]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgrtl.c
predict.c (tree_predict_edge): Don't drop useless predictions; check that it is not...
[thirdparty/gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains low level functions to manipulate the CFG and analyze it
23 that are aware of the RTL intermediate language.
24
25 Available functionality:
26 - Basic CFG/RTL manipulation API documented in cfghooks.h
27 - CFG-aware instruction chain manipulation
28 delete_insn, delete_insn_chain
29 - Edge splitting and committing to edges
30 insert_insn_on_edge, commit_edge_insertions
31 - CFG updating after insn simplification
32 purge_dead_edges, purge_all_dead_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "tm.h"
44 #include "tree.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "basic-block.h"
48 #include "regs.h"
49 #include "flags.h"
50 #include "output.h"
51 #include "function.h"
52 #include "except.h"
53 #include "toplev.h"
54 #include "tm_p.h"
55 #include "obstack.h"
56 #include "insn-config.h"
57 #include "cfglayout.h"
58 #include "expr.h"
59 #include "target.h"
60 #include "cfgloop.h"
61
62 static int can_delete_note_p (rtx);
63 static int can_delete_label_p (rtx);
64 static void commit_one_edge_insertion (edge, int);
65 static rtx last_loop_beg_note (rtx);
66 static bool back_edge_of_syntactic_loop_p (basic_block, basic_block);
67 static basic_block rtl_split_edge (edge);
68 static bool rtl_move_block_after (basic_block, basic_block);
69 static int rtl_verify_flow_info (void);
70 static basic_block cfg_layout_split_block (basic_block, void *);
71 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
72 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
73 static void cfg_layout_delete_block (basic_block);
74 static void rtl_delete_block (basic_block);
75 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
76 static edge rtl_redirect_edge_and_branch (edge, basic_block);
77 static basic_block rtl_split_block (basic_block, void *);
78 static void rtl_dump_bb (basic_block, FILE *, int);
79 static int rtl_verify_flow_info_1 (void);
80 static void mark_killed_regs (rtx, rtx, void *);
81 static void rtl_make_forwarder_block (edge);
82 \f
83 /* Return true if NOTE is not one of the ones that must be kept paired,
84 so that we may simply delete it. */
85
86 static int
87 can_delete_note_p (rtx note)
88 {
89 return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
90 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK);
91 }
92
93 /* True if a given label can be deleted. */
94
95 static int
96 can_delete_label_p (rtx label)
97 {
98 return (!LABEL_PRESERVE_P (label)
99 /* User declared labels must be preserved. */
100 && LABEL_NAME (label) == 0
101 && !in_expr_list_p (forced_labels, label));
102 }
103
104 /* Delete INSN by patching it out. Return the next insn. */
105
106 rtx
107 delete_insn (rtx insn)
108 {
109 rtx next = NEXT_INSN (insn);
110 rtx note;
111 bool really_delete = true;
112
113 if (LABEL_P (insn))
114 {
115 /* Some labels can't be directly removed from the INSN chain, as they
116 might be references via variables, constant pool etc.
117 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
118 if (! can_delete_label_p (insn))
119 {
120 const char *name = LABEL_NAME (insn);
121
122 really_delete = false;
123 PUT_CODE (insn, NOTE);
124 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
125 NOTE_DELETED_LABEL_NAME (insn) = name;
126 }
127
128 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
129 }
130
131 if (really_delete)
132 {
133 /* If this insn has already been deleted, something is very wrong. */
134 gcc_assert (!INSN_DELETED_P (insn));
135 remove_insn (insn);
136 INSN_DELETED_P (insn) = 1;
137 }
138
139 /* If deleting a jump, decrement the use count of the label. Deleting
140 the label itself should happen in the normal course of block merging. */
141 if (JUMP_P (insn)
142 && JUMP_LABEL (insn)
143 && LABEL_P (JUMP_LABEL (insn)))
144 LABEL_NUSES (JUMP_LABEL (insn))--;
145
146 /* Also if deleting an insn that references a label. */
147 else
148 {
149 while ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
150 && LABEL_P (XEXP (note, 0)))
151 {
152 LABEL_NUSES (XEXP (note, 0))--;
153 remove_note (insn, note);
154 }
155 }
156
157 if (JUMP_P (insn)
158 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
159 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
160 {
161 rtx pat = PATTERN (insn);
162 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
163 int len = XVECLEN (pat, diff_vec_p);
164 int i;
165
166 for (i = 0; i < len; i++)
167 {
168 rtx label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
169
170 /* When deleting code in bulk (e.g. removing many unreachable
171 blocks) we can delete a label that's a target of the vector
172 before deleting the vector itself. */
173 if (!NOTE_P (label))
174 LABEL_NUSES (label)--;
175 }
176 }
177
178 return next;
179 }
180
181 /* Like delete_insn but also purge dead edges from BB. */
182 rtx
183 delete_insn_and_edges (rtx insn)
184 {
185 rtx x;
186 bool purge = false;
187
188 if (INSN_P (insn)
189 && BLOCK_FOR_INSN (insn)
190 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
191 purge = true;
192 x = delete_insn (insn);
193 if (purge)
194 purge_dead_edges (BLOCK_FOR_INSN (insn));
195 return x;
196 }
197
198 /* Unlink a chain of insns between START and FINISH, leaving notes
199 that must be paired. */
200
201 void
202 delete_insn_chain (rtx start, rtx finish)
203 {
204 rtx next;
205
206 /* Unchain the insns one by one. It would be quicker to delete all of these
207 with a single unchaining, rather than one at a time, but we need to keep
208 the NOTE's. */
209 while (1)
210 {
211 next = NEXT_INSN (start);
212 if (NOTE_P (start) && !can_delete_note_p (start))
213 ;
214 else
215 next = delete_insn (start);
216
217 if (start == finish)
218 break;
219 start = next;
220 }
221 }
222
223 /* Like delete_insn but also purge dead edges from BB. */
224 void
225 delete_insn_chain_and_edges (rtx first, rtx last)
226 {
227 bool purge = false;
228
229 if (INSN_P (last)
230 && BLOCK_FOR_INSN (last)
231 && BB_END (BLOCK_FOR_INSN (last)) == last)
232 purge = true;
233 delete_insn_chain (first, last);
234 if (purge)
235 purge_dead_edges (BLOCK_FOR_INSN (last));
236 }
237 \f
238 /* Create a new basic block consisting of the instructions between HEAD and END
239 inclusive. This function is designed to allow fast BB construction - reuses
240 the note and basic block struct in BB_NOTE, if any and do not grow
241 BASIC_BLOCK chain and should be used directly only by CFG construction code.
242 END can be NULL in to create new empty basic block before HEAD. Both END
243 and HEAD can be NULL to create basic block at the end of INSN chain.
244 AFTER is the basic block we should be put after. */
245
246 basic_block
247 create_basic_block_structure (rtx head, rtx end, rtx bb_note, basic_block after)
248 {
249 basic_block bb;
250
251 if (bb_note
252 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
253 && bb->aux == NULL)
254 {
255 /* If we found an existing note, thread it back onto the chain. */
256
257 rtx after;
258
259 if (LABEL_P (head))
260 after = head;
261 else
262 {
263 after = PREV_INSN (head);
264 head = bb_note;
265 }
266
267 if (after != bb_note && NEXT_INSN (after) != bb_note)
268 reorder_insns_nobb (bb_note, bb_note, after);
269 }
270 else
271 {
272 /* Otherwise we must create a note and a basic block structure. */
273
274 bb = alloc_block ();
275
276 if (!head && !end)
277 head = end = bb_note
278 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
279 else if (LABEL_P (head) && end)
280 {
281 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
282 if (head == end)
283 end = bb_note;
284 }
285 else
286 {
287 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
288 head = bb_note;
289 if (!end)
290 end = head;
291 }
292
293 NOTE_BASIC_BLOCK (bb_note) = bb;
294 }
295
296 /* Always include the bb note in the block. */
297 if (NEXT_INSN (end) == bb_note)
298 end = bb_note;
299
300 BB_HEAD (bb) = head;
301 BB_END (bb) = end;
302 bb->index = last_basic_block++;
303 bb->flags = BB_NEW;
304 link_block (bb, after);
305 BASIC_BLOCK (bb->index) = bb;
306 update_bb_for_insn (bb);
307 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
308
309 /* Tag the block so that we know it has been used when considering
310 other basic block notes. */
311 bb->aux = bb;
312
313 return bb;
314 }
315
316 /* Create new basic block consisting of instructions in between HEAD and END
317 and place it to the BB chain after block AFTER. END can be NULL in to
318 create new empty basic block before HEAD. Both END and HEAD can be NULL to
319 create basic block at the end of INSN chain. */
320
321 static basic_block
322 rtl_create_basic_block (void *headp, void *endp, basic_block after)
323 {
324 rtx head = headp, end = endp;
325 basic_block bb;
326
327 /* Grow the basic block array if needed. */
328 if ((size_t) last_basic_block >= VARRAY_SIZE (basic_block_info))
329 {
330 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
331 VARRAY_GROW (basic_block_info, new_size);
332 }
333
334 n_basic_blocks++;
335
336 bb = create_basic_block_structure (head, end, NULL, after);
337 bb->aux = NULL;
338 return bb;
339 }
340
341 static basic_block
342 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
343 {
344 basic_block newbb = rtl_create_basic_block (head, end, after);
345
346 initialize_bb_rbi (newbb);
347 return newbb;
348 }
349 \f
350 /* Delete the insns in a (non-live) block. We physically delete every
351 non-deleted-note insn, and update the flow graph appropriately.
352
353 Return nonzero if we deleted an exception handler. */
354
355 /* ??? Preserving all such notes strikes me as wrong. It would be nice
356 to post-process the stream to remove empty blocks, loops, ranges, etc. */
357
358 static void
359 rtl_delete_block (basic_block b)
360 {
361 rtx insn, end, tmp;
362
363 /* If the head of this block is a CODE_LABEL, then it might be the
364 label for an exception handler which can't be reached. We need
365 to remove the label from the exception_handler_label list. */
366 insn = BB_HEAD (b);
367 if (LABEL_P (insn))
368 maybe_remove_eh_handler (insn);
369
370 /* Include any jump table following the basic block. */
371 end = BB_END (b);
372 if (tablejump_p (end, NULL, &tmp))
373 end = tmp;
374
375 /* Include any barriers that may follow the basic block. */
376 tmp = next_nonnote_insn (end);
377 while (tmp && BARRIER_P (tmp))
378 {
379 end = tmp;
380 tmp = next_nonnote_insn (end);
381 }
382
383 /* Selectively delete the entire chain. */
384 BB_HEAD (b) = NULL;
385 delete_insn_chain (insn, end);
386 }
387 \f
388 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
389
390 void
391 compute_bb_for_insn (void)
392 {
393 basic_block bb;
394
395 FOR_EACH_BB (bb)
396 {
397 rtx end = BB_END (bb);
398 rtx insn;
399
400 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
401 {
402 BLOCK_FOR_INSN (insn) = bb;
403 if (insn == end)
404 break;
405 }
406 }
407 }
408
409 /* Release the basic_block_for_insn array. */
410
411 void
412 free_bb_for_insn (void)
413 {
414 rtx insn;
415 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
416 if (!BARRIER_P (insn))
417 BLOCK_FOR_INSN (insn) = NULL;
418 }
419
420 /* Return RTX to emit after when we want to emit code on the entry of function. */
421 rtx
422 entry_of_function (void)
423 {
424 return (n_basic_blocks ? BB_HEAD (ENTRY_BLOCK_PTR->next_bb) : get_insns ());
425 }
426
427 /* Update insns block within BB. */
428
429 void
430 update_bb_for_insn (basic_block bb)
431 {
432 rtx insn;
433
434 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
435 {
436 if (!BARRIER_P (insn))
437 set_block_for_insn (insn, bb);
438 if (insn == BB_END (bb))
439 break;
440 }
441 }
442 \f
443 /* Creates a new basic block just after basic block B by splitting
444 everything after specified instruction I. */
445
446 static basic_block
447 rtl_split_block (basic_block bb, void *insnp)
448 {
449 basic_block new_bb;
450 rtx insn = insnp;
451 edge e;
452 edge_iterator ei;
453
454 if (!insn)
455 {
456 insn = first_insn_after_basic_block_note (bb);
457
458 if (insn)
459 insn = PREV_INSN (insn);
460 else
461 insn = get_last_insn ();
462 }
463
464 /* We probably should check type of the insn so that we do not create
465 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
466 bother. */
467 if (insn == BB_END (bb))
468 emit_note_after (NOTE_INSN_DELETED, insn);
469
470 /* Create the new basic block. */
471 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
472 BB_COPY_PARTITION (new_bb, bb);
473 BB_END (bb) = insn;
474
475 /* Redirect the outgoing edges. */
476 new_bb->succs = bb->succs;
477 bb->succs = NULL;
478 FOR_EACH_EDGE (e, ei, new_bb->succs)
479 e->src = new_bb;
480
481 if (bb->global_live_at_start)
482 {
483 new_bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
484 new_bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
485 COPY_REG_SET (new_bb->global_live_at_end, bb->global_live_at_end);
486
487 /* We now have to calculate which registers are live at the end
488 of the split basic block and at the start of the new basic
489 block. Start with those registers that are known to be live
490 at the end of the original basic block and get
491 propagate_block to determine which registers are live. */
492 COPY_REG_SET (new_bb->global_live_at_start, bb->global_live_at_end);
493 propagate_block (new_bb, new_bb->global_live_at_start, NULL, NULL, 0);
494 COPY_REG_SET (bb->global_live_at_end,
495 new_bb->global_live_at_start);
496 #ifdef HAVE_conditional_execution
497 /* In the presence of conditional execution we are not able to update
498 liveness precisely. */
499 if (reload_completed)
500 {
501 bb->flags |= BB_DIRTY;
502 new_bb->flags |= BB_DIRTY;
503 }
504 #endif
505 }
506
507 return new_bb;
508 }
509
510 /* Blocks A and B are to be merged into a single block A. The insns
511 are already contiguous. */
512
513 static void
514 rtl_merge_blocks (basic_block a, basic_block b)
515 {
516 rtx b_head = BB_HEAD (b), b_end = BB_END (b), a_end = BB_END (a);
517 rtx del_first = NULL_RTX, del_last = NULL_RTX;
518 int b_empty = 0;
519
520 /* If there was a CODE_LABEL beginning B, delete it. */
521 if (LABEL_P (b_head))
522 {
523 /* Detect basic blocks with nothing but a label. This can happen
524 in particular at the end of a function. */
525 if (b_head == b_end)
526 b_empty = 1;
527
528 del_first = del_last = b_head;
529 b_head = NEXT_INSN (b_head);
530 }
531
532 /* Delete the basic block note and handle blocks containing just that
533 note. */
534 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
535 {
536 if (b_head == b_end)
537 b_empty = 1;
538 if (! del_last)
539 del_first = b_head;
540
541 del_last = b_head;
542 b_head = NEXT_INSN (b_head);
543 }
544
545 /* If there was a jump out of A, delete it. */
546 if (JUMP_P (a_end))
547 {
548 rtx prev;
549
550 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
551 if (!NOTE_P (prev)
552 || NOTE_LINE_NUMBER (prev) == NOTE_INSN_BASIC_BLOCK
553 || prev == BB_HEAD (a))
554 break;
555
556 del_first = a_end;
557
558 #ifdef HAVE_cc0
559 /* If this was a conditional jump, we need to also delete
560 the insn that set cc0. */
561 if (only_sets_cc0_p (prev))
562 {
563 rtx tmp = prev;
564
565 prev = prev_nonnote_insn (prev);
566 if (!prev)
567 prev = BB_HEAD (a);
568 del_first = tmp;
569 }
570 #endif
571
572 a_end = PREV_INSN (del_first);
573 }
574 else if (BARRIER_P (NEXT_INSN (a_end)))
575 del_first = NEXT_INSN (a_end);
576
577 /* Delete everything marked above as well as crap that might be
578 hanging out between the two blocks. */
579 BB_HEAD (b) = NULL;
580 delete_insn_chain (del_first, del_last);
581
582 /* Reassociate the insns of B with A. */
583 if (!b_empty)
584 {
585 rtx x;
586
587 for (x = a_end; x != b_end; x = NEXT_INSN (x))
588 set_block_for_insn (x, a);
589
590 set_block_for_insn (b_end, a);
591
592 a_end = b_end;
593 }
594
595 BB_END (a) = a_end;
596 }
597
598 /* Return true when block A and B can be merged. */
599 static bool
600 rtl_can_merge_blocks (basic_block a,basic_block b)
601 {
602 /* If we are partitioning hot/cold basic blocks, we don't want to
603 mess up unconditional or indirect jumps that cross between hot
604 and cold sections.
605
606 Basic block partitioning may result in some jumps that appear to
607 be optimizable (or blocks that appear to be mergeable), but which really
608 must be left untouched (they are required to make it safely across
609 partition boundaries). See the comments at the top of
610 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
611
612 if (BB_PARTITION (a) != BB_PARTITION (b))
613 return false;
614
615 /* There must be exactly one edge in between the blocks. */
616 return (single_succ_p (a)
617 && single_succ (a) == b
618 && single_pred_p (b)
619 && a != b
620 /* Must be simple edge. */
621 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
622 && a->next_bb == b
623 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
624 /* If the jump insn has side effects,
625 we can't kill the edge. */
626 && (!JUMP_P (BB_END (a))
627 || (reload_completed
628 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
629 }
630 \f
631 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
632 exist. */
633
634 rtx
635 block_label (basic_block block)
636 {
637 if (block == EXIT_BLOCK_PTR)
638 return NULL_RTX;
639
640 if (!LABEL_P (BB_HEAD (block)))
641 {
642 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
643 }
644
645 return BB_HEAD (block);
646 }
647
648 /* Attempt to perform edge redirection by replacing possibly complex jump
649 instruction by unconditional jump or removing jump completely. This can
650 apply only if all edges now point to the same block. The parameters and
651 return values are equivalent to redirect_edge_and_branch. */
652
653 edge
654 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
655 {
656 basic_block src = e->src;
657 rtx insn = BB_END (src), kill_from;
658 rtx set;
659 int fallthru = 0;
660
661 /* If we are partitioning hot/cold basic blocks, we don't want to
662 mess up unconditional or indirect jumps that cross between hot
663 and cold sections.
664
665 Basic block partitioning may result in some jumps that appear to
666 be optimizable (or blocks that appear to be mergeable), but which really
667 must be left untouched (they are required to make it safely across
668 partition boundaries). See the comments at the top of
669 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
670
671 if (find_reg_note (insn, REG_CROSSING_JUMP, NULL_RTX)
672 || BB_PARTITION (src) != BB_PARTITION (target))
673 return NULL;
674
675 /* We can replace or remove a complex jump only when we have exactly
676 two edges. Also, if we have exactly one outgoing edge, we can
677 redirect that. */
678 if (EDGE_COUNT (src->succs) >= 3
679 /* Verify that all targets will be TARGET. Specifically, the
680 edge that is not E must also go to TARGET. */
681 || (EDGE_COUNT (src->succs) == 2
682 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
683 return NULL;
684
685 if (!onlyjump_p (insn))
686 return NULL;
687 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
688 return NULL;
689
690 /* Avoid removing branch with side effects. */
691 set = single_set (insn);
692 if (!set || side_effects_p (set))
693 return NULL;
694
695 /* In case we zap a conditional jump, we'll need to kill
696 the cc0 setter too. */
697 kill_from = insn;
698 #ifdef HAVE_cc0
699 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
700 kill_from = PREV_INSN (insn);
701 #endif
702
703 /* See if we can create the fallthru edge. */
704 if (in_cfglayout || can_fallthru (src, target))
705 {
706 if (dump_file)
707 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
708 fallthru = 1;
709
710 /* Selectively unlink whole insn chain. */
711 if (in_cfglayout)
712 {
713 rtx insn = src->rbi->footer;
714
715 delete_insn_chain (kill_from, BB_END (src));
716
717 /* Remove barriers but keep jumptables. */
718 while (insn)
719 {
720 if (BARRIER_P (insn))
721 {
722 if (PREV_INSN (insn))
723 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
724 else
725 src->rbi->footer = NEXT_INSN (insn);
726 if (NEXT_INSN (insn))
727 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
728 }
729 if (LABEL_P (insn))
730 break;
731 insn = NEXT_INSN (insn);
732 }
733 }
734 else
735 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)));
736 }
737
738 /* If this already is simplejump, redirect it. */
739 else if (simplejump_p (insn))
740 {
741 if (e->dest == target)
742 return NULL;
743 if (dump_file)
744 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
745 INSN_UID (insn), e->dest->index, target->index);
746 if (!redirect_jump (insn, block_label (target), 0))
747 {
748 gcc_assert (target == EXIT_BLOCK_PTR);
749 return NULL;
750 }
751 }
752
753 /* Cannot do anything for target exit block. */
754 else if (target == EXIT_BLOCK_PTR)
755 return NULL;
756
757 /* Or replace possibly complicated jump insn by simple jump insn. */
758 else
759 {
760 rtx target_label = block_label (target);
761 rtx barrier, label, table;
762
763 emit_jump_insn_after_noloc (gen_jump (target_label), insn);
764 JUMP_LABEL (BB_END (src)) = target_label;
765 LABEL_NUSES (target_label)++;
766 if (dump_file)
767 fprintf (dump_file, "Replacing insn %i by jump %i\n",
768 INSN_UID (insn), INSN_UID (BB_END (src)));
769
770
771 delete_insn_chain (kill_from, insn);
772
773 /* Recognize a tablejump that we are converting to a
774 simple jump and remove its associated CODE_LABEL
775 and ADDR_VEC or ADDR_DIFF_VEC. */
776 if (tablejump_p (insn, &label, &table))
777 delete_insn_chain (label, table);
778
779 barrier = next_nonnote_insn (BB_END (src));
780 if (!barrier || !BARRIER_P (barrier))
781 emit_barrier_after (BB_END (src));
782 else
783 {
784 if (barrier != NEXT_INSN (BB_END (src)))
785 {
786 /* Move the jump before barrier so that the notes
787 which originally were or were created before jump table are
788 inside the basic block. */
789 rtx new_insn = BB_END (src);
790 rtx tmp;
791
792 for (tmp = NEXT_INSN (BB_END (src)); tmp != barrier;
793 tmp = NEXT_INSN (tmp))
794 set_block_for_insn (tmp, src);
795
796 NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
797 PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
798
799 NEXT_INSN (new_insn) = barrier;
800 NEXT_INSN (PREV_INSN (barrier)) = new_insn;
801
802 PREV_INSN (new_insn) = PREV_INSN (barrier);
803 PREV_INSN (barrier) = new_insn;
804 }
805 }
806 }
807
808 /* Keep only one edge out and set proper flags. */
809 if (!single_succ_p (src))
810 remove_edge (e);
811 gcc_assert (single_succ_p (src));
812
813 e = single_succ_edge (src);
814 if (fallthru)
815 e->flags = EDGE_FALLTHRU;
816 else
817 e->flags = 0;
818
819 e->probability = REG_BR_PROB_BASE;
820 e->count = src->count;
821
822 /* We don't want a block to end on a line-number note since that has
823 the potential of changing the code between -g and not -g. */
824 while (NOTE_P (BB_END (e->src))
825 && NOTE_LINE_NUMBER (BB_END (e->src)) >= 0)
826 delete_insn (BB_END (e->src));
827
828 if (e->dest != target)
829 redirect_edge_succ (e, target);
830
831 return e;
832 }
833
834 /* Return last loop_beg note appearing after INSN, before start of next
835 basic block. Return INSN if there are no such notes.
836
837 When emitting jump to redirect a fallthru edge, it should always appear
838 after the LOOP_BEG notes, as loop optimizer expect loop to either start by
839 fallthru edge or jump following the LOOP_BEG note jumping to the loop exit
840 test. */
841
842 static rtx
843 last_loop_beg_note (rtx insn)
844 {
845 rtx last = insn;
846
847 for (insn = NEXT_INSN (insn); insn && NOTE_P (insn)
848 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK;
849 insn = NEXT_INSN (insn))
850 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
851 last = insn;
852
853 return last;
854 }
855
856 /* Redirect edge representing branch of (un)conditional jump or tablejump,
857 NULL on failure */
858 static edge
859 redirect_branch_edge (edge e, basic_block target)
860 {
861 rtx tmp;
862 rtx old_label = BB_HEAD (e->dest);
863 basic_block src = e->src;
864 rtx insn = BB_END (src);
865
866 /* We can only redirect non-fallthru edges of jump insn. */
867 if (e->flags & EDGE_FALLTHRU)
868 return NULL;
869 else if (!JUMP_P (insn))
870 return NULL;
871
872 /* Recognize a tablejump and adjust all matching cases. */
873 if (tablejump_p (insn, NULL, &tmp))
874 {
875 rtvec vec;
876 int j;
877 rtx new_label = block_label (target);
878
879 if (target == EXIT_BLOCK_PTR)
880 return NULL;
881 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
882 vec = XVEC (PATTERN (tmp), 0);
883 else
884 vec = XVEC (PATTERN (tmp), 1);
885
886 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
887 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
888 {
889 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
890 --LABEL_NUSES (old_label);
891 ++LABEL_NUSES (new_label);
892 }
893
894 /* Handle casesi dispatch insns. */
895 if ((tmp = single_set (insn)) != NULL
896 && SET_DEST (tmp) == pc_rtx
897 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
898 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
899 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
900 {
901 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
902 new_label);
903 --LABEL_NUSES (old_label);
904 ++LABEL_NUSES (new_label);
905 }
906 }
907 else
908 {
909 /* ?? We may play the games with moving the named labels from
910 one basic block to the other in case only one computed_jump is
911 available. */
912 if (computed_jump_p (insn)
913 /* A return instruction can't be redirected. */
914 || returnjump_p (insn))
915 return NULL;
916
917 /* If the insn doesn't go where we think, we're confused. */
918 gcc_assert (JUMP_LABEL (insn) == old_label);
919
920 /* If the substitution doesn't succeed, die. This can happen
921 if the back end emitted unrecognizable instructions or if
922 target is exit block on some arches. */
923 if (!redirect_jump (insn, block_label (target), 0))
924 {
925 gcc_assert (target == EXIT_BLOCK_PTR);
926 return NULL;
927 }
928 }
929
930 if (dump_file)
931 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
932 e->src->index, e->dest->index, target->index);
933
934 if (e->dest != target)
935 e = redirect_edge_succ_nodup (e, target);
936 return e;
937 }
938
939 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
940 expense of adding new instructions or reordering basic blocks.
941
942 Function can be also called with edge destination equivalent to the TARGET.
943 Then it should try the simplifications and do nothing if none is possible.
944
945 Return edge representing the branch if transformation succeeded. Return NULL
946 on failure.
947 We still return NULL in case E already destinated TARGET and we didn't
948 managed to simplify instruction stream. */
949
950 static edge
951 rtl_redirect_edge_and_branch (edge e, basic_block target)
952 {
953 edge ret;
954 basic_block src = e->src;
955
956 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
957 return NULL;
958
959 if (e->dest == target)
960 return e;
961
962 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
963 {
964 src->flags |= BB_DIRTY;
965 return ret;
966 }
967
968 ret = redirect_branch_edge (e, target);
969 if (!ret)
970 return NULL;
971
972 src->flags |= BB_DIRTY;
973 return ret;
974 }
975
976 /* Like force_nonfallthru below, but additionally performs redirection
977 Used by redirect_edge_and_branch_force. */
978
979 static basic_block
980 force_nonfallthru_and_redirect (edge e, basic_block target)
981 {
982 basic_block jump_block, new_bb = NULL, src = e->src;
983 rtx note;
984 edge new_edge;
985 int abnormal_edge_flags = 0;
986
987 /* In the case the last instruction is conditional jump to the next
988 instruction, first redirect the jump itself and then continue
989 by creating a basic block afterwards to redirect fallthru edge. */
990 if (e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR
991 && any_condjump_p (BB_END (e->src))
992 /* When called from cfglayout, fallthru edges do not
993 necessarily go to the next block. */
994 && e->src->next_bb == e->dest
995 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
996 {
997 rtx note;
998 edge b = unchecked_make_edge (e->src, target, 0);
999 bool redirected;
1000
1001 redirected = redirect_jump (BB_END (e->src), block_label (target), 0);
1002 gcc_assert (redirected);
1003
1004 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1005 if (note)
1006 {
1007 int prob = INTVAL (XEXP (note, 0));
1008
1009 b->probability = prob;
1010 b->count = e->count * prob / REG_BR_PROB_BASE;
1011 e->probability -= e->probability;
1012 e->count -= b->count;
1013 if (e->probability < 0)
1014 e->probability = 0;
1015 if (e->count < 0)
1016 e->count = 0;
1017 }
1018 }
1019
1020 if (e->flags & EDGE_ABNORMAL)
1021 {
1022 /* Irritating special case - fallthru edge to the same block as abnormal
1023 edge.
1024 We can't redirect abnormal edge, but we still can split the fallthru
1025 one and create separate abnormal edge to original destination.
1026 This allows bb-reorder to make such edge non-fallthru. */
1027 gcc_assert (e->dest == target);
1028 abnormal_edge_flags = e->flags & ~(EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
1029 e->flags &= EDGE_FALLTHRU | EDGE_CAN_FALLTHRU;
1030 }
1031 else
1032 {
1033 gcc_assert (e->flags & EDGE_FALLTHRU);
1034 if (e->src == ENTRY_BLOCK_PTR)
1035 {
1036 /* We can't redirect the entry block. Create an empty block
1037 at the start of the function which we use to add the new
1038 jump. */
1039 edge tmp;
1040 edge_iterator ei;
1041 bool found = false;
1042
1043 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL, ENTRY_BLOCK_PTR);
1044
1045 /* Change the existing edge's source to be the new block, and add
1046 a new edge from the entry block to the new block. */
1047 e->src = bb;
1048 for (ei = ei_start (ENTRY_BLOCK_PTR->succs); (tmp = ei_safe_edge (ei)); )
1049 {
1050 if (tmp == e)
1051 {
1052 VEC_unordered_remove (edge, ENTRY_BLOCK_PTR->succs, ei.index);
1053 found = true;
1054 break;
1055 }
1056 else
1057 ei_next (&ei);
1058 }
1059
1060 gcc_assert (found);
1061
1062 VEC_safe_push (edge, gc, bb->succs, e);
1063 make_single_succ_edge (ENTRY_BLOCK_PTR, bb, EDGE_FALLTHRU);
1064 }
1065 }
1066
1067 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags)
1068 {
1069 /* Create the new structures. */
1070
1071 /* If the old block ended with a tablejump, skip its table
1072 by searching forward from there. Otherwise start searching
1073 forward from the last instruction of the old block. */
1074 if (!tablejump_p (BB_END (e->src), NULL, &note))
1075 note = BB_END (e->src);
1076
1077 /* Position the new block correctly relative to loop notes. */
1078 note = last_loop_beg_note (note);
1079 note = NEXT_INSN (note);
1080
1081 jump_block = create_basic_block (note, NULL, e->src);
1082 jump_block->count = e->count;
1083 jump_block->frequency = EDGE_FREQUENCY (e);
1084 jump_block->loop_depth = target->loop_depth;
1085
1086 if (target->global_live_at_start)
1087 {
1088 jump_block->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1089 jump_block->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1090 COPY_REG_SET (jump_block->global_live_at_start,
1091 target->global_live_at_start);
1092 COPY_REG_SET (jump_block->global_live_at_end,
1093 target->global_live_at_start);
1094 }
1095
1096 /* Make sure new block ends up in correct hot/cold section. */
1097
1098 BB_COPY_PARTITION (jump_block, e->src);
1099 if (flag_reorder_blocks_and_partition
1100 && targetm.have_named_sections
1101 && JUMP_P (BB_END (jump_block))
1102 && !any_condjump_p (BB_END (jump_block))
1103 && (EDGE_SUCC (jump_block, 0)->flags & EDGE_CROSSING))
1104 REG_NOTES (BB_END (jump_block)) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
1105 NULL_RTX,
1106 REG_NOTES
1107 (BB_END
1108 (jump_block)));
1109
1110 /* Wire edge in. */
1111 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1112 new_edge->probability = e->probability;
1113 new_edge->count = e->count;
1114
1115 /* Redirect old edge. */
1116 redirect_edge_pred (e, jump_block);
1117 e->probability = REG_BR_PROB_BASE;
1118
1119 new_bb = jump_block;
1120 }
1121 else
1122 jump_block = e->src;
1123
1124 e->flags &= ~EDGE_FALLTHRU;
1125 if (target == EXIT_BLOCK_PTR)
1126 {
1127 #ifdef HAVE_return
1128 emit_jump_insn_after_noloc (gen_return (), BB_END (jump_block));
1129 #else
1130 gcc_unreachable ();
1131 #endif
1132 }
1133 else
1134 {
1135 rtx label = block_label (target);
1136 emit_jump_insn_after_noloc (gen_jump (label), BB_END (jump_block));
1137 JUMP_LABEL (BB_END (jump_block)) = label;
1138 LABEL_NUSES (label)++;
1139 }
1140
1141 emit_barrier_after (BB_END (jump_block));
1142 redirect_edge_succ_nodup (e, target);
1143
1144 if (abnormal_edge_flags)
1145 make_edge (src, target, abnormal_edge_flags);
1146
1147 return new_bb;
1148 }
1149
1150 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1151 (and possibly create new basic block) to make edge non-fallthru.
1152 Return newly created BB or NULL if none. */
1153
1154 basic_block
1155 force_nonfallthru (edge e)
1156 {
1157 return force_nonfallthru_and_redirect (e, e->dest);
1158 }
1159
1160 /* Redirect edge even at the expense of creating new jump insn or
1161 basic block. Return new basic block if created, NULL otherwise.
1162 Conversion must be possible. */
1163
1164 static basic_block
1165 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1166 {
1167 if (redirect_edge_and_branch (e, target)
1168 || e->dest == target)
1169 return NULL;
1170
1171 /* In case the edge redirection failed, try to force it to be non-fallthru
1172 and redirect newly created simplejump. */
1173 return force_nonfallthru_and_redirect (e, target);
1174 }
1175
1176 /* The given edge should potentially be a fallthru edge. If that is in
1177 fact true, delete the jump and barriers that are in the way. */
1178
1179 static void
1180 rtl_tidy_fallthru_edge (edge e)
1181 {
1182 rtx q;
1183 basic_block b = e->src, c = b->next_bb;
1184
1185 /* ??? In a late-running flow pass, other folks may have deleted basic
1186 blocks by nopping out blocks, leaving multiple BARRIERs between here
1187 and the target label. They ought to be chastised and fixed.
1188
1189 We can also wind up with a sequence of undeletable labels between
1190 one block and the next.
1191
1192 So search through a sequence of barriers, labels, and notes for
1193 the head of block C and assert that we really do fall through. */
1194
1195 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1196 if (INSN_P (q))
1197 return;
1198
1199 /* Remove what will soon cease being the jump insn from the source block.
1200 If block B consisted only of this single jump, turn it into a deleted
1201 note. */
1202 q = BB_END (b);
1203 if (JUMP_P (q)
1204 && onlyjump_p (q)
1205 && (any_uncondjump_p (q)
1206 || single_succ_p (b)))
1207 {
1208 #ifdef HAVE_cc0
1209 /* If this was a conditional jump, we need to also delete
1210 the insn that set cc0. */
1211 if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1212 q = PREV_INSN (q);
1213 #endif
1214
1215 q = PREV_INSN (q);
1216
1217 /* We don't want a block to end on a line-number note since that has
1218 the potential of changing the code between -g and not -g. */
1219 while (NOTE_P (q) && NOTE_LINE_NUMBER (q) >= 0)
1220 q = PREV_INSN (q);
1221 }
1222
1223 /* Selectively unlink the sequence. */
1224 if (q != PREV_INSN (BB_HEAD (c)))
1225 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)));
1226
1227 e->flags |= EDGE_FALLTHRU;
1228 }
1229 \f
1230 /* Helper function for split_edge. Return true in case edge BB2 to BB1
1231 is back edge of syntactic loop. */
1232
1233 static bool
1234 back_edge_of_syntactic_loop_p (basic_block bb1, basic_block bb2)
1235 {
1236 rtx insn;
1237 int count = 0;
1238 basic_block bb;
1239
1240 if (bb1 == bb2)
1241 return true;
1242
1243 /* ??? Could we guarantee that bb indices are monotone, so that we could
1244 just compare them? */
1245 for (bb = bb1; bb && bb != bb2; bb = bb->next_bb)
1246 continue;
1247
1248 if (!bb)
1249 return false;
1250
1251 for (insn = BB_END (bb1); insn != BB_HEAD (bb2) && count >= 0;
1252 insn = NEXT_INSN (insn))
1253 if (NOTE_P (insn))
1254 {
1255 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1256 count++;
1257 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1258 count--;
1259 }
1260
1261 return count >= 0;
1262 }
1263
1264 /* Should move basic block BB after basic block AFTER. NIY. */
1265
1266 static bool
1267 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1268 basic_block after ATTRIBUTE_UNUSED)
1269 {
1270 return false;
1271 }
1272
1273 /* Split a (typically critical) edge. Return the new block.
1274 The edge must not be abnormal.
1275
1276 ??? The code generally expects to be called on critical edges.
1277 The case of a block ending in an unconditional jump to a
1278 block with multiple predecessors is not handled optimally. */
1279
1280 static basic_block
1281 rtl_split_edge (edge edge_in)
1282 {
1283 basic_block bb;
1284 rtx before;
1285
1286 /* Abnormal edges cannot be split. */
1287 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1288
1289 /* We are going to place the new block in front of edge destination.
1290 Avoid existence of fallthru predecessors. */
1291 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1292 {
1293 edge e;
1294 edge_iterator ei;
1295
1296 FOR_EACH_EDGE (e, ei, edge_in->dest->preds)
1297 if (e->flags & EDGE_FALLTHRU)
1298 break;
1299
1300 if (e)
1301 force_nonfallthru (e);
1302 }
1303
1304 /* Create the basic block note.
1305
1306 Where we place the note can have a noticeable impact on the generated
1307 code. Consider this cfg:
1308
1309 E
1310 |
1311 0
1312 / \
1313 +->1-->2--->E
1314 | |
1315 +--+
1316
1317 If we need to insert an insn on the edge from block 0 to block 1,
1318 we want to ensure the instructions we insert are outside of any
1319 loop notes that physically sit between block 0 and block 1. Otherwise
1320 we confuse the loop optimizer into thinking the loop is a phony. */
1321
1322 if (edge_in->dest != EXIT_BLOCK_PTR
1323 && PREV_INSN (BB_HEAD (edge_in->dest))
1324 && NOTE_P (PREV_INSN (BB_HEAD (edge_in->dest)))
1325 && (NOTE_LINE_NUMBER (PREV_INSN (BB_HEAD (edge_in->dest)))
1326 == NOTE_INSN_LOOP_BEG)
1327 && !back_edge_of_syntactic_loop_p (edge_in->dest, edge_in->src))
1328 before = PREV_INSN (BB_HEAD (edge_in->dest));
1329 else if (edge_in->dest != EXIT_BLOCK_PTR)
1330 before = BB_HEAD (edge_in->dest);
1331 else
1332 before = NULL_RTX;
1333
1334 /* If this is a fall through edge to the exit block, the blocks might be
1335 not adjacent, and the right place is the after the source. */
1336 if (edge_in->flags & EDGE_FALLTHRU && edge_in->dest == EXIT_BLOCK_PTR)
1337 {
1338 before = NEXT_INSN (BB_END (edge_in->src));
1339 if (before
1340 && NOTE_P (before)
1341 && NOTE_LINE_NUMBER (before) == NOTE_INSN_LOOP_END)
1342 before = NEXT_INSN (before);
1343 bb = create_basic_block (before, NULL, edge_in->src);
1344 BB_COPY_PARTITION (bb, edge_in->src);
1345 }
1346 else
1347 {
1348 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1349 /* ??? Why not edge_in->dest->prev_bb here? */
1350 BB_COPY_PARTITION (bb, edge_in->dest);
1351 }
1352
1353 /* ??? This info is likely going to be out of date very soon. */
1354 if (edge_in->dest->global_live_at_start)
1355 {
1356 bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1357 bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1358 COPY_REG_SET (bb->global_live_at_start,
1359 edge_in->dest->global_live_at_start);
1360 COPY_REG_SET (bb->global_live_at_end,
1361 edge_in->dest->global_live_at_start);
1362 }
1363
1364 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1365
1366 /* For non-fallthru edges, we must adjust the predecessor's
1367 jump instruction to target our new block. */
1368 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1369 {
1370 edge redirected = redirect_edge_and_branch (edge_in, bb);
1371 gcc_assert (redirected);
1372 }
1373 else
1374 redirect_edge_succ (edge_in, bb);
1375
1376 return bb;
1377 }
1378
1379 /* Queue instructions for insertion on an edge between two basic blocks.
1380 The new instructions and basic blocks (if any) will not appear in the
1381 CFG until commit_edge_insertions is called. */
1382
1383 void
1384 insert_insn_on_edge (rtx pattern, edge e)
1385 {
1386 /* We cannot insert instructions on an abnormal critical edge.
1387 It will be easier to find the culprit if we die now. */
1388 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1389
1390 if (e->insns.r == NULL_RTX)
1391 start_sequence ();
1392 else
1393 push_to_sequence (e->insns.r);
1394
1395 emit_insn (pattern);
1396
1397 e->insns.r = get_insns ();
1398 end_sequence ();
1399 }
1400
1401 /* Called from safe_insert_insn_on_edge through note_stores, marks live
1402 registers that are killed by the store. */
1403 static void
1404 mark_killed_regs (rtx reg, rtx set ATTRIBUTE_UNUSED, void *data)
1405 {
1406 regset killed = data;
1407 int regno, i;
1408
1409 if (GET_CODE (reg) == SUBREG)
1410 reg = SUBREG_REG (reg);
1411 if (!REG_P (reg))
1412 return;
1413 regno = REGNO (reg);
1414 if (regno >= FIRST_PSEUDO_REGISTER)
1415 SET_REGNO_REG_SET (killed, regno);
1416 else
1417 {
1418 for (i = 0; i < (int) hard_regno_nregs[regno][GET_MODE (reg)]; i++)
1419 SET_REGNO_REG_SET (killed, regno + i);
1420 }
1421 }
1422
1423 /* Similar to insert_insn_on_edge, tries to put INSN to edge E. Additionally
1424 it checks whether this will not clobber the registers that are live on the
1425 edge (i.e. it requires liveness information to be up-to-date) and if there
1426 are some, then it tries to save and restore them. Returns true if
1427 successful. */
1428 bool
1429 safe_insert_insn_on_edge (rtx insn, edge e)
1430 {
1431 rtx x;
1432 regset killed;
1433 rtx save_regs = NULL_RTX;
1434 unsigned regno;
1435 int noccmode;
1436 enum machine_mode mode;
1437 reg_set_iterator rsi;
1438
1439 #ifdef AVOID_CCMODE_COPIES
1440 noccmode = true;
1441 #else
1442 noccmode = false;
1443 #endif
1444
1445 killed = ALLOC_REG_SET (&reg_obstack);
1446
1447 for (x = insn; x; x = NEXT_INSN (x))
1448 if (INSN_P (x))
1449 note_stores (PATTERN (x), mark_killed_regs, killed);
1450
1451 /* Mark all hard registers as killed. Register allocator/reload cannot
1452 cope with the situation when life range of hard register spans operation
1453 for that the appropriate register is needed, i.e. it would be unsafe to
1454 extend the life ranges of hard registers. */
1455 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1456 if (!fixed_regs[regno]
1457 && !REGNO_PTR_FRAME_P (regno))
1458 SET_REGNO_REG_SET (killed, regno);
1459
1460 bitmap_and_into (killed, e->dest->global_live_at_start);
1461
1462 EXECUTE_IF_SET_IN_REG_SET (killed, 0, regno, rsi)
1463 {
1464 mode = regno < FIRST_PSEUDO_REGISTER
1465 ? reg_raw_mode[regno]
1466 : GET_MODE (regno_reg_rtx[regno]);
1467 if (mode == VOIDmode)
1468 return false;
1469
1470 if (noccmode && mode == CCmode)
1471 return false;
1472
1473 save_regs = alloc_EXPR_LIST (0,
1474 alloc_EXPR_LIST (0,
1475 gen_reg_rtx (mode),
1476 gen_raw_REG (mode, regno)),
1477 save_regs);
1478 }
1479
1480 if (save_regs)
1481 {
1482 rtx from, to;
1483
1484 start_sequence ();
1485 for (x = save_regs; x; x = XEXP (x, 1))
1486 {
1487 from = XEXP (XEXP (x, 0), 1);
1488 to = XEXP (XEXP (x, 0), 0);
1489 emit_move_insn (to, from);
1490 }
1491 emit_insn (insn);
1492 for (x = save_regs; x; x = XEXP (x, 1))
1493 {
1494 from = XEXP (XEXP (x, 0), 0);
1495 to = XEXP (XEXP (x, 0), 1);
1496 emit_move_insn (to, from);
1497 }
1498 insn = get_insns ();
1499 end_sequence ();
1500 free_EXPR_LIST_list (&save_regs);
1501 }
1502 insert_insn_on_edge (insn, e);
1503
1504 FREE_REG_SET (killed);
1505
1506 return true;
1507 }
1508
1509 /* Update the CFG for the instructions queued on edge E. */
1510
1511 static void
1512 commit_one_edge_insertion (edge e, int watch_calls)
1513 {
1514 rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1515 basic_block bb = NULL;
1516
1517 /* Pull the insns off the edge now since the edge might go away. */
1518 insns = e->insns.r;
1519 e->insns.r = NULL_RTX;
1520
1521 /* Special case -- avoid inserting code between call and storing
1522 its return value. */
1523 if (watch_calls && (e->flags & EDGE_FALLTHRU)
1524 && single_pred_p (e->dest)
1525 && e->src != ENTRY_BLOCK_PTR
1526 && CALL_P (BB_END (e->src)))
1527 {
1528 rtx next = next_nonnote_insn (BB_END (e->src));
1529
1530 after = BB_HEAD (e->dest);
1531 /* The first insn after the call may be a stack pop, skip it. */
1532 while (next
1533 && keep_with_call_p (next))
1534 {
1535 after = next;
1536 next = next_nonnote_insn (next);
1537 }
1538 bb = e->dest;
1539 }
1540 if (!before && !after)
1541 {
1542 /* Figure out where to put these things. If the destination has
1543 one predecessor, insert there. Except for the exit block. */
1544 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR)
1545 {
1546 bb = e->dest;
1547
1548 /* Get the location correct wrt a code label, and "nice" wrt
1549 a basic block note, and before everything else. */
1550 tmp = BB_HEAD (bb);
1551 if (LABEL_P (tmp))
1552 tmp = NEXT_INSN (tmp);
1553 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1554 tmp = NEXT_INSN (tmp);
1555 if (tmp == BB_HEAD (bb))
1556 before = tmp;
1557 else if (tmp)
1558 after = PREV_INSN (tmp);
1559 else
1560 after = get_last_insn ();
1561 }
1562
1563 /* If the source has one successor and the edge is not abnormal,
1564 insert there. Except for the entry block. */
1565 else if ((e->flags & EDGE_ABNORMAL) == 0
1566 && single_succ_p (e->src)
1567 && e->src != ENTRY_BLOCK_PTR)
1568 {
1569 bb = e->src;
1570
1571 /* It is possible to have a non-simple jump here. Consider a target
1572 where some forms of unconditional jumps clobber a register. This
1573 happens on the fr30 for example.
1574
1575 We know this block has a single successor, so we can just emit
1576 the queued insns before the jump. */
1577 if (JUMP_P (BB_END (bb)))
1578 for (before = BB_END (bb);
1579 NOTE_P (PREV_INSN (before))
1580 && NOTE_LINE_NUMBER (PREV_INSN (before)) ==
1581 NOTE_INSN_LOOP_BEG; before = PREV_INSN (before))
1582 ;
1583 else
1584 {
1585 /* We'd better be fallthru, or we've lost track of
1586 what's what. */
1587 gcc_assert (e->flags & EDGE_FALLTHRU);
1588
1589 after = BB_END (bb);
1590 }
1591 }
1592 /* Otherwise we must split the edge. */
1593 else
1594 {
1595 bb = split_edge (e);
1596 after = BB_END (bb);
1597
1598 if (flag_reorder_blocks_and_partition
1599 && targetm.have_named_sections
1600 && e->src != ENTRY_BLOCK_PTR
1601 && BB_PARTITION (e->src) == BB_COLD_PARTITION
1602 && !(e->flags & EDGE_CROSSING))
1603 {
1604 rtx bb_note, cur_insn;
1605
1606 bb_note = NULL_RTX;
1607 for (cur_insn = BB_HEAD (bb); cur_insn != NEXT_INSN (BB_END (bb));
1608 cur_insn = NEXT_INSN (cur_insn))
1609 if (NOTE_P (cur_insn)
1610 && NOTE_LINE_NUMBER (cur_insn) == NOTE_INSN_BASIC_BLOCK)
1611 {
1612 bb_note = cur_insn;
1613 break;
1614 }
1615
1616 if (JUMP_P (BB_END (bb))
1617 && !any_condjump_p (BB_END (bb))
1618 && (single_succ_edge (bb)->flags & EDGE_CROSSING))
1619 REG_NOTES (BB_END (bb)) = gen_rtx_EXPR_LIST
1620 (REG_CROSSING_JUMP, NULL_RTX, REG_NOTES (BB_END (bb)));
1621 }
1622 }
1623 }
1624
1625 /* Now that we've found the spot, do the insertion. */
1626
1627 if (before)
1628 {
1629 emit_insn_before_noloc (insns, before);
1630 last = prev_nonnote_insn (before);
1631 }
1632 else
1633 last = emit_insn_after_noloc (insns, after);
1634
1635 if (returnjump_p (last))
1636 {
1637 /* ??? Remove all outgoing edges from BB and add one for EXIT.
1638 This is not currently a problem because this only happens
1639 for the (single) epilogue, which already has a fallthru edge
1640 to EXIT. */
1641
1642 e = single_succ_edge (bb);
1643 gcc_assert (e->dest == EXIT_BLOCK_PTR
1644 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
1645
1646 e->flags &= ~EDGE_FALLTHRU;
1647 emit_barrier_after (last);
1648
1649 if (before)
1650 delete_insn (before);
1651 }
1652 else
1653 gcc_assert (!JUMP_P (last));
1654
1655 /* Mark the basic block for find_many_sub_basic_blocks. */
1656 bb->aux = &bb->aux;
1657 }
1658
1659 /* Update the CFG for all queued instructions. */
1660
1661 void
1662 commit_edge_insertions (void)
1663 {
1664 basic_block bb;
1665 sbitmap blocks;
1666 bool changed = false;
1667
1668 #ifdef ENABLE_CHECKING
1669 verify_flow_info ();
1670 #endif
1671
1672 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1673 {
1674 edge e;
1675 edge_iterator ei;
1676
1677 FOR_EACH_EDGE (e, ei, bb->succs)
1678 if (e->insns.r)
1679 {
1680 changed = true;
1681 commit_one_edge_insertion (e, false);
1682 }
1683 }
1684
1685 if (!changed)
1686 return;
1687
1688 blocks = sbitmap_alloc (last_basic_block);
1689 sbitmap_zero (blocks);
1690 FOR_EACH_BB (bb)
1691 if (bb->aux)
1692 {
1693 SET_BIT (blocks, bb->index);
1694 /* Check for forgotten bb->aux values before commit_edge_insertions
1695 call. */
1696 gcc_assert (bb->aux == &bb->aux);
1697 bb->aux = NULL;
1698 }
1699 find_many_sub_basic_blocks (blocks);
1700 sbitmap_free (blocks);
1701 }
1702 \f
1703 /* Update the CFG for all queued instructions, taking special care of inserting
1704 code on edges between call and storing its return value. */
1705
1706 void
1707 commit_edge_insertions_watch_calls (void)
1708 {
1709 basic_block bb;
1710 sbitmap blocks;
1711 bool changed = false;
1712
1713 #ifdef ENABLE_CHECKING
1714 verify_flow_info ();
1715 #endif
1716
1717 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1718 {
1719 edge e;
1720 edge_iterator ei;
1721
1722 FOR_EACH_EDGE (e, ei, bb->succs)
1723 if (e->insns.r)
1724 {
1725 changed = true;
1726 commit_one_edge_insertion (e, true);
1727 }
1728 }
1729
1730 if (!changed)
1731 return;
1732
1733 blocks = sbitmap_alloc (last_basic_block);
1734 sbitmap_zero (blocks);
1735 FOR_EACH_BB (bb)
1736 if (bb->aux)
1737 {
1738 SET_BIT (blocks, bb->index);
1739 /* Check for forgotten bb->aux values before commit_edge_insertions
1740 call. */
1741 gcc_assert (bb->aux == &bb->aux);
1742 bb->aux = NULL;
1743 }
1744 find_many_sub_basic_blocks (blocks);
1745 sbitmap_free (blocks);
1746 }
1747 \f
1748 /* Print out RTL-specific basic block information (live information
1749 at start and end). */
1750
1751 static void
1752 rtl_dump_bb (basic_block bb, FILE *outf, int indent)
1753 {
1754 rtx insn;
1755 rtx last;
1756 char *s_indent;
1757
1758 s_indent = alloca ((size_t) indent + 1);
1759 memset (s_indent, ' ', (size_t) indent);
1760 s_indent[indent] = '\0';
1761
1762 fprintf (outf, ";;%s Registers live at start: ", s_indent);
1763 dump_regset (bb->global_live_at_start, outf);
1764 putc ('\n', outf);
1765
1766 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
1767 insn = NEXT_INSN (insn))
1768 print_rtl_single (outf, insn);
1769
1770 fprintf (outf, ";;%s Registers live at end: ", s_indent);
1771 dump_regset (bb->global_live_at_end, outf);
1772 putc ('\n', outf);
1773 }
1774 \f
1775 /* Like print_rtl, but also print out live information for the start of each
1776 basic block. */
1777
1778 void
1779 print_rtl_with_bb (FILE *outf, rtx rtx_first)
1780 {
1781 rtx tmp_rtx;
1782
1783 if (rtx_first == 0)
1784 fprintf (outf, "(nil)\n");
1785 else
1786 {
1787 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
1788 int max_uid = get_max_uid ();
1789 basic_block *start = xcalloc (max_uid, sizeof (basic_block));
1790 basic_block *end = xcalloc (max_uid, sizeof (basic_block));
1791 enum bb_state *in_bb_p = xcalloc (max_uid, sizeof (enum bb_state));
1792
1793 basic_block bb;
1794
1795 FOR_EACH_BB_REVERSE (bb)
1796 {
1797 rtx x;
1798
1799 start[INSN_UID (BB_HEAD (bb))] = bb;
1800 end[INSN_UID (BB_END (bb))] = bb;
1801 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
1802 {
1803 enum bb_state state = IN_MULTIPLE_BB;
1804
1805 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
1806 state = IN_ONE_BB;
1807 in_bb_p[INSN_UID (x)] = state;
1808
1809 if (x == BB_END (bb))
1810 break;
1811 }
1812 }
1813
1814 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
1815 {
1816 int did_output;
1817
1818 if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
1819 {
1820 fprintf (outf, ";; Start of basic block %d, registers live:",
1821 bb->index);
1822 dump_regset (bb->global_live_at_start, outf);
1823 putc ('\n', outf);
1824 }
1825
1826 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
1827 && !NOTE_P (tmp_rtx)
1828 && !BARRIER_P (tmp_rtx))
1829 fprintf (outf, ";; Insn is not within a basic block\n");
1830 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
1831 fprintf (outf, ";; Insn is in multiple basic blocks\n");
1832
1833 did_output = print_rtl_single (outf, tmp_rtx);
1834
1835 if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
1836 {
1837 fprintf (outf, ";; End of basic block %d, registers live:\n",
1838 bb->index);
1839 dump_regset (bb->global_live_at_end, outf);
1840 putc ('\n', outf);
1841 }
1842
1843 if (did_output)
1844 putc ('\n', outf);
1845 }
1846
1847 free (start);
1848 free (end);
1849 free (in_bb_p);
1850 }
1851
1852 if (current_function_epilogue_delay_list != 0)
1853 {
1854 fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
1855 for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
1856 tmp_rtx = XEXP (tmp_rtx, 1))
1857 print_rtl_single (outf, XEXP (tmp_rtx, 0));
1858 }
1859 }
1860 \f
1861 void
1862 update_br_prob_note (basic_block bb)
1863 {
1864 rtx note;
1865 if (!JUMP_P (BB_END (bb)))
1866 return;
1867 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
1868 if (!note || INTVAL (XEXP (note, 0)) == BRANCH_EDGE (bb)->probability)
1869 return;
1870 XEXP (note, 0) = GEN_INT (BRANCH_EDGE (bb)->probability);
1871 }
1872 \f
1873 /* Verify the CFG and RTL consistency common for both underlying RTL and
1874 cfglayout RTL.
1875
1876 Currently it does following checks:
1877
1878 - test head/end pointers
1879 - overlapping of basic blocks
1880 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
1881 - tails of basic blocks (ensure that boundary is necessary)
1882 - scans body of the basic block for JUMP_INSN, CODE_LABEL
1883 and NOTE_INSN_BASIC_BLOCK
1884 - verify that no fall_thru edge crosses hot/cold partition boundaries
1885
1886 In future it can be extended check a lot of other stuff as well
1887 (reachability of basic blocks, life information, etc. etc.). */
1888
1889 static int
1890 rtl_verify_flow_info_1 (void)
1891 {
1892 const int max_uid = get_max_uid ();
1893 rtx last_head = get_last_insn ();
1894 basic_block *bb_info;
1895 rtx x;
1896 int err = 0;
1897 basic_block bb;
1898
1899 bb_info = xcalloc (max_uid, sizeof (basic_block));
1900
1901 FOR_EACH_BB_REVERSE (bb)
1902 {
1903 rtx head = BB_HEAD (bb);
1904 rtx end = BB_END (bb);
1905
1906 /* Verify the end of the basic block is in the INSN chain. */
1907 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
1908 if (x == end)
1909 break;
1910
1911 if (!x)
1912 {
1913 error ("end insn %d for block %d not found in the insn stream",
1914 INSN_UID (end), bb->index);
1915 err = 1;
1916 }
1917
1918 /* Work backwards from the end to the head of the basic block
1919 to verify the head is in the RTL chain. */
1920 for (; x != NULL_RTX; x = PREV_INSN (x))
1921 {
1922 /* While walking over the insn chain, verify insns appear
1923 in only one basic block and initialize the BB_INFO array
1924 used by other passes. */
1925 if (bb_info[INSN_UID (x)] != NULL)
1926 {
1927 error ("insn %d is in multiple basic blocks (%d and %d)",
1928 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
1929 err = 1;
1930 }
1931
1932 bb_info[INSN_UID (x)] = bb;
1933
1934 if (x == head)
1935 break;
1936 }
1937 if (!x)
1938 {
1939 error ("head insn %d for block %d not found in the insn stream",
1940 INSN_UID (head), bb->index);
1941 err = 1;
1942 }
1943
1944 last_head = x;
1945 }
1946
1947 /* Now check the basic blocks (boundaries etc.) */
1948 FOR_EACH_BB_REVERSE (bb)
1949 {
1950 int n_fallthru = 0, n_eh = 0, n_call = 0, n_abnormal = 0, n_branch = 0;
1951 edge e, fallthru = NULL;
1952 rtx note;
1953 edge_iterator ei;
1954
1955 if (JUMP_P (BB_END (bb))
1956 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
1957 && EDGE_COUNT (bb->succs) >= 2
1958 && any_condjump_p (BB_END (bb)))
1959 {
1960 if (INTVAL (XEXP (note, 0)) != BRANCH_EDGE (bb)->probability
1961 && profile_status != PROFILE_ABSENT)
1962 {
1963 error ("verify_flow_info: REG_BR_PROB does not match cfg %wi %i",
1964 INTVAL (XEXP (note, 0)), BRANCH_EDGE (bb)->probability);
1965 err = 1;
1966 }
1967 }
1968 FOR_EACH_EDGE (e, ei, bb->succs)
1969 {
1970 if (e->flags & EDGE_FALLTHRU)
1971 {
1972 n_fallthru++, fallthru = e;
1973 if ((e->flags & EDGE_CROSSING)
1974 || (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
1975 && e->src != ENTRY_BLOCK_PTR
1976 && e->dest != EXIT_BLOCK_PTR))
1977 {
1978 error ("Fallthru edge crosses section boundary (bb %i)",
1979 e->src->index);
1980 err = 1;
1981 }
1982 }
1983
1984 if ((e->flags & ~(EDGE_DFS_BACK
1985 | EDGE_CAN_FALLTHRU
1986 | EDGE_IRREDUCIBLE_LOOP
1987 | EDGE_LOOP_EXIT
1988 | EDGE_CROSSING)) == 0)
1989 n_branch++;
1990
1991 if (e->flags & EDGE_ABNORMAL_CALL)
1992 n_call++;
1993
1994 if (e->flags & EDGE_EH)
1995 n_eh++;
1996 else if (e->flags & EDGE_ABNORMAL)
1997 n_abnormal++;
1998 }
1999
2000 if (n_eh && GET_CODE (PATTERN (BB_END (bb))) != RESX
2001 && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2002 {
2003 error ("Missing REG_EH_REGION note in the end of bb %i", bb->index);
2004 err = 1;
2005 }
2006 if (n_branch
2007 && (!JUMP_P (BB_END (bb))
2008 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2009 || any_condjump_p (BB_END (bb))))))
2010 {
2011 error ("Too many outgoing branch edges from bb %i", bb->index);
2012 err = 1;
2013 }
2014 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2015 {
2016 error ("Fallthru edge after unconditional jump %i", bb->index);
2017 err = 1;
2018 }
2019 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2020 {
2021 error ("Wrong amount of branch edges after unconditional jump %i", bb->index);
2022 err = 1;
2023 }
2024 if (n_branch != 1 && any_condjump_p (BB_END (bb))
2025 && JUMP_LABEL (BB_END (bb)) == BB_HEAD (fallthru->dest))
2026 {
2027 error ("Wrong amount of branch edges after conditional jump %i", bb->index);
2028 err = 1;
2029 }
2030 if (n_call && !CALL_P (BB_END (bb)))
2031 {
2032 error ("Call edges for non-call insn in bb %i", bb->index);
2033 err = 1;
2034 }
2035 if (n_abnormal
2036 && (!CALL_P (BB_END (bb)) && n_call != n_abnormal)
2037 && (!JUMP_P (BB_END (bb))
2038 || any_condjump_p (BB_END (bb))
2039 || any_uncondjump_p (BB_END (bb))))
2040 {
2041 error ("Abnormal edges for no purpose in bb %i", bb->index);
2042 err = 1;
2043 }
2044
2045 for (x = BB_HEAD (bb); x != NEXT_INSN (BB_END (bb)); x = NEXT_INSN (x))
2046 /* We may have a barrier inside a basic block before dead code
2047 elimination. There is no BLOCK_FOR_INSN field in a barrier. */
2048 if (!BARRIER_P (x) && BLOCK_FOR_INSN (x) != bb)
2049 {
2050 debug_rtx (x);
2051 if (! BLOCK_FOR_INSN (x))
2052 error
2053 ("insn %d inside basic block %d but block_for_insn is NULL",
2054 INSN_UID (x), bb->index);
2055 else
2056 error
2057 ("insn %d inside basic block %d but block_for_insn is %i",
2058 INSN_UID (x), bb->index, BLOCK_FOR_INSN (x)->index);
2059
2060 err = 1;
2061 }
2062
2063 /* OK pointers are correct. Now check the header of basic
2064 block. It ought to contain optional CODE_LABEL followed
2065 by NOTE_BASIC_BLOCK. */
2066 x = BB_HEAD (bb);
2067 if (LABEL_P (x))
2068 {
2069 if (BB_END (bb) == x)
2070 {
2071 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2072 bb->index);
2073 err = 1;
2074 }
2075
2076 x = NEXT_INSN (x);
2077 }
2078
2079 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2080 {
2081 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2082 bb->index);
2083 err = 1;
2084 }
2085
2086 if (BB_END (bb) == x)
2087 /* Do checks for empty blocks here. */
2088 ;
2089 else
2090 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2091 {
2092 if (NOTE_INSN_BASIC_BLOCK_P (x))
2093 {
2094 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2095 INSN_UID (x), bb->index);
2096 err = 1;
2097 }
2098
2099 if (x == BB_END (bb))
2100 break;
2101
2102 if (control_flow_insn_p (x))
2103 {
2104 error ("in basic block %d:", bb->index);
2105 fatal_insn ("flow control insn inside a basic block", x);
2106 }
2107 }
2108 }
2109
2110 /* Clean up. */
2111 free (bb_info);
2112 return err;
2113 }
2114
2115 /* Verify the CFG and RTL consistency common for both underlying RTL and
2116 cfglayout RTL.
2117
2118 Currently it does following checks:
2119 - all checks of rtl_verify_flow_info_1
2120 - check that all insns are in the basic blocks
2121 (except the switch handling code, barriers and notes)
2122 - check that all returns are followed by barriers
2123 - check that all fallthru edge points to the adjacent blocks. */
2124 static int
2125 rtl_verify_flow_info (void)
2126 {
2127 basic_block bb;
2128 int err = rtl_verify_flow_info_1 ();
2129 rtx x;
2130 int num_bb_notes;
2131 const rtx rtx_first = get_insns ();
2132 basic_block last_bb_seen = ENTRY_BLOCK_PTR, curr_bb = NULL;
2133
2134 FOR_EACH_BB_REVERSE (bb)
2135 {
2136 edge e;
2137 edge_iterator ei;
2138
2139 if (bb->predictions)
2140 {
2141 error ("bb prediction set for block %i, but it is not used in RTL land", bb->index);
2142 err = 1;
2143 }
2144
2145 FOR_EACH_EDGE (e, ei, bb->succs)
2146 if (e->flags & EDGE_FALLTHRU)
2147 break;
2148 if (!e)
2149 {
2150 rtx insn;
2151
2152 /* Ensure existence of barrier in BB with no fallthru edges. */
2153 for (insn = BB_END (bb); !insn || !BARRIER_P (insn);
2154 insn = NEXT_INSN (insn))
2155 if (!insn
2156 || (NOTE_P (insn)
2157 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK))
2158 {
2159 error ("missing barrier after block %i", bb->index);
2160 err = 1;
2161 break;
2162 }
2163 }
2164 else if (e->src != ENTRY_BLOCK_PTR
2165 && e->dest != EXIT_BLOCK_PTR)
2166 {
2167 rtx insn;
2168
2169 if (e->src->next_bb != e->dest)
2170 {
2171 error
2172 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2173 e->src->index, e->dest->index);
2174 err = 1;
2175 }
2176 else
2177 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2178 insn = NEXT_INSN (insn))
2179 if (BARRIER_P (insn) || INSN_P (insn))
2180 {
2181 error ("verify_flow_info: Incorrect fallthru %i->%i",
2182 e->src->index, e->dest->index);
2183 fatal_insn ("wrong insn in the fallthru edge", insn);
2184 err = 1;
2185 }
2186 }
2187 }
2188
2189 num_bb_notes = 0;
2190 last_bb_seen = ENTRY_BLOCK_PTR;
2191
2192 for (x = rtx_first; x; x = NEXT_INSN (x))
2193 {
2194 if (NOTE_INSN_BASIC_BLOCK_P (x))
2195 {
2196 bb = NOTE_BASIC_BLOCK (x);
2197
2198 num_bb_notes++;
2199 if (bb != last_bb_seen->next_bb)
2200 internal_error ("basic blocks not laid down consecutively");
2201
2202 curr_bb = last_bb_seen = bb;
2203 }
2204
2205 if (!curr_bb)
2206 {
2207 switch (GET_CODE (x))
2208 {
2209 case BARRIER:
2210 case NOTE:
2211 break;
2212
2213 case CODE_LABEL:
2214 /* An addr_vec is placed outside any basic block. */
2215 if (NEXT_INSN (x)
2216 && JUMP_P (NEXT_INSN (x))
2217 && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
2218 || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
2219 x = NEXT_INSN (x);
2220
2221 /* But in any case, non-deletable labels can appear anywhere. */
2222 break;
2223
2224 default:
2225 fatal_insn ("insn outside basic block", x);
2226 }
2227 }
2228
2229 if (JUMP_P (x)
2230 && returnjump_p (x) && ! condjump_p (x)
2231 && ! (NEXT_INSN (x) && BARRIER_P (NEXT_INSN (x))))
2232 fatal_insn ("return not followed by barrier", x);
2233 if (curr_bb && x == BB_END (curr_bb))
2234 curr_bb = NULL;
2235 }
2236
2237 if (num_bb_notes != n_basic_blocks)
2238 internal_error
2239 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2240 num_bb_notes, n_basic_blocks);
2241
2242 return err;
2243 }
2244 \f
2245 /* Assume that the preceding pass has possibly eliminated jump instructions
2246 or converted the unconditional jumps. Eliminate the edges from CFG.
2247 Return true if any edges are eliminated. */
2248
2249 bool
2250 purge_dead_edges (basic_block bb)
2251 {
2252 edge e;
2253 rtx insn = BB_END (bb), note;
2254 bool purged = false;
2255 bool found;
2256 edge_iterator ei;
2257
2258 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
2259 if (NONJUMP_INSN_P (insn)
2260 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
2261 {
2262 rtx eqnote;
2263
2264 if (! may_trap_p (PATTERN (insn))
2265 || ((eqnote = find_reg_equal_equiv_note (insn))
2266 && ! may_trap_p (XEXP (eqnote, 0))))
2267 remove_note (insn, note);
2268 }
2269
2270 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
2271 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2272 {
2273 if (e->flags & EDGE_EH)
2274 {
2275 if (can_throw_internal (BB_END (bb)))
2276 {
2277 ei_next (&ei);
2278 continue;
2279 }
2280 }
2281 else if (e->flags & EDGE_ABNORMAL_CALL)
2282 {
2283 if (CALL_P (BB_END (bb))
2284 && (! (note = find_reg_note (insn, REG_EH_REGION, NULL))
2285 || INTVAL (XEXP (note, 0)) >= 0))
2286 {
2287 ei_next (&ei);
2288 continue;
2289 }
2290 }
2291 else
2292 {
2293 ei_next (&ei);
2294 continue;
2295 }
2296
2297 remove_edge (e);
2298 bb->flags |= BB_DIRTY;
2299 purged = true;
2300 }
2301
2302 if (JUMP_P (insn))
2303 {
2304 rtx note;
2305 edge b,f;
2306 edge_iterator ei;
2307
2308 /* We do care only about conditional jumps and simplejumps. */
2309 if (!any_condjump_p (insn)
2310 && !returnjump_p (insn)
2311 && !simplejump_p (insn))
2312 return purged;
2313
2314 /* Branch probability/prediction notes are defined only for
2315 condjumps. We've possibly turned condjump into simplejump. */
2316 if (simplejump_p (insn))
2317 {
2318 note = find_reg_note (insn, REG_BR_PROB, NULL);
2319 if (note)
2320 remove_note (insn, note);
2321 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
2322 remove_note (insn, note);
2323 }
2324
2325 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2326 {
2327 /* Avoid abnormal flags to leak from computed jumps turned
2328 into simplejumps. */
2329
2330 e->flags &= ~EDGE_ABNORMAL;
2331
2332 /* See if this edge is one we should keep. */
2333 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
2334 /* A conditional jump can fall through into the next
2335 block, so we should keep the edge. */
2336 {
2337 ei_next (&ei);
2338 continue;
2339 }
2340 else if (e->dest != EXIT_BLOCK_PTR
2341 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
2342 /* If the destination block is the target of the jump,
2343 keep the edge. */
2344 {
2345 ei_next (&ei);
2346 continue;
2347 }
2348 else if (e->dest == EXIT_BLOCK_PTR && returnjump_p (insn))
2349 /* If the destination block is the exit block, and this
2350 instruction is a return, then keep the edge. */
2351 {
2352 ei_next (&ei);
2353 continue;
2354 }
2355 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
2356 /* Keep the edges that correspond to exceptions thrown by
2357 this instruction and rematerialize the EDGE_ABNORMAL
2358 flag we just cleared above. */
2359 {
2360 e->flags |= EDGE_ABNORMAL;
2361 ei_next (&ei);
2362 continue;
2363 }
2364
2365 /* We do not need this edge. */
2366 bb->flags |= BB_DIRTY;
2367 purged = true;
2368 remove_edge (e);
2369 }
2370
2371 if (EDGE_COUNT (bb->succs) == 0 || !purged)
2372 return purged;
2373
2374 if (dump_file)
2375 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
2376
2377 if (!optimize)
2378 return purged;
2379
2380 /* Redistribute probabilities. */
2381 if (single_succ_p (bb))
2382 {
2383 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2384 single_succ_edge (bb)->count = bb->count;
2385 }
2386 else
2387 {
2388 note = find_reg_note (insn, REG_BR_PROB, NULL);
2389 if (!note)
2390 return purged;
2391
2392 b = BRANCH_EDGE (bb);
2393 f = FALLTHRU_EDGE (bb);
2394 b->probability = INTVAL (XEXP (note, 0));
2395 f->probability = REG_BR_PROB_BASE - b->probability;
2396 b->count = bb->count * b->probability / REG_BR_PROB_BASE;
2397 f->count = bb->count * f->probability / REG_BR_PROB_BASE;
2398 }
2399
2400 return purged;
2401 }
2402 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
2403 {
2404 /* First, there should not be any EH or ABCALL edges resulting
2405 from non-local gotos and the like. If there were, we shouldn't
2406 have created the sibcall in the first place. Second, there
2407 should of course never have been a fallthru edge. */
2408 gcc_assert (single_succ_p (bb));
2409 gcc_assert (single_succ_edge (bb)->flags
2410 == (EDGE_SIBCALL | EDGE_ABNORMAL));
2411
2412 return 0;
2413 }
2414
2415 /* If we don't see a jump insn, we don't know exactly why the block would
2416 have been broken at this point. Look for a simple, non-fallthru edge,
2417 as these are only created by conditional branches. If we find such an
2418 edge we know that there used to be a jump here and can then safely
2419 remove all non-fallthru edges. */
2420 found = false;
2421 FOR_EACH_EDGE (e, ei, bb->succs)
2422 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
2423 {
2424 found = true;
2425 break;
2426 }
2427
2428 if (!found)
2429 return purged;
2430
2431 /* Remove all but the fake and fallthru edges. The fake edge may be
2432 the only successor for this block in the case of noreturn
2433 calls. */
2434 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2435 {
2436 if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
2437 {
2438 bb->flags |= BB_DIRTY;
2439 remove_edge (e);
2440 purged = true;
2441 }
2442 else
2443 ei_next (&ei);
2444 }
2445
2446 gcc_assert (single_succ_p (bb));
2447
2448 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
2449 single_succ_edge (bb)->count = bb->count;
2450
2451 if (dump_file)
2452 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
2453 bb->index);
2454 return purged;
2455 }
2456
2457 /* Search all basic blocks for potentially dead edges and purge them. Return
2458 true if some edge has been eliminated. */
2459
2460 bool
2461 purge_all_dead_edges (void)
2462 {
2463 int purged = false;
2464 basic_block bb;
2465
2466 FOR_EACH_BB (bb)
2467 {
2468 bool purged_here = purge_dead_edges (bb);
2469
2470 purged |= purged_here;
2471 }
2472
2473 return purged;
2474 }
2475
2476 /* Same as split_block but update cfg_layout structures. */
2477
2478 static basic_block
2479 cfg_layout_split_block (basic_block bb, void *insnp)
2480 {
2481 rtx insn = insnp;
2482 basic_block new_bb = rtl_split_block (bb, insn);
2483
2484 new_bb->rbi->footer = bb->rbi->footer;
2485 bb->rbi->footer = NULL;
2486
2487 return new_bb;
2488 }
2489
2490
2491 /* Redirect Edge to DEST. */
2492 static edge
2493 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
2494 {
2495 basic_block src = e->src;
2496 edge ret;
2497
2498 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
2499 return NULL;
2500
2501 if (e->dest == dest)
2502 return e;
2503
2504 if (e->src != ENTRY_BLOCK_PTR
2505 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
2506 {
2507 src->flags |= BB_DIRTY;
2508 return ret;
2509 }
2510
2511 if (e->src == ENTRY_BLOCK_PTR
2512 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
2513 {
2514 if (dump_file)
2515 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
2516 e->src->index, dest->index);
2517
2518 e->src->flags |= BB_DIRTY;
2519 redirect_edge_succ (e, dest);
2520 return e;
2521 }
2522
2523 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
2524 in the case the basic block appears to be in sequence. Avoid this
2525 transformation. */
2526
2527 if (e->flags & EDGE_FALLTHRU)
2528 {
2529 /* Redirect any branch edges unified with the fallthru one. */
2530 if (JUMP_P (BB_END (src))
2531 && label_is_jump_target_p (BB_HEAD (e->dest),
2532 BB_END (src)))
2533 {
2534 edge redirected;
2535
2536 if (dump_file)
2537 fprintf (dump_file, "Fallthru edge unified with branch "
2538 "%i->%i redirected to %i\n",
2539 e->src->index, e->dest->index, dest->index);
2540 e->flags &= ~EDGE_FALLTHRU;
2541 redirected = redirect_branch_edge (e, dest);
2542 gcc_assert (redirected);
2543 e->flags |= EDGE_FALLTHRU;
2544 e->src->flags |= BB_DIRTY;
2545 return e;
2546 }
2547 /* In case we are redirecting fallthru edge to the branch edge
2548 of conditional jump, remove it. */
2549 if (EDGE_COUNT (src->succs) == 2)
2550 {
2551 /* Find the edge that is different from E. */
2552 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
2553
2554 if (s->dest == dest
2555 && any_condjump_p (BB_END (src))
2556 && onlyjump_p (BB_END (src)))
2557 delete_insn (BB_END (src));
2558 }
2559 ret = redirect_edge_succ_nodup (e, dest);
2560 if (dump_file)
2561 fprintf (dump_file, "Fallthru edge %i->%i redirected to %i\n",
2562 e->src->index, e->dest->index, dest->index);
2563 }
2564 else
2565 ret = redirect_branch_edge (e, dest);
2566
2567 /* We don't want simplejumps in the insn stream during cfglayout. */
2568 gcc_assert (!simplejump_p (BB_END (src)));
2569
2570 src->flags |= BB_DIRTY;
2571 return ret;
2572 }
2573
2574 /* Simple wrapper as we always can redirect fallthru edges. */
2575 static basic_block
2576 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
2577 {
2578 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
2579
2580 gcc_assert (redirected);
2581 return NULL;
2582 }
2583
2584 /* Same as delete_basic_block but update cfg_layout structures. */
2585
2586 static void
2587 cfg_layout_delete_block (basic_block bb)
2588 {
2589 rtx insn, next, prev = PREV_INSN (BB_HEAD (bb)), *to, remaints;
2590
2591 if (bb->rbi->header)
2592 {
2593 next = BB_HEAD (bb);
2594 if (prev)
2595 NEXT_INSN (prev) = bb->rbi->header;
2596 else
2597 set_first_insn (bb->rbi->header);
2598 PREV_INSN (bb->rbi->header) = prev;
2599 insn = bb->rbi->header;
2600 while (NEXT_INSN (insn))
2601 insn = NEXT_INSN (insn);
2602 NEXT_INSN (insn) = next;
2603 PREV_INSN (next) = insn;
2604 }
2605 next = NEXT_INSN (BB_END (bb));
2606 if (bb->rbi->footer)
2607 {
2608 insn = bb->rbi->footer;
2609 while (insn)
2610 {
2611 if (BARRIER_P (insn))
2612 {
2613 if (PREV_INSN (insn))
2614 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2615 else
2616 bb->rbi->footer = NEXT_INSN (insn);
2617 if (NEXT_INSN (insn))
2618 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2619 }
2620 if (LABEL_P (insn))
2621 break;
2622 insn = NEXT_INSN (insn);
2623 }
2624 if (bb->rbi->footer)
2625 {
2626 insn = BB_END (bb);
2627 NEXT_INSN (insn) = bb->rbi->footer;
2628 PREV_INSN (bb->rbi->footer) = insn;
2629 while (NEXT_INSN (insn))
2630 insn = NEXT_INSN (insn);
2631 NEXT_INSN (insn) = next;
2632 if (next)
2633 PREV_INSN (next) = insn;
2634 else
2635 set_last_insn (insn);
2636 }
2637 }
2638 if (bb->next_bb != EXIT_BLOCK_PTR)
2639 to = &bb->next_bb->rbi->header;
2640 else
2641 to = &cfg_layout_function_footer;
2642
2643 bb->rbi = NULL;
2644
2645 rtl_delete_block (bb);
2646
2647 if (prev)
2648 prev = NEXT_INSN (prev);
2649 else
2650 prev = get_insns ();
2651 if (next)
2652 next = PREV_INSN (next);
2653 else
2654 next = get_last_insn ();
2655
2656 if (next && NEXT_INSN (next) != prev)
2657 {
2658 remaints = unlink_insn_chain (prev, next);
2659 insn = remaints;
2660 while (NEXT_INSN (insn))
2661 insn = NEXT_INSN (insn);
2662 NEXT_INSN (insn) = *to;
2663 if (*to)
2664 PREV_INSN (*to) = insn;
2665 *to = remaints;
2666 }
2667 }
2668
2669 /* Return true when blocks A and B can be safely merged. */
2670 static bool
2671 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
2672 {
2673 /* If we are partitioning hot/cold basic blocks, we don't want to
2674 mess up unconditional or indirect jumps that cross between hot
2675 and cold sections.
2676
2677 Basic block partitioning may result in some jumps that appear to
2678 be optimizable (or blocks that appear to be mergeable), but which really
2679 must be left untouched (they are required to make it safely across
2680 partition boundaries). See the comments at the top of
2681 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2682
2683 if (BB_PARTITION (a) != BB_PARTITION (b))
2684 return false;
2685
2686 /* There must be exactly one edge in between the blocks. */
2687 return (single_succ_p (a)
2688 && single_succ (a) == b
2689 && single_pred_p (b) == 1
2690 && a != b
2691 /* Must be simple edge. */
2692 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
2693 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
2694 /* If the jump insn has side effects,
2695 we can't kill the edge. */
2696 && (!JUMP_P (BB_END (a))
2697 || (reload_completed
2698 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
2699 }
2700
2701 /* Merge block A and B. The blocks must be mergeable. */
2702
2703 static void
2704 cfg_layout_merge_blocks (basic_block a, basic_block b)
2705 {
2706 #ifdef ENABLE_CHECKING
2707 gcc_assert (cfg_layout_can_merge_blocks_p (a, b));
2708 #endif
2709
2710 /* If there was a CODE_LABEL beginning B, delete it. */
2711 if (LABEL_P (BB_HEAD (b)))
2712 delete_insn (BB_HEAD (b));
2713
2714 /* We should have fallthru edge in a, or we can do dummy redirection to get
2715 it cleaned up. */
2716 if (JUMP_P (BB_END (a)))
2717 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
2718 gcc_assert (!JUMP_P (BB_END (a)));
2719
2720 /* Possible line number notes should appear in between. */
2721 if (b->rbi->header)
2722 {
2723 rtx first = BB_END (a), last;
2724
2725 last = emit_insn_after_noloc (b->rbi->header, BB_END (a));
2726 delete_insn_chain (NEXT_INSN (first), last);
2727 b->rbi->header = NULL;
2728 }
2729
2730 /* In the case basic blocks are not adjacent, move them around. */
2731 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
2732 {
2733 rtx first = unlink_insn_chain (BB_HEAD (b), BB_END (b));
2734
2735 emit_insn_after_noloc (first, BB_END (a));
2736 /* Skip possible DELETED_LABEL insn. */
2737 if (!NOTE_INSN_BASIC_BLOCK_P (first))
2738 first = NEXT_INSN (first);
2739 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (first));
2740 BB_HEAD (b) = NULL;
2741 delete_insn (first);
2742 }
2743 /* Otherwise just re-associate the instructions. */
2744 else
2745 {
2746 rtx insn;
2747
2748 for (insn = BB_HEAD (b);
2749 insn != NEXT_INSN (BB_END (b));
2750 insn = NEXT_INSN (insn))
2751 set_block_for_insn (insn, a);
2752 insn = BB_HEAD (b);
2753 /* Skip possible DELETED_LABEL insn. */
2754 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
2755 insn = NEXT_INSN (insn);
2756 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
2757 BB_HEAD (b) = NULL;
2758 BB_END (a) = BB_END (b);
2759 delete_insn (insn);
2760 }
2761
2762 /* Possible tablejumps and barriers should appear after the block. */
2763 if (b->rbi->footer)
2764 {
2765 if (!a->rbi->footer)
2766 a->rbi->footer = b->rbi->footer;
2767 else
2768 {
2769 rtx last = a->rbi->footer;
2770
2771 while (NEXT_INSN (last))
2772 last = NEXT_INSN (last);
2773 NEXT_INSN (last) = b->rbi->footer;
2774 PREV_INSN (b->rbi->footer) = last;
2775 }
2776 b->rbi->footer = NULL;
2777 }
2778
2779 if (dump_file)
2780 fprintf (dump_file, "Merged blocks %d and %d.\n",
2781 a->index, b->index);
2782 }
2783
2784 /* Split edge E. */
2785
2786 static basic_block
2787 cfg_layout_split_edge (edge e)
2788 {
2789 basic_block new_bb =
2790 create_basic_block (e->src != ENTRY_BLOCK_PTR
2791 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
2792 NULL_RTX, e->src);
2793
2794 /* ??? This info is likely going to be out of date very soon, but we must
2795 create it to avoid getting an ICE later. */
2796 if (e->dest->global_live_at_start)
2797 {
2798 new_bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
2799 new_bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
2800 COPY_REG_SET (new_bb->global_live_at_start,
2801 e->dest->global_live_at_start);
2802 COPY_REG_SET (new_bb->global_live_at_end,
2803 e->dest->global_live_at_start);
2804 }
2805
2806 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
2807 redirect_edge_and_branch_force (e, new_bb);
2808
2809 return new_bb;
2810 }
2811
2812 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
2813
2814 static void
2815 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
2816 {
2817 }
2818
2819 /* Return 1 if BB ends with a call, possibly followed by some
2820 instructions that must stay with the call, 0 otherwise. */
2821
2822 static bool
2823 rtl_block_ends_with_call_p (basic_block bb)
2824 {
2825 rtx insn = BB_END (bb);
2826
2827 while (!CALL_P (insn)
2828 && insn != BB_HEAD (bb)
2829 && keep_with_call_p (insn))
2830 insn = PREV_INSN (insn);
2831 return (CALL_P (insn));
2832 }
2833
2834 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
2835
2836 static bool
2837 rtl_block_ends_with_condjump_p (basic_block bb)
2838 {
2839 return any_condjump_p (BB_END (bb));
2840 }
2841
2842 /* Return true if we need to add fake edge to exit.
2843 Helper function for rtl_flow_call_edges_add. */
2844
2845 static bool
2846 need_fake_edge_p (rtx insn)
2847 {
2848 if (!INSN_P (insn))
2849 return false;
2850
2851 if ((CALL_P (insn)
2852 && !SIBLING_CALL_P (insn)
2853 && !find_reg_note (insn, REG_NORETURN, NULL)
2854 && !CONST_OR_PURE_CALL_P (insn)))
2855 return true;
2856
2857 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2858 && MEM_VOLATILE_P (PATTERN (insn)))
2859 || (GET_CODE (PATTERN (insn)) == PARALLEL
2860 && asm_noperands (insn) != -1
2861 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
2862 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2863 }
2864
2865 /* Add fake edges to the function exit for any non constant and non noreturn
2866 calls, volatile inline assembly in the bitmap of blocks specified by
2867 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
2868 that were split.
2869
2870 The goal is to expose cases in which entering a basic block does not imply
2871 that all subsequent instructions must be executed. */
2872
2873 static int
2874 rtl_flow_call_edges_add (sbitmap blocks)
2875 {
2876 int i;
2877 int blocks_split = 0;
2878 int last_bb = last_basic_block;
2879 bool check_last_block = false;
2880
2881 if (n_basic_blocks == 0)
2882 return 0;
2883
2884 if (! blocks)
2885 check_last_block = true;
2886 else
2887 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
2888
2889 /* In the last basic block, before epilogue generation, there will be
2890 a fallthru edge to EXIT. Special care is required if the last insn
2891 of the last basic block is a call because make_edge folds duplicate
2892 edges, which would result in the fallthru edge also being marked
2893 fake, which would result in the fallthru edge being removed by
2894 remove_fake_edges, which would result in an invalid CFG.
2895
2896 Moreover, we can't elide the outgoing fake edge, since the block
2897 profiler needs to take this into account in order to solve the minimal
2898 spanning tree in the case that the call doesn't return.
2899
2900 Handle this by adding a dummy instruction in a new last basic block. */
2901 if (check_last_block)
2902 {
2903 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
2904 rtx insn = BB_END (bb);
2905
2906 /* Back up past insns that must be kept in the same block as a call. */
2907 while (insn != BB_HEAD (bb)
2908 && keep_with_call_p (insn))
2909 insn = PREV_INSN (insn);
2910
2911 if (need_fake_edge_p (insn))
2912 {
2913 edge e;
2914
2915 e = find_edge (bb, EXIT_BLOCK_PTR);
2916 if (e)
2917 {
2918 insert_insn_on_edge (gen_rtx_USE (VOIDmode, const0_rtx), e);
2919 commit_edge_insertions ();
2920 }
2921 }
2922 }
2923
2924 /* Now add fake edges to the function exit for any non constant
2925 calls since there is no way that we can determine if they will
2926 return or not... */
2927
2928 for (i = 0; i < last_bb; i++)
2929 {
2930 basic_block bb = BASIC_BLOCK (i);
2931 rtx insn;
2932 rtx prev_insn;
2933
2934 if (!bb)
2935 continue;
2936
2937 if (blocks && !TEST_BIT (blocks, i))
2938 continue;
2939
2940 for (insn = BB_END (bb); ; insn = prev_insn)
2941 {
2942 prev_insn = PREV_INSN (insn);
2943 if (need_fake_edge_p (insn))
2944 {
2945 edge e;
2946 rtx split_at_insn = insn;
2947
2948 /* Don't split the block between a call and an insn that should
2949 remain in the same block as the call. */
2950 if (CALL_P (insn))
2951 while (split_at_insn != BB_END (bb)
2952 && keep_with_call_p (NEXT_INSN (split_at_insn)))
2953 split_at_insn = NEXT_INSN (split_at_insn);
2954
2955 /* The handling above of the final block before the epilogue
2956 should be enough to verify that there is no edge to the exit
2957 block in CFG already. Calling make_edge in such case would
2958 cause us to mark that edge as fake and remove it later. */
2959
2960 #ifdef ENABLE_CHECKING
2961 if (split_at_insn == BB_END (bb))
2962 {
2963 e = find_edge (bb, EXIT_BLOCK_PTR);
2964 gcc_assert (e == NULL);
2965 }
2966 #endif
2967
2968 /* Note that the following may create a new basic block
2969 and renumber the existing basic blocks. */
2970 if (split_at_insn != BB_END (bb))
2971 {
2972 e = split_block (bb, split_at_insn);
2973 if (e)
2974 blocks_split++;
2975 }
2976
2977 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
2978 }
2979
2980 if (insn == BB_HEAD (bb))
2981 break;
2982 }
2983 }
2984
2985 if (blocks_split)
2986 verify_flow_info ();
2987
2988 return blocks_split;
2989 }
2990
2991 /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
2992 the conditional branch target, SECOND_HEAD should be the fall-thru
2993 there is no need to handle this here the loop versioning code handles
2994 this. the reason for SECON_HEAD is that it is needed for condition
2995 in trees, and this should be of the same type since it is a hook. */
2996 static void
2997 rtl_lv_add_condition_to_bb (basic_block first_head ,
2998 basic_block second_head ATTRIBUTE_UNUSED,
2999 basic_block cond_bb, void *comp_rtx)
3000 {
3001 rtx label, seq, jump;
3002 rtx op0 = XEXP ((rtx)comp_rtx, 0);
3003 rtx op1 = XEXP ((rtx)comp_rtx, 1);
3004 enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
3005 enum machine_mode mode;
3006
3007
3008 label = block_label (first_head);
3009 mode = GET_MODE (op0);
3010 if (mode == VOIDmode)
3011 mode = GET_MODE (op1);
3012
3013 start_sequence ();
3014 op0 = force_operand (op0, NULL_RTX);
3015 op1 = force_operand (op1, NULL_RTX);
3016 do_compare_rtx_and_jump (op0, op1, comp, 0,
3017 mode, NULL_RTX, NULL_RTX, label);
3018 jump = get_last_insn ();
3019 JUMP_LABEL (jump) = label;
3020 LABEL_NUSES (label)++;
3021 seq = get_insns ();
3022 end_sequence ();
3023
3024 /* Add the new cond , in the new head. */
3025 emit_insn_after(seq, BB_END(cond_bb));
3026 }
3027
3028
3029 /* Given a block B with unconditional branch at its end, get the
3030 store the return the branch edge and the fall-thru edge in
3031 BRANCH_EDGE and FALLTHRU_EDGE respectively. */
3032 static void
3033 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
3034 edge *fallthru_edge)
3035 {
3036 edge e = EDGE_SUCC (b, 0);
3037
3038 if (e->flags & EDGE_FALLTHRU)
3039 {
3040 *fallthru_edge = e;
3041 *branch_edge = EDGE_SUCC (b, 1);
3042 }
3043 else
3044 {
3045 *branch_edge = e;
3046 *fallthru_edge = EDGE_SUCC (b, 1);
3047 }
3048 }
3049
3050
3051 /* Implementation of CFG manipulation for linearized RTL. */
3052 struct cfg_hooks rtl_cfg_hooks = {
3053 "rtl",
3054 rtl_verify_flow_info,
3055 rtl_dump_bb,
3056 rtl_create_basic_block,
3057 rtl_redirect_edge_and_branch,
3058 rtl_redirect_edge_and_branch_force,
3059 rtl_delete_block,
3060 rtl_split_block,
3061 rtl_move_block_after,
3062 rtl_can_merge_blocks, /* can_merge_blocks_p */
3063 rtl_merge_blocks,
3064 rtl_predict_edge,
3065 rtl_predicted_by_p,
3066 NULL, /* can_duplicate_block_p */
3067 NULL, /* duplicate_block */
3068 rtl_split_edge,
3069 rtl_make_forwarder_block,
3070 rtl_tidy_fallthru_edge,
3071 rtl_block_ends_with_call_p,
3072 rtl_block_ends_with_condjump_p,
3073 rtl_flow_call_edges_add,
3074 NULL, /* execute_on_growing_pred */
3075 NULL, /* execute_on_shrinking_pred */
3076 NULL, /* duplicate loop for trees */
3077 NULL, /* lv_add_condition_to_bb */
3078 NULL, /* lv_adjust_loop_header_phi*/
3079 NULL, /* extract_cond_bb_edges */
3080 NULL /* flush_pending_stmts */
3081 };
3082
3083 /* Implementation of CFG manipulation for cfg layout RTL, where
3084 basic block connected via fallthru edges does not have to be adjacent.
3085 This representation will hopefully become the default one in future
3086 version of the compiler. */
3087
3088 /* We do not want to declare these functions in a header file, since they
3089 should only be used through the cfghooks interface, and we do not want to
3090 move them here since it would require also moving quite a lot of related
3091 code. */
3092 extern bool cfg_layout_can_duplicate_bb_p (basic_block);
3093 extern basic_block cfg_layout_duplicate_bb (basic_block);
3094
3095 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
3096 "cfglayout mode",
3097 rtl_verify_flow_info_1,
3098 rtl_dump_bb,
3099 cfg_layout_create_basic_block,
3100 cfg_layout_redirect_edge_and_branch,
3101 cfg_layout_redirect_edge_and_branch_force,
3102 cfg_layout_delete_block,
3103 cfg_layout_split_block,
3104 rtl_move_block_after,
3105 cfg_layout_can_merge_blocks_p,
3106 cfg_layout_merge_blocks,
3107 rtl_predict_edge,
3108 rtl_predicted_by_p,
3109 cfg_layout_can_duplicate_bb_p,
3110 cfg_layout_duplicate_bb,
3111 cfg_layout_split_edge,
3112 rtl_make_forwarder_block,
3113 NULL,
3114 rtl_block_ends_with_call_p,
3115 rtl_block_ends_with_condjump_p,
3116 rtl_flow_call_edges_add,
3117 NULL, /* execute_on_growing_pred */
3118 NULL, /* execute_on_shrinking_pred */
3119 duplicate_loop_to_header_edge, /* duplicate loop for trees */
3120 rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
3121 NULL, /* lv_adjust_loop_header_phi*/
3122 rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
3123 NULL /* flush_pending_stmts */
3124 };
3125