_file, " %i ", index);
3624 if (get_bb_original (bb))
3625 fprintf (dump_file, "duplicate of %i ",
3626 get_bb_original (bb)->index);
3627 else if (forwarder_block_p (bb)
3628 && !LABEL_P (BB_HEAD (bb)))
3629 fprintf (dump_file, "compensation ");
3630 else
3631 fprintf (dump_file, "bb %i ", bb->index);
3632 fprintf (dump_file, " [%i]\n", bb->frequency);
3633 }
3634 }
3635
3636 /* Now reorder the blocks. */
3637 prev_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3638 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
3639 for (; bb; prev_bb = bb, bb = (basic_block) bb->aux)
3640 {
3641 bb->prev_bb = prev_bb;
3642 prev_bb->next_bb = bb;
3643 }
3644 prev_bb->next_bb = EXIT_BLOCK_PTR_FOR_FN (cfun);
3645 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb = prev_bb;
3646
3647 /* Then, clean up the aux fields. */
3648 FOR_ALL_BB_FN (bb, cfun)
3649 {
3650 bb->aux = NULL;
3651 if (!stay_in_cfglayout_mode)
3652 BB_HEADER (bb) = BB_FOOTER (bb) = NULL;
3653 }
3654
3655 /* Maybe reset the original copy tables, they are not valid anymore
3656 when we renumber the basic blocks in compact_blocks. If we are
3657 are going out of cfglayout mode, don't re-allocate the tables. */
3658 free_original_copy_tables ();
3659 if (stay_in_cfglayout_mode)
3660 initialize_original_copy_tables ();
3661
3662 /* Finally, put basic_block_info in the new order. */
3663 compact_blocks ();
3664 }
3665 \f
3666
3667 /* Given a reorder chain, rearrange the code to match. */
3668
3669 static void
3670 fixup_reorder_chain (void)
3671 {
3672 basic_block bb;
3673 rtx_insn *insn = NULL;
3674
3675 if (cfg_layout_function_header)
3676 {
3677 set_first_insn (cfg_layout_function_header);
3678 insn = cfg_layout_function_header;
3679 while (NEXT_INSN (insn))
3680 insn = NEXT_INSN (insn);
3681 }
3682
3683 /* First do the bulk reordering -- rechain the blocks without regard to
3684 the needed changes to jumps and labels. */
3685
3686 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb; bb = (basic_block)
3687 bb->aux)
3688 {
3689 if (BB_HEADER (bb))
3690 {
3691 if (insn)
3692 SET_NEXT_INSN (insn) = BB_HEADER (bb);
3693 else
3694 set_first_insn (BB_HEADER (bb));
3695 SET_PREV_INSN (BB_HEADER (bb)) = insn;
3696 insn = BB_HEADER (bb);
3697 while (NEXT_INSN (insn))
3698 insn = NEXT_INSN (insn);
3699 }
3700 if (insn)
3701 SET_NEXT_INSN (insn) = BB_HEAD (bb);
3702 else
3703 set_first_insn (BB_HEAD (bb));
3704 SET_PREV_INSN (BB_HEAD (bb)) = insn;
3705 insn = BB_END (bb);
3706 if (BB_FOOTER (bb))
3707 {
3708 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
3709 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
3710 while (NEXT_INSN (insn))
3711 insn = NEXT_INSN (insn);
3712 }
3713 }
3714
3715 SET_NEXT_INSN (insn) = cfg_layout_function_footer;
3716 if (cfg_layout_function_footer)
3717 SET_PREV_INSN (cfg_layout_function_footer) = insn;
3718
3719 while (NEXT_INSN (insn))
3720 insn = NEXT_INSN (insn);
3721
3722 set_last_insn (insn);
3723 if (flag_checking)
3724 verify_insn_chain ();
3725
3726 /* Now add jumps and labels as needed to match the blocks new
3727 outgoing edges. */
3728
3729 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb ; bb = (basic_block)
3730 bb->aux)
3731 {
3732 edge e_fall, e_taken, e;
3733 rtx_insn *bb_end_insn;
3734 rtx ret_label = NULL_RTX;
3735 basic_block nb;
3736 edge_iterator ei;
3737
3738 if (EDGE_COUNT (bb->succs) == 0)
3739 continue;
3740
3741 /* Find the old fallthru edge, and another non-EH edge for
3742 a taken jump. */
3743 e_taken = e_fall = NULL;
3744
3745 FOR_EACH_EDGE (e, ei, bb->succs)
3746 if (e->flags & EDGE_FALLTHRU)
3747 e_fall = e;
3748 else if (! (e->flags & EDGE_EH))
3749 e_taken = e;
3750
3751 bb_end_insn = BB_END (bb);
3752 if (rtx_jump_insn *bb_end_jump = dyn_cast <rtx_jump_insn *> (bb_end_insn))
3753 {
3754 ret_label = JUMP_LABEL (bb_end_jump);
3755 if (any_condjump_p (bb_end_jump))
3756 {
3757 /* This might happen if the conditional jump has side
3758 effects and could therefore not be optimized away.
3759 Make the basic block to end with a barrier in order
3760 to prevent rtl_verify_flow_info from complaining. */
3761 if (!e_fall)
3762 {
3763 gcc_assert (!onlyjump_p (bb_end_jump)
3764 || returnjump_p (bb_end_jump)
3765 || (e_taken->flags & EDGE_CROSSING));
3766 emit_barrier_after (bb_end_jump);
3767 continue;
3768 }
3769
3770 /* If the old fallthru is still next, nothing to do. */
3771 if (bb->aux == e_fall->dest
3772 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3773 continue;
3774
3775 /* The degenerated case of conditional jump jumping to the next
3776 instruction can happen for jumps with side effects. We need
3777 to construct a forwarder block and this will be done just
3778 fine by force_nonfallthru below. */
3779 if (!e_taken)
3780 ;
3781
3782 /* There is another special case: if *neither* block is next,
3783 such as happens at the very end of a function, then we'll
3784 need to add a new unconditional jump. Choose the taken
3785 edge based on known or assumed probability. */
3786 else if (bb->aux != e_taken->dest)
3787 {
3788 rtx note = find_reg_note (bb_end_jump, REG_BR_PROB, 0);
3789
3790 if (note
3791 && XINT (note, 0) < REG_BR_PROB_BASE / 2
3792 && invert_jump (bb_end_jump,
3793 (e_fall->dest
3794 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3795 ? NULL_RTX
3796 : label_for_bb (e_fall->dest)), 0))
3797 {
3798 e_fall->flags &= ~EDGE_FALLTHRU;
3799 gcc_checking_assert (could_fall_through
3800 (e_taken->src, e_taken->dest));
3801 e_taken->flags |= EDGE_FALLTHRU;
3802 update_br_prob_note (bb);
3803 e = e_fall, e_fall = e_taken, e_taken = e;
3804 }
3805 }
3806
3807 /* If the "jumping" edge is a crossing edge, and the fall
3808 through edge is non-crossing, leave things as they are. */
3809 else if ((e_taken->flags & EDGE_CROSSING)
3810 && !(e_fall->flags & EDGE_CROSSING))
3811 continue;
3812
3813 /* Otherwise we can try to invert the jump. This will
3814 basically never fail, however, keep up the pretense. */
3815 else if (invert_jump (bb_end_jump,
3816 (e_fall->dest
3817 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3818 ? NULL_RTX
3819 : label_for_bb (e_fall->dest)), 0))
3820 {
3821 e_fall->flags &= ~EDGE_FALLTHRU;
3822 gcc_checking_assert (could_fall_through
3823 (e_taken->src, e_taken->dest));
3824 e_taken->flags |= EDGE_FALLTHRU;
3825 update_br_prob_note (bb);
3826 if (LABEL_NUSES (ret_label) == 0
3827 && single_pred_p (e_taken->dest))
3828 delete_insn (ret_label);
3829 continue;
3830 }
3831 }
3832 else if (extract_asm_operands (PATTERN (bb_end_insn)) != NULL)
3833 {
3834 /* If the old fallthru is still next or if
3835 asm goto doesn't have a fallthru (e.g. when followed by
3836 __builtin_unreachable ()), nothing to do. */
3837 if (! e_fall
3838 || bb->aux == e_fall->dest
3839 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3840 continue;
3841
3842 /* Otherwise we'll have to use the fallthru fixup below. */
3843 }
3844 else
3845 {
3846 /* Otherwise we have some return, switch or computed
3847 jump. In the 99% case, there should not have been a
3848 fallthru edge. */
3849 gcc_assert (returnjump_p (bb_end_insn) || !e_fall);
3850 continue;
3851 }
3852 }
3853 else
3854 {
3855 /* No fallthru implies a noreturn function with EH edges, or
3856 something similarly bizarre. In any case, we don't need to
3857 do anything. */
3858 if (! e_fall)
3859 continue;
3860
3861 /* If the fallthru block is still next, nothing to do. */
3862 if (bb->aux == e_fall->dest)
3863 continue;
3864
3865 /* A fallthru to exit block. */
3866 if (e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3867 continue;
3868 }
3869
3870 /* We got here if we need to add a new jump insn.
3871 Note force_nonfallthru can delete E_FALL and thus we have to
3872 save E_FALL->src prior to the call to force_nonfallthru. */
3873 nb = force_nonfallthru_and_redirect (e_fall, e_fall->dest, ret_label);
3874 if (nb)
3875 {
3876 nb->aux = bb->aux;
3877 bb->aux = nb;
3878 /* Don't process this new block. */
3879 bb = nb;
3880 }
3881 }
3882
3883 relink_block_chain (/*stay_in_cfglayout_mode=*/false);
3884
3885 /* Annoying special case - jump around dead jumptables left in the code. */
3886 FOR_EACH_BB_FN (bb, cfun)
3887 {
3888 edge e = find_fallthru_edge (bb->succs);
3889
3890 if (e && !can_fallthru (e->src, e->dest))
3891 force_nonfallthru (e);
3892 }
3893
3894 /* Ensure goto_locus from edges has some instructions with that locus
3895 in RTL. */
3896 if (!optimize)
3897 FOR_EACH_BB_FN (bb, cfun)
3898 {
3899 edge e;
3900 edge_iterator ei;
3901
3902 FOR_EACH_EDGE (e, ei, bb->succs)
3903 if (LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
3904 && !(e->flags & EDGE_ABNORMAL))
3905 {
3906 edge e2;
3907 edge_iterator ei2;
3908 basic_block dest, nb;
3909 rtx_insn *end;
3910
3911 insn = BB_END (e->src);
3912 end = PREV_INSN (BB_HEAD (e->src));
3913 while (insn != end
3914 && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
3915 insn = PREV_INSN (insn);
3916 if (insn != end
3917 && INSN_LOCATION (insn) == e->goto_locus)
3918 continue;
3919 if (simplejump_p (BB_END (e->src))
3920 && !INSN_HAS_LOCATION (BB_END (e->src)))
3921 {
3922 INSN_LOCATION (BB_END (e->src)) = e->goto_locus;
3923 continue;
3924 }
3925 dest = e->dest;
3926 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3927 {
3928 /* Non-fallthru edges to the exit block cannot be split. */
3929 if (!(e->flags & EDGE_FALLTHRU))
3930 continue;
3931 }
3932 else
3933 {
3934 insn = BB_HEAD (dest);
3935 end = NEXT_INSN (BB_END (dest));
3936 while (insn != end && !NONDEBUG_INSN_P (insn))
3937 insn = NEXT_INSN (insn);
3938 if (insn != end && INSN_HAS_LOCATION (insn)
3939 && INSN_LOCATION (insn) == e->goto_locus)
3940 continue;
3941 }
3942 nb = split_edge (e);
3943 if (!INSN_P (BB_END (nb)))
3944 BB_END (nb) = emit_insn_after_noloc (gen_nop (), BB_END (nb),
3945 nb);
3946 INSN_LOCATION (BB_END (nb)) = e->goto_locus;
3947
3948 /* If there are other incoming edges to the destination block
3949 with the same goto locus, redirect them to the new block as
3950 well, this can prevent other such blocks from being created
3951 in subsequent iterations of the loop. */
3952 for (ei2 = ei_start (dest->preds); (e2 = ei_safe_edge (ei2)); )
3953 if (LOCATION_LOCUS (e2->goto_locus) != UNKNOWN_LOCATION
3954 && !(e2->flags & (EDGE_ABNORMAL | EDGE_FALLTHRU))
3955 && e->goto_locus == e2->goto_locus)
3956 redirect_edge_and_branch (e2, nb);
3957 else
3958 ei_next (&ei2);
3959 }
3960 }
3961 }
3962 \f
3963 /* Perform sanity checks on the insn chain.
3964 1. Check that next/prev pointers are consistent in both the forward and
3965 reverse direction.
3966 2. Count insns in chain, going both directions, and check if equal.
3967 3. Check that get_last_insn () returns the actual end of chain. */
3968
3969 DEBUG_FUNCTION void
3970 verify_insn_chain (void)
3971 {
3972 rtx_insn *x, *prevx, *nextx;
3973 int insn_cnt1, insn_cnt2;
3974
3975 for (prevx = NULL, insn_cnt1 = 1, x = get_insns ();
3976 x != 0;
3977 prevx = x, insn_cnt1++, x = NEXT_INSN (x))
3978 gcc_assert (PREV_INSN (x) == prevx);
3979
3980 gcc_assert (prevx == get_last_insn ());
3981
3982 for (nextx = NULL, insn_cnt2 = 1, x = get_last_insn ();
3983 x != 0;
3984 nextx = x, insn_cnt2++, x = PREV_INSN (x))
3985 gcc_assert (NEXT_INSN (x) == nextx);
3986
3987 gcc_assert (insn_cnt1 == insn_cnt2);
3988 }
3989 \f
3990 /* If we have assembler epilogues, the block falling through to exit must
3991 be the last one in the reordered chain when we reach final. Ensure
3992 that this condition is met. */
3993 static void
3994 fixup_fallthru_exit_predecessor (void)
3995 {
3996 edge e;
3997 basic_block bb = NULL;
3998
3999 /* This transformation is not valid before reload, because we might
4000 separate a call from the instruction that copies the return
4001 value. */
4002 gcc_assert (reload_completed);
4003
4004 e = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4005 if (e)
4006 bb = e->src;
4007
4008 if (bb && bb->aux)
4009 {
4010 basic_block c = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
4011
4012 /* If the very first block is the one with the fall-through exit
4013 edge, we have to split that block. */
4014 if (c == bb)
4015 {
4016 bb = split_block_after_labels (bb)->dest;
4017 bb->aux = c->aux;
4018 c->aux = bb;
4019 BB_FOOTER (bb) = BB_FOOTER (c);
4020 BB_FOOTER (c) = NULL;
4021 }
4022
4023 while (c->aux != bb)
4024 c = (basic_block) c->aux;
4025
4026 c->aux = bb->aux;
4027 while (c->aux)
4028 c = (basic_block) c->aux;
4029
4030 c->aux = bb;
4031 bb->aux = NULL;
4032 }
4033 }
4034
4035 /* In case there are more than one fallthru predecessors of exit, force that
4036 there is only one. */
4037
4038 static void
4039 force_one_exit_fallthru (void)
4040 {
4041 edge e, predecessor = NULL;
4042 bool more = false;
4043 edge_iterator ei;
4044 basic_block forwarder, bb;
4045
4046 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4047 if (e->flags & EDGE_FALLTHRU)
4048 {
4049 if (predecessor == NULL)
4050 predecessor = e;
4051 else
4052 {
4053 more = true;
4054 break;
4055 }
4056 }
4057
4058 if (!more)
4059 return;
4060
4061 /* Exit has several fallthru predecessors. Create a forwarder block for
4062 them. */
4063 forwarder = split_edge (predecessor);
4064 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4065 (e = ei_safe_edge (ei)); )
4066 {
4067 if (e->src == forwarder
4068 || !(e->flags & EDGE_FALLTHRU))
4069 ei_next (&ei);
4070 else
4071 redirect_edge_and_branch_force (e, forwarder);
4072 }
4073
4074 /* Fix up the chain of blocks -- make FORWARDER immediately precede the
4075 exit block. */
4076 FOR_EACH_BB_FN (bb, cfun)
4077 {
4078 if (bb->aux == NULL && bb != forwarder)
4079 {
4080 bb->aux = forwarder;
4081 break;
4082 }
4083 }
4084 }
4085 \f
4086 /* Return true in case it is possible to duplicate the basic block BB. */
4087
4088 static bool
4089 cfg_layout_can_duplicate_bb_p (const_basic_block bb)
4090 {
4091 /* Do not attempt to duplicate tablejumps, as we need to unshare
4092 the dispatch table. This is difficult to do, as the instructions
4093 computing jump destination may be hoisted outside the basic block. */
4094 if (tablejump_p (BB_END (bb), NULL, NULL))
4095 return false;
4096
4097 /* Do not duplicate blocks containing insns that can't be copied. */
4098 if (targetm.cannot_copy_insn_p)
4099 {
4100 rtx_insn *insn = BB_HEAD (bb);
4101 while (1)
4102 {
4103 if (INSN_P (insn) && targetm.cannot_copy_insn_p (insn))
4104 return false;
4105 if (insn == BB_END (bb))
4106 break;
4107 insn = NEXT_INSN (insn);
4108 }
4109 }
4110
4111 return true;
4112 }
4113
4114 rtx_insn *
4115 duplicate_insn_chain (rtx_insn *from, rtx_insn *to)
4116 {
4117 rtx_insn *insn, *next, *copy;
4118 rtx_note *last;
4119
4120 /* Avoid updating of boundaries of previous basic block. The
4121 note will get removed from insn stream in fixup. */
4122 last = emit_note (NOTE_INSN_DELETED);
4123
4124 /* Create copy at the end of INSN chain. The chain will
4125 be reordered later. */
4126 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
4127 {
4128 switch (GET_CODE (insn))
4129 {
4130 case DEBUG_INSN:
4131 /* Don't duplicate label debug insns. */
4132 if (TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL)
4133 break;
4134 /* FALLTHRU */
4135 case INSN:
4136 case CALL_INSN:
4137 case JUMP_INSN:
4138 copy = emit_copy_of_insn_after (insn, get_last_insn ());
4139 if (JUMP_P (insn) && JUMP_LABEL (insn) != NULL_RTX
4140 && ANY_RETURN_P (JUMP_LABEL (insn)))
4141 JUMP_LABEL (copy) = JUMP_LABEL (insn);
4142 maybe_copy_prologue_epilogue_insn (insn, copy);
4143 break;
4144
4145 case JUMP_TABLE_DATA:
4146 /* Avoid copying of dispatch tables. We never duplicate
4147 tablejumps, so this can hit only in case the table got
4148 moved far from original jump.
4149 Avoid copying following barrier as well if any
4150 (and debug insns in between). */
4151 for (next = NEXT_INSN (insn);
4152 next != NEXT_INSN (to);
4153 next = NEXT_INSN (next))
4154 if (!DEBUG_INSN_P (next))
4155 break;
4156 if (next != NEXT_INSN (to) && BARRIER_P (next))
4157 insn = next;
4158 break;
4159
4160 case CODE_LABEL:
4161 break;
4162
4163 case BARRIER:
4164 emit_barrier ();
4165 break;
4166
4167 case NOTE:
4168 switch (NOTE_KIND (insn))
4169 {
4170 /* In case prologue is empty and function contain label
4171 in first BB, we may want to copy the block. */
4172 case NOTE_INSN_PROLOGUE_END:
4173
4174 case NOTE_INSN_DELETED:
4175 case NOTE_INSN_DELETED_LABEL:
4176 case NOTE_INSN_DELETED_DEBUG_LABEL:
4177 /* No problem to strip these. */
4178 case NOTE_INSN_FUNCTION_BEG:
4179 /* There is always just single entry to function. */
4180 case NOTE_INSN_BASIC_BLOCK:
4181 /* We should only switch text sections once. */
4182 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4183 break;
4184
4185 case NOTE_INSN_EPILOGUE_BEG:
4186 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
4187 emit_note_copy (as_a <rtx_note *> (insn));
4188 break;
4189
4190 default:
4191 /* All other notes should have already been eliminated. */
4192 gcc_unreachable ();
4193 }
4194 break;
4195 default:
4196 gcc_unreachable ();
4197 }
4198 }
4199 insn = NEXT_INSN (last);
4200 delete_insn (last);
4201 return insn;
4202 }
4203
4204 /* Create a duplicate of the basic block BB. */
4205
4206 static basic_block
4207 cfg_layout_duplicate_bb (basic_block bb)
4208 {
4209 rtx_insn *insn;
4210 basic_block new_bb;
4211
4212 insn = duplicate_insn_chain (BB_HEAD (bb), BB_END (bb));
4213 new_bb = create_basic_block (insn,
4214 insn ? get_last_insn () : NULL,
4215 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
4216
4217 BB_COPY_PARTITION (new_bb, bb);
4218 if (BB_HEADER (bb))
4219 {
4220 insn = BB_HEADER (bb);
4221 while (NEXT_INSN (insn))
4222 insn = NEXT_INSN (insn);
4223 insn = duplicate_insn_chain (BB_HEADER (bb), insn);
4224 if (insn)
4225 BB_HEADER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4226 }
4227
4228 if (BB_FOOTER (bb))
4229 {
4230 insn = BB_FOOTER (bb);
4231 while (NEXT_INSN (insn))
4232 insn = NEXT_INSN (insn);
4233 insn = duplicate_insn_chain (BB_FOOTER (bb), insn);
4234 if (insn)
4235 BB_FOOTER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4236 }
4237
4238 return new_bb;
4239 }
4240
4241 \f
4242 /* Main entry point to this module - initialize the datastructures for
4243 CFG layout changes. It keeps LOOPS up-to-date if not null.
4244
4245 FLAGS is a set of additional flags to pass to cleanup_cfg(). */
4246
4247 void
4248 cfg_layout_initialize (unsigned int flags)
4249 {
4250 rtx_insn_list *x;
4251 basic_block bb;
4252
4253 /* Once bb partitioning is complete, cfg layout mode should not be
4254 re-entered. Entering cfg layout mode may require fixups. As an
4255 example, if edge forwarding performed when optimizing the cfg
4256 layout required moving a block from the hot to the cold
4257 section. This would create an illegal partitioning unless some
4258 manual fixup was performed. */
4259 gcc_assert (!(crtl->bb_reorder_complete
4260 && flag_reorder_blocks_and_partition));
4261
4262 initialize_original_copy_tables ();
4263
4264 cfg_layout_rtl_register_cfg_hooks ();
4265
4266 record_effective_endpoints ();
4267
4268 /* Make sure that the targets of non local gotos are marked. */
4269 for (x = nonlocal_goto_handler_labels; x; x = x->next ())
4270 {
4271 bb = BLOCK_FOR_INSN (x->insn ());
4272 bb->flags |= BB_NON_LOCAL_GOTO_TARGET;
4273 }
4274
4275 cleanup_cfg (CLEANUP_CFGLAYOUT | flags);
4276 }
4277
4278 /* Splits superblocks. */
4279 void
4280 break_superblocks (void)
4281 {
4282 sbitmap superblocks;
4283 bool need = false;
4284 basic_block bb;
4285
4286 superblocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
4287 bitmap_clear (superblocks);
4288
4289 FOR_EACH_BB_FN (bb, cfun)
4290 if (bb->flags & BB_SUPERBLOCK)
4291 {
4292 bb->flags &= ~BB_SUPERBLOCK;
4293 bitmap_set_bit (superblocks, bb->index);
4294 need = true;
4295 }
4296
4297 if (need)
4298 {
4299 rebuild_jump_labels (get_insns ());
4300 find_many_sub_basic_blocks (superblocks);
4301 }
4302
4303 free (superblocks);
4304 }
4305
4306 /* Finalize the changes: reorder insn list according to the sequence specified
4307 by aux pointers, enter compensation code, rebuild scope forest. */
4308
4309 void
4310 cfg_layout_finalize (void)
4311 {
4312 checking_verify_flow_info ();
4313 force_one_exit_fallthru ();
4314 rtl_register_cfg_hooks ();
4315 if (reload_completed && !targetm.have_epilogue ())
4316 fixup_fallthru_exit_predecessor ();
4317 fixup_reorder_chain ();
4318
4319 rebuild_jump_labels (get_insns ());
4320 delete_dead_jumptables ();
4321
4322 if (flag_checking)
4323 verify_insn_chain ();
4324 checking_verify_flow_info ();
4325 }
4326
4327
4328 /* Same as split_block but update cfg_layout structures. */
4329
4330 static basic_block
4331 cfg_layout_split_block (basic_block bb, void *insnp)
4332 {
4333 rtx insn = (rtx) insnp;
4334 basic_block new_bb = rtl_split_block (bb, insn);
4335
4336 BB_FOOTER (new_bb) = BB_FOOTER (bb);
4337 BB_FOOTER (bb) = NULL;
4338
4339 return new_bb;
4340 }
4341
4342 /* Redirect Edge to DEST. */
4343 static edge
4344 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
4345 {
4346 basic_block src = e->src;
4347 edge ret;
4348
4349 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4350 return NULL;
4351
4352 if (e->dest == dest)
4353 return e;
4354
4355 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4356 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
4357 {
4358 df_set_bb_dirty (src);
4359 return ret;
4360 }
4361
4362 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4363 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
4364 {
4365 if (dump_file)
4366 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
4367 e->src->index, dest->index);
4368
4369 df_set_bb_dirty (e->src);
4370 redirect_edge_succ (e, dest);
4371 return e;
4372 }
4373
4374 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
4375 in the case the basic block appears to be in sequence. Avoid this
4376 transformation. */
4377
4378 if (e->flags & EDGE_FALLTHRU)
4379 {
4380 /* Redirect any branch edges unified with the fallthru one. */
4381 if (JUMP_P (BB_END (src))
4382 && label_is_jump_target_p (BB_HEAD (e->dest),
4383 BB_END (src)))
4384 {
4385 edge redirected;
4386
4387 if (dump_file)
4388 fprintf (dump_file, "Fallthru edge unified with branch "
4389 "%i->%i redirected to %i\n",
4390 e->src->index, e->dest->index, dest->index);
4391 e->flags &= ~EDGE_FALLTHRU;
4392 redirected = redirect_branch_edge (e, dest);
4393 gcc_assert (redirected);
4394 redirected->flags |= EDGE_FALLTHRU;
4395 df_set_bb_dirty (redirected->src);
4396 return redirected;
4397 }
4398 /* In case we are redirecting fallthru edge to the branch edge
4399 of conditional jump, remove it. */
4400 if (EDGE_COUNT (src->succs) == 2)
4401 {
4402 /* Find the edge that is different from E. */
4403 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
4404
4405 if (s->dest == dest
4406 && any_condjump_p (BB_END (src))
4407 && onlyjump_p (BB_END (src)))
4408 delete_insn (BB_END (src));
4409 }
4410 if (dump_file)
4411 fprintf (dump_file, "Redirecting fallthru edge %i->%i to %i\n",
4412 e->src->index, e->dest->index, dest->index);
4413 ret = redirect_edge_succ_nodup (e, dest);
4414 }
4415 else
4416 ret = redirect_branch_edge (e, dest);
4417
4418 /* We don't want simplejumps in the insn stream during cfglayout. */
4419 gcc_assert (!simplejump_p (BB_END (src)));
4420
4421 df_set_bb_dirty (src);
4422 return ret;
4423 }
4424
4425 /* Simple wrapper as we always can redirect fallthru edges. */
4426 static basic_block
4427 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
4428 {
4429 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
4430
4431 gcc_assert (redirected);
4432 return NULL;
4433 }
4434
4435 /* Same as delete_basic_block but update cfg_layout structures. */
4436
4437 static void
4438 cfg_layout_delete_block (basic_block bb)
4439 {
4440 rtx_insn *insn, *next, *prev = PREV_INSN (BB_HEAD (bb)), *remaints;
4441 rtx_insn **to;
4442
4443 if (BB_HEADER (bb))
4444 {
4445 next = BB_HEAD (bb);
4446 if (prev)
4447 SET_NEXT_INSN (prev) = BB_HEADER (bb);
4448 else
4449 set_first_insn (BB_HEADER (bb));
4450 SET_PREV_INSN (BB_HEADER (bb)) = prev;
4451 insn = BB_HEADER (bb);
4452 while (NEXT_INSN (insn))
4453 insn = NEXT_INSN (insn);
4454 SET_NEXT_INSN (insn) = next;
4455 SET_PREV_INSN (next) = insn;
4456 }
4457 next = NEXT_INSN (BB_END (bb));
4458 if (BB_FOOTER (bb))
4459 {
4460 insn = BB_FOOTER (bb);
4461 while (insn)
4462 {
4463 if (BARRIER_P (insn))
4464 {
4465 if (PREV_INSN (insn))
4466 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
4467 else
4468 BB_FOOTER (bb) = NEXT_INSN (insn);
4469 if (NEXT_INSN (insn))
4470 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
4471 }
4472 if (LABEL_P (insn))
4473 break;
4474 insn = NEXT_INSN (insn);
4475 }
4476 if (BB_FOOTER (bb))
4477 {
4478 insn = BB_END (bb);
4479 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
4480 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
4481 while (NEXT_INSN (insn))
4482 insn = NEXT_INSN (insn);
4483 SET_NEXT_INSN (insn) = next;
4484 if (next)
4485 SET_PREV_INSN (next) = insn;
4486 else
4487 set_last_insn (insn);
4488 }
4489 }
4490 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4491 to = &BB_HEADER (bb->next_bb);
4492 else
4493 to = &cfg_layout_function_footer;
4494
4495 rtl_delete_block (bb);
4496
4497 if (prev)
4498 prev = NEXT_INSN (prev);
4499 else
4500 prev = get_insns ();
4501 if (next)
4502 next = PREV_INSN (next);
4503 else
4504 next = get_last_insn ();
4505
4506 if (next && NEXT_INSN (next) != prev)
4507 {
4508 remaints = unlink_insn_chain (prev, next);
4509 insn = remaints;
4510 while (NEXT_INSN (insn))
4511 insn = NEXT_INSN (insn);
4512 SET_NEXT_INSN (insn) = *to;
4513 if (*to)
4514 SET_PREV_INSN (*to) = insn;
4515 *to = remaints;
4516 }
4517 }
4518
4519 /* Return true when blocks A and B can be safely merged. */
4520
4521 static bool
4522 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
4523 {
4524 /* If we are partitioning hot/cold basic blocks, we don't want to
4525 mess up unconditional or indirect jumps that cross between hot
4526 and cold sections.
4527
4528 Basic block partitioning may result in some jumps that appear to
4529 be optimizable (or blocks that appear to be mergeable), but which really
4530 must be left untouched (they are required to make it safely across
4531 partition boundaries). See the comments at the top of
4532 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4533
4534 if (BB_PARTITION (a) != BB_PARTITION (b))
4535 return false;
4536
4537 /* Protect the loop latches. */
4538 if (current_loops && b->loop_father->latch == b)
4539 return false;
4540
4541 /* If we would end up moving B's instructions, make sure it doesn't fall
4542 through into the exit block, since we cannot recover from a fallthrough
4543 edge into the exit block occurring in the middle of a function. */
4544 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4545 {
4546 edge e = find_fallthru_edge (b->succs);
4547 if (e && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4548 return false;
4549 }
4550
4551 /* There must be exactly one edge in between the blocks. */
4552 return (single_succ_p (a)
4553 && single_succ (a) == b
4554 && single_pred_p (b) == 1
4555 && a != b
4556 /* Must be simple edge. */
4557 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
4558 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4559 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
4560 /* If the jump insn has side effects, we can't kill the edge.
4561 When not optimizing, try_redirect_by_replacing_jump will
4562 not allow us to redirect an edge by replacing a table jump. */
4563 && (!JUMP_P (BB_END (a))
4564 || ((!optimize || reload_completed)
4565 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
4566 }
4567
4568 /* Merge block A and B. The blocks must be mergeable. */
4569
4570 static void
4571 cfg_layout_merge_blocks (basic_block a, basic_block b)
4572 {
4573 bool forwarder_p = (b->flags & BB_FORWARDER_BLOCK) != 0;
4574 rtx_insn *insn;
4575
4576 gcc_checking_assert (cfg_layout_can_merge_blocks_p (a, b));
4577
4578 if (dump_file)
4579 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
4580 a->index);
4581
4582 /* If there was a CODE_LABEL beginning B, delete it. */
4583 if (LABEL_P (BB_HEAD (b)))
4584 {
4585 delete_insn (BB_HEAD (b));
4586 }
4587
4588 /* We should have fallthru edge in a, or we can do dummy redirection to get
4589 it cleaned up. */
4590 if (JUMP_P (BB_END (a)))
4591 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
4592 gcc_assert (!JUMP_P (BB_END (a)));
4593
4594 /* When not optimizing and the edge is the only place in RTL which holds
4595 some unique locus, emit a nop with that locus in between. */
4596 if (!optimize)
4597 emit_nop_for_unique_locus_between (a, b);
4598
4599 /* Move things from b->footer after a->footer. */
4600 if (BB_FOOTER (b))
4601 {
4602 if (!BB_FOOTER (a))
4603 BB_FOOTER (a) = BB_FOOTER (b);
4604 else
4605 {
4606 rtx_insn *last = BB_FOOTER (a);
4607
4608 while (NEXT_INSN (last))
4609 last = NEXT_INSN (last);
4610 SET_NEXT_INSN (last) = BB_FOOTER (b);
4611 SET_PREV_INSN (BB_FOOTER (b)) = last;
4612 }
4613 BB_FOOTER (b) = NULL;
4614 }
4615
4616 /* Move things from b->header before a->footer.
4617 Note that this may include dead tablejump data, but we don't clean
4618 those up until we go out of cfglayout mode. */
4619 if (BB_HEADER (b))
4620 {
4621 if (! BB_FOOTER (a))
4622 BB_FOOTER (a) = BB_HEADER (b);
4623 else
4624 {
4625 rtx_insn *last = BB_HEADER (b);
4626
4627 while (NEXT_INSN (last))
4628 last = NEXT_INSN (last);
4629 SET_NEXT_INSN (last) = BB_FOOTER (a);
4630 SET_PREV_INSN (BB_FOOTER (a)) = last;
4631 BB_FOOTER (a) = BB_HEADER (b);
4632 }
4633 BB_HEADER (b) = NULL;
4634 }
4635
4636 /* In the case basic blocks are not adjacent, move them around. */
4637 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4638 {
4639 insn = unlink_insn_chain (BB_HEAD (b), BB_END (b));
4640
4641 emit_insn_after_noloc (insn, BB_END (a), a);
4642 }
4643 /* Otherwise just re-associate the instructions. */
4644 else
4645 {
4646 insn = BB_HEAD (b);
4647 BB_END (a) = BB_END (b);
4648 }
4649
4650 /* emit_insn_after_noloc doesn't call df_insn_change_bb.
4651 We need to explicitly call. */
4652 update_bb_for_insn_chain (insn, BB_END (b), a);
4653
4654 /* Skip possible DELETED_LABEL insn. */
4655 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
4656 insn = NEXT_INSN (insn);
4657 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4658 BB_HEAD (b) = BB_END (b) = NULL;
4659 delete_insn (insn);
4660
4661 df_bb_delete (b->index);
4662
4663 /* If B was a forwarder block, propagate the locus on the edge. */
4664 if (forwarder_p
4665 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION)
4666 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
4667
4668 if (dump_file)
4669 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
4670 }
4671
4672 /* Split edge E. */
4673
4674 static basic_block
4675 cfg_layout_split_edge (edge e)
4676 {
4677 basic_block new_bb =
4678 create_basic_block (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4679 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
4680 NULL_RTX, e->src);
4681
4682 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4683 BB_COPY_PARTITION (new_bb, e->src);
4684 else
4685 BB_COPY_PARTITION (new_bb, e->dest);
4686 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
4687 redirect_edge_and_branch_force (e, new_bb);
4688
4689 return new_bb;
4690 }
4691
4692 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
4693
4694 static void
4695 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
4696 {
4697 }
4698
4699 /* Return true if BB contains only labels or non-executable
4700 instructions. */
4701
4702 static bool
4703 rtl_block_empty_p (basic_block bb)
4704 {
4705 rtx_insn *insn;
4706
4707 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4708 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4709 return true;
4710
4711 FOR_BB_INSNS (bb, insn)
4712 if (NONDEBUG_INSN_P (insn) && !any_uncondjump_p (insn))
4713 return false;
4714
4715 return true;
4716 }
4717
4718 /* Split a basic block if it ends with a conditional branch and if
4719 the other part of the block is not empty. */
4720
4721 static basic_block
4722 rtl_split_block_before_cond_jump (basic_block bb)
4723 {
4724 rtx_insn *insn;
4725 rtx_insn *split_point = NULL;
4726 rtx_insn *last = NULL;
4727 bool found_code = false;
4728
4729 FOR_BB_INSNS (bb, insn)
4730 {
4731 if (any_condjump_p (insn))
4732 split_point = last;
4733 else if (NONDEBUG_INSN_P (insn))
4734 found_code = true;
4735 last = insn;
4736 }
4737
4738 /* Did not find everything. */
4739 if (found_code && split_point)
4740 return split_block (bb, split_point)->dest;
4741 else
4742 return NULL;
4743 }
4744
4745 /* Return 1 if BB ends with a call, possibly followed by some
4746 instructions that must stay with the call, 0 otherwise. */
4747
4748 static bool
4749 rtl_block_ends_with_call_p (basic_block bb)
4750 {
4751 rtx_insn *insn = BB_END (bb);
4752
4753 while (!CALL_P (insn)
4754 && insn != BB_HEAD (bb)
4755 && (keep_with_call_p (insn)
4756 || NOTE_P (insn)
4757 || DEBUG_INSN_P (insn)))
4758 insn = PREV_INSN (insn);
4759 return (CALL_P (insn));
4760 }
4761
4762 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
4763
4764 static bool
4765 rtl_block_ends_with_condjump_p (const_basic_block bb)
4766 {
4767 return any_condjump_p (BB_END (bb));
4768 }
4769
4770 /* Return true if we need to add fake edge to exit.
4771 Helper function for rtl_flow_call_edges_add. */
4772
4773 static bool
4774 need_fake_edge_p (const rtx_insn *insn)
4775 {
4776 if (!INSN_P (insn))
4777 return false;
4778
4779 if ((CALL_P (insn)
4780 && !SIBLING_CALL_P (insn)
4781 && !find_reg_note (insn, REG_NORETURN, NULL)
4782 && !(RTL_CONST_OR_PURE_CALL_P (insn))))
4783 return true;
4784
4785 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
4786 && MEM_VOLATILE_P (PATTERN (insn)))
4787 || (GET_CODE (PATTERN (insn)) == PARALLEL
4788 && asm_noperands (insn) != -1
4789 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
4790 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
4791 }
4792
4793 /* Add fake edges to the function exit for any non constant and non noreturn
4794 calls, volatile inline assembly in the bitmap of blocks specified by
4795 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
4796 that were split.
4797
4798 The goal is to expose cases in which entering a basic block does not imply
4799 that all subsequent instructions must be executed. */
4800
4801 static int
4802 rtl_flow_call_edges_add (sbitmap blocks)
4803 {
4804 int i;
4805 int blocks_split = 0;
4806 int last_bb = last_basic_block_for_fn (cfun);
4807 bool check_last_block = false;
4808
4809 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
4810 return 0;
4811
4812 if (! blocks)
4813 check_last_block = true;
4814 else
4815 check_last_block = bitmap_bit_p (blocks,
4816 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
4817
4818 /* In the last basic block, before epilogue generation, there will be
4819 a fallthru edge to EXIT. Special care is required if the last insn
4820 of the last basic block is a call because make_edge folds duplicate
4821 edges, which would result in the fallthru edge also being marked
4822 fake, which would result in the fallthru edge being removed by
4823 remove_fake_edges, which would result in an invalid CFG.
4824
4825 Moreover, we can't elide the outgoing fake edge, since the block
4826 profiler needs to take this into account in order to solve the minimal
4827 spanning tree in the case that the call doesn't return.
4828
4829 Handle this by adding a dummy instruction in a new last basic block. */
4830 if (check_last_block)
4831 {
4832 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
4833 rtx_insn *insn = BB_END (bb);
4834
4835 /* Back up past insns that must be kept in the same block as a call. */
4836 while (insn != BB_HEAD (bb)
4837 && keep_with_call_p (insn))
4838 insn = PREV_INSN (insn);
4839
4840 if (need_fake_edge_p (insn))
4841 {
4842 edge e;
4843
4844 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4845 if (e)
4846 {
4847 insert_insn_on_edge (gen_use (const0_rtx), e);
4848 commit_edge_insertions ();
4849 }
4850 }
4851 }
4852
4853 /* Now add fake edges to the function exit for any non constant
4854 calls since there is no way that we can determine if they will
4855 return or not... */
4856
4857 for (i = NUM_FIXED_BLOCKS; i < last_bb; i++)
4858 {
4859 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
4860 rtx_insn *insn;
4861 rtx_insn *prev_insn;
4862
4863 if (!bb)
4864 continue;
4865
4866 if (blocks && !bitmap_bit_p (blocks, i))
4867 continue;
4868
4869 for (insn = BB_END (bb); ; insn = prev_insn)
4870 {
4871 prev_insn = PREV_INSN (insn);
4872 if (need_fake_edge_p (insn))
4873 {
4874 edge e;
4875 rtx_insn *split_at_insn = insn;
4876
4877 /* Don't split the block between a call and an insn that should
4878 remain in the same block as the call. */
4879 if (CALL_P (insn))
4880 while (split_at_insn != BB_END (bb)
4881 && keep_with_call_p (NEXT_INSN (split_at_insn)))
4882 split_at_insn = NEXT_INSN (split_at_insn);
4883
4884 /* The handling above of the final block before the epilogue
4885 should be enough to verify that there is no edge to the exit
4886 block in CFG already. Calling make_edge in such case would
4887 cause us to mark that edge as fake and remove it later. */
4888
4889 if (flag_checking && split_at_insn == BB_END (bb))
4890 {
4891 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4892 gcc_assert (e == NULL);
4893 }
4894
4895 /* Note that the following may create a new basic block
4896 and renumber the existing basic blocks. */
4897 if (split_at_insn != BB_END (bb))
4898 {
4899 e = split_block (bb, split_at_insn);
4900 if (e)
4901 blocks_split++;
4902 }
4903
4904 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
4905 }
4906
4907 if (insn == BB_HEAD (bb))
4908 break;
4909 }
4910 }
4911
4912 if (blocks_split)
4913 verify_flow_info ();
4914
4915 return blocks_split;
4916 }
4917
4918 /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
4919 the conditional branch target, SECOND_HEAD should be the fall-thru
4920 there is no need to handle this here the loop versioning code handles
4921 this. the reason for SECON_HEAD is that it is needed for condition
4922 in trees, and this should be of the same type since it is a hook. */
4923 static void
4924 rtl_lv_add_condition_to_bb (basic_block first_head ,
4925 basic_block second_head ATTRIBUTE_UNUSED,
4926 basic_block cond_bb, void *comp_rtx)
4927 {
4928 rtx_code_label *label;
4929 rtx_insn *seq, *jump;
4930 rtx op0 = XEXP ((rtx)comp_rtx, 0);
4931 rtx op1 = XEXP ((rtx)comp_rtx, 1);
4932 enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
4933 machine_mode mode;
4934
4935
4936 label = block_label (first_head);
4937 mode = GET_MODE (op0);
4938 if (mode == VOIDmode)
4939 mode = GET_MODE (op1);
4940
4941 start_sequence ();
4942 op0 = force_operand (op0, NULL_RTX);
4943 op1 = force_operand (op1, NULL_RTX);
4944 do_compare_rtx_and_jump (op0, op1, comp, 0, mode, NULL_RTX, NULL, label, -1);
4945 jump = get_last_insn ();
4946 JUMP_LABEL (jump) = label;
4947 LABEL_NUSES (label)++;
4948 seq = get_insns ();
4949 end_sequence ();
4950
4951 /* Add the new cond, in the new head. */
4952 emit_insn_after (seq, BB_END (cond_bb));
4953 }
4954
4955
4956 /* Given a block B with unconditional branch at its end, get the
4957 store the return the branch edge and the fall-thru edge in
4958 BRANCH_EDGE and FALLTHRU_EDGE respectively. */
4959 static void
4960 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
4961 edge *fallthru_edge)
4962 {
4963 edge e = EDGE_SUCC (b, 0);
4964
4965 if (e->flags & EDGE_FALLTHRU)
4966 {
4967 *fallthru_edge = e;
4968 *branch_edge = EDGE_SUCC (b, 1);
4969 }
4970 else
4971 {
4972 *branch_edge = e;
4973 *fallthru_edge = EDGE_SUCC (b, 1);
4974 }
4975 }
4976
4977 void
4978 init_rtl_bb_info (basic_block bb)
4979 {
4980 gcc_assert (!bb->il.x.rtl);
4981 bb->il.x.head_ = NULL;
4982 bb->il.x.rtl = ggc_cleared_alloc<rtl_bb_info> ();
4983 }
4984
4985 /* Returns true if it is possible to remove edge E by redirecting
4986 it to the destination of the other edge from E->src. */
4987
4988 static bool
4989 rtl_can_remove_branch_p (const_edge e)
4990 {
4991 const_basic_block src = e->src;
4992 const_basic_block target = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest;
4993 const rtx_insn *insn = BB_END (src);
4994 rtx set;
4995
4996 /* The conditions are taken from try_redirect_by_replacing_jump. */
4997 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
4998 return false;
4999
5000 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
5001 return false;
5002
5003 if (BB_PARTITION (src) != BB_PARTITION (target))
5004 return false;
5005
5006 if (!onlyjump_p (insn)
5007 || tablejump_p (insn, NULL, NULL))
5008 return false;
5009
5010 set = single_set (insn);
5011 if (!set || side_effects_p (set))
5012 return false;
5013
5014 return true;
5015 }
5016
5017 static basic_block
5018 rtl_duplicate_bb (basic_block bb)
5019 {
5020 bb = cfg_layout_duplicate_bb (bb);
5021 bb->aux = NULL;
5022 return bb;
5023 }
5024
5025 /* Do book-keeping of basic block BB for the profile consistency checker.
5026 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
5027 then do post-pass accounting. Store the counting in RECORD. */
5028 static void
5029 rtl_account_profile_record (basic_block bb, int after_pass,
5030 struct profile_record *record)
5031 {
5032 rtx_insn *insn;
5033 FOR_BB_INSNS (bb, insn)
5034 if (INSN_P (insn))
5035 {
5036 record->size[after_pass]
5037 += insn_rtx_cost (PATTERN (insn), false);
5038 if (profile_status_for_fn (cfun) == PROFILE_READ)
5039 record->time[after_pass]
5040 += insn_rtx_cost (PATTERN (insn), true) * bb->count;
5041 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
5042 record->time[after_pass]
5043 += insn_rtx_cost (PATTERN (insn), true) * bb->frequency;
5044 }
5045 }
5046
5047 /* Implementation of CFG manipulation for linearized RTL. */
5048 struct cfg_hooks rtl_cfg_hooks = {
5049 "rtl",
5050 rtl_verify_flow_info,
5051 rtl_dump_bb,
5052 rtl_dump_bb_for_graph,
5053 rtl_create_basic_block,
5054 rtl_redirect_edge_and_branch,
5055 rtl_redirect_edge_and_branch_force,
5056 rtl_can_remove_branch_p,
5057 rtl_delete_block,
5058 rtl_split_block,
5059 rtl_move_block_after,
5060 rtl_can_merge_blocks, /* can_merge_blocks_p */
5061 rtl_merge_blocks,
5062 rtl_predict_edge,
5063 rtl_predicted_by_p,
5064 cfg_layout_can_duplicate_bb_p,
5065 rtl_duplicate_bb,
5066 rtl_split_edge,
5067 rtl_make_forwarder_block,
5068 rtl_tidy_fallthru_edge,
5069 rtl_force_nonfallthru,
5070 rtl_block_ends_with_call_p,
5071 rtl_block_ends_with_condjump_p,
5072 rtl_flow_call_edges_add,
5073 NULL, /* execute_on_growing_pred */
5074 NULL, /* execute_on_shrinking_pred */
5075 NULL, /* duplicate loop for trees */
5076 NULL, /* lv_add_condition_to_bb */
5077 NULL, /* lv_adjust_loop_header_phi*/
5078 NULL, /* extract_cond_bb_edges */
5079 NULL, /* flush_pending_stmts */
5080 rtl_block_empty_p, /* block_empty_p */
5081 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5082 rtl_account_profile_record,
5083 };
5084
5085 /* Implementation of CFG manipulation for cfg layout RTL, where
5086 basic block connected via fallthru edges does not have to be adjacent.
5087 This representation will hopefully become the default one in future
5088 version of the compiler. */
5089
5090 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
5091 "cfglayout mode",
5092 rtl_verify_flow_info_1,
5093 rtl_dump_bb,
5094 rtl_dump_bb_for_graph,
5095 cfg_layout_create_basic_block,
5096 cfg_layout_redirect_edge_and_branch,
5097 cfg_layout_redirect_edge_and_branch_force,
5098 rtl_can_remove_branch_p,
5099 cfg_layout_delete_block,
5100 cfg_layout_split_block,
5101 rtl_move_block_after,
5102 cfg_layout_can_merge_blocks_p,
5103 cfg_layout_merge_blocks,
5104 rtl_predict_edge,
5105 rtl_predicted_by_p,
5106 cfg_layout_can_duplicate_bb_p,
5107 cfg_layout_duplicate_bb,
5108 cfg_layout_split_edge,
5109 rtl_make_forwarder_block,
5110 NULL, /* tidy_fallthru_edge */
5111 rtl_force_nonfallthru,
5112 rtl_block_ends_with_call_p,
5113 rtl_block_ends_with_condjump_p,
5114 rtl_flow_call_edges_add,
5115 NULL, /* execute_on_growing_pred */
5116 NULL, /* execute_on_shrinking_pred */
5117 duplicate_loop_to_header_edge, /* duplicate loop for trees */
5118 rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
5119 NULL, /* lv_adjust_loop_header_phi*/
5120 rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
5121 NULL, /* flush_pending_stmts */
5122 rtl_block_empty_p, /* block_empty_p */
5123 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5124 rtl_account_profile_record,
5125 };
5126
5127 #include "gt-cfgrtl.h"