]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgrtl.c
* cfgrtl.c (relink_block_chain): Add line returns in dump file.
[thirdparty/gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains low level functions to manipulate the CFG and analyze it
21 that are aware of the RTL intermediate language.
22
23 Available functionality:
24 - Basic CFG/RTL manipulation API documented in cfghooks.h
25 - CFG-aware instruction chain manipulation
26 delete_insn, delete_insn_chain
27 - Edge splitting and committing to edges
28 insert_insn_on_edge, commit_edge_insertions
29 - CFG updating after insn simplification
30 purge_dead_edges, purge_all_dead_edges
31 - CFG fixing after coarse manipulation
32 fixup_abnormal_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "backend.h"
44 #include "target.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "cfghooks.h"
48 #include "df.h"
49 #include "insn-config.h"
50 #include "memmodel.h"
51 #include "emit-rtl.h"
52 #include "cfgrtl.h"
53 #include "cfganal.h"
54 #include "cfgbuild.h"
55 #include "cfgcleanup.h"
56 #include "bb-reorder.h"
57 #include "rtl-error.h"
58 #include "insn-attr.h"
59 #include "dojump.h"
60 #include "expr.h"
61 #include "cfgloop.h"
62 #include "tree-pass.h"
63 #include "print-rtl.h"
64
65 /* Disable warnings about missing quoting in GCC diagnostics. */
66 #if __GNUC__ >= 10
67 # pragma GCC diagnostic push
68 # pragma GCC diagnostic ignored "-Wformat-diag"
69 #endif
70
71 /* Holds the interesting leading and trailing notes for the function.
72 Only applicable if the CFG is in cfglayout mode. */
73 static GTY(()) rtx_insn *cfg_layout_function_footer;
74 static GTY(()) rtx_insn *cfg_layout_function_header;
75
76 static rtx_insn *skip_insns_after_block (basic_block);
77 static void record_effective_endpoints (void);
78 static void fixup_reorder_chain (void);
79
80 void verify_insn_chain (void);
81 static void fixup_fallthru_exit_predecessor (void);
82 static int can_delete_note_p (const rtx_note *);
83 static int can_delete_label_p (const rtx_code_label *);
84 static basic_block rtl_split_edge (edge);
85 static bool rtl_move_block_after (basic_block, basic_block);
86 static int rtl_verify_flow_info (void);
87 static basic_block cfg_layout_split_block (basic_block, void *);
88 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
89 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
90 static void cfg_layout_delete_block (basic_block);
91 static void rtl_delete_block (basic_block);
92 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
93 static edge rtl_redirect_edge_and_branch (edge, basic_block);
94 static basic_block rtl_split_block (basic_block, void *);
95 static void rtl_dump_bb (FILE *, basic_block, int, dump_flags_t);
96 static int rtl_verify_flow_info_1 (void);
97 static void rtl_make_forwarder_block (edge);
98 \f
99 /* Return true if NOTE is not one of the ones that must be kept paired,
100 so that we may simply delete it. */
101
102 static int
103 can_delete_note_p (const rtx_note *note)
104 {
105 switch (NOTE_KIND (note))
106 {
107 case NOTE_INSN_DELETED:
108 case NOTE_INSN_BASIC_BLOCK:
109 case NOTE_INSN_EPILOGUE_BEG:
110 return true;
111
112 default:
113 return false;
114 }
115 }
116
117 /* True if a given label can be deleted. */
118
119 static int
120 can_delete_label_p (const rtx_code_label *label)
121 {
122 return (!LABEL_PRESERVE_P (label)
123 /* User declared labels must be preserved. */
124 && LABEL_NAME (label) == 0
125 && !vec_safe_contains<rtx_insn *> (forced_labels,
126 const_cast<rtx_code_label *> (label)));
127 }
128
129 /* Delete INSN by patching it out. */
130
131 void
132 delete_insn (rtx_insn *insn)
133 {
134 rtx note;
135 bool really_delete = true;
136
137 if (LABEL_P (insn))
138 {
139 /* Some labels can't be directly removed from the INSN chain, as they
140 might be references via variables, constant pool etc.
141 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
142 if (! can_delete_label_p (as_a <rtx_code_label *> (insn)))
143 {
144 const char *name = LABEL_NAME (insn);
145 basic_block bb = BLOCK_FOR_INSN (insn);
146 rtx_insn *bb_note = NEXT_INSN (insn);
147
148 really_delete = false;
149 PUT_CODE (insn, NOTE);
150 NOTE_KIND (insn) = NOTE_INSN_DELETED_LABEL;
151 NOTE_DELETED_LABEL_NAME (insn) = name;
152
153 /* If the note following the label starts a basic block, and the
154 label is a member of the same basic block, interchange the two. */
155 if (bb_note != NULL_RTX
156 && NOTE_INSN_BASIC_BLOCK_P (bb_note)
157 && bb != NULL
158 && bb == BLOCK_FOR_INSN (bb_note))
159 {
160 reorder_insns_nobb (insn, insn, bb_note);
161 BB_HEAD (bb) = bb_note;
162 if (BB_END (bb) == bb_note)
163 BB_END (bb) = insn;
164 }
165 }
166
167 remove_node_from_insn_list (insn, &nonlocal_goto_handler_labels);
168 }
169
170 if (really_delete)
171 {
172 /* If this insn has already been deleted, something is very wrong. */
173 gcc_assert (!insn->deleted ());
174 if (INSN_P (insn))
175 df_insn_delete (insn);
176 remove_insn (insn);
177 insn->set_deleted ();
178 }
179
180 /* If deleting a jump, decrement the use count of the label. Deleting
181 the label itself should happen in the normal course of block merging. */
182 if (JUMP_P (insn))
183 {
184 if (JUMP_LABEL (insn)
185 && LABEL_P (JUMP_LABEL (insn)))
186 LABEL_NUSES (JUMP_LABEL (insn))--;
187
188 /* If there are more targets, remove them too. */
189 while ((note
190 = find_reg_note (insn, REG_LABEL_TARGET, NULL_RTX)) != NULL_RTX
191 && LABEL_P (XEXP (note, 0)))
192 {
193 LABEL_NUSES (XEXP (note, 0))--;
194 remove_note (insn, note);
195 }
196 }
197
198 /* Also if deleting any insn that references a label as an operand. */
199 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX)) != NULL_RTX
200 && LABEL_P (XEXP (note, 0)))
201 {
202 LABEL_NUSES (XEXP (note, 0))--;
203 remove_note (insn, note);
204 }
205
206 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
207 {
208 rtvec vec = table->get_labels ();
209 int len = GET_NUM_ELEM (vec);
210 int i;
211
212 for (i = 0; i < len; i++)
213 {
214 rtx label = XEXP (RTVEC_ELT (vec, i), 0);
215
216 /* When deleting code in bulk (e.g. removing many unreachable
217 blocks) we can delete a label that's a target of the vector
218 before deleting the vector itself. */
219 if (!NOTE_P (label))
220 LABEL_NUSES (label)--;
221 }
222 }
223 }
224
225 /* Like delete_insn but also purge dead edges from BB.
226 Return true if any edges are eliminated. */
227
228 bool
229 delete_insn_and_edges (rtx_insn *insn)
230 {
231 bool purge = false;
232
233 if (INSN_P (insn)
234 && BLOCK_FOR_INSN (insn)
235 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
236 purge = true;
237 delete_insn (insn);
238 if (purge)
239 return purge_dead_edges (BLOCK_FOR_INSN (insn));
240 return false;
241 }
242
243 /* Unlink a chain of insns between START and FINISH, leaving notes
244 that must be paired. If CLEAR_BB is true, we set bb field for
245 insns that cannot be removed to NULL. */
246
247 void
248 delete_insn_chain (rtx start, rtx_insn *finish, bool clear_bb)
249 {
250 /* Unchain the insns one by one. It would be quicker to delete all of these
251 with a single unchaining, rather than one at a time, but we need to keep
252 the NOTE's. */
253 rtx_insn *current = finish;
254 while (1)
255 {
256 rtx_insn *prev = PREV_INSN (current);
257 if (NOTE_P (current) && !can_delete_note_p (as_a <rtx_note *> (current)))
258 ;
259 else
260 delete_insn (current);
261
262 if (clear_bb && !current->deleted ())
263 set_block_for_insn (current, NULL);
264
265 if (current == start)
266 break;
267 current = prev;
268 }
269 }
270 \f
271 /* Create a new basic block consisting of the instructions between HEAD and END
272 inclusive. This function is designed to allow fast BB construction - reuses
273 the note and basic block struct in BB_NOTE, if any and do not grow
274 BASIC_BLOCK chain and should be used directly only by CFG construction code.
275 END can be NULL in to create new empty basic block before HEAD. Both END
276 and HEAD can be NULL to create basic block at the end of INSN chain.
277 AFTER is the basic block we should be put after. */
278
279 basic_block
280 create_basic_block_structure (rtx_insn *head, rtx_insn *end, rtx_note *bb_note,
281 basic_block after)
282 {
283 basic_block bb;
284
285 if (bb_note
286 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
287 && bb->aux == NULL)
288 {
289 /* If we found an existing note, thread it back onto the chain. */
290
291 rtx_insn *after;
292
293 if (LABEL_P (head))
294 after = head;
295 else
296 {
297 after = PREV_INSN (head);
298 head = bb_note;
299 }
300
301 if (after != bb_note && NEXT_INSN (after) != bb_note)
302 reorder_insns_nobb (bb_note, bb_note, after);
303 }
304 else
305 {
306 /* Otherwise we must create a note and a basic block structure. */
307
308 bb = alloc_block ();
309
310 init_rtl_bb_info (bb);
311 if (!head && !end)
312 head = end = bb_note
313 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
314 else if (LABEL_P (head) && end)
315 {
316 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
317 if (head == end)
318 end = bb_note;
319 }
320 else
321 {
322 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
323 head = bb_note;
324 if (!end)
325 end = head;
326 }
327
328 NOTE_BASIC_BLOCK (bb_note) = bb;
329 }
330
331 /* Always include the bb note in the block. */
332 if (NEXT_INSN (end) == bb_note)
333 end = bb_note;
334
335 BB_HEAD (bb) = head;
336 BB_END (bb) = end;
337 bb->index = last_basic_block_for_fn (cfun)++;
338 bb->flags = BB_NEW | BB_RTL;
339 link_block (bb, after);
340 SET_BASIC_BLOCK_FOR_FN (cfun, bb->index, bb);
341 df_bb_refs_record (bb->index, false);
342 update_bb_for_insn (bb);
343 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
344
345 /* Tag the block so that we know it has been used when considering
346 other basic block notes. */
347 bb->aux = bb;
348
349 return bb;
350 }
351
352 /* Create new basic block consisting of instructions in between HEAD and END
353 and place it to the BB chain after block AFTER. END can be NULL to
354 create a new empty basic block before HEAD. Both END and HEAD can be
355 NULL to create basic block at the end of INSN chain. */
356
357 static basic_block
358 rtl_create_basic_block (void *headp, void *endp, basic_block after)
359 {
360 rtx_insn *head = (rtx_insn *) headp;
361 rtx_insn *end = (rtx_insn *) endp;
362 basic_block bb;
363
364 /* Grow the basic block array if needed. */
365 if ((size_t) last_basic_block_for_fn (cfun)
366 >= basic_block_info_for_fn (cfun)->length ())
367 {
368 size_t new_size =
369 (last_basic_block_for_fn (cfun)
370 + (last_basic_block_for_fn (cfun) + 3) / 4);
371 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
372 }
373
374 n_basic_blocks_for_fn (cfun)++;
375
376 bb = create_basic_block_structure (head, end, NULL, after);
377 bb->aux = NULL;
378 return bb;
379 }
380
381 static basic_block
382 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
383 {
384 basic_block newbb = rtl_create_basic_block (head, end, after);
385
386 return newbb;
387 }
388 \f
389 /* Delete the insns in a (non-live) block. We physically delete every
390 non-deleted-note insn, and update the flow graph appropriately.
391
392 Return nonzero if we deleted an exception handler. */
393
394 /* ??? Preserving all such notes strikes me as wrong. It would be nice
395 to post-process the stream to remove empty blocks, loops, ranges, etc. */
396
397 static void
398 rtl_delete_block (basic_block b)
399 {
400 rtx_insn *insn, *end;
401
402 /* If the head of this block is a CODE_LABEL, then it might be the
403 label for an exception handler which can't be reached. We need
404 to remove the label from the exception_handler_label list. */
405 insn = BB_HEAD (b);
406
407 end = get_last_bb_insn (b);
408
409 /* Selectively delete the entire chain. */
410 BB_HEAD (b) = NULL;
411 delete_insn_chain (insn, end, true);
412
413
414 if (dump_file)
415 fprintf (dump_file, "deleting block %d\n", b->index);
416 df_bb_delete (b->index);
417 }
418 \f
419 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
420
421 void
422 compute_bb_for_insn (void)
423 {
424 basic_block bb;
425
426 FOR_EACH_BB_FN (bb, cfun)
427 {
428 rtx_insn *end = BB_END (bb);
429 rtx_insn *insn;
430
431 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
432 {
433 BLOCK_FOR_INSN (insn) = bb;
434 if (insn == end)
435 break;
436 }
437 }
438 }
439
440 /* Release the basic_block_for_insn array. */
441
442 unsigned int
443 free_bb_for_insn (void)
444 {
445 rtx_insn *insn;
446 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
447 if (!BARRIER_P (insn))
448 BLOCK_FOR_INSN (insn) = NULL;
449 return 0;
450 }
451
452 namespace {
453
454 const pass_data pass_data_free_cfg =
455 {
456 RTL_PASS, /* type */
457 "*free_cfg", /* name */
458 OPTGROUP_NONE, /* optinfo_flags */
459 TV_NONE, /* tv_id */
460 0, /* properties_required */
461 0, /* properties_provided */
462 PROP_cfg, /* properties_destroyed */
463 0, /* todo_flags_start */
464 0, /* todo_flags_finish */
465 };
466
467 class pass_free_cfg : public rtl_opt_pass
468 {
469 public:
470 pass_free_cfg (gcc::context *ctxt)
471 : rtl_opt_pass (pass_data_free_cfg, ctxt)
472 {}
473
474 /* opt_pass methods: */
475 virtual unsigned int execute (function *);
476
477 }; // class pass_free_cfg
478
479 unsigned int
480 pass_free_cfg::execute (function *)
481 {
482 /* The resource.c machinery uses DF but the CFG isn't guaranteed to be
483 valid at that point so it would be too late to call df_analyze. */
484 if (DELAY_SLOTS && optimize > 0 && flag_delayed_branch)
485 {
486 df_note_add_problem ();
487 df_analyze ();
488 }
489
490 if (crtl->has_bb_partition)
491 insert_section_boundary_note ();
492
493 free_bb_for_insn ();
494 return 0;
495 }
496
497 } // anon namespace
498
499 rtl_opt_pass *
500 make_pass_free_cfg (gcc::context *ctxt)
501 {
502 return new pass_free_cfg (ctxt);
503 }
504
505 /* Return RTX to emit after when we want to emit code on the entry of function. */
506 rtx_insn *
507 entry_of_function (void)
508 {
509 return (n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS ?
510 BB_HEAD (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) : get_insns ());
511 }
512
513 /* Emit INSN at the entry point of the function, ensuring that it is only
514 executed once per function. */
515 void
516 emit_insn_at_entry (rtx insn)
517 {
518 edge_iterator ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
519 edge e = ei_safe_edge (ei);
520 gcc_assert (e->flags & EDGE_FALLTHRU);
521
522 insert_insn_on_edge (insn, e);
523 commit_edge_insertions ();
524 }
525
526 /* Update BLOCK_FOR_INSN of insns between BEGIN and END
527 (or BARRIER if found) and notify df of the bb change.
528 The insn chain range is inclusive
529 (i.e. both BEGIN and END will be updated. */
530
531 static void
532 update_bb_for_insn_chain (rtx_insn *begin, rtx_insn *end, basic_block bb)
533 {
534 rtx_insn *insn;
535
536 end = NEXT_INSN (end);
537 for (insn = begin; insn != end; insn = NEXT_INSN (insn))
538 if (!BARRIER_P (insn))
539 df_insn_change_bb (insn, bb);
540 }
541
542 /* Update BLOCK_FOR_INSN of insns in BB to BB,
543 and notify df of the change. */
544
545 void
546 update_bb_for_insn (basic_block bb)
547 {
548 update_bb_for_insn_chain (BB_HEAD (bb), BB_END (bb), bb);
549 }
550
551 \f
552 /* Like active_insn_p, except keep the return value use or clobber around
553 even after reload. */
554
555 static bool
556 flow_active_insn_p (const rtx_insn *insn)
557 {
558 if (active_insn_p (insn))
559 return true;
560
561 /* A clobber of the function return value exists for buggy
562 programs that fail to return a value. Its effect is to
563 keep the return value from being live across the entire
564 function. If we allow it to be skipped, we introduce the
565 possibility for register lifetime confusion.
566 Similarly, keep a USE of the function return value, otherwise
567 the USE is dropped and we could fail to thread jump if USE
568 appears on some paths and not on others, see PR90257. */
569 if ((GET_CODE (PATTERN (insn)) == CLOBBER
570 || GET_CODE (PATTERN (insn)) == USE)
571 && REG_P (XEXP (PATTERN (insn), 0))
572 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
573 return true;
574
575 return false;
576 }
577
578 /* Return true if the block has no effect and only forwards control flow to
579 its single destination. */
580
581 bool
582 contains_no_active_insn_p (const_basic_block bb)
583 {
584 rtx_insn *insn;
585
586 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
587 || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
588 || !single_succ_p (bb)
589 || (single_succ_edge (bb)->flags & EDGE_FAKE) != 0)
590 return false;
591
592 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
593 if (INSN_P (insn) && flow_active_insn_p (insn))
594 return false;
595
596 return (!INSN_P (insn)
597 || (JUMP_P (insn) && simplejump_p (insn))
598 || !flow_active_insn_p (insn));
599 }
600
601 /* Likewise, but protect loop latches, headers and preheaders. */
602 /* FIXME: Make this a cfg hook. */
603
604 bool
605 forwarder_block_p (const_basic_block bb)
606 {
607 if (!contains_no_active_insn_p (bb))
608 return false;
609
610 /* Protect loop latches, headers and preheaders. */
611 if (current_loops)
612 {
613 basic_block dest;
614 if (bb->loop_father->header == bb)
615 return false;
616 dest = EDGE_SUCC (bb, 0)->dest;
617 if (dest->loop_father->header == dest)
618 return false;
619 }
620
621 return true;
622 }
623
624 /* Return nonzero if we can reach target from src by falling through. */
625 /* FIXME: Make this a cfg hook, the result is only valid in cfgrtl mode. */
626
627 bool
628 can_fallthru (basic_block src, basic_block target)
629 {
630 rtx_insn *insn = BB_END (src);
631 rtx_insn *insn2;
632 edge e;
633 edge_iterator ei;
634
635 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
636 return true;
637 if (src->next_bb != target)
638 return false;
639
640 /* ??? Later we may add code to move jump tables offline. */
641 if (tablejump_p (insn, NULL, NULL))
642 return false;
643
644 FOR_EACH_EDGE (e, ei, src->succs)
645 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
646 && e->flags & EDGE_FALLTHRU)
647 return false;
648
649 insn2 = BB_HEAD (target);
650 if (!active_insn_p (insn2))
651 insn2 = next_active_insn (insn2);
652
653 return next_active_insn (insn) == insn2;
654 }
655
656 /* Return nonzero if we could reach target from src by falling through,
657 if the target was made adjacent. If we already have a fall-through
658 edge to the exit block, we can't do that. */
659 static bool
660 could_fall_through (basic_block src, basic_block target)
661 {
662 edge e;
663 edge_iterator ei;
664
665 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
666 return true;
667 FOR_EACH_EDGE (e, ei, src->succs)
668 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
669 && e->flags & EDGE_FALLTHRU)
670 return 0;
671 return true;
672 }
673 \f
674 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
675 rtx_note *
676 bb_note (basic_block bb)
677 {
678 rtx_insn *note;
679
680 note = BB_HEAD (bb);
681 if (LABEL_P (note))
682 note = NEXT_INSN (note);
683
684 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
685 return as_a <rtx_note *> (note);
686 }
687
688 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
689 note associated with the BLOCK. */
690
691 static rtx_insn *
692 first_insn_after_basic_block_note (basic_block block)
693 {
694 rtx_insn *insn;
695
696 /* Get the first instruction in the block. */
697 insn = BB_HEAD (block);
698
699 if (insn == NULL_RTX)
700 return NULL;
701 if (LABEL_P (insn))
702 insn = NEXT_INSN (insn);
703 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
704
705 return NEXT_INSN (insn);
706 }
707
708 /* Creates a new basic block just after basic block BB by splitting
709 everything after specified instruction INSNP. */
710
711 static basic_block
712 rtl_split_block (basic_block bb, void *insnp)
713 {
714 basic_block new_bb;
715 rtx_insn *insn = (rtx_insn *) insnp;
716 edge e;
717 edge_iterator ei;
718
719 if (!insn)
720 {
721 insn = first_insn_after_basic_block_note (bb);
722
723 if (insn)
724 {
725 rtx_insn *next = insn;
726
727 insn = PREV_INSN (insn);
728
729 /* If the block contains only debug insns, insn would have
730 been NULL in a non-debug compilation, and then we'd end
731 up emitting a DELETED note. For -fcompare-debug
732 stability, emit the note too. */
733 if (insn != BB_END (bb)
734 && DEBUG_INSN_P (next)
735 && DEBUG_INSN_P (BB_END (bb)))
736 {
737 while (next != BB_END (bb) && DEBUG_INSN_P (next))
738 next = NEXT_INSN (next);
739
740 if (next == BB_END (bb))
741 emit_note_after (NOTE_INSN_DELETED, next);
742 }
743 }
744 else
745 insn = get_last_insn ();
746 }
747
748 /* We probably should check type of the insn so that we do not create
749 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
750 bother. */
751 if (insn == BB_END (bb))
752 emit_note_after (NOTE_INSN_DELETED, insn);
753
754 /* Create the new basic block. */
755 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
756 BB_COPY_PARTITION (new_bb, bb);
757 BB_END (bb) = insn;
758
759 /* Redirect the outgoing edges. */
760 new_bb->succs = bb->succs;
761 bb->succs = NULL;
762 FOR_EACH_EDGE (e, ei, new_bb->succs)
763 e->src = new_bb;
764
765 /* The new block starts off being dirty. */
766 df_set_bb_dirty (bb);
767 return new_bb;
768 }
769
770 /* Return true if the single edge between blocks A and B is the only place
771 in RTL which holds some unique locus. */
772
773 static bool
774 unique_locus_on_edge_between_p (basic_block a, basic_block b)
775 {
776 const location_t goto_locus = EDGE_SUCC (a, 0)->goto_locus;
777 rtx_insn *insn, *end;
778
779 if (LOCATION_LOCUS (goto_locus) == UNKNOWN_LOCATION)
780 return false;
781
782 /* First scan block A backward. */
783 insn = BB_END (a);
784 end = PREV_INSN (BB_HEAD (a));
785 while (insn != end && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
786 insn = PREV_INSN (insn);
787
788 if (insn != end && INSN_LOCATION (insn) == goto_locus)
789 return false;
790
791 /* Then scan block B forward. */
792 insn = BB_HEAD (b);
793 if (insn)
794 {
795 end = NEXT_INSN (BB_END (b));
796 while (insn != end && !NONDEBUG_INSN_P (insn))
797 insn = NEXT_INSN (insn);
798
799 if (insn != end && INSN_HAS_LOCATION (insn)
800 && INSN_LOCATION (insn) == goto_locus)
801 return false;
802 }
803
804 return true;
805 }
806
807 /* If the single edge between blocks A and B is the only place in RTL which
808 holds some unique locus, emit a nop with that locus between the blocks. */
809
810 static void
811 emit_nop_for_unique_locus_between (basic_block a, basic_block b)
812 {
813 if (!unique_locus_on_edge_between_p (a, b))
814 return;
815
816 BB_END (a) = emit_insn_after_noloc (gen_nop (), BB_END (a), a);
817 INSN_LOCATION (BB_END (a)) = EDGE_SUCC (a, 0)->goto_locus;
818 }
819
820 /* Blocks A and B are to be merged into a single block A. The insns
821 are already contiguous. */
822
823 static void
824 rtl_merge_blocks (basic_block a, basic_block b)
825 {
826 /* If B is a forwarder block whose outgoing edge has no location, we'll
827 propagate the locus of the edge between A and B onto it. */
828 const bool forward_edge_locus
829 = (b->flags & BB_FORWARDER_BLOCK) != 0
830 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION;
831 rtx_insn *b_head = BB_HEAD (b), *b_end = BB_END (b), *a_end = BB_END (a);
832 rtx_insn *del_first = NULL, *del_last = NULL;
833 rtx_insn *b_debug_start = b_end, *b_debug_end = b_end;
834 int b_empty = 0;
835
836 if (dump_file)
837 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
838 a->index);
839
840 while (DEBUG_INSN_P (b_end))
841 b_end = PREV_INSN (b_debug_start = b_end);
842
843 /* If there was a CODE_LABEL beginning B, delete it. */
844 if (LABEL_P (b_head))
845 {
846 /* Detect basic blocks with nothing but a label. This can happen
847 in particular at the end of a function. */
848 if (b_head == b_end)
849 b_empty = 1;
850
851 del_first = del_last = b_head;
852 b_head = NEXT_INSN (b_head);
853 }
854
855 /* Delete the basic block note and handle blocks containing just that
856 note. */
857 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
858 {
859 if (b_head == b_end)
860 b_empty = 1;
861 if (! del_last)
862 del_first = b_head;
863
864 del_last = b_head;
865 b_head = NEXT_INSN (b_head);
866 }
867
868 /* If there was a jump out of A, delete it. */
869 if (JUMP_P (a_end))
870 {
871 rtx_insn *prev;
872
873 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
874 if (!NOTE_P (prev)
875 || NOTE_INSN_BASIC_BLOCK_P (prev)
876 || prev == BB_HEAD (a))
877 break;
878
879 del_first = a_end;
880
881 /* If this was a conditional jump, we need to also delete
882 the insn that set cc0. */
883 if (HAVE_cc0 && only_sets_cc0_p (prev))
884 {
885 rtx_insn *tmp = prev;
886
887 prev = prev_nonnote_insn (prev);
888 if (!prev)
889 prev = BB_HEAD (a);
890 del_first = tmp;
891 }
892
893 a_end = PREV_INSN (del_first);
894 }
895 else if (BARRIER_P (NEXT_INSN (a_end)))
896 del_first = NEXT_INSN (a_end);
897
898 /* Delete everything marked above as well as crap that might be
899 hanging out between the two blocks. */
900 BB_END (a) = a_end;
901 BB_HEAD (b) = b_empty ? NULL : b_head;
902 delete_insn_chain (del_first, del_last, true);
903
904 /* If not optimizing, preserve the locus of the single edge between
905 blocks A and B if necessary by emitting a nop. */
906 if (!optimize
907 && !forward_edge_locus
908 && !DECL_IGNORED_P (current_function_decl))
909 {
910 emit_nop_for_unique_locus_between (a, b);
911 a_end = BB_END (a);
912 }
913
914 /* Reassociate the insns of B with A. */
915 if (!b_empty)
916 {
917 update_bb_for_insn_chain (a_end, b_debug_end, a);
918
919 BB_END (a) = b_debug_end;
920 BB_HEAD (b) = NULL;
921 }
922 else if (b_end != b_debug_end)
923 {
924 /* Move any deleted labels and other notes between the end of A
925 and the debug insns that make up B after the debug insns,
926 bringing the debug insns into A while keeping the notes after
927 the end of A. */
928 if (NEXT_INSN (a_end) != b_debug_start)
929 reorder_insns_nobb (NEXT_INSN (a_end), PREV_INSN (b_debug_start),
930 b_debug_end);
931 update_bb_for_insn_chain (b_debug_start, b_debug_end, a);
932 BB_END (a) = b_debug_end;
933 }
934
935 df_bb_delete (b->index);
936
937 if (forward_edge_locus)
938 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
939
940 if (dump_file)
941 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
942 }
943
944
945 /* Return true when block A and B can be merged. */
946
947 static bool
948 rtl_can_merge_blocks (basic_block a, basic_block b)
949 {
950 /* If we are partitioning hot/cold basic blocks, we don't want to
951 mess up unconditional or indirect jumps that cross between hot
952 and cold sections.
953
954 Basic block partitioning may result in some jumps that appear to
955 be optimizable (or blocks that appear to be mergeable), but which really
956 must be left untouched (they are required to make it safely across
957 partition boundaries). See the comments at the top of
958 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
959
960 if (BB_PARTITION (a) != BB_PARTITION (b))
961 return false;
962
963 /* Protect the loop latches. */
964 if (current_loops && b->loop_father->latch == b)
965 return false;
966
967 /* There must be exactly one edge in between the blocks. */
968 return (single_succ_p (a)
969 && single_succ (a) == b
970 && single_pred_p (b)
971 && a != b
972 /* Must be simple edge. */
973 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
974 && a->next_bb == b
975 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
976 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
977 /* If the jump insn has side effects,
978 we can't kill the edge. */
979 && (!JUMP_P (BB_END (a))
980 || (reload_completed
981 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
982 }
983 \f
984 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
985 exist. */
986
987 rtx_code_label *
988 block_label (basic_block block)
989 {
990 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
991 return NULL;
992
993 if (!LABEL_P (BB_HEAD (block)))
994 {
995 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
996 }
997
998 return as_a <rtx_code_label *> (BB_HEAD (block));
999 }
1000
1001 /* Remove all barriers from BB_FOOTER of a BB. */
1002
1003 static void
1004 remove_barriers_from_footer (basic_block bb)
1005 {
1006 rtx_insn *insn = BB_FOOTER (bb);
1007
1008 /* Remove barriers but keep jumptables. */
1009 while (insn)
1010 {
1011 if (BARRIER_P (insn))
1012 {
1013 if (PREV_INSN (insn))
1014 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1015 else
1016 BB_FOOTER (bb) = NEXT_INSN (insn);
1017 if (NEXT_INSN (insn))
1018 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1019 }
1020 if (LABEL_P (insn))
1021 return;
1022 insn = NEXT_INSN (insn);
1023 }
1024 }
1025
1026 /* Attempt to perform edge redirection by replacing possibly complex jump
1027 instruction by unconditional jump or removing jump completely. This can
1028 apply only if all edges now point to the same block. The parameters and
1029 return values are equivalent to redirect_edge_and_branch. */
1030
1031 edge
1032 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
1033 {
1034 basic_block src = e->src;
1035 rtx_insn *insn = BB_END (src), *kill_from;
1036 rtx set;
1037 int fallthru = 0;
1038
1039 /* If we are partitioning hot/cold basic blocks, we don't want to
1040 mess up unconditional or indirect jumps that cross between hot
1041 and cold sections.
1042
1043 Basic block partitioning may result in some jumps that appear to
1044 be optimizable (or blocks that appear to be mergeable), but which really
1045 must be left untouched (they are required to make it safely across
1046 partition boundaries). See the comments at the top of
1047 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1048
1049 if (BB_PARTITION (src) != BB_PARTITION (target))
1050 return NULL;
1051
1052 /* We can replace or remove a complex jump only when we have exactly
1053 two edges. Also, if we have exactly one outgoing edge, we can
1054 redirect that. */
1055 if (EDGE_COUNT (src->succs) >= 3
1056 /* Verify that all targets will be TARGET. Specifically, the
1057 edge that is not E must also go to TARGET. */
1058 || (EDGE_COUNT (src->succs) == 2
1059 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
1060 return NULL;
1061
1062 if (!onlyjump_p (insn))
1063 return NULL;
1064 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
1065 return NULL;
1066
1067 /* Avoid removing branch with side effects. */
1068 set = single_set (insn);
1069 if (!set || side_effects_p (set))
1070 return NULL;
1071
1072 /* In case we zap a conditional jump, we'll need to kill
1073 the cc0 setter too. */
1074 kill_from = insn;
1075 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn))
1076 && only_sets_cc0_p (PREV_INSN (insn)))
1077 kill_from = PREV_INSN (insn);
1078
1079 /* See if we can create the fallthru edge. */
1080 if (in_cfglayout || can_fallthru (src, target))
1081 {
1082 if (dump_file)
1083 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
1084 fallthru = 1;
1085
1086 /* Selectively unlink whole insn chain. */
1087 if (in_cfglayout)
1088 {
1089 delete_insn_chain (kill_from, BB_END (src), false);
1090 remove_barriers_from_footer (src);
1091 }
1092 else
1093 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)),
1094 false);
1095 }
1096
1097 /* If this already is simplejump, redirect it. */
1098 else if (simplejump_p (insn))
1099 {
1100 if (e->dest == target)
1101 return NULL;
1102 if (dump_file)
1103 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
1104 INSN_UID (insn), e->dest->index, target->index);
1105 if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
1106 block_label (target), 0))
1107 {
1108 gcc_assert (target == EXIT_BLOCK_PTR_FOR_FN (cfun));
1109 return NULL;
1110 }
1111 }
1112
1113 /* Cannot do anything for target exit block. */
1114 else if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1115 return NULL;
1116
1117 /* Or replace possibly complicated jump insn by simple jump insn. */
1118 else
1119 {
1120 rtx_code_label *target_label = block_label (target);
1121 rtx_insn *barrier;
1122 rtx_insn *label;
1123 rtx_jump_table_data *table;
1124
1125 emit_jump_insn_after_noloc (targetm.gen_jump (target_label), insn);
1126 JUMP_LABEL (BB_END (src)) = target_label;
1127 LABEL_NUSES (target_label)++;
1128 if (dump_file)
1129 fprintf (dump_file, "Replacing insn %i by jump %i\n",
1130 INSN_UID (insn), INSN_UID (BB_END (src)));
1131
1132
1133 delete_insn_chain (kill_from, insn, false);
1134
1135 /* Recognize a tablejump that we are converting to a
1136 simple jump and remove its associated CODE_LABEL
1137 and ADDR_VEC or ADDR_DIFF_VEC. */
1138 if (tablejump_p (insn, &label, &table))
1139 delete_insn_chain (label, table, false);
1140
1141 barrier = next_nonnote_nondebug_insn (BB_END (src));
1142 if (!barrier || !BARRIER_P (barrier))
1143 emit_barrier_after (BB_END (src));
1144 else
1145 {
1146 if (barrier != NEXT_INSN (BB_END (src)))
1147 {
1148 /* Move the jump before barrier so that the notes
1149 which originally were or were created before jump table are
1150 inside the basic block. */
1151 rtx_insn *new_insn = BB_END (src);
1152
1153 update_bb_for_insn_chain (NEXT_INSN (BB_END (src)),
1154 PREV_INSN (barrier), src);
1155
1156 SET_NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
1157 SET_PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
1158
1159 SET_NEXT_INSN (new_insn) = barrier;
1160 SET_NEXT_INSN (PREV_INSN (barrier)) = new_insn;
1161
1162 SET_PREV_INSN (new_insn) = PREV_INSN (barrier);
1163 SET_PREV_INSN (barrier) = new_insn;
1164 }
1165 }
1166 }
1167
1168 /* Keep only one edge out and set proper flags. */
1169 if (!single_succ_p (src))
1170 remove_edge (e);
1171 gcc_assert (single_succ_p (src));
1172
1173 e = single_succ_edge (src);
1174 if (fallthru)
1175 e->flags = EDGE_FALLTHRU;
1176 else
1177 e->flags = 0;
1178
1179 e->probability = profile_probability::always ();
1180
1181 if (e->dest != target)
1182 redirect_edge_succ (e, target);
1183 return e;
1184 }
1185
1186 /* Subroutine of redirect_branch_edge that tries to patch the jump
1187 instruction INSN so that it reaches block NEW. Do this
1188 only when it originally reached block OLD. Return true if this
1189 worked or the original target wasn't OLD, return false if redirection
1190 doesn't work. */
1191
1192 static bool
1193 patch_jump_insn (rtx_insn *insn, rtx_insn *old_label, basic_block new_bb)
1194 {
1195 rtx_jump_table_data *table;
1196 rtx tmp;
1197 /* Recognize a tablejump and adjust all matching cases. */
1198 if (tablejump_p (insn, NULL, &table))
1199 {
1200 rtvec vec;
1201 int j;
1202 rtx_code_label *new_label = block_label (new_bb);
1203
1204 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1205 return false;
1206 vec = table->get_labels ();
1207
1208 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1209 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
1210 {
1211 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
1212 --LABEL_NUSES (old_label);
1213 ++LABEL_NUSES (new_label);
1214 }
1215
1216 /* Handle casesi dispatch insns. */
1217 if ((tmp = single_set (insn)) != NULL
1218 && SET_DEST (tmp) == pc_rtx
1219 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1220 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
1221 && label_ref_label (XEXP (SET_SRC (tmp), 2)) == old_label)
1222 {
1223 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
1224 new_label);
1225 --LABEL_NUSES (old_label);
1226 ++LABEL_NUSES (new_label);
1227 }
1228 }
1229 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
1230 {
1231 int i, n = ASM_OPERANDS_LABEL_LENGTH (tmp);
1232 rtx note;
1233
1234 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1235 return false;
1236 rtx_code_label *new_label = block_label (new_bb);
1237
1238 for (i = 0; i < n; ++i)
1239 {
1240 rtx old_ref = ASM_OPERANDS_LABEL (tmp, i);
1241 gcc_assert (GET_CODE (old_ref) == LABEL_REF);
1242 if (XEXP (old_ref, 0) == old_label)
1243 {
1244 ASM_OPERANDS_LABEL (tmp, i)
1245 = gen_rtx_LABEL_REF (Pmode, new_label);
1246 --LABEL_NUSES (old_label);
1247 ++LABEL_NUSES (new_label);
1248 }
1249 }
1250
1251 if (JUMP_LABEL (insn) == old_label)
1252 {
1253 JUMP_LABEL (insn) = new_label;
1254 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1255 if (note)
1256 remove_note (insn, note);
1257 }
1258 else
1259 {
1260 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1261 if (note)
1262 remove_note (insn, note);
1263 if (JUMP_LABEL (insn) != new_label
1264 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1265 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1266 }
1267 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1268 != NULL_RTX)
1269 XEXP (note, 0) = new_label;
1270 }
1271 else
1272 {
1273 /* ?? We may play the games with moving the named labels from
1274 one basic block to the other in case only one computed_jump is
1275 available. */
1276 if (computed_jump_p (insn)
1277 /* A return instruction can't be redirected. */
1278 || returnjump_p (insn))
1279 return false;
1280
1281 if (!currently_expanding_to_rtl || JUMP_LABEL (insn) == old_label)
1282 {
1283 /* If the insn doesn't go where we think, we're confused. */
1284 gcc_assert (JUMP_LABEL (insn) == old_label);
1285
1286 /* If the substitution doesn't succeed, die. This can happen
1287 if the back end emitted unrecognizable instructions or if
1288 target is exit block on some arches. Or for crossing
1289 jumps. */
1290 if (!redirect_jump (as_a <rtx_jump_insn *> (insn),
1291 block_label (new_bb), 0))
1292 {
1293 gcc_assert (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
1294 || CROSSING_JUMP_P (insn));
1295 return false;
1296 }
1297 }
1298 }
1299 return true;
1300 }
1301
1302
1303 /* Redirect edge representing branch of (un)conditional jump or tablejump,
1304 NULL on failure */
1305 static edge
1306 redirect_branch_edge (edge e, basic_block target)
1307 {
1308 rtx_insn *old_label = BB_HEAD (e->dest);
1309 basic_block src = e->src;
1310 rtx_insn *insn = BB_END (src);
1311
1312 /* We can only redirect non-fallthru edges of jump insn. */
1313 if (e->flags & EDGE_FALLTHRU)
1314 return NULL;
1315 else if (!JUMP_P (insn) && !currently_expanding_to_rtl)
1316 return NULL;
1317
1318 if (!currently_expanding_to_rtl)
1319 {
1320 if (!patch_jump_insn (as_a <rtx_jump_insn *> (insn), old_label, target))
1321 return NULL;
1322 }
1323 else
1324 /* When expanding this BB might actually contain multiple
1325 jumps (i.e. not yet split by find_many_sub_basic_blocks).
1326 Redirect all of those that match our label. */
1327 FOR_BB_INSNS (src, insn)
1328 if (JUMP_P (insn) && !patch_jump_insn (as_a <rtx_jump_insn *> (insn),
1329 old_label, target))
1330 return NULL;
1331
1332 if (dump_file)
1333 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
1334 e->src->index, e->dest->index, target->index);
1335
1336 if (e->dest != target)
1337 e = redirect_edge_succ_nodup (e, target);
1338
1339 return e;
1340 }
1341
1342 /* Called when edge E has been redirected to a new destination,
1343 in order to update the region crossing flag on the edge and
1344 jump. */
1345
1346 static void
1347 fixup_partition_crossing (edge e)
1348 {
1349 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun) || e->dest
1350 == EXIT_BLOCK_PTR_FOR_FN (cfun))
1351 return;
1352 /* If we redirected an existing edge, it may already be marked
1353 crossing, even though the new src is missing a reg crossing note.
1354 But make sure reg crossing note doesn't already exist before
1355 inserting. */
1356 if (BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1357 {
1358 e->flags |= EDGE_CROSSING;
1359 if (JUMP_P (BB_END (e->src)))
1360 CROSSING_JUMP_P (BB_END (e->src)) = 1;
1361 }
1362 else if (BB_PARTITION (e->src) == BB_PARTITION (e->dest))
1363 {
1364 e->flags &= ~EDGE_CROSSING;
1365 /* Remove the section crossing note from jump at end of
1366 src if it exists, and if no other successors are
1367 still crossing. */
1368 if (JUMP_P (BB_END (e->src)) && CROSSING_JUMP_P (BB_END (e->src)))
1369 {
1370 bool has_crossing_succ = false;
1371 edge e2;
1372 edge_iterator ei;
1373 FOR_EACH_EDGE (e2, ei, e->src->succs)
1374 {
1375 has_crossing_succ |= (e2->flags & EDGE_CROSSING);
1376 if (has_crossing_succ)
1377 break;
1378 }
1379 if (!has_crossing_succ)
1380 CROSSING_JUMP_P (BB_END (e->src)) = 0;
1381 }
1382 }
1383 }
1384
1385 /* Called when block BB has been reassigned to the cold partition,
1386 because it is now dominated by another cold block,
1387 to ensure that the region crossing attributes are updated. */
1388
1389 static void
1390 fixup_new_cold_bb (basic_block bb)
1391 {
1392 edge e;
1393 edge_iterator ei;
1394
1395 /* This is called when a hot bb is found to now be dominated
1396 by a cold bb and therefore needs to become cold. Therefore,
1397 its preds will no longer be region crossing. Any non-dominating
1398 preds that were previously hot would also have become cold
1399 in the caller for the same region. Any preds that were previously
1400 region-crossing will be adjusted in fixup_partition_crossing. */
1401 FOR_EACH_EDGE (e, ei, bb->preds)
1402 {
1403 fixup_partition_crossing (e);
1404 }
1405
1406 /* Possibly need to make bb's successor edges region crossing,
1407 or remove stale region crossing. */
1408 FOR_EACH_EDGE (e, ei, bb->succs)
1409 {
1410 /* We can't have fall-through edges across partition boundaries.
1411 Note that force_nonfallthru will do any necessary partition
1412 boundary fixup by calling fixup_partition_crossing itself. */
1413 if ((e->flags & EDGE_FALLTHRU)
1414 && BB_PARTITION (bb) != BB_PARTITION (e->dest)
1415 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1416 force_nonfallthru (e);
1417 else
1418 fixup_partition_crossing (e);
1419 }
1420 }
1421
1422 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
1423 expense of adding new instructions or reordering basic blocks.
1424
1425 Function can be also called with edge destination equivalent to the TARGET.
1426 Then it should try the simplifications and do nothing if none is possible.
1427
1428 Return edge representing the branch if transformation succeeded. Return NULL
1429 on failure.
1430 We still return NULL in case E already destinated TARGET and we didn't
1431 managed to simplify instruction stream. */
1432
1433 static edge
1434 rtl_redirect_edge_and_branch (edge e, basic_block target)
1435 {
1436 edge ret;
1437 basic_block src = e->src;
1438 basic_block dest = e->dest;
1439
1440 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1441 return NULL;
1442
1443 if (dest == target)
1444 return e;
1445
1446 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
1447 {
1448 df_set_bb_dirty (src);
1449 fixup_partition_crossing (ret);
1450 return ret;
1451 }
1452
1453 ret = redirect_branch_edge (e, target);
1454 if (!ret)
1455 return NULL;
1456
1457 df_set_bb_dirty (src);
1458 fixup_partition_crossing (ret);
1459 return ret;
1460 }
1461
1462 /* Emit a barrier after BB, into the footer if we are in CFGLAYOUT mode. */
1463
1464 void
1465 emit_barrier_after_bb (basic_block bb)
1466 {
1467 rtx_barrier *barrier = emit_barrier_after (BB_END (bb));
1468 gcc_assert (current_ir_type () == IR_RTL_CFGRTL
1469 || current_ir_type () == IR_RTL_CFGLAYOUT);
1470 if (current_ir_type () == IR_RTL_CFGLAYOUT)
1471 {
1472 rtx_insn *insn = unlink_insn_chain (barrier, barrier);
1473
1474 if (BB_FOOTER (bb))
1475 {
1476 rtx_insn *footer_tail = BB_FOOTER (bb);
1477
1478 while (NEXT_INSN (footer_tail))
1479 footer_tail = NEXT_INSN (footer_tail);
1480 if (!BARRIER_P (footer_tail))
1481 {
1482 SET_NEXT_INSN (footer_tail) = insn;
1483 SET_PREV_INSN (insn) = footer_tail;
1484 }
1485 }
1486 else
1487 BB_FOOTER (bb) = insn;
1488 }
1489 }
1490
1491 /* Like force_nonfallthru below, but additionally performs redirection
1492 Used by redirect_edge_and_branch_force. JUMP_LABEL is used only
1493 when redirecting to the EXIT_BLOCK, it is either ret_rtx or
1494 simple_return_rtx, indicating which kind of returnjump to create.
1495 It should be NULL otherwise. */
1496
1497 basic_block
1498 force_nonfallthru_and_redirect (edge e, basic_block target, rtx jump_label)
1499 {
1500 basic_block jump_block, new_bb = NULL, src = e->src;
1501 rtx note;
1502 edge new_edge;
1503 int abnormal_edge_flags = 0;
1504 bool asm_goto_edge = false;
1505 int loc;
1506
1507 /* In the case the last instruction is conditional jump to the next
1508 instruction, first redirect the jump itself and then continue
1509 by creating a basic block afterwards to redirect fallthru edge. */
1510 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1511 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1512 && any_condjump_p (BB_END (e->src))
1513 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1514 {
1515 rtx note;
1516 edge b = unchecked_make_edge (e->src, target, 0);
1517 bool redirected;
1518
1519 redirected = redirect_jump (as_a <rtx_jump_insn *> (BB_END (e->src)),
1520 block_label (target), 0);
1521 gcc_assert (redirected);
1522
1523 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1524 if (note)
1525 {
1526 int prob = XINT (note, 0);
1527
1528 b->probability = profile_probability::from_reg_br_prob_note (prob);
1529 e->probability -= e->probability;
1530 }
1531 }
1532
1533 if (e->flags & EDGE_ABNORMAL)
1534 {
1535 /* Irritating special case - fallthru edge to the same block as abnormal
1536 edge.
1537 We can't redirect abnormal edge, but we still can split the fallthru
1538 one and create separate abnormal edge to original destination.
1539 This allows bb-reorder to make such edge non-fallthru. */
1540 gcc_assert (e->dest == target);
1541 abnormal_edge_flags = e->flags & ~EDGE_FALLTHRU;
1542 e->flags &= EDGE_FALLTHRU;
1543 }
1544 else
1545 {
1546 gcc_assert (e->flags & EDGE_FALLTHRU);
1547 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1548 {
1549 /* We can't redirect the entry block. Create an empty block
1550 at the start of the function which we use to add the new
1551 jump. */
1552 edge tmp;
1553 edge_iterator ei;
1554 bool found = false;
1555
1556 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL,
1557 ENTRY_BLOCK_PTR_FOR_FN (cfun));
1558 bb->count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
1559
1560 /* Make sure new block ends up in correct hot/cold section. */
1561 BB_COPY_PARTITION (bb, e->dest);
1562
1563 /* Change the existing edge's source to be the new block, and add
1564 a new edge from the entry block to the new block. */
1565 e->src = bb;
1566 for (ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
1567 (tmp = ei_safe_edge (ei)); )
1568 {
1569 if (tmp == e)
1570 {
1571 ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs->unordered_remove (ei.index);
1572 found = true;
1573 break;
1574 }
1575 else
1576 ei_next (&ei);
1577 }
1578
1579 gcc_assert (found);
1580
1581 vec_safe_push (bb->succs, e);
1582 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb,
1583 EDGE_FALLTHRU);
1584 }
1585 }
1586
1587 /* If e->src ends with asm goto, see if any of the ASM_OPERANDS_LABELs
1588 don't point to the target or fallthru label. */
1589 if (JUMP_P (BB_END (e->src))
1590 && target != EXIT_BLOCK_PTR_FOR_FN (cfun)
1591 && (e->flags & EDGE_FALLTHRU)
1592 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
1593 {
1594 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
1595 bool adjust_jump_target = false;
1596
1597 for (i = 0; i < n; ++i)
1598 {
1599 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (e->dest))
1600 {
1601 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))--;
1602 XEXP (ASM_OPERANDS_LABEL (note, i), 0) = block_label (target);
1603 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))++;
1604 adjust_jump_target = true;
1605 }
1606 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (target))
1607 asm_goto_edge = true;
1608 }
1609 if (adjust_jump_target)
1610 {
1611 rtx_insn *insn = BB_END (e->src);
1612 rtx note;
1613 rtx_insn *old_label = BB_HEAD (e->dest);
1614 rtx_insn *new_label = BB_HEAD (target);
1615
1616 if (JUMP_LABEL (insn) == old_label)
1617 {
1618 JUMP_LABEL (insn) = new_label;
1619 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1620 if (note)
1621 remove_note (insn, note);
1622 }
1623 else
1624 {
1625 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1626 if (note)
1627 remove_note (insn, note);
1628 if (JUMP_LABEL (insn) != new_label
1629 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1630 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1631 }
1632 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1633 != NULL_RTX)
1634 XEXP (note, 0) = new_label;
1635 }
1636 }
1637
1638 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags || asm_goto_edge)
1639 {
1640 rtx_insn *new_head;
1641 profile_count count = e->count ();
1642 profile_probability probability = e->probability;
1643 /* Create the new structures. */
1644
1645 /* If the old block ended with a tablejump, skip its table
1646 by searching forward from there. Otherwise start searching
1647 forward from the last instruction of the old block. */
1648 rtx_jump_table_data *table;
1649 if (tablejump_p (BB_END (e->src), NULL, &table))
1650 new_head = table;
1651 else
1652 new_head = BB_END (e->src);
1653 new_head = NEXT_INSN (new_head);
1654
1655 jump_block = create_basic_block (new_head, NULL, e->src);
1656 jump_block->count = count;
1657
1658 /* Make sure new block ends up in correct hot/cold section. */
1659
1660 BB_COPY_PARTITION (jump_block, e->src);
1661
1662 /* Wire edge in. */
1663 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1664 new_edge->probability = probability;
1665
1666 /* Redirect old edge. */
1667 redirect_edge_pred (e, jump_block);
1668 e->probability = profile_probability::always ();
1669
1670 /* If e->src was previously region crossing, it no longer is
1671 and the reg crossing note should be removed. */
1672 fixup_partition_crossing (new_edge);
1673
1674 /* If asm goto has any label refs to target's label,
1675 add also edge from asm goto bb to target. */
1676 if (asm_goto_edge)
1677 {
1678 new_edge->probability = new_edge->probability.apply_scale (1, 2);
1679 jump_block->count = jump_block->count.apply_scale (1, 2);
1680 edge new_edge2 = make_edge (new_edge->src, target,
1681 e->flags & ~EDGE_FALLTHRU);
1682 new_edge2->probability = probability - new_edge->probability;
1683 }
1684
1685 new_bb = jump_block;
1686 }
1687 else
1688 jump_block = e->src;
1689
1690 loc = e->goto_locus;
1691 e->flags &= ~EDGE_FALLTHRU;
1692 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1693 {
1694 if (jump_label == ret_rtx)
1695 emit_jump_insn_after_setloc (targetm.gen_return (),
1696 BB_END (jump_block), loc);
1697 else
1698 {
1699 gcc_assert (jump_label == simple_return_rtx);
1700 emit_jump_insn_after_setloc (targetm.gen_simple_return (),
1701 BB_END (jump_block), loc);
1702 }
1703 set_return_jump_label (BB_END (jump_block));
1704 }
1705 else
1706 {
1707 rtx_code_label *label = block_label (target);
1708 emit_jump_insn_after_setloc (targetm.gen_jump (label),
1709 BB_END (jump_block), loc);
1710 JUMP_LABEL (BB_END (jump_block)) = label;
1711 LABEL_NUSES (label)++;
1712 }
1713
1714 /* We might be in cfg layout mode, and if so, the following routine will
1715 insert the barrier correctly. */
1716 emit_barrier_after_bb (jump_block);
1717 redirect_edge_succ_nodup (e, target);
1718
1719 if (abnormal_edge_flags)
1720 make_edge (src, target, abnormal_edge_flags);
1721
1722 df_mark_solutions_dirty ();
1723 fixup_partition_crossing (e);
1724 return new_bb;
1725 }
1726
1727 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1728 (and possibly create new basic block) to make edge non-fallthru.
1729 Return newly created BB or NULL if none. */
1730
1731 static basic_block
1732 rtl_force_nonfallthru (edge e)
1733 {
1734 return force_nonfallthru_and_redirect (e, e->dest, NULL_RTX);
1735 }
1736
1737 /* Redirect edge even at the expense of creating new jump insn or
1738 basic block. Return new basic block if created, NULL otherwise.
1739 Conversion must be possible. */
1740
1741 static basic_block
1742 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1743 {
1744 if (redirect_edge_and_branch (e, target)
1745 || e->dest == target)
1746 return NULL;
1747
1748 /* In case the edge redirection failed, try to force it to be non-fallthru
1749 and redirect newly created simplejump. */
1750 df_set_bb_dirty (e->src);
1751 return force_nonfallthru_and_redirect (e, target, NULL_RTX);
1752 }
1753
1754 /* The given edge should potentially be a fallthru edge. If that is in
1755 fact true, delete the jump and barriers that are in the way. */
1756
1757 static void
1758 rtl_tidy_fallthru_edge (edge e)
1759 {
1760 rtx_insn *q;
1761 basic_block b = e->src, c = b->next_bb;
1762
1763 /* ??? In a late-running flow pass, other folks may have deleted basic
1764 blocks by nopping out blocks, leaving multiple BARRIERs between here
1765 and the target label. They ought to be chastised and fixed.
1766
1767 We can also wind up with a sequence of undeletable labels between
1768 one block and the next.
1769
1770 So search through a sequence of barriers, labels, and notes for
1771 the head of block C and assert that we really do fall through. */
1772
1773 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1774 if (NONDEBUG_INSN_P (q))
1775 return;
1776
1777 /* Remove what will soon cease being the jump insn from the source block.
1778 If block B consisted only of this single jump, turn it into a deleted
1779 note. */
1780 q = BB_END (b);
1781 if (JUMP_P (q)
1782 && onlyjump_p (q)
1783 && (any_uncondjump_p (q)
1784 || single_succ_p (b)))
1785 {
1786 rtx_insn *label;
1787 rtx_jump_table_data *table;
1788
1789 if (tablejump_p (q, &label, &table))
1790 {
1791 /* The label is likely mentioned in some instruction before
1792 the tablejump and might not be DCEd, so turn it into
1793 a note instead and move before the tablejump that is going to
1794 be deleted. */
1795 const char *name = LABEL_NAME (label);
1796 PUT_CODE (label, NOTE);
1797 NOTE_KIND (label) = NOTE_INSN_DELETED_LABEL;
1798 NOTE_DELETED_LABEL_NAME (label) = name;
1799 reorder_insns (label, label, PREV_INSN (q));
1800 delete_insn (table);
1801 }
1802
1803 /* If this was a conditional jump, we need to also delete
1804 the insn that set cc0. */
1805 if (HAVE_cc0 && any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1806 q = PREV_INSN (q);
1807
1808 q = PREV_INSN (q);
1809 }
1810 /* Unconditional jumps with side-effects (i.e. which we can't just delete
1811 together with the barrier) should never have a fallthru edge. */
1812 else if (JUMP_P (q) && any_uncondjump_p (q))
1813 return;
1814
1815 /* Selectively unlink the sequence. */
1816 if (q != PREV_INSN (BB_HEAD (c)))
1817 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)), false);
1818
1819 e->flags |= EDGE_FALLTHRU;
1820 }
1821 \f
1822 /* Should move basic block BB after basic block AFTER. NIY. */
1823
1824 static bool
1825 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1826 basic_block after ATTRIBUTE_UNUSED)
1827 {
1828 return false;
1829 }
1830
1831 /* Locate the last bb in the same partition as START_BB. */
1832
1833 static basic_block
1834 last_bb_in_partition (basic_block start_bb)
1835 {
1836 basic_block bb;
1837 FOR_BB_BETWEEN (bb, start_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1838 {
1839 if (BB_PARTITION (start_bb) != BB_PARTITION (bb->next_bb))
1840 return bb;
1841 }
1842 /* Return bb before the exit block. */
1843 return bb->prev_bb;
1844 }
1845
1846 /* Split a (typically critical) edge. Return the new block.
1847 The edge must not be abnormal.
1848
1849 ??? The code generally expects to be called on critical edges.
1850 The case of a block ending in an unconditional jump to a
1851 block with multiple predecessors is not handled optimally. */
1852
1853 static basic_block
1854 rtl_split_edge (edge edge_in)
1855 {
1856 basic_block bb, new_bb;
1857 rtx_insn *before;
1858
1859 /* Abnormal edges cannot be split. */
1860 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1861
1862 /* We are going to place the new block in front of edge destination.
1863 Avoid existence of fallthru predecessors. */
1864 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1865 {
1866 edge e = find_fallthru_edge (edge_in->dest->preds);
1867
1868 if (e)
1869 force_nonfallthru (e);
1870 }
1871
1872 /* Create the basic block note. */
1873 if (edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1874 before = BB_HEAD (edge_in->dest);
1875 else
1876 before = NULL;
1877
1878 /* If this is a fall through edge to the exit block, the blocks might be
1879 not adjacent, and the right place is after the source. */
1880 if ((edge_in->flags & EDGE_FALLTHRU)
1881 && edge_in->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1882 {
1883 before = NEXT_INSN (BB_END (edge_in->src));
1884 bb = create_basic_block (before, NULL, edge_in->src);
1885 BB_COPY_PARTITION (bb, edge_in->src);
1886 }
1887 else
1888 {
1889 if (edge_in->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1890 {
1891 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1892 BB_COPY_PARTITION (bb, edge_in->dest);
1893 }
1894 else
1895 {
1896 basic_block after = edge_in->dest->prev_bb;
1897 /* If this is post-bb reordering, and the edge crosses a partition
1898 boundary, the new block needs to be inserted in the bb chain
1899 at the end of the src partition (since we put the new bb into
1900 that partition, see below). Otherwise we may end up creating
1901 an extra partition crossing in the chain, which is illegal.
1902 It can't go after the src, because src may have a fall-through
1903 to a different block. */
1904 if (crtl->bb_reorder_complete
1905 && (edge_in->flags & EDGE_CROSSING))
1906 {
1907 after = last_bb_in_partition (edge_in->src);
1908 before = get_last_bb_insn (after);
1909 /* The instruction following the last bb in partition should
1910 be a barrier, since it cannot end in a fall-through. */
1911 gcc_checking_assert (BARRIER_P (before));
1912 before = NEXT_INSN (before);
1913 }
1914 bb = create_basic_block (before, NULL, after);
1915 /* Put the split bb into the src partition, to avoid creating
1916 a situation where a cold bb dominates a hot bb, in the case
1917 where src is cold and dest is hot. The src will dominate
1918 the new bb (whereas it might not have dominated dest). */
1919 BB_COPY_PARTITION (bb, edge_in->src);
1920 }
1921 }
1922
1923 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1924
1925 /* Can't allow a region crossing edge to be fallthrough. */
1926 if (BB_PARTITION (bb) != BB_PARTITION (edge_in->dest)
1927 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1928 {
1929 new_bb = force_nonfallthru (single_succ_edge (bb));
1930 gcc_assert (!new_bb);
1931 }
1932
1933 /* For non-fallthru edges, we must adjust the predecessor's
1934 jump instruction to target our new block. */
1935 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1936 {
1937 edge redirected = redirect_edge_and_branch (edge_in, bb);
1938 gcc_assert (redirected);
1939 }
1940 else
1941 {
1942 if (edge_in->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1943 {
1944 /* For asm goto even splitting of fallthru edge might
1945 need insn patching, as other labels might point to the
1946 old label. */
1947 rtx_insn *last = BB_END (edge_in->src);
1948 if (last
1949 && JUMP_P (last)
1950 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1951 && (extract_asm_operands (PATTERN (last))
1952 || JUMP_LABEL (last) == before)
1953 && patch_jump_insn (last, before, bb))
1954 df_set_bb_dirty (edge_in->src);
1955 }
1956 redirect_edge_succ (edge_in, bb);
1957 }
1958
1959 return bb;
1960 }
1961
1962 /* Queue instructions for insertion on an edge between two basic blocks.
1963 The new instructions and basic blocks (if any) will not appear in the
1964 CFG until commit_edge_insertions is called. */
1965
1966 void
1967 insert_insn_on_edge (rtx pattern, edge e)
1968 {
1969 /* We cannot insert instructions on an abnormal critical edge.
1970 It will be easier to find the culprit if we die now. */
1971 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1972
1973 if (e->insns.r == NULL_RTX)
1974 start_sequence ();
1975 else
1976 push_to_sequence (e->insns.r);
1977
1978 emit_insn (pattern);
1979
1980 e->insns.r = get_insns ();
1981 end_sequence ();
1982 }
1983
1984 /* Update the CFG for the instructions queued on edge E. */
1985
1986 void
1987 commit_one_edge_insertion (edge e)
1988 {
1989 rtx_insn *before = NULL, *after = NULL, *insns, *tmp, *last;
1990 basic_block bb;
1991
1992 /* Pull the insns off the edge now since the edge might go away. */
1993 insns = e->insns.r;
1994 e->insns.r = NULL;
1995
1996 /* Figure out where to put these insns. If the destination has
1997 one predecessor, insert there. Except for the exit block. */
1998 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1999 {
2000 bb = e->dest;
2001
2002 /* Get the location correct wrt a code label, and "nice" wrt
2003 a basic block note, and before everything else. */
2004 tmp = BB_HEAD (bb);
2005 if (LABEL_P (tmp))
2006 tmp = NEXT_INSN (tmp);
2007 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
2008 tmp = NEXT_INSN (tmp);
2009 if (tmp == BB_HEAD (bb))
2010 before = tmp;
2011 else if (tmp)
2012 after = PREV_INSN (tmp);
2013 else
2014 after = get_last_insn ();
2015 }
2016
2017 /* If the source has one successor and the edge is not abnormal,
2018 insert there. Except for the entry block.
2019 Don't do this if the predecessor ends in a jump other than
2020 unconditional simple jump. E.g. for asm goto that points all
2021 its labels at the fallthru basic block, we can't insert instructions
2022 before the asm goto, as the asm goto can have various of side effects,
2023 and can't emit instructions after the asm goto, as it must end
2024 the basic block. */
2025 else if ((e->flags & EDGE_ABNORMAL) == 0
2026 && single_succ_p (e->src)
2027 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2028 && (!JUMP_P (BB_END (e->src))
2029 || simplejump_p (BB_END (e->src))))
2030 {
2031 bb = e->src;
2032
2033 /* It is possible to have a non-simple jump here. Consider a target
2034 where some forms of unconditional jumps clobber a register. This
2035 happens on the fr30 for example.
2036
2037 We know this block has a single successor, so we can just emit
2038 the queued insns before the jump. */
2039 if (JUMP_P (BB_END (bb)))
2040 before = BB_END (bb);
2041 else
2042 {
2043 /* We'd better be fallthru, or we've lost track of what's what. */
2044 gcc_assert (e->flags & EDGE_FALLTHRU);
2045
2046 after = BB_END (bb);
2047 }
2048 }
2049
2050 /* Otherwise we must split the edge. */
2051 else
2052 {
2053 bb = split_edge (e);
2054
2055 /* If E crossed a partition boundary, we needed to make bb end in
2056 a region-crossing jump, even though it was originally fallthru. */
2057 if (JUMP_P (BB_END (bb)))
2058 before = BB_END (bb);
2059 else
2060 after = BB_END (bb);
2061 }
2062
2063 /* Now that we've found the spot, do the insertion. */
2064 if (before)
2065 {
2066 emit_insn_before_noloc (insns, before, bb);
2067 last = prev_nonnote_insn (before);
2068 }
2069 else
2070 last = emit_insn_after_noloc (insns, after, bb);
2071
2072 if (returnjump_p (last))
2073 {
2074 /* ??? Remove all outgoing edges from BB and add one for EXIT.
2075 This is not currently a problem because this only happens
2076 for the (single) epilogue, which already has a fallthru edge
2077 to EXIT. */
2078
2079 e = single_succ_edge (bb);
2080 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2081 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
2082
2083 e->flags &= ~EDGE_FALLTHRU;
2084 emit_barrier_after (last);
2085
2086 if (before)
2087 delete_insn (before);
2088 }
2089 else
2090 gcc_assert (!JUMP_P (last));
2091 }
2092
2093 /* Update the CFG for all queued instructions. */
2094
2095 void
2096 commit_edge_insertions (void)
2097 {
2098 basic_block bb;
2099
2100 /* Optimization passes that invoke this routine can cause hot blocks
2101 previously reached by both hot and cold blocks to become dominated only
2102 by cold blocks. This will cause the verification below to fail,
2103 and lead to now cold code in the hot section. In some cases this
2104 may only be visible after newly unreachable blocks are deleted,
2105 which will be done by fixup_partitions. */
2106 fixup_partitions ();
2107
2108 if (!currently_expanding_to_rtl)
2109 checking_verify_flow_info ();
2110
2111 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
2112 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
2113 {
2114 edge e;
2115 edge_iterator ei;
2116
2117 FOR_EACH_EDGE (e, ei, bb->succs)
2118 if (e->insns.r)
2119 {
2120 if (currently_expanding_to_rtl)
2121 rebuild_jump_labels_chain (e->insns.r);
2122 commit_one_edge_insertion (e);
2123 }
2124 }
2125 }
2126 \f
2127
2128 /* Print out RTL-specific basic block information (live information
2129 at start and end with TDF_DETAILS). FLAGS are the TDF_* masks
2130 documented in dumpfile.h. */
2131
2132 static void
2133 rtl_dump_bb (FILE *outf, basic_block bb, int indent, dump_flags_t flags)
2134 {
2135 char *s_indent;
2136
2137 s_indent = (char *) alloca ((size_t) indent + 1);
2138 memset (s_indent, ' ', (size_t) indent);
2139 s_indent[indent] = '\0';
2140
2141 if (df && (flags & TDF_DETAILS))
2142 {
2143 df_dump_top (bb, outf);
2144 putc ('\n', outf);
2145 }
2146
2147 if (bb->index != ENTRY_BLOCK && bb->index != EXIT_BLOCK)
2148 {
2149 rtx_insn *last = BB_END (bb);
2150 if (last)
2151 last = NEXT_INSN (last);
2152 for (rtx_insn *insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
2153 {
2154 if (flags & TDF_DETAILS)
2155 df_dump_insn_top (insn, outf);
2156 if (! (flags & TDF_SLIM))
2157 print_rtl_single (outf, insn);
2158 else
2159 dump_insn_slim (outf, insn);
2160 if (flags & TDF_DETAILS)
2161 df_dump_insn_bottom (insn, outf);
2162 }
2163 }
2164
2165 if (df && (flags & TDF_DETAILS))
2166 {
2167 df_dump_bottom (bb, outf);
2168 putc ('\n', outf);
2169 }
2170
2171 }
2172 \f
2173 /* Like dump_function_to_file, but for RTL. Print out dataflow information
2174 for the start of each basic block. FLAGS are the TDF_* masks documented
2175 in dumpfile.h. */
2176
2177 void
2178 print_rtl_with_bb (FILE *outf, const rtx_insn *rtx_first, dump_flags_t flags)
2179 {
2180 const rtx_insn *tmp_rtx;
2181 if (rtx_first == 0)
2182 fprintf (outf, "(nil)\n");
2183 else
2184 {
2185 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
2186 int max_uid = get_max_uid ();
2187 basic_block *start = XCNEWVEC (basic_block, max_uid);
2188 basic_block *end = XCNEWVEC (basic_block, max_uid);
2189 enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid);
2190 basic_block bb;
2191
2192 /* After freeing the CFG, we still have BLOCK_FOR_INSN set on most
2193 insns, but the CFG is not maintained so the basic block info
2194 is not reliable. Therefore it's omitted from the dumps. */
2195 if (! (cfun->curr_properties & PROP_cfg))
2196 flags &= ~TDF_BLOCKS;
2197
2198 if (df)
2199 df_dump_start (outf);
2200
2201 if (cfun->curr_properties & PROP_cfg)
2202 {
2203 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2204 {
2205 rtx_insn *x;
2206
2207 start[INSN_UID (BB_HEAD (bb))] = bb;
2208 end[INSN_UID (BB_END (bb))] = bb;
2209 if (flags & TDF_BLOCKS)
2210 {
2211 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
2212 {
2213 enum bb_state state = IN_MULTIPLE_BB;
2214
2215 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
2216 state = IN_ONE_BB;
2217 in_bb_p[INSN_UID (x)] = state;
2218
2219 if (x == BB_END (bb))
2220 break;
2221 }
2222 }
2223 }
2224 }
2225
2226 for (tmp_rtx = rtx_first; tmp_rtx != NULL; tmp_rtx = NEXT_INSN (tmp_rtx))
2227 {
2228 if (flags & TDF_BLOCKS)
2229 {
2230 bb = start[INSN_UID (tmp_rtx)];
2231 if (bb != NULL)
2232 {
2233 dump_bb_info (outf, bb, 0, dump_flags, true, false);
2234 if (df && (flags & TDF_DETAILS))
2235 df_dump_top (bb, outf);
2236 }
2237
2238 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
2239 && !NOTE_P (tmp_rtx)
2240 && !BARRIER_P (tmp_rtx))
2241 fprintf (outf, ";; Insn is not within a basic block\n");
2242 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
2243 fprintf (outf, ";; Insn is in multiple basic blocks\n");
2244 }
2245
2246 if (flags & TDF_DETAILS)
2247 df_dump_insn_top (tmp_rtx, outf);
2248 if (! (flags & TDF_SLIM))
2249 print_rtl_single (outf, tmp_rtx);
2250 else
2251 dump_insn_slim (outf, tmp_rtx);
2252 if (flags & TDF_DETAILS)
2253 df_dump_insn_bottom (tmp_rtx, outf);
2254
2255 bb = end[INSN_UID (tmp_rtx)];
2256 if (bb != NULL)
2257 {
2258 if (flags & TDF_BLOCKS)
2259 {
2260 dump_bb_info (outf, bb, 0, dump_flags, false, true);
2261 if (df && (flags & TDF_DETAILS))
2262 df_dump_bottom (bb, outf);
2263 putc ('\n', outf);
2264 }
2265 /* Emit a hint if the fallthrough target of current basic block
2266 isn't the one placed right next. */
2267 else if (EDGE_COUNT (bb->succs) > 0)
2268 {
2269 gcc_assert (BB_END (bb) == tmp_rtx);
2270 const rtx_insn *ninsn = NEXT_INSN (tmp_rtx);
2271 /* Bypass intervening deleted-insn notes and debug insns. */
2272 while (ninsn
2273 && !NONDEBUG_INSN_P (ninsn)
2274 && !start[INSN_UID (ninsn)])
2275 ninsn = NEXT_INSN (ninsn);
2276 edge e = find_fallthru_edge (bb->succs);
2277 if (e && ninsn)
2278 {
2279 basic_block dest = e->dest;
2280 if (start[INSN_UID (ninsn)] != dest)
2281 fprintf (outf, "%s ; pc falls through to BB %d\n",
2282 print_rtx_head, dest->index);
2283 }
2284 }
2285 }
2286 }
2287
2288 free (start);
2289 free (end);
2290 free (in_bb_p);
2291 }
2292 }
2293 \f
2294 /* Update the branch probability of BB if a REG_BR_PROB is present. */
2295
2296 void
2297 update_br_prob_note (basic_block bb)
2298 {
2299 rtx note;
2300 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
2301 if (!JUMP_P (BB_END (bb)) || !BRANCH_EDGE (bb)->probability.initialized_p ())
2302 {
2303 if (note)
2304 {
2305 rtx *note_link, this_rtx;
2306
2307 note_link = &REG_NOTES (BB_END (bb));
2308 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
2309 if (this_rtx == note)
2310 {
2311 *note_link = XEXP (this_rtx, 1);
2312 break;
2313 }
2314 }
2315 return;
2316 }
2317 if (!note
2318 || XINT (note, 0) == BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ())
2319 return;
2320 XINT (note, 0) = BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ();
2321 }
2322
2323 /* Get the last insn associated with block BB (that includes barriers and
2324 tablejumps after BB). */
2325 rtx_insn *
2326 get_last_bb_insn (basic_block bb)
2327 {
2328 rtx_jump_table_data *table;
2329 rtx_insn *tmp;
2330 rtx_insn *end = BB_END (bb);
2331
2332 /* Include any jump table following the basic block. */
2333 if (tablejump_p (end, NULL, &table))
2334 end = table;
2335
2336 /* Include any barriers that may follow the basic block. */
2337 tmp = next_nonnote_nondebug_insn_bb (end);
2338 while (tmp && BARRIER_P (tmp))
2339 {
2340 end = tmp;
2341 tmp = next_nonnote_nondebug_insn_bb (end);
2342 }
2343
2344 return end;
2345 }
2346
2347 /* Add all BBs reachable from entry via hot paths into the SET. */
2348
2349 void
2350 find_bbs_reachable_by_hot_paths (hash_set<basic_block> *set)
2351 {
2352 auto_vec<basic_block, 64> worklist;
2353
2354 set->add (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2355 worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2356
2357 while (worklist.length () > 0)
2358 {
2359 basic_block bb = worklist.pop ();
2360 edge_iterator ei;
2361 edge e;
2362
2363 FOR_EACH_EDGE (e, ei, bb->succs)
2364 if (BB_PARTITION (e->dest) != BB_COLD_PARTITION
2365 && !set->add (e->dest))
2366 worklist.safe_push (e->dest);
2367 }
2368 }
2369
2370 /* Sanity check partition hotness to ensure that basic blocks in
2371   the cold partition don't dominate basic blocks in the hot partition.
2372 If FLAG_ONLY is true, report violations as errors. Otherwise
2373 re-mark the dominated blocks as cold, since this is run after
2374 cfg optimizations that may make hot blocks previously reached
2375 by both hot and cold blocks now only reachable along cold paths. */
2376
2377 static vec<basic_block>
2378 find_partition_fixes (bool flag_only)
2379 {
2380 basic_block bb;
2381 vec<basic_block> bbs_in_cold_partition = vNULL;
2382 vec<basic_block> bbs_to_fix = vNULL;
2383 hash_set<basic_block> set;
2384
2385 /* Callers check this. */
2386 gcc_checking_assert (crtl->has_bb_partition);
2387
2388 find_bbs_reachable_by_hot_paths (&set);
2389
2390 FOR_EACH_BB_FN (bb, cfun)
2391 if (!set.contains (bb)
2392 && BB_PARTITION (bb) != BB_COLD_PARTITION)
2393 {
2394 if (flag_only)
2395 error ("non-cold basic block %d reachable only "
2396 "by paths crossing the cold partition", bb->index);
2397 else
2398 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
2399 bbs_to_fix.safe_push (bb);
2400 bbs_in_cold_partition.safe_push (bb);
2401 }
2402
2403 return bbs_to_fix;
2404 }
2405
2406 /* Perform cleanup on the hot/cold bb partitioning after optimization
2407 passes that modify the cfg. */
2408
2409 void
2410 fixup_partitions (void)
2411 {
2412 basic_block bb;
2413
2414 if (!crtl->has_bb_partition)
2415 return;
2416
2417 /* Delete any blocks that became unreachable and weren't
2418 already cleaned up, for example during edge forwarding
2419 and convert_jumps_to_returns. This will expose more
2420 opportunities for fixing the partition boundaries here.
2421 Also, the calculation of the dominance graph during verification
2422 will assert if there are unreachable nodes. */
2423 delete_unreachable_blocks ();
2424
2425 /* If there are partitions, do a sanity check on them: A basic block in
2426   a cold partition cannot dominate a basic block in a hot partition.
2427 Fixup any that now violate this requirement, as a result of edge
2428 forwarding and unreachable block deletion.  */
2429 vec<basic_block> bbs_to_fix = find_partition_fixes (false);
2430
2431 /* Do the partition fixup after all necessary blocks have been converted to
2432 cold, so that we only update the region crossings the minimum number of
2433 places, which can require forcing edges to be non fallthru. */
2434 while (! bbs_to_fix.is_empty ())
2435 {
2436 bb = bbs_to_fix.pop ();
2437 fixup_new_cold_bb (bb);
2438 }
2439 }
2440
2441 /* Verify, in the basic block chain, that there is at most one switch
2442 between hot/cold partitions. This condition will not be true until
2443 after reorder_basic_blocks is called. */
2444
2445 static int
2446 verify_hot_cold_block_grouping (void)
2447 {
2448 basic_block bb;
2449 int err = 0;
2450 bool switched_sections = false;
2451 int current_partition = BB_UNPARTITIONED;
2452
2453 /* Even after bb reordering is complete, we go into cfglayout mode
2454 again (in compgoto). Ensure we don't call this before going back
2455 into linearized RTL when any layout fixes would have been committed. */
2456 if (!crtl->bb_reorder_complete
2457 || current_ir_type () != IR_RTL_CFGRTL)
2458 return err;
2459
2460 FOR_EACH_BB_FN (bb, cfun)
2461 {
2462 if (current_partition != BB_UNPARTITIONED
2463 && BB_PARTITION (bb) != current_partition)
2464 {
2465 if (switched_sections)
2466 {
2467 error ("multiple hot/cold transitions found (bb %i)",
2468 bb->index);
2469 err = 1;
2470 }
2471 else
2472 switched_sections = true;
2473
2474 if (!crtl->has_bb_partition)
2475 error ("partition found but function partition flag not set");
2476 }
2477 current_partition = BB_PARTITION (bb);
2478 }
2479
2480 return err;
2481 }
2482 \f
2483
2484 /* Perform several checks on the edges out of each block, such as
2485 the consistency of the branch probabilities, the correctness
2486 of hot/cold partition crossing edges, and the number of expected
2487 successor edges. Also verify that the dominance relationship
2488 between hot/cold blocks is sane. */
2489
2490 static int
2491 rtl_verify_edges (void)
2492 {
2493 int err = 0;
2494 basic_block bb;
2495
2496 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2497 {
2498 int n_fallthru = 0, n_branch = 0, n_abnormal_call = 0, n_sibcall = 0;
2499 int n_eh = 0, n_abnormal = 0;
2500 edge e, fallthru = NULL;
2501 edge_iterator ei;
2502 rtx note;
2503 bool has_crossing_edge = false;
2504
2505 if (JUMP_P (BB_END (bb))
2506 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
2507 && EDGE_COUNT (bb->succs) >= 2
2508 && any_condjump_p (BB_END (bb)))
2509 {
2510 if (!BRANCH_EDGE (bb)->probability.initialized_p ())
2511 {
2512 if (profile_status_for_fn (cfun) != PROFILE_ABSENT)
2513 {
2514 error ("verify_flow_info: "
2515 "REG_BR_PROB is set but cfg probability is not");
2516 err = 1;
2517 }
2518 }
2519 else if (XINT (note, 0)
2520 != BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ()
2521 && profile_status_for_fn (cfun) != PROFILE_ABSENT)
2522 {
2523 error ("verify_flow_info: REG_BR_PROB does not match cfg %i %i",
2524 XINT (note, 0),
2525 BRANCH_EDGE (bb)->probability.to_reg_br_prob_note ());
2526 err = 1;
2527 }
2528 }
2529
2530 FOR_EACH_EDGE (e, ei, bb->succs)
2531 {
2532 bool is_crossing;
2533
2534 if (e->flags & EDGE_FALLTHRU)
2535 n_fallthru++, fallthru = e;
2536
2537 is_crossing = (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
2538 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2539 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun));
2540 has_crossing_edge |= is_crossing;
2541 if (e->flags & EDGE_CROSSING)
2542 {
2543 if (!is_crossing)
2544 {
2545 error ("EDGE_CROSSING incorrectly set across same section");
2546 err = 1;
2547 }
2548 if (e->flags & EDGE_FALLTHRU)
2549 {
2550 error ("fallthru edge crosses section boundary in bb %i",
2551 e->src->index);
2552 err = 1;
2553 }
2554 if (e->flags & EDGE_EH)
2555 {
2556 error ("EH edge crosses section boundary in bb %i",
2557 e->src->index);
2558 err = 1;
2559 }
2560 if (JUMP_P (BB_END (bb)) && !CROSSING_JUMP_P (BB_END (bb)))
2561 {
2562 error ("No region crossing jump at section boundary in bb %i",
2563 bb->index);
2564 err = 1;
2565 }
2566 }
2567 else if (is_crossing)
2568 {
2569 error ("EDGE_CROSSING missing across section boundary");
2570 err = 1;
2571 }
2572
2573 if ((e->flags & ~(EDGE_DFS_BACK
2574 | EDGE_CAN_FALLTHRU
2575 | EDGE_IRREDUCIBLE_LOOP
2576 | EDGE_LOOP_EXIT
2577 | EDGE_CROSSING
2578 | EDGE_PRESERVE)) == 0)
2579 n_branch++;
2580
2581 if (e->flags & EDGE_ABNORMAL_CALL)
2582 n_abnormal_call++;
2583
2584 if (e->flags & EDGE_SIBCALL)
2585 n_sibcall++;
2586
2587 if (e->flags & EDGE_EH)
2588 n_eh++;
2589
2590 if (e->flags & EDGE_ABNORMAL)
2591 n_abnormal++;
2592 }
2593
2594 if (!has_crossing_edge
2595 && JUMP_P (BB_END (bb))
2596 && CROSSING_JUMP_P (BB_END (bb)))
2597 {
2598 print_rtl_with_bb (stderr, get_insns (), TDF_BLOCKS | TDF_DETAILS);
2599 error ("Region crossing jump across same section in bb %i",
2600 bb->index);
2601 err = 1;
2602 }
2603
2604 if (n_eh && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2605 {
2606 error ("missing REG_EH_REGION note at the end of bb %i", bb->index);
2607 err = 1;
2608 }
2609 if (n_eh > 1)
2610 {
2611 error ("too many exception handling edges in bb %i", bb->index);
2612 err = 1;
2613 }
2614 if (n_branch
2615 && (!JUMP_P (BB_END (bb))
2616 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2617 || any_condjump_p (BB_END (bb))))))
2618 {
2619 error ("too many outgoing branch edges from bb %i", bb->index);
2620 err = 1;
2621 }
2622 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2623 {
2624 error ("fallthru edge after unconditional jump in bb %i", bb->index);
2625 err = 1;
2626 }
2627 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2628 {
2629 error ("wrong number of branch edges after unconditional jump"
2630 " in bb %i", bb->index);
2631 err = 1;
2632 }
2633 if (n_branch != 1 && any_condjump_p (BB_END (bb))
2634 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
2635 {
2636 error ("wrong amount of branch edges after conditional jump"
2637 " in bb %i", bb->index);
2638 err = 1;
2639 }
2640 if (n_abnormal_call && !CALL_P (BB_END (bb)))
2641 {
2642 error ("abnormal call edges for non-call insn in bb %i", bb->index);
2643 err = 1;
2644 }
2645 if (n_sibcall && !CALL_P (BB_END (bb)))
2646 {
2647 error ("sibcall edges for non-call insn in bb %i", bb->index);
2648 err = 1;
2649 }
2650 if (n_abnormal > n_eh
2651 && !(CALL_P (BB_END (bb))
2652 && n_abnormal == n_abnormal_call + n_sibcall)
2653 && (!JUMP_P (BB_END (bb))
2654 || any_condjump_p (BB_END (bb))
2655 || any_uncondjump_p (BB_END (bb))))
2656 {
2657 error ("abnormal edges for no purpose in bb %i", bb->index);
2658 err = 1;
2659 }
2660
2661 int has_eh = -1;
2662 FOR_EACH_EDGE (e, ei, bb->preds)
2663 {
2664 if (has_eh == -1)
2665 has_eh = (e->flags & EDGE_EH);
2666 if ((e->flags & EDGE_EH) == has_eh)
2667 continue;
2668 error ("EH incoming edge mixed with non-EH incoming edges "
2669 "in bb %i", bb->index);
2670 err = 1;
2671 break;
2672 }
2673 }
2674
2675 /* If there are partitions, do a sanity check on them: A basic block in
2676   a cold partition cannot dominate a basic block in a hot partition.  */
2677 if (crtl->has_bb_partition && !err
2678 && current_ir_type () == IR_RTL_CFGLAYOUT)
2679 {
2680 vec<basic_block> bbs_to_fix = find_partition_fixes (true);
2681 err = !bbs_to_fix.is_empty ();
2682 }
2683
2684 /* Clean up. */
2685 return err;
2686 }
2687
2688 /* Checks on the instructions within blocks. Currently checks that each
2689 block starts with a basic block note, and that basic block notes and
2690 control flow jumps are not found in the middle of the block. */
2691
2692 static int
2693 rtl_verify_bb_insns (void)
2694 {
2695 rtx_insn *x;
2696 int err = 0;
2697 basic_block bb;
2698
2699 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2700 {
2701 /* Now check the header of basic
2702 block. It ought to contain optional CODE_LABEL followed
2703 by NOTE_BASIC_BLOCK. */
2704 x = BB_HEAD (bb);
2705 if (LABEL_P (x))
2706 {
2707 if (BB_END (bb) == x)
2708 {
2709 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2710 bb->index);
2711 err = 1;
2712 }
2713
2714 x = NEXT_INSN (x);
2715 }
2716
2717 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2718 {
2719 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2720 bb->index);
2721 err = 1;
2722 }
2723
2724 if (BB_END (bb) == x)
2725 /* Do checks for empty blocks here. */
2726 ;
2727 else
2728 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2729 {
2730 if (NOTE_INSN_BASIC_BLOCK_P (x))
2731 {
2732 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2733 INSN_UID (x), bb->index);
2734 err = 1;
2735 }
2736
2737 if (x == BB_END (bb))
2738 break;
2739
2740 if (control_flow_insn_p (x))
2741 {
2742 error ("in basic block %d:", bb->index);
2743 fatal_insn ("flow control insn inside a basic block", x);
2744 }
2745 }
2746 }
2747
2748 /* Clean up. */
2749 return err;
2750 }
2751
2752 /* Verify that block pointers for instructions in basic blocks, headers and
2753 footers are set appropriately. */
2754
2755 static int
2756 rtl_verify_bb_pointers (void)
2757 {
2758 int err = 0;
2759 basic_block bb;
2760
2761 /* Check the general integrity of the basic blocks. */
2762 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2763 {
2764 rtx_insn *insn;
2765
2766 if (!(bb->flags & BB_RTL))
2767 {
2768 error ("BB_RTL flag not set for block %d", bb->index);
2769 err = 1;
2770 }
2771
2772 FOR_BB_INSNS (bb, insn)
2773 if (BLOCK_FOR_INSN (insn) != bb)
2774 {
2775 error ("insn %d basic block pointer is %d, should be %d",
2776 INSN_UID (insn),
2777 BLOCK_FOR_INSN (insn) ? BLOCK_FOR_INSN (insn)->index : 0,
2778 bb->index);
2779 err = 1;
2780 }
2781
2782 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
2783 if (!BARRIER_P (insn)
2784 && BLOCK_FOR_INSN (insn) != NULL)
2785 {
2786 error ("insn %d in header of bb %d has non-NULL basic block",
2787 INSN_UID (insn), bb->index);
2788 err = 1;
2789 }
2790 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2791 if (!BARRIER_P (insn)
2792 && BLOCK_FOR_INSN (insn) != NULL)
2793 {
2794 error ("insn %d in footer of bb %d has non-NULL basic block",
2795 INSN_UID (insn), bb->index);
2796 err = 1;
2797 }
2798 }
2799
2800 /* Clean up. */
2801 return err;
2802 }
2803
2804 /* Verify the CFG and RTL consistency common for both underlying RTL and
2805 cfglayout RTL.
2806
2807 Currently it does following checks:
2808
2809 - overlapping of basic blocks
2810 - insns with wrong BLOCK_FOR_INSN pointers
2811 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
2812 - tails of basic blocks (ensure that boundary is necessary)
2813 - scans body of the basic block for JUMP_INSN, CODE_LABEL
2814 and NOTE_INSN_BASIC_BLOCK
2815 - verify that no fall_thru edge crosses hot/cold partition boundaries
2816 - verify that there are no pending RTL branch predictions
2817 - verify that hot blocks are not dominated by cold blocks
2818
2819 In future it can be extended check a lot of other stuff as well
2820 (reachability of basic blocks, life information, etc. etc.). */
2821
2822 static int
2823 rtl_verify_flow_info_1 (void)
2824 {
2825 int err = 0;
2826
2827 err |= rtl_verify_bb_pointers ();
2828
2829 err |= rtl_verify_bb_insns ();
2830
2831 err |= rtl_verify_edges ();
2832
2833 return err;
2834 }
2835
2836 /* Walk the instruction chain and verify that bb head/end pointers
2837 are correct, and that instructions are in exactly one bb and have
2838 correct block pointers. */
2839
2840 static int
2841 rtl_verify_bb_insn_chain (void)
2842 {
2843 basic_block bb;
2844 int err = 0;
2845 rtx_insn *x;
2846 rtx_insn *last_head = get_last_insn ();
2847 basic_block *bb_info;
2848 const int max_uid = get_max_uid ();
2849
2850 bb_info = XCNEWVEC (basic_block, max_uid);
2851
2852 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2853 {
2854 rtx_insn *head = BB_HEAD (bb);
2855 rtx_insn *end = BB_END (bb);
2856
2857 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2858 {
2859 /* Verify the end of the basic block is in the INSN chain. */
2860 if (x == end)
2861 break;
2862
2863 /* And that the code outside of basic blocks has NULL bb field. */
2864 if (!BARRIER_P (x)
2865 && BLOCK_FOR_INSN (x) != NULL)
2866 {
2867 error ("insn %d outside of basic blocks has non-NULL bb field",
2868 INSN_UID (x));
2869 err = 1;
2870 }
2871 }
2872
2873 if (!x)
2874 {
2875 error ("end insn %d for block %d not found in the insn stream",
2876 INSN_UID (end), bb->index);
2877 err = 1;
2878 }
2879
2880 /* Work backwards from the end to the head of the basic block
2881 to verify the head is in the RTL chain. */
2882 for (; x != NULL_RTX; x = PREV_INSN (x))
2883 {
2884 /* While walking over the insn chain, verify insns appear
2885 in only one basic block. */
2886 if (bb_info[INSN_UID (x)] != NULL)
2887 {
2888 error ("insn %d is in multiple basic blocks (%d and %d)",
2889 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
2890 err = 1;
2891 }
2892
2893 bb_info[INSN_UID (x)] = bb;
2894
2895 if (x == head)
2896 break;
2897 }
2898 if (!x)
2899 {
2900 error ("head insn %d for block %d not found in the insn stream",
2901 INSN_UID (head), bb->index);
2902 err = 1;
2903 }
2904
2905 last_head = PREV_INSN (x);
2906 }
2907
2908 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2909 {
2910 /* Check that the code before the first basic block has NULL
2911 bb field. */
2912 if (!BARRIER_P (x)
2913 && BLOCK_FOR_INSN (x) != NULL)
2914 {
2915 error ("insn %d outside of basic blocks has non-NULL bb field",
2916 INSN_UID (x));
2917 err = 1;
2918 }
2919 }
2920 free (bb_info);
2921
2922 return err;
2923 }
2924
2925 /* Verify that fallthru edges point to adjacent blocks in layout order and
2926 that barriers exist after non-fallthru blocks. */
2927
2928 static int
2929 rtl_verify_fallthru (void)
2930 {
2931 basic_block bb;
2932 int err = 0;
2933
2934 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2935 {
2936 edge e;
2937
2938 e = find_fallthru_edge (bb->succs);
2939 if (!e)
2940 {
2941 rtx_insn *insn;
2942
2943 /* Ensure existence of barrier in BB with no fallthru edges. */
2944 for (insn = NEXT_INSN (BB_END (bb)); ; insn = NEXT_INSN (insn))
2945 {
2946 if (!insn || NOTE_INSN_BASIC_BLOCK_P (insn))
2947 {
2948 error ("missing barrier after block %i", bb->index);
2949 err = 1;
2950 break;
2951 }
2952 if (BARRIER_P (insn))
2953 break;
2954 }
2955 }
2956 else if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2957 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2958 {
2959 rtx_insn *insn;
2960
2961 if (e->src->next_bb != e->dest)
2962 {
2963 error
2964 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2965 e->src->index, e->dest->index);
2966 err = 1;
2967 }
2968 else
2969 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2970 insn = NEXT_INSN (insn))
2971 if (BARRIER_P (insn) || NONDEBUG_INSN_P (insn))
2972 {
2973 error ("verify_flow_info: Incorrect fallthru %i->%i",
2974 e->src->index, e->dest->index);
2975 fatal_insn ("wrong insn in the fallthru edge", insn);
2976 err = 1;
2977 }
2978 }
2979 }
2980
2981 return err;
2982 }
2983
2984 /* Verify that blocks are laid out in consecutive order. While walking the
2985 instructions, verify that all expected instructions are inside the basic
2986 blocks, and that all returns are followed by barriers. */
2987
2988 static int
2989 rtl_verify_bb_layout (void)
2990 {
2991 basic_block bb;
2992 int err = 0;
2993 rtx_insn *x, *y;
2994 int num_bb_notes;
2995 rtx_insn * const rtx_first = get_insns ();
2996 basic_block last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun), curr_bb = NULL;
2997
2998 num_bb_notes = 0;
2999
3000 for (x = rtx_first; x; x = NEXT_INSN (x))
3001 {
3002 if (NOTE_INSN_BASIC_BLOCK_P (x))
3003 {
3004 bb = NOTE_BASIC_BLOCK (x);
3005
3006 num_bb_notes++;
3007 if (bb != last_bb_seen->next_bb)
3008 internal_error ("basic blocks not laid down consecutively");
3009
3010 curr_bb = last_bb_seen = bb;
3011 }
3012
3013 if (!curr_bb)
3014 {
3015 switch (GET_CODE (x))
3016 {
3017 case BARRIER:
3018 case NOTE:
3019 break;
3020
3021 case CODE_LABEL:
3022 /* An ADDR_VEC is placed outside any basic block. */
3023 if (NEXT_INSN (x)
3024 && JUMP_TABLE_DATA_P (NEXT_INSN (x)))
3025 x = NEXT_INSN (x);
3026
3027 /* But in any case, non-deletable labels can appear anywhere. */
3028 break;
3029
3030 default:
3031 fatal_insn ("insn outside basic block", x);
3032 }
3033 }
3034
3035 if (JUMP_P (x)
3036 && returnjump_p (x) && ! condjump_p (x)
3037 && ! ((y = next_nonnote_nondebug_insn (x))
3038 && BARRIER_P (y)))
3039 fatal_insn ("return not followed by barrier", x);
3040
3041 if (curr_bb && x == BB_END (curr_bb))
3042 curr_bb = NULL;
3043 }
3044
3045 if (num_bb_notes != n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS)
3046 internal_error
3047 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
3048 num_bb_notes, n_basic_blocks_for_fn (cfun));
3049
3050 return err;
3051 }
3052
3053 /* Verify the CFG and RTL consistency common for both underlying RTL and
3054 cfglayout RTL, plus consistency checks specific to linearized RTL mode.
3055
3056 Currently it does following checks:
3057 - all checks of rtl_verify_flow_info_1
3058 - test head/end pointers
3059 - check that blocks are laid out in consecutive order
3060 - check that all insns are in the basic blocks
3061 (except the switch handling code, barriers and notes)
3062 - check that all returns are followed by barriers
3063 - check that all fallthru edge points to the adjacent blocks
3064 - verify that there is a single hot/cold partition boundary after bbro */
3065
3066 static int
3067 rtl_verify_flow_info (void)
3068 {
3069 int err = 0;
3070
3071 err |= rtl_verify_flow_info_1 ();
3072
3073 err |= rtl_verify_bb_insn_chain ();
3074
3075 err |= rtl_verify_fallthru ();
3076
3077 err |= rtl_verify_bb_layout ();
3078
3079 err |= verify_hot_cold_block_grouping ();
3080
3081 return err;
3082 }
3083 \f
3084 /* Assume that the preceding pass has possibly eliminated jump instructions
3085 or converted the unconditional jumps. Eliminate the edges from CFG.
3086 Return true if any edges are eliminated. */
3087
3088 bool
3089 purge_dead_edges (basic_block bb)
3090 {
3091 edge e;
3092 rtx_insn *insn = BB_END (bb);
3093 rtx note;
3094 bool purged = false;
3095 bool found;
3096 edge_iterator ei;
3097
3098 if (DEBUG_INSN_P (insn) && insn != BB_HEAD (bb))
3099 do
3100 insn = PREV_INSN (insn);
3101 while ((DEBUG_INSN_P (insn) || NOTE_P (insn)) && insn != BB_HEAD (bb));
3102
3103 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
3104 if (NONJUMP_INSN_P (insn)
3105 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
3106 {
3107 rtx eqnote;
3108
3109 if (! may_trap_p (PATTERN (insn))
3110 || ((eqnote = find_reg_equal_equiv_note (insn))
3111 && ! may_trap_p (XEXP (eqnote, 0))))
3112 remove_note (insn, note);
3113 }
3114
3115 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
3116 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3117 {
3118 bool remove = false;
3119
3120 /* There are three types of edges we need to handle correctly here: EH
3121 edges, abnormal call EH edges, and abnormal call non-EH edges. The
3122 latter can appear when nonlocal gotos are used. */
3123 if (e->flags & EDGE_ABNORMAL_CALL)
3124 {
3125 if (!CALL_P (insn))
3126 remove = true;
3127 else if (can_nonlocal_goto (insn))
3128 ;
3129 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3130 ;
3131 else if (flag_tm && find_reg_note (insn, REG_TM, NULL))
3132 ;
3133 else
3134 remove = true;
3135 }
3136 else if (e->flags & EDGE_EH)
3137 remove = !can_throw_internal (insn);
3138
3139 if (remove)
3140 {
3141 remove_edge (e);
3142 df_set_bb_dirty (bb);
3143 purged = true;
3144 }
3145 else
3146 ei_next (&ei);
3147 }
3148
3149 if (JUMP_P (insn))
3150 {
3151 rtx note;
3152 edge b,f;
3153 edge_iterator ei;
3154
3155 /* We do care only about conditional jumps and simplejumps. */
3156 if (!any_condjump_p (insn)
3157 && !returnjump_p (insn)
3158 && !simplejump_p (insn))
3159 return purged;
3160
3161 /* Branch probability/prediction notes are defined only for
3162 condjumps. We've possibly turned condjump into simplejump. */
3163 if (simplejump_p (insn))
3164 {
3165 note = find_reg_note (insn, REG_BR_PROB, NULL);
3166 if (note)
3167 remove_note (insn, note);
3168 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
3169 remove_note (insn, note);
3170 }
3171
3172 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3173 {
3174 /* Avoid abnormal flags to leak from computed jumps turned
3175 into simplejumps. */
3176
3177 e->flags &= ~EDGE_ABNORMAL;
3178
3179 /* See if this edge is one we should keep. */
3180 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
3181 /* A conditional jump can fall through into the next
3182 block, so we should keep the edge. */
3183 {
3184 ei_next (&ei);
3185 continue;
3186 }
3187 else if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
3188 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
3189 /* If the destination block is the target of the jump,
3190 keep the edge. */
3191 {
3192 ei_next (&ei);
3193 continue;
3194 }
3195 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
3196 && returnjump_p (insn))
3197 /* If the destination block is the exit block, and this
3198 instruction is a return, then keep the edge. */
3199 {
3200 ei_next (&ei);
3201 continue;
3202 }
3203 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3204 /* Keep the edges that correspond to exceptions thrown by
3205 this instruction and rematerialize the EDGE_ABNORMAL
3206 flag we just cleared above. */
3207 {
3208 e->flags |= EDGE_ABNORMAL;
3209 ei_next (&ei);
3210 continue;
3211 }
3212
3213 /* We do not need this edge. */
3214 df_set_bb_dirty (bb);
3215 purged = true;
3216 remove_edge (e);
3217 }
3218
3219 if (EDGE_COUNT (bb->succs) == 0 || !purged)
3220 return purged;
3221
3222 if (dump_file)
3223 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
3224
3225 if (!optimize)
3226 return purged;
3227
3228 /* Redistribute probabilities. */
3229 if (single_succ_p (bb))
3230 {
3231 single_succ_edge (bb)->probability = profile_probability::always ();
3232 }
3233 else
3234 {
3235 note = find_reg_note (insn, REG_BR_PROB, NULL);
3236 if (!note)
3237 return purged;
3238
3239 b = BRANCH_EDGE (bb);
3240 f = FALLTHRU_EDGE (bb);
3241 b->probability = profile_probability::from_reg_br_prob_note
3242 (XINT (note, 0));
3243 f->probability = b->probability.invert ();
3244 }
3245
3246 return purged;
3247 }
3248 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
3249 {
3250 /* First, there should not be any EH or ABCALL edges resulting
3251 from non-local gotos and the like. If there were, we shouldn't
3252 have created the sibcall in the first place. Second, there
3253 should of course never have been a fallthru edge. */
3254 gcc_assert (single_succ_p (bb));
3255 gcc_assert (single_succ_edge (bb)->flags
3256 == (EDGE_SIBCALL | EDGE_ABNORMAL));
3257
3258 return 0;
3259 }
3260
3261 /* If we don't see a jump insn, we don't know exactly why the block would
3262 have been broken at this point. Look for a simple, non-fallthru edge,
3263 as these are only created by conditional branches. If we find such an
3264 edge we know that there used to be a jump here and can then safely
3265 remove all non-fallthru edges. */
3266 found = false;
3267 FOR_EACH_EDGE (e, ei, bb->succs)
3268 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
3269 {
3270 found = true;
3271 break;
3272 }
3273
3274 if (!found)
3275 return purged;
3276
3277 /* Remove all but the fake and fallthru edges. The fake edge may be
3278 the only successor for this block in the case of noreturn
3279 calls. */
3280 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3281 {
3282 if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
3283 {
3284 df_set_bb_dirty (bb);
3285 remove_edge (e);
3286 purged = true;
3287 }
3288 else
3289 ei_next (&ei);
3290 }
3291
3292 gcc_assert (single_succ_p (bb));
3293
3294 single_succ_edge (bb)->probability = profile_probability::always ();
3295
3296 if (dump_file)
3297 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
3298 bb->index);
3299 return purged;
3300 }
3301
3302 /* Search all basic blocks for potentially dead edges and purge them. Return
3303 true if some edge has been eliminated. */
3304
3305 bool
3306 purge_all_dead_edges (void)
3307 {
3308 int purged = false;
3309 basic_block bb;
3310
3311 FOR_EACH_BB_FN (bb, cfun)
3312 {
3313 bool purged_here = purge_dead_edges (bb);
3314
3315 purged |= purged_here;
3316 }
3317
3318 return purged;
3319 }
3320
3321 /* This is used by a few passes that emit some instructions after abnormal
3322 calls, moving the basic block's end, while they in fact do want to emit
3323 them on the fallthru edge. Look for abnormal call edges, find backward
3324 the call in the block and insert the instructions on the edge instead.
3325
3326 Similarly, handle instructions throwing exceptions internally.
3327
3328 Return true when instructions have been found and inserted on edges. */
3329
3330 bool
3331 fixup_abnormal_edges (void)
3332 {
3333 bool inserted = false;
3334 basic_block bb;
3335
3336 FOR_EACH_BB_FN (bb, cfun)
3337 {
3338 edge e;
3339 edge_iterator ei;
3340
3341 /* Look for cases we are interested in - calls or instructions causing
3342 exceptions. */
3343 FOR_EACH_EDGE (e, ei, bb->succs)
3344 if ((e->flags & EDGE_ABNORMAL_CALL)
3345 || ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
3346 == (EDGE_ABNORMAL | EDGE_EH)))
3347 break;
3348
3349 if (e && !CALL_P (BB_END (bb)) && !can_throw_internal (BB_END (bb)))
3350 {
3351 rtx_insn *insn;
3352
3353 /* Get past the new insns generated. Allow notes, as the insns
3354 may be already deleted. */
3355 insn = BB_END (bb);
3356 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
3357 && !can_throw_internal (insn)
3358 && insn != BB_HEAD (bb))
3359 insn = PREV_INSN (insn);
3360
3361 if (CALL_P (insn) || can_throw_internal (insn))
3362 {
3363 rtx_insn *stop, *next;
3364
3365 e = find_fallthru_edge (bb->succs);
3366
3367 stop = NEXT_INSN (BB_END (bb));
3368 BB_END (bb) = insn;
3369
3370 for (insn = NEXT_INSN (insn); insn != stop; insn = next)
3371 {
3372 next = NEXT_INSN (insn);
3373 if (INSN_P (insn))
3374 {
3375 delete_insn (insn);
3376
3377 /* Sometimes there's still the return value USE.
3378 If it's placed after a trapping call (i.e. that
3379 call is the last insn anyway), we have no fallthru
3380 edge. Simply delete this use and don't try to insert
3381 on the non-existent edge.
3382 Similarly, sometimes a call that can throw is
3383 followed in the source with __builtin_unreachable (),
3384 meaning that there is UB if the call returns rather
3385 than throws. If there weren't any instructions
3386 following such calls before, supposedly even the ones
3387 we've deleted aren't significant and can be
3388 removed. */
3389 if (e)
3390 {
3391 /* We're not deleting it, we're moving it. */
3392 insn->set_undeleted ();
3393 SET_PREV_INSN (insn) = NULL_RTX;
3394 SET_NEXT_INSN (insn) = NULL_RTX;
3395
3396 insert_insn_on_edge (insn, e);
3397 inserted = true;
3398 }
3399 }
3400 else if (!BARRIER_P (insn))
3401 set_block_for_insn (insn, NULL);
3402 }
3403 }
3404
3405 /* It may be that we don't find any trapping insn. In this
3406 case we discovered quite late that the insn that had been
3407 marked as can_throw_internal in fact couldn't trap at all.
3408 So we should in fact delete the EH edges out of the block. */
3409 else
3410 purge_dead_edges (bb);
3411 }
3412 }
3413
3414 return inserted;
3415 }
3416 \f
3417 /* Cut the insns from FIRST to LAST out of the insns stream. */
3418
3419 rtx_insn *
3420 unlink_insn_chain (rtx_insn *first, rtx_insn *last)
3421 {
3422 rtx_insn *prevfirst = PREV_INSN (first);
3423 rtx_insn *nextlast = NEXT_INSN (last);
3424
3425 SET_PREV_INSN (first) = NULL;
3426 SET_NEXT_INSN (last) = NULL;
3427 if (prevfirst)
3428 SET_NEXT_INSN (prevfirst) = nextlast;
3429 if (nextlast)
3430 SET_PREV_INSN (nextlast) = prevfirst;
3431 else
3432 set_last_insn (prevfirst);
3433 if (!prevfirst)
3434 set_first_insn (nextlast);
3435 return first;
3436 }
3437 \f
3438 /* Skip over inter-block insns occurring after BB which are typically
3439 associated with BB (e.g., barriers). If there are any such insns,
3440 we return the last one. Otherwise, we return the end of BB. */
3441
3442 static rtx_insn *
3443 skip_insns_after_block (basic_block bb)
3444 {
3445 rtx_insn *insn, *last_insn, *next_head, *prev;
3446
3447 next_head = NULL;
3448 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3449 next_head = BB_HEAD (bb->next_bb);
3450
3451 for (last_insn = insn = BB_END (bb); (insn = NEXT_INSN (insn)) != 0; )
3452 {
3453 if (insn == next_head)
3454 break;
3455
3456 switch (GET_CODE (insn))
3457 {
3458 case BARRIER:
3459 last_insn = insn;
3460 continue;
3461
3462 case NOTE:
3463 switch (NOTE_KIND (insn))
3464 {
3465 case NOTE_INSN_BLOCK_END:
3466 gcc_unreachable ();
3467 continue;
3468 default:
3469 continue;
3470 break;
3471 }
3472 break;
3473
3474 case CODE_LABEL:
3475 if (NEXT_INSN (insn)
3476 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
3477 {
3478 insn = NEXT_INSN (insn);
3479 last_insn = insn;
3480 continue;
3481 }
3482 break;
3483
3484 default:
3485 break;
3486 }
3487
3488 break;
3489 }
3490
3491 /* It is possible to hit contradictory sequence. For instance:
3492
3493 jump_insn
3494 NOTE_INSN_BLOCK_BEG
3495 barrier
3496
3497 Where barrier belongs to jump_insn, but the note does not. This can be
3498 created by removing the basic block originally following
3499 NOTE_INSN_BLOCK_BEG. In such case reorder the notes. */
3500
3501 for (insn = last_insn; insn != BB_END (bb); insn = prev)
3502 {
3503 prev = PREV_INSN (insn);
3504 if (NOTE_P (insn))
3505 switch (NOTE_KIND (insn))
3506 {
3507 case NOTE_INSN_BLOCK_END:
3508 gcc_unreachable ();
3509 break;
3510 case NOTE_INSN_DELETED:
3511 case NOTE_INSN_DELETED_LABEL:
3512 case NOTE_INSN_DELETED_DEBUG_LABEL:
3513 continue;
3514 default:
3515 reorder_insns (insn, insn, last_insn);
3516 }
3517 }
3518
3519 return last_insn;
3520 }
3521
3522 /* Locate or create a label for a given basic block. */
3523
3524 static rtx_insn *
3525 label_for_bb (basic_block bb)
3526 {
3527 rtx_insn *label = BB_HEAD (bb);
3528
3529 if (!LABEL_P (label))
3530 {
3531 if (dump_file)
3532 fprintf (dump_file, "Emitting label for block %d\n", bb->index);
3533
3534 label = block_label (bb);
3535 }
3536
3537 return label;
3538 }
3539
3540 /* Locate the effective beginning and end of the insn chain for each
3541 block, as defined by skip_insns_after_block above. */
3542
3543 static void
3544 record_effective_endpoints (void)
3545 {
3546 rtx_insn *next_insn;
3547 basic_block bb;
3548 rtx_insn *insn;
3549
3550 for (insn = get_insns ();
3551 insn
3552 && NOTE_P (insn)
3553 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK;
3554 insn = NEXT_INSN (insn))
3555 continue;
3556 /* No basic blocks at all? */
3557 gcc_assert (insn);
3558
3559 if (PREV_INSN (insn))
3560 cfg_layout_function_header =
3561 unlink_insn_chain (get_insns (), PREV_INSN (insn));
3562 else
3563 cfg_layout_function_header = NULL;
3564
3565 next_insn = get_insns ();
3566 FOR_EACH_BB_FN (bb, cfun)
3567 {
3568 rtx_insn *end;
3569
3570 if (PREV_INSN (BB_HEAD (bb)) && next_insn != BB_HEAD (bb))
3571 BB_HEADER (bb) = unlink_insn_chain (next_insn,
3572 PREV_INSN (BB_HEAD (bb)));
3573 end = skip_insns_after_block (bb);
3574 if (NEXT_INSN (BB_END (bb)) && BB_END (bb) != end)
3575 BB_FOOTER (bb) = unlink_insn_chain (NEXT_INSN (BB_END (bb)), end);
3576 next_insn = NEXT_INSN (BB_END (bb));
3577 }
3578
3579 cfg_layout_function_footer = next_insn;
3580 if (cfg_layout_function_footer)
3581 cfg_layout_function_footer = unlink_insn_chain (cfg_layout_function_footer, get_last_insn ());
3582 }
3583 \f
3584 namespace {
3585
3586 const pass_data pass_data_into_cfg_layout_mode =
3587 {
3588 RTL_PASS, /* type */
3589 "into_cfglayout", /* name */
3590 OPTGROUP_NONE, /* optinfo_flags */
3591 TV_CFG, /* tv_id */
3592 0, /* properties_required */
3593 PROP_cfglayout, /* properties_provided */
3594 0, /* properties_destroyed */
3595 0, /* todo_flags_start */
3596 0, /* todo_flags_finish */
3597 };
3598
3599 class pass_into_cfg_layout_mode : public rtl_opt_pass
3600 {
3601 public:
3602 pass_into_cfg_layout_mode (gcc::context *ctxt)
3603 : rtl_opt_pass (pass_data_into_cfg_layout_mode, ctxt)
3604 {}
3605
3606 /* opt_pass methods: */
3607 virtual unsigned int execute (function *)
3608 {
3609 cfg_layout_initialize (0);
3610 return 0;
3611 }
3612
3613 }; // class pass_into_cfg_layout_mode
3614
3615 } // anon namespace
3616
3617 rtl_opt_pass *
3618 make_pass_into_cfg_layout_mode (gcc::context *ctxt)
3619 {
3620 return new pass_into_cfg_layout_mode (ctxt);
3621 }
3622
3623 namespace {
3624
3625 const pass_data pass_data_outof_cfg_layout_mode =
3626 {
3627 RTL_PASS, /* type */
3628 "outof_cfglayout", /* name */
3629 OPTGROUP_NONE, /* optinfo_flags */
3630 TV_CFG, /* tv_id */
3631 0, /* properties_required */
3632 0, /* properties_provided */
3633 PROP_cfglayout, /* properties_destroyed */
3634 0, /* todo_flags_start */
3635 0, /* todo_flags_finish */
3636 };
3637
3638 class pass_outof_cfg_layout_mode : public rtl_opt_pass
3639 {
3640 public:
3641 pass_outof_cfg_layout_mode (gcc::context *ctxt)
3642 : rtl_opt_pass (pass_data_outof_cfg_layout_mode, ctxt)
3643 {}
3644
3645 /* opt_pass methods: */
3646 virtual unsigned int execute (function *);
3647
3648 }; // class pass_outof_cfg_layout_mode
3649
3650 unsigned int
3651 pass_outof_cfg_layout_mode::execute (function *fun)
3652 {
3653 basic_block bb;
3654
3655 FOR_EACH_BB_FN (bb, fun)
3656 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3657 bb->aux = bb->next_bb;
3658
3659 cfg_layout_finalize ();
3660
3661 return 0;
3662 }
3663
3664 } // anon namespace
3665
3666 rtl_opt_pass *
3667 make_pass_outof_cfg_layout_mode (gcc::context *ctxt)
3668 {
3669 return new pass_outof_cfg_layout_mode (ctxt);
3670 }
3671 \f
3672
3673 /* Link the basic blocks in the correct order, compacting the basic
3674 block queue while at it. If STAY_IN_CFGLAYOUT_MODE is false, this
3675 function also clears the basic block header and footer fields.
3676
3677 This function is usually called after a pass (e.g. tracer) finishes
3678 some transformations while in cfglayout mode. The required sequence
3679 of the basic blocks is in a linked list along the bb->aux field.
3680 This functions re-links the basic block prev_bb and next_bb pointers
3681 accordingly, and it compacts and renumbers the blocks.
3682
3683 FIXME: This currently works only for RTL, but the only RTL-specific
3684 bits are the STAY_IN_CFGLAYOUT_MODE bits. The tracer pass was moved
3685 to GIMPLE a long time ago, but it doesn't relink the basic block
3686 chain. It could do that (to give better initial RTL) if this function
3687 is made IR-agnostic (and moved to cfganal.c or cfg.c while at it). */
3688
3689 void
3690 relink_block_chain (bool stay_in_cfglayout_mode)
3691 {
3692 basic_block bb, prev_bb;
3693 int index;
3694
3695 /* Maybe dump the re-ordered sequence. */
3696 if (dump_file)
3697 {
3698 fprintf (dump_file, "Reordered sequence:\n");
3699 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, index =
3700 NUM_FIXED_BLOCKS;
3701 bb;
3702 bb = (basic_block) bb->aux, index++)
3703 {
3704 fprintf (dump_file, " %i ", index);
3705 if (get_bb_original (bb))
3706 fprintf (dump_file, "duplicate of %i\n",
3707 get_bb_original (bb)->index);
3708 else if (forwarder_block_p (bb)
3709 && !LABEL_P (BB_HEAD (bb)))
3710 fprintf (dump_file, "compensation\n");
3711 else
3712 fprintf (dump_file, "bb %i\n", bb->index);
3713 }
3714 }
3715
3716 /* Now reorder the blocks. */
3717 prev_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3718 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
3719 for (; bb; prev_bb = bb, bb = (basic_block) bb->aux)
3720 {
3721 bb->prev_bb = prev_bb;
3722 prev_bb->next_bb = bb;
3723 }
3724 prev_bb->next_bb = EXIT_BLOCK_PTR_FOR_FN (cfun);
3725 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb = prev_bb;
3726
3727 /* Then, clean up the aux fields. */
3728 FOR_ALL_BB_FN (bb, cfun)
3729 {
3730 bb->aux = NULL;
3731 if (!stay_in_cfglayout_mode)
3732 BB_HEADER (bb) = BB_FOOTER (bb) = NULL;
3733 }
3734
3735 /* Maybe reset the original copy tables, they are not valid anymore
3736 when we renumber the basic blocks in compact_blocks. If we are
3737 are going out of cfglayout mode, don't re-allocate the tables. */
3738 if (original_copy_tables_initialized_p ())
3739 free_original_copy_tables ();
3740 if (stay_in_cfglayout_mode)
3741 initialize_original_copy_tables ();
3742
3743 /* Finally, put basic_block_info in the new order. */
3744 compact_blocks ();
3745 }
3746 \f
3747
3748 /* Given a reorder chain, rearrange the code to match. */
3749
3750 static void
3751 fixup_reorder_chain (void)
3752 {
3753 basic_block bb;
3754 rtx_insn *insn = NULL;
3755
3756 if (cfg_layout_function_header)
3757 {
3758 set_first_insn (cfg_layout_function_header);
3759 insn = cfg_layout_function_header;
3760 while (NEXT_INSN (insn))
3761 insn = NEXT_INSN (insn);
3762 }
3763
3764 /* First do the bulk reordering -- rechain the blocks without regard to
3765 the needed changes to jumps and labels. */
3766
3767 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb; bb = (basic_block)
3768 bb->aux)
3769 {
3770 if (BB_HEADER (bb))
3771 {
3772 if (insn)
3773 SET_NEXT_INSN (insn) = BB_HEADER (bb);
3774 else
3775 set_first_insn (BB_HEADER (bb));
3776 SET_PREV_INSN (BB_HEADER (bb)) = insn;
3777 insn = BB_HEADER (bb);
3778 while (NEXT_INSN (insn))
3779 insn = NEXT_INSN (insn);
3780 }
3781 if (insn)
3782 SET_NEXT_INSN (insn) = BB_HEAD (bb);
3783 else
3784 set_first_insn (BB_HEAD (bb));
3785 SET_PREV_INSN (BB_HEAD (bb)) = insn;
3786 insn = BB_END (bb);
3787 if (BB_FOOTER (bb))
3788 {
3789 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
3790 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
3791 while (NEXT_INSN (insn))
3792 insn = NEXT_INSN (insn);
3793 }
3794 }
3795
3796 SET_NEXT_INSN (insn) = cfg_layout_function_footer;
3797 if (cfg_layout_function_footer)
3798 SET_PREV_INSN (cfg_layout_function_footer) = insn;
3799
3800 while (NEXT_INSN (insn))
3801 insn = NEXT_INSN (insn);
3802
3803 set_last_insn (insn);
3804 if (flag_checking)
3805 verify_insn_chain ();
3806
3807 /* Now add jumps and labels as needed to match the blocks new
3808 outgoing edges. */
3809
3810 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb ; bb = (basic_block)
3811 bb->aux)
3812 {
3813 edge e_fall, e_taken, e;
3814 rtx_insn *bb_end_insn;
3815 rtx ret_label = NULL_RTX;
3816 basic_block nb;
3817 edge_iterator ei;
3818
3819 if (EDGE_COUNT (bb->succs) == 0)
3820 continue;
3821
3822 /* Find the old fallthru edge, and another non-EH edge for
3823 a taken jump. */
3824 e_taken = e_fall = NULL;
3825
3826 FOR_EACH_EDGE (e, ei, bb->succs)
3827 if (e->flags & EDGE_FALLTHRU)
3828 e_fall = e;
3829 else if (! (e->flags & EDGE_EH))
3830 e_taken = e;
3831
3832 bb_end_insn = BB_END (bb);
3833 if (rtx_jump_insn *bb_end_jump = dyn_cast <rtx_jump_insn *> (bb_end_insn))
3834 {
3835 ret_label = JUMP_LABEL (bb_end_jump);
3836 if (any_condjump_p (bb_end_jump))
3837 {
3838 /* This might happen if the conditional jump has side
3839 effects and could therefore not be optimized away.
3840 Make the basic block to end with a barrier in order
3841 to prevent rtl_verify_flow_info from complaining. */
3842 if (!e_fall)
3843 {
3844 gcc_assert (!onlyjump_p (bb_end_jump)
3845 || returnjump_p (bb_end_jump)
3846 || (e_taken->flags & EDGE_CROSSING));
3847 emit_barrier_after (bb_end_jump);
3848 continue;
3849 }
3850
3851 /* If the old fallthru is still next, nothing to do. */
3852 if (bb->aux == e_fall->dest
3853 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3854 continue;
3855
3856 /* The degenerated case of conditional jump jumping to the next
3857 instruction can happen for jumps with side effects. We need
3858 to construct a forwarder block and this will be done just
3859 fine by force_nonfallthru below. */
3860 if (!e_taken)
3861 ;
3862
3863 /* There is another special case: if *neither* block is next,
3864 such as happens at the very end of a function, then we'll
3865 need to add a new unconditional jump. Choose the taken
3866 edge based on known or assumed probability. */
3867 else if (bb->aux != e_taken->dest)
3868 {
3869 rtx note = find_reg_note (bb_end_jump, REG_BR_PROB, 0);
3870
3871 if (note
3872 && profile_probability::from_reg_br_prob_note
3873 (XINT (note, 0)) < profile_probability::even ()
3874 && invert_jump (bb_end_jump,
3875 (e_fall->dest
3876 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3877 ? NULL_RTX
3878 : label_for_bb (e_fall->dest)), 0))
3879 {
3880 e_fall->flags &= ~EDGE_FALLTHRU;
3881 gcc_checking_assert (could_fall_through
3882 (e_taken->src, e_taken->dest));
3883 e_taken->flags |= EDGE_FALLTHRU;
3884 update_br_prob_note (bb);
3885 e = e_fall, e_fall = e_taken, e_taken = e;
3886 }
3887 }
3888
3889 /* If the "jumping" edge is a crossing edge, and the fall
3890 through edge is non-crossing, leave things as they are. */
3891 else if ((e_taken->flags & EDGE_CROSSING)
3892 && !(e_fall->flags & EDGE_CROSSING))
3893 continue;
3894
3895 /* Otherwise we can try to invert the jump. This will
3896 basically never fail, however, keep up the pretense. */
3897 else if (invert_jump (bb_end_jump,
3898 (e_fall->dest
3899 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3900 ? NULL_RTX
3901 : label_for_bb (e_fall->dest)), 0))
3902 {
3903 e_fall->flags &= ~EDGE_FALLTHRU;
3904 gcc_checking_assert (could_fall_through
3905 (e_taken->src, e_taken->dest));
3906 e_taken->flags |= EDGE_FALLTHRU;
3907 update_br_prob_note (bb);
3908 if (LABEL_NUSES (ret_label) == 0
3909 && single_pred_p (e_taken->dest))
3910 delete_insn (as_a<rtx_insn *> (ret_label));
3911 continue;
3912 }
3913 }
3914 else if (extract_asm_operands (PATTERN (bb_end_insn)) != NULL)
3915 {
3916 /* If the old fallthru is still next or if
3917 asm goto doesn't have a fallthru (e.g. when followed by
3918 __builtin_unreachable ()), nothing to do. */
3919 if (! e_fall
3920 || bb->aux == e_fall->dest
3921 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3922 continue;
3923
3924 /* Otherwise we'll have to use the fallthru fixup below. */
3925 }
3926 else
3927 {
3928 /* Otherwise we have some return, switch or computed
3929 jump. In the 99% case, there should not have been a
3930 fallthru edge. */
3931 gcc_assert (returnjump_p (bb_end_insn) || !e_fall);
3932 continue;
3933 }
3934 }
3935 else
3936 {
3937 /* No fallthru implies a noreturn function with EH edges, or
3938 something similarly bizarre. In any case, we don't need to
3939 do anything. */
3940 if (! e_fall)
3941 continue;
3942
3943 /* If the fallthru block is still next, nothing to do. */
3944 if (bb->aux == e_fall->dest)
3945 continue;
3946
3947 /* A fallthru to exit block. */
3948 if (e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3949 continue;
3950 }
3951
3952 /* We got here if we need to add a new jump insn.
3953 Note force_nonfallthru can delete E_FALL and thus we have to
3954 save E_FALL->src prior to the call to force_nonfallthru. */
3955 nb = force_nonfallthru_and_redirect (e_fall, e_fall->dest, ret_label);
3956 if (nb)
3957 {
3958 nb->aux = bb->aux;
3959 bb->aux = nb;
3960 /* Don't process this new block. */
3961 bb = nb;
3962 }
3963 }
3964
3965 relink_block_chain (/*stay_in_cfglayout_mode=*/false);
3966
3967 /* Annoying special case - jump around dead jumptables left in the code. */
3968 FOR_EACH_BB_FN (bb, cfun)
3969 {
3970 edge e = find_fallthru_edge (bb->succs);
3971
3972 if (e && !can_fallthru (e->src, e->dest))
3973 force_nonfallthru (e);
3974 }
3975
3976 /* Ensure goto_locus from edges has some instructions with that locus in RTL
3977 when not optimizing. */
3978 if (!optimize && !DECL_IGNORED_P (current_function_decl))
3979 FOR_EACH_BB_FN (bb, cfun)
3980 {
3981 edge e;
3982 edge_iterator ei;
3983
3984 FOR_EACH_EDGE (e, ei, bb->succs)
3985 if (LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
3986 && !(e->flags & EDGE_ABNORMAL))
3987 {
3988 edge e2;
3989 edge_iterator ei2;
3990 basic_block dest, nb;
3991 rtx_insn *end;
3992
3993 insn = BB_END (e->src);
3994 end = PREV_INSN (BB_HEAD (e->src));
3995 while (insn != end
3996 && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
3997 insn = PREV_INSN (insn);
3998 if (insn != end
3999 && INSN_LOCATION (insn) == e->goto_locus)
4000 continue;
4001 if (simplejump_p (BB_END (e->src))
4002 && !INSN_HAS_LOCATION (BB_END (e->src)))
4003 {
4004 INSN_LOCATION (BB_END (e->src)) = e->goto_locus;
4005 continue;
4006 }
4007 dest = e->dest;
4008 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4009 {
4010 /* Non-fallthru edges to the exit block cannot be split. */
4011 if (!(e->flags & EDGE_FALLTHRU))
4012 continue;
4013 }
4014 else
4015 {
4016 insn = BB_HEAD (dest);
4017 end = NEXT_INSN (BB_END (dest));
4018 while (insn != end && !NONDEBUG_INSN_P (insn))
4019 insn = NEXT_INSN (insn);
4020 if (insn != end && INSN_HAS_LOCATION (insn)
4021 && INSN_LOCATION (insn) == e->goto_locus)
4022 continue;
4023 }
4024 nb = split_edge (e);
4025 if (!INSN_P (BB_END (nb)))
4026 BB_END (nb) = emit_insn_after_noloc (gen_nop (), BB_END (nb),
4027 nb);
4028 INSN_LOCATION (BB_END (nb)) = e->goto_locus;
4029
4030 /* If there are other incoming edges to the destination block
4031 with the same goto locus, redirect them to the new block as
4032 well, this can prevent other such blocks from being created
4033 in subsequent iterations of the loop. */
4034 for (ei2 = ei_start (dest->preds); (e2 = ei_safe_edge (ei2)); )
4035 if (LOCATION_LOCUS (e2->goto_locus) != UNKNOWN_LOCATION
4036 && !(e2->flags & (EDGE_ABNORMAL | EDGE_FALLTHRU))
4037 && e->goto_locus == e2->goto_locus)
4038 redirect_edge_and_branch (e2, nb);
4039 else
4040 ei_next (&ei2);
4041 }
4042 }
4043 }
4044 \f
4045 /* Perform sanity checks on the insn chain.
4046 1. Check that next/prev pointers are consistent in both the forward and
4047 reverse direction.
4048 2. Count insns in chain, going both directions, and check if equal.
4049 3. Check that get_last_insn () returns the actual end of chain. */
4050
4051 DEBUG_FUNCTION void
4052 verify_insn_chain (void)
4053 {
4054 rtx_insn *x, *prevx, *nextx;
4055 int insn_cnt1, insn_cnt2;
4056
4057 for (prevx = NULL, insn_cnt1 = 1, x = get_insns ();
4058 x != 0;
4059 prevx = x, insn_cnt1++, x = NEXT_INSN (x))
4060 gcc_assert (PREV_INSN (x) == prevx);
4061
4062 gcc_assert (prevx == get_last_insn ());
4063
4064 for (nextx = NULL, insn_cnt2 = 1, x = get_last_insn ();
4065 x != 0;
4066 nextx = x, insn_cnt2++, x = PREV_INSN (x))
4067 gcc_assert (NEXT_INSN (x) == nextx);
4068
4069 gcc_assert (insn_cnt1 == insn_cnt2);
4070 }
4071 \f
4072 /* If we have assembler epilogues, the block falling through to exit must
4073 be the last one in the reordered chain when we reach final. Ensure
4074 that this condition is met. */
4075 static void
4076 fixup_fallthru_exit_predecessor (void)
4077 {
4078 edge e;
4079 basic_block bb = NULL;
4080
4081 /* This transformation is not valid before reload, because we might
4082 separate a call from the instruction that copies the return
4083 value. */
4084 gcc_assert (reload_completed);
4085
4086 e = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4087 if (e)
4088 bb = e->src;
4089
4090 if (bb && bb->aux)
4091 {
4092 basic_block c = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
4093
4094 /* If the very first block is the one with the fall-through exit
4095 edge, we have to split that block. */
4096 if (c == bb)
4097 {
4098 bb = split_block_after_labels (bb)->dest;
4099 bb->aux = c->aux;
4100 c->aux = bb;
4101 BB_FOOTER (bb) = BB_FOOTER (c);
4102 BB_FOOTER (c) = NULL;
4103 }
4104
4105 while (c->aux != bb)
4106 c = (basic_block) c->aux;
4107
4108 c->aux = bb->aux;
4109 while (c->aux)
4110 c = (basic_block) c->aux;
4111
4112 c->aux = bb;
4113 bb->aux = NULL;
4114 }
4115 }
4116
4117 /* In case there are more than one fallthru predecessors of exit, force that
4118 there is only one. */
4119
4120 static void
4121 force_one_exit_fallthru (void)
4122 {
4123 edge e, predecessor = NULL;
4124 bool more = false;
4125 edge_iterator ei;
4126 basic_block forwarder, bb;
4127
4128 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4129 if (e->flags & EDGE_FALLTHRU)
4130 {
4131 if (predecessor == NULL)
4132 predecessor = e;
4133 else
4134 {
4135 more = true;
4136 break;
4137 }
4138 }
4139
4140 if (!more)
4141 return;
4142
4143 /* Exit has several fallthru predecessors. Create a forwarder block for
4144 them. */
4145 forwarder = split_edge (predecessor);
4146 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4147 (e = ei_safe_edge (ei)); )
4148 {
4149 if (e->src == forwarder
4150 || !(e->flags & EDGE_FALLTHRU))
4151 ei_next (&ei);
4152 else
4153 redirect_edge_and_branch_force (e, forwarder);
4154 }
4155
4156 /* Fix up the chain of blocks -- make FORWARDER immediately precede the
4157 exit block. */
4158 FOR_EACH_BB_FN (bb, cfun)
4159 {
4160 if (bb->aux == NULL && bb != forwarder)
4161 {
4162 bb->aux = forwarder;
4163 break;
4164 }
4165 }
4166 }
4167 \f
4168 /* Return true in case it is possible to duplicate the basic block BB. */
4169
4170 static bool
4171 cfg_layout_can_duplicate_bb_p (const_basic_block bb)
4172 {
4173 /* Do not attempt to duplicate tablejumps, as we need to unshare
4174 the dispatch table. This is difficult to do, as the instructions
4175 computing jump destination may be hoisted outside the basic block. */
4176 if (tablejump_p (BB_END (bb), NULL, NULL))
4177 return false;
4178
4179 /* Do not duplicate blocks containing insns that can't be copied. */
4180 if (targetm.cannot_copy_insn_p)
4181 {
4182 rtx_insn *insn = BB_HEAD (bb);
4183 while (1)
4184 {
4185 if (INSN_P (insn) && targetm.cannot_copy_insn_p (insn))
4186 return false;
4187 if (insn == BB_END (bb))
4188 break;
4189 insn = NEXT_INSN (insn);
4190 }
4191 }
4192
4193 return true;
4194 }
4195
4196 rtx_insn *
4197 duplicate_insn_chain (rtx_insn *from, rtx_insn *to)
4198 {
4199 rtx_insn *insn, *next, *copy;
4200 rtx_note *last;
4201
4202 /* Avoid updating of boundaries of previous basic block. The
4203 note will get removed from insn stream in fixup. */
4204 last = emit_note (NOTE_INSN_DELETED);
4205
4206 /* Create copy at the end of INSN chain. The chain will
4207 be reordered later. */
4208 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
4209 {
4210 switch (GET_CODE (insn))
4211 {
4212 case DEBUG_INSN:
4213 /* Don't duplicate label debug insns. */
4214 if (DEBUG_BIND_INSN_P (insn)
4215 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL)
4216 break;
4217 /* FALLTHRU */
4218 case INSN:
4219 case CALL_INSN:
4220 case JUMP_INSN:
4221 copy = emit_copy_of_insn_after (insn, get_last_insn ());
4222 if (JUMP_P (insn) && JUMP_LABEL (insn) != NULL_RTX
4223 && ANY_RETURN_P (JUMP_LABEL (insn)))
4224 JUMP_LABEL (copy) = JUMP_LABEL (insn);
4225 maybe_copy_prologue_epilogue_insn (insn, copy);
4226 break;
4227
4228 case JUMP_TABLE_DATA:
4229 /* Avoid copying of dispatch tables. We never duplicate
4230 tablejumps, so this can hit only in case the table got
4231 moved far from original jump.
4232 Avoid copying following barrier as well if any
4233 (and debug insns in between). */
4234 for (next = NEXT_INSN (insn);
4235 next != NEXT_INSN (to);
4236 next = NEXT_INSN (next))
4237 if (!DEBUG_INSN_P (next))
4238 break;
4239 if (next != NEXT_INSN (to) && BARRIER_P (next))
4240 insn = next;
4241 break;
4242
4243 case CODE_LABEL:
4244 break;
4245
4246 case BARRIER:
4247 emit_barrier ();
4248 break;
4249
4250 case NOTE:
4251 switch (NOTE_KIND (insn))
4252 {
4253 /* In case prologue is empty and function contain label
4254 in first BB, we may want to copy the block. */
4255 case NOTE_INSN_PROLOGUE_END:
4256
4257 case NOTE_INSN_DELETED:
4258 case NOTE_INSN_DELETED_LABEL:
4259 case NOTE_INSN_DELETED_DEBUG_LABEL:
4260 /* No problem to strip these. */
4261 case NOTE_INSN_FUNCTION_BEG:
4262 /* There is always just single entry to function. */
4263 case NOTE_INSN_BASIC_BLOCK:
4264 /* We should only switch text sections once. */
4265 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4266 break;
4267
4268 case NOTE_INSN_EPILOGUE_BEG:
4269 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
4270 emit_note_copy (as_a <rtx_note *> (insn));
4271 break;
4272
4273 default:
4274 /* All other notes should have already been eliminated. */
4275 gcc_unreachable ();
4276 }
4277 break;
4278 default:
4279 gcc_unreachable ();
4280 }
4281 }
4282 insn = NEXT_INSN (last);
4283 delete_insn (last);
4284 return insn;
4285 }
4286
4287 /* Create a duplicate of the basic block BB. */
4288
4289 static basic_block
4290 cfg_layout_duplicate_bb (basic_block bb, copy_bb_data *)
4291 {
4292 rtx_insn *insn;
4293 basic_block new_bb;
4294
4295 insn = duplicate_insn_chain (BB_HEAD (bb), BB_END (bb));
4296 new_bb = create_basic_block (insn,
4297 insn ? get_last_insn () : NULL,
4298 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
4299
4300 BB_COPY_PARTITION (new_bb, bb);
4301 if (BB_HEADER (bb))
4302 {
4303 insn = BB_HEADER (bb);
4304 while (NEXT_INSN (insn))
4305 insn = NEXT_INSN (insn);
4306 insn = duplicate_insn_chain (BB_HEADER (bb), insn);
4307 if (insn)
4308 BB_HEADER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4309 }
4310
4311 if (BB_FOOTER (bb))
4312 {
4313 insn = BB_FOOTER (bb);
4314 while (NEXT_INSN (insn))
4315 insn = NEXT_INSN (insn);
4316 insn = duplicate_insn_chain (BB_FOOTER (bb), insn);
4317 if (insn)
4318 BB_FOOTER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4319 }
4320
4321 return new_bb;
4322 }
4323
4324 \f
4325 /* Main entry point to this module - initialize the datastructures for
4326 CFG layout changes. It keeps LOOPS up-to-date if not null.
4327
4328 FLAGS is a set of additional flags to pass to cleanup_cfg(). */
4329
4330 void
4331 cfg_layout_initialize (int flags)
4332 {
4333 rtx_insn_list *x;
4334 basic_block bb;
4335
4336 /* Once bb partitioning is complete, cfg layout mode should not be
4337 re-entered. Entering cfg layout mode may require fixups. As an
4338 example, if edge forwarding performed when optimizing the cfg
4339 layout required moving a block from the hot to the cold
4340 section. This would create an illegal partitioning unless some
4341 manual fixup was performed. */
4342 gcc_assert (!crtl->bb_reorder_complete || !crtl->has_bb_partition);
4343
4344 initialize_original_copy_tables ();
4345
4346 cfg_layout_rtl_register_cfg_hooks ();
4347
4348 record_effective_endpoints ();
4349
4350 /* Make sure that the targets of non local gotos are marked. */
4351 for (x = nonlocal_goto_handler_labels; x; x = x->next ())
4352 {
4353 bb = BLOCK_FOR_INSN (x->insn ());
4354 bb->flags |= BB_NON_LOCAL_GOTO_TARGET;
4355 }
4356
4357 cleanup_cfg (CLEANUP_CFGLAYOUT | flags);
4358 }
4359
4360 /* Splits superblocks. */
4361 void
4362 break_superblocks (void)
4363 {
4364 bool need = false;
4365 basic_block bb;
4366
4367 auto_sbitmap superblocks (last_basic_block_for_fn (cfun));
4368 bitmap_clear (superblocks);
4369
4370 FOR_EACH_BB_FN (bb, cfun)
4371 if (bb->flags & BB_SUPERBLOCK)
4372 {
4373 bb->flags &= ~BB_SUPERBLOCK;
4374 bitmap_set_bit (superblocks, bb->index);
4375 need = true;
4376 }
4377
4378 if (need)
4379 {
4380 rebuild_jump_labels (get_insns ());
4381 find_many_sub_basic_blocks (superblocks);
4382 }
4383 }
4384
4385 /* Finalize the changes: reorder insn list according to the sequence specified
4386 by aux pointers, enter compensation code, rebuild scope forest. */
4387
4388 void
4389 cfg_layout_finalize (void)
4390 {
4391 free_dominance_info (CDI_DOMINATORS);
4392 force_one_exit_fallthru ();
4393 rtl_register_cfg_hooks ();
4394 if (reload_completed && !targetm.have_epilogue ())
4395 fixup_fallthru_exit_predecessor ();
4396 fixup_reorder_chain ();
4397
4398 rebuild_jump_labels (get_insns ());
4399 delete_dead_jumptables ();
4400
4401 if (flag_checking)
4402 verify_insn_chain ();
4403 checking_verify_flow_info ();
4404 }
4405
4406
4407 /* Same as split_block but update cfg_layout structures. */
4408
4409 static basic_block
4410 cfg_layout_split_block (basic_block bb, void *insnp)
4411 {
4412 rtx insn = (rtx) insnp;
4413 basic_block new_bb = rtl_split_block (bb, insn);
4414
4415 BB_FOOTER (new_bb) = BB_FOOTER (bb);
4416 BB_FOOTER (bb) = NULL;
4417
4418 return new_bb;
4419 }
4420
4421 /* Redirect Edge to DEST. */
4422 static edge
4423 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
4424 {
4425 basic_block src = e->src;
4426 edge ret;
4427
4428 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4429 return NULL;
4430
4431 if (e->dest == dest)
4432 return e;
4433
4434 if (e->flags & EDGE_CROSSING
4435 && BB_PARTITION (e->src) == BB_PARTITION (dest)
4436 && simplejump_p (BB_END (src)))
4437 {
4438 if (dump_file)
4439 fprintf (dump_file,
4440 "Removing crossing jump while redirecting edge form %i to %i\n",
4441 e->src->index, dest->index);
4442 delete_insn (BB_END (src));
4443 remove_barriers_from_footer (src);
4444 e->flags |= EDGE_FALLTHRU;
4445 }
4446
4447 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4448 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
4449 {
4450 df_set_bb_dirty (src);
4451 return ret;
4452 }
4453
4454 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4455 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
4456 {
4457 if (dump_file)
4458 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
4459 e->src->index, dest->index);
4460
4461 df_set_bb_dirty (e->src);
4462 redirect_edge_succ (e, dest);
4463 return e;
4464 }
4465
4466 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
4467 in the case the basic block appears to be in sequence. Avoid this
4468 transformation. */
4469
4470 if (e->flags & EDGE_FALLTHRU)
4471 {
4472 /* Redirect any branch edges unified with the fallthru one. */
4473 if (JUMP_P (BB_END (src))
4474 && label_is_jump_target_p (BB_HEAD (e->dest),
4475 BB_END (src)))
4476 {
4477 edge redirected;
4478
4479 if (dump_file)
4480 fprintf (dump_file, "Fallthru edge unified with branch "
4481 "%i->%i redirected to %i\n",
4482 e->src->index, e->dest->index, dest->index);
4483 e->flags &= ~EDGE_FALLTHRU;
4484 redirected = redirect_branch_edge (e, dest);
4485 gcc_assert (redirected);
4486 redirected->flags |= EDGE_FALLTHRU;
4487 df_set_bb_dirty (redirected->src);
4488 return redirected;
4489 }
4490 /* In case we are redirecting fallthru edge to the branch edge
4491 of conditional jump, remove it. */
4492 if (EDGE_COUNT (src->succs) == 2)
4493 {
4494 /* Find the edge that is different from E. */
4495 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
4496
4497 if (s->dest == dest
4498 && any_condjump_p (BB_END (src))
4499 && onlyjump_p (BB_END (src)))
4500 delete_insn (BB_END (src));
4501 }
4502 if (dump_file)
4503 fprintf (dump_file, "Redirecting fallthru edge %i->%i to %i\n",
4504 e->src->index, e->dest->index, dest->index);
4505 ret = redirect_edge_succ_nodup (e, dest);
4506 }
4507 else
4508 ret = redirect_branch_edge (e, dest);
4509
4510 if (!ret)
4511 return NULL;
4512
4513 fixup_partition_crossing (ret);
4514 /* We don't want simplejumps in the insn stream during cfglayout. */
4515 gcc_assert (!simplejump_p (BB_END (src)) || CROSSING_JUMP_P (BB_END (src)));
4516
4517 df_set_bb_dirty (src);
4518 return ret;
4519 }
4520
4521 /* Simple wrapper as we always can redirect fallthru edges. */
4522 static basic_block
4523 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
4524 {
4525 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
4526
4527 gcc_assert (redirected);
4528 return NULL;
4529 }
4530
4531 /* Same as delete_basic_block but update cfg_layout structures. */
4532
4533 static void
4534 cfg_layout_delete_block (basic_block bb)
4535 {
4536 rtx_insn *insn, *next, *prev = PREV_INSN (BB_HEAD (bb)), *remaints;
4537 rtx_insn **to;
4538
4539 if (BB_HEADER (bb))
4540 {
4541 next = BB_HEAD (bb);
4542 if (prev)
4543 SET_NEXT_INSN (prev) = BB_HEADER (bb);
4544 else
4545 set_first_insn (BB_HEADER (bb));
4546 SET_PREV_INSN (BB_HEADER (bb)) = prev;
4547 insn = BB_HEADER (bb);
4548 while (NEXT_INSN (insn))
4549 insn = NEXT_INSN (insn);
4550 SET_NEXT_INSN (insn) = next;
4551 SET_PREV_INSN (next) = insn;
4552 }
4553 next = NEXT_INSN (BB_END (bb));
4554 if (BB_FOOTER (bb))
4555 {
4556 insn = BB_FOOTER (bb);
4557 while (insn)
4558 {
4559 if (BARRIER_P (insn))
4560 {
4561 if (PREV_INSN (insn))
4562 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
4563 else
4564 BB_FOOTER (bb) = NEXT_INSN (insn);
4565 if (NEXT_INSN (insn))
4566 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
4567 }
4568 if (LABEL_P (insn))
4569 break;
4570 insn = NEXT_INSN (insn);
4571 }
4572 if (BB_FOOTER (bb))
4573 {
4574 insn = BB_END (bb);
4575 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
4576 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
4577 while (NEXT_INSN (insn))
4578 insn = NEXT_INSN (insn);
4579 SET_NEXT_INSN (insn) = next;
4580 if (next)
4581 SET_PREV_INSN (next) = insn;
4582 else
4583 set_last_insn (insn);
4584 }
4585 }
4586 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4587 to = &BB_HEADER (bb->next_bb);
4588 else
4589 to = &cfg_layout_function_footer;
4590
4591 rtl_delete_block (bb);
4592
4593 if (prev)
4594 prev = NEXT_INSN (prev);
4595 else
4596 prev = get_insns ();
4597 if (next)
4598 next = PREV_INSN (next);
4599 else
4600 next = get_last_insn ();
4601
4602 if (next && NEXT_INSN (next) != prev)
4603 {
4604 remaints = unlink_insn_chain (prev, next);
4605 insn = remaints;
4606 while (NEXT_INSN (insn))
4607 insn = NEXT_INSN (insn);
4608 SET_NEXT_INSN (insn) = *to;
4609 if (*to)
4610 SET_PREV_INSN (*to) = insn;
4611 *to = remaints;
4612 }
4613 }
4614
4615 /* Return true when blocks A and B can be safely merged. */
4616
4617 static bool
4618 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
4619 {
4620 /* If we are partitioning hot/cold basic blocks, we don't want to
4621 mess up unconditional or indirect jumps that cross between hot
4622 and cold sections.
4623
4624 Basic block partitioning may result in some jumps that appear to
4625 be optimizable (or blocks that appear to be mergeable), but which really
4626 must be left untouched (they are required to make it safely across
4627 partition boundaries). See the comments at the top of
4628 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4629
4630 if (BB_PARTITION (a) != BB_PARTITION (b))
4631 return false;
4632
4633 /* Protect the loop latches. */
4634 if (current_loops && b->loop_father->latch == b)
4635 return false;
4636
4637 /* If we would end up moving B's instructions, make sure it doesn't fall
4638 through into the exit block, since we cannot recover from a fallthrough
4639 edge into the exit block occurring in the middle of a function. */
4640 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4641 {
4642 edge e = find_fallthru_edge (b->succs);
4643 if (e && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4644 return false;
4645 }
4646
4647 /* There must be exactly one edge in between the blocks. */
4648 return (single_succ_p (a)
4649 && single_succ (a) == b
4650 && single_pred_p (b) == 1
4651 && a != b
4652 /* Must be simple edge. */
4653 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
4654 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4655 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
4656 /* If the jump insn has side effects, we can't kill the edge.
4657 When not optimizing, try_redirect_by_replacing_jump will
4658 not allow us to redirect an edge by replacing a table jump. */
4659 && (!JUMP_P (BB_END (a))
4660 || ((!optimize || reload_completed)
4661 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
4662 }
4663
4664 /* Merge block A and B. The blocks must be mergeable. */
4665
4666 static void
4667 cfg_layout_merge_blocks (basic_block a, basic_block b)
4668 {
4669 /* If B is a forwarder block whose outgoing edge has no location, we'll
4670 propagate the locus of the edge between A and B onto it. */
4671 const bool forward_edge_locus
4672 = (b->flags & BB_FORWARDER_BLOCK) != 0
4673 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION;
4674 rtx_insn *insn;
4675
4676 gcc_checking_assert (cfg_layout_can_merge_blocks_p (a, b));
4677
4678 if (dump_file)
4679 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
4680 a->index);
4681
4682 /* If there was a CODE_LABEL beginning B, delete it. */
4683 if (LABEL_P (BB_HEAD (b)))
4684 {
4685 delete_insn (BB_HEAD (b));
4686 }
4687
4688 /* We should have fallthru edge in a, or we can do dummy redirection to get
4689 it cleaned up. */
4690 if (JUMP_P (BB_END (a)))
4691 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
4692 gcc_assert (!JUMP_P (BB_END (a)));
4693
4694 /* If not optimizing, preserve the locus of the single edge between
4695 blocks A and B if necessary by emitting a nop. */
4696 if (!optimize
4697 && !forward_edge_locus
4698 && !DECL_IGNORED_P (current_function_decl))
4699 emit_nop_for_unique_locus_between (a, b);
4700
4701 /* Move things from b->footer after a->footer. */
4702 if (BB_FOOTER (b))
4703 {
4704 if (!BB_FOOTER (a))
4705 BB_FOOTER (a) = BB_FOOTER (b);
4706 else
4707 {
4708 rtx_insn *last = BB_FOOTER (a);
4709
4710 while (NEXT_INSN (last))
4711 last = NEXT_INSN (last);
4712 SET_NEXT_INSN (last) = BB_FOOTER (b);
4713 SET_PREV_INSN (BB_FOOTER (b)) = last;
4714 }
4715 BB_FOOTER (b) = NULL;
4716 }
4717
4718 /* Move things from b->header before a->footer.
4719 Note that this may include dead tablejump data, but we don't clean
4720 those up until we go out of cfglayout mode. */
4721 if (BB_HEADER (b))
4722 {
4723 if (! BB_FOOTER (a))
4724 BB_FOOTER (a) = BB_HEADER (b);
4725 else
4726 {
4727 rtx_insn *last = BB_HEADER (b);
4728
4729 while (NEXT_INSN (last))
4730 last = NEXT_INSN (last);
4731 SET_NEXT_INSN (last) = BB_FOOTER (a);
4732 SET_PREV_INSN (BB_FOOTER (a)) = last;
4733 BB_FOOTER (a) = BB_HEADER (b);
4734 }
4735 BB_HEADER (b) = NULL;
4736 }
4737
4738 /* In the case basic blocks are not adjacent, move them around. */
4739 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4740 {
4741 insn = unlink_insn_chain (BB_HEAD (b), BB_END (b));
4742
4743 emit_insn_after_noloc (insn, BB_END (a), a);
4744 }
4745 /* Otherwise just re-associate the instructions. */
4746 else
4747 {
4748 insn = BB_HEAD (b);
4749 BB_END (a) = BB_END (b);
4750 }
4751
4752 /* emit_insn_after_noloc doesn't call df_insn_change_bb.
4753 We need to explicitly call. */
4754 update_bb_for_insn_chain (insn, BB_END (b), a);
4755
4756 /* Skip possible DELETED_LABEL insn. */
4757 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
4758 insn = NEXT_INSN (insn);
4759 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4760 BB_HEAD (b) = BB_END (b) = NULL;
4761 delete_insn (insn);
4762
4763 df_bb_delete (b->index);
4764
4765 if (forward_edge_locus)
4766 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
4767
4768 if (dump_file)
4769 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
4770 }
4771
4772 /* Split edge E. */
4773
4774 static basic_block
4775 cfg_layout_split_edge (edge e)
4776 {
4777 basic_block new_bb =
4778 create_basic_block (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4779 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
4780 NULL_RTX, e->src);
4781
4782 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4783 BB_COPY_PARTITION (new_bb, e->src);
4784 else
4785 BB_COPY_PARTITION (new_bb, e->dest);
4786 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
4787 redirect_edge_and_branch_force (e, new_bb);
4788
4789 return new_bb;
4790 }
4791
4792 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
4793
4794 static void
4795 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
4796 {
4797 }
4798
4799 /* Return true if BB contains only labels or non-executable
4800 instructions. */
4801
4802 static bool
4803 rtl_block_empty_p (basic_block bb)
4804 {
4805 rtx_insn *insn;
4806
4807 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4808 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4809 return true;
4810
4811 FOR_BB_INSNS (bb, insn)
4812 if (NONDEBUG_INSN_P (insn) && !any_uncondjump_p (insn))
4813 return false;
4814
4815 return true;
4816 }
4817
4818 /* Split a basic block if it ends with a conditional branch and if
4819 the other part of the block is not empty. */
4820
4821 static basic_block
4822 rtl_split_block_before_cond_jump (basic_block bb)
4823 {
4824 rtx_insn *insn;
4825 rtx_insn *split_point = NULL;
4826 rtx_insn *last = NULL;
4827 bool found_code = false;
4828
4829 FOR_BB_INSNS (bb, insn)
4830 {
4831 if (any_condjump_p (insn))
4832 split_point = last;
4833 else if (NONDEBUG_INSN_P (insn))
4834 found_code = true;
4835 last = insn;
4836 }
4837
4838 /* Did not find everything. */
4839 if (found_code && split_point)
4840 return split_block (bb, split_point)->dest;
4841 else
4842 return NULL;
4843 }
4844
4845 /* Return 1 if BB ends with a call, possibly followed by some
4846 instructions that must stay with the call, 0 otherwise. */
4847
4848 static bool
4849 rtl_block_ends_with_call_p (basic_block bb)
4850 {
4851 rtx_insn *insn = BB_END (bb);
4852
4853 while (!CALL_P (insn)
4854 && insn != BB_HEAD (bb)
4855 && (keep_with_call_p (insn)
4856 || NOTE_P (insn)
4857 || DEBUG_INSN_P (insn)))
4858 insn = PREV_INSN (insn);
4859 return (CALL_P (insn));
4860 }
4861
4862 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
4863
4864 static bool
4865 rtl_block_ends_with_condjump_p (const_basic_block bb)
4866 {
4867 return any_condjump_p (BB_END (bb));
4868 }
4869
4870 /* Return true if we need to add fake edge to exit.
4871 Helper function for rtl_flow_call_edges_add. */
4872
4873 static bool
4874 need_fake_edge_p (const rtx_insn *insn)
4875 {
4876 if (!INSN_P (insn))
4877 return false;
4878
4879 if ((CALL_P (insn)
4880 && !SIBLING_CALL_P (insn)
4881 && !find_reg_note (insn, REG_NORETURN, NULL)
4882 && !(RTL_CONST_OR_PURE_CALL_P (insn))))
4883 return true;
4884
4885 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
4886 && MEM_VOLATILE_P (PATTERN (insn)))
4887 || (GET_CODE (PATTERN (insn)) == PARALLEL
4888 && asm_noperands (insn) != -1
4889 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
4890 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
4891 }
4892
4893 /* Add fake edges to the function exit for any non constant and non noreturn
4894 calls, volatile inline assembly in the bitmap of blocks specified by
4895 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
4896 that were split.
4897
4898 The goal is to expose cases in which entering a basic block does not imply
4899 that all subsequent instructions must be executed. */
4900
4901 static int
4902 rtl_flow_call_edges_add (sbitmap blocks)
4903 {
4904 int i;
4905 int blocks_split = 0;
4906 int last_bb = last_basic_block_for_fn (cfun);
4907 bool check_last_block = false;
4908
4909 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
4910 return 0;
4911
4912 if (! blocks)
4913 check_last_block = true;
4914 else
4915 check_last_block = bitmap_bit_p (blocks,
4916 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
4917
4918 /* In the last basic block, before epilogue generation, there will be
4919 a fallthru edge to EXIT. Special care is required if the last insn
4920 of the last basic block is a call because make_edge folds duplicate
4921 edges, which would result in the fallthru edge also being marked
4922 fake, which would result in the fallthru edge being removed by
4923 remove_fake_edges, which would result in an invalid CFG.
4924
4925 Moreover, we can't elide the outgoing fake edge, since the block
4926 profiler needs to take this into account in order to solve the minimal
4927 spanning tree in the case that the call doesn't return.
4928
4929 Handle this by adding a dummy instruction in a new last basic block. */
4930 if (check_last_block)
4931 {
4932 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
4933 rtx_insn *insn = BB_END (bb);
4934
4935 /* Back up past insns that must be kept in the same block as a call. */
4936 while (insn != BB_HEAD (bb)
4937 && keep_with_call_p (insn))
4938 insn = PREV_INSN (insn);
4939
4940 if (need_fake_edge_p (insn))
4941 {
4942 edge e;
4943
4944 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4945 if (e)
4946 {
4947 insert_insn_on_edge (gen_use (const0_rtx), e);
4948 commit_edge_insertions ();
4949 }
4950 }
4951 }
4952
4953 /* Now add fake edges to the function exit for any non constant
4954 calls since there is no way that we can determine if they will
4955 return or not... */
4956
4957 for (i = NUM_FIXED_BLOCKS; i < last_bb; i++)
4958 {
4959 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
4960 rtx_insn *insn;
4961 rtx_insn *prev_insn;
4962
4963 if (!bb)
4964 continue;
4965
4966 if (blocks && !bitmap_bit_p (blocks, i))
4967 continue;
4968
4969 for (insn = BB_END (bb); ; insn = prev_insn)
4970 {
4971 prev_insn = PREV_INSN (insn);
4972 if (need_fake_edge_p (insn))
4973 {
4974 edge e;
4975 rtx_insn *split_at_insn = insn;
4976
4977 /* Don't split the block between a call and an insn that should
4978 remain in the same block as the call. */
4979 if (CALL_P (insn))
4980 while (split_at_insn != BB_END (bb)
4981 && keep_with_call_p (NEXT_INSN (split_at_insn)))
4982 split_at_insn = NEXT_INSN (split_at_insn);
4983
4984 /* The handling above of the final block before the epilogue
4985 should be enough to verify that there is no edge to the exit
4986 block in CFG already. Calling make_edge in such case would
4987 cause us to mark that edge as fake and remove it later. */
4988
4989 if (flag_checking && split_at_insn == BB_END (bb))
4990 {
4991 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4992 gcc_assert (e == NULL);
4993 }
4994
4995 /* Note that the following may create a new basic block
4996 and renumber the existing basic blocks. */
4997 if (split_at_insn != BB_END (bb))
4998 {
4999 e = split_block (bb, split_at_insn);
5000 if (e)
5001 blocks_split++;
5002 }
5003
5004 edge ne = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
5005 ne->probability = profile_probability::guessed_never ();
5006 }
5007
5008 if (insn == BB_HEAD (bb))
5009 break;
5010 }
5011 }
5012
5013 if (blocks_split)
5014 verify_flow_info ();
5015
5016 return blocks_split;
5017 }
5018
5019 /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
5020 the conditional branch target, SECOND_HEAD should be the fall-thru
5021 there is no need to handle this here the loop versioning code handles
5022 this. the reason for SECON_HEAD is that it is needed for condition
5023 in trees, and this should be of the same type since it is a hook. */
5024 static void
5025 rtl_lv_add_condition_to_bb (basic_block first_head ,
5026 basic_block second_head ATTRIBUTE_UNUSED,
5027 basic_block cond_bb, void *comp_rtx)
5028 {
5029 rtx_code_label *label;
5030 rtx_insn *seq, *jump;
5031 rtx op0 = XEXP ((rtx)comp_rtx, 0);
5032 rtx op1 = XEXP ((rtx)comp_rtx, 1);
5033 enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
5034 machine_mode mode;
5035
5036
5037 label = block_label (first_head);
5038 mode = GET_MODE (op0);
5039 if (mode == VOIDmode)
5040 mode = GET_MODE (op1);
5041
5042 start_sequence ();
5043 op0 = force_operand (op0, NULL_RTX);
5044 op1 = force_operand (op1, NULL_RTX);
5045 do_compare_rtx_and_jump (op0, op1, comp, 0, mode, NULL_RTX, NULL, label,
5046 profile_probability::uninitialized ());
5047 jump = get_last_insn ();
5048 JUMP_LABEL (jump) = label;
5049 LABEL_NUSES (label)++;
5050 seq = get_insns ();
5051 end_sequence ();
5052
5053 /* Add the new cond, in the new head. */
5054 emit_insn_after (seq, BB_END (cond_bb));
5055 }
5056
5057
5058 /* Given a block B with unconditional branch at its end, get the
5059 store the return the branch edge and the fall-thru edge in
5060 BRANCH_EDGE and FALLTHRU_EDGE respectively. */
5061 static void
5062 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
5063 edge *fallthru_edge)
5064 {
5065 edge e = EDGE_SUCC (b, 0);
5066
5067 if (e->flags & EDGE_FALLTHRU)
5068 {
5069 *fallthru_edge = e;
5070 *branch_edge = EDGE_SUCC (b, 1);
5071 }
5072 else
5073 {
5074 *branch_edge = e;
5075 *fallthru_edge = EDGE_SUCC (b, 1);
5076 }
5077 }
5078
5079 void
5080 init_rtl_bb_info (basic_block bb)
5081 {
5082 gcc_assert (!bb->il.x.rtl);
5083 bb->il.x.head_ = NULL;
5084 bb->il.x.rtl = ggc_cleared_alloc<rtl_bb_info> ();
5085 }
5086
5087 /* Returns true if it is possible to remove edge E by redirecting
5088 it to the destination of the other edge from E->src. */
5089
5090 static bool
5091 rtl_can_remove_branch_p (const_edge e)
5092 {
5093 const_basic_block src = e->src;
5094 const_basic_block target = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest;
5095 const rtx_insn *insn = BB_END (src);
5096 rtx set;
5097
5098 /* The conditions are taken from try_redirect_by_replacing_jump. */
5099 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
5100 return false;
5101
5102 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
5103 return false;
5104
5105 if (BB_PARTITION (src) != BB_PARTITION (target))
5106 return false;
5107
5108 if (!onlyjump_p (insn)
5109 || tablejump_p (insn, NULL, NULL))
5110 return false;
5111
5112 set = single_set (insn);
5113 if (!set || side_effects_p (set))
5114 return false;
5115
5116 return true;
5117 }
5118
5119 static basic_block
5120 rtl_duplicate_bb (basic_block bb, copy_bb_data *id)
5121 {
5122 bb = cfg_layout_duplicate_bb (bb, id);
5123 bb->aux = NULL;
5124 return bb;
5125 }
5126
5127 /* Do book-keeping of basic block BB for the profile consistency checker.
5128 Store the counting in RECORD. */
5129 static void
5130 rtl_account_profile_record (basic_block bb, struct profile_record *record)
5131 {
5132 rtx_insn *insn;
5133 FOR_BB_INSNS (bb, insn)
5134 if (INSN_P (insn))
5135 {
5136 record->size += insn_cost (insn, false);
5137 if (bb->count.initialized_p ())
5138 record->time
5139 += insn_cost (insn, true) * bb->count.to_gcov_type ();
5140 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
5141 record->time
5142 += insn_cost (insn, true) * bb->count.to_frequency (cfun);
5143 }
5144 }
5145
5146 /* Implementation of CFG manipulation for linearized RTL. */
5147 struct cfg_hooks rtl_cfg_hooks = {
5148 "rtl",
5149 rtl_verify_flow_info,
5150 rtl_dump_bb,
5151 rtl_dump_bb_for_graph,
5152 rtl_create_basic_block,
5153 rtl_redirect_edge_and_branch,
5154 rtl_redirect_edge_and_branch_force,
5155 rtl_can_remove_branch_p,
5156 rtl_delete_block,
5157 rtl_split_block,
5158 rtl_move_block_after,
5159 rtl_can_merge_blocks, /* can_merge_blocks_p */
5160 rtl_merge_blocks,
5161 rtl_predict_edge,
5162 rtl_predicted_by_p,
5163 cfg_layout_can_duplicate_bb_p,
5164 rtl_duplicate_bb,
5165 rtl_split_edge,
5166 rtl_make_forwarder_block,
5167 rtl_tidy_fallthru_edge,
5168 rtl_force_nonfallthru,
5169 rtl_block_ends_with_call_p,
5170 rtl_block_ends_with_condjump_p,
5171 rtl_flow_call_edges_add,
5172 NULL, /* execute_on_growing_pred */
5173 NULL, /* execute_on_shrinking_pred */
5174 NULL, /* duplicate loop for trees */
5175 NULL, /* lv_add_condition_to_bb */
5176 NULL, /* lv_adjust_loop_header_phi*/
5177 NULL, /* extract_cond_bb_edges */
5178 NULL, /* flush_pending_stmts */
5179 rtl_block_empty_p, /* block_empty_p */
5180 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5181 rtl_account_profile_record,
5182 };
5183
5184 /* Implementation of CFG manipulation for cfg layout RTL, where
5185 basic block connected via fallthru edges does not have to be adjacent.
5186 This representation will hopefully become the default one in future
5187 version of the compiler. */
5188
5189 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
5190 "cfglayout mode",
5191 rtl_verify_flow_info_1,
5192 rtl_dump_bb,
5193 rtl_dump_bb_for_graph,
5194 cfg_layout_create_basic_block,
5195 cfg_layout_redirect_edge_and_branch,
5196 cfg_layout_redirect_edge_and_branch_force,
5197 rtl_can_remove_branch_p,
5198 cfg_layout_delete_block,
5199 cfg_layout_split_block,
5200 rtl_move_block_after,
5201 cfg_layout_can_merge_blocks_p,
5202 cfg_layout_merge_blocks,
5203 rtl_predict_edge,
5204 rtl_predicted_by_p,
5205 cfg_layout_can_duplicate_bb_p,
5206 cfg_layout_duplicate_bb,
5207 cfg_layout_split_edge,
5208 rtl_make_forwarder_block,
5209 NULL, /* tidy_fallthru_edge */
5210 rtl_force_nonfallthru,
5211 rtl_block_ends_with_call_p,
5212 rtl_block_ends_with_condjump_p,
5213 rtl_flow_call_edges_add,
5214 NULL, /* execute_on_growing_pred */
5215 NULL, /* execute_on_shrinking_pred */
5216 duplicate_loop_to_header_edge, /* duplicate loop for trees */
5217 rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
5218 NULL, /* lv_adjust_loop_header_phi*/
5219 rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
5220 NULL, /* flush_pending_stmts */
5221 rtl_block_empty_p, /* block_empty_p */
5222 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5223 rtl_account_profile_record,
5224 };
5225
5226 #include "gt-cfgrtl.h"
5227
5228 #if __GNUC__ >= 10
5229 # pragma GCC diagnostic pop
5230 #endif