]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/combine.c
2015-06-25 Andrew MacLeod <amacleod@redhat.com>
[thirdparty/gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "alias.h"
84 #include "symtab.h"
85 #include "tree.h"
86 #include "stor-layout.h"
87 #include "tm_p.h"
88 #include "flags.h"
89 #include "regs.h"
90 #include "hard-reg-set.h"
91 #include "predict.h"
92 #include "function.h"
93 #include "dominance.h"
94 #include "cfg.h"
95 #include "cfgrtl.h"
96 #include "cfgcleanup.h"
97 #include "basic-block.h"
98 #include "insn-config.h"
99 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
100 #include "expmed.h"
101 #include "dojump.h"
102 #include "explow.h"
103 #include "calls.h"
104 #include "emit-rtl.h"
105 #include "varasm.h"
106 #include "stmt.h"
107 #include "expr.h"
108 #include "insn-attr.h"
109 #include "recog.h"
110 #include "diagnostic-core.h"
111 #include "target.h"
112 #include "insn-codes.h"
113 #include "optabs.h"
114 #include "rtlhooks-def.h"
115 #include "params.h"
116 #include "tree-pass.h"
117 #include "df.h"
118 #include "valtrack.h"
119 #include "cgraph.h"
120 #include "obstack.h"
121 #include "rtl-iter.h"
122
123 /* Number of attempts to combine instructions in this function. */
124
125 static int combine_attempts;
126
127 /* Number of attempts that got as far as substitution in this function. */
128
129 static int combine_merges;
130
131 /* Number of instructions combined with added SETs in this function. */
132
133 static int combine_extras;
134
135 /* Number of instructions combined in this function. */
136
137 static int combine_successes;
138
139 /* Totals over entire compilation. */
140
141 static int total_attempts, total_merges, total_extras, total_successes;
142
143 /* combine_instructions may try to replace the right hand side of the
144 second instruction with the value of an associated REG_EQUAL note
145 before throwing it at try_combine. That is problematic when there
146 is a REG_DEAD note for a register used in the old right hand side
147 and can cause distribute_notes to do wrong things. This is the
148 second instruction if it has been so modified, null otherwise. */
149
150 static rtx_insn *i2mod;
151
152 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
153
154 static rtx i2mod_old_rhs;
155
156 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
157
158 static rtx i2mod_new_rhs;
159 \f
160 typedef struct reg_stat_struct {
161 /* Record last point of death of (hard or pseudo) register n. */
162 rtx_insn *last_death;
163
164 /* Record last point of modification of (hard or pseudo) register n. */
165 rtx_insn *last_set;
166
167 /* The next group of fields allows the recording of the last value assigned
168 to (hard or pseudo) register n. We use this information to see if an
169 operation being processed is redundant given a prior operation performed
170 on the register. For example, an `and' with a constant is redundant if
171 all the zero bits are already known to be turned off.
172
173 We use an approach similar to that used by cse, but change it in the
174 following ways:
175
176 (1) We do not want to reinitialize at each label.
177 (2) It is useful, but not critical, to know the actual value assigned
178 to a register. Often just its form is helpful.
179
180 Therefore, we maintain the following fields:
181
182 last_set_value the last value assigned
183 last_set_label records the value of label_tick when the
184 register was assigned
185 last_set_table_tick records the value of label_tick when a
186 value using the register is assigned
187 last_set_invalid set to nonzero when it is not valid
188 to use the value of this register in some
189 register's value
190
191 To understand the usage of these tables, it is important to understand
192 the distinction between the value in last_set_value being valid and
193 the register being validly contained in some other expression in the
194 table.
195
196 (The next two parameters are out of date).
197
198 reg_stat[i].last_set_value is valid if it is nonzero, and either
199 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
200
201 Register I may validly appear in any expression returned for the value
202 of another register if reg_n_sets[i] is 1. It may also appear in the
203 value for register J if reg_stat[j].last_set_invalid is zero, or
204 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
205
206 If an expression is found in the table containing a register which may
207 not validly appear in an expression, the register is replaced by
208 something that won't match, (clobber (const_int 0)). */
209
210 /* Record last value assigned to (hard or pseudo) register n. */
211
212 rtx last_set_value;
213
214 /* Record the value of label_tick when an expression involving register n
215 is placed in last_set_value. */
216
217 int last_set_table_tick;
218
219 /* Record the value of label_tick when the value for register n is placed in
220 last_set_value. */
221
222 int last_set_label;
223
224 /* These fields are maintained in parallel with last_set_value and are
225 used to store the mode in which the register was last set, the bits
226 that were known to be zero when it was last set, and the number of
227 sign bits copies it was known to have when it was last set. */
228
229 unsigned HOST_WIDE_INT last_set_nonzero_bits;
230 char last_set_sign_bit_copies;
231 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
232
233 /* Set nonzero if references to register n in expressions should not be
234 used. last_set_invalid is set nonzero when this register is being
235 assigned to and last_set_table_tick == label_tick. */
236
237 char last_set_invalid;
238
239 /* Some registers that are set more than once and used in more than one
240 basic block are nevertheless always set in similar ways. For example,
241 a QImode register may be loaded from memory in two places on a machine
242 where byte loads zero extend.
243
244 We record in the following fields if a register has some leading bits
245 that are always equal to the sign bit, and what we know about the
246 nonzero bits of a register, specifically which bits are known to be
247 zero.
248
249 If an entry is zero, it means that we don't know anything special. */
250
251 unsigned char sign_bit_copies;
252
253 unsigned HOST_WIDE_INT nonzero_bits;
254
255 /* Record the value of the label_tick when the last truncation
256 happened. The field truncated_to_mode is only valid if
257 truncation_label == label_tick. */
258
259 int truncation_label;
260
261 /* Record the last truncation seen for this register. If truncation
262 is not a nop to this mode we might be able to save an explicit
263 truncation if we know that value already contains a truncated
264 value. */
265
266 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
267 } reg_stat_type;
268
269
270 static vec<reg_stat_type> reg_stat;
271
272 /* One plus the highest pseudo for which we track REG_N_SETS.
273 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
274 but during combine_split_insns new pseudos can be created. As we don't have
275 updated DF information in that case, it is hard to initialize the array
276 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
277 so instead of growing the arrays, just assume all newly created pseudos
278 during combine might be set multiple times. */
279
280 static unsigned int reg_n_sets_max;
281
282 /* Record the luid of the last insn that invalidated memory
283 (anything that writes memory, and subroutine calls, but not pushes). */
284
285 static int mem_last_set;
286
287 /* Record the luid of the last CALL_INSN
288 so we can tell whether a potential combination crosses any calls. */
289
290 static int last_call_luid;
291
292 /* When `subst' is called, this is the insn that is being modified
293 (by combining in a previous insn). The PATTERN of this insn
294 is still the old pattern partially modified and it should not be
295 looked at, but this may be used to examine the successors of the insn
296 to judge whether a simplification is valid. */
297
298 static rtx_insn *subst_insn;
299
300 /* This is the lowest LUID that `subst' is currently dealing with.
301 get_last_value will not return a value if the register was set at or
302 after this LUID. If not for this mechanism, we could get confused if
303 I2 or I1 in try_combine were an insn that used the old value of a register
304 to obtain a new value. In that case, we might erroneously get the
305 new value of the register when we wanted the old one. */
306
307 static int subst_low_luid;
308
309 /* This contains any hard registers that are used in newpat; reg_dead_at_p
310 must consider all these registers to be always live. */
311
312 static HARD_REG_SET newpat_used_regs;
313
314 /* This is an insn to which a LOG_LINKS entry has been added. If this
315 insn is the earlier than I2 or I3, combine should rescan starting at
316 that location. */
317
318 static rtx_insn *added_links_insn;
319
320 /* Basic block in which we are performing combines. */
321 static basic_block this_basic_block;
322 static bool optimize_this_for_speed_p;
323
324 \f
325 /* Length of the currently allocated uid_insn_cost array. */
326
327 static int max_uid_known;
328
329 /* The following array records the insn_rtx_cost for every insn
330 in the instruction stream. */
331
332 static int *uid_insn_cost;
333
334 /* The following array records the LOG_LINKS for every insn in the
335 instruction stream as struct insn_link pointers. */
336
337 struct insn_link {
338 rtx_insn *insn;
339 unsigned int regno;
340 struct insn_link *next;
341 };
342
343 static struct insn_link **uid_log_links;
344
345 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
346 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
347
348 #define FOR_EACH_LOG_LINK(L, INSN) \
349 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
350
351 /* Links for LOG_LINKS are allocated from this obstack. */
352
353 static struct obstack insn_link_obstack;
354
355 /* Allocate a link. */
356
357 static inline struct insn_link *
358 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
359 {
360 struct insn_link *l
361 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
362 sizeof (struct insn_link));
363 l->insn = insn;
364 l->regno = regno;
365 l->next = next;
366 return l;
367 }
368
369 /* Incremented for each basic block. */
370
371 static int label_tick;
372
373 /* Reset to label_tick for each extended basic block in scanning order. */
374
375 static int label_tick_ebb_start;
376
377 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
378 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
379
380 static machine_mode nonzero_bits_mode;
381
382 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
383 be safely used. It is zero while computing them and after combine has
384 completed. This former test prevents propagating values based on
385 previously set values, which can be incorrect if a variable is modified
386 in a loop. */
387
388 static int nonzero_sign_valid;
389
390 \f
391 /* Record one modification to rtl structure
392 to be undone by storing old_contents into *where. */
393
394 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
395
396 struct undo
397 {
398 struct undo *next;
399 enum undo_kind kind;
400 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
401 union { rtx *r; int *i; struct insn_link **l; } where;
402 };
403
404 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
405 num_undo says how many are currently recorded.
406
407 other_insn is nonzero if we have modified some other insn in the process
408 of working on subst_insn. It must be verified too. */
409
410 struct undobuf
411 {
412 struct undo *undos;
413 struct undo *frees;
414 rtx_insn *other_insn;
415 };
416
417 static struct undobuf undobuf;
418
419 /* Number of times the pseudo being substituted for
420 was found and replaced. */
421
422 static int n_occurrences;
423
424 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
425 machine_mode,
426 unsigned HOST_WIDE_INT,
427 unsigned HOST_WIDE_INT *);
428 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
429 machine_mode,
430 unsigned int, unsigned int *);
431 static void do_SUBST (rtx *, rtx);
432 static void do_SUBST_INT (int *, int);
433 static void init_reg_last (void);
434 static void setup_incoming_promotions (rtx_insn *);
435 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
436 static int cant_combine_insn_p (rtx_insn *);
437 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
438 rtx_insn *, rtx_insn *, rtx *, rtx *);
439 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
440 static int contains_muldiv (rtx);
441 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
442 int *, rtx_insn *);
443 static void undo_all (void);
444 static void undo_commit (void);
445 static rtx *find_split_point (rtx *, rtx_insn *, bool);
446 static rtx subst (rtx, rtx, rtx, int, int, int);
447 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
448 static rtx simplify_if_then_else (rtx);
449 static rtx simplify_set (rtx);
450 static rtx simplify_logical (rtx);
451 static rtx expand_compound_operation (rtx);
452 static const_rtx expand_field_assignment (const_rtx);
453 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
454 rtx, unsigned HOST_WIDE_INT, int, int, int);
455 static rtx extract_left_shift (rtx, int);
456 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
457 unsigned HOST_WIDE_INT *);
458 static rtx canon_reg_for_combine (rtx, rtx);
459 static rtx force_to_mode (rtx, machine_mode,
460 unsigned HOST_WIDE_INT, int);
461 static rtx if_then_else_cond (rtx, rtx *, rtx *);
462 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
463 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
464 static rtx make_field_assignment (rtx);
465 static rtx apply_distributive_law (rtx);
466 static rtx distribute_and_simplify_rtx (rtx, int);
467 static rtx simplify_and_const_int_1 (machine_mode, rtx,
468 unsigned HOST_WIDE_INT);
469 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
470 unsigned HOST_WIDE_INT);
471 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
472 HOST_WIDE_INT, machine_mode, int *);
473 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
474 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
475 int);
476 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
477 static rtx gen_lowpart_for_combine (machine_mode, rtx);
478 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
479 rtx, rtx *);
480 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
481 static void update_table_tick (rtx);
482 static void record_value_for_reg (rtx, rtx_insn *, rtx);
483 static void check_promoted_subreg (rtx_insn *, rtx);
484 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
485 static void record_dead_and_set_regs (rtx_insn *);
486 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
487 static rtx get_last_value (const_rtx);
488 static int use_crosses_set_p (const_rtx, int);
489 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
490 static int reg_dead_at_p (rtx, rtx_insn *);
491 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
492 static int reg_bitfield_target_p (rtx, rtx);
493 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
494 static void distribute_links (struct insn_link *);
495 static void mark_used_regs_combine (rtx);
496 static void record_promoted_value (rtx_insn *, rtx);
497 static bool unmentioned_reg_p (rtx, rtx);
498 static void record_truncated_values (rtx *, void *);
499 static bool reg_truncated_to_mode (machine_mode, const_rtx);
500 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
501 \f
502
503 /* It is not safe to use ordinary gen_lowpart in combine.
504 See comments in gen_lowpart_for_combine. */
505 #undef RTL_HOOKS_GEN_LOWPART
506 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
507
508 /* Our implementation of gen_lowpart never emits a new pseudo. */
509 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
510 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
511
512 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
513 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
514
515 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
516 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
517
518 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
519 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
520
521 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
522
523 \f
524 /* Convenience wrapper for the canonicalize_comparison target hook.
525 Target hooks cannot use enum rtx_code. */
526 static inline void
527 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
528 bool op0_preserve_value)
529 {
530 int code_int = (int)*code;
531 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
532 *code = (enum rtx_code)code_int;
533 }
534
535 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
536 PATTERN can not be split. Otherwise, it returns an insn sequence.
537 This is a wrapper around split_insns which ensures that the
538 reg_stat vector is made larger if the splitter creates a new
539 register. */
540
541 static rtx_insn *
542 combine_split_insns (rtx pattern, rtx_insn *insn)
543 {
544 rtx_insn *ret;
545 unsigned int nregs;
546
547 ret = split_insns (pattern, insn);
548 nregs = max_reg_num ();
549 if (nregs > reg_stat.length ())
550 reg_stat.safe_grow_cleared (nregs);
551 return ret;
552 }
553
554 /* This is used by find_single_use to locate an rtx in LOC that
555 contains exactly one use of DEST, which is typically either a REG
556 or CC0. It returns a pointer to the innermost rtx expression
557 containing DEST. Appearances of DEST that are being used to
558 totally replace it are not counted. */
559
560 static rtx *
561 find_single_use_1 (rtx dest, rtx *loc)
562 {
563 rtx x = *loc;
564 enum rtx_code code = GET_CODE (x);
565 rtx *result = NULL;
566 rtx *this_result;
567 int i;
568 const char *fmt;
569
570 switch (code)
571 {
572 case CONST:
573 case LABEL_REF:
574 case SYMBOL_REF:
575 CASE_CONST_ANY:
576 case CLOBBER:
577 return 0;
578
579 case SET:
580 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
581 of a REG that occupies all of the REG, the insn uses DEST if
582 it is mentioned in the destination or the source. Otherwise, we
583 need just check the source. */
584 if (GET_CODE (SET_DEST (x)) != CC0
585 && GET_CODE (SET_DEST (x)) != PC
586 && !REG_P (SET_DEST (x))
587 && ! (GET_CODE (SET_DEST (x)) == SUBREG
588 && REG_P (SUBREG_REG (SET_DEST (x)))
589 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
590 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
591 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
592 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
593 break;
594
595 return find_single_use_1 (dest, &SET_SRC (x));
596
597 case MEM:
598 case SUBREG:
599 return find_single_use_1 (dest, &XEXP (x, 0));
600
601 default:
602 break;
603 }
604
605 /* If it wasn't one of the common cases above, check each expression and
606 vector of this code. Look for a unique usage of DEST. */
607
608 fmt = GET_RTX_FORMAT (code);
609 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
610 {
611 if (fmt[i] == 'e')
612 {
613 if (dest == XEXP (x, i)
614 || (REG_P (dest) && REG_P (XEXP (x, i))
615 && REGNO (dest) == REGNO (XEXP (x, i))))
616 this_result = loc;
617 else
618 this_result = find_single_use_1 (dest, &XEXP (x, i));
619
620 if (result == NULL)
621 result = this_result;
622 else if (this_result)
623 /* Duplicate usage. */
624 return NULL;
625 }
626 else if (fmt[i] == 'E')
627 {
628 int j;
629
630 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
631 {
632 if (XVECEXP (x, i, j) == dest
633 || (REG_P (dest)
634 && REG_P (XVECEXP (x, i, j))
635 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
636 this_result = loc;
637 else
638 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
639
640 if (result == NULL)
641 result = this_result;
642 else if (this_result)
643 return NULL;
644 }
645 }
646 }
647
648 return result;
649 }
650
651
652 /* See if DEST, produced in INSN, is used only a single time in the
653 sequel. If so, return a pointer to the innermost rtx expression in which
654 it is used.
655
656 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
657
658 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
659 care about REG_DEAD notes or LOG_LINKS.
660
661 Otherwise, we find the single use by finding an insn that has a
662 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
663 only referenced once in that insn, we know that it must be the first
664 and last insn referencing DEST. */
665
666 static rtx *
667 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
668 {
669 basic_block bb;
670 rtx_insn *next;
671 rtx *result;
672 struct insn_link *link;
673
674 if (dest == cc0_rtx)
675 {
676 next = NEXT_INSN (insn);
677 if (next == 0
678 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
679 return 0;
680
681 result = find_single_use_1 (dest, &PATTERN (next));
682 if (result && ploc)
683 *ploc = next;
684 return result;
685 }
686
687 if (!REG_P (dest))
688 return 0;
689
690 bb = BLOCK_FOR_INSN (insn);
691 for (next = NEXT_INSN (insn);
692 next && BLOCK_FOR_INSN (next) == bb;
693 next = NEXT_INSN (next))
694 if (INSN_P (next) && dead_or_set_p (next, dest))
695 {
696 FOR_EACH_LOG_LINK (link, next)
697 if (link->insn == insn && link->regno == REGNO (dest))
698 break;
699
700 if (link)
701 {
702 result = find_single_use_1 (dest, &PATTERN (next));
703 if (ploc)
704 *ploc = next;
705 return result;
706 }
707 }
708
709 return 0;
710 }
711 \f
712 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
713 insn. The substitution can be undone by undo_all. If INTO is already
714 set to NEWVAL, do not record this change. Because computing NEWVAL might
715 also call SUBST, we have to compute it before we put anything into
716 the undo table. */
717
718 static void
719 do_SUBST (rtx *into, rtx newval)
720 {
721 struct undo *buf;
722 rtx oldval = *into;
723
724 if (oldval == newval)
725 return;
726
727 /* We'd like to catch as many invalid transformations here as
728 possible. Unfortunately, there are way too many mode changes
729 that are perfectly valid, so we'd waste too much effort for
730 little gain doing the checks here. Focus on catching invalid
731 transformations involving integer constants. */
732 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
733 && CONST_INT_P (newval))
734 {
735 /* Sanity check that we're replacing oldval with a CONST_INT
736 that is a valid sign-extension for the original mode. */
737 gcc_assert (INTVAL (newval)
738 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
739
740 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
741 CONST_INT is not valid, because after the replacement, the
742 original mode would be gone. Unfortunately, we can't tell
743 when do_SUBST is called to replace the operand thereof, so we
744 perform this test on oldval instead, checking whether an
745 invalid replacement took place before we got here. */
746 gcc_assert (!(GET_CODE (oldval) == SUBREG
747 && CONST_INT_P (SUBREG_REG (oldval))));
748 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
749 && CONST_INT_P (XEXP (oldval, 0))));
750 }
751
752 if (undobuf.frees)
753 buf = undobuf.frees, undobuf.frees = buf->next;
754 else
755 buf = XNEW (struct undo);
756
757 buf->kind = UNDO_RTX;
758 buf->where.r = into;
759 buf->old_contents.r = oldval;
760 *into = newval;
761
762 buf->next = undobuf.undos, undobuf.undos = buf;
763 }
764
765 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
766
767 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
768 for the value of a HOST_WIDE_INT value (including CONST_INT) is
769 not safe. */
770
771 static void
772 do_SUBST_INT (int *into, int newval)
773 {
774 struct undo *buf;
775 int oldval = *into;
776
777 if (oldval == newval)
778 return;
779
780 if (undobuf.frees)
781 buf = undobuf.frees, undobuf.frees = buf->next;
782 else
783 buf = XNEW (struct undo);
784
785 buf->kind = UNDO_INT;
786 buf->where.i = into;
787 buf->old_contents.i = oldval;
788 *into = newval;
789
790 buf->next = undobuf.undos, undobuf.undos = buf;
791 }
792
793 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
794
795 /* Similar to SUBST, but just substitute the mode. This is used when
796 changing the mode of a pseudo-register, so that any other
797 references to the entry in the regno_reg_rtx array will change as
798 well. */
799
800 static void
801 do_SUBST_MODE (rtx *into, machine_mode newval)
802 {
803 struct undo *buf;
804 machine_mode oldval = GET_MODE (*into);
805
806 if (oldval == newval)
807 return;
808
809 if (undobuf.frees)
810 buf = undobuf.frees, undobuf.frees = buf->next;
811 else
812 buf = XNEW (struct undo);
813
814 buf->kind = UNDO_MODE;
815 buf->where.r = into;
816 buf->old_contents.m = oldval;
817 adjust_reg_mode (*into, newval);
818
819 buf->next = undobuf.undos, undobuf.undos = buf;
820 }
821
822 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
823
824 #if !HAVE_cc0
825 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
826
827 static void
828 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
829 {
830 struct undo *buf;
831 struct insn_link * oldval = *into;
832
833 if (oldval == newval)
834 return;
835
836 if (undobuf.frees)
837 buf = undobuf.frees, undobuf.frees = buf->next;
838 else
839 buf = XNEW (struct undo);
840
841 buf->kind = UNDO_LINKS;
842 buf->where.l = into;
843 buf->old_contents.l = oldval;
844 *into = newval;
845
846 buf->next = undobuf.undos, undobuf.undos = buf;
847 }
848
849 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
850 #endif
851 \f
852 /* Subroutine of try_combine. Determine whether the replacement patterns
853 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
854 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
855 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
856 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
857 of all the instructions can be estimated and the replacements are more
858 expensive than the original sequence. */
859
860 static bool
861 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
862 rtx newpat, rtx newi2pat, rtx newotherpat)
863 {
864 int i0_cost, i1_cost, i2_cost, i3_cost;
865 int new_i2_cost, new_i3_cost;
866 int old_cost, new_cost;
867
868 /* Lookup the original insn_rtx_costs. */
869 i2_cost = INSN_COST (i2);
870 i3_cost = INSN_COST (i3);
871
872 if (i1)
873 {
874 i1_cost = INSN_COST (i1);
875 if (i0)
876 {
877 i0_cost = INSN_COST (i0);
878 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
879 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
880 }
881 else
882 {
883 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
884 ? i1_cost + i2_cost + i3_cost : 0);
885 i0_cost = 0;
886 }
887 }
888 else
889 {
890 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
891 i1_cost = i0_cost = 0;
892 }
893
894 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
895 correct that. */
896 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
897 old_cost -= i1_cost;
898
899
900 /* Calculate the replacement insn_rtx_costs. */
901 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
902 if (newi2pat)
903 {
904 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
905 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
906 ? new_i2_cost + new_i3_cost : 0;
907 }
908 else
909 {
910 new_cost = new_i3_cost;
911 new_i2_cost = 0;
912 }
913
914 if (undobuf.other_insn)
915 {
916 int old_other_cost, new_other_cost;
917
918 old_other_cost = INSN_COST (undobuf.other_insn);
919 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
920 if (old_other_cost > 0 && new_other_cost > 0)
921 {
922 old_cost += old_other_cost;
923 new_cost += new_other_cost;
924 }
925 else
926 old_cost = 0;
927 }
928
929 /* Disallow this combination if both new_cost and old_cost are greater than
930 zero, and new_cost is greater than old cost. */
931 int reject = old_cost > 0 && new_cost > old_cost;
932
933 if (dump_file)
934 {
935 fprintf (dump_file, "%s combination of insns ",
936 reject ? "rejecting" : "allowing");
937 if (i0)
938 fprintf (dump_file, "%d, ", INSN_UID (i0));
939 if (i1 && INSN_UID (i1) != INSN_UID (i2))
940 fprintf (dump_file, "%d, ", INSN_UID (i1));
941 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
942
943 fprintf (dump_file, "original costs ");
944 if (i0)
945 fprintf (dump_file, "%d + ", i0_cost);
946 if (i1 && INSN_UID (i1) != INSN_UID (i2))
947 fprintf (dump_file, "%d + ", i1_cost);
948 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
949
950 if (newi2pat)
951 fprintf (dump_file, "replacement costs %d + %d = %d\n",
952 new_i2_cost, new_i3_cost, new_cost);
953 else
954 fprintf (dump_file, "replacement cost %d\n", new_cost);
955 }
956
957 if (reject)
958 return false;
959
960 /* Update the uid_insn_cost array with the replacement costs. */
961 INSN_COST (i2) = new_i2_cost;
962 INSN_COST (i3) = new_i3_cost;
963 if (i1)
964 {
965 INSN_COST (i1) = 0;
966 if (i0)
967 INSN_COST (i0) = 0;
968 }
969
970 return true;
971 }
972
973
974 /* Delete any insns that copy a register to itself. */
975
976 static void
977 delete_noop_moves (void)
978 {
979 rtx_insn *insn, *next;
980 basic_block bb;
981
982 FOR_EACH_BB_FN (bb, cfun)
983 {
984 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
985 {
986 next = NEXT_INSN (insn);
987 if (INSN_P (insn) && noop_move_p (insn))
988 {
989 if (dump_file)
990 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
991
992 delete_insn_and_edges (insn);
993 }
994 }
995 }
996 }
997
998 \f
999 /* Return false if we do not want to (or cannot) combine DEF. */
1000 static bool
1001 can_combine_def_p (df_ref def)
1002 {
1003 /* Do not consider if it is pre/post modification in MEM. */
1004 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1005 return false;
1006
1007 unsigned int regno = DF_REF_REGNO (def);
1008
1009 /* Do not combine frame pointer adjustments. */
1010 if ((regno == FRAME_POINTER_REGNUM
1011 && (!reload_completed || frame_pointer_needed))
1012 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1013 || (regno == HARD_FRAME_POINTER_REGNUM
1014 && (!reload_completed || frame_pointer_needed))
1015 #endif
1016 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1017 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1018 return false;
1019
1020 return true;
1021 }
1022
1023 /* Return false if we do not want to (or cannot) combine USE. */
1024 static bool
1025 can_combine_use_p (df_ref use)
1026 {
1027 /* Do not consider the usage of the stack pointer by function call. */
1028 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1029 return false;
1030
1031 return true;
1032 }
1033
1034 /* Fill in log links field for all insns. */
1035
1036 static void
1037 create_log_links (void)
1038 {
1039 basic_block bb;
1040 rtx_insn **next_use;
1041 rtx_insn *insn;
1042 df_ref def, use;
1043
1044 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1045
1046 /* Pass through each block from the end, recording the uses of each
1047 register and establishing log links when def is encountered.
1048 Note that we do not clear next_use array in order to save time,
1049 so we have to test whether the use is in the same basic block as def.
1050
1051 There are a few cases below when we do not consider the definition or
1052 usage -- these are taken from original flow.c did. Don't ask me why it is
1053 done this way; I don't know and if it works, I don't want to know. */
1054
1055 FOR_EACH_BB_FN (bb, cfun)
1056 {
1057 FOR_BB_INSNS_REVERSE (bb, insn)
1058 {
1059 if (!NONDEBUG_INSN_P (insn))
1060 continue;
1061
1062 /* Log links are created only once. */
1063 gcc_assert (!LOG_LINKS (insn));
1064
1065 FOR_EACH_INSN_DEF (def, insn)
1066 {
1067 unsigned int regno = DF_REF_REGNO (def);
1068 rtx_insn *use_insn;
1069
1070 if (!next_use[regno])
1071 continue;
1072
1073 if (!can_combine_def_p (def))
1074 continue;
1075
1076 use_insn = next_use[regno];
1077 next_use[regno] = NULL;
1078
1079 if (BLOCK_FOR_INSN (use_insn) != bb)
1080 continue;
1081
1082 /* flow.c claimed:
1083
1084 We don't build a LOG_LINK for hard registers contained
1085 in ASM_OPERANDs. If these registers get replaced,
1086 we might wind up changing the semantics of the insn,
1087 even if reload can make what appear to be valid
1088 assignments later. */
1089 if (regno < FIRST_PSEUDO_REGISTER
1090 && asm_noperands (PATTERN (use_insn)) >= 0)
1091 continue;
1092
1093 /* Don't add duplicate links between instructions. */
1094 struct insn_link *links;
1095 FOR_EACH_LOG_LINK (links, use_insn)
1096 if (insn == links->insn && regno == links->regno)
1097 break;
1098
1099 if (!links)
1100 LOG_LINKS (use_insn)
1101 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1102 }
1103
1104 FOR_EACH_INSN_USE (use, insn)
1105 if (can_combine_use_p (use))
1106 next_use[DF_REF_REGNO (use)] = insn;
1107 }
1108 }
1109
1110 free (next_use);
1111 }
1112
1113 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1114 true if we found a LOG_LINK that proves that A feeds B. This only works
1115 if there are no instructions between A and B which could have a link
1116 depending on A, since in that case we would not record a link for B.
1117 We also check the implicit dependency created by a cc0 setter/user
1118 pair. */
1119
1120 static bool
1121 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1122 {
1123 struct insn_link *links;
1124 FOR_EACH_LOG_LINK (links, b)
1125 if (links->insn == a)
1126 return true;
1127 if (HAVE_cc0 && sets_cc0_p (a))
1128 return true;
1129 return false;
1130 }
1131 \f
1132 /* Main entry point for combiner. F is the first insn of the function.
1133 NREGS is the first unused pseudo-reg number.
1134
1135 Return nonzero if the combiner has turned an indirect jump
1136 instruction into a direct jump. */
1137 static int
1138 combine_instructions (rtx_insn *f, unsigned int nregs)
1139 {
1140 rtx_insn *insn, *next;
1141 #if HAVE_cc0
1142 rtx_insn *prev;
1143 #endif
1144 struct insn_link *links, *nextlinks;
1145 rtx_insn *first;
1146 basic_block last_bb;
1147
1148 int new_direct_jump_p = 0;
1149
1150 for (first = f; first && !INSN_P (first); )
1151 first = NEXT_INSN (first);
1152 if (!first)
1153 return 0;
1154
1155 combine_attempts = 0;
1156 combine_merges = 0;
1157 combine_extras = 0;
1158 combine_successes = 0;
1159
1160 rtl_hooks = combine_rtl_hooks;
1161
1162 reg_stat.safe_grow_cleared (nregs);
1163
1164 init_recog_no_volatile ();
1165
1166 /* Allocate array for insn info. */
1167 max_uid_known = get_max_uid ();
1168 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1169 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1170 gcc_obstack_init (&insn_link_obstack);
1171
1172 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1173
1174 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1175 problems when, for example, we have j <<= 1 in a loop. */
1176
1177 nonzero_sign_valid = 0;
1178 label_tick = label_tick_ebb_start = 1;
1179
1180 /* Scan all SETs and see if we can deduce anything about what
1181 bits are known to be zero for some registers and how many copies
1182 of the sign bit are known to exist for those registers.
1183
1184 Also set any known values so that we can use it while searching
1185 for what bits are known to be set. */
1186
1187 setup_incoming_promotions (first);
1188 /* Allow the entry block and the first block to fall into the same EBB.
1189 Conceptually the incoming promotions are assigned to the entry block. */
1190 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1191
1192 create_log_links ();
1193 FOR_EACH_BB_FN (this_basic_block, cfun)
1194 {
1195 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1196 last_call_luid = 0;
1197 mem_last_set = -1;
1198
1199 label_tick++;
1200 if (!single_pred_p (this_basic_block)
1201 || single_pred (this_basic_block) != last_bb)
1202 label_tick_ebb_start = label_tick;
1203 last_bb = this_basic_block;
1204
1205 FOR_BB_INSNS (this_basic_block, insn)
1206 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1207 {
1208 #ifdef AUTO_INC_DEC
1209 rtx links;
1210 #endif
1211
1212 subst_low_luid = DF_INSN_LUID (insn);
1213 subst_insn = insn;
1214
1215 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1216 insn);
1217 record_dead_and_set_regs (insn);
1218
1219 #ifdef AUTO_INC_DEC
1220 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1221 if (REG_NOTE_KIND (links) == REG_INC)
1222 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1223 insn);
1224 #endif
1225
1226 /* Record the current insn_rtx_cost of this instruction. */
1227 if (NONJUMP_INSN_P (insn))
1228 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1229 optimize_this_for_speed_p);
1230 if (dump_file)
1231 fprintf (dump_file, "insn_cost %d: %d\n",
1232 INSN_UID (insn), INSN_COST (insn));
1233 }
1234 }
1235
1236 nonzero_sign_valid = 1;
1237
1238 /* Now scan all the insns in forward order. */
1239 label_tick = label_tick_ebb_start = 1;
1240 init_reg_last ();
1241 setup_incoming_promotions (first);
1242 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1243 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1244
1245 FOR_EACH_BB_FN (this_basic_block, cfun)
1246 {
1247 rtx_insn *last_combined_insn = NULL;
1248 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1249 last_call_luid = 0;
1250 mem_last_set = -1;
1251
1252 label_tick++;
1253 if (!single_pred_p (this_basic_block)
1254 || single_pred (this_basic_block) != last_bb)
1255 label_tick_ebb_start = label_tick;
1256 last_bb = this_basic_block;
1257
1258 rtl_profile_for_bb (this_basic_block);
1259 for (insn = BB_HEAD (this_basic_block);
1260 insn != NEXT_INSN (BB_END (this_basic_block));
1261 insn = next ? next : NEXT_INSN (insn))
1262 {
1263 next = 0;
1264 if (!NONDEBUG_INSN_P (insn))
1265 continue;
1266
1267 while (last_combined_insn
1268 && last_combined_insn->deleted ())
1269 last_combined_insn = PREV_INSN (last_combined_insn);
1270 if (last_combined_insn == NULL_RTX
1271 || BARRIER_P (last_combined_insn)
1272 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1273 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1274 last_combined_insn = insn;
1275
1276 /* See if we know about function return values before this
1277 insn based upon SUBREG flags. */
1278 check_promoted_subreg (insn, PATTERN (insn));
1279
1280 /* See if we can find hardregs and subreg of pseudos in
1281 narrower modes. This could help turning TRUNCATEs
1282 into SUBREGs. */
1283 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1284
1285 /* Try this insn with each insn it links back to. */
1286
1287 FOR_EACH_LOG_LINK (links, insn)
1288 if ((next = try_combine (insn, links->insn, NULL,
1289 NULL, &new_direct_jump_p,
1290 last_combined_insn)) != 0)
1291 {
1292 statistics_counter_event (cfun, "two-insn combine", 1);
1293 goto retry;
1294 }
1295
1296 /* Try each sequence of three linked insns ending with this one. */
1297
1298 if (max_combine >= 3)
1299 FOR_EACH_LOG_LINK (links, insn)
1300 {
1301 rtx_insn *link = links->insn;
1302
1303 /* If the linked insn has been replaced by a note, then there
1304 is no point in pursuing this chain any further. */
1305 if (NOTE_P (link))
1306 continue;
1307
1308 FOR_EACH_LOG_LINK (nextlinks, link)
1309 if ((next = try_combine (insn, link, nextlinks->insn,
1310 NULL, &new_direct_jump_p,
1311 last_combined_insn)) != 0)
1312 {
1313 statistics_counter_event (cfun, "three-insn combine", 1);
1314 goto retry;
1315 }
1316 }
1317
1318 #if HAVE_cc0
1319 /* Try to combine a jump insn that uses CC0
1320 with a preceding insn that sets CC0, and maybe with its
1321 logical predecessor as well.
1322 This is how we make decrement-and-branch insns.
1323 We need this special code because data flow connections
1324 via CC0 do not get entered in LOG_LINKS. */
1325
1326 if (JUMP_P (insn)
1327 && (prev = prev_nonnote_insn (insn)) != 0
1328 && NONJUMP_INSN_P (prev)
1329 && sets_cc0_p (PATTERN (prev)))
1330 {
1331 if ((next = try_combine (insn, prev, NULL, NULL,
1332 &new_direct_jump_p,
1333 last_combined_insn)) != 0)
1334 goto retry;
1335
1336 FOR_EACH_LOG_LINK (nextlinks, prev)
1337 if ((next = try_combine (insn, prev, nextlinks->insn,
1338 NULL, &new_direct_jump_p,
1339 last_combined_insn)) != 0)
1340 goto retry;
1341 }
1342
1343 /* Do the same for an insn that explicitly references CC0. */
1344 if (NONJUMP_INSN_P (insn)
1345 && (prev = prev_nonnote_insn (insn)) != 0
1346 && NONJUMP_INSN_P (prev)
1347 && sets_cc0_p (PATTERN (prev))
1348 && GET_CODE (PATTERN (insn)) == SET
1349 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1350 {
1351 if ((next = try_combine (insn, prev, NULL, NULL,
1352 &new_direct_jump_p,
1353 last_combined_insn)) != 0)
1354 goto retry;
1355
1356 FOR_EACH_LOG_LINK (nextlinks, prev)
1357 if ((next = try_combine (insn, prev, nextlinks->insn,
1358 NULL, &new_direct_jump_p,
1359 last_combined_insn)) != 0)
1360 goto retry;
1361 }
1362
1363 /* Finally, see if any of the insns that this insn links to
1364 explicitly references CC0. If so, try this insn, that insn,
1365 and its predecessor if it sets CC0. */
1366 FOR_EACH_LOG_LINK (links, insn)
1367 if (NONJUMP_INSN_P (links->insn)
1368 && GET_CODE (PATTERN (links->insn)) == SET
1369 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1370 && (prev = prev_nonnote_insn (links->insn)) != 0
1371 && NONJUMP_INSN_P (prev)
1372 && sets_cc0_p (PATTERN (prev))
1373 && (next = try_combine (insn, links->insn,
1374 prev, NULL, &new_direct_jump_p,
1375 last_combined_insn)) != 0)
1376 goto retry;
1377 #endif
1378
1379 /* Try combining an insn with two different insns whose results it
1380 uses. */
1381 if (max_combine >= 3)
1382 FOR_EACH_LOG_LINK (links, insn)
1383 for (nextlinks = links->next; nextlinks;
1384 nextlinks = nextlinks->next)
1385 if ((next = try_combine (insn, links->insn,
1386 nextlinks->insn, NULL,
1387 &new_direct_jump_p,
1388 last_combined_insn)) != 0)
1389
1390 {
1391 statistics_counter_event (cfun, "three-insn combine", 1);
1392 goto retry;
1393 }
1394
1395 /* Try four-instruction combinations. */
1396 if (max_combine >= 4)
1397 FOR_EACH_LOG_LINK (links, insn)
1398 {
1399 struct insn_link *next1;
1400 rtx_insn *link = links->insn;
1401
1402 /* If the linked insn has been replaced by a note, then there
1403 is no point in pursuing this chain any further. */
1404 if (NOTE_P (link))
1405 continue;
1406
1407 FOR_EACH_LOG_LINK (next1, link)
1408 {
1409 rtx_insn *link1 = next1->insn;
1410 if (NOTE_P (link1))
1411 continue;
1412 /* I0 -> I1 -> I2 -> I3. */
1413 FOR_EACH_LOG_LINK (nextlinks, link1)
1414 if ((next = try_combine (insn, link, link1,
1415 nextlinks->insn,
1416 &new_direct_jump_p,
1417 last_combined_insn)) != 0)
1418 {
1419 statistics_counter_event (cfun, "four-insn combine", 1);
1420 goto retry;
1421 }
1422 /* I0, I1 -> I2, I2 -> I3. */
1423 for (nextlinks = next1->next; nextlinks;
1424 nextlinks = nextlinks->next)
1425 if ((next = try_combine (insn, link, link1,
1426 nextlinks->insn,
1427 &new_direct_jump_p,
1428 last_combined_insn)) != 0)
1429 {
1430 statistics_counter_event (cfun, "four-insn combine", 1);
1431 goto retry;
1432 }
1433 }
1434
1435 for (next1 = links->next; next1; next1 = next1->next)
1436 {
1437 rtx_insn *link1 = next1->insn;
1438 if (NOTE_P (link1))
1439 continue;
1440 /* I0 -> I2; I1, I2 -> I3. */
1441 FOR_EACH_LOG_LINK (nextlinks, link)
1442 if ((next = try_combine (insn, link, link1,
1443 nextlinks->insn,
1444 &new_direct_jump_p,
1445 last_combined_insn)) != 0)
1446 {
1447 statistics_counter_event (cfun, "four-insn combine", 1);
1448 goto retry;
1449 }
1450 /* I0 -> I1; I1, I2 -> I3. */
1451 FOR_EACH_LOG_LINK (nextlinks, link1)
1452 if ((next = try_combine (insn, link, link1,
1453 nextlinks->insn,
1454 &new_direct_jump_p,
1455 last_combined_insn)) != 0)
1456 {
1457 statistics_counter_event (cfun, "four-insn combine", 1);
1458 goto retry;
1459 }
1460 }
1461 }
1462
1463 /* Try this insn with each REG_EQUAL note it links back to. */
1464 FOR_EACH_LOG_LINK (links, insn)
1465 {
1466 rtx set, note;
1467 rtx_insn *temp = links->insn;
1468 if ((set = single_set (temp)) != 0
1469 && (note = find_reg_equal_equiv_note (temp)) != 0
1470 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1471 /* Avoid using a register that may already been marked
1472 dead by an earlier instruction. */
1473 && ! unmentioned_reg_p (note, SET_SRC (set))
1474 && (GET_MODE (note) == VOIDmode
1475 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1476 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1477 {
1478 /* Temporarily replace the set's source with the
1479 contents of the REG_EQUAL note. The insn will
1480 be deleted or recognized by try_combine. */
1481 rtx orig = SET_SRC (set);
1482 SET_SRC (set) = note;
1483 i2mod = temp;
1484 i2mod_old_rhs = copy_rtx (orig);
1485 i2mod_new_rhs = copy_rtx (note);
1486 next = try_combine (insn, i2mod, NULL, NULL,
1487 &new_direct_jump_p,
1488 last_combined_insn);
1489 i2mod = NULL;
1490 if (next)
1491 {
1492 statistics_counter_event (cfun, "insn-with-note combine", 1);
1493 goto retry;
1494 }
1495 SET_SRC (set) = orig;
1496 }
1497 }
1498
1499 if (!NOTE_P (insn))
1500 record_dead_and_set_regs (insn);
1501
1502 retry:
1503 ;
1504 }
1505 }
1506
1507 default_rtl_profile ();
1508 clear_bb_flags ();
1509 new_direct_jump_p |= purge_all_dead_edges ();
1510 delete_noop_moves ();
1511
1512 /* Clean up. */
1513 obstack_free (&insn_link_obstack, NULL);
1514 free (uid_log_links);
1515 free (uid_insn_cost);
1516 reg_stat.release ();
1517
1518 {
1519 struct undo *undo, *next;
1520 for (undo = undobuf.frees; undo; undo = next)
1521 {
1522 next = undo->next;
1523 free (undo);
1524 }
1525 undobuf.frees = 0;
1526 }
1527
1528 total_attempts += combine_attempts;
1529 total_merges += combine_merges;
1530 total_extras += combine_extras;
1531 total_successes += combine_successes;
1532
1533 nonzero_sign_valid = 0;
1534 rtl_hooks = general_rtl_hooks;
1535
1536 /* Make recognizer allow volatile MEMs again. */
1537 init_recog ();
1538
1539 return new_direct_jump_p;
1540 }
1541
1542 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1543
1544 static void
1545 init_reg_last (void)
1546 {
1547 unsigned int i;
1548 reg_stat_type *p;
1549
1550 FOR_EACH_VEC_ELT (reg_stat, i, p)
1551 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1552 }
1553 \f
1554 /* Set up any promoted values for incoming argument registers. */
1555
1556 static void
1557 setup_incoming_promotions (rtx_insn *first)
1558 {
1559 tree arg;
1560 bool strictly_local = false;
1561
1562 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1563 arg = DECL_CHAIN (arg))
1564 {
1565 rtx x, reg = DECL_INCOMING_RTL (arg);
1566 int uns1, uns3;
1567 machine_mode mode1, mode2, mode3, mode4;
1568
1569 /* Only continue if the incoming argument is in a register. */
1570 if (!REG_P (reg))
1571 continue;
1572
1573 /* Determine, if possible, whether all call sites of the current
1574 function lie within the current compilation unit. (This does
1575 take into account the exporting of a function via taking its
1576 address, and so forth.) */
1577 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1578
1579 /* The mode and signedness of the argument before any promotions happen
1580 (equal to the mode of the pseudo holding it at that stage). */
1581 mode1 = TYPE_MODE (TREE_TYPE (arg));
1582 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1583
1584 /* The mode and signedness of the argument after any source language and
1585 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1586 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1587 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1588
1589 /* The mode and signedness of the argument as it is actually passed,
1590 see assign_parm_setup_reg in function.c. */
1591 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1592 TREE_TYPE (cfun->decl), 0);
1593
1594 /* The mode of the register in which the argument is being passed. */
1595 mode4 = GET_MODE (reg);
1596
1597 /* Eliminate sign extensions in the callee when:
1598 (a) A mode promotion has occurred; */
1599 if (mode1 == mode3)
1600 continue;
1601 /* (b) The mode of the register is the same as the mode of
1602 the argument as it is passed; */
1603 if (mode3 != mode4)
1604 continue;
1605 /* (c) There's no language level extension; */
1606 if (mode1 == mode2)
1607 ;
1608 /* (c.1) All callers are from the current compilation unit. If that's
1609 the case we don't have to rely on an ABI, we only have to know
1610 what we're generating right now, and we know that we will do the
1611 mode1 to mode2 promotion with the given sign. */
1612 else if (!strictly_local)
1613 continue;
1614 /* (c.2) The combination of the two promotions is useful. This is
1615 true when the signs match, or if the first promotion is unsigned.
1616 In the later case, (sign_extend (zero_extend x)) is the same as
1617 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1618 else if (uns1)
1619 uns3 = true;
1620 else if (uns3)
1621 continue;
1622
1623 /* Record that the value was promoted from mode1 to mode3,
1624 so that any sign extension at the head of the current
1625 function may be eliminated. */
1626 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1627 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1628 record_value_for_reg (reg, first, x);
1629 }
1630 }
1631
1632 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1633 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1634 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1635 because some machines (maybe most) will actually do the sign-extension and
1636 this is the conservative approach.
1637
1638 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1639 kludge. */
1640
1641 static rtx
1642 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1643 {
1644 if (GET_MODE_PRECISION (mode) < prec
1645 && CONST_INT_P (src)
1646 && INTVAL (src) > 0
1647 && val_signbit_known_set_p (mode, INTVAL (src)))
1648 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1649
1650 return src;
1651 }
1652 #endif
1653
1654 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1655 and SET. */
1656
1657 static void
1658 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1659 rtx x)
1660 {
1661 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1662 unsigned HOST_WIDE_INT bits = 0;
1663 rtx reg_equal = NULL, src = SET_SRC (set);
1664 unsigned int num = 0;
1665
1666 if (reg_equal_note)
1667 reg_equal = XEXP (reg_equal_note, 0);
1668
1669 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1670 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1671 if (reg_equal)
1672 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1673 #endif
1674
1675 /* Don't call nonzero_bits if it cannot change anything. */
1676 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1677 {
1678 bits = nonzero_bits (src, nonzero_bits_mode);
1679 if (reg_equal && bits)
1680 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1681 rsp->nonzero_bits |= bits;
1682 }
1683
1684 /* Don't call num_sign_bit_copies if it cannot change anything. */
1685 if (rsp->sign_bit_copies != 1)
1686 {
1687 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1688 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1689 {
1690 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1691 if (num == 0 || numeq > num)
1692 num = numeq;
1693 }
1694 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1695 rsp->sign_bit_copies = num;
1696 }
1697 }
1698
1699 /* Called via note_stores. If X is a pseudo that is narrower than
1700 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1701
1702 If we are setting only a portion of X and we can't figure out what
1703 portion, assume all bits will be used since we don't know what will
1704 be happening.
1705
1706 Similarly, set how many bits of X are known to be copies of the sign bit
1707 at all locations in the function. This is the smallest number implied
1708 by any set of X. */
1709
1710 static void
1711 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1712 {
1713 rtx_insn *insn = (rtx_insn *) data;
1714
1715 if (REG_P (x)
1716 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1717 /* If this register is undefined at the start of the file, we can't
1718 say what its contents were. */
1719 && ! REGNO_REG_SET_P
1720 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1721 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1722 {
1723 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1724
1725 if (set == 0 || GET_CODE (set) == CLOBBER)
1726 {
1727 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1728 rsp->sign_bit_copies = 1;
1729 return;
1730 }
1731
1732 /* If this register is being initialized using itself, and the
1733 register is uninitialized in this basic block, and there are
1734 no LOG_LINKS which set the register, then part of the
1735 register is uninitialized. In that case we can't assume
1736 anything about the number of nonzero bits.
1737
1738 ??? We could do better if we checked this in
1739 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1740 could avoid making assumptions about the insn which initially
1741 sets the register, while still using the information in other
1742 insns. We would have to be careful to check every insn
1743 involved in the combination. */
1744
1745 if (insn
1746 && reg_referenced_p (x, PATTERN (insn))
1747 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1748 REGNO (x)))
1749 {
1750 struct insn_link *link;
1751
1752 FOR_EACH_LOG_LINK (link, insn)
1753 if (dead_or_set_p (link->insn, x))
1754 break;
1755 if (!link)
1756 {
1757 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1758 rsp->sign_bit_copies = 1;
1759 return;
1760 }
1761 }
1762
1763 /* If this is a complex assignment, see if we can convert it into a
1764 simple assignment. */
1765 set = expand_field_assignment (set);
1766
1767 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1768 set what we know about X. */
1769
1770 if (SET_DEST (set) == x
1771 || (paradoxical_subreg_p (SET_DEST (set))
1772 && SUBREG_REG (SET_DEST (set)) == x))
1773 update_rsp_from_reg_equal (rsp, insn, set, x);
1774 else
1775 {
1776 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1777 rsp->sign_bit_copies = 1;
1778 }
1779 }
1780 }
1781 \f
1782 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1783 optionally insns that were previously combined into I3 or that will be
1784 combined into the merger of INSN and I3. The order is PRED, PRED2,
1785 INSN, SUCC, SUCC2, I3.
1786
1787 Return 0 if the combination is not allowed for any reason.
1788
1789 If the combination is allowed, *PDEST will be set to the single
1790 destination of INSN and *PSRC to the single source, and this function
1791 will return 1. */
1792
1793 static int
1794 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1795 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1796 rtx *pdest, rtx *psrc)
1797 {
1798 int i;
1799 const_rtx set = 0;
1800 rtx src, dest;
1801 rtx_insn *p;
1802 #ifdef AUTO_INC_DEC
1803 rtx link;
1804 #endif
1805 bool all_adjacent = true;
1806 int (*is_volatile_p) (const_rtx);
1807
1808 if (succ)
1809 {
1810 if (succ2)
1811 {
1812 if (next_active_insn (succ2) != i3)
1813 all_adjacent = false;
1814 if (next_active_insn (succ) != succ2)
1815 all_adjacent = false;
1816 }
1817 else if (next_active_insn (succ) != i3)
1818 all_adjacent = false;
1819 if (next_active_insn (insn) != succ)
1820 all_adjacent = false;
1821 }
1822 else if (next_active_insn (insn) != i3)
1823 all_adjacent = false;
1824
1825 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1826 or a PARALLEL consisting of such a SET and CLOBBERs.
1827
1828 If INSN has CLOBBER parallel parts, ignore them for our processing.
1829 By definition, these happen during the execution of the insn. When it
1830 is merged with another insn, all bets are off. If they are, in fact,
1831 needed and aren't also supplied in I3, they may be added by
1832 recog_for_combine. Otherwise, it won't match.
1833
1834 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1835 note.
1836
1837 Get the source and destination of INSN. If more than one, can't
1838 combine. */
1839
1840 if (GET_CODE (PATTERN (insn)) == SET)
1841 set = PATTERN (insn);
1842 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1843 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1844 {
1845 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1846 {
1847 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1848
1849 switch (GET_CODE (elt))
1850 {
1851 /* This is important to combine floating point insns
1852 for the SH4 port. */
1853 case USE:
1854 /* Combining an isolated USE doesn't make sense.
1855 We depend here on combinable_i3pat to reject them. */
1856 /* The code below this loop only verifies that the inputs of
1857 the SET in INSN do not change. We call reg_set_between_p
1858 to verify that the REG in the USE does not change between
1859 I3 and INSN.
1860 If the USE in INSN was for a pseudo register, the matching
1861 insn pattern will likely match any register; combining this
1862 with any other USE would only be safe if we knew that the
1863 used registers have identical values, or if there was
1864 something to tell them apart, e.g. different modes. For
1865 now, we forgo such complicated tests and simply disallow
1866 combining of USES of pseudo registers with any other USE. */
1867 if (REG_P (XEXP (elt, 0))
1868 && GET_CODE (PATTERN (i3)) == PARALLEL)
1869 {
1870 rtx i3pat = PATTERN (i3);
1871 int i = XVECLEN (i3pat, 0) - 1;
1872 unsigned int regno = REGNO (XEXP (elt, 0));
1873
1874 do
1875 {
1876 rtx i3elt = XVECEXP (i3pat, 0, i);
1877
1878 if (GET_CODE (i3elt) == USE
1879 && REG_P (XEXP (i3elt, 0))
1880 && (REGNO (XEXP (i3elt, 0)) == regno
1881 ? reg_set_between_p (XEXP (elt, 0),
1882 PREV_INSN (insn), i3)
1883 : regno >= FIRST_PSEUDO_REGISTER))
1884 return 0;
1885 }
1886 while (--i >= 0);
1887 }
1888 break;
1889
1890 /* We can ignore CLOBBERs. */
1891 case CLOBBER:
1892 break;
1893
1894 case SET:
1895 /* Ignore SETs whose result isn't used but not those that
1896 have side-effects. */
1897 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1898 && insn_nothrow_p (insn)
1899 && !side_effects_p (elt))
1900 break;
1901
1902 /* If we have already found a SET, this is a second one and
1903 so we cannot combine with this insn. */
1904 if (set)
1905 return 0;
1906
1907 set = elt;
1908 break;
1909
1910 default:
1911 /* Anything else means we can't combine. */
1912 return 0;
1913 }
1914 }
1915
1916 if (set == 0
1917 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1918 so don't do anything with it. */
1919 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1920 return 0;
1921 }
1922 else
1923 return 0;
1924
1925 if (set == 0)
1926 return 0;
1927
1928 /* The simplification in expand_field_assignment may call back to
1929 get_last_value, so set safe guard here. */
1930 subst_low_luid = DF_INSN_LUID (insn);
1931
1932 set = expand_field_assignment (set);
1933 src = SET_SRC (set), dest = SET_DEST (set);
1934
1935 /* Do not eliminate user-specified register if it is in an
1936 asm input because we may break the register asm usage defined
1937 in GCC manual if allow to do so.
1938 Be aware that this may cover more cases than we expect but this
1939 should be harmless. */
1940 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1941 && extract_asm_operands (PATTERN (i3)))
1942 return 0;
1943
1944 /* Don't eliminate a store in the stack pointer. */
1945 if (dest == stack_pointer_rtx
1946 /* Don't combine with an insn that sets a register to itself if it has
1947 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1948 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1949 /* Can't merge an ASM_OPERANDS. */
1950 || GET_CODE (src) == ASM_OPERANDS
1951 /* Can't merge a function call. */
1952 || GET_CODE (src) == CALL
1953 /* Don't eliminate a function call argument. */
1954 || (CALL_P (i3)
1955 && (find_reg_fusage (i3, USE, dest)
1956 || (REG_P (dest)
1957 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1958 && global_regs[REGNO (dest)])))
1959 /* Don't substitute into an incremented register. */
1960 || FIND_REG_INC_NOTE (i3, dest)
1961 || (succ && FIND_REG_INC_NOTE (succ, dest))
1962 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1963 /* Don't substitute into a non-local goto, this confuses CFG. */
1964 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1965 /* Make sure that DEST is not used after SUCC but before I3. */
1966 || (!all_adjacent
1967 && ((succ2
1968 && (reg_used_between_p (dest, succ2, i3)
1969 || reg_used_between_p (dest, succ, succ2)))
1970 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1971 /* Make sure that the value that is to be substituted for the register
1972 does not use any registers whose values alter in between. However,
1973 If the insns are adjacent, a use can't cross a set even though we
1974 think it might (this can happen for a sequence of insns each setting
1975 the same destination; last_set of that register might point to
1976 a NOTE). If INSN has a REG_EQUIV note, the register is always
1977 equivalent to the memory so the substitution is valid even if there
1978 are intervening stores. Also, don't move a volatile asm or
1979 UNSPEC_VOLATILE across any other insns. */
1980 || (! all_adjacent
1981 && (((!MEM_P (src)
1982 || ! find_reg_note (insn, REG_EQUIV, src))
1983 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1984 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1985 || GET_CODE (src) == UNSPEC_VOLATILE))
1986 /* Don't combine across a CALL_INSN, because that would possibly
1987 change whether the life span of some REGs crosses calls or not,
1988 and it is a pain to update that information.
1989 Exception: if source is a constant, moving it later can't hurt.
1990 Accept that as a special case. */
1991 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1992 return 0;
1993
1994 /* DEST must either be a REG or CC0. */
1995 if (REG_P (dest))
1996 {
1997 /* If register alignment is being enforced for multi-word items in all
1998 cases except for parameters, it is possible to have a register copy
1999 insn referencing a hard register that is not allowed to contain the
2000 mode being copied and which would not be valid as an operand of most
2001 insns. Eliminate this problem by not combining with such an insn.
2002
2003 Also, on some machines we don't want to extend the life of a hard
2004 register. */
2005
2006 if (REG_P (src)
2007 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2008 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2009 /* Don't extend the life of a hard register unless it is
2010 user variable (if we have few registers) or it can't
2011 fit into the desired register (meaning something special
2012 is going on).
2013 Also avoid substituting a return register into I3, because
2014 reload can't handle a conflict with constraints of other
2015 inputs. */
2016 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2017 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2018 return 0;
2019 }
2020 else if (GET_CODE (dest) != CC0)
2021 return 0;
2022
2023
2024 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2025 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2026 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2027 {
2028 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2029
2030 /* If the clobber represents an earlyclobber operand, we must not
2031 substitute an expression containing the clobbered register.
2032 As we do not analyze the constraint strings here, we have to
2033 make the conservative assumption. However, if the register is
2034 a fixed hard reg, the clobber cannot represent any operand;
2035 we leave it up to the machine description to either accept or
2036 reject use-and-clobber patterns. */
2037 if (!REG_P (reg)
2038 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2039 || !fixed_regs[REGNO (reg)])
2040 if (reg_overlap_mentioned_p (reg, src))
2041 return 0;
2042 }
2043
2044 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2045 or not), reject, unless nothing volatile comes between it and I3 */
2046
2047 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2048 {
2049 /* Make sure neither succ nor succ2 contains a volatile reference. */
2050 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2051 return 0;
2052 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2053 return 0;
2054 /* We'll check insns between INSN and I3 below. */
2055 }
2056
2057 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2058 to be an explicit register variable, and was chosen for a reason. */
2059
2060 if (GET_CODE (src) == ASM_OPERANDS
2061 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2062 return 0;
2063
2064 /* If INSN contains volatile references (specifically volatile MEMs),
2065 we cannot combine across any other volatile references.
2066 Even if INSN doesn't contain volatile references, any intervening
2067 volatile insn might affect machine state. */
2068
2069 is_volatile_p = volatile_refs_p (PATTERN (insn))
2070 ? volatile_refs_p
2071 : volatile_insn_p;
2072
2073 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2074 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2075 return 0;
2076
2077 /* If INSN contains an autoincrement or autodecrement, make sure that
2078 register is not used between there and I3, and not already used in
2079 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2080 Also insist that I3 not be a jump; if it were one
2081 and the incremented register were spilled, we would lose. */
2082
2083 #ifdef AUTO_INC_DEC
2084 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2085 if (REG_NOTE_KIND (link) == REG_INC
2086 && (JUMP_P (i3)
2087 || reg_used_between_p (XEXP (link, 0), insn, i3)
2088 || (pred != NULL_RTX
2089 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2090 || (pred2 != NULL_RTX
2091 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2092 || (succ != NULL_RTX
2093 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2094 || (succ2 != NULL_RTX
2095 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2096 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2097 return 0;
2098 #endif
2099
2100 /* Don't combine an insn that follows a CC0-setting insn.
2101 An insn that uses CC0 must not be separated from the one that sets it.
2102 We do, however, allow I2 to follow a CC0-setting insn if that insn
2103 is passed as I1; in that case it will be deleted also.
2104 We also allow combining in this case if all the insns are adjacent
2105 because that would leave the two CC0 insns adjacent as well.
2106 It would be more logical to test whether CC0 occurs inside I1 or I2,
2107 but that would be much slower, and this ought to be equivalent. */
2108
2109 if (HAVE_cc0)
2110 {
2111 p = prev_nonnote_insn (insn);
2112 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2113 && ! all_adjacent)
2114 return 0;
2115 }
2116
2117 /* If we get here, we have passed all the tests and the combination is
2118 to be allowed. */
2119
2120 *pdest = dest;
2121 *psrc = src;
2122
2123 return 1;
2124 }
2125 \f
2126 /* LOC is the location within I3 that contains its pattern or the component
2127 of a PARALLEL of the pattern. We validate that it is valid for combining.
2128
2129 One problem is if I3 modifies its output, as opposed to replacing it
2130 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2131 doing so would produce an insn that is not equivalent to the original insns.
2132
2133 Consider:
2134
2135 (set (reg:DI 101) (reg:DI 100))
2136 (set (subreg:SI (reg:DI 101) 0) <foo>)
2137
2138 This is NOT equivalent to:
2139
2140 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2141 (set (reg:DI 101) (reg:DI 100))])
2142
2143 Not only does this modify 100 (in which case it might still be valid
2144 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2145
2146 We can also run into a problem if I2 sets a register that I1
2147 uses and I1 gets directly substituted into I3 (not via I2). In that
2148 case, we would be getting the wrong value of I2DEST into I3, so we
2149 must reject the combination. This case occurs when I2 and I1 both
2150 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2151 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2152 of a SET must prevent combination from occurring. The same situation
2153 can occur for I0, in which case I0_NOT_IN_SRC is set.
2154
2155 Before doing the above check, we first try to expand a field assignment
2156 into a set of logical operations.
2157
2158 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2159 we place a register that is both set and used within I3. If more than one
2160 such register is detected, we fail.
2161
2162 Return 1 if the combination is valid, zero otherwise. */
2163
2164 static int
2165 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2166 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2167 {
2168 rtx x = *loc;
2169
2170 if (GET_CODE (x) == SET)
2171 {
2172 rtx set = x ;
2173 rtx dest = SET_DEST (set);
2174 rtx src = SET_SRC (set);
2175 rtx inner_dest = dest;
2176 rtx subdest;
2177
2178 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2179 || GET_CODE (inner_dest) == SUBREG
2180 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2181 inner_dest = XEXP (inner_dest, 0);
2182
2183 /* Check for the case where I3 modifies its output, as discussed
2184 above. We don't want to prevent pseudos from being combined
2185 into the address of a MEM, so only prevent the combination if
2186 i1 or i2 set the same MEM. */
2187 if ((inner_dest != dest &&
2188 (!MEM_P (inner_dest)
2189 || rtx_equal_p (i2dest, inner_dest)
2190 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2191 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2192 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2193 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2194 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2195
2196 /* This is the same test done in can_combine_p except we can't test
2197 all_adjacent; we don't have to, since this instruction will stay
2198 in place, thus we are not considering increasing the lifetime of
2199 INNER_DEST.
2200
2201 Also, if this insn sets a function argument, combining it with
2202 something that might need a spill could clobber a previous
2203 function argument; the all_adjacent test in can_combine_p also
2204 checks this; here, we do a more specific test for this case. */
2205
2206 || (REG_P (inner_dest)
2207 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2208 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2209 GET_MODE (inner_dest))))
2210 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2211 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2212 return 0;
2213
2214 /* If DEST is used in I3, it is being killed in this insn, so
2215 record that for later. We have to consider paradoxical
2216 subregs here, since they kill the whole register, but we
2217 ignore partial subregs, STRICT_LOW_PART, etc.
2218 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2219 STACK_POINTER_REGNUM, since these are always considered to be
2220 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2221 subdest = dest;
2222 if (GET_CODE (subdest) == SUBREG
2223 && (GET_MODE_SIZE (GET_MODE (subdest))
2224 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2225 subdest = SUBREG_REG (subdest);
2226 if (pi3dest_killed
2227 && REG_P (subdest)
2228 && reg_referenced_p (subdest, PATTERN (i3))
2229 && REGNO (subdest) != FRAME_POINTER_REGNUM
2230 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2231 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2232 #endif
2233 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2234 || (REGNO (subdest) != ARG_POINTER_REGNUM
2235 || ! fixed_regs [REGNO (subdest)]))
2236 && REGNO (subdest) != STACK_POINTER_REGNUM)
2237 {
2238 if (*pi3dest_killed)
2239 return 0;
2240
2241 *pi3dest_killed = subdest;
2242 }
2243 }
2244
2245 else if (GET_CODE (x) == PARALLEL)
2246 {
2247 int i;
2248
2249 for (i = 0; i < XVECLEN (x, 0); i++)
2250 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2251 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2252 return 0;
2253 }
2254
2255 return 1;
2256 }
2257 \f
2258 /* Return 1 if X is an arithmetic expression that contains a multiplication
2259 and division. We don't count multiplications by powers of two here. */
2260
2261 static int
2262 contains_muldiv (rtx x)
2263 {
2264 switch (GET_CODE (x))
2265 {
2266 case MOD: case DIV: case UMOD: case UDIV:
2267 return 1;
2268
2269 case MULT:
2270 return ! (CONST_INT_P (XEXP (x, 1))
2271 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2272 default:
2273 if (BINARY_P (x))
2274 return contains_muldiv (XEXP (x, 0))
2275 || contains_muldiv (XEXP (x, 1));
2276
2277 if (UNARY_P (x))
2278 return contains_muldiv (XEXP (x, 0));
2279
2280 return 0;
2281 }
2282 }
2283 \f
2284 /* Determine whether INSN can be used in a combination. Return nonzero if
2285 not. This is used in try_combine to detect early some cases where we
2286 can't perform combinations. */
2287
2288 static int
2289 cant_combine_insn_p (rtx_insn *insn)
2290 {
2291 rtx set;
2292 rtx src, dest;
2293
2294 /* If this isn't really an insn, we can't do anything.
2295 This can occur when flow deletes an insn that it has merged into an
2296 auto-increment address. */
2297 if (! INSN_P (insn))
2298 return 1;
2299
2300 /* Never combine loads and stores involving hard regs that are likely
2301 to be spilled. The register allocator can usually handle such
2302 reg-reg moves by tying. If we allow the combiner to make
2303 substitutions of likely-spilled regs, reload might die.
2304 As an exception, we allow combinations involving fixed regs; these are
2305 not available to the register allocator so there's no risk involved. */
2306
2307 set = single_set (insn);
2308 if (! set)
2309 return 0;
2310 src = SET_SRC (set);
2311 dest = SET_DEST (set);
2312 if (GET_CODE (src) == SUBREG)
2313 src = SUBREG_REG (src);
2314 if (GET_CODE (dest) == SUBREG)
2315 dest = SUBREG_REG (dest);
2316 if (REG_P (src) && REG_P (dest)
2317 && ((HARD_REGISTER_P (src)
2318 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2319 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2320 || (HARD_REGISTER_P (dest)
2321 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2322 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2323 return 1;
2324
2325 return 0;
2326 }
2327
2328 struct likely_spilled_retval_info
2329 {
2330 unsigned regno, nregs;
2331 unsigned mask;
2332 };
2333
2334 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2335 hard registers that are known to be written to / clobbered in full. */
2336 static void
2337 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2338 {
2339 struct likely_spilled_retval_info *const info =
2340 (struct likely_spilled_retval_info *) data;
2341 unsigned regno, nregs;
2342 unsigned new_mask;
2343
2344 if (!REG_P (XEXP (set, 0)))
2345 return;
2346 regno = REGNO (x);
2347 if (regno >= info->regno + info->nregs)
2348 return;
2349 nregs = REG_NREGS (x);
2350 if (regno + nregs <= info->regno)
2351 return;
2352 new_mask = (2U << (nregs - 1)) - 1;
2353 if (regno < info->regno)
2354 new_mask >>= info->regno - regno;
2355 else
2356 new_mask <<= regno - info->regno;
2357 info->mask &= ~new_mask;
2358 }
2359
2360 /* Return nonzero iff part of the return value is live during INSN, and
2361 it is likely spilled. This can happen when more than one insn is needed
2362 to copy the return value, e.g. when we consider to combine into the
2363 second copy insn for a complex value. */
2364
2365 static int
2366 likely_spilled_retval_p (rtx_insn *insn)
2367 {
2368 rtx_insn *use = BB_END (this_basic_block);
2369 rtx reg;
2370 rtx_insn *p;
2371 unsigned regno, nregs;
2372 /* We assume here that no machine mode needs more than
2373 32 hard registers when the value overlaps with a register
2374 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2375 unsigned mask;
2376 struct likely_spilled_retval_info info;
2377
2378 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2379 return 0;
2380 reg = XEXP (PATTERN (use), 0);
2381 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2382 return 0;
2383 regno = REGNO (reg);
2384 nregs = REG_NREGS (reg);
2385 if (nregs == 1)
2386 return 0;
2387 mask = (2U << (nregs - 1)) - 1;
2388
2389 /* Disregard parts of the return value that are set later. */
2390 info.regno = regno;
2391 info.nregs = nregs;
2392 info.mask = mask;
2393 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2394 if (INSN_P (p))
2395 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2396 mask = info.mask;
2397
2398 /* Check if any of the (probably) live return value registers is
2399 likely spilled. */
2400 nregs --;
2401 do
2402 {
2403 if ((mask & 1 << nregs)
2404 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2405 return 1;
2406 } while (nregs--);
2407 return 0;
2408 }
2409
2410 /* Adjust INSN after we made a change to its destination.
2411
2412 Changing the destination can invalidate notes that say something about
2413 the results of the insn and a LOG_LINK pointing to the insn. */
2414
2415 static void
2416 adjust_for_new_dest (rtx_insn *insn)
2417 {
2418 /* For notes, be conservative and simply remove them. */
2419 remove_reg_equal_equiv_notes (insn);
2420
2421 /* The new insn will have a destination that was previously the destination
2422 of an insn just above it. Call distribute_links to make a LOG_LINK from
2423 the next use of that destination. */
2424
2425 rtx set = single_set (insn);
2426 gcc_assert (set);
2427
2428 rtx reg = SET_DEST (set);
2429
2430 while (GET_CODE (reg) == ZERO_EXTRACT
2431 || GET_CODE (reg) == STRICT_LOW_PART
2432 || GET_CODE (reg) == SUBREG)
2433 reg = XEXP (reg, 0);
2434 gcc_assert (REG_P (reg));
2435
2436 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2437
2438 df_insn_rescan (insn);
2439 }
2440
2441 /* Return TRUE if combine can reuse reg X in mode MODE.
2442 ADDED_SETS is nonzero if the original set is still required. */
2443 static bool
2444 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2445 {
2446 unsigned int regno;
2447
2448 if (!REG_P (x))
2449 return false;
2450
2451 regno = REGNO (x);
2452 /* Allow hard registers if the new mode is legal, and occupies no more
2453 registers than the old mode. */
2454 if (regno < FIRST_PSEUDO_REGISTER)
2455 return (HARD_REGNO_MODE_OK (regno, mode)
2456 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2457
2458 /* Or a pseudo that is only used once. */
2459 return (regno < reg_n_sets_max
2460 && REG_N_SETS (regno) == 1
2461 && !added_sets
2462 && !REG_USERVAR_P (x));
2463 }
2464
2465
2466 /* Check whether X, the destination of a set, refers to part of
2467 the register specified by REG. */
2468
2469 static bool
2470 reg_subword_p (rtx x, rtx reg)
2471 {
2472 /* Check that reg is an integer mode register. */
2473 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2474 return false;
2475
2476 if (GET_CODE (x) == STRICT_LOW_PART
2477 || GET_CODE (x) == ZERO_EXTRACT)
2478 x = XEXP (x, 0);
2479
2480 return GET_CODE (x) == SUBREG
2481 && SUBREG_REG (x) == reg
2482 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2483 }
2484
2485 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2486 Note that the INSN should be deleted *after* removing dead edges, so
2487 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2488 but not for a (set (pc) (label_ref FOO)). */
2489
2490 static void
2491 update_cfg_for_uncondjump (rtx_insn *insn)
2492 {
2493 basic_block bb = BLOCK_FOR_INSN (insn);
2494 gcc_assert (BB_END (bb) == insn);
2495
2496 purge_dead_edges (bb);
2497
2498 delete_insn (insn);
2499 if (EDGE_COUNT (bb->succs) == 1)
2500 {
2501 rtx_insn *insn;
2502
2503 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2504
2505 /* Remove barriers from the footer if there are any. */
2506 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2507 if (BARRIER_P (insn))
2508 {
2509 if (PREV_INSN (insn))
2510 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2511 else
2512 BB_FOOTER (bb) = NEXT_INSN (insn);
2513 if (NEXT_INSN (insn))
2514 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2515 }
2516 else if (LABEL_P (insn))
2517 break;
2518 }
2519 }
2520
2521 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2522 by an arbitrary number of CLOBBERs. */
2523 static bool
2524 is_parallel_of_n_reg_sets (rtx pat, int n)
2525 {
2526 if (GET_CODE (pat) != PARALLEL)
2527 return false;
2528
2529 int len = XVECLEN (pat, 0);
2530 if (len < n)
2531 return false;
2532
2533 int i;
2534 for (i = 0; i < n; i++)
2535 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2536 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2537 return false;
2538 for ( ; i < len; i++)
2539 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
2540 return false;
2541
2542 return true;
2543 }
2544
2545 #if !HAVE_cc0
2546 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2547 CLOBBERs), can be split into individual SETs in that order, without
2548 changing semantics. */
2549 static bool
2550 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2551 {
2552 if (!insn_nothrow_p (insn))
2553 return false;
2554
2555 rtx pat = PATTERN (insn);
2556
2557 int i, j;
2558 for (i = 0; i < n; i++)
2559 {
2560 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2561 return false;
2562
2563 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2564
2565 for (j = i + 1; j < n; j++)
2566 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2567 return false;
2568 }
2569
2570 return true;
2571 }
2572 #endif
2573
2574 /* Try to combine the insns I0, I1 and I2 into I3.
2575 Here I0, I1 and I2 appear earlier than I3.
2576 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2577 I3.
2578
2579 If we are combining more than two insns and the resulting insn is not
2580 recognized, try splitting it into two insns. If that happens, I2 and I3
2581 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2582 Otherwise, I0, I1 and I2 are pseudo-deleted.
2583
2584 Return 0 if the combination does not work. Then nothing is changed.
2585 If we did the combination, return the insn at which combine should
2586 resume scanning.
2587
2588 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2589 new direct jump instruction.
2590
2591 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2592 been I3 passed to an earlier try_combine within the same basic
2593 block. */
2594
2595 static rtx_insn *
2596 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2597 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2598 {
2599 /* New patterns for I3 and I2, respectively. */
2600 rtx newpat, newi2pat = 0;
2601 rtvec newpat_vec_with_clobbers = 0;
2602 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2603 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2604 dead. */
2605 int added_sets_0, added_sets_1, added_sets_2;
2606 /* Total number of SETs to put into I3. */
2607 int total_sets;
2608 /* Nonzero if I2's or I1's body now appears in I3. */
2609 int i2_is_used = 0, i1_is_used = 0;
2610 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2611 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2612 /* Contains I3 if the destination of I3 is used in its source, which means
2613 that the old life of I3 is being killed. If that usage is placed into
2614 I2 and not in I3, a REG_DEAD note must be made. */
2615 rtx i3dest_killed = 0;
2616 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2617 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2618 /* Copy of SET_SRC of I1 and I0, if needed. */
2619 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2620 /* Set if I2DEST was reused as a scratch register. */
2621 bool i2scratch = false;
2622 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2623 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2624 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2625 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2626 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2627 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2628 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2629 /* Notes that must be added to REG_NOTES in I3 and I2. */
2630 rtx new_i3_notes, new_i2_notes;
2631 /* Notes that we substituted I3 into I2 instead of the normal case. */
2632 int i3_subst_into_i2 = 0;
2633 /* Notes that I1, I2 or I3 is a MULT operation. */
2634 int have_mult = 0;
2635 int swap_i2i3 = 0;
2636 int changed_i3_dest = 0;
2637
2638 int maxreg;
2639 rtx_insn *temp_insn;
2640 rtx temp_expr;
2641 struct insn_link *link;
2642 rtx other_pat = 0;
2643 rtx new_other_notes;
2644 int i;
2645
2646 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2647 never be). */
2648 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2649 return 0;
2650
2651 /* Only try four-insn combinations when there's high likelihood of
2652 success. Look for simple insns, such as loads of constants or
2653 binary operations involving a constant. */
2654 if (i0)
2655 {
2656 int i;
2657 int ngood = 0;
2658 int nshift = 0;
2659 rtx set0, set3;
2660
2661 if (!flag_expensive_optimizations)
2662 return 0;
2663
2664 for (i = 0; i < 4; i++)
2665 {
2666 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2667 rtx set = single_set (insn);
2668 rtx src;
2669 if (!set)
2670 continue;
2671 src = SET_SRC (set);
2672 if (CONSTANT_P (src))
2673 {
2674 ngood += 2;
2675 break;
2676 }
2677 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2678 ngood++;
2679 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2680 || GET_CODE (src) == LSHIFTRT)
2681 nshift++;
2682 }
2683
2684 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2685 are likely manipulating its value. Ideally we'll be able to combine
2686 all four insns into a bitfield insertion of some kind.
2687
2688 Note the source in I0 might be inside a sign/zero extension and the
2689 memory modes in I0 and I3 might be different. So extract the address
2690 from the destination of I3 and search for it in the source of I0.
2691
2692 In the event that there's a match but the source/dest do not actually
2693 refer to the same memory, the worst that happens is we try some
2694 combinations that we wouldn't have otherwise. */
2695 if ((set0 = single_set (i0))
2696 /* Ensure the source of SET0 is a MEM, possibly buried inside
2697 an extension. */
2698 && (GET_CODE (SET_SRC (set0)) == MEM
2699 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2700 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2701 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2702 && (set3 = single_set (i3))
2703 /* Ensure the destination of SET3 is a MEM. */
2704 && GET_CODE (SET_DEST (set3)) == MEM
2705 /* Would it be better to extract the base address for the MEM
2706 in SET3 and look for that? I don't have cases where it matters
2707 but I could envision such cases. */
2708 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2709 ngood += 2;
2710
2711 if (ngood < 2 && nshift < 2)
2712 return 0;
2713 }
2714
2715 /* Exit early if one of the insns involved can't be used for
2716 combinations. */
2717 if (CALL_P (i2)
2718 || (i1 && CALL_P (i1))
2719 || (i0 && CALL_P (i0))
2720 || cant_combine_insn_p (i3)
2721 || cant_combine_insn_p (i2)
2722 || (i1 && cant_combine_insn_p (i1))
2723 || (i0 && cant_combine_insn_p (i0))
2724 || likely_spilled_retval_p (i3))
2725 return 0;
2726
2727 combine_attempts++;
2728 undobuf.other_insn = 0;
2729
2730 /* Reset the hard register usage information. */
2731 CLEAR_HARD_REG_SET (newpat_used_regs);
2732
2733 if (dump_file && (dump_flags & TDF_DETAILS))
2734 {
2735 if (i0)
2736 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2737 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2738 else if (i1)
2739 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2740 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2741 else
2742 fprintf (dump_file, "\nTrying %d -> %d:\n",
2743 INSN_UID (i2), INSN_UID (i3));
2744 }
2745
2746 /* If multiple insns feed into one of I2 or I3, they can be in any
2747 order. To simplify the code below, reorder them in sequence. */
2748 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2749 temp_insn = i2, i2 = i0, i0 = temp_insn;
2750 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2751 temp_insn = i1, i1 = i0, i0 = temp_insn;
2752 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2753 temp_insn = i1, i1 = i2, i2 = temp_insn;
2754
2755 added_links_insn = 0;
2756
2757 /* First check for one important special case that the code below will
2758 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2759 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2760 we may be able to replace that destination with the destination of I3.
2761 This occurs in the common code where we compute both a quotient and
2762 remainder into a structure, in which case we want to do the computation
2763 directly into the structure to avoid register-register copies.
2764
2765 Note that this case handles both multiple sets in I2 and also cases
2766 where I2 has a number of CLOBBERs inside the PARALLEL.
2767
2768 We make very conservative checks below and only try to handle the
2769 most common cases of this. For example, we only handle the case
2770 where I2 and I3 are adjacent to avoid making difficult register
2771 usage tests. */
2772
2773 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2774 && REG_P (SET_SRC (PATTERN (i3)))
2775 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2776 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2777 && GET_CODE (PATTERN (i2)) == PARALLEL
2778 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2779 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2780 below would need to check what is inside (and reg_overlap_mentioned_p
2781 doesn't support those codes anyway). Don't allow those destinations;
2782 the resulting insn isn't likely to be recognized anyway. */
2783 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2784 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2785 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2786 SET_DEST (PATTERN (i3)))
2787 && next_active_insn (i2) == i3)
2788 {
2789 rtx p2 = PATTERN (i2);
2790
2791 /* Make sure that the destination of I3,
2792 which we are going to substitute into one output of I2,
2793 is not used within another output of I2. We must avoid making this:
2794 (parallel [(set (mem (reg 69)) ...)
2795 (set (reg 69) ...)])
2796 which is not well-defined as to order of actions.
2797 (Besides, reload can't handle output reloads for this.)
2798
2799 The problem can also happen if the dest of I3 is a memory ref,
2800 if another dest in I2 is an indirect memory ref. */
2801 for (i = 0; i < XVECLEN (p2, 0); i++)
2802 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2803 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2804 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2805 SET_DEST (XVECEXP (p2, 0, i))))
2806 break;
2807
2808 /* Make sure this PARALLEL is not an asm. We do not allow combining
2809 that usually (see can_combine_p), so do not here either. */
2810 for (i = 0; i < XVECLEN (p2, 0); i++)
2811 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2812 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2813 break;
2814
2815 if (i == XVECLEN (p2, 0))
2816 for (i = 0; i < XVECLEN (p2, 0); i++)
2817 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2818 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2819 {
2820 combine_merges++;
2821
2822 subst_insn = i3;
2823 subst_low_luid = DF_INSN_LUID (i2);
2824
2825 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2826 i2src = SET_SRC (XVECEXP (p2, 0, i));
2827 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2828 i2dest_killed = dead_or_set_p (i2, i2dest);
2829
2830 /* Replace the dest in I2 with our dest and make the resulting
2831 insn the new pattern for I3. Then skip to where we validate
2832 the pattern. Everything was set up above. */
2833 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2834 newpat = p2;
2835 i3_subst_into_i2 = 1;
2836 goto validate_replacement;
2837 }
2838 }
2839
2840 /* If I2 is setting a pseudo to a constant and I3 is setting some
2841 sub-part of it to another constant, merge them by making a new
2842 constant. */
2843 if (i1 == 0
2844 && (temp_expr = single_set (i2)) != 0
2845 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2846 && GET_CODE (PATTERN (i3)) == SET
2847 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2848 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2849 {
2850 rtx dest = SET_DEST (PATTERN (i3));
2851 int offset = -1;
2852 int width = 0;
2853
2854 if (GET_CODE (dest) == ZERO_EXTRACT)
2855 {
2856 if (CONST_INT_P (XEXP (dest, 1))
2857 && CONST_INT_P (XEXP (dest, 2)))
2858 {
2859 width = INTVAL (XEXP (dest, 1));
2860 offset = INTVAL (XEXP (dest, 2));
2861 dest = XEXP (dest, 0);
2862 if (BITS_BIG_ENDIAN)
2863 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2864 }
2865 }
2866 else
2867 {
2868 if (GET_CODE (dest) == STRICT_LOW_PART)
2869 dest = XEXP (dest, 0);
2870 width = GET_MODE_PRECISION (GET_MODE (dest));
2871 offset = 0;
2872 }
2873
2874 if (offset >= 0)
2875 {
2876 /* If this is the low part, we're done. */
2877 if (subreg_lowpart_p (dest))
2878 ;
2879 /* Handle the case where inner is twice the size of outer. */
2880 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2881 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2882 offset += GET_MODE_PRECISION (GET_MODE (dest));
2883 /* Otherwise give up for now. */
2884 else
2885 offset = -1;
2886 }
2887
2888 if (offset >= 0)
2889 {
2890 rtx inner = SET_SRC (PATTERN (i3));
2891 rtx outer = SET_SRC (temp_expr);
2892
2893 wide_int o
2894 = wi::insert (std::make_pair (outer, GET_MODE (SET_DEST (temp_expr))),
2895 std::make_pair (inner, GET_MODE (dest)),
2896 offset, width);
2897
2898 combine_merges++;
2899 subst_insn = i3;
2900 subst_low_luid = DF_INSN_LUID (i2);
2901 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2902 i2dest = SET_DEST (temp_expr);
2903 i2dest_killed = dead_or_set_p (i2, i2dest);
2904
2905 /* Replace the source in I2 with the new constant and make the
2906 resulting insn the new pattern for I3. Then skip to where we
2907 validate the pattern. Everything was set up above. */
2908 SUBST (SET_SRC (temp_expr),
2909 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2910
2911 newpat = PATTERN (i2);
2912
2913 /* The dest of I3 has been replaced with the dest of I2. */
2914 changed_i3_dest = 1;
2915 goto validate_replacement;
2916 }
2917 }
2918
2919 #if !HAVE_cc0
2920 /* If we have no I1 and I2 looks like:
2921 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2922 (set Y OP)])
2923 make up a dummy I1 that is
2924 (set Y OP)
2925 and change I2 to be
2926 (set (reg:CC X) (compare:CC Y (const_int 0)))
2927
2928 (We can ignore any trailing CLOBBERs.)
2929
2930 This undoes a previous combination and allows us to match a branch-and-
2931 decrement insn. */
2932
2933 if (i1 == 0
2934 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2935 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2936 == MODE_CC)
2937 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2938 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2939 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2940 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2941 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2942 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2943 {
2944 /* We make I1 with the same INSN_UID as I2. This gives it
2945 the same DF_INSN_LUID for value tracking. Our fake I1 will
2946 never appear in the insn stream so giving it the same INSN_UID
2947 as I2 will not cause a problem. */
2948
2949 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2950 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2951 -1, NULL_RTX);
2952 INSN_UID (i1) = INSN_UID (i2);
2953
2954 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2955 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2956 SET_DEST (PATTERN (i1)));
2957 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2958 SUBST_LINK (LOG_LINKS (i2),
2959 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2960 }
2961
2962 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2963 make those two SETs separate I1 and I2 insns, and make an I0 that is
2964 the original I1. */
2965 if (i0 == 0
2966 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2967 && can_split_parallel_of_n_reg_sets (i2, 2)
2968 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2969 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2970 {
2971 /* If there is no I1, there is no I0 either. */
2972 i0 = i1;
2973
2974 /* We make I1 with the same INSN_UID as I2. This gives it
2975 the same DF_INSN_LUID for value tracking. Our fake I1 will
2976 never appear in the insn stream so giving it the same INSN_UID
2977 as I2 will not cause a problem. */
2978
2979 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2980 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2981 -1, NULL_RTX);
2982 INSN_UID (i1) = INSN_UID (i2);
2983
2984 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2985 }
2986 #endif
2987
2988 /* Verify that I2 and I1 are valid for combining. */
2989 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2990 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2991 &i1dest, &i1src))
2992 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2993 &i0dest, &i0src)))
2994 {
2995 undo_all ();
2996 return 0;
2997 }
2998
2999 /* Record whether I2DEST is used in I2SRC and similarly for the other
3000 cases. Knowing this will help in register status updating below. */
3001 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3002 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3003 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3004 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3005 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3006 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3007 i2dest_killed = dead_or_set_p (i2, i2dest);
3008 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3009 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3010
3011 /* For the earlier insns, determine which of the subsequent ones they
3012 feed. */
3013 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3014 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3015 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3016 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3017 && reg_overlap_mentioned_p (i0dest, i2src))));
3018
3019 /* Ensure that I3's pattern can be the destination of combines. */
3020 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3021 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3022 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3023 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3024 &i3dest_killed))
3025 {
3026 undo_all ();
3027 return 0;
3028 }
3029
3030 /* See if any of the insns is a MULT operation. Unless one is, we will
3031 reject a combination that is, since it must be slower. Be conservative
3032 here. */
3033 if (GET_CODE (i2src) == MULT
3034 || (i1 != 0 && GET_CODE (i1src) == MULT)
3035 || (i0 != 0 && GET_CODE (i0src) == MULT)
3036 || (GET_CODE (PATTERN (i3)) == SET
3037 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3038 have_mult = 1;
3039
3040 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3041 We used to do this EXCEPT in one case: I3 has a post-inc in an
3042 output operand. However, that exception can give rise to insns like
3043 mov r3,(r3)+
3044 which is a famous insn on the PDP-11 where the value of r3 used as the
3045 source was model-dependent. Avoid this sort of thing. */
3046
3047 #if 0
3048 if (!(GET_CODE (PATTERN (i3)) == SET
3049 && REG_P (SET_SRC (PATTERN (i3)))
3050 && MEM_P (SET_DEST (PATTERN (i3)))
3051 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3052 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3053 /* It's not the exception. */
3054 #endif
3055 #ifdef AUTO_INC_DEC
3056 {
3057 rtx link;
3058 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3059 if (REG_NOTE_KIND (link) == REG_INC
3060 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3061 || (i1 != 0
3062 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3063 {
3064 undo_all ();
3065 return 0;
3066 }
3067 }
3068 #endif
3069
3070 /* See if the SETs in I1 or I2 need to be kept around in the merged
3071 instruction: whenever the value set there is still needed past I3.
3072 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3073
3074 For the SET in I1, we have two cases: if I1 and I2 independently feed
3075 into I3, the set in I1 needs to be kept around unless I1DEST dies
3076 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3077 in I1 needs to be kept around unless I1DEST dies or is set in either
3078 I2 or I3. The same considerations apply to I0. */
3079
3080 added_sets_2 = !dead_or_set_p (i3, i2dest);
3081
3082 if (i1)
3083 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3084 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3085 else
3086 added_sets_1 = 0;
3087
3088 if (i0)
3089 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3090 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3091 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3092 && dead_or_set_p (i2, i0dest)));
3093 else
3094 added_sets_0 = 0;
3095
3096 /* We are about to copy insns for the case where they need to be kept
3097 around. Check that they can be copied in the merged instruction. */
3098
3099 if (targetm.cannot_copy_insn_p
3100 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3101 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3102 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3103 {
3104 undo_all ();
3105 return 0;
3106 }
3107
3108 /* If the set in I2 needs to be kept around, we must make a copy of
3109 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3110 PATTERN (I2), we are only substituting for the original I1DEST, not into
3111 an already-substituted copy. This also prevents making self-referential
3112 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3113 I2DEST. */
3114
3115 if (added_sets_2)
3116 {
3117 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3118 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3119 else
3120 i2pat = copy_rtx (PATTERN (i2));
3121 }
3122
3123 if (added_sets_1)
3124 {
3125 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3126 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3127 else
3128 i1pat = copy_rtx (PATTERN (i1));
3129 }
3130
3131 if (added_sets_0)
3132 {
3133 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3134 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3135 else
3136 i0pat = copy_rtx (PATTERN (i0));
3137 }
3138
3139 combine_merges++;
3140
3141 /* Substitute in the latest insn for the regs set by the earlier ones. */
3142
3143 maxreg = max_reg_num ();
3144
3145 subst_insn = i3;
3146
3147 /* Many machines that don't use CC0 have insns that can both perform an
3148 arithmetic operation and set the condition code. These operations will
3149 be represented as a PARALLEL with the first element of the vector
3150 being a COMPARE of an arithmetic operation with the constant zero.
3151 The second element of the vector will set some pseudo to the result
3152 of the same arithmetic operation. If we simplify the COMPARE, we won't
3153 match such a pattern and so will generate an extra insn. Here we test
3154 for this case, where both the comparison and the operation result are
3155 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3156 I2SRC. Later we will make the PARALLEL that contains I2. */
3157
3158 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3159 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3160 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3161 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3162 {
3163 rtx newpat_dest;
3164 rtx *cc_use_loc = NULL;
3165 rtx_insn *cc_use_insn = NULL;
3166 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3167 machine_mode compare_mode, orig_compare_mode;
3168 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3169
3170 newpat = PATTERN (i3);
3171 newpat_dest = SET_DEST (newpat);
3172 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3173
3174 if (undobuf.other_insn == 0
3175 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3176 &cc_use_insn)))
3177 {
3178 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3179 compare_code = simplify_compare_const (compare_code,
3180 GET_MODE (i2dest), op0, &op1);
3181 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3182 }
3183
3184 /* Do the rest only if op1 is const0_rtx, which may be the
3185 result of simplification. */
3186 if (op1 == const0_rtx)
3187 {
3188 /* If a single use of the CC is found, prepare to modify it
3189 when SELECT_CC_MODE returns a new CC-class mode, or when
3190 the above simplify_compare_const() returned a new comparison
3191 operator. undobuf.other_insn is assigned the CC use insn
3192 when modifying it. */
3193 if (cc_use_loc)
3194 {
3195 #ifdef SELECT_CC_MODE
3196 machine_mode new_mode
3197 = SELECT_CC_MODE (compare_code, op0, op1);
3198 if (new_mode != orig_compare_mode
3199 && can_change_dest_mode (SET_DEST (newpat),
3200 added_sets_2, new_mode))
3201 {
3202 unsigned int regno = REGNO (newpat_dest);
3203 compare_mode = new_mode;
3204 if (regno < FIRST_PSEUDO_REGISTER)
3205 newpat_dest = gen_rtx_REG (compare_mode, regno);
3206 else
3207 {
3208 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3209 newpat_dest = regno_reg_rtx[regno];
3210 }
3211 }
3212 #endif
3213 /* Cases for modifying the CC-using comparison. */
3214 if (compare_code != orig_compare_code
3215 /* ??? Do we need to verify the zero rtx? */
3216 && XEXP (*cc_use_loc, 1) == const0_rtx)
3217 {
3218 /* Replace cc_use_loc with entire new RTX. */
3219 SUBST (*cc_use_loc,
3220 gen_rtx_fmt_ee (compare_code, compare_mode,
3221 newpat_dest, const0_rtx));
3222 undobuf.other_insn = cc_use_insn;
3223 }
3224 else if (compare_mode != orig_compare_mode)
3225 {
3226 /* Just replace the CC reg with a new mode. */
3227 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3228 undobuf.other_insn = cc_use_insn;
3229 }
3230 }
3231
3232 /* Now we modify the current newpat:
3233 First, SET_DEST(newpat) is updated if the CC mode has been
3234 altered. For targets without SELECT_CC_MODE, this should be
3235 optimized away. */
3236 if (compare_mode != orig_compare_mode)
3237 SUBST (SET_DEST (newpat), newpat_dest);
3238 /* This is always done to propagate i2src into newpat. */
3239 SUBST (SET_SRC (newpat),
3240 gen_rtx_COMPARE (compare_mode, op0, op1));
3241 /* Create new version of i2pat if needed; the below PARALLEL
3242 creation needs this to work correctly. */
3243 if (! rtx_equal_p (i2src, op0))
3244 i2pat = gen_rtx_SET (i2dest, op0);
3245 i2_is_used = 1;
3246 }
3247 }
3248
3249 if (i2_is_used == 0)
3250 {
3251 /* It is possible that the source of I2 or I1 may be performing
3252 an unneeded operation, such as a ZERO_EXTEND of something
3253 that is known to have the high part zero. Handle that case
3254 by letting subst look at the inner insns.
3255
3256 Another way to do this would be to have a function that tries
3257 to simplify a single insn instead of merging two or more
3258 insns. We don't do this because of the potential of infinite
3259 loops and because of the potential extra memory required.
3260 However, doing it the way we are is a bit of a kludge and
3261 doesn't catch all cases.
3262
3263 But only do this if -fexpensive-optimizations since it slows
3264 things down and doesn't usually win.
3265
3266 This is not done in the COMPARE case above because the
3267 unmodified I2PAT is used in the PARALLEL and so a pattern
3268 with a modified I2SRC would not match. */
3269
3270 if (flag_expensive_optimizations)
3271 {
3272 /* Pass pc_rtx so no substitutions are done, just
3273 simplifications. */
3274 if (i1)
3275 {
3276 subst_low_luid = DF_INSN_LUID (i1);
3277 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3278 }
3279
3280 subst_low_luid = DF_INSN_LUID (i2);
3281 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3282 }
3283
3284 n_occurrences = 0; /* `subst' counts here */
3285 subst_low_luid = DF_INSN_LUID (i2);
3286
3287 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3288 copy of I2SRC each time we substitute it, in order to avoid creating
3289 self-referential RTL when we will be substituting I1SRC for I1DEST
3290 later. Likewise if I0 feeds into I2, either directly or indirectly
3291 through I1, and I0DEST is in I0SRC. */
3292 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3293 (i1_feeds_i2_n && i1dest_in_i1src)
3294 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3295 && i0dest_in_i0src));
3296 substed_i2 = 1;
3297
3298 /* Record whether I2's body now appears within I3's body. */
3299 i2_is_used = n_occurrences;
3300 }
3301
3302 /* If we already got a failure, don't try to do more. Otherwise, try to
3303 substitute I1 if we have it. */
3304
3305 if (i1 && GET_CODE (newpat) != CLOBBER)
3306 {
3307 /* Check that an autoincrement side-effect on I1 has not been lost.
3308 This happens if I1DEST is mentioned in I2 and dies there, and
3309 has disappeared from the new pattern. */
3310 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3311 && i1_feeds_i2_n
3312 && dead_or_set_p (i2, i1dest)
3313 && !reg_overlap_mentioned_p (i1dest, newpat))
3314 /* Before we can do this substitution, we must redo the test done
3315 above (see detailed comments there) that ensures I1DEST isn't
3316 mentioned in any SETs in NEWPAT that are field assignments. */
3317 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3318 0, 0, 0))
3319 {
3320 undo_all ();
3321 return 0;
3322 }
3323
3324 n_occurrences = 0;
3325 subst_low_luid = DF_INSN_LUID (i1);
3326
3327 /* If the following substitution will modify I1SRC, make a copy of it
3328 for the case where it is substituted for I1DEST in I2PAT later. */
3329 if (added_sets_2 && i1_feeds_i2_n)
3330 i1src_copy = copy_rtx (i1src);
3331
3332 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3333 copy of I1SRC each time we substitute it, in order to avoid creating
3334 self-referential RTL when we will be substituting I0SRC for I0DEST
3335 later. */
3336 newpat = subst (newpat, i1dest, i1src, 0, 0,
3337 i0_feeds_i1_n && i0dest_in_i0src);
3338 substed_i1 = 1;
3339
3340 /* Record whether I1's body now appears within I3's body. */
3341 i1_is_used = n_occurrences;
3342 }
3343
3344 /* Likewise for I0 if we have it. */
3345
3346 if (i0 && GET_CODE (newpat) != CLOBBER)
3347 {
3348 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3349 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3350 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3351 && !reg_overlap_mentioned_p (i0dest, newpat))
3352 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3353 0, 0, 0))
3354 {
3355 undo_all ();
3356 return 0;
3357 }
3358
3359 /* If the following substitution will modify I0SRC, make a copy of it
3360 for the case where it is substituted for I0DEST in I1PAT later. */
3361 if (added_sets_1 && i0_feeds_i1_n)
3362 i0src_copy = copy_rtx (i0src);
3363 /* And a copy for I0DEST in I2PAT substitution. */
3364 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3365 || (i0_feeds_i2_n)))
3366 i0src_copy2 = copy_rtx (i0src);
3367
3368 n_occurrences = 0;
3369 subst_low_luid = DF_INSN_LUID (i0);
3370 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3371 substed_i0 = 1;
3372 }
3373
3374 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3375 to count all the ways that I2SRC and I1SRC can be used. */
3376 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3377 && i2_is_used + added_sets_2 > 1)
3378 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3379 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3380 > 1))
3381 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3382 && (n_occurrences + added_sets_0
3383 + (added_sets_1 && i0_feeds_i1_n)
3384 + (added_sets_2 && i0_feeds_i2_n)
3385 > 1))
3386 /* Fail if we tried to make a new register. */
3387 || max_reg_num () != maxreg
3388 /* Fail if we couldn't do something and have a CLOBBER. */
3389 || GET_CODE (newpat) == CLOBBER
3390 /* Fail if this new pattern is a MULT and we didn't have one before
3391 at the outer level. */
3392 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3393 && ! have_mult))
3394 {
3395 undo_all ();
3396 return 0;
3397 }
3398
3399 /* If the actions of the earlier insns must be kept
3400 in addition to substituting them into the latest one,
3401 we must make a new PARALLEL for the latest insn
3402 to hold additional the SETs. */
3403
3404 if (added_sets_0 || added_sets_1 || added_sets_2)
3405 {
3406 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3407 combine_extras++;
3408
3409 if (GET_CODE (newpat) == PARALLEL)
3410 {
3411 rtvec old = XVEC (newpat, 0);
3412 total_sets = XVECLEN (newpat, 0) + extra_sets;
3413 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3414 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3415 sizeof (old->elem[0]) * old->num_elem);
3416 }
3417 else
3418 {
3419 rtx old = newpat;
3420 total_sets = 1 + extra_sets;
3421 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3422 XVECEXP (newpat, 0, 0) = old;
3423 }
3424
3425 if (added_sets_0)
3426 XVECEXP (newpat, 0, --total_sets) = i0pat;
3427
3428 if (added_sets_1)
3429 {
3430 rtx t = i1pat;
3431 if (i0_feeds_i1_n)
3432 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3433
3434 XVECEXP (newpat, 0, --total_sets) = t;
3435 }
3436 if (added_sets_2)
3437 {
3438 rtx t = i2pat;
3439 if (i1_feeds_i2_n)
3440 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3441 i0_feeds_i1_n && i0dest_in_i0src);
3442 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3443 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3444
3445 XVECEXP (newpat, 0, --total_sets) = t;
3446 }
3447 }
3448
3449 validate_replacement:
3450
3451 /* Note which hard regs this insn has as inputs. */
3452 mark_used_regs_combine (newpat);
3453
3454 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3455 consider splitting this pattern, we might need these clobbers. */
3456 if (i1 && GET_CODE (newpat) == PARALLEL
3457 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3458 {
3459 int len = XVECLEN (newpat, 0);
3460
3461 newpat_vec_with_clobbers = rtvec_alloc (len);
3462 for (i = 0; i < len; i++)
3463 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3464 }
3465
3466 /* We have recognized nothing yet. */
3467 insn_code_number = -1;
3468
3469 /* See if this is a PARALLEL of two SETs where one SET's destination is
3470 a register that is unused and this isn't marked as an instruction that
3471 might trap in an EH region. In that case, we just need the other SET.
3472 We prefer this over the PARALLEL.
3473
3474 This can occur when simplifying a divmod insn. We *must* test for this
3475 case here because the code below that splits two independent SETs doesn't
3476 handle this case correctly when it updates the register status.
3477
3478 It's pointless doing this if we originally had two sets, one from
3479 i3, and one from i2. Combining then splitting the parallel results
3480 in the original i2 again plus an invalid insn (which we delete).
3481 The net effect is only to move instructions around, which makes
3482 debug info less accurate. */
3483
3484 if (!(added_sets_2 && i1 == 0)
3485 && is_parallel_of_n_reg_sets (newpat, 2)
3486 && asm_noperands (newpat) < 0)
3487 {
3488 rtx set0 = XVECEXP (newpat, 0, 0);
3489 rtx set1 = XVECEXP (newpat, 0, 1);
3490 rtx oldpat = newpat;
3491
3492 if (((REG_P (SET_DEST (set1))
3493 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3494 || (GET_CODE (SET_DEST (set1)) == SUBREG
3495 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3496 && insn_nothrow_p (i3)
3497 && !side_effects_p (SET_SRC (set1)))
3498 {
3499 newpat = set0;
3500 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3501 }
3502
3503 else if (((REG_P (SET_DEST (set0))
3504 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3505 || (GET_CODE (SET_DEST (set0)) == SUBREG
3506 && find_reg_note (i3, REG_UNUSED,
3507 SUBREG_REG (SET_DEST (set0)))))
3508 && insn_nothrow_p (i3)
3509 && !side_effects_p (SET_SRC (set0)))
3510 {
3511 newpat = set1;
3512 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3513
3514 if (insn_code_number >= 0)
3515 changed_i3_dest = 1;
3516 }
3517
3518 if (insn_code_number < 0)
3519 newpat = oldpat;
3520 }
3521
3522 /* Is the result of combination a valid instruction? */
3523 if (insn_code_number < 0)
3524 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3525
3526 /* If we were combining three insns and the result is a simple SET
3527 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3528 insns. There are two ways to do this. It can be split using a
3529 machine-specific method (like when you have an addition of a large
3530 constant) or by combine in the function find_split_point. */
3531
3532 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3533 && asm_noperands (newpat) < 0)
3534 {
3535 rtx parallel, *split;
3536 rtx_insn *m_split_insn;
3537
3538 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3539 use I2DEST as a scratch register will help. In the latter case,
3540 convert I2DEST to the mode of the source of NEWPAT if we can. */
3541
3542 m_split_insn = combine_split_insns (newpat, i3);
3543
3544 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3545 inputs of NEWPAT. */
3546
3547 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3548 possible to try that as a scratch reg. This would require adding
3549 more code to make it work though. */
3550
3551 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3552 {
3553 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3554
3555 /* First try to split using the original register as a
3556 scratch register. */
3557 parallel = gen_rtx_PARALLEL (VOIDmode,
3558 gen_rtvec (2, newpat,
3559 gen_rtx_CLOBBER (VOIDmode,
3560 i2dest)));
3561 m_split_insn = combine_split_insns (parallel, i3);
3562
3563 /* If that didn't work, try changing the mode of I2DEST if
3564 we can. */
3565 if (m_split_insn == 0
3566 && new_mode != GET_MODE (i2dest)
3567 && new_mode != VOIDmode
3568 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3569 {
3570 machine_mode old_mode = GET_MODE (i2dest);
3571 rtx ni2dest;
3572
3573 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3574 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3575 else
3576 {
3577 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3578 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3579 }
3580
3581 parallel = (gen_rtx_PARALLEL
3582 (VOIDmode,
3583 gen_rtvec (2, newpat,
3584 gen_rtx_CLOBBER (VOIDmode,
3585 ni2dest))));
3586 m_split_insn = combine_split_insns (parallel, i3);
3587
3588 if (m_split_insn == 0
3589 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3590 {
3591 struct undo *buf;
3592
3593 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3594 buf = undobuf.undos;
3595 undobuf.undos = buf->next;
3596 buf->next = undobuf.frees;
3597 undobuf.frees = buf;
3598 }
3599 }
3600
3601 i2scratch = m_split_insn != 0;
3602 }
3603
3604 /* If recog_for_combine has discarded clobbers, try to use them
3605 again for the split. */
3606 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3607 {
3608 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3609 m_split_insn = combine_split_insns (parallel, i3);
3610 }
3611
3612 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3613 {
3614 rtx m_split_pat = PATTERN (m_split_insn);
3615 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3616 if (insn_code_number >= 0)
3617 newpat = m_split_pat;
3618 }
3619 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3620 && (next_nonnote_nondebug_insn (i2) == i3
3621 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3622 {
3623 rtx i2set, i3set;
3624 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3625 newi2pat = PATTERN (m_split_insn);
3626
3627 i3set = single_set (NEXT_INSN (m_split_insn));
3628 i2set = single_set (m_split_insn);
3629
3630 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3631
3632 /* If I2 or I3 has multiple SETs, we won't know how to track
3633 register status, so don't use these insns. If I2's destination
3634 is used between I2 and I3, we also can't use these insns. */
3635
3636 if (i2_code_number >= 0 && i2set && i3set
3637 && (next_nonnote_nondebug_insn (i2) == i3
3638 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3639 insn_code_number = recog_for_combine (&newi3pat, i3,
3640 &new_i3_notes);
3641 if (insn_code_number >= 0)
3642 newpat = newi3pat;
3643
3644 /* It is possible that both insns now set the destination of I3.
3645 If so, we must show an extra use of it. */
3646
3647 if (insn_code_number >= 0)
3648 {
3649 rtx new_i3_dest = SET_DEST (i3set);
3650 rtx new_i2_dest = SET_DEST (i2set);
3651
3652 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3653 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3654 || GET_CODE (new_i3_dest) == SUBREG)
3655 new_i3_dest = XEXP (new_i3_dest, 0);
3656
3657 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3658 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3659 || GET_CODE (new_i2_dest) == SUBREG)
3660 new_i2_dest = XEXP (new_i2_dest, 0);
3661
3662 if (REG_P (new_i3_dest)
3663 && REG_P (new_i2_dest)
3664 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3665 && REGNO (new_i2_dest) < reg_n_sets_max)
3666 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3667 }
3668 }
3669
3670 /* If we can split it and use I2DEST, go ahead and see if that
3671 helps things be recognized. Verify that none of the registers
3672 are set between I2 and I3. */
3673 if (insn_code_number < 0
3674 && (split = find_split_point (&newpat, i3, false)) != 0
3675 && (!HAVE_cc0 || REG_P (i2dest))
3676 /* We need I2DEST in the proper mode. If it is a hard register
3677 or the only use of a pseudo, we can change its mode.
3678 Make sure we don't change a hard register to have a mode that
3679 isn't valid for it, or change the number of registers. */
3680 && (GET_MODE (*split) == GET_MODE (i2dest)
3681 || GET_MODE (*split) == VOIDmode
3682 || can_change_dest_mode (i2dest, added_sets_2,
3683 GET_MODE (*split)))
3684 && (next_nonnote_nondebug_insn (i2) == i3
3685 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3686 /* We can't overwrite I2DEST if its value is still used by
3687 NEWPAT. */
3688 && ! reg_referenced_p (i2dest, newpat))
3689 {
3690 rtx newdest = i2dest;
3691 enum rtx_code split_code = GET_CODE (*split);
3692 machine_mode split_mode = GET_MODE (*split);
3693 bool subst_done = false;
3694 newi2pat = NULL_RTX;
3695
3696 i2scratch = true;
3697
3698 /* *SPLIT may be part of I2SRC, so make sure we have the
3699 original expression around for later debug processing.
3700 We should not need I2SRC any more in other cases. */
3701 if (MAY_HAVE_DEBUG_INSNS)
3702 i2src = copy_rtx (i2src);
3703 else
3704 i2src = NULL;
3705
3706 /* Get NEWDEST as a register in the proper mode. We have already
3707 validated that we can do this. */
3708 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3709 {
3710 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3711 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3712 else
3713 {
3714 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3715 newdest = regno_reg_rtx[REGNO (i2dest)];
3716 }
3717 }
3718
3719 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3720 an ASHIFT. This can occur if it was inside a PLUS and hence
3721 appeared to be a memory address. This is a kludge. */
3722 if (split_code == MULT
3723 && CONST_INT_P (XEXP (*split, 1))
3724 && INTVAL (XEXP (*split, 1)) > 0
3725 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3726 {
3727 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3728 XEXP (*split, 0), GEN_INT (i)));
3729 /* Update split_code because we may not have a multiply
3730 anymore. */
3731 split_code = GET_CODE (*split);
3732 }
3733
3734 /* Similarly for (plus (mult FOO (const_int pow2))). */
3735 if (split_code == PLUS
3736 && GET_CODE (XEXP (*split, 0)) == MULT
3737 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3738 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3739 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3740 {
3741 rtx nsplit = XEXP (*split, 0);
3742 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3743 XEXP (nsplit, 0), GEN_INT (i)));
3744 /* Update split_code because we may not have a multiply
3745 anymore. */
3746 split_code = GET_CODE (*split);
3747 }
3748
3749 #ifdef INSN_SCHEDULING
3750 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3751 be written as a ZERO_EXTEND. */
3752 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3753 {
3754 #ifdef LOAD_EXTEND_OP
3755 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3756 what it really is. */
3757 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3758 == SIGN_EXTEND)
3759 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3760 SUBREG_REG (*split)));
3761 else
3762 #endif
3763 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3764 SUBREG_REG (*split)));
3765 }
3766 #endif
3767
3768 /* Attempt to split binary operators using arithmetic identities. */
3769 if (BINARY_P (SET_SRC (newpat))
3770 && split_mode == GET_MODE (SET_SRC (newpat))
3771 && ! side_effects_p (SET_SRC (newpat)))
3772 {
3773 rtx setsrc = SET_SRC (newpat);
3774 machine_mode mode = GET_MODE (setsrc);
3775 enum rtx_code code = GET_CODE (setsrc);
3776 rtx src_op0 = XEXP (setsrc, 0);
3777 rtx src_op1 = XEXP (setsrc, 1);
3778
3779 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3780 if (rtx_equal_p (src_op0, src_op1))
3781 {
3782 newi2pat = gen_rtx_SET (newdest, src_op0);
3783 SUBST (XEXP (setsrc, 0), newdest);
3784 SUBST (XEXP (setsrc, 1), newdest);
3785 subst_done = true;
3786 }
3787 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3788 else if ((code == PLUS || code == MULT)
3789 && GET_CODE (src_op0) == code
3790 && GET_CODE (XEXP (src_op0, 0)) == code
3791 && (INTEGRAL_MODE_P (mode)
3792 || (FLOAT_MODE_P (mode)
3793 && flag_unsafe_math_optimizations)))
3794 {
3795 rtx p = XEXP (XEXP (src_op0, 0), 0);
3796 rtx q = XEXP (XEXP (src_op0, 0), 1);
3797 rtx r = XEXP (src_op0, 1);
3798 rtx s = src_op1;
3799
3800 /* Split both "((X op Y) op X) op Y" and
3801 "((X op Y) op Y) op X" as "T op T" where T is
3802 "X op Y". */
3803 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3804 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3805 {
3806 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3807 SUBST (XEXP (setsrc, 0), newdest);
3808 SUBST (XEXP (setsrc, 1), newdest);
3809 subst_done = true;
3810 }
3811 /* Split "((X op X) op Y) op Y)" as "T op T" where
3812 T is "X op Y". */
3813 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3814 {
3815 rtx tmp = simplify_gen_binary (code, mode, p, r);
3816 newi2pat = gen_rtx_SET (newdest, tmp);
3817 SUBST (XEXP (setsrc, 0), newdest);
3818 SUBST (XEXP (setsrc, 1), newdest);
3819 subst_done = true;
3820 }
3821 }
3822 }
3823
3824 if (!subst_done)
3825 {
3826 newi2pat = gen_rtx_SET (newdest, *split);
3827 SUBST (*split, newdest);
3828 }
3829
3830 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3831
3832 /* recog_for_combine might have added CLOBBERs to newi2pat.
3833 Make sure NEWPAT does not depend on the clobbered regs. */
3834 if (GET_CODE (newi2pat) == PARALLEL)
3835 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3836 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3837 {
3838 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3839 if (reg_overlap_mentioned_p (reg, newpat))
3840 {
3841 undo_all ();
3842 return 0;
3843 }
3844 }
3845
3846 /* If the split point was a MULT and we didn't have one before,
3847 don't use one now. */
3848 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3849 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3850 }
3851 }
3852
3853 /* Check for a case where we loaded from memory in a narrow mode and
3854 then sign extended it, but we need both registers. In that case,
3855 we have a PARALLEL with both loads from the same memory location.
3856 We can split this into a load from memory followed by a register-register
3857 copy. This saves at least one insn, more if register allocation can
3858 eliminate the copy.
3859
3860 We cannot do this if the destination of the first assignment is a
3861 condition code register or cc0. We eliminate this case by making sure
3862 the SET_DEST and SET_SRC have the same mode.
3863
3864 We cannot do this if the destination of the second assignment is
3865 a register that we have already assumed is zero-extended. Similarly
3866 for a SUBREG of such a register. */
3867
3868 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3869 && GET_CODE (newpat) == PARALLEL
3870 && XVECLEN (newpat, 0) == 2
3871 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3872 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3873 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3874 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3875 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3876 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3877 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3878 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3879 DF_INSN_LUID (i2))
3880 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3881 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3882 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3883 (REG_P (temp_expr)
3884 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3885 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3886 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3887 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3888 != GET_MODE_MASK (word_mode))))
3889 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3890 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3891 (REG_P (temp_expr)
3892 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3893 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3894 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3895 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3896 != GET_MODE_MASK (word_mode)))))
3897 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3898 SET_SRC (XVECEXP (newpat, 0, 1)))
3899 && ! find_reg_note (i3, REG_UNUSED,
3900 SET_DEST (XVECEXP (newpat, 0, 0))))
3901 {
3902 rtx ni2dest;
3903
3904 newi2pat = XVECEXP (newpat, 0, 0);
3905 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3906 newpat = XVECEXP (newpat, 0, 1);
3907 SUBST (SET_SRC (newpat),
3908 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3909 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3910
3911 if (i2_code_number >= 0)
3912 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3913
3914 if (insn_code_number >= 0)
3915 swap_i2i3 = 1;
3916 }
3917
3918 /* Similarly, check for a case where we have a PARALLEL of two independent
3919 SETs but we started with three insns. In this case, we can do the sets
3920 as two separate insns. This case occurs when some SET allows two
3921 other insns to combine, but the destination of that SET is still live.
3922
3923 Also do this if we started with two insns and (at least) one of the
3924 resulting sets is a noop; this noop will be deleted later. */
3925
3926 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3927 && GET_CODE (newpat) == PARALLEL
3928 && XVECLEN (newpat, 0) == 2
3929 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3930 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3931 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3932 || set_noop_p (XVECEXP (newpat, 0, 1)))
3933 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3934 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3935 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3936 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3937 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3938 XVECEXP (newpat, 0, 0))
3939 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3940 XVECEXP (newpat, 0, 1))
3941 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3942 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3943 {
3944 rtx set0 = XVECEXP (newpat, 0, 0);
3945 rtx set1 = XVECEXP (newpat, 0, 1);
3946
3947 /* Normally, it doesn't matter which of the two is done first,
3948 but the one that references cc0 can't be the second, and
3949 one which uses any regs/memory set in between i2 and i3 can't
3950 be first. The PARALLEL might also have been pre-existing in i3,
3951 so we need to make sure that we won't wrongly hoist a SET to i2
3952 that would conflict with a death note present in there. */
3953 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3954 && !(REG_P (SET_DEST (set1))
3955 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3956 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3957 && find_reg_note (i2, REG_DEAD,
3958 SUBREG_REG (SET_DEST (set1))))
3959 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3960 /* If I3 is a jump, ensure that set0 is a jump so that
3961 we do not create invalid RTL. */
3962 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3963 )
3964 {
3965 newi2pat = set1;
3966 newpat = set0;
3967 }
3968 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3969 && !(REG_P (SET_DEST (set0))
3970 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3971 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3972 && find_reg_note (i2, REG_DEAD,
3973 SUBREG_REG (SET_DEST (set0))))
3974 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3975 /* If I3 is a jump, ensure that set1 is a jump so that
3976 we do not create invalid RTL. */
3977 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3978 )
3979 {
3980 newi2pat = set0;
3981 newpat = set1;
3982 }
3983 else
3984 {
3985 undo_all ();
3986 return 0;
3987 }
3988
3989 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3990
3991 if (i2_code_number >= 0)
3992 {
3993 /* recog_for_combine might have added CLOBBERs to newi2pat.
3994 Make sure NEWPAT does not depend on the clobbered regs. */
3995 if (GET_CODE (newi2pat) == PARALLEL)
3996 {
3997 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3998 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3999 {
4000 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4001 if (reg_overlap_mentioned_p (reg, newpat))
4002 {
4003 undo_all ();
4004 return 0;
4005 }
4006 }
4007 }
4008
4009 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4010 }
4011 }
4012
4013 /* If it still isn't recognized, fail and change things back the way they
4014 were. */
4015 if ((insn_code_number < 0
4016 /* Is the result a reasonable ASM_OPERANDS? */
4017 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4018 {
4019 undo_all ();
4020 return 0;
4021 }
4022
4023 /* If we had to change another insn, make sure it is valid also. */
4024 if (undobuf.other_insn)
4025 {
4026 CLEAR_HARD_REG_SET (newpat_used_regs);
4027
4028 other_pat = PATTERN (undobuf.other_insn);
4029 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4030 &new_other_notes);
4031
4032 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4033 {
4034 undo_all ();
4035 return 0;
4036 }
4037 }
4038
4039 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4040 they are adjacent to each other or not. */
4041 if (HAVE_cc0)
4042 {
4043 rtx_insn *p = prev_nonnote_insn (i3);
4044 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4045 && sets_cc0_p (newi2pat))
4046 {
4047 undo_all ();
4048 return 0;
4049 }
4050 }
4051
4052 /* Only allow this combination if insn_rtx_costs reports that the
4053 replacement instructions are cheaper than the originals. */
4054 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4055 {
4056 undo_all ();
4057 return 0;
4058 }
4059
4060 if (MAY_HAVE_DEBUG_INSNS)
4061 {
4062 struct undo *undo;
4063
4064 for (undo = undobuf.undos; undo; undo = undo->next)
4065 if (undo->kind == UNDO_MODE)
4066 {
4067 rtx reg = *undo->where.r;
4068 machine_mode new_mode = GET_MODE (reg);
4069 machine_mode old_mode = undo->old_contents.m;
4070
4071 /* Temporarily revert mode back. */
4072 adjust_reg_mode (reg, old_mode);
4073
4074 if (reg == i2dest && i2scratch)
4075 {
4076 /* If we used i2dest as a scratch register with a
4077 different mode, substitute it for the original
4078 i2src while its original mode is temporarily
4079 restored, and then clear i2scratch so that we don't
4080 do it again later. */
4081 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4082 this_basic_block);
4083 i2scratch = false;
4084 /* Put back the new mode. */
4085 adjust_reg_mode (reg, new_mode);
4086 }
4087 else
4088 {
4089 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4090 rtx_insn *first, *last;
4091
4092 if (reg == i2dest)
4093 {
4094 first = i2;
4095 last = last_combined_insn;
4096 }
4097 else
4098 {
4099 first = i3;
4100 last = undobuf.other_insn;
4101 gcc_assert (last);
4102 if (DF_INSN_LUID (last)
4103 < DF_INSN_LUID (last_combined_insn))
4104 last = last_combined_insn;
4105 }
4106
4107 /* We're dealing with a reg that changed mode but not
4108 meaning, so we want to turn it into a subreg for
4109 the new mode. However, because of REG sharing and
4110 because its mode had already changed, we have to do
4111 it in two steps. First, replace any debug uses of
4112 reg, with its original mode temporarily restored,
4113 with this copy we have created; then, replace the
4114 copy with the SUBREG of the original shared reg,
4115 once again changed to the new mode. */
4116 propagate_for_debug (first, last, reg, tempreg,
4117 this_basic_block);
4118 adjust_reg_mode (reg, new_mode);
4119 propagate_for_debug (first, last, tempreg,
4120 lowpart_subreg (old_mode, reg, new_mode),
4121 this_basic_block);
4122 }
4123 }
4124 }
4125
4126 /* If we will be able to accept this, we have made a
4127 change to the destination of I3. This requires us to
4128 do a few adjustments. */
4129
4130 if (changed_i3_dest)
4131 {
4132 PATTERN (i3) = newpat;
4133 adjust_for_new_dest (i3);
4134 }
4135
4136 /* We now know that we can do this combination. Merge the insns and
4137 update the status of registers and LOG_LINKS. */
4138
4139 if (undobuf.other_insn)
4140 {
4141 rtx note, next;
4142
4143 PATTERN (undobuf.other_insn) = other_pat;
4144
4145 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4146 ensure that they are still valid. Then add any non-duplicate
4147 notes added by recog_for_combine. */
4148 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4149 {
4150 next = XEXP (note, 1);
4151
4152 if ((REG_NOTE_KIND (note) == REG_DEAD
4153 && !reg_referenced_p (XEXP (note, 0),
4154 PATTERN (undobuf.other_insn)))
4155 ||(REG_NOTE_KIND (note) == REG_UNUSED
4156 && !reg_set_p (XEXP (note, 0),
4157 PATTERN (undobuf.other_insn))))
4158 remove_note (undobuf.other_insn, note);
4159 }
4160
4161 distribute_notes (new_other_notes, undobuf.other_insn,
4162 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4163 NULL_RTX);
4164 }
4165
4166 if (swap_i2i3)
4167 {
4168 rtx_insn *insn;
4169 struct insn_link *link;
4170 rtx ni2dest;
4171
4172 /* I3 now uses what used to be its destination and which is now
4173 I2's destination. This requires us to do a few adjustments. */
4174 PATTERN (i3) = newpat;
4175 adjust_for_new_dest (i3);
4176
4177 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4178 so we still will.
4179
4180 However, some later insn might be using I2's dest and have
4181 a LOG_LINK pointing at I3. We must remove this link.
4182 The simplest way to remove the link is to point it at I1,
4183 which we know will be a NOTE. */
4184
4185 /* newi2pat is usually a SET here; however, recog_for_combine might
4186 have added some clobbers. */
4187 if (GET_CODE (newi2pat) == PARALLEL)
4188 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4189 else
4190 ni2dest = SET_DEST (newi2pat);
4191
4192 for (insn = NEXT_INSN (i3);
4193 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4194 || insn != BB_HEAD (this_basic_block->next_bb));
4195 insn = NEXT_INSN (insn))
4196 {
4197 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4198 {
4199 FOR_EACH_LOG_LINK (link, insn)
4200 if (link->insn == i3)
4201 link->insn = i1;
4202
4203 break;
4204 }
4205 }
4206 }
4207
4208 {
4209 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4210 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4211 rtx midnotes = 0;
4212 int from_luid;
4213 /* Compute which registers we expect to eliminate. newi2pat may be setting
4214 either i3dest or i2dest, so we must check it. */
4215 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4216 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4217 || !i2dest_killed
4218 ? 0 : i2dest);
4219 /* For i1, we need to compute both local elimination and global
4220 elimination information with respect to newi2pat because i1dest
4221 may be the same as i3dest, in which case newi2pat may be setting
4222 i1dest. Global information is used when distributing REG_DEAD
4223 note for i2 and i3, in which case it does matter if newi2pat sets
4224 i1dest or not.
4225
4226 Local information is used when distributing REG_DEAD note for i1,
4227 in which case it doesn't matter if newi2pat sets i1dest or not.
4228 See PR62151, if we have four insns combination:
4229 i0: r0 <- i0src
4230 i1: r1 <- i1src (using r0)
4231 REG_DEAD (r0)
4232 i2: r0 <- i2src (using r1)
4233 i3: r3 <- i3src (using r0)
4234 ix: using r0
4235 From i1's point of view, r0 is eliminated, no matter if it is set
4236 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4237 should be discarded.
4238
4239 Note local information only affects cases in forms like "I1->I2->I3",
4240 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4241 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4242 i0dest anyway. */
4243 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4244 || !i1dest_killed
4245 ? 0 : i1dest);
4246 rtx elim_i1 = (local_elim_i1 == 0
4247 || (newi2pat && reg_set_p (i1dest, newi2pat))
4248 ? 0 : i1dest);
4249 /* Same case as i1. */
4250 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4251 ? 0 : i0dest);
4252 rtx elim_i0 = (local_elim_i0 == 0
4253 || (newi2pat && reg_set_p (i0dest, newi2pat))
4254 ? 0 : i0dest);
4255
4256 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4257 clear them. */
4258 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4259 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4260 if (i1)
4261 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4262 if (i0)
4263 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4264
4265 /* Ensure that we do not have something that should not be shared but
4266 occurs multiple times in the new insns. Check this by first
4267 resetting all the `used' flags and then copying anything is shared. */
4268
4269 reset_used_flags (i3notes);
4270 reset_used_flags (i2notes);
4271 reset_used_flags (i1notes);
4272 reset_used_flags (i0notes);
4273 reset_used_flags (newpat);
4274 reset_used_flags (newi2pat);
4275 if (undobuf.other_insn)
4276 reset_used_flags (PATTERN (undobuf.other_insn));
4277
4278 i3notes = copy_rtx_if_shared (i3notes);
4279 i2notes = copy_rtx_if_shared (i2notes);
4280 i1notes = copy_rtx_if_shared (i1notes);
4281 i0notes = copy_rtx_if_shared (i0notes);
4282 newpat = copy_rtx_if_shared (newpat);
4283 newi2pat = copy_rtx_if_shared (newi2pat);
4284 if (undobuf.other_insn)
4285 reset_used_flags (PATTERN (undobuf.other_insn));
4286
4287 INSN_CODE (i3) = insn_code_number;
4288 PATTERN (i3) = newpat;
4289
4290 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4291 {
4292 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4293
4294 reset_used_flags (call_usage);
4295 call_usage = copy_rtx (call_usage);
4296
4297 if (substed_i2)
4298 {
4299 /* I2SRC must still be meaningful at this point. Some splitting
4300 operations can invalidate I2SRC, but those operations do not
4301 apply to calls. */
4302 gcc_assert (i2src);
4303 replace_rtx (call_usage, i2dest, i2src);
4304 }
4305
4306 if (substed_i1)
4307 replace_rtx (call_usage, i1dest, i1src);
4308 if (substed_i0)
4309 replace_rtx (call_usage, i0dest, i0src);
4310
4311 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4312 }
4313
4314 if (undobuf.other_insn)
4315 INSN_CODE (undobuf.other_insn) = other_code_number;
4316
4317 /* We had one special case above where I2 had more than one set and
4318 we replaced a destination of one of those sets with the destination
4319 of I3. In that case, we have to update LOG_LINKS of insns later
4320 in this basic block. Note that this (expensive) case is rare.
4321
4322 Also, in this case, we must pretend that all REG_NOTEs for I2
4323 actually came from I3, so that REG_UNUSED notes from I2 will be
4324 properly handled. */
4325
4326 if (i3_subst_into_i2)
4327 {
4328 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4329 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4330 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4331 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4332 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4333 && ! find_reg_note (i2, REG_UNUSED,
4334 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4335 for (temp_insn = NEXT_INSN (i2);
4336 temp_insn
4337 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4338 || BB_HEAD (this_basic_block) != temp_insn);
4339 temp_insn = NEXT_INSN (temp_insn))
4340 if (temp_insn != i3 && INSN_P (temp_insn))
4341 FOR_EACH_LOG_LINK (link, temp_insn)
4342 if (link->insn == i2)
4343 link->insn = i3;
4344
4345 if (i3notes)
4346 {
4347 rtx link = i3notes;
4348 while (XEXP (link, 1))
4349 link = XEXP (link, 1);
4350 XEXP (link, 1) = i2notes;
4351 }
4352 else
4353 i3notes = i2notes;
4354 i2notes = 0;
4355 }
4356
4357 LOG_LINKS (i3) = NULL;
4358 REG_NOTES (i3) = 0;
4359 LOG_LINKS (i2) = NULL;
4360 REG_NOTES (i2) = 0;
4361
4362 if (newi2pat)
4363 {
4364 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4365 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4366 this_basic_block);
4367 INSN_CODE (i2) = i2_code_number;
4368 PATTERN (i2) = newi2pat;
4369 }
4370 else
4371 {
4372 if (MAY_HAVE_DEBUG_INSNS && i2src)
4373 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4374 this_basic_block);
4375 SET_INSN_DELETED (i2);
4376 }
4377
4378 if (i1)
4379 {
4380 LOG_LINKS (i1) = NULL;
4381 REG_NOTES (i1) = 0;
4382 if (MAY_HAVE_DEBUG_INSNS)
4383 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4384 this_basic_block);
4385 SET_INSN_DELETED (i1);
4386 }
4387
4388 if (i0)
4389 {
4390 LOG_LINKS (i0) = NULL;
4391 REG_NOTES (i0) = 0;
4392 if (MAY_HAVE_DEBUG_INSNS)
4393 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4394 this_basic_block);
4395 SET_INSN_DELETED (i0);
4396 }
4397
4398 /* Get death notes for everything that is now used in either I3 or
4399 I2 and used to die in a previous insn. If we built two new
4400 patterns, move from I1 to I2 then I2 to I3 so that we get the
4401 proper movement on registers that I2 modifies. */
4402
4403 if (i0)
4404 from_luid = DF_INSN_LUID (i0);
4405 else if (i1)
4406 from_luid = DF_INSN_LUID (i1);
4407 else
4408 from_luid = DF_INSN_LUID (i2);
4409 if (newi2pat)
4410 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4411 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4412
4413 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4414 if (i3notes)
4415 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4416 elim_i2, elim_i1, elim_i0);
4417 if (i2notes)
4418 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4419 elim_i2, elim_i1, elim_i0);
4420 if (i1notes)
4421 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4422 elim_i2, local_elim_i1, local_elim_i0);
4423 if (i0notes)
4424 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4425 elim_i2, elim_i1, local_elim_i0);
4426 if (midnotes)
4427 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4428 elim_i2, elim_i1, elim_i0);
4429
4430 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4431 know these are REG_UNUSED and want them to go to the desired insn,
4432 so we always pass it as i3. */
4433
4434 if (newi2pat && new_i2_notes)
4435 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4436 NULL_RTX);
4437
4438 if (new_i3_notes)
4439 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4440 NULL_RTX);
4441
4442 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4443 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4444 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4445 in that case, it might delete I2. Similarly for I2 and I1.
4446 Show an additional death due to the REG_DEAD note we make here. If
4447 we discard it in distribute_notes, we will decrement it again. */
4448
4449 if (i3dest_killed)
4450 {
4451 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4452 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4453 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4454 elim_i1, elim_i0);
4455 else
4456 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4457 elim_i2, elim_i1, elim_i0);
4458 }
4459
4460 if (i2dest_in_i2src)
4461 {
4462 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4463 if (newi2pat && reg_set_p (i2dest, newi2pat))
4464 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4465 NULL_RTX, NULL_RTX);
4466 else
4467 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4468 NULL_RTX, NULL_RTX, NULL_RTX);
4469 }
4470
4471 if (i1dest_in_i1src)
4472 {
4473 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4474 if (newi2pat && reg_set_p (i1dest, newi2pat))
4475 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4476 NULL_RTX, NULL_RTX);
4477 else
4478 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4479 NULL_RTX, NULL_RTX, NULL_RTX);
4480 }
4481
4482 if (i0dest_in_i0src)
4483 {
4484 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4485 if (newi2pat && reg_set_p (i0dest, newi2pat))
4486 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4487 NULL_RTX, NULL_RTX);
4488 else
4489 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4490 NULL_RTX, NULL_RTX, NULL_RTX);
4491 }
4492
4493 distribute_links (i3links);
4494 distribute_links (i2links);
4495 distribute_links (i1links);
4496 distribute_links (i0links);
4497
4498 if (REG_P (i2dest))
4499 {
4500 struct insn_link *link;
4501 rtx_insn *i2_insn = 0;
4502 rtx i2_val = 0, set;
4503
4504 /* The insn that used to set this register doesn't exist, and
4505 this life of the register may not exist either. See if one of
4506 I3's links points to an insn that sets I2DEST. If it does,
4507 that is now the last known value for I2DEST. If we don't update
4508 this and I2 set the register to a value that depended on its old
4509 contents, we will get confused. If this insn is used, thing
4510 will be set correctly in combine_instructions. */
4511 FOR_EACH_LOG_LINK (link, i3)
4512 if ((set = single_set (link->insn)) != 0
4513 && rtx_equal_p (i2dest, SET_DEST (set)))
4514 i2_insn = link->insn, i2_val = SET_SRC (set);
4515
4516 record_value_for_reg (i2dest, i2_insn, i2_val);
4517
4518 /* If the reg formerly set in I2 died only once and that was in I3,
4519 zero its use count so it won't make `reload' do any work. */
4520 if (! added_sets_2
4521 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4522 && ! i2dest_in_i2src
4523 && REGNO (i2dest) < reg_n_sets_max)
4524 INC_REG_N_SETS (REGNO (i2dest), -1);
4525 }
4526
4527 if (i1 && REG_P (i1dest))
4528 {
4529 struct insn_link *link;
4530 rtx_insn *i1_insn = 0;
4531 rtx i1_val = 0, set;
4532
4533 FOR_EACH_LOG_LINK (link, i3)
4534 if ((set = single_set (link->insn)) != 0
4535 && rtx_equal_p (i1dest, SET_DEST (set)))
4536 i1_insn = link->insn, i1_val = SET_SRC (set);
4537
4538 record_value_for_reg (i1dest, i1_insn, i1_val);
4539
4540 if (! added_sets_1
4541 && ! i1dest_in_i1src
4542 && REGNO (i1dest) < reg_n_sets_max)
4543 INC_REG_N_SETS (REGNO (i1dest), -1);
4544 }
4545
4546 if (i0 && REG_P (i0dest))
4547 {
4548 struct insn_link *link;
4549 rtx_insn *i0_insn = 0;
4550 rtx i0_val = 0, set;
4551
4552 FOR_EACH_LOG_LINK (link, i3)
4553 if ((set = single_set (link->insn)) != 0
4554 && rtx_equal_p (i0dest, SET_DEST (set)))
4555 i0_insn = link->insn, i0_val = SET_SRC (set);
4556
4557 record_value_for_reg (i0dest, i0_insn, i0_val);
4558
4559 if (! added_sets_0
4560 && ! i0dest_in_i0src
4561 && REGNO (i0dest) < reg_n_sets_max)
4562 INC_REG_N_SETS (REGNO (i0dest), -1);
4563 }
4564
4565 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4566 been made to this insn. The order is important, because newi2pat
4567 can affect nonzero_bits of newpat. */
4568 if (newi2pat)
4569 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4570 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4571 }
4572
4573 if (undobuf.other_insn != NULL_RTX)
4574 {
4575 if (dump_file)
4576 {
4577 fprintf (dump_file, "modifying other_insn ");
4578 dump_insn_slim (dump_file, undobuf.other_insn);
4579 }
4580 df_insn_rescan (undobuf.other_insn);
4581 }
4582
4583 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4584 {
4585 if (dump_file)
4586 {
4587 fprintf (dump_file, "modifying insn i0 ");
4588 dump_insn_slim (dump_file, i0);
4589 }
4590 df_insn_rescan (i0);
4591 }
4592
4593 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4594 {
4595 if (dump_file)
4596 {
4597 fprintf (dump_file, "modifying insn i1 ");
4598 dump_insn_slim (dump_file, i1);
4599 }
4600 df_insn_rescan (i1);
4601 }
4602
4603 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4604 {
4605 if (dump_file)
4606 {
4607 fprintf (dump_file, "modifying insn i2 ");
4608 dump_insn_slim (dump_file, i2);
4609 }
4610 df_insn_rescan (i2);
4611 }
4612
4613 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4614 {
4615 if (dump_file)
4616 {
4617 fprintf (dump_file, "modifying insn i3 ");
4618 dump_insn_slim (dump_file, i3);
4619 }
4620 df_insn_rescan (i3);
4621 }
4622
4623 /* Set new_direct_jump_p if a new return or simple jump instruction
4624 has been created. Adjust the CFG accordingly. */
4625 if (returnjump_p (i3) || any_uncondjump_p (i3))
4626 {
4627 *new_direct_jump_p = 1;
4628 mark_jump_label (PATTERN (i3), i3, 0);
4629 update_cfg_for_uncondjump (i3);
4630 }
4631
4632 if (undobuf.other_insn != NULL_RTX
4633 && (returnjump_p (undobuf.other_insn)
4634 || any_uncondjump_p (undobuf.other_insn)))
4635 {
4636 *new_direct_jump_p = 1;
4637 update_cfg_for_uncondjump (undobuf.other_insn);
4638 }
4639
4640 /* A noop might also need cleaning up of CFG, if it comes from the
4641 simplification of a jump. */
4642 if (JUMP_P (i3)
4643 && GET_CODE (newpat) == SET
4644 && SET_SRC (newpat) == pc_rtx
4645 && SET_DEST (newpat) == pc_rtx)
4646 {
4647 *new_direct_jump_p = 1;
4648 update_cfg_for_uncondjump (i3);
4649 }
4650
4651 if (undobuf.other_insn != NULL_RTX
4652 && JUMP_P (undobuf.other_insn)
4653 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4654 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4655 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4656 {
4657 *new_direct_jump_p = 1;
4658 update_cfg_for_uncondjump (undobuf.other_insn);
4659 }
4660
4661 combine_successes++;
4662 undo_commit ();
4663
4664 if (added_links_insn
4665 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4666 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4667 return added_links_insn;
4668 else
4669 return newi2pat ? i2 : i3;
4670 }
4671 \f
4672 /* Get a marker for undoing to the current state. */
4673
4674 static void *
4675 get_undo_marker (void)
4676 {
4677 return undobuf.undos;
4678 }
4679
4680 /* Undo the modifications up to the marker. */
4681
4682 static void
4683 undo_to_marker (void *marker)
4684 {
4685 struct undo *undo, *next;
4686
4687 for (undo = undobuf.undos; undo != marker; undo = next)
4688 {
4689 gcc_assert (undo);
4690
4691 next = undo->next;
4692 switch (undo->kind)
4693 {
4694 case UNDO_RTX:
4695 *undo->where.r = undo->old_contents.r;
4696 break;
4697 case UNDO_INT:
4698 *undo->where.i = undo->old_contents.i;
4699 break;
4700 case UNDO_MODE:
4701 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4702 break;
4703 case UNDO_LINKS:
4704 *undo->where.l = undo->old_contents.l;
4705 break;
4706 default:
4707 gcc_unreachable ();
4708 }
4709
4710 undo->next = undobuf.frees;
4711 undobuf.frees = undo;
4712 }
4713
4714 undobuf.undos = (struct undo *) marker;
4715 }
4716
4717 /* Undo all the modifications recorded in undobuf. */
4718
4719 static void
4720 undo_all (void)
4721 {
4722 undo_to_marker (0);
4723 }
4724
4725 /* We've committed to accepting the changes we made. Move all
4726 of the undos to the free list. */
4727
4728 static void
4729 undo_commit (void)
4730 {
4731 struct undo *undo, *next;
4732
4733 for (undo = undobuf.undos; undo; undo = next)
4734 {
4735 next = undo->next;
4736 undo->next = undobuf.frees;
4737 undobuf.frees = undo;
4738 }
4739 undobuf.undos = 0;
4740 }
4741 \f
4742 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4743 where we have an arithmetic expression and return that point. LOC will
4744 be inside INSN.
4745
4746 try_combine will call this function to see if an insn can be split into
4747 two insns. */
4748
4749 static rtx *
4750 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4751 {
4752 rtx x = *loc;
4753 enum rtx_code code = GET_CODE (x);
4754 rtx *split;
4755 unsigned HOST_WIDE_INT len = 0;
4756 HOST_WIDE_INT pos = 0;
4757 int unsignedp = 0;
4758 rtx inner = NULL_RTX;
4759
4760 /* First special-case some codes. */
4761 switch (code)
4762 {
4763 case SUBREG:
4764 #ifdef INSN_SCHEDULING
4765 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4766 point. */
4767 if (MEM_P (SUBREG_REG (x)))
4768 return loc;
4769 #endif
4770 return find_split_point (&SUBREG_REG (x), insn, false);
4771
4772 case MEM:
4773 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4774 using LO_SUM and HIGH. */
4775 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4776 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4777 {
4778 machine_mode address_mode = get_address_mode (x);
4779
4780 SUBST (XEXP (x, 0),
4781 gen_rtx_LO_SUM (address_mode,
4782 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4783 XEXP (x, 0)));
4784 return &XEXP (XEXP (x, 0), 0);
4785 }
4786
4787 /* If we have a PLUS whose second operand is a constant and the
4788 address is not valid, perhaps will can split it up using
4789 the machine-specific way to split large constants. We use
4790 the first pseudo-reg (one of the virtual regs) as a placeholder;
4791 it will not remain in the result. */
4792 if (GET_CODE (XEXP (x, 0)) == PLUS
4793 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4794 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4795 MEM_ADDR_SPACE (x)))
4796 {
4797 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4798 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4799 subst_insn);
4800
4801 /* This should have produced two insns, each of which sets our
4802 placeholder. If the source of the second is a valid address,
4803 we can make put both sources together and make a split point
4804 in the middle. */
4805
4806 if (seq
4807 && NEXT_INSN (seq) != NULL_RTX
4808 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4809 && NONJUMP_INSN_P (seq)
4810 && GET_CODE (PATTERN (seq)) == SET
4811 && SET_DEST (PATTERN (seq)) == reg
4812 && ! reg_mentioned_p (reg,
4813 SET_SRC (PATTERN (seq)))
4814 && NONJUMP_INSN_P (NEXT_INSN (seq))
4815 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4816 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4817 && memory_address_addr_space_p
4818 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4819 MEM_ADDR_SPACE (x)))
4820 {
4821 rtx src1 = SET_SRC (PATTERN (seq));
4822 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4823
4824 /* Replace the placeholder in SRC2 with SRC1. If we can
4825 find where in SRC2 it was placed, that can become our
4826 split point and we can replace this address with SRC2.
4827 Just try two obvious places. */
4828
4829 src2 = replace_rtx (src2, reg, src1);
4830 split = 0;
4831 if (XEXP (src2, 0) == src1)
4832 split = &XEXP (src2, 0);
4833 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4834 && XEXP (XEXP (src2, 0), 0) == src1)
4835 split = &XEXP (XEXP (src2, 0), 0);
4836
4837 if (split)
4838 {
4839 SUBST (XEXP (x, 0), src2);
4840 return split;
4841 }
4842 }
4843
4844 /* If that didn't work, perhaps the first operand is complex and
4845 needs to be computed separately, so make a split point there.
4846 This will occur on machines that just support REG + CONST
4847 and have a constant moved through some previous computation. */
4848
4849 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4850 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4851 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4852 return &XEXP (XEXP (x, 0), 0);
4853 }
4854
4855 /* If we have a PLUS whose first operand is complex, try computing it
4856 separately by making a split there. */
4857 if (GET_CODE (XEXP (x, 0)) == PLUS
4858 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4859 MEM_ADDR_SPACE (x))
4860 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4861 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4862 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4863 return &XEXP (XEXP (x, 0), 0);
4864 break;
4865
4866 case SET:
4867 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4868 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4869 we need to put the operand into a register. So split at that
4870 point. */
4871
4872 if (SET_DEST (x) == cc0_rtx
4873 && GET_CODE (SET_SRC (x)) != COMPARE
4874 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4875 && !OBJECT_P (SET_SRC (x))
4876 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4877 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4878 return &SET_SRC (x);
4879
4880 /* See if we can split SET_SRC as it stands. */
4881 split = find_split_point (&SET_SRC (x), insn, true);
4882 if (split && split != &SET_SRC (x))
4883 return split;
4884
4885 /* See if we can split SET_DEST as it stands. */
4886 split = find_split_point (&SET_DEST (x), insn, false);
4887 if (split && split != &SET_DEST (x))
4888 return split;
4889
4890 /* See if this is a bitfield assignment with everything constant. If
4891 so, this is an IOR of an AND, so split it into that. */
4892 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4893 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4894 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4895 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4896 && CONST_INT_P (SET_SRC (x))
4897 && ((INTVAL (XEXP (SET_DEST (x), 1))
4898 + INTVAL (XEXP (SET_DEST (x), 2)))
4899 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4900 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4901 {
4902 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4903 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4904 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4905 rtx dest = XEXP (SET_DEST (x), 0);
4906 machine_mode mode = GET_MODE (dest);
4907 unsigned HOST_WIDE_INT mask
4908 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4909 rtx or_mask;
4910
4911 if (BITS_BIG_ENDIAN)
4912 pos = GET_MODE_PRECISION (mode) - len - pos;
4913
4914 or_mask = gen_int_mode (src << pos, mode);
4915 if (src == mask)
4916 SUBST (SET_SRC (x),
4917 simplify_gen_binary (IOR, mode, dest, or_mask));
4918 else
4919 {
4920 rtx negmask = gen_int_mode (~(mask << pos), mode);
4921 SUBST (SET_SRC (x),
4922 simplify_gen_binary (IOR, mode,
4923 simplify_gen_binary (AND, mode,
4924 dest, negmask),
4925 or_mask));
4926 }
4927
4928 SUBST (SET_DEST (x), dest);
4929
4930 split = find_split_point (&SET_SRC (x), insn, true);
4931 if (split && split != &SET_SRC (x))
4932 return split;
4933 }
4934
4935 /* Otherwise, see if this is an operation that we can split into two.
4936 If so, try to split that. */
4937 code = GET_CODE (SET_SRC (x));
4938
4939 switch (code)
4940 {
4941 case AND:
4942 /* If we are AND'ing with a large constant that is only a single
4943 bit and the result is only being used in a context where we
4944 need to know if it is zero or nonzero, replace it with a bit
4945 extraction. This will avoid the large constant, which might
4946 have taken more than one insn to make. If the constant were
4947 not a valid argument to the AND but took only one insn to make,
4948 this is no worse, but if it took more than one insn, it will
4949 be better. */
4950
4951 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4952 && REG_P (XEXP (SET_SRC (x), 0))
4953 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4954 && REG_P (SET_DEST (x))
4955 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4956 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4957 && XEXP (*split, 0) == SET_DEST (x)
4958 && XEXP (*split, 1) == const0_rtx)
4959 {
4960 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4961 XEXP (SET_SRC (x), 0),
4962 pos, NULL_RTX, 1, 1, 0, 0);
4963 if (extraction != 0)
4964 {
4965 SUBST (SET_SRC (x), extraction);
4966 return find_split_point (loc, insn, false);
4967 }
4968 }
4969 break;
4970
4971 case NE:
4972 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4973 is known to be on, this can be converted into a NEG of a shift. */
4974 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4975 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4976 && 1 <= (pos = exact_log2
4977 (nonzero_bits (XEXP (SET_SRC (x), 0),
4978 GET_MODE (XEXP (SET_SRC (x), 0))))))
4979 {
4980 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4981
4982 SUBST (SET_SRC (x),
4983 gen_rtx_NEG (mode,
4984 gen_rtx_LSHIFTRT (mode,
4985 XEXP (SET_SRC (x), 0),
4986 GEN_INT (pos))));
4987
4988 split = find_split_point (&SET_SRC (x), insn, true);
4989 if (split && split != &SET_SRC (x))
4990 return split;
4991 }
4992 break;
4993
4994 case SIGN_EXTEND:
4995 inner = XEXP (SET_SRC (x), 0);
4996
4997 /* We can't optimize if either mode is a partial integer
4998 mode as we don't know how many bits are significant
4999 in those modes. */
5000 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
5001 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5002 break;
5003
5004 pos = 0;
5005 len = GET_MODE_PRECISION (GET_MODE (inner));
5006 unsignedp = 0;
5007 break;
5008
5009 case SIGN_EXTRACT:
5010 case ZERO_EXTRACT:
5011 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5012 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5013 {
5014 inner = XEXP (SET_SRC (x), 0);
5015 len = INTVAL (XEXP (SET_SRC (x), 1));
5016 pos = INTVAL (XEXP (SET_SRC (x), 2));
5017
5018 if (BITS_BIG_ENDIAN)
5019 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5020 unsignedp = (code == ZERO_EXTRACT);
5021 }
5022 break;
5023
5024 default:
5025 break;
5026 }
5027
5028 if (len && pos >= 0
5029 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5030 {
5031 machine_mode mode = GET_MODE (SET_SRC (x));
5032
5033 /* For unsigned, we have a choice of a shift followed by an
5034 AND or two shifts. Use two shifts for field sizes where the
5035 constant might be too large. We assume here that we can
5036 always at least get 8-bit constants in an AND insn, which is
5037 true for every current RISC. */
5038
5039 if (unsignedp && len <= 8)
5040 {
5041 unsigned HOST_WIDE_INT mask
5042 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
5043 SUBST (SET_SRC (x),
5044 gen_rtx_AND (mode,
5045 gen_rtx_LSHIFTRT
5046 (mode, gen_lowpart (mode, inner),
5047 GEN_INT (pos)),
5048 gen_int_mode (mask, mode)));
5049
5050 split = find_split_point (&SET_SRC (x), insn, true);
5051 if (split && split != &SET_SRC (x))
5052 return split;
5053 }
5054 else
5055 {
5056 SUBST (SET_SRC (x),
5057 gen_rtx_fmt_ee
5058 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5059 gen_rtx_ASHIFT (mode,
5060 gen_lowpart (mode, inner),
5061 GEN_INT (GET_MODE_PRECISION (mode)
5062 - len - pos)),
5063 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5064
5065 split = find_split_point (&SET_SRC (x), insn, true);
5066 if (split && split != &SET_SRC (x))
5067 return split;
5068 }
5069 }
5070
5071 /* See if this is a simple operation with a constant as the second
5072 operand. It might be that this constant is out of range and hence
5073 could be used as a split point. */
5074 if (BINARY_P (SET_SRC (x))
5075 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5076 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5077 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5078 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5079 return &XEXP (SET_SRC (x), 1);
5080
5081 /* Finally, see if this is a simple operation with its first operand
5082 not in a register. The operation might require this operand in a
5083 register, so return it as a split point. We can always do this
5084 because if the first operand were another operation, we would have
5085 already found it as a split point. */
5086 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5087 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5088 return &XEXP (SET_SRC (x), 0);
5089
5090 return 0;
5091
5092 case AND:
5093 case IOR:
5094 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5095 it is better to write this as (not (ior A B)) so we can split it.
5096 Similarly for IOR. */
5097 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5098 {
5099 SUBST (*loc,
5100 gen_rtx_NOT (GET_MODE (x),
5101 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5102 GET_MODE (x),
5103 XEXP (XEXP (x, 0), 0),
5104 XEXP (XEXP (x, 1), 0))));
5105 return find_split_point (loc, insn, set_src);
5106 }
5107
5108 /* Many RISC machines have a large set of logical insns. If the
5109 second operand is a NOT, put it first so we will try to split the
5110 other operand first. */
5111 if (GET_CODE (XEXP (x, 1)) == NOT)
5112 {
5113 rtx tem = XEXP (x, 0);
5114 SUBST (XEXP (x, 0), XEXP (x, 1));
5115 SUBST (XEXP (x, 1), tem);
5116 }
5117 break;
5118
5119 case PLUS:
5120 case MINUS:
5121 /* Canonicalization can produce (minus A (mult B C)), where C is a
5122 constant. It may be better to try splitting (plus (mult B -C) A)
5123 instead if this isn't a multiply by a power of two. */
5124 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5125 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5126 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
5127 {
5128 machine_mode mode = GET_MODE (x);
5129 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5130 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5131 SUBST (*loc, gen_rtx_PLUS (mode,
5132 gen_rtx_MULT (mode,
5133 XEXP (XEXP (x, 1), 0),
5134 gen_int_mode (other_int,
5135 mode)),
5136 XEXP (x, 0)));
5137 return find_split_point (loc, insn, set_src);
5138 }
5139
5140 /* Split at a multiply-accumulate instruction. However if this is
5141 the SET_SRC, we likely do not have such an instruction and it's
5142 worthless to try this split. */
5143 if (!set_src
5144 && (GET_CODE (XEXP (x, 0)) == MULT
5145 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5146 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5147 return loc;
5148
5149 default:
5150 break;
5151 }
5152
5153 /* Otherwise, select our actions depending on our rtx class. */
5154 switch (GET_RTX_CLASS (code))
5155 {
5156 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5157 case RTX_TERNARY:
5158 split = find_split_point (&XEXP (x, 2), insn, false);
5159 if (split)
5160 return split;
5161 /* ... fall through ... */
5162 case RTX_BIN_ARITH:
5163 case RTX_COMM_ARITH:
5164 case RTX_COMPARE:
5165 case RTX_COMM_COMPARE:
5166 split = find_split_point (&XEXP (x, 1), insn, false);
5167 if (split)
5168 return split;
5169 /* ... fall through ... */
5170 case RTX_UNARY:
5171 /* Some machines have (and (shift ...) ...) insns. If X is not
5172 an AND, but XEXP (X, 0) is, use it as our split point. */
5173 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5174 return &XEXP (x, 0);
5175
5176 split = find_split_point (&XEXP (x, 0), insn, false);
5177 if (split)
5178 return split;
5179 return loc;
5180
5181 default:
5182 /* Otherwise, we don't have a split point. */
5183 return 0;
5184 }
5185 }
5186 \f
5187 /* Throughout X, replace FROM with TO, and return the result.
5188 The result is TO if X is FROM;
5189 otherwise the result is X, but its contents may have been modified.
5190 If they were modified, a record was made in undobuf so that
5191 undo_all will (among other things) return X to its original state.
5192
5193 If the number of changes necessary is too much to record to undo,
5194 the excess changes are not made, so the result is invalid.
5195 The changes already made can still be undone.
5196 undobuf.num_undo is incremented for such changes, so by testing that
5197 the caller can tell whether the result is valid.
5198
5199 `n_occurrences' is incremented each time FROM is replaced.
5200
5201 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5202
5203 IN_COND is nonzero if we are at the top level of a condition.
5204
5205 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5206 by copying if `n_occurrences' is nonzero. */
5207
5208 static rtx
5209 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5210 {
5211 enum rtx_code code = GET_CODE (x);
5212 machine_mode op0_mode = VOIDmode;
5213 const char *fmt;
5214 int len, i;
5215 rtx new_rtx;
5216
5217 /* Two expressions are equal if they are identical copies of a shared
5218 RTX or if they are both registers with the same register number
5219 and mode. */
5220
5221 #define COMBINE_RTX_EQUAL_P(X,Y) \
5222 ((X) == (Y) \
5223 || (REG_P (X) && REG_P (Y) \
5224 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5225
5226 /* Do not substitute into clobbers of regs -- this will never result in
5227 valid RTL. */
5228 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5229 return x;
5230
5231 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5232 {
5233 n_occurrences++;
5234 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5235 }
5236
5237 /* If X and FROM are the same register but different modes, they
5238 will not have been seen as equal above. However, the log links code
5239 will make a LOG_LINKS entry for that case. If we do nothing, we
5240 will try to rerecognize our original insn and, when it succeeds,
5241 we will delete the feeding insn, which is incorrect.
5242
5243 So force this insn not to match in this (rare) case. */
5244 if (! in_dest && code == REG && REG_P (from)
5245 && reg_overlap_mentioned_p (x, from))
5246 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5247
5248 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5249 of which may contain things that can be combined. */
5250 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5251 return x;
5252
5253 /* It is possible to have a subexpression appear twice in the insn.
5254 Suppose that FROM is a register that appears within TO.
5255 Then, after that subexpression has been scanned once by `subst',
5256 the second time it is scanned, TO may be found. If we were
5257 to scan TO here, we would find FROM within it and create a
5258 self-referent rtl structure which is completely wrong. */
5259 if (COMBINE_RTX_EQUAL_P (x, to))
5260 return to;
5261
5262 /* Parallel asm_operands need special attention because all of the
5263 inputs are shared across the arms. Furthermore, unsharing the
5264 rtl results in recognition failures. Failure to handle this case
5265 specially can result in circular rtl.
5266
5267 Solve this by doing a normal pass across the first entry of the
5268 parallel, and only processing the SET_DESTs of the subsequent
5269 entries. Ug. */
5270
5271 if (code == PARALLEL
5272 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5273 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5274 {
5275 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5276
5277 /* If this substitution failed, this whole thing fails. */
5278 if (GET_CODE (new_rtx) == CLOBBER
5279 && XEXP (new_rtx, 0) == const0_rtx)
5280 return new_rtx;
5281
5282 SUBST (XVECEXP (x, 0, 0), new_rtx);
5283
5284 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5285 {
5286 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5287
5288 if (!REG_P (dest)
5289 && GET_CODE (dest) != CC0
5290 && GET_CODE (dest) != PC)
5291 {
5292 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5293
5294 /* If this substitution failed, this whole thing fails. */
5295 if (GET_CODE (new_rtx) == CLOBBER
5296 && XEXP (new_rtx, 0) == const0_rtx)
5297 return new_rtx;
5298
5299 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5300 }
5301 }
5302 }
5303 else
5304 {
5305 len = GET_RTX_LENGTH (code);
5306 fmt = GET_RTX_FORMAT (code);
5307
5308 /* We don't need to process a SET_DEST that is a register, CC0,
5309 or PC, so set up to skip this common case. All other cases
5310 where we want to suppress replacing something inside a
5311 SET_SRC are handled via the IN_DEST operand. */
5312 if (code == SET
5313 && (REG_P (SET_DEST (x))
5314 || GET_CODE (SET_DEST (x)) == CC0
5315 || GET_CODE (SET_DEST (x)) == PC))
5316 fmt = "ie";
5317
5318 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5319 constant. */
5320 if (fmt[0] == 'e')
5321 op0_mode = GET_MODE (XEXP (x, 0));
5322
5323 for (i = 0; i < len; i++)
5324 {
5325 if (fmt[i] == 'E')
5326 {
5327 int j;
5328 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5329 {
5330 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5331 {
5332 new_rtx = (unique_copy && n_occurrences
5333 ? copy_rtx (to) : to);
5334 n_occurrences++;
5335 }
5336 else
5337 {
5338 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5339 unique_copy);
5340
5341 /* If this substitution failed, this whole thing
5342 fails. */
5343 if (GET_CODE (new_rtx) == CLOBBER
5344 && XEXP (new_rtx, 0) == const0_rtx)
5345 return new_rtx;
5346 }
5347
5348 SUBST (XVECEXP (x, i, j), new_rtx);
5349 }
5350 }
5351 else if (fmt[i] == 'e')
5352 {
5353 /* If this is a register being set, ignore it. */
5354 new_rtx = XEXP (x, i);
5355 if (in_dest
5356 && i == 0
5357 && (((code == SUBREG || code == ZERO_EXTRACT)
5358 && REG_P (new_rtx))
5359 || code == STRICT_LOW_PART))
5360 ;
5361
5362 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5363 {
5364 /* In general, don't install a subreg involving two
5365 modes not tieable. It can worsen register
5366 allocation, and can even make invalid reload
5367 insns, since the reg inside may need to be copied
5368 from in the outside mode, and that may be invalid
5369 if it is an fp reg copied in integer mode.
5370
5371 We allow two exceptions to this: It is valid if
5372 it is inside another SUBREG and the mode of that
5373 SUBREG and the mode of the inside of TO is
5374 tieable and it is valid if X is a SET that copies
5375 FROM to CC0. */
5376
5377 if (GET_CODE (to) == SUBREG
5378 && ! MODES_TIEABLE_P (GET_MODE (to),
5379 GET_MODE (SUBREG_REG (to)))
5380 && ! (code == SUBREG
5381 && MODES_TIEABLE_P (GET_MODE (x),
5382 GET_MODE (SUBREG_REG (to))))
5383 #if HAVE_cc0
5384 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5385 #endif
5386 )
5387 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5388
5389 if (code == SUBREG
5390 && REG_P (to)
5391 && REGNO (to) < FIRST_PSEUDO_REGISTER
5392 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5393 SUBREG_BYTE (x),
5394 GET_MODE (x)) < 0)
5395 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5396
5397 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5398 n_occurrences++;
5399 }
5400 else
5401 /* If we are in a SET_DEST, suppress most cases unless we
5402 have gone inside a MEM, in which case we want to
5403 simplify the address. We assume here that things that
5404 are actually part of the destination have their inner
5405 parts in the first expression. This is true for SUBREG,
5406 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5407 things aside from REG and MEM that should appear in a
5408 SET_DEST. */
5409 new_rtx = subst (XEXP (x, i), from, to,
5410 (((in_dest
5411 && (code == SUBREG || code == STRICT_LOW_PART
5412 || code == ZERO_EXTRACT))
5413 || code == SET)
5414 && i == 0),
5415 code == IF_THEN_ELSE && i == 0,
5416 unique_copy);
5417
5418 /* If we found that we will have to reject this combination,
5419 indicate that by returning the CLOBBER ourselves, rather than
5420 an expression containing it. This will speed things up as
5421 well as prevent accidents where two CLOBBERs are considered
5422 to be equal, thus producing an incorrect simplification. */
5423
5424 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5425 return new_rtx;
5426
5427 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5428 {
5429 machine_mode mode = GET_MODE (x);
5430
5431 x = simplify_subreg (GET_MODE (x), new_rtx,
5432 GET_MODE (SUBREG_REG (x)),
5433 SUBREG_BYTE (x));
5434 if (! x)
5435 x = gen_rtx_CLOBBER (mode, const0_rtx);
5436 }
5437 else if (CONST_SCALAR_INT_P (new_rtx)
5438 && GET_CODE (x) == ZERO_EXTEND)
5439 {
5440 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5441 new_rtx, GET_MODE (XEXP (x, 0)));
5442 gcc_assert (x);
5443 }
5444 else
5445 SUBST (XEXP (x, i), new_rtx);
5446 }
5447 }
5448 }
5449
5450 /* Check if we are loading something from the constant pool via float
5451 extension; in this case we would undo compress_float_constant
5452 optimization and degenerate constant load to an immediate value. */
5453 if (GET_CODE (x) == FLOAT_EXTEND
5454 && MEM_P (XEXP (x, 0))
5455 && MEM_READONLY_P (XEXP (x, 0)))
5456 {
5457 rtx tmp = avoid_constant_pool_reference (x);
5458 if (x != tmp)
5459 return x;
5460 }
5461
5462 /* Try to simplify X. If the simplification changed the code, it is likely
5463 that further simplification will help, so loop, but limit the number
5464 of repetitions that will be performed. */
5465
5466 for (i = 0; i < 4; i++)
5467 {
5468 /* If X is sufficiently simple, don't bother trying to do anything
5469 with it. */
5470 if (code != CONST_INT && code != REG && code != CLOBBER)
5471 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5472
5473 if (GET_CODE (x) == code)
5474 break;
5475
5476 code = GET_CODE (x);
5477
5478 /* We no longer know the original mode of operand 0 since we
5479 have changed the form of X) */
5480 op0_mode = VOIDmode;
5481 }
5482
5483 return x;
5484 }
5485 \f
5486 /* Simplify X, a piece of RTL. We just operate on the expression at the
5487 outer level; call `subst' to simplify recursively. Return the new
5488 expression.
5489
5490 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5491 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5492 of a condition. */
5493
5494 static rtx
5495 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5496 int in_cond)
5497 {
5498 enum rtx_code code = GET_CODE (x);
5499 machine_mode mode = GET_MODE (x);
5500 rtx temp;
5501 int i;
5502
5503 /* If this is a commutative operation, put a constant last and a complex
5504 expression first. We don't need to do this for comparisons here. */
5505 if (COMMUTATIVE_ARITH_P (x)
5506 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5507 {
5508 temp = XEXP (x, 0);
5509 SUBST (XEXP (x, 0), XEXP (x, 1));
5510 SUBST (XEXP (x, 1), temp);
5511 }
5512
5513 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5514 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5515 things. Check for cases where both arms are testing the same
5516 condition.
5517
5518 Don't do anything if all operands are very simple. */
5519
5520 if ((BINARY_P (x)
5521 && ((!OBJECT_P (XEXP (x, 0))
5522 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5523 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5524 || (!OBJECT_P (XEXP (x, 1))
5525 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5526 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5527 || (UNARY_P (x)
5528 && (!OBJECT_P (XEXP (x, 0))
5529 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5530 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5531 {
5532 rtx cond, true_rtx, false_rtx;
5533
5534 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5535 if (cond != 0
5536 /* If everything is a comparison, what we have is highly unlikely
5537 to be simpler, so don't use it. */
5538 && ! (COMPARISON_P (x)
5539 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5540 {
5541 rtx cop1 = const0_rtx;
5542 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5543
5544 if (cond_code == NE && COMPARISON_P (cond))
5545 return x;
5546
5547 /* Simplify the alternative arms; this may collapse the true and
5548 false arms to store-flag values. Be careful to use copy_rtx
5549 here since true_rtx or false_rtx might share RTL with x as a
5550 result of the if_then_else_cond call above. */
5551 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5552 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5553
5554 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5555 is unlikely to be simpler. */
5556 if (general_operand (true_rtx, VOIDmode)
5557 && general_operand (false_rtx, VOIDmode))
5558 {
5559 enum rtx_code reversed;
5560
5561 /* Restarting if we generate a store-flag expression will cause
5562 us to loop. Just drop through in this case. */
5563
5564 /* If the result values are STORE_FLAG_VALUE and zero, we can
5565 just make the comparison operation. */
5566 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5567 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5568 cond, cop1);
5569 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5570 && ((reversed = reversed_comparison_code_parts
5571 (cond_code, cond, cop1, NULL))
5572 != UNKNOWN))
5573 x = simplify_gen_relational (reversed, mode, VOIDmode,
5574 cond, cop1);
5575
5576 /* Likewise, we can make the negate of a comparison operation
5577 if the result values are - STORE_FLAG_VALUE and zero. */
5578 else if (CONST_INT_P (true_rtx)
5579 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5580 && false_rtx == const0_rtx)
5581 x = simplify_gen_unary (NEG, mode,
5582 simplify_gen_relational (cond_code,
5583 mode, VOIDmode,
5584 cond, cop1),
5585 mode);
5586 else if (CONST_INT_P (false_rtx)
5587 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5588 && true_rtx == const0_rtx
5589 && ((reversed = reversed_comparison_code_parts
5590 (cond_code, cond, cop1, NULL))
5591 != UNKNOWN))
5592 x = simplify_gen_unary (NEG, mode,
5593 simplify_gen_relational (reversed,
5594 mode, VOIDmode,
5595 cond, cop1),
5596 mode);
5597 else
5598 return gen_rtx_IF_THEN_ELSE (mode,
5599 simplify_gen_relational (cond_code,
5600 mode,
5601 VOIDmode,
5602 cond,
5603 cop1),
5604 true_rtx, false_rtx);
5605
5606 code = GET_CODE (x);
5607 op0_mode = VOIDmode;
5608 }
5609 }
5610 }
5611
5612 /* Try to fold this expression in case we have constants that weren't
5613 present before. */
5614 temp = 0;
5615 switch (GET_RTX_CLASS (code))
5616 {
5617 case RTX_UNARY:
5618 if (op0_mode == VOIDmode)
5619 op0_mode = GET_MODE (XEXP (x, 0));
5620 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5621 break;
5622 case RTX_COMPARE:
5623 case RTX_COMM_COMPARE:
5624 {
5625 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5626 if (cmp_mode == VOIDmode)
5627 {
5628 cmp_mode = GET_MODE (XEXP (x, 1));
5629 if (cmp_mode == VOIDmode)
5630 cmp_mode = op0_mode;
5631 }
5632 temp = simplify_relational_operation (code, mode, cmp_mode,
5633 XEXP (x, 0), XEXP (x, 1));
5634 }
5635 break;
5636 case RTX_COMM_ARITH:
5637 case RTX_BIN_ARITH:
5638 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5639 break;
5640 case RTX_BITFIELD_OPS:
5641 case RTX_TERNARY:
5642 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5643 XEXP (x, 1), XEXP (x, 2));
5644 break;
5645 default:
5646 break;
5647 }
5648
5649 if (temp)
5650 {
5651 x = temp;
5652 code = GET_CODE (temp);
5653 op0_mode = VOIDmode;
5654 mode = GET_MODE (temp);
5655 }
5656
5657 /* First see if we can apply the inverse distributive law. */
5658 if (code == PLUS || code == MINUS
5659 || code == AND || code == IOR || code == XOR)
5660 {
5661 x = apply_distributive_law (x);
5662 code = GET_CODE (x);
5663 op0_mode = VOIDmode;
5664 }
5665
5666 /* If CODE is an associative operation not otherwise handled, see if we
5667 can associate some operands. This can win if they are constants or
5668 if they are logically related (i.e. (a & b) & a). */
5669 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5670 || code == AND || code == IOR || code == XOR
5671 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5672 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5673 || (flag_associative_math && FLOAT_MODE_P (mode))))
5674 {
5675 if (GET_CODE (XEXP (x, 0)) == code)
5676 {
5677 rtx other = XEXP (XEXP (x, 0), 0);
5678 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5679 rtx inner_op1 = XEXP (x, 1);
5680 rtx inner;
5681
5682 /* Make sure we pass the constant operand if any as the second
5683 one if this is a commutative operation. */
5684 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5685 std::swap (inner_op0, inner_op1);
5686 inner = simplify_binary_operation (code == MINUS ? PLUS
5687 : code == DIV ? MULT
5688 : code,
5689 mode, inner_op0, inner_op1);
5690
5691 /* For commutative operations, try the other pair if that one
5692 didn't simplify. */
5693 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5694 {
5695 other = XEXP (XEXP (x, 0), 1);
5696 inner = simplify_binary_operation (code, mode,
5697 XEXP (XEXP (x, 0), 0),
5698 XEXP (x, 1));
5699 }
5700
5701 if (inner)
5702 return simplify_gen_binary (code, mode, other, inner);
5703 }
5704 }
5705
5706 /* A little bit of algebraic simplification here. */
5707 switch (code)
5708 {
5709 case MEM:
5710 /* Ensure that our address has any ASHIFTs converted to MULT in case
5711 address-recognizing predicates are called later. */
5712 temp = make_compound_operation (XEXP (x, 0), MEM);
5713 SUBST (XEXP (x, 0), temp);
5714 break;
5715
5716 case SUBREG:
5717 if (op0_mode == VOIDmode)
5718 op0_mode = GET_MODE (SUBREG_REG (x));
5719
5720 /* See if this can be moved to simplify_subreg. */
5721 if (CONSTANT_P (SUBREG_REG (x))
5722 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5723 /* Don't call gen_lowpart if the inner mode
5724 is VOIDmode and we cannot simplify it, as SUBREG without
5725 inner mode is invalid. */
5726 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5727 || gen_lowpart_common (mode, SUBREG_REG (x))))
5728 return gen_lowpart (mode, SUBREG_REG (x));
5729
5730 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5731 break;
5732 {
5733 rtx temp;
5734 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5735 SUBREG_BYTE (x));
5736 if (temp)
5737 return temp;
5738
5739 /* If op is known to have all lower bits zero, the result is zero. */
5740 if (!in_dest
5741 && SCALAR_INT_MODE_P (mode)
5742 && SCALAR_INT_MODE_P (op0_mode)
5743 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5744 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5745 && HWI_COMPUTABLE_MODE_P (op0_mode)
5746 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5747 & GET_MODE_MASK (mode)) == 0)
5748 return CONST0_RTX (mode);
5749 }
5750
5751 /* Don't change the mode of the MEM if that would change the meaning
5752 of the address. */
5753 if (MEM_P (SUBREG_REG (x))
5754 && (MEM_VOLATILE_P (SUBREG_REG (x))
5755 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5756 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5757 return gen_rtx_CLOBBER (mode, const0_rtx);
5758
5759 /* Note that we cannot do any narrowing for non-constants since
5760 we might have been counting on using the fact that some bits were
5761 zero. We now do this in the SET. */
5762
5763 break;
5764
5765 case NEG:
5766 temp = expand_compound_operation (XEXP (x, 0));
5767
5768 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5769 replaced by (lshiftrt X C). This will convert
5770 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5771
5772 if (GET_CODE (temp) == ASHIFTRT
5773 && CONST_INT_P (XEXP (temp, 1))
5774 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5775 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5776 INTVAL (XEXP (temp, 1)));
5777
5778 /* If X has only a single bit that might be nonzero, say, bit I, convert
5779 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5780 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5781 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5782 or a SUBREG of one since we'd be making the expression more
5783 complex if it was just a register. */
5784
5785 if (!REG_P (temp)
5786 && ! (GET_CODE (temp) == SUBREG
5787 && REG_P (SUBREG_REG (temp)))
5788 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5789 {
5790 rtx temp1 = simplify_shift_const
5791 (NULL_RTX, ASHIFTRT, mode,
5792 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5793 GET_MODE_PRECISION (mode) - 1 - i),
5794 GET_MODE_PRECISION (mode) - 1 - i);
5795
5796 /* If all we did was surround TEMP with the two shifts, we
5797 haven't improved anything, so don't use it. Otherwise,
5798 we are better off with TEMP1. */
5799 if (GET_CODE (temp1) != ASHIFTRT
5800 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5801 || XEXP (XEXP (temp1, 0), 0) != temp)
5802 return temp1;
5803 }
5804 break;
5805
5806 case TRUNCATE:
5807 /* We can't handle truncation to a partial integer mode here
5808 because we don't know the real bitsize of the partial
5809 integer mode. */
5810 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5811 break;
5812
5813 if (HWI_COMPUTABLE_MODE_P (mode))
5814 SUBST (XEXP (x, 0),
5815 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5816 GET_MODE_MASK (mode), 0));
5817
5818 /* We can truncate a constant value and return it. */
5819 if (CONST_INT_P (XEXP (x, 0)))
5820 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5821
5822 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5823 whose value is a comparison can be replaced with a subreg if
5824 STORE_FLAG_VALUE permits. */
5825 if (HWI_COMPUTABLE_MODE_P (mode)
5826 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5827 && (temp = get_last_value (XEXP (x, 0)))
5828 && COMPARISON_P (temp))
5829 return gen_lowpart (mode, XEXP (x, 0));
5830 break;
5831
5832 case CONST:
5833 /* (const (const X)) can become (const X). Do it this way rather than
5834 returning the inner CONST since CONST can be shared with a
5835 REG_EQUAL note. */
5836 if (GET_CODE (XEXP (x, 0)) == CONST)
5837 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5838 break;
5839
5840 case LO_SUM:
5841 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5842 can add in an offset. find_split_point will split this address up
5843 again if it doesn't match. */
5844 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5845 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5846 return XEXP (x, 1);
5847 break;
5848
5849 case PLUS:
5850 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5851 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5852 bit-field and can be replaced by either a sign_extend or a
5853 sign_extract. The `and' may be a zero_extend and the two
5854 <c>, -<c> constants may be reversed. */
5855 if (GET_CODE (XEXP (x, 0)) == XOR
5856 && CONST_INT_P (XEXP (x, 1))
5857 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5858 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5859 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5860 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5861 && HWI_COMPUTABLE_MODE_P (mode)
5862 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5863 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5864 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5865 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5866 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5867 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5868 == (unsigned int) i + 1))))
5869 return simplify_shift_const
5870 (NULL_RTX, ASHIFTRT, mode,
5871 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5872 XEXP (XEXP (XEXP (x, 0), 0), 0),
5873 GET_MODE_PRECISION (mode) - (i + 1)),
5874 GET_MODE_PRECISION (mode) - (i + 1));
5875
5876 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5877 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5878 the bitsize of the mode - 1. This allows simplification of
5879 "a = (b & 8) == 0;" */
5880 if (XEXP (x, 1) == constm1_rtx
5881 && !REG_P (XEXP (x, 0))
5882 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5883 && REG_P (SUBREG_REG (XEXP (x, 0))))
5884 && nonzero_bits (XEXP (x, 0), mode) == 1)
5885 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5886 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5887 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5888 GET_MODE_PRECISION (mode) - 1),
5889 GET_MODE_PRECISION (mode) - 1);
5890
5891 /* If we are adding two things that have no bits in common, convert
5892 the addition into an IOR. This will often be further simplified,
5893 for example in cases like ((a & 1) + (a & 2)), which can
5894 become a & 3. */
5895
5896 if (HWI_COMPUTABLE_MODE_P (mode)
5897 && (nonzero_bits (XEXP (x, 0), mode)
5898 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5899 {
5900 /* Try to simplify the expression further. */
5901 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5902 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5903
5904 /* If we could, great. If not, do not go ahead with the IOR
5905 replacement, since PLUS appears in many special purpose
5906 address arithmetic instructions. */
5907 if (GET_CODE (temp) != CLOBBER
5908 && (GET_CODE (temp) != IOR
5909 || ((XEXP (temp, 0) != XEXP (x, 0)
5910 || XEXP (temp, 1) != XEXP (x, 1))
5911 && (XEXP (temp, 0) != XEXP (x, 1)
5912 || XEXP (temp, 1) != XEXP (x, 0)))))
5913 return temp;
5914 }
5915 break;
5916
5917 case MINUS:
5918 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5919 (and <foo> (const_int pow2-1)) */
5920 if (GET_CODE (XEXP (x, 1)) == AND
5921 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5922 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5923 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5924 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5925 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5926 break;
5927
5928 case MULT:
5929 /* If we have (mult (plus A B) C), apply the distributive law and then
5930 the inverse distributive law to see if things simplify. This
5931 occurs mostly in addresses, often when unrolling loops. */
5932
5933 if (GET_CODE (XEXP (x, 0)) == PLUS)
5934 {
5935 rtx result = distribute_and_simplify_rtx (x, 0);
5936 if (result)
5937 return result;
5938 }
5939
5940 /* Try simplify a*(b/c) as (a*b)/c. */
5941 if (FLOAT_MODE_P (mode) && flag_associative_math
5942 && GET_CODE (XEXP (x, 0)) == DIV)
5943 {
5944 rtx tem = simplify_binary_operation (MULT, mode,
5945 XEXP (XEXP (x, 0), 0),
5946 XEXP (x, 1));
5947 if (tem)
5948 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5949 }
5950 break;
5951
5952 case UDIV:
5953 /* If this is a divide by a power of two, treat it as a shift if
5954 its first operand is a shift. */
5955 if (CONST_INT_P (XEXP (x, 1))
5956 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5957 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5958 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5959 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5960 || GET_CODE (XEXP (x, 0)) == ROTATE
5961 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5962 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5963 break;
5964
5965 case EQ: case NE:
5966 case GT: case GTU: case GE: case GEU:
5967 case LT: case LTU: case LE: case LEU:
5968 case UNEQ: case LTGT:
5969 case UNGT: case UNGE:
5970 case UNLT: case UNLE:
5971 case UNORDERED: case ORDERED:
5972 /* If the first operand is a condition code, we can't do anything
5973 with it. */
5974 if (GET_CODE (XEXP (x, 0)) == COMPARE
5975 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5976 && ! CC0_P (XEXP (x, 0))))
5977 {
5978 rtx op0 = XEXP (x, 0);
5979 rtx op1 = XEXP (x, 1);
5980 enum rtx_code new_code;
5981
5982 if (GET_CODE (op0) == COMPARE)
5983 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5984
5985 /* Simplify our comparison, if possible. */
5986 new_code = simplify_comparison (code, &op0, &op1);
5987
5988 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5989 if only the low-order bit is possibly nonzero in X (such as when
5990 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5991 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5992 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5993 (plus X 1).
5994
5995 Remove any ZERO_EXTRACT we made when thinking this was a
5996 comparison. It may now be simpler to use, e.g., an AND. If a
5997 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5998 the call to make_compound_operation in the SET case.
5999
6000 Don't apply these optimizations if the caller would
6001 prefer a comparison rather than a value.
6002 E.g., for the condition in an IF_THEN_ELSE most targets need
6003 an explicit comparison. */
6004
6005 if (in_cond)
6006 ;
6007
6008 else if (STORE_FLAG_VALUE == 1
6009 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6010 && op1 == const0_rtx
6011 && mode == GET_MODE (op0)
6012 && nonzero_bits (op0, mode) == 1)
6013 return gen_lowpart (mode,
6014 expand_compound_operation (op0));
6015
6016 else if (STORE_FLAG_VALUE == 1
6017 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6018 && op1 == const0_rtx
6019 && mode == GET_MODE (op0)
6020 && (num_sign_bit_copies (op0, mode)
6021 == GET_MODE_PRECISION (mode)))
6022 {
6023 op0 = expand_compound_operation (op0);
6024 return simplify_gen_unary (NEG, mode,
6025 gen_lowpart (mode, op0),
6026 mode);
6027 }
6028
6029 else if (STORE_FLAG_VALUE == 1
6030 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6031 && op1 == const0_rtx
6032 && mode == GET_MODE (op0)
6033 && nonzero_bits (op0, mode) == 1)
6034 {
6035 op0 = expand_compound_operation (op0);
6036 return simplify_gen_binary (XOR, mode,
6037 gen_lowpart (mode, op0),
6038 const1_rtx);
6039 }
6040
6041 else if (STORE_FLAG_VALUE == 1
6042 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6043 && op1 == const0_rtx
6044 && mode == GET_MODE (op0)
6045 && (num_sign_bit_copies (op0, mode)
6046 == GET_MODE_PRECISION (mode)))
6047 {
6048 op0 = expand_compound_operation (op0);
6049 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6050 }
6051
6052 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6053 those above. */
6054 if (in_cond)
6055 ;
6056
6057 else if (STORE_FLAG_VALUE == -1
6058 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6059 && op1 == const0_rtx
6060 && mode == GET_MODE (op0)
6061 && (num_sign_bit_copies (op0, mode)
6062 == GET_MODE_PRECISION (mode)))
6063 return gen_lowpart (mode,
6064 expand_compound_operation (op0));
6065
6066 else if (STORE_FLAG_VALUE == -1
6067 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6068 && op1 == const0_rtx
6069 && mode == GET_MODE (op0)
6070 && nonzero_bits (op0, mode) == 1)
6071 {
6072 op0 = expand_compound_operation (op0);
6073 return simplify_gen_unary (NEG, mode,
6074 gen_lowpart (mode, op0),
6075 mode);
6076 }
6077
6078 else if (STORE_FLAG_VALUE == -1
6079 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6080 && op1 == const0_rtx
6081 && mode == GET_MODE (op0)
6082 && (num_sign_bit_copies (op0, mode)
6083 == GET_MODE_PRECISION (mode)))
6084 {
6085 op0 = expand_compound_operation (op0);
6086 return simplify_gen_unary (NOT, mode,
6087 gen_lowpart (mode, op0),
6088 mode);
6089 }
6090
6091 /* If X is 0/1, (eq X 0) is X-1. */
6092 else if (STORE_FLAG_VALUE == -1
6093 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6094 && op1 == const0_rtx
6095 && mode == GET_MODE (op0)
6096 && nonzero_bits (op0, mode) == 1)
6097 {
6098 op0 = expand_compound_operation (op0);
6099 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6100 }
6101
6102 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6103 one bit that might be nonzero, we can convert (ne x 0) to
6104 (ashift x c) where C puts the bit in the sign bit. Remove any
6105 AND with STORE_FLAG_VALUE when we are done, since we are only
6106 going to test the sign bit. */
6107 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6108 && HWI_COMPUTABLE_MODE_P (mode)
6109 && val_signbit_p (mode, STORE_FLAG_VALUE)
6110 && op1 == const0_rtx
6111 && mode == GET_MODE (op0)
6112 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6113 {
6114 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6115 expand_compound_operation (op0),
6116 GET_MODE_PRECISION (mode) - 1 - i);
6117 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6118 return XEXP (x, 0);
6119 else
6120 return x;
6121 }
6122
6123 /* If the code changed, return a whole new comparison.
6124 We also need to avoid using SUBST in cases where
6125 simplify_comparison has widened a comparison with a CONST_INT,
6126 since in that case the wider CONST_INT may fail the sanity
6127 checks in do_SUBST. */
6128 if (new_code != code
6129 || (CONST_INT_P (op1)
6130 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6131 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6132 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6133
6134 /* Otherwise, keep this operation, but maybe change its operands.
6135 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6136 SUBST (XEXP (x, 0), op0);
6137 SUBST (XEXP (x, 1), op1);
6138 }
6139 break;
6140
6141 case IF_THEN_ELSE:
6142 return simplify_if_then_else (x);
6143
6144 case ZERO_EXTRACT:
6145 case SIGN_EXTRACT:
6146 case ZERO_EXTEND:
6147 case SIGN_EXTEND:
6148 /* If we are processing SET_DEST, we are done. */
6149 if (in_dest)
6150 return x;
6151
6152 return expand_compound_operation (x);
6153
6154 case SET:
6155 return simplify_set (x);
6156
6157 case AND:
6158 case IOR:
6159 return simplify_logical (x);
6160
6161 case ASHIFT:
6162 case LSHIFTRT:
6163 case ASHIFTRT:
6164 case ROTATE:
6165 case ROTATERT:
6166 /* If this is a shift by a constant amount, simplify it. */
6167 if (CONST_INT_P (XEXP (x, 1)))
6168 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6169 INTVAL (XEXP (x, 1)));
6170
6171 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6172 SUBST (XEXP (x, 1),
6173 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6174 ((unsigned HOST_WIDE_INT) 1
6175 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6176 - 1,
6177 0));
6178 break;
6179
6180 default:
6181 break;
6182 }
6183
6184 return x;
6185 }
6186 \f
6187 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6188
6189 static rtx
6190 simplify_if_then_else (rtx x)
6191 {
6192 machine_mode mode = GET_MODE (x);
6193 rtx cond = XEXP (x, 0);
6194 rtx true_rtx = XEXP (x, 1);
6195 rtx false_rtx = XEXP (x, 2);
6196 enum rtx_code true_code = GET_CODE (cond);
6197 int comparison_p = COMPARISON_P (cond);
6198 rtx temp;
6199 int i;
6200 enum rtx_code false_code;
6201 rtx reversed;
6202
6203 /* Simplify storing of the truth value. */
6204 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6205 return simplify_gen_relational (true_code, mode, VOIDmode,
6206 XEXP (cond, 0), XEXP (cond, 1));
6207
6208 /* Also when the truth value has to be reversed. */
6209 if (comparison_p
6210 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6211 && (reversed = reversed_comparison (cond, mode)))
6212 return reversed;
6213
6214 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6215 in it is being compared against certain values. Get the true and false
6216 comparisons and see if that says anything about the value of each arm. */
6217
6218 if (comparison_p
6219 && ((false_code = reversed_comparison_code (cond, NULL))
6220 != UNKNOWN)
6221 && REG_P (XEXP (cond, 0)))
6222 {
6223 HOST_WIDE_INT nzb;
6224 rtx from = XEXP (cond, 0);
6225 rtx true_val = XEXP (cond, 1);
6226 rtx false_val = true_val;
6227 int swapped = 0;
6228
6229 /* If FALSE_CODE is EQ, swap the codes and arms. */
6230
6231 if (false_code == EQ)
6232 {
6233 swapped = 1, true_code = EQ, false_code = NE;
6234 std::swap (true_rtx, false_rtx);
6235 }
6236
6237 /* If we are comparing against zero and the expression being tested has
6238 only a single bit that might be nonzero, that is its value when it is
6239 not equal to zero. Similarly if it is known to be -1 or 0. */
6240
6241 if (true_code == EQ && true_val == const0_rtx
6242 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6243 {
6244 false_code = EQ;
6245 false_val = gen_int_mode (nzb, GET_MODE (from));
6246 }
6247 else if (true_code == EQ && true_val == const0_rtx
6248 && (num_sign_bit_copies (from, GET_MODE (from))
6249 == GET_MODE_PRECISION (GET_MODE (from))))
6250 {
6251 false_code = EQ;
6252 false_val = constm1_rtx;
6253 }
6254
6255 /* Now simplify an arm if we know the value of the register in the
6256 branch and it is used in the arm. Be careful due to the potential
6257 of locally-shared RTL. */
6258
6259 if (reg_mentioned_p (from, true_rtx))
6260 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6261 from, true_val),
6262 pc_rtx, pc_rtx, 0, 0, 0);
6263 if (reg_mentioned_p (from, false_rtx))
6264 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6265 from, false_val),
6266 pc_rtx, pc_rtx, 0, 0, 0);
6267
6268 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6269 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6270
6271 true_rtx = XEXP (x, 1);
6272 false_rtx = XEXP (x, 2);
6273 true_code = GET_CODE (cond);
6274 }
6275
6276 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6277 reversed, do so to avoid needing two sets of patterns for
6278 subtract-and-branch insns. Similarly if we have a constant in the true
6279 arm, the false arm is the same as the first operand of the comparison, or
6280 the false arm is more complicated than the true arm. */
6281
6282 if (comparison_p
6283 && reversed_comparison_code (cond, NULL) != UNKNOWN
6284 && (true_rtx == pc_rtx
6285 || (CONSTANT_P (true_rtx)
6286 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6287 || true_rtx == const0_rtx
6288 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6289 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6290 && !OBJECT_P (false_rtx))
6291 || reg_mentioned_p (true_rtx, false_rtx)
6292 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6293 {
6294 true_code = reversed_comparison_code (cond, NULL);
6295 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6296 SUBST (XEXP (x, 1), false_rtx);
6297 SUBST (XEXP (x, 2), true_rtx);
6298
6299 std::swap (true_rtx, false_rtx);
6300 cond = XEXP (x, 0);
6301
6302 /* It is possible that the conditional has been simplified out. */
6303 true_code = GET_CODE (cond);
6304 comparison_p = COMPARISON_P (cond);
6305 }
6306
6307 /* If the two arms are identical, we don't need the comparison. */
6308
6309 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6310 return true_rtx;
6311
6312 /* Convert a == b ? b : a to "a". */
6313 if (true_code == EQ && ! side_effects_p (cond)
6314 && !HONOR_NANS (mode)
6315 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6316 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6317 return false_rtx;
6318 else if (true_code == NE && ! side_effects_p (cond)
6319 && !HONOR_NANS (mode)
6320 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6321 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6322 return true_rtx;
6323
6324 /* Look for cases where we have (abs x) or (neg (abs X)). */
6325
6326 if (GET_MODE_CLASS (mode) == MODE_INT
6327 && comparison_p
6328 && XEXP (cond, 1) == const0_rtx
6329 && GET_CODE (false_rtx) == NEG
6330 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6331 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6332 && ! side_effects_p (true_rtx))
6333 switch (true_code)
6334 {
6335 case GT:
6336 case GE:
6337 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6338 case LT:
6339 case LE:
6340 return
6341 simplify_gen_unary (NEG, mode,
6342 simplify_gen_unary (ABS, mode, true_rtx, mode),
6343 mode);
6344 default:
6345 break;
6346 }
6347
6348 /* Look for MIN or MAX. */
6349
6350 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6351 && comparison_p
6352 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6353 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6354 && ! side_effects_p (cond))
6355 switch (true_code)
6356 {
6357 case GE:
6358 case GT:
6359 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6360 case LE:
6361 case LT:
6362 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6363 case GEU:
6364 case GTU:
6365 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6366 case LEU:
6367 case LTU:
6368 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6369 default:
6370 break;
6371 }
6372
6373 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6374 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6375 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6376 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6377 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6378 neither 1 or -1, but it isn't worth checking for. */
6379
6380 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6381 && comparison_p
6382 && GET_MODE_CLASS (mode) == MODE_INT
6383 && ! side_effects_p (x))
6384 {
6385 rtx t = make_compound_operation (true_rtx, SET);
6386 rtx f = make_compound_operation (false_rtx, SET);
6387 rtx cond_op0 = XEXP (cond, 0);
6388 rtx cond_op1 = XEXP (cond, 1);
6389 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6390 machine_mode m = mode;
6391 rtx z = 0, c1 = NULL_RTX;
6392
6393 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6394 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6395 || GET_CODE (t) == ASHIFT
6396 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6397 && rtx_equal_p (XEXP (t, 0), f))
6398 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6399
6400 /* If an identity-zero op is commutative, check whether there
6401 would be a match if we swapped the operands. */
6402 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6403 || GET_CODE (t) == XOR)
6404 && rtx_equal_p (XEXP (t, 1), f))
6405 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6406 else if (GET_CODE (t) == SIGN_EXTEND
6407 && (GET_CODE (XEXP (t, 0)) == PLUS
6408 || GET_CODE (XEXP (t, 0)) == MINUS
6409 || GET_CODE (XEXP (t, 0)) == IOR
6410 || GET_CODE (XEXP (t, 0)) == XOR
6411 || GET_CODE (XEXP (t, 0)) == ASHIFT
6412 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6413 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6414 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6415 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6416 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6417 && (num_sign_bit_copies (f, GET_MODE (f))
6418 > (unsigned int)
6419 (GET_MODE_PRECISION (mode)
6420 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6421 {
6422 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6423 extend_op = SIGN_EXTEND;
6424 m = GET_MODE (XEXP (t, 0));
6425 }
6426 else if (GET_CODE (t) == SIGN_EXTEND
6427 && (GET_CODE (XEXP (t, 0)) == PLUS
6428 || GET_CODE (XEXP (t, 0)) == IOR
6429 || GET_CODE (XEXP (t, 0)) == XOR)
6430 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6431 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6432 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6433 && (num_sign_bit_copies (f, GET_MODE (f))
6434 > (unsigned int)
6435 (GET_MODE_PRECISION (mode)
6436 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6437 {
6438 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6439 extend_op = SIGN_EXTEND;
6440 m = GET_MODE (XEXP (t, 0));
6441 }
6442 else if (GET_CODE (t) == ZERO_EXTEND
6443 && (GET_CODE (XEXP (t, 0)) == PLUS
6444 || GET_CODE (XEXP (t, 0)) == MINUS
6445 || GET_CODE (XEXP (t, 0)) == IOR
6446 || GET_CODE (XEXP (t, 0)) == XOR
6447 || GET_CODE (XEXP (t, 0)) == ASHIFT
6448 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6449 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6450 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6451 && HWI_COMPUTABLE_MODE_P (mode)
6452 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6453 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6454 && ((nonzero_bits (f, GET_MODE (f))
6455 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6456 == 0))
6457 {
6458 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6459 extend_op = ZERO_EXTEND;
6460 m = GET_MODE (XEXP (t, 0));
6461 }
6462 else if (GET_CODE (t) == ZERO_EXTEND
6463 && (GET_CODE (XEXP (t, 0)) == PLUS
6464 || GET_CODE (XEXP (t, 0)) == IOR
6465 || GET_CODE (XEXP (t, 0)) == XOR)
6466 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6467 && HWI_COMPUTABLE_MODE_P (mode)
6468 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6469 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6470 && ((nonzero_bits (f, GET_MODE (f))
6471 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6472 == 0))
6473 {
6474 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6475 extend_op = ZERO_EXTEND;
6476 m = GET_MODE (XEXP (t, 0));
6477 }
6478
6479 if (z)
6480 {
6481 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6482 cond_op0, cond_op1),
6483 pc_rtx, pc_rtx, 0, 0, 0);
6484 temp = simplify_gen_binary (MULT, m, temp,
6485 simplify_gen_binary (MULT, m, c1,
6486 const_true_rtx));
6487 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6488 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6489
6490 if (extend_op != UNKNOWN)
6491 temp = simplify_gen_unary (extend_op, mode, temp, m);
6492
6493 return temp;
6494 }
6495 }
6496
6497 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6498 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6499 negation of a single bit, we can convert this operation to a shift. We
6500 can actually do this more generally, but it doesn't seem worth it. */
6501
6502 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6503 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6504 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6505 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6506 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6507 == GET_MODE_PRECISION (mode))
6508 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6509 return
6510 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6511 gen_lowpart (mode, XEXP (cond, 0)), i);
6512
6513 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6514 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6515 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6516 && GET_MODE (XEXP (cond, 0)) == mode
6517 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6518 == nonzero_bits (XEXP (cond, 0), mode)
6519 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6520 return XEXP (cond, 0);
6521
6522 return x;
6523 }
6524 \f
6525 /* Simplify X, a SET expression. Return the new expression. */
6526
6527 static rtx
6528 simplify_set (rtx x)
6529 {
6530 rtx src = SET_SRC (x);
6531 rtx dest = SET_DEST (x);
6532 machine_mode mode
6533 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6534 rtx_insn *other_insn;
6535 rtx *cc_use;
6536
6537 /* (set (pc) (return)) gets written as (return). */
6538 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6539 return src;
6540
6541 /* Now that we know for sure which bits of SRC we are using, see if we can
6542 simplify the expression for the object knowing that we only need the
6543 low-order bits. */
6544
6545 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6546 {
6547 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6548 SUBST (SET_SRC (x), src);
6549 }
6550
6551 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6552 the comparison result and try to simplify it unless we already have used
6553 undobuf.other_insn. */
6554 if ((GET_MODE_CLASS (mode) == MODE_CC
6555 || GET_CODE (src) == COMPARE
6556 || CC0_P (dest))
6557 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6558 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6559 && COMPARISON_P (*cc_use)
6560 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6561 {
6562 enum rtx_code old_code = GET_CODE (*cc_use);
6563 enum rtx_code new_code;
6564 rtx op0, op1, tmp;
6565 int other_changed = 0;
6566 rtx inner_compare = NULL_RTX;
6567 machine_mode compare_mode = GET_MODE (dest);
6568
6569 if (GET_CODE (src) == COMPARE)
6570 {
6571 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6572 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6573 {
6574 inner_compare = op0;
6575 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6576 }
6577 }
6578 else
6579 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6580
6581 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6582 op0, op1);
6583 if (!tmp)
6584 new_code = old_code;
6585 else if (!CONSTANT_P (tmp))
6586 {
6587 new_code = GET_CODE (tmp);
6588 op0 = XEXP (tmp, 0);
6589 op1 = XEXP (tmp, 1);
6590 }
6591 else
6592 {
6593 rtx pat = PATTERN (other_insn);
6594 undobuf.other_insn = other_insn;
6595 SUBST (*cc_use, tmp);
6596
6597 /* Attempt to simplify CC user. */
6598 if (GET_CODE (pat) == SET)
6599 {
6600 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6601 if (new_rtx != NULL_RTX)
6602 SUBST (SET_SRC (pat), new_rtx);
6603 }
6604
6605 /* Convert X into a no-op move. */
6606 SUBST (SET_DEST (x), pc_rtx);
6607 SUBST (SET_SRC (x), pc_rtx);
6608 return x;
6609 }
6610
6611 /* Simplify our comparison, if possible. */
6612 new_code = simplify_comparison (new_code, &op0, &op1);
6613
6614 #ifdef SELECT_CC_MODE
6615 /* If this machine has CC modes other than CCmode, check to see if we
6616 need to use a different CC mode here. */
6617 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6618 compare_mode = GET_MODE (op0);
6619 else if (inner_compare
6620 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6621 && new_code == old_code
6622 && op0 == XEXP (inner_compare, 0)
6623 && op1 == XEXP (inner_compare, 1))
6624 compare_mode = GET_MODE (inner_compare);
6625 else
6626 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6627
6628 /* If the mode changed, we have to change SET_DEST, the mode in the
6629 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6630 a hard register, just build new versions with the proper mode. If it
6631 is a pseudo, we lose unless it is only time we set the pseudo, in
6632 which case we can safely change its mode. */
6633 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6634 {
6635 if (can_change_dest_mode (dest, 0, compare_mode))
6636 {
6637 unsigned int regno = REGNO (dest);
6638 rtx new_dest;
6639
6640 if (regno < FIRST_PSEUDO_REGISTER)
6641 new_dest = gen_rtx_REG (compare_mode, regno);
6642 else
6643 {
6644 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6645 new_dest = regno_reg_rtx[regno];
6646 }
6647
6648 SUBST (SET_DEST (x), new_dest);
6649 SUBST (XEXP (*cc_use, 0), new_dest);
6650 other_changed = 1;
6651
6652 dest = new_dest;
6653 }
6654 }
6655 #endif /* SELECT_CC_MODE */
6656
6657 /* If the code changed, we have to build a new comparison in
6658 undobuf.other_insn. */
6659 if (new_code != old_code)
6660 {
6661 int other_changed_previously = other_changed;
6662 unsigned HOST_WIDE_INT mask;
6663 rtx old_cc_use = *cc_use;
6664
6665 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6666 dest, const0_rtx));
6667 other_changed = 1;
6668
6669 /* If the only change we made was to change an EQ into an NE or
6670 vice versa, OP0 has only one bit that might be nonzero, and OP1
6671 is zero, check if changing the user of the condition code will
6672 produce a valid insn. If it won't, we can keep the original code
6673 in that insn by surrounding our operation with an XOR. */
6674
6675 if (((old_code == NE && new_code == EQ)
6676 || (old_code == EQ && new_code == NE))
6677 && ! other_changed_previously && op1 == const0_rtx
6678 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6679 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6680 {
6681 rtx pat = PATTERN (other_insn), note = 0;
6682
6683 if ((recog_for_combine (&pat, other_insn, &note) < 0
6684 && ! check_asm_operands (pat)))
6685 {
6686 *cc_use = old_cc_use;
6687 other_changed = 0;
6688
6689 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6690 gen_int_mode (mask,
6691 GET_MODE (op0)));
6692 }
6693 }
6694 }
6695
6696 if (other_changed)
6697 undobuf.other_insn = other_insn;
6698
6699 /* Don't generate a compare of a CC with 0, just use that CC. */
6700 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6701 {
6702 SUBST (SET_SRC (x), op0);
6703 src = SET_SRC (x);
6704 }
6705 /* Otherwise, if we didn't previously have the same COMPARE we
6706 want, create it from scratch. */
6707 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6708 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6709 {
6710 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6711 src = SET_SRC (x);
6712 }
6713 }
6714 else
6715 {
6716 /* Get SET_SRC in a form where we have placed back any
6717 compound expressions. Then do the checks below. */
6718 src = make_compound_operation (src, SET);
6719 SUBST (SET_SRC (x), src);
6720 }
6721
6722 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6723 and X being a REG or (subreg (reg)), we may be able to convert this to
6724 (set (subreg:m2 x) (op)).
6725
6726 We can always do this if M1 is narrower than M2 because that means that
6727 we only care about the low bits of the result.
6728
6729 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6730 perform a narrower operation than requested since the high-order bits will
6731 be undefined. On machine where it is defined, this transformation is safe
6732 as long as M1 and M2 have the same number of words. */
6733
6734 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6735 && !OBJECT_P (SUBREG_REG (src))
6736 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6737 / UNITS_PER_WORD)
6738 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6739 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6740 #ifndef WORD_REGISTER_OPERATIONS
6741 && (GET_MODE_SIZE (GET_MODE (src))
6742 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6743 #endif
6744 #ifdef CANNOT_CHANGE_MODE_CLASS
6745 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6746 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6747 GET_MODE (SUBREG_REG (src)),
6748 GET_MODE (src)))
6749 #endif
6750 && (REG_P (dest)
6751 || (GET_CODE (dest) == SUBREG
6752 && REG_P (SUBREG_REG (dest)))))
6753 {
6754 SUBST (SET_DEST (x),
6755 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6756 dest));
6757 SUBST (SET_SRC (x), SUBREG_REG (src));
6758
6759 src = SET_SRC (x), dest = SET_DEST (x);
6760 }
6761
6762 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6763 in SRC. */
6764 if (dest == cc0_rtx
6765 && GET_CODE (src) == SUBREG
6766 && subreg_lowpart_p (src)
6767 && (GET_MODE_PRECISION (GET_MODE (src))
6768 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6769 {
6770 rtx inner = SUBREG_REG (src);
6771 machine_mode inner_mode = GET_MODE (inner);
6772
6773 /* Here we make sure that we don't have a sign bit on. */
6774 if (val_signbit_known_clear_p (GET_MODE (src),
6775 nonzero_bits (inner, inner_mode)))
6776 {
6777 SUBST (SET_SRC (x), inner);
6778 src = SET_SRC (x);
6779 }
6780 }
6781
6782 #ifdef LOAD_EXTEND_OP
6783 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6784 would require a paradoxical subreg. Replace the subreg with a
6785 zero_extend to avoid the reload that would otherwise be required. */
6786
6787 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6788 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6789 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6790 && SUBREG_BYTE (src) == 0
6791 && paradoxical_subreg_p (src)
6792 && MEM_P (SUBREG_REG (src)))
6793 {
6794 SUBST (SET_SRC (x),
6795 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6796 GET_MODE (src), SUBREG_REG (src)));
6797
6798 src = SET_SRC (x);
6799 }
6800 #endif
6801
6802 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6803 are comparing an item known to be 0 or -1 against 0, use a logical
6804 operation instead. Check for one of the arms being an IOR of the other
6805 arm with some value. We compute three terms to be IOR'ed together. In
6806 practice, at most two will be nonzero. Then we do the IOR's. */
6807
6808 if (GET_CODE (dest) != PC
6809 && GET_CODE (src) == IF_THEN_ELSE
6810 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6811 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6812 && XEXP (XEXP (src, 0), 1) == const0_rtx
6813 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6814 && (!HAVE_conditional_move
6815 || ! can_conditionally_move_p (GET_MODE (src)))
6816 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6817 GET_MODE (XEXP (XEXP (src, 0), 0)))
6818 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6819 && ! side_effects_p (src))
6820 {
6821 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6822 ? XEXP (src, 1) : XEXP (src, 2));
6823 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6824 ? XEXP (src, 2) : XEXP (src, 1));
6825 rtx term1 = const0_rtx, term2, term3;
6826
6827 if (GET_CODE (true_rtx) == IOR
6828 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6829 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6830 else if (GET_CODE (true_rtx) == IOR
6831 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6832 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6833 else if (GET_CODE (false_rtx) == IOR
6834 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6835 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6836 else if (GET_CODE (false_rtx) == IOR
6837 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6838 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6839
6840 term2 = simplify_gen_binary (AND, GET_MODE (src),
6841 XEXP (XEXP (src, 0), 0), true_rtx);
6842 term3 = simplify_gen_binary (AND, GET_MODE (src),
6843 simplify_gen_unary (NOT, GET_MODE (src),
6844 XEXP (XEXP (src, 0), 0),
6845 GET_MODE (src)),
6846 false_rtx);
6847
6848 SUBST (SET_SRC (x),
6849 simplify_gen_binary (IOR, GET_MODE (src),
6850 simplify_gen_binary (IOR, GET_MODE (src),
6851 term1, term2),
6852 term3));
6853
6854 src = SET_SRC (x);
6855 }
6856
6857 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6858 whole thing fail. */
6859 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6860 return src;
6861 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6862 return dest;
6863 else
6864 /* Convert this into a field assignment operation, if possible. */
6865 return make_field_assignment (x);
6866 }
6867 \f
6868 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6869 result. */
6870
6871 static rtx
6872 simplify_logical (rtx x)
6873 {
6874 machine_mode mode = GET_MODE (x);
6875 rtx op0 = XEXP (x, 0);
6876 rtx op1 = XEXP (x, 1);
6877
6878 switch (GET_CODE (x))
6879 {
6880 case AND:
6881 /* We can call simplify_and_const_int only if we don't lose
6882 any (sign) bits when converting INTVAL (op1) to
6883 "unsigned HOST_WIDE_INT". */
6884 if (CONST_INT_P (op1)
6885 && (HWI_COMPUTABLE_MODE_P (mode)
6886 || INTVAL (op1) > 0))
6887 {
6888 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6889 if (GET_CODE (x) != AND)
6890 return x;
6891
6892 op0 = XEXP (x, 0);
6893 op1 = XEXP (x, 1);
6894 }
6895
6896 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6897 apply the distributive law and then the inverse distributive
6898 law to see if things simplify. */
6899 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6900 {
6901 rtx result = distribute_and_simplify_rtx (x, 0);
6902 if (result)
6903 return result;
6904 }
6905 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6906 {
6907 rtx result = distribute_and_simplify_rtx (x, 1);
6908 if (result)
6909 return result;
6910 }
6911 break;
6912
6913 case IOR:
6914 /* If we have (ior (and A B) C), apply the distributive law and then
6915 the inverse distributive law to see if things simplify. */
6916
6917 if (GET_CODE (op0) == AND)
6918 {
6919 rtx result = distribute_and_simplify_rtx (x, 0);
6920 if (result)
6921 return result;
6922 }
6923
6924 if (GET_CODE (op1) == AND)
6925 {
6926 rtx result = distribute_and_simplify_rtx (x, 1);
6927 if (result)
6928 return result;
6929 }
6930 break;
6931
6932 default:
6933 gcc_unreachable ();
6934 }
6935
6936 return x;
6937 }
6938 \f
6939 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6940 operations" because they can be replaced with two more basic operations.
6941 ZERO_EXTEND is also considered "compound" because it can be replaced with
6942 an AND operation, which is simpler, though only one operation.
6943
6944 The function expand_compound_operation is called with an rtx expression
6945 and will convert it to the appropriate shifts and AND operations,
6946 simplifying at each stage.
6947
6948 The function make_compound_operation is called to convert an expression
6949 consisting of shifts and ANDs into the equivalent compound expression.
6950 It is the inverse of this function, loosely speaking. */
6951
6952 static rtx
6953 expand_compound_operation (rtx x)
6954 {
6955 unsigned HOST_WIDE_INT pos = 0, len;
6956 int unsignedp = 0;
6957 unsigned int modewidth;
6958 rtx tem;
6959
6960 switch (GET_CODE (x))
6961 {
6962 case ZERO_EXTEND:
6963 unsignedp = 1;
6964 case SIGN_EXTEND:
6965 /* We can't necessarily use a const_int for a multiword mode;
6966 it depends on implicitly extending the value.
6967 Since we don't know the right way to extend it,
6968 we can't tell whether the implicit way is right.
6969
6970 Even for a mode that is no wider than a const_int,
6971 we can't win, because we need to sign extend one of its bits through
6972 the rest of it, and we don't know which bit. */
6973 if (CONST_INT_P (XEXP (x, 0)))
6974 return x;
6975
6976 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6977 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6978 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6979 reloaded. If not for that, MEM's would very rarely be safe.
6980
6981 Reject MODEs bigger than a word, because we might not be able
6982 to reference a two-register group starting with an arbitrary register
6983 (and currently gen_lowpart might crash for a SUBREG). */
6984
6985 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6986 return x;
6987
6988 /* Reject MODEs that aren't scalar integers because turning vector
6989 or complex modes into shifts causes problems. */
6990
6991 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6992 return x;
6993
6994 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6995 /* If the inner object has VOIDmode (the only way this can happen
6996 is if it is an ASM_OPERANDS), we can't do anything since we don't
6997 know how much masking to do. */
6998 if (len == 0)
6999 return x;
7000
7001 break;
7002
7003 case ZERO_EXTRACT:
7004 unsignedp = 1;
7005
7006 /* ... fall through ... */
7007
7008 case SIGN_EXTRACT:
7009 /* If the operand is a CLOBBER, just return it. */
7010 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7011 return XEXP (x, 0);
7012
7013 if (!CONST_INT_P (XEXP (x, 1))
7014 || !CONST_INT_P (XEXP (x, 2))
7015 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7016 return x;
7017
7018 /* Reject MODEs that aren't scalar integers because turning vector
7019 or complex modes into shifts causes problems. */
7020
7021 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7022 return x;
7023
7024 len = INTVAL (XEXP (x, 1));
7025 pos = INTVAL (XEXP (x, 2));
7026
7027 /* This should stay within the object being extracted, fail otherwise. */
7028 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7029 return x;
7030
7031 if (BITS_BIG_ENDIAN)
7032 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7033
7034 break;
7035
7036 default:
7037 return x;
7038 }
7039 /* Convert sign extension to zero extension, if we know that the high
7040 bit is not set, as this is easier to optimize. It will be converted
7041 back to cheaper alternative in make_extraction. */
7042 if (GET_CODE (x) == SIGN_EXTEND
7043 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7044 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7045 & ~(((unsigned HOST_WIDE_INT)
7046 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7047 >> 1))
7048 == 0)))
7049 {
7050 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
7051 rtx temp2 = expand_compound_operation (temp);
7052
7053 /* Make sure this is a profitable operation. */
7054 if (set_src_cost (x, optimize_this_for_speed_p)
7055 > set_src_cost (temp2, optimize_this_for_speed_p))
7056 return temp2;
7057 else if (set_src_cost (x, optimize_this_for_speed_p)
7058 > set_src_cost (temp, optimize_this_for_speed_p))
7059 return temp;
7060 else
7061 return x;
7062 }
7063
7064 /* We can optimize some special cases of ZERO_EXTEND. */
7065 if (GET_CODE (x) == ZERO_EXTEND)
7066 {
7067 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7068 know that the last value didn't have any inappropriate bits
7069 set. */
7070 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7071 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7072 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7073 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7074 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7075 return XEXP (XEXP (x, 0), 0);
7076
7077 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7078 if (GET_CODE (XEXP (x, 0)) == SUBREG
7079 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7080 && subreg_lowpart_p (XEXP (x, 0))
7081 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7082 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7083 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7084 return SUBREG_REG (XEXP (x, 0));
7085
7086 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7087 is a comparison and STORE_FLAG_VALUE permits. This is like
7088 the first case, but it works even when GET_MODE (x) is larger
7089 than HOST_WIDE_INT. */
7090 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7091 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7092 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7093 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7094 <= HOST_BITS_PER_WIDE_INT)
7095 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7096 return XEXP (XEXP (x, 0), 0);
7097
7098 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7099 if (GET_CODE (XEXP (x, 0)) == SUBREG
7100 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7101 && subreg_lowpart_p (XEXP (x, 0))
7102 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7103 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7104 <= HOST_BITS_PER_WIDE_INT)
7105 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7106 return SUBREG_REG (XEXP (x, 0));
7107
7108 }
7109
7110 /* If we reach here, we want to return a pair of shifts. The inner
7111 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7112 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7113 logical depending on the value of UNSIGNEDP.
7114
7115 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7116 converted into an AND of a shift.
7117
7118 We must check for the case where the left shift would have a negative
7119 count. This can happen in a case like (x >> 31) & 255 on machines
7120 that can't shift by a constant. On those machines, we would first
7121 combine the shift with the AND to produce a variable-position
7122 extraction. Then the constant of 31 would be substituted in
7123 to produce such a position. */
7124
7125 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7126 if (modewidth >= pos + len)
7127 {
7128 machine_mode mode = GET_MODE (x);
7129 tem = gen_lowpart (mode, XEXP (x, 0));
7130 if (!tem || GET_CODE (tem) == CLOBBER)
7131 return x;
7132 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7133 tem, modewidth - pos - len);
7134 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7135 mode, tem, modewidth - len);
7136 }
7137 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7138 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7139 simplify_shift_const (NULL_RTX, LSHIFTRT,
7140 GET_MODE (x),
7141 XEXP (x, 0), pos),
7142 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
7143 else
7144 /* Any other cases we can't handle. */
7145 return x;
7146
7147 /* If we couldn't do this for some reason, return the original
7148 expression. */
7149 if (GET_CODE (tem) == CLOBBER)
7150 return x;
7151
7152 return tem;
7153 }
7154 \f
7155 /* X is a SET which contains an assignment of one object into
7156 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7157 or certain SUBREGS). If possible, convert it into a series of
7158 logical operations.
7159
7160 We half-heartedly support variable positions, but do not at all
7161 support variable lengths. */
7162
7163 static const_rtx
7164 expand_field_assignment (const_rtx x)
7165 {
7166 rtx inner;
7167 rtx pos; /* Always counts from low bit. */
7168 int len;
7169 rtx mask, cleared, masked;
7170 machine_mode compute_mode;
7171
7172 /* Loop until we find something we can't simplify. */
7173 while (1)
7174 {
7175 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7176 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7177 {
7178 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7179 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7180 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7181 }
7182 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7183 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7184 {
7185 inner = XEXP (SET_DEST (x), 0);
7186 len = INTVAL (XEXP (SET_DEST (x), 1));
7187 pos = XEXP (SET_DEST (x), 2);
7188
7189 /* A constant position should stay within the width of INNER. */
7190 if (CONST_INT_P (pos)
7191 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7192 break;
7193
7194 if (BITS_BIG_ENDIAN)
7195 {
7196 if (CONST_INT_P (pos))
7197 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7198 - INTVAL (pos));
7199 else if (GET_CODE (pos) == MINUS
7200 && CONST_INT_P (XEXP (pos, 1))
7201 && (INTVAL (XEXP (pos, 1))
7202 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7203 /* If position is ADJUST - X, new position is X. */
7204 pos = XEXP (pos, 0);
7205 else
7206 {
7207 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7208 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7209 gen_int_mode (prec - len,
7210 GET_MODE (pos)),
7211 pos);
7212 }
7213 }
7214 }
7215
7216 /* A SUBREG between two modes that occupy the same numbers of words
7217 can be done by moving the SUBREG to the source. */
7218 else if (GET_CODE (SET_DEST (x)) == SUBREG
7219 /* We need SUBREGs to compute nonzero_bits properly. */
7220 && nonzero_sign_valid
7221 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7222 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7223 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7224 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7225 {
7226 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7227 gen_lowpart
7228 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7229 SET_SRC (x)));
7230 continue;
7231 }
7232 else
7233 break;
7234
7235 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7236 inner = SUBREG_REG (inner);
7237
7238 compute_mode = GET_MODE (inner);
7239
7240 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7241 if (! SCALAR_INT_MODE_P (compute_mode))
7242 {
7243 machine_mode imode;
7244
7245 /* Don't do anything for vector or complex integral types. */
7246 if (! FLOAT_MODE_P (compute_mode))
7247 break;
7248
7249 /* Try to find an integral mode to pun with. */
7250 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7251 if (imode == BLKmode)
7252 break;
7253
7254 compute_mode = imode;
7255 inner = gen_lowpart (imode, inner);
7256 }
7257
7258 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7259 if (len >= HOST_BITS_PER_WIDE_INT)
7260 break;
7261
7262 /* Now compute the equivalent expression. Make a copy of INNER
7263 for the SET_DEST in case it is a MEM into which we will substitute;
7264 we don't want shared RTL in that case. */
7265 mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << len) - 1,
7266 compute_mode);
7267 cleared = simplify_gen_binary (AND, compute_mode,
7268 simplify_gen_unary (NOT, compute_mode,
7269 simplify_gen_binary (ASHIFT,
7270 compute_mode,
7271 mask, pos),
7272 compute_mode),
7273 inner);
7274 masked = simplify_gen_binary (ASHIFT, compute_mode,
7275 simplify_gen_binary (
7276 AND, compute_mode,
7277 gen_lowpart (compute_mode, SET_SRC (x)),
7278 mask),
7279 pos);
7280
7281 x = gen_rtx_SET (copy_rtx (inner),
7282 simplify_gen_binary (IOR, compute_mode,
7283 cleared, masked));
7284 }
7285
7286 return x;
7287 }
7288 \f
7289 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7290 it is an RTX that represents the (variable) starting position; otherwise,
7291 POS is the (constant) starting bit position. Both are counted from the LSB.
7292
7293 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7294
7295 IN_DEST is nonzero if this is a reference in the destination of a SET.
7296 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7297 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7298 be used.
7299
7300 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7301 ZERO_EXTRACT should be built even for bits starting at bit 0.
7302
7303 MODE is the desired mode of the result (if IN_DEST == 0).
7304
7305 The result is an RTX for the extraction or NULL_RTX if the target
7306 can't handle it. */
7307
7308 static rtx
7309 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7310 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7311 int in_dest, int in_compare)
7312 {
7313 /* This mode describes the size of the storage area
7314 to fetch the overall value from. Within that, we
7315 ignore the POS lowest bits, etc. */
7316 machine_mode is_mode = GET_MODE (inner);
7317 machine_mode inner_mode;
7318 machine_mode wanted_inner_mode;
7319 machine_mode wanted_inner_reg_mode = word_mode;
7320 machine_mode pos_mode = word_mode;
7321 machine_mode extraction_mode = word_mode;
7322 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7323 rtx new_rtx = 0;
7324 rtx orig_pos_rtx = pos_rtx;
7325 HOST_WIDE_INT orig_pos;
7326
7327 if (pos_rtx && CONST_INT_P (pos_rtx))
7328 pos = INTVAL (pos_rtx), pos_rtx = 0;
7329
7330 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7331 {
7332 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7333 consider just the QI as the memory to extract from.
7334 The subreg adds or removes high bits; its mode is
7335 irrelevant to the meaning of this extraction,
7336 since POS and LEN count from the lsb. */
7337 if (MEM_P (SUBREG_REG (inner)))
7338 is_mode = GET_MODE (SUBREG_REG (inner));
7339 inner = SUBREG_REG (inner);
7340 }
7341 else if (GET_CODE (inner) == ASHIFT
7342 && CONST_INT_P (XEXP (inner, 1))
7343 && pos_rtx == 0 && pos == 0
7344 && len > UINTVAL (XEXP (inner, 1)))
7345 {
7346 /* We're extracting the least significant bits of an rtx
7347 (ashift X (const_int C)), where LEN > C. Extract the
7348 least significant (LEN - C) bits of X, giving an rtx
7349 whose mode is MODE, then shift it left C times. */
7350 new_rtx = make_extraction (mode, XEXP (inner, 0),
7351 0, 0, len - INTVAL (XEXP (inner, 1)),
7352 unsignedp, in_dest, in_compare);
7353 if (new_rtx != 0)
7354 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7355 }
7356 else if (GET_CODE (inner) == TRUNCATE)
7357 inner = XEXP (inner, 0);
7358
7359 inner_mode = GET_MODE (inner);
7360
7361 /* See if this can be done without an extraction. We never can if the
7362 width of the field is not the same as that of some integer mode. For
7363 registers, we can only avoid the extraction if the position is at the
7364 low-order bit and this is either not in the destination or we have the
7365 appropriate STRICT_LOW_PART operation available.
7366
7367 For MEM, we can avoid an extract if the field starts on an appropriate
7368 boundary and we can change the mode of the memory reference. */
7369
7370 if (tmode != BLKmode
7371 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7372 && !MEM_P (inner)
7373 && (inner_mode == tmode
7374 || !REG_P (inner)
7375 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7376 || reg_truncated_to_mode (tmode, inner))
7377 && (! in_dest
7378 || (REG_P (inner)
7379 && have_insn_for (STRICT_LOW_PART, tmode))))
7380 || (MEM_P (inner) && pos_rtx == 0
7381 && (pos
7382 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7383 : BITS_PER_UNIT)) == 0
7384 /* We can't do this if we are widening INNER_MODE (it
7385 may not be aligned, for one thing). */
7386 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7387 && (inner_mode == tmode
7388 || (! mode_dependent_address_p (XEXP (inner, 0),
7389 MEM_ADDR_SPACE (inner))
7390 && ! MEM_VOLATILE_P (inner))))))
7391 {
7392 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7393 field. If the original and current mode are the same, we need not
7394 adjust the offset. Otherwise, we do if bytes big endian.
7395
7396 If INNER is not a MEM, get a piece consisting of just the field
7397 of interest (in this case POS % BITS_PER_WORD must be 0). */
7398
7399 if (MEM_P (inner))
7400 {
7401 HOST_WIDE_INT offset;
7402
7403 /* POS counts from lsb, but make OFFSET count in memory order. */
7404 if (BYTES_BIG_ENDIAN)
7405 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7406 else
7407 offset = pos / BITS_PER_UNIT;
7408
7409 new_rtx = adjust_address_nv (inner, tmode, offset);
7410 }
7411 else if (REG_P (inner))
7412 {
7413 if (tmode != inner_mode)
7414 {
7415 /* We can't call gen_lowpart in a DEST since we
7416 always want a SUBREG (see below) and it would sometimes
7417 return a new hard register. */
7418 if (pos || in_dest)
7419 {
7420 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7421
7422 if (WORDS_BIG_ENDIAN
7423 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7424 final_word = ((GET_MODE_SIZE (inner_mode)
7425 - GET_MODE_SIZE (tmode))
7426 / UNITS_PER_WORD) - final_word;
7427
7428 final_word *= UNITS_PER_WORD;
7429 if (BYTES_BIG_ENDIAN &&
7430 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7431 final_word += (GET_MODE_SIZE (inner_mode)
7432 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7433
7434 /* Avoid creating invalid subregs, for example when
7435 simplifying (x>>32)&255. */
7436 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7437 return NULL_RTX;
7438
7439 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7440 }
7441 else
7442 new_rtx = gen_lowpart (tmode, inner);
7443 }
7444 else
7445 new_rtx = inner;
7446 }
7447 else
7448 new_rtx = force_to_mode (inner, tmode,
7449 len >= HOST_BITS_PER_WIDE_INT
7450 ? ~(unsigned HOST_WIDE_INT) 0
7451 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7452 0);
7453
7454 /* If this extraction is going into the destination of a SET,
7455 make a STRICT_LOW_PART unless we made a MEM. */
7456
7457 if (in_dest)
7458 return (MEM_P (new_rtx) ? new_rtx
7459 : (GET_CODE (new_rtx) != SUBREG
7460 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7461 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7462
7463 if (mode == tmode)
7464 return new_rtx;
7465
7466 if (CONST_SCALAR_INT_P (new_rtx))
7467 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7468 mode, new_rtx, tmode);
7469
7470 /* If we know that no extraneous bits are set, and that the high
7471 bit is not set, convert the extraction to the cheaper of
7472 sign and zero extension, that are equivalent in these cases. */
7473 if (flag_expensive_optimizations
7474 && (HWI_COMPUTABLE_MODE_P (tmode)
7475 && ((nonzero_bits (new_rtx, tmode)
7476 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7477 == 0)))
7478 {
7479 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7480 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7481
7482 /* Prefer ZERO_EXTENSION, since it gives more information to
7483 backends. */
7484 if (set_src_cost (temp, optimize_this_for_speed_p)
7485 <= set_src_cost (temp1, optimize_this_for_speed_p))
7486 return temp;
7487 return temp1;
7488 }
7489
7490 /* Otherwise, sign- or zero-extend unless we already are in the
7491 proper mode. */
7492
7493 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7494 mode, new_rtx));
7495 }
7496
7497 /* Unless this is a COMPARE or we have a funny memory reference,
7498 don't do anything with zero-extending field extracts starting at
7499 the low-order bit since they are simple AND operations. */
7500 if (pos_rtx == 0 && pos == 0 && ! in_dest
7501 && ! in_compare && unsignedp)
7502 return 0;
7503
7504 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7505 if the position is not a constant and the length is not 1. In all
7506 other cases, we would only be going outside our object in cases when
7507 an original shift would have been undefined. */
7508 if (MEM_P (inner)
7509 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7510 || (pos_rtx != 0 && len != 1)))
7511 return 0;
7512
7513 enum extraction_pattern pattern = (in_dest ? EP_insv
7514 : unsignedp ? EP_extzv : EP_extv);
7515
7516 /* If INNER is not from memory, we want it to have the mode of a register
7517 extraction pattern's structure operand, or word_mode if there is no
7518 such pattern. The same applies to extraction_mode and pos_mode
7519 and their respective operands.
7520
7521 For memory, assume that the desired extraction_mode and pos_mode
7522 are the same as for a register operation, since at present we don't
7523 have named patterns for aligned memory structures. */
7524 struct extraction_insn insn;
7525 if (get_best_reg_extraction_insn (&insn, pattern,
7526 GET_MODE_BITSIZE (inner_mode), mode))
7527 {
7528 wanted_inner_reg_mode = insn.struct_mode;
7529 pos_mode = insn.pos_mode;
7530 extraction_mode = insn.field_mode;
7531 }
7532
7533 /* Never narrow an object, since that might not be safe. */
7534
7535 if (mode != VOIDmode
7536 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7537 extraction_mode = mode;
7538
7539 if (!MEM_P (inner))
7540 wanted_inner_mode = wanted_inner_reg_mode;
7541 else
7542 {
7543 /* Be careful not to go beyond the extracted object and maintain the
7544 natural alignment of the memory. */
7545 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7546 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7547 > GET_MODE_BITSIZE (wanted_inner_mode))
7548 {
7549 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7550 gcc_assert (wanted_inner_mode != VOIDmode);
7551 }
7552 }
7553
7554 orig_pos = pos;
7555
7556 if (BITS_BIG_ENDIAN)
7557 {
7558 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7559 BITS_BIG_ENDIAN style. If position is constant, compute new
7560 position. Otherwise, build subtraction.
7561 Note that POS is relative to the mode of the original argument.
7562 If it's a MEM we need to recompute POS relative to that.
7563 However, if we're extracting from (or inserting into) a register,
7564 we want to recompute POS relative to wanted_inner_mode. */
7565 int width = (MEM_P (inner)
7566 ? GET_MODE_BITSIZE (is_mode)
7567 : GET_MODE_BITSIZE (wanted_inner_mode));
7568
7569 if (pos_rtx == 0)
7570 pos = width - len - pos;
7571 else
7572 pos_rtx
7573 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7574 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7575 pos_rtx);
7576 /* POS may be less than 0 now, but we check for that below.
7577 Note that it can only be less than 0 if !MEM_P (inner). */
7578 }
7579
7580 /* If INNER has a wider mode, and this is a constant extraction, try to
7581 make it smaller and adjust the byte to point to the byte containing
7582 the value. */
7583 if (wanted_inner_mode != VOIDmode
7584 && inner_mode != wanted_inner_mode
7585 && ! pos_rtx
7586 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7587 && MEM_P (inner)
7588 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7589 && ! MEM_VOLATILE_P (inner))
7590 {
7591 int offset = 0;
7592
7593 /* The computations below will be correct if the machine is big
7594 endian in both bits and bytes or little endian in bits and bytes.
7595 If it is mixed, we must adjust. */
7596
7597 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7598 adjust OFFSET to compensate. */
7599 if (BYTES_BIG_ENDIAN
7600 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7601 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7602
7603 /* We can now move to the desired byte. */
7604 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7605 * GET_MODE_SIZE (wanted_inner_mode);
7606 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7607
7608 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7609 && is_mode != wanted_inner_mode)
7610 offset = (GET_MODE_SIZE (is_mode)
7611 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7612
7613 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7614 }
7615
7616 /* If INNER is not memory, get it into the proper mode. If we are changing
7617 its mode, POS must be a constant and smaller than the size of the new
7618 mode. */
7619 else if (!MEM_P (inner))
7620 {
7621 /* On the LHS, don't create paradoxical subregs implicitely truncating
7622 the register unless TRULY_NOOP_TRUNCATION. */
7623 if (in_dest
7624 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7625 wanted_inner_mode))
7626 return NULL_RTX;
7627
7628 if (GET_MODE (inner) != wanted_inner_mode
7629 && (pos_rtx != 0
7630 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7631 return NULL_RTX;
7632
7633 if (orig_pos < 0)
7634 return NULL_RTX;
7635
7636 inner = force_to_mode (inner, wanted_inner_mode,
7637 pos_rtx
7638 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7639 ? ~(unsigned HOST_WIDE_INT) 0
7640 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7641 << orig_pos),
7642 0);
7643 }
7644
7645 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7646 have to zero extend. Otherwise, we can just use a SUBREG. */
7647 if (pos_rtx != 0
7648 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7649 {
7650 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7651 GET_MODE (pos_rtx));
7652
7653 /* If we know that no extraneous bits are set, and that the high
7654 bit is not set, convert extraction to cheaper one - either
7655 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7656 cases. */
7657 if (flag_expensive_optimizations
7658 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7659 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7660 & ~(((unsigned HOST_WIDE_INT)
7661 GET_MODE_MASK (GET_MODE (pos_rtx)))
7662 >> 1))
7663 == 0)))
7664 {
7665 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7666 GET_MODE (pos_rtx));
7667
7668 /* Prefer ZERO_EXTENSION, since it gives more information to
7669 backends. */
7670 if (set_src_cost (temp1, optimize_this_for_speed_p)
7671 < set_src_cost (temp, optimize_this_for_speed_p))
7672 temp = temp1;
7673 }
7674 pos_rtx = temp;
7675 }
7676
7677 /* Make POS_RTX unless we already have it and it is correct. If we don't
7678 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7679 be a CONST_INT. */
7680 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7681 pos_rtx = orig_pos_rtx;
7682
7683 else if (pos_rtx == 0)
7684 pos_rtx = GEN_INT (pos);
7685
7686 /* Make the required operation. See if we can use existing rtx. */
7687 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7688 extraction_mode, inner, GEN_INT (len), pos_rtx);
7689 if (! in_dest)
7690 new_rtx = gen_lowpart (mode, new_rtx);
7691
7692 return new_rtx;
7693 }
7694 \f
7695 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7696 with any other operations in X. Return X without that shift if so. */
7697
7698 static rtx
7699 extract_left_shift (rtx x, int count)
7700 {
7701 enum rtx_code code = GET_CODE (x);
7702 machine_mode mode = GET_MODE (x);
7703 rtx tem;
7704
7705 switch (code)
7706 {
7707 case ASHIFT:
7708 /* This is the shift itself. If it is wide enough, we will return
7709 either the value being shifted if the shift count is equal to
7710 COUNT or a shift for the difference. */
7711 if (CONST_INT_P (XEXP (x, 1))
7712 && INTVAL (XEXP (x, 1)) >= count)
7713 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7714 INTVAL (XEXP (x, 1)) - count);
7715 break;
7716
7717 case NEG: case NOT:
7718 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7719 return simplify_gen_unary (code, mode, tem, mode);
7720
7721 break;
7722
7723 case PLUS: case IOR: case XOR: case AND:
7724 /* If we can safely shift this constant and we find the inner shift,
7725 make a new operation. */
7726 if (CONST_INT_P (XEXP (x, 1))
7727 && (UINTVAL (XEXP (x, 1))
7728 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7729 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7730 {
7731 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7732 return simplify_gen_binary (code, mode, tem,
7733 gen_int_mode (val, mode));
7734 }
7735 break;
7736
7737 default:
7738 break;
7739 }
7740
7741 return 0;
7742 }
7743 \f
7744 /* Look at the expression rooted at X. Look for expressions
7745 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7746 Form these expressions.
7747
7748 Return the new rtx, usually just X.
7749
7750 Also, for machines like the VAX that don't have logical shift insns,
7751 try to convert logical to arithmetic shift operations in cases where
7752 they are equivalent. This undoes the canonicalizations to logical
7753 shifts done elsewhere.
7754
7755 We try, as much as possible, to re-use rtl expressions to save memory.
7756
7757 IN_CODE says what kind of expression we are processing. Normally, it is
7758 SET. In a memory address it is MEM. When processing the arguments of
7759 a comparison or a COMPARE against zero, it is COMPARE. */
7760
7761 rtx
7762 make_compound_operation (rtx x, enum rtx_code in_code)
7763 {
7764 enum rtx_code code = GET_CODE (x);
7765 machine_mode mode = GET_MODE (x);
7766 int mode_width = GET_MODE_PRECISION (mode);
7767 rtx rhs, lhs;
7768 enum rtx_code next_code;
7769 int i, j;
7770 rtx new_rtx = 0;
7771 rtx tem;
7772 const char *fmt;
7773
7774 /* Select the code to be used in recursive calls. Once we are inside an
7775 address, we stay there. If we have a comparison, set to COMPARE,
7776 but once inside, go back to our default of SET. */
7777
7778 next_code = (code == MEM ? MEM
7779 : ((code == COMPARE || COMPARISON_P (x))
7780 && XEXP (x, 1) == const0_rtx) ? COMPARE
7781 : in_code == COMPARE ? SET : in_code);
7782
7783 /* Process depending on the code of this operation. If NEW is set
7784 nonzero, it will be returned. */
7785
7786 switch (code)
7787 {
7788 case ASHIFT:
7789 /* Convert shifts by constants into multiplications if inside
7790 an address. */
7791 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7792 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7793 && INTVAL (XEXP (x, 1)) >= 0
7794 && SCALAR_INT_MODE_P (mode))
7795 {
7796 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7797 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7798
7799 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7800 if (GET_CODE (new_rtx) == NEG)
7801 {
7802 new_rtx = XEXP (new_rtx, 0);
7803 multval = -multval;
7804 }
7805 multval = trunc_int_for_mode (multval, mode);
7806 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7807 }
7808 break;
7809
7810 case PLUS:
7811 lhs = XEXP (x, 0);
7812 rhs = XEXP (x, 1);
7813 lhs = make_compound_operation (lhs, next_code);
7814 rhs = make_compound_operation (rhs, next_code);
7815 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7816 && SCALAR_INT_MODE_P (mode))
7817 {
7818 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7819 XEXP (lhs, 1));
7820 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7821 }
7822 else if (GET_CODE (lhs) == MULT
7823 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7824 {
7825 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7826 simplify_gen_unary (NEG, mode,
7827 XEXP (lhs, 1),
7828 mode));
7829 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7830 }
7831 else
7832 {
7833 SUBST (XEXP (x, 0), lhs);
7834 SUBST (XEXP (x, 1), rhs);
7835 goto maybe_swap;
7836 }
7837 x = gen_lowpart (mode, new_rtx);
7838 goto maybe_swap;
7839
7840 case MINUS:
7841 lhs = XEXP (x, 0);
7842 rhs = XEXP (x, 1);
7843 lhs = make_compound_operation (lhs, next_code);
7844 rhs = make_compound_operation (rhs, next_code);
7845 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7846 && SCALAR_INT_MODE_P (mode))
7847 {
7848 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7849 XEXP (rhs, 1));
7850 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7851 }
7852 else if (GET_CODE (rhs) == MULT
7853 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7854 {
7855 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7856 simplify_gen_unary (NEG, mode,
7857 XEXP (rhs, 1),
7858 mode));
7859 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7860 }
7861 else
7862 {
7863 SUBST (XEXP (x, 0), lhs);
7864 SUBST (XEXP (x, 1), rhs);
7865 return x;
7866 }
7867 return gen_lowpart (mode, new_rtx);
7868
7869 case AND:
7870 /* If the second operand is not a constant, we can't do anything
7871 with it. */
7872 if (!CONST_INT_P (XEXP (x, 1)))
7873 break;
7874
7875 /* If the constant is a power of two minus one and the first operand
7876 is a logical right shift, make an extraction. */
7877 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7878 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7879 {
7880 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7881 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7882 0, in_code == COMPARE);
7883 }
7884
7885 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7886 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7887 && subreg_lowpart_p (XEXP (x, 0))
7888 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7889 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7890 {
7891 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7892 next_code);
7893 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7894 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7895 0, in_code == COMPARE);
7896 }
7897 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7898 else if ((GET_CODE (XEXP (x, 0)) == XOR
7899 || GET_CODE (XEXP (x, 0)) == IOR)
7900 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7901 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7902 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7903 {
7904 /* Apply the distributive law, and then try to make extractions. */
7905 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7906 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7907 XEXP (x, 1)),
7908 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7909 XEXP (x, 1)));
7910 new_rtx = make_compound_operation (new_rtx, in_code);
7911 }
7912
7913 /* If we are have (and (rotate X C) M) and C is larger than the number
7914 of bits in M, this is an extraction. */
7915
7916 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7917 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7918 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7919 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7920 {
7921 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7922 new_rtx = make_extraction (mode, new_rtx,
7923 (GET_MODE_PRECISION (mode)
7924 - INTVAL (XEXP (XEXP (x, 0), 1))),
7925 NULL_RTX, i, 1, 0, in_code == COMPARE);
7926 }
7927
7928 /* On machines without logical shifts, if the operand of the AND is
7929 a logical shift and our mask turns off all the propagated sign
7930 bits, we can replace the logical shift with an arithmetic shift. */
7931 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7932 && !have_insn_for (LSHIFTRT, mode)
7933 && have_insn_for (ASHIFTRT, mode)
7934 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7935 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7936 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7937 && mode_width <= HOST_BITS_PER_WIDE_INT)
7938 {
7939 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7940
7941 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7942 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7943 SUBST (XEXP (x, 0),
7944 gen_rtx_ASHIFTRT (mode,
7945 make_compound_operation
7946 (XEXP (XEXP (x, 0), 0), next_code),
7947 XEXP (XEXP (x, 0), 1)));
7948 }
7949
7950 /* If the constant is one less than a power of two, this might be
7951 representable by an extraction even if no shift is present.
7952 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7953 we are in a COMPARE. */
7954 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7955 new_rtx = make_extraction (mode,
7956 make_compound_operation (XEXP (x, 0),
7957 next_code),
7958 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7959
7960 /* If we are in a comparison and this is an AND with a power of two,
7961 convert this into the appropriate bit extract. */
7962 else if (in_code == COMPARE
7963 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7964 new_rtx = make_extraction (mode,
7965 make_compound_operation (XEXP (x, 0),
7966 next_code),
7967 i, NULL_RTX, 1, 1, 0, 1);
7968
7969 break;
7970
7971 case LSHIFTRT:
7972 /* If the sign bit is known to be zero, replace this with an
7973 arithmetic shift. */
7974 if (have_insn_for (ASHIFTRT, mode)
7975 && ! have_insn_for (LSHIFTRT, mode)
7976 && mode_width <= HOST_BITS_PER_WIDE_INT
7977 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7978 {
7979 new_rtx = gen_rtx_ASHIFTRT (mode,
7980 make_compound_operation (XEXP (x, 0),
7981 next_code),
7982 XEXP (x, 1));
7983 break;
7984 }
7985
7986 /* ... fall through ... */
7987
7988 case ASHIFTRT:
7989 lhs = XEXP (x, 0);
7990 rhs = XEXP (x, 1);
7991
7992 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7993 this is a SIGN_EXTRACT. */
7994 if (CONST_INT_P (rhs)
7995 && GET_CODE (lhs) == ASHIFT
7996 && CONST_INT_P (XEXP (lhs, 1))
7997 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7998 && INTVAL (XEXP (lhs, 1)) >= 0
7999 && INTVAL (rhs) < mode_width)
8000 {
8001 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8002 new_rtx = make_extraction (mode, new_rtx,
8003 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8004 NULL_RTX, mode_width - INTVAL (rhs),
8005 code == LSHIFTRT, 0, in_code == COMPARE);
8006 break;
8007 }
8008
8009 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8010 If so, try to merge the shifts into a SIGN_EXTEND. We could
8011 also do this for some cases of SIGN_EXTRACT, but it doesn't
8012 seem worth the effort; the case checked for occurs on Alpha. */
8013
8014 if (!OBJECT_P (lhs)
8015 && ! (GET_CODE (lhs) == SUBREG
8016 && (OBJECT_P (SUBREG_REG (lhs))))
8017 && CONST_INT_P (rhs)
8018 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8019 && INTVAL (rhs) < mode_width
8020 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8021 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8022 0, NULL_RTX, mode_width - INTVAL (rhs),
8023 code == LSHIFTRT, 0, in_code == COMPARE);
8024
8025 break;
8026
8027 case SUBREG:
8028 /* Call ourselves recursively on the inner expression. If we are
8029 narrowing the object and it has a different RTL code from
8030 what it originally did, do this SUBREG as a force_to_mode. */
8031 {
8032 rtx inner = SUBREG_REG (x), simplified;
8033 enum rtx_code subreg_code = in_code;
8034
8035 /* If in_code is COMPARE, it isn't always safe to pass it through
8036 to the recursive make_compound_operation call. */
8037 if (subreg_code == COMPARE
8038 && (!subreg_lowpart_p (x)
8039 || GET_CODE (inner) == SUBREG
8040 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8041 is (const_int 0), rather than
8042 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8043 || (GET_CODE (inner) == AND
8044 && CONST_INT_P (XEXP (inner, 1))
8045 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8046 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8047 >= GET_MODE_BITSIZE (mode))))
8048 subreg_code = SET;
8049
8050 tem = make_compound_operation (inner, subreg_code);
8051
8052 simplified
8053 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8054 if (simplified)
8055 tem = simplified;
8056
8057 if (GET_CODE (tem) != GET_CODE (inner)
8058 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8059 && subreg_lowpart_p (x))
8060 {
8061 rtx newer
8062 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
8063
8064 /* If we have something other than a SUBREG, we might have
8065 done an expansion, so rerun ourselves. */
8066 if (GET_CODE (newer) != SUBREG)
8067 newer = make_compound_operation (newer, in_code);
8068
8069 /* force_to_mode can expand compounds. If it just re-expanded the
8070 compound, use gen_lowpart to convert to the desired mode. */
8071 if (rtx_equal_p (newer, x)
8072 /* Likewise if it re-expanded the compound only partially.
8073 This happens for SUBREG of ZERO_EXTRACT if they extract
8074 the same number of bits. */
8075 || (GET_CODE (newer) == SUBREG
8076 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8077 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8078 && GET_CODE (inner) == AND
8079 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8080 return gen_lowpart (GET_MODE (x), tem);
8081
8082 return newer;
8083 }
8084
8085 if (simplified)
8086 return tem;
8087 }
8088 break;
8089
8090 default:
8091 break;
8092 }
8093
8094 if (new_rtx)
8095 {
8096 x = gen_lowpart (mode, new_rtx);
8097 code = GET_CODE (x);
8098 }
8099
8100 /* Now recursively process each operand of this operation. We need to
8101 handle ZERO_EXTEND specially so that we don't lose track of the
8102 inner mode. */
8103 if (GET_CODE (x) == ZERO_EXTEND)
8104 {
8105 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8106 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8107 new_rtx, GET_MODE (XEXP (x, 0)));
8108 if (tem)
8109 return tem;
8110 SUBST (XEXP (x, 0), new_rtx);
8111 return x;
8112 }
8113
8114 fmt = GET_RTX_FORMAT (code);
8115 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8116 if (fmt[i] == 'e')
8117 {
8118 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8119 SUBST (XEXP (x, i), new_rtx);
8120 }
8121 else if (fmt[i] == 'E')
8122 for (j = 0; j < XVECLEN (x, i); j++)
8123 {
8124 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8125 SUBST (XVECEXP (x, i, j), new_rtx);
8126 }
8127
8128 maybe_swap:
8129 /* If this is a commutative operation, the changes to the operands
8130 may have made it noncanonical. */
8131 if (COMMUTATIVE_ARITH_P (x)
8132 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
8133 {
8134 tem = XEXP (x, 0);
8135 SUBST (XEXP (x, 0), XEXP (x, 1));
8136 SUBST (XEXP (x, 1), tem);
8137 }
8138
8139 return x;
8140 }
8141 \f
8142 /* Given M see if it is a value that would select a field of bits
8143 within an item, but not the entire word. Return -1 if not.
8144 Otherwise, return the starting position of the field, where 0 is the
8145 low-order bit.
8146
8147 *PLEN is set to the length of the field. */
8148
8149 static int
8150 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8151 {
8152 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8153 int pos = m ? ctz_hwi (m) : -1;
8154 int len = 0;
8155
8156 if (pos >= 0)
8157 /* Now shift off the low-order zero bits and see if we have a
8158 power of two minus 1. */
8159 len = exact_log2 ((m >> pos) + 1);
8160
8161 if (len <= 0)
8162 pos = -1;
8163
8164 *plen = len;
8165 return pos;
8166 }
8167 \f
8168 /* If X refers to a register that equals REG in value, replace these
8169 references with REG. */
8170 static rtx
8171 canon_reg_for_combine (rtx x, rtx reg)
8172 {
8173 rtx op0, op1, op2;
8174 const char *fmt;
8175 int i;
8176 bool copied;
8177
8178 enum rtx_code code = GET_CODE (x);
8179 switch (GET_RTX_CLASS (code))
8180 {
8181 case RTX_UNARY:
8182 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8183 if (op0 != XEXP (x, 0))
8184 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8185 GET_MODE (reg));
8186 break;
8187
8188 case RTX_BIN_ARITH:
8189 case RTX_COMM_ARITH:
8190 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8191 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8192 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8193 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8194 break;
8195
8196 case RTX_COMPARE:
8197 case RTX_COMM_COMPARE:
8198 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8199 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8200 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8201 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8202 GET_MODE (op0), op0, op1);
8203 break;
8204
8205 case RTX_TERNARY:
8206 case RTX_BITFIELD_OPS:
8207 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8208 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8209 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8210 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8211 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8212 GET_MODE (op0), op0, op1, op2);
8213
8214 case RTX_OBJ:
8215 if (REG_P (x))
8216 {
8217 if (rtx_equal_p (get_last_value (reg), x)
8218 || rtx_equal_p (reg, get_last_value (x)))
8219 return reg;
8220 else
8221 break;
8222 }
8223
8224 /* fall through */
8225
8226 default:
8227 fmt = GET_RTX_FORMAT (code);
8228 copied = false;
8229 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8230 if (fmt[i] == 'e')
8231 {
8232 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8233 if (op != XEXP (x, i))
8234 {
8235 if (!copied)
8236 {
8237 copied = true;
8238 x = copy_rtx (x);
8239 }
8240 XEXP (x, i) = op;
8241 }
8242 }
8243 else if (fmt[i] == 'E')
8244 {
8245 int j;
8246 for (j = 0; j < XVECLEN (x, i); j++)
8247 {
8248 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8249 if (op != XVECEXP (x, i, j))
8250 {
8251 if (!copied)
8252 {
8253 copied = true;
8254 x = copy_rtx (x);
8255 }
8256 XVECEXP (x, i, j) = op;
8257 }
8258 }
8259 }
8260
8261 break;
8262 }
8263
8264 return x;
8265 }
8266
8267 /* Return X converted to MODE. If the value is already truncated to
8268 MODE we can just return a subreg even though in the general case we
8269 would need an explicit truncation. */
8270
8271 static rtx
8272 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8273 {
8274 if (!CONST_INT_P (x)
8275 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8276 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8277 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8278 {
8279 /* Bit-cast X into an integer mode. */
8280 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8281 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8282 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8283 x, GET_MODE (x));
8284 }
8285
8286 return gen_lowpart (mode, x);
8287 }
8288
8289 /* See if X can be simplified knowing that we will only refer to it in
8290 MODE and will only refer to those bits that are nonzero in MASK.
8291 If other bits are being computed or if masking operations are done
8292 that select a superset of the bits in MASK, they can sometimes be
8293 ignored.
8294
8295 Return a possibly simplified expression, but always convert X to
8296 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8297
8298 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8299 are all off in X. This is used when X will be complemented, by either
8300 NOT, NEG, or XOR. */
8301
8302 static rtx
8303 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8304 int just_select)
8305 {
8306 enum rtx_code code = GET_CODE (x);
8307 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8308 machine_mode op_mode;
8309 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8310 rtx op0, op1, temp;
8311
8312 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8313 code below will do the wrong thing since the mode of such an
8314 expression is VOIDmode.
8315
8316 Also do nothing if X is a CLOBBER; this can happen if X was
8317 the return value from a call to gen_lowpart. */
8318 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8319 return x;
8320
8321 /* We want to perform the operation in its present mode unless we know
8322 that the operation is valid in MODE, in which case we do the operation
8323 in MODE. */
8324 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8325 && have_insn_for (code, mode))
8326 ? mode : GET_MODE (x));
8327
8328 /* It is not valid to do a right-shift in a narrower mode
8329 than the one it came in with. */
8330 if ((code == LSHIFTRT || code == ASHIFTRT)
8331 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8332 op_mode = GET_MODE (x);
8333
8334 /* Truncate MASK to fit OP_MODE. */
8335 if (op_mode)
8336 mask &= GET_MODE_MASK (op_mode);
8337
8338 /* When we have an arithmetic operation, or a shift whose count we
8339 do not know, we need to assume that all bits up to the highest-order
8340 bit in MASK will be needed. This is how we form such a mask. */
8341 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8342 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8343 else
8344 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8345 - 1);
8346
8347 /* Determine what bits of X are guaranteed to be (non)zero. */
8348 nonzero = nonzero_bits (x, mode);
8349
8350 /* If none of the bits in X are needed, return a zero. */
8351 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8352 x = const0_rtx;
8353
8354 /* If X is a CONST_INT, return a new one. Do this here since the
8355 test below will fail. */
8356 if (CONST_INT_P (x))
8357 {
8358 if (SCALAR_INT_MODE_P (mode))
8359 return gen_int_mode (INTVAL (x) & mask, mode);
8360 else
8361 {
8362 x = GEN_INT (INTVAL (x) & mask);
8363 return gen_lowpart_common (mode, x);
8364 }
8365 }
8366
8367 /* If X is narrower than MODE and we want all the bits in X's mode, just
8368 get X in the proper mode. */
8369 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8370 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8371 return gen_lowpart (mode, x);
8372
8373 /* We can ignore the effect of a SUBREG if it narrows the mode or
8374 if the constant masks to zero all the bits the mode doesn't have. */
8375 if (GET_CODE (x) == SUBREG
8376 && subreg_lowpart_p (x)
8377 && ((GET_MODE_SIZE (GET_MODE (x))
8378 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8379 || (0 == (mask
8380 & GET_MODE_MASK (GET_MODE (x))
8381 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8382 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8383
8384 /* The arithmetic simplifications here only work for scalar integer modes. */
8385 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8386 return gen_lowpart_or_truncate (mode, x);
8387
8388 switch (code)
8389 {
8390 case CLOBBER:
8391 /* If X is a (clobber (const_int)), return it since we know we are
8392 generating something that won't match. */
8393 return x;
8394
8395 case SIGN_EXTEND:
8396 case ZERO_EXTEND:
8397 case ZERO_EXTRACT:
8398 case SIGN_EXTRACT:
8399 x = expand_compound_operation (x);
8400 if (GET_CODE (x) != code)
8401 return force_to_mode (x, mode, mask, next_select);
8402 break;
8403
8404 case TRUNCATE:
8405 /* Similarly for a truncate. */
8406 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8407
8408 case AND:
8409 /* If this is an AND with a constant, convert it into an AND
8410 whose constant is the AND of that constant with MASK. If it
8411 remains an AND of MASK, delete it since it is redundant. */
8412
8413 if (CONST_INT_P (XEXP (x, 1)))
8414 {
8415 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8416 mask & INTVAL (XEXP (x, 1)));
8417
8418 /* If X is still an AND, see if it is an AND with a mask that
8419 is just some low-order bits. If so, and it is MASK, we don't
8420 need it. */
8421
8422 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8423 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8424 == mask))
8425 x = XEXP (x, 0);
8426
8427 /* If it remains an AND, try making another AND with the bits
8428 in the mode mask that aren't in MASK turned on. If the
8429 constant in the AND is wide enough, this might make a
8430 cheaper constant. */
8431
8432 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8433 && GET_MODE_MASK (GET_MODE (x)) != mask
8434 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8435 {
8436 unsigned HOST_WIDE_INT cval
8437 = UINTVAL (XEXP (x, 1))
8438 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8439 rtx y;
8440
8441 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8442 gen_int_mode (cval, GET_MODE (x)));
8443 if (set_src_cost (y, optimize_this_for_speed_p)
8444 < set_src_cost (x, optimize_this_for_speed_p))
8445 x = y;
8446 }
8447
8448 break;
8449 }
8450
8451 goto binop;
8452
8453 case PLUS:
8454 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8455 low-order bits (as in an alignment operation) and FOO is already
8456 aligned to that boundary, mask C1 to that boundary as well.
8457 This may eliminate that PLUS and, later, the AND. */
8458
8459 {
8460 unsigned int width = GET_MODE_PRECISION (mode);
8461 unsigned HOST_WIDE_INT smask = mask;
8462
8463 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8464 number, sign extend it. */
8465
8466 if (width < HOST_BITS_PER_WIDE_INT
8467 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8468 smask |= HOST_WIDE_INT_M1U << width;
8469
8470 if (CONST_INT_P (XEXP (x, 1))
8471 && exact_log2 (- smask) >= 0
8472 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8473 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8474 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8475 (INTVAL (XEXP (x, 1)) & smask)),
8476 mode, smask, next_select);
8477 }
8478
8479 /* ... fall through ... */
8480
8481 case MULT:
8482 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8483 most significant bit in MASK since carries from those bits will
8484 affect the bits we are interested in. */
8485 mask = fuller_mask;
8486 goto binop;
8487
8488 case MINUS:
8489 /* If X is (minus C Y) where C's least set bit is larger than any bit
8490 in the mask, then we may replace with (neg Y). */
8491 if (CONST_INT_P (XEXP (x, 0))
8492 && ((UINTVAL (XEXP (x, 0)) & -UINTVAL (XEXP (x, 0))) > mask))
8493 {
8494 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8495 GET_MODE (x));
8496 return force_to_mode (x, mode, mask, next_select);
8497 }
8498
8499 /* Similarly, if C contains every bit in the fuller_mask, then we may
8500 replace with (not Y). */
8501 if (CONST_INT_P (XEXP (x, 0))
8502 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8503 {
8504 x = simplify_gen_unary (NOT, GET_MODE (x),
8505 XEXP (x, 1), GET_MODE (x));
8506 return force_to_mode (x, mode, mask, next_select);
8507 }
8508
8509 mask = fuller_mask;
8510 goto binop;
8511
8512 case IOR:
8513 case XOR:
8514 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8515 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8516 operation which may be a bitfield extraction. Ensure that the
8517 constant we form is not wider than the mode of X. */
8518
8519 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8520 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8521 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8522 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8523 && CONST_INT_P (XEXP (x, 1))
8524 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8525 + floor_log2 (INTVAL (XEXP (x, 1))))
8526 < GET_MODE_PRECISION (GET_MODE (x)))
8527 && (UINTVAL (XEXP (x, 1))
8528 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8529 {
8530 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8531 << INTVAL (XEXP (XEXP (x, 0), 1)),
8532 GET_MODE (x));
8533 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8534 XEXP (XEXP (x, 0), 0), temp);
8535 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8536 XEXP (XEXP (x, 0), 1));
8537 return force_to_mode (x, mode, mask, next_select);
8538 }
8539
8540 binop:
8541 /* For most binary operations, just propagate into the operation and
8542 change the mode if we have an operation of that mode. */
8543
8544 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8545 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8546
8547 /* If we ended up truncating both operands, truncate the result of the
8548 operation instead. */
8549 if (GET_CODE (op0) == TRUNCATE
8550 && GET_CODE (op1) == TRUNCATE)
8551 {
8552 op0 = XEXP (op0, 0);
8553 op1 = XEXP (op1, 0);
8554 }
8555
8556 op0 = gen_lowpart_or_truncate (op_mode, op0);
8557 op1 = gen_lowpart_or_truncate (op_mode, op1);
8558
8559 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8560 x = simplify_gen_binary (code, op_mode, op0, op1);
8561 break;
8562
8563 case ASHIFT:
8564 /* For left shifts, do the same, but just for the first operand.
8565 However, we cannot do anything with shifts where we cannot
8566 guarantee that the counts are smaller than the size of the mode
8567 because such a count will have a different meaning in a
8568 wider mode. */
8569
8570 if (! (CONST_INT_P (XEXP (x, 1))
8571 && INTVAL (XEXP (x, 1)) >= 0
8572 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8573 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8574 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8575 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8576 break;
8577
8578 /* If the shift count is a constant and we can do arithmetic in
8579 the mode of the shift, refine which bits we need. Otherwise, use the
8580 conservative form of the mask. */
8581 if (CONST_INT_P (XEXP (x, 1))
8582 && INTVAL (XEXP (x, 1)) >= 0
8583 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8584 && HWI_COMPUTABLE_MODE_P (op_mode))
8585 mask >>= INTVAL (XEXP (x, 1));
8586 else
8587 mask = fuller_mask;
8588
8589 op0 = gen_lowpart_or_truncate (op_mode,
8590 force_to_mode (XEXP (x, 0), op_mode,
8591 mask, next_select));
8592
8593 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8594 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8595 break;
8596
8597 case LSHIFTRT:
8598 /* Here we can only do something if the shift count is a constant,
8599 this shift constant is valid for the host, and we can do arithmetic
8600 in OP_MODE. */
8601
8602 if (CONST_INT_P (XEXP (x, 1))
8603 && INTVAL (XEXP (x, 1)) >= 0
8604 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8605 && HWI_COMPUTABLE_MODE_P (op_mode))
8606 {
8607 rtx inner = XEXP (x, 0);
8608 unsigned HOST_WIDE_INT inner_mask;
8609
8610 /* Select the mask of the bits we need for the shift operand. */
8611 inner_mask = mask << INTVAL (XEXP (x, 1));
8612
8613 /* We can only change the mode of the shift if we can do arithmetic
8614 in the mode of the shift and INNER_MASK is no wider than the
8615 width of X's mode. */
8616 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8617 op_mode = GET_MODE (x);
8618
8619 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8620
8621 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8622 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8623 }
8624
8625 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8626 shift and AND produces only copies of the sign bit (C2 is one less
8627 than a power of two), we can do this with just a shift. */
8628
8629 if (GET_CODE (x) == LSHIFTRT
8630 && CONST_INT_P (XEXP (x, 1))
8631 /* The shift puts one of the sign bit copies in the least significant
8632 bit. */
8633 && ((INTVAL (XEXP (x, 1))
8634 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8635 >= GET_MODE_PRECISION (GET_MODE (x)))
8636 && exact_log2 (mask + 1) >= 0
8637 /* Number of bits left after the shift must be more than the mask
8638 needs. */
8639 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8640 <= GET_MODE_PRECISION (GET_MODE (x)))
8641 /* Must be more sign bit copies than the mask needs. */
8642 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8643 >= exact_log2 (mask + 1)))
8644 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8645 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8646 - exact_log2 (mask + 1)));
8647
8648 goto shiftrt;
8649
8650 case ASHIFTRT:
8651 /* If we are just looking for the sign bit, we don't need this shift at
8652 all, even if it has a variable count. */
8653 if (val_signbit_p (GET_MODE (x), mask))
8654 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8655
8656 /* If this is a shift by a constant, get a mask that contains those bits
8657 that are not copies of the sign bit. We then have two cases: If
8658 MASK only includes those bits, this can be a logical shift, which may
8659 allow simplifications. If MASK is a single-bit field not within
8660 those bits, we are requesting a copy of the sign bit and hence can
8661 shift the sign bit to the appropriate location. */
8662
8663 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8664 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8665 {
8666 int i;
8667
8668 /* If the considered data is wider than HOST_WIDE_INT, we can't
8669 represent a mask for all its bits in a single scalar.
8670 But we only care about the lower bits, so calculate these. */
8671
8672 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8673 {
8674 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8675
8676 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8677 is the number of bits a full-width mask would have set.
8678 We need only shift if these are fewer than nonzero can
8679 hold. If not, we must keep all bits set in nonzero. */
8680
8681 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8682 < HOST_BITS_PER_WIDE_INT)
8683 nonzero >>= INTVAL (XEXP (x, 1))
8684 + HOST_BITS_PER_WIDE_INT
8685 - GET_MODE_PRECISION (GET_MODE (x)) ;
8686 }
8687 else
8688 {
8689 nonzero = GET_MODE_MASK (GET_MODE (x));
8690 nonzero >>= INTVAL (XEXP (x, 1));
8691 }
8692
8693 if ((mask & ~nonzero) == 0)
8694 {
8695 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8696 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8697 if (GET_CODE (x) != ASHIFTRT)
8698 return force_to_mode (x, mode, mask, next_select);
8699 }
8700
8701 else if ((i = exact_log2 (mask)) >= 0)
8702 {
8703 x = simplify_shift_const
8704 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8705 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8706
8707 if (GET_CODE (x) != ASHIFTRT)
8708 return force_to_mode (x, mode, mask, next_select);
8709 }
8710 }
8711
8712 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8713 even if the shift count isn't a constant. */
8714 if (mask == 1)
8715 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8716 XEXP (x, 0), XEXP (x, 1));
8717
8718 shiftrt:
8719
8720 /* If this is a zero- or sign-extension operation that just affects bits
8721 we don't care about, remove it. Be sure the call above returned
8722 something that is still a shift. */
8723
8724 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8725 && CONST_INT_P (XEXP (x, 1))
8726 && INTVAL (XEXP (x, 1)) >= 0
8727 && (INTVAL (XEXP (x, 1))
8728 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8729 && GET_CODE (XEXP (x, 0)) == ASHIFT
8730 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8731 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8732 next_select);
8733
8734 break;
8735
8736 case ROTATE:
8737 case ROTATERT:
8738 /* If the shift count is constant and we can do computations
8739 in the mode of X, compute where the bits we care about are.
8740 Otherwise, we can't do anything. Don't change the mode of
8741 the shift or propagate MODE into the shift, though. */
8742 if (CONST_INT_P (XEXP (x, 1))
8743 && INTVAL (XEXP (x, 1)) >= 0)
8744 {
8745 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8746 GET_MODE (x),
8747 gen_int_mode (mask, GET_MODE (x)),
8748 XEXP (x, 1));
8749 if (temp && CONST_INT_P (temp))
8750 x = simplify_gen_binary (code, GET_MODE (x),
8751 force_to_mode (XEXP (x, 0), GET_MODE (x),
8752 INTVAL (temp), next_select),
8753 XEXP (x, 1));
8754 }
8755 break;
8756
8757 case NEG:
8758 /* If we just want the low-order bit, the NEG isn't needed since it
8759 won't change the low-order bit. */
8760 if (mask == 1)
8761 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8762
8763 /* We need any bits less significant than the most significant bit in
8764 MASK since carries from those bits will affect the bits we are
8765 interested in. */
8766 mask = fuller_mask;
8767 goto unop;
8768
8769 case NOT:
8770 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8771 same as the XOR case above. Ensure that the constant we form is not
8772 wider than the mode of X. */
8773
8774 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8775 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8776 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8777 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8778 < GET_MODE_PRECISION (GET_MODE (x)))
8779 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8780 {
8781 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8782 GET_MODE (x));
8783 temp = simplify_gen_binary (XOR, GET_MODE (x),
8784 XEXP (XEXP (x, 0), 0), temp);
8785 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8786 temp, XEXP (XEXP (x, 0), 1));
8787
8788 return force_to_mode (x, mode, mask, next_select);
8789 }
8790
8791 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8792 use the full mask inside the NOT. */
8793 mask = fuller_mask;
8794
8795 unop:
8796 op0 = gen_lowpart_or_truncate (op_mode,
8797 force_to_mode (XEXP (x, 0), mode, mask,
8798 next_select));
8799 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8800 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8801 break;
8802
8803 case NE:
8804 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8805 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8806 which is equal to STORE_FLAG_VALUE. */
8807 if ((mask & ~STORE_FLAG_VALUE) == 0
8808 && XEXP (x, 1) == const0_rtx
8809 && GET_MODE (XEXP (x, 0)) == mode
8810 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8811 && (nonzero_bits (XEXP (x, 0), mode)
8812 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8813 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8814
8815 break;
8816
8817 case IF_THEN_ELSE:
8818 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8819 written in a narrower mode. We play it safe and do not do so. */
8820
8821 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8822 force_to_mode (XEXP (x, 1), mode,
8823 mask, next_select));
8824 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8825 force_to_mode (XEXP (x, 2), mode,
8826 mask, next_select));
8827 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8828 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8829 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8830 op0, op1);
8831 break;
8832
8833 default:
8834 break;
8835 }
8836
8837 /* Ensure we return a value of the proper mode. */
8838 return gen_lowpart_or_truncate (mode, x);
8839 }
8840 \f
8841 /* Return nonzero if X is an expression that has one of two values depending on
8842 whether some other value is zero or nonzero. In that case, we return the
8843 value that is being tested, *PTRUE is set to the value if the rtx being
8844 returned has a nonzero value, and *PFALSE is set to the other alternative.
8845
8846 If we return zero, we set *PTRUE and *PFALSE to X. */
8847
8848 static rtx
8849 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8850 {
8851 machine_mode mode = GET_MODE (x);
8852 enum rtx_code code = GET_CODE (x);
8853 rtx cond0, cond1, true0, true1, false0, false1;
8854 unsigned HOST_WIDE_INT nz;
8855
8856 /* If we are comparing a value against zero, we are done. */
8857 if ((code == NE || code == EQ)
8858 && XEXP (x, 1) == const0_rtx)
8859 {
8860 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8861 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8862 return XEXP (x, 0);
8863 }
8864
8865 /* If this is a unary operation whose operand has one of two values, apply
8866 our opcode to compute those values. */
8867 else if (UNARY_P (x)
8868 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8869 {
8870 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8871 *pfalse = simplify_gen_unary (code, mode, false0,
8872 GET_MODE (XEXP (x, 0)));
8873 return cond0;
8874 }
8875
8876 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8877 make can't possibly match and would suppress other optimizations. */
8878 else if (code == COMPARE)
8879 ;
8880
8881 /* If this is a binary operation, see if either side has only one of two
8882 values. If either one does or if both do and they are conditional on
8883 the same value, compute the new true and false values. */
8884 else if (BINARY_P (x))
8885 {
8886 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8887 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8888
8889 if ((cond0 != 0 || cond1 != 0)
8890 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8891 {
8892 /* If if_then_else_cond returned zero, then true/false are the
8893 same rtl. We must copy one of them to prevent invalid rtl
8894 sharing. */
8895 if (cond0 == 0)
8896 true0 = copy_rtx (true0);
8897 else if (cond1 == 0)
8898 true1 = copy_rtx (true1);
8899
8900 if (COMPARISON_P (x))
8901 {
8902 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8903 true0, true1);
8904 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8905 false0, false1);
8906 }
8907 else
8908 {
8909 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8910 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8911 }
8912
8913 return cond0 ? cond0 : cond1;
8914 }
8915
8916 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8917 operands is zero when the other is nonzero, and vice-versa,
8918 and STORE_FLAG_VALUE is 1 or -1. */
8919
8920 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8921 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8922 || code == UMAX)
8923 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8924 {
8925 rtx op0 = XEXP (XEXP (x, 0), 1);
8926 rtx op1 = XEXP (XEXP (x, 1), 1);
8927
8928 cond0 = XEXP (XEXP (x, 0), 0);
8929 cond1 = XEXP (XEXP (x, 1), 0);
8930
8931 if (COMPARISON_P (cond0)
8932 && COMPARISON_P (cond1)
8933 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8934 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8935 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8936 || ((swap_condition (GET_CODE (cond0))
8937 == reversed_comparison_code (cond1, NULL))
8938 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8939 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8940 && ! side_effects_p (x))
8941 {
8942 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8943 *pfalse = simplify_gen_binary (MULT, mode,
8944 (code == MINUS
8945 ? simplify_gen_unary (NEG, mode,
8946 op1, mode)
8947 : op1),
8948 const_true_rtx);
8949 return cond0;
8950 }
8951 }
8952
8953 /* Similarly for MULT, AND and UMIN, except that for these the result
8954 is always zero. */
8955 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8956 && (code == MULT || code == AND || code == UMIN)
8957 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8958 {
8959 cond0 = XEXP (XEXP (x, 0), 0);
8960 cond1 = XEXP (XEXP (x, 1), 0);
8961
8962 if (COMPARISON_P (cond0)
8963 && COMPARISON_P (cond1)
8964 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8965 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8966 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8967 || ((swap_condition (GET_CODE (cond0))
8968 == reversed_comparison_code (cond1, NULL))
8969 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8970 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8971 && ! side_effects_p (x))
8972 {
8973 *ptrue = *pfalse = const0_rtx;
8974 return cond0;
8975 }
8976 }
8977 }
8978
8979 else if (code == IF_THEN_ELSE)
8980 {
8981 /* If we have IF_THEN_ELSE already, extract the condition and
8982 canonicalize it if it is NE or EQ. */
8983 cond0 = XEXP (x, 0);
8984 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8985 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8986 return XEXP (cond0, 0);
8987 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8988 {
8989 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8990 return XEXP (cond0, 0);
8991 }
8992 else
8993 return cond0;
8994 }
8995
8996 /* If X is a SUBREG, we can narrow both the true and false values
8997 if the inner expression, if there is a condition. */
8998 else if (code == SUBREG
8999 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9000 &true0, &false0)))
9001 {
9002 true0 = simplify_gen_subreg (mode, true0,
9003 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9004 false0 = simplify_gen_subreg (mode, false0,
9005 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9006 if (true0 && false0)
9007 {
9008 *ptrue = true0;
9009 *pfalse = false0;
9010 return cond0;
9011 }
9012 }
9013
9014 /* If X is a constant, this isn't special and will cause confusions
9015 if we treat it as such. Likewise if it is equivalent to a constant. */
9016 else if (CONSTANT_P (x)
9017 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9018 ;
9019
9020 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9021 will be least confusing to the rest of the compiler. */
9022 else if (mode == BImode)
9023 {
9024 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9025 return x;
9026 }
9027
9028 /* If X is known to be either 0 or -1, those are the true and
9029 false values when testing X. */
9030 else if (x == constm1_rtx || x == const0_rtx
9031 || (mode != VOIDmode
9032 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9033 {
9034 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9035 return x;
9036 }
9037
9038 /* Likewise for 0 or a single bit. */
9039 else if (HWI_COMPUTABLE_MODE_P (mode)
9040 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
9041 {
9042 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9043 return x;
9044 }
9045
9046 /* Otherwise fail; show no condition with true and false values the same. */
9047 *ptrue = *pfalse = x;
9048 return 0;
9049 }
9050 \f
9051 /* Return the value of expression X given the fact that condition COND
9052 is known to be true when applied to REG as its first operand and VAL
9053 as its second. X is known to not be shared and so can be modified in
9054 place.
9055
9056 We only handle the simplest cases, and specifically those cases that
9057 arise with IF_THEN_ELSE expressions. */
9058
9059 static rtx
9060 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9061 {
9062 enum rtx_code code = GET_CODE (x);
9063 const char *fmt;
9064 int i, j;
9065
9066 if (side_effects_p (x))
9067 return x;
9068
9069 /* If either operand of the condition is a floating point value,
9070 then we have to avoid collapsing an EQ comparison. */
9071 if (cond == EQ
9072 && rtx_equal_p (x, reg)
9073 && ! FLOAT_MODE_P (GET_MODE (x))
9074 && ! FLOAT_MODE_P (GET_MODE (val)))
9075 return val;
9076
9077 if (cond == UNEQ && rtx_equal_p (x, reg))
9078 return val;
9079
9080 /* If X is (abs REG) and we know something about REG's relationship
9081 with zero, we may be able to simplify this. */
9082
9083 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9084 switch (cond)
9085 {
9086 case GE: case GT: case EQ:
9087 return XEXP (x, 0);
9088 case LT: case LE:
9089 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9090 XEXP (x, 0),
9091 GET_MODE (XEXP (x, 0)));
9092 default:
9093 break;
9094 }
9095
9096 /* The only other cases we handle are MIN, MAX, and comparisons if the
9097 operands are the same as REG and VAL. */
9098
9099 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9100 {
9101 if (rtx_equal_p (XEXP (x, 0), val))
9102 {
9103 std::swap (val, reg);
9104 cond = swap_condition (cond);
9105 }
9106
9107 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9108 {
9109 if (COMPARISON_P (x))
9110 {
9111 if (comparison_dominates_p (cond, code))
9112 return const_true_rtx;
9113
9114 code = reversed_comparison_code (x, NULL);
9115 if (code != UNKNOWN
9116 && comparison_dominates_p (cond, code))
9117 return const0_rtx;
9118 else
9119 return x;
9120 }
9121 else if (code == SMAX || code == SMIN
9122 || code == UMIN || code == UMAX)
9123 {
9124 int unsignedp = (code == UMIN || code == UMAX);
9125
9126 /* Do not reverse the condition when it is NE or EQ.
9127 This is because we cannot conclude anything about
9128 the value of 'SMAX (x, y)' when x is not equal to y,
9129 but we can when x equals y. */
9130 if ((code == SMAX || code == UMAX)
9131 && ! (cond == EQ || cond == NE))
9132 cond = reverse_condition (cond);
9133
9134 switch (cond)
9135 {
9136 case GE: case GT:
9137 return unsignedp ? x : XEXP (x, 1);
9138 case LE: case LT:
9139 return unsignedp ? x : XEXP (x, 0);
9140 case GEU: case GTU:
9141 return unsignedp ? XEXP (x, 1) : x;
9142 case LEU: case LTU:
9143 return unsignedp ? XEXP (x, 0) : x;
9144 default:
9145 break;
9146 }
9147 }
9148 }
9149 }
9150 else if (code == SUBREG)
9151 {
9152 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9153 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9154
9155 if (SUBREG_REG (x) != r)
9156 {
9157 /* We must simplify subreg here, before we lose track of the
9158 original inner_mode. */
9159 new_rtx = simplify_subreg (GET_MODE (x), r,
9160 inner_mode, SUBREG_BYTE (x));
9161 if (new_rtx)
9162 return new_rtx;
9163 else
9164 SUBST (SUBREG_REG (x), r);
9165 }
9166
9167 return x;
9168 }
9169 /* We don't have to handle SIGN_EXTEND here, because even in the
9170 case of replacing something with a modeless CONST_INT, a
9171 CONST_INT is already (supposed to be) a valid sign extension for
9172 its narrower mode, which implies it's already properly
9173 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9174 story is different. */
9175 else if (code == ZERO_EXTEND)
9176 {
9177 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9178 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9179
9180 if (XEXP (x, 0) != r)
9181 {
9182 /* We must simplify the zero_extend here, before we lose
9183 track of the original inner_mode. */
9184 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9185 r, inner_mode);
9186 if (new_rtx)
9187 return new_rtx;
9188 else
9189 SUBST (XEXP (x, 0), r);
9190 }
9191
9192 return x;
9193 }
9194
9195 fmt = GET_RTX_FORMAT (code);
9196 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9197 {
9198 if (fmt[i] == 'e')
9199 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9200 else if (fmt[i] == 'E')
9201 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9202 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9203 cond, reg, val));
9204 }
9205
9206 return x;
9207 }
9208 \f
9209 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9210 assignment as a field assignment. */
9211
9212 static int
9213 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9214 {
9215 if (widen_x && GET_MODE (x) != GET_MODE (y))
9216 {
9217 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9218 return 0;
9219 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9220 return 0;
9221 /* For big endian, adjust the memory offset. */
9222 if (BYTES_BIG_ENDIAN)
9223 x = adjust_address_nv (x, GET_MODE (y),
9224 -subreg_lowpart_offset (GET_MODE (x),
9225 GET_MODE (y)));
9226 else
9227 x = adjust_address_nv (x, GET_MODE (y), 0);
9228 }
9229
9230 if (x == y || rtx_equal_p (x, y))
9231 return 1;
9232
9233 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9234 return 0;
9235
9236 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9237 Note that all SUBREGs of MEM are paradoxical; otherwise they
9238 would have been rewritten. */
9239 if (MEM_P (x) && GET_CODE (y) == SUBREG
9240 && MEM_P (SUBREG_REG (y))
9241 && rtx_equal_p (SUBREG_REG (y),
9242 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9243 return 1;
9244
9245 if (MEM_P (y) && GET_CODE (x) == SUBREG
9246 && MEM_P (SUBREG_REG (x))
9247 && rtx_equal_p (SUBREG_REG (x),
9248 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9249 return 1;
9250
9251 /* We used to see if get_last_value of X and Y were the same but that's
9252 not correct. In one direction, we'll cause the assignment to have
9253 the wrong destination and in the case, we'll import a register into this
9254 insn that might have already have been dead. So fail if none of the
9255 above cases are true. */
9256 return 0;
9257 }
9258 \f
9259 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9260 Return that assignment if so.
9261
9262 We only handle the most common cases. */
9263
9264 static rtx
9265 make_field_assignment (rtx x)
9266 {
9267 rtx dest = SET_DEST (x);
9268 rtx src = SET_SRC (x);
9269 rtx assign;
9270 rtx rhs, lhs;
9271 HOST_WIDE_INT c1;
9272 HOST_WIDE_INT pos;
9273 unsigned HOST_WIDE_INT len;
9274 rtx other;
9275 machine_mode mode;
9276
9277 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9278 a clear of a one-bit field. We will have changed it to
9279 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9280 for a SUBREG. */
9281
9282 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9283 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9284 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9285 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9286 {
9287 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9288 1, 1, 1, 0);
9289 if (assign != 0)
9290 return gen_rtx_SET (assign, const0_rtx);
9291 return x;
9292 }
9293
9294 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9295 && subreg_lowpart_p (XEXP (src, 0))
9296 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9297 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9298 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9299 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9300 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9301 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9302 {
9303 assign = make_extraction (VOIDmode, dest, 0,
9304 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9305 1, 1, 1, 0);
9306 if (assign != 0)
9307 return gen_rtx_SET (assign, const0_rtx);
9308 return x;
9309 }
9310
9311 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9312 one-bit field. */
9313 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9314 && XEXP (XEXP (src, 0), 0) == const1_rtx
9315 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9316 {
9317 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9318 1, 1, 1, 0);
9319 if (assign != 0)
9320 return gen_rtx_SET (assign, const1_rtx);
9321 return x;
9322 }
9323
9324 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9325 SRC is an AND with all bits of that field set, then we can discard
9326 the AND. */
9327 if (GET_CODE (dest) == ZERO_EXTRACT
9328 && CONST_INT_P (XEXP (dest, 1))
9329 && GET_CODE (src) == AND
9330 && CONST_INT_P (XEXP (src, 1)))
9331 {
9332 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9333 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9334 unsigned HOST_WIDE_INT ze_mask;
9335
9336 if (width >= HOST_BITS_PER_WIDE_INT)
9337 ze_mask = -1;
9338 else
9339 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9340
9341 /* Complete overlap. We can remove the source AND. */
9342 if ((and_mask & ze_mask) == ze_mask)
9343 return gen_rtx_SET (dest, XEXP (src, 0));
9344
9345 /* Partial overlap. We can reduce the source AND. */
9346 if ((and_mask & ze_mask) != and_mask)
9347 {
9348 mode = GET_MODE (src);
9349 src = gen_rtx_AND (mode, XEXP (src, 0),
9350 gen_int_mode (and_mask & ze_mask, mode));
9351 return gen_rtx_SET (dest, src);
9352 }
9353 }
9354
9355 /* The other case we handle is assignments into a constant-position
9356 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9357 a mask that has all one bits except for a group of zero bits and
9358 OTHER is known to have zeros where C1 has ones, this is such an
9359 assignment. Compute the position and length from C1. Shift OTHER
9360 to the appropriate position, force it to the required mode, and
9361 make the extraction. Check for the AND in both operands. */
9362
9363 /* One or more SUBREGs might obscure the constant-position field
9364 assignment. The first one we are likely to encounter is an outer
9365 narrowing SUBREG, which we can just strip for the purposes of
9366 identifying the constant-field assignment. */
9367 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9368 src = SUBREG_REG (src);
9369
9370 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9371 return x;
9372
9373 rhs = expand_compound_operation (XEXP (src, 0));
9374 lhs = expand_compound_operation (XEXP (src, 1));
9375
9376 if (GET_CODE (rhs) == AND
9377 && CONST_INT_P (XEXP (rhs, 1))
9378 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9379 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9380 /* The second SUBREG that might get in the way is a paradoxical
9381 SUBREG around the first operand of the AND. We want to
9382 pretend the operand is as wide as the destination here. We
9383 do this by adjusting the MEM to wider mode for the sole
9384 purpose of the call to rtx_equal_for_field_assignment_p. Also
9385 note this trick only works for MEMs. */
9386 else if (GET_CODE (rhs) == AND
9387 && paradoxical_subreg_p (XEXP (rhs, 0))
9388 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9389 && CONST_INT_P (XEXP (rhs, 1))
9390 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9391 dest, true))
9392 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9393 else if (GET_CODE (lhs) == AND
9394 && CONST_INT_P (XEXP (lhs, 1))
9395 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9396 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9397 /* The second SUBREG that might get in the way is a paradoxical
9398 SUBREG around the first operand of the AND. We want to
9399 pretend the operand is as wide as the destination here. We
9400 do this by adjusting the MEM to wider mode for the sole
9401 purpose of the call to rtx_equal_for_field_assignment_p. Also
9402 note this trick only works for MEMs. */
9403 else if (GET_CODE (lhs) == AND
9404 && paradoxical_subreg_p (XEXP (lhs, 0))
9405 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9406 && CONST_INT_P (XEXP (lhs, 1))
9407 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9408 dest, true))
9409 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9410 else
9411 return x;
9412
9413 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9414 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9415 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9416 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9417 return x;
9418
9419 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9420 if (assign == 0)
9421 return x;
9422
9423 /* The mode to use for the source is the mode of the assignment, or of
9424 what is inside a possible STRICT_LOW_PART. */
9425 mode = (GET_CODE (assign) == STRICT_LOW_PART
9426 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9427
9428 /* Shift OTHER right POS places and make it the source, restricting it
9429 to the proper length and mode. */
9430
9431 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9432 GET_MODE (src),
9433 other, pos),
9434 dest);
9435 src = force_to_mode (src, mode,
9436 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9437 ? ~(unsigned HOST_WIDE_INT) 0
9438 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9439 0);
9440
9441 /* If SRC is masked by an AND that does not make a difference in
9442 the value being stored, strip it. */
9443 if (GET_CODE (assign) == ZERO_EXTRACT
9444 && CONST_INT_P (XEXP (assign, 1))
9445 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9446 && GET_CODE (src) == AND
9447 && CONST_INT_P (XEXP (src, 1))
9448 && UINTVAL (XEXP (src, 1))
9449 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9450 src = XEXP (src, 0);
9451
9452 return gen_rtx_SET (assign, src);
9453 }
9454 \f
9455 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9456 if so. */
9457
9458 static rtx
9459 apply_distributive_law (rtx x)
9460 {
9461 enum rtx_code code = GET_CODE (x);
9462 enum rtx_code inner_code;
9463 rtx lhs, rhs, other;
9464 rtx tem;
9465
9466 /* Distributivity is not true for floating point as it can change the
9467 value. So we don't do it unless -funsafe-math-optimizations. */
9468 if (FLOAT_MODE_P (GET_MODE (x))
9469 && ! flag_unsafe_math_optimizations)
9470 return x;
9471
9472 /* The outer operation can only be one of the following: */
9473 if (code != IOR && code != AND && code != XOR
9474 && code != PLUS && code != MINUS)
9475 return x;
9476
9477 lhs = XEXP (x, 0);
9478 rhs = XEXP (x, 1);
9479
9480 /* If either operand is a primitive we can't do anything, so get out
9481 fast. */
9482 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9483 return x;
9484
9485 lhs = expand_compound_operation (lhs);
9486 rhs = expand_compound_operation (rhs);
9487 inner_code = GET_CODE (lhs);
9488 if (inner_code != GET_CODE (rhs))
9489 return x;
9490
9491 /* See if the inner and outer operations distribute. */
9492 switch (inner_code)
9493 {
9494 case LSHIFTRT:
9495 case ASHIFTRT:
9496 case AND:
9497 case IOR:
9498 /* These all distribute except over PLUS. */
9499 if (code == PLUS || code == MINUS)
9500 return x;
9501 break;
9502
9503 case MULT:
9504 if (code != PLUS && code != MINUS)
9505 return x;
9506 break;
9507
9508 case ASHIFT:
9509 /* This is also a multiply, so it distributes over everything. */
9510 break;
9511
9512 /* This used to handle SUBREG, but this turned out to be counter-
9513 productive, since (subreg (op ...)) usually is not handled by
9514 insn patterns, and this "optimization" therefore transformed
9515 recognizable patterns into unrecognizable ones. Therefore the
9516 SUBREG case was removed from here.
9517
9518 It is possible that distributing SUBREG over arithmetic operations
9519 leads to an intermediate result than can then be optimized further,
9520 e.g. by moving the outer SUBREG to the other side of a SET as done
9521 in simplify_set. This seems to have been the original intent of
9522 handling SUBREGs here.
9523
9524 However, with current GCC this does not appear to actually happen,
9525 at least on major platforms. If some case is found where removing
9526 the SUBREG case here prevents follow-on optimizations, distributing
9527 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9528
9529 default:
9530 return x;
9531 }
9532
9533 /* Set LHS and RHS to the inner operands (A and B in the example
9534 above) and set OTHER to the common operand (C in the example).
9535 There is only one way to do this unless the inner operation is
9536 commutative. */
9537 if (COMMUTATIVE_ARITH_P (lhs)
9538 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9539 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9540 else if (COMMUTATIVE_ARITH_P (lhs)
9541 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9542 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9543 else if (COMMUTATIVE_ARITH_P (lhs)
9544 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9545 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9546 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9547 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9548 else
9549 return x;
9550
9551 /* Form the new inner operation, seeing if it simplifies first. */
9552 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9553
9554 /* There is one exception to the general way of distributing:
9555 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9556 if (code == XOR && inner_code == IOR)
9557 {
9558 inner_code = AND;
9559 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9560 }
9561
9562 /* We may be able to continuing distributing the result, so call
9563 ourselves recursively on the inner operation before forming the
9564 outer operation, which we return. */
9565 return simplify_gen_binary (inner_code, GET_MODE (x),
9566 apply_distributive_law (tem), other);
9567 }
9568
9569 /* See if X is of the form (* (+ A B) C), and if so convert to
9570 (+ (* A C) (* B C)) and try to simplify.
9571
9572 Most of the time, this results in no change. However, if some of
9573 the operands are the same or inverses of each other, simplifications
9574 will result.
9575
9576 For example, (and (ior A B) (not B)) can occur as the result of
9577 expanding a bit field assignment. When we apply the distributive
9578 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9579 which then simplifies to (and (A (not B))).
9580
9581 Note that no checks happen on the validity of applying the inverse
9582 distributive law. This is pointless since we can do it in the
9583 few places where this routine is called.
9584
9585 N is the index of the term that is decomposed (the arithmetic operation,
9586 i.e. (+ A B) in the first example above). !N is the index of the term that
9587 is distributed, i.e. of C in the first example above. */
9588 static rtx
9589 distribute_and_simplify_rtx (rtx x, int n)
9590 {
9591 machine_mode mode;
9592 enum rtx_code outer_code, inner_code;
9593 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9594
9595 /* Distributivity is not true for floating point as it can change the
9596 value. So we don't do it unless -funsafe-math-optimizations. */
9597 if (FLOAT_MODE_P (GET_MODE (x))
9598 && ! flag_unsafe_math_optimizations)
9599 return NULL_RTX;
9600
9601 decomposed = XEXP (x, n);
9602 if (!ARITHMETIC_P (decomposed))
9603 return NULL_RTX;
9604
9605 mode = GET_MODE (x);
9606 outer_code = GET_CODE (x);
9607 distributed = XEXP (x, !n);
9608
9609 inner_code = GET_CODE (decomposed);
9610 inner_op0 = XEXP (decomposed, 0);
9611 inner_op1 = XEXP (decomposed, 1);
9612
9613 /* Special case (and (xor B C) (not A)), which is equivalent to
9614 (xor (ior A B) (ior A C)) */
9615 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9616 {
9617 distributed = XEXP (distributed, 0);
9618 outer_code = IOR;
9619 }
9620
9621 if (n == 0)
9622 {
9623 /* Distribute the second term. */
9624 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9625 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9626 }
9627 else
9628 {
9629 /* Distribute the first term. */
9630 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9631 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9632 }
9633
9634 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9635 new_op0, new_op1));
9636 if (GET_CODE (tmp) != outer_code
9637 && (set_src_cost (tmp, optimize_this_for_speed_p)
9638 < set_src_cost (x, optimize_this_for_speed_p)))
9639 return tmp;
9640
9641 return NULL_RTX;
9642 }
9643 \f
9644 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9645 in MODE. Return an equivalent form, if different from (and VAROP
9646 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9647
9648 static rtx
9649 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9650 unsigned HOST_WIDE_INT constop)
9651 {
9652 unsigned HOST_WIDE_INT nonzero;
9653 unsigned HOST_WIDE_INT orig_constop;
9654 rtx orig_varop;
9655 int i;
9656
9657 orig_varop = varop;
9658 orig_constop = constop;
9659 if (GET_CODE (varop) == CLOBBER)
9660 return NULL_RTX;
9661
9662 /* Simplify VAROP knowing that we will be only looking at some of the
9663 bits in it.
9664
9665 Note by passing in CONSTOP, we guarantee that the bits not set in
9666 CONSTOP are not significant and will never be examined. We must
9667 ensure that is the case by explicitly masking out those bits
9668 before returning. */
9669 varop = force_to_mode (varop, mode, constop, 0);
9670
9671 /* If VAROP is a CLOBBER, we will fail so return it. */
9672 if (GET_CODE (varop) == CLOBBER)
9673 return varop;
9674
9675 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9676 to VAROP and return the new constant. */
9677 if (CONST_INT_P (varop))
9678 return gen_int_mode (INTVAL (varop) & constop, mode);
9679
9680 /* See what bits may be nonzero in VAROP. Unlike the general case of
9681 a call to nonzero_bits, here we don't care about bits outside
9682 MODE. */
9683
9684 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9685
9686 /* Turn off all bits in the constant that are known to already be zero.
9687 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9688 which is tested below. */
9689
9690 constop &= nonzero;
9691
9692 /* If we don't have any bits left, return zero. */
9693 if (constop == 0)
9694 return const0_rtx;
9695
9696 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9697 a power of two, we can replace this with an ASHIFT. */
9698 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9699 && (i = exact_log2 (constop)) >= 0)
9700 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9701
9702 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9703 or XOR, then try to apply the distributive law. This may eliminate
9704 operations if either branch can be simplified because of the AND.
9705 It may also make some cases more complex, but those cases probably
9706 won't match a pattern either with or without this. */
9707
9708 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9709 return
9710 gen_lowpart
9711 (mode,
9712 apply_distributive_law
9713 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9714 simplify_and_const_int (NULL_RTX,
9715 GET_MODE (varop),
9716 XEXP (varop, 0),
9717 constop),
9718 simplify_and_const_int (NULL_RTX,
9719 GET_MODE (varop),
9720 XEXP (varop, 1),
9721 constop))));
9722
9723 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9724 the AND and see if one of the operands simplifies to zero. If so, we
9725 may eliminate it. */
9726
9727 if (GET_CODE (varop) == PLUS
9728 && exact_log2 (constop + 1) >= 0)
9729 {
9730 rtx o0, o1;
9731
9732 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9733 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9734 if (o0 == const0_rtx)
9735 return o1;
9736 if (o1 == const0_rtx)
9737 return o0;
9738 }
9739
9740 /* Make a SUBREG if necessary. If we can't make it, fail. */
9741 varop = gen_lowpart (mode, varop);
9742 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9743 return NULL_RTX;
9744
9745 /* If we are only masking insignificant bits, return VAROP. */
9746 if (constop == nonzero)
9747 return varop;
9748
9749 if (varop == orig_varop && constop == orig_constop)
9750 return NULL_RTX;
9751
9752 /* Otherwise, return an AND. */
9753 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9754 }
9755
9756
9757 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9758 in MODE.
9759
9760 Return an equivalent form, if different from X. Otherwise, return X. If
9761 X is zero, we are to always construct the equivalent form. */
9762
9763 static rtx
9764 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9765 unsigned HOST_WIDE_INT constop)
9766 {
9767 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9768 if (tem)
9769 return tem;
9770
9771 if (!x)
9772 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9773 gen_int_mode (constop, mode));
9774 if (GET_MODE (x) != mode)
9775 x = gen_lowpart (mode, x);
9776 return x;
9777 }
9778 \f
9779 /* Given a REG, X, compute which bits in X can be nonzero.
9780 We don't care about bits outside of those defined in MODE.
9781
9782 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9783 a shift, AND, or zero_extract, we can do better. */
9784
9785 static rtx
9786 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9787 const_rtx known_x ATTRIBUTE_UNUSED,
9788 machine_mode known_mode ATTRIBUTE_UNUSED,
9789 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9790 unsigned HOST_WIDE_INT *nonzero)
9791 {
9792 rtx tem;
9793 reg_stat_type *rsp;
9794
9795 /* If X is a register whose nonzero bits value is current, use it.
9796 Otherwise, if X is a register whose value we can find, use that
9797 value. Otherwise, use the previously-computed global nonzero bits
9798 for this register. */
9799
9800 rsp = &reg_stat[REGNO (x)];
9801 if (rsp->last_set_value != 0
9802 && (rsp->last_set_mode == mode
9803 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9804 && GET_MODE_CLASS (mode) == MODE_INT))
9805 && ((rsp->last_set_label >= label_tick_ebb_start
9806 && rsp->last_set_label < label_tick)
9807 || (rsp->last_set_label == label_tick
9808 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9809 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9810 && REGNO (x) < reg_n_sets_max
9811 && REG_N_SETS (REGNO (x)) == 1
9812 && !REGNO_REG_SET_P
9813 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9814 REGNO (x)))))
9815 {
9816 unsigned HOST_WIDE_INT mask = rsp->last_set_nonzero_bits;
9817
9818 if (GET_MODE_PRECISION (rsp->last_set_mode) < GET_MODE_PRECISION (mode))
9819 /* We don't know anything about the upper bits. */
9820 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (rsp->last_set_mode);
9821
9822 *nonzero &= mask;
9823 return NULL;
9824 }
9825
9826 tem = get_last_value (x);
9827
9828 if (tem)
9829 {
9830 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9831 tem = sign_extend_short_imm (tem, GET_MODE (x),
9832 GET_MODE_PRECISION (mode));
9833 #endif
9834 return tem;
9835 }
9836 else if (nonzero_sign_valid && rsp->nonzero_bits)
9837 {
9838 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9839
9840 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9841 /* We don't know anything about the upper bits. */
9842 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9843
9844 *nonzero &= mask;
9845 }
9846
9847 return NULL;
9848 }
9849
9850 /* Return the number of bits at the high-order end of X that are known to
9851 be equal to the sign bit. X will be used in mode MODE; if MODE is
9852 VOIDmode, X will be used in its own mode. The returned value will always
9853 be between 1 and the number of bits in MODE. */
9854
9855 static rtx
9856 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
9857 const_rtx known_x ATTRIBUTE_UNUSED,
9858 machine_mode known_mode
9859 ATTRIBUTE_UNUSED,
9860 unsigned int known_ret ATTRIBUTE_UNUSED,
9861 unsigned int *result)
9862 {
9863 rtx tem;
9864 reg_stat_type *rsp;
9865
9866 rsp = &reg_stat[REGNO (x)];
9867 if (rsp->last_set_value != 0
9868 && rsp->last_set_mode == mode
9869 && ((rsp->last_set_label >= label_tick_ebb_start
9870 && rsp->last_set_label < label_tick)
9871 || (rsp->last_set_label == label_tick
9872 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9873 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9874 && REGNO (x) < reg_n_sets_max
9875 && REG_N_SETS (REGNO (x)) == 1
9876 && !REGNO_REG_SET_P
9877 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9878 REGNO (x)))))
9879 {
9880 *result = rsp->last_set_sign_bit_copies;
9881 return NULL;
9882 }
9883
9884 tem = get_last_value (x);
9885 if (tem != 0)
9886 return tem;
9887
9888 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9889 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9890 *result = rsp->sign_bit_copies;
9891
9892 return NULL;
9893 }
9894 \f
9895 /* Return the number of "extended" bits there are in X, when interpreted
9896 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9897 unsigned quantities, this is the number of high-order zero bits.
9898 For signed quantities, this is the number of copies of the sign bit
9899 minus 1. In both case, this function returns the number of "spare"
9900 bits. For example, if two quantities for which this function returns
9901 at least 1 are added, the addition is known not to overflow.
9902
9903 This function will always return 0 unless called during combine, which
9904 implies that it must be called from a define_split. */
9905
9906 unsigned int
9907 extended_count (const_rtx x, machine_mode mode, int unsignedp)
9908 {
9909 if (nonzero_sign_valid == 0)
9910 return 0;
9911
9912 return (unsignedp
9913 ? (HWI_COMPUTABLE_MODE_P (mode)
9914 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9915 - floor_log2 (nonzero_bits (x, mode)))
9916 : 0)
9917 : num_sign_bit_copies (x, mode) - 1);
9918 }
9919
9920 /* This function is called from `simplify_shift_const' to merge two
9921 outer operations. Specifically, we have already found that we need
9922 to perform operation *POP0 with constant *PCONST0 at the outermost
9923 position. We would now like to also perform OP1 with constant CONST1
9924 (with *POP0 being done last).
9925
9926 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9927 the resulting operation. *PCOMP_P is set to 1 if we would need to
9928 complement the innermost operand, otherwise it is unchanged.
9929
9930 MODE is the mode in which the operation will be done. No bits outside
9931 the width of this mode matter. It is assumed that the width of this mode
9932 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9933
9934 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9935 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9936 result is simply *PCONST0.
9937
9938 If the resulting operation cannot be expressed as one operation, we
9939 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9940
9941 static int
9942 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
9943 {
9944 enum rtx_code op0 = *pop0;
9945 HOST_WIDE_INT const0 = *pconst0;
9946
9947 const0 &= GET_MODE_MASK (mode);
9948 const1 &= GET_MODE_MASK (mode);
9949
9950 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9951 if (op0 == AND)
9952 const1 &= const0;
9953
9954 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9955 if OP0 is SET. */
9956
9957 if (op1 == UNKNOWN || op0 == SET)
9958 return 1;
9959
9960 else if (op0 == UNKNOWN)
9961 op0 = op1, const0 = const1;
9962
9963 else if (op0 == op1)
9964 {
9965 switch (op0)
9966 {
9967 case AND:
9968 const0 &= const1;
9969 break;
9970 case IOR:
9971 const0 |= const1;
9972 break;
9973 case XOR:
9974 const0 ^= const1;
9975 break;
9976 case PLUS:
9977 const0 += const1;
9978 break;
9979 case NEG:
9980 op0 = UNKNOWN;
9981 break;
9982 default:
9983 break;
9984 }
9985 }
9986
9987 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9988 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9989 return 0;
9990
9991 /* If the two constants aren't the same, we can't do anything. The
9992 remaining six cases can all be done. */
9993 else if (const0 != const1)
9994 return 0;
9995
9996 else
9997 switch (op0)
9998 {
9999 case IOR:
10000 if (op1 == AND)
10001 /* (a & b) | b == b */
10002 op0 = SET;
10003 else /* op1 == XOR */
10004 /* (a ^ b) | b == a | b */
10005 {;}
10006 break;
10007
10008 case XOR:
10009 if (op1 == AND)
10010 /* (a & b) ^ b == (~a) & b */
10011 op0 = AND, *pcomp_p = 1;
10012 else /* op1 == IOR */
10013 /* (a | b) ^ b == a & ~b */
10014 op0 = AND, const0 = ~const0;
10015 break;
10016
10017 case AND:
10018 if (op1 == IOR)
10019 /* (a | b) & b == b */
10020 op0 = SET;
10021 else /* op1 == XOR */
10022 /* (a ^ b) & b) == (~a) & b */
10023 *pcomp_p = 1;
10024 break;
10025 default:
10026 break;
10027 }
10028
10029 /* Check for NO-OP cases. */
10030 const0 &= GET_MODE_MASK (mode);
10031 if (const0 == 0
10032 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10033 op0 = UNKNOWN;
10034 else if (const0 == 0 && op0 == AND)
10035 op0 = SET;
10036 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10037 && op0 == AND)
10038 op0 = UNKNOWN;
10039
10040 *pop0 = op0;
10041
10042 /* ??? Slightly redundant with the above mask, but not entirely.
10043 Moving this above means we'd have to sign-extend the mode mask
10044 for the final test. */
10045 if (op0 != UNKNOWN && op0 != NEG)
10046 *pconst0 = trunc_int_for_mode (const0, mode);
10047
10048 return 1;
10049 }
10050 \f
10051 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10052 the shift in. The original shift operation CODE is performed on OP in
10053 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10054 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10055 result of the shift is subject to operation OUTER_CODE with operand
10056 OUTER_CONST. */
10057
10058 static machine_mode
10059 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10060 machine_mode orig_mode, machine_mode mode,
10061 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10062 {
10063 if (orig_mode == mode)
10064 return mode;
10065 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10066
10067 /* In general we can't perform in wider mode for right shift and rotate. */
10068 switch (code)
10069 {
10070 case ASHIFTRT:
10071 /* We can still widen if the bits brought in from the left are identical
10072 to the sign bit of ORIG_MODE. */
10073 if (num_sign_bit_copies (op, mode)
10074 > (unsigned) (GET_MODE_PRECISION (mode)
10075 - GET_MODE_PRECISION (orig_mode)))
10076 return mode;
10077 return orig_mode;
10078
10079 case LSHIFTRT:
10080 /* Similarly here but with zero bits. */
10081 if (HWI_COMPUTABLE_MODE_P (mode)
10082 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10083 return mode;
10084
10085 /* We can also widen if the bits brought in will be masked off. This
10086 operation is performed in ORIG_MODE. */
10087 if (outer_code == AND)
10088 {
10089 int care_bits = low_bitmask_len (orig_mode, outer_const);
10090
10091 if (care_bits >= 0
10092 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10093 return mode;
10094 }
10095 /* fall through */
10096
10097 case ROTATE:
10098 return orig_mode;
10099
10100 case ROTATERT:
10101 gcc_unreachable ();
10102
10103 default:
10104 return mode;
10105 }
10106 }
10107
10108 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10109 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10110 if we cannot simplify it. Otherwise, return a simplified value.
10111
10112 The shift is normally computed in the widest mode we find in VAROP, as
10113 long as it isn't a different number of words than RESULT_MODE. Exceptions
10114 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10115
10116 static rtx
10117 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10118 rtx varop, int orig_count)
10119 {
10120 enum rtx_code orig_code = code;
10121 rtx orig_varop = varop;
10122 int count;
10123 machine_mode mode = result_mode;
10124 machine_mode shift_mode, tmode;
10125 unsigned int mode_words
10126 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10127 /* We form (outer_op (code varop count) (outer_const)). */
10128 enum rtx_code outer_op = UNKNOWN;
10129 HOST_WIDE_INT outer_const = 0;
10130 int complement_p = 0;
10131 rtx new_rtx, x;
10132
10133 /* Make sure and truncate the "natural" shift on the way in. We don't
10134 want to do this inside the loop as it makes it more difficult to
10135 combine shifts. */
10136 if (SHIFT_COUNT_TRUNCATED)
10137 orig_count &= GET_MODE_BITSIZE (mode) - 1;
10138
10139 /* If we were given an invalid count, don't do anything except exactly
10140 what was requested. */
10141
10142 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
10143 return NULL_RTX;
10144
10145 count = orig_count;
10146
10147 /* Unless one of the branches of the `if' in this loop does a `continue',
10148 we will `break' the loop after the `if'. */
10149
10150 while (count != 0)
10151 {
10152 /* If we have an operand of (clobber (const_int 0)), fail. */
10153 if (GET_CODE (varop) == CLOBBER)
10154 return NULL_RTX;
10155
10156 /* Convert ROTATERT to ROTATE. */
10157 if (code == ROTATERT)
10158 {
10159 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
10160 code = ROTATE;
10161 if (VECTOR_MODE_P (result_mode))
10162 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
10163 else
10164 count = bitsize - count;
10165 }
10166
10167 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10168 mode, outer_op, outer_const);
10169
10170 /* Handle cases where the count is greater than the size of the mode
10171 minus 1. For ASHIFT, use the size minus one as the count (this can
10172 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10173 take the count modulo the size. For other shifts, the result is
10174 zero.
10175
10176 Since these shifts are being produced by the compiler by combining
10177 multiple operations, each of which are defined, we know what the
10178 result is supposed to be. */
10179
10180 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
10181 {
10182 if (code == ASHIFTRT)
10183 count = GET_MODE_PRECISION (shift_mode) - 1;
10184 else if (code == ROTATE || code == ROTATERT)
10185 count %= GET_MODE_PRECISION (shift_mode);
10186 else
10187 {
10188 /* We can't simply return zero because there may be an
10189 outer op. */
10190 varop = const0_rtx;
10191 count = 0;
10192 break;
10193 }
10194 }
10195
10196 /* If we discovered we had to complement VAROP, leave. Making a NOT
10197 here would cause an infinite loop. */
10198 if (complement_p)
10199 break;
10200
10201 /* An arithmetic right shift of a quantity known to be -1 or 0
10202 is a no-op. */
10203 if (code == ASHIFTRT
10204 && (num_sign_bit_copies (varop, shift_mode)
10205 == GET_MODE_PRECISION (shift_mode)))
10206 {
10207 count = 0;
10208 break;
10209 }
10210
10211 /* If we are doing an arithmetic right shift and discarding all but
10212 the sign bit copies, this is equivalent to doing a shift by the
10213 bitsize minus one. Convert it into that shift because it will often
10214 allow other simplifications. */
10215
10216 if (code == ASHIFTRT
10217 && (count + num_sign_bit_copies (varop, shift_mode)
10218 >= GET_MODE_PRECISION (shift_mode)))
10219 count = GET_MODE_PRECISION (shift_mode) - 1;
10220
10221 /* We simplify the tests below and elsewhere by converting
10222 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10223 `make_compound_operation' will convert it to an ASHIFTRT for
10224 those machines (such as VAX) that don't have an LSHIFTRT. */
10225 if (code == ASHIFTRT
10226 && val_signbit_known_clear_p (shift_mode,
10227 nonzero_bits (varop, shift_mode)))
10228 code = LSHIFTRT;
10229
10230 if (((code == LSHIFTRT
10231 && HWI_COMPUTABLE_MODE_P (shift_mode)
10232 && !(nonzero_bits (varop, shift_mode) >> count))
10233 || (code == ASHIFT
10234 && HWI_COMPUTABLE_MODE_P (shift_mode)
10235 && !((nonzero_bits (varop, shift_mode) << count)
10236 & GET_MODE_MASK (shift_mode))))
10237 && !side_effects_p (varop))
10238 varop = const0_rtx;
10239
10240 switch (GET_CODE (varop))
10241 {
10242 case SIGN_EXTEND:
10243 case ZERO_EXTEND:
10244 case SIGN_EXTRACT:
10245 case ZERO_EXTRACT:
10246 new_rtx = expand_compound_operation (varop);
10247 if (new_rtx != varop)
10248 {
10249 varop = new_rtx;
10250 continue;
10251 }
10252 break;
10253
10254 case MEM:
10255 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10256 minus the width of a smaller mode, we can do this with a
10257 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10258 if ((code == ASHIFTRT || code == LSHIFTRT)
10259 && ! mode_dependent_address_p (XEXP (varop, 0),
10260 MEM_ADDR_SPACE (varop))
10261 && ! MEM_VOLATILE_P (varop)
10262 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10263 MODE_INT, 1)) != BLKmode)
10264 {
10265 new_rtx = adjust_address_nv (varop, tmode,
10266 BYTES_BIG_ENDIAN ? 0
10267 : count / BITS_PER_UNIT);
10268
10269 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10270 : ZERO_EXTEND, mode, new_rtx);
10271 count = 0;
10272 continue;
10273 }
10274 break;
10275
10276 case SUBREG:
10277 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10278 the same number of words as what we've seen so far. Then store
10279 the widest mode in MODE. */
10280 if (subreg_lowpart_p (varop)
10281 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10282 > GET_MODE_SIZE (GET_MODE (varop)))
10283 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10284 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10285 == mode_words
10286 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10287 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10288 {
10289 varop = SUBREG_REG (varop);
10290 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10291 mode = GET_MODE (varop);
10292 continue;
10293 }
10294 break;
10295
10296 case MULT:
10297 /* Some machines use MULT instead of ASHIFT because MULT
10298 is cheaper. But it is still better on those machines to
10299 merge two shifts into one. */
10300 if (CONST_INT_P (XEXP (varop, 1))
10301 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10302 {
10303 varop
10304 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10305 XEXP (varop, 0),
10306 GEN_INT (exact_log2 (
10307 UINTVAL (XEXP (varop, 1)))));
10308 continue;
10309 }
10310 break;
10311
10312 case UDIV:
10313 /* Similar, for when divides are cheaper. */
10314 if (CONST_INT_P (XEXP (varop, 1))
10315 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10316 {
10317 varop
10318 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10319 XEXP (varop, 0),
10320 GEN_INT (exact_log2 (
10321 UINTVAL (XEXP (varop, 1)))));
10322 continue;
10323 }
10324 break;
10325
10326 case ASHIFTRT:
10327 /* If we are extracting just the sign bit of an arithmetic
10328 right shift, that shift is not needed. However, the sign
10329 bit of a wider mode may be different from what would be
10330 interpreted as the sign bit in a narrower mode, so, if
10331 the result is narrower, don't discard the shift. */
10332 if (code == LSHIFTRT
10333 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10334 && (GET_MODE_BITSIZE (result_mode)
10335 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10336 {
10337 varop = XEXP (varop, 0);
10338 continue;
10339 }
10340
10341 /* ... fall through ... */
10342
10343 case LSHIFTRT:
10344 case ASHIFT:
10345 case ROTATE:
10346 /* Here we have two nested shifts. The result is usually the
10347 AND of a new shift with a mask. We compute the result below. */
10348 if (CONST_INT_P (XEXP (varop, 1))
10349 && INTVAL (XEXP (varop, 1)) >= 0
10350 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10351 && HWI_COMPUTABLE_MODE_P (result_mode)
10352 && HWI_COMPUTABLE_MODE_P (mode)
10353 && !VECTOR_MODE_P (result_mode))
10354 {
10355 enum rtx_code first_code = GET_CODE (varop);
10356 unsigned int first_count = INTVAL (XEXP (varop, 1));
10357 unsigned HOST_WIDE_INT mask;
10358 rtx mask_rtx;
10359
10360 /* We have one common special case. We can't do any merging if
10361 the inner code is an ASHIFTRT of a smaller mode. However, if
10362 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10363 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10364 we can convert it to
10365 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10366 This simplifies certain SIGN_EXTEND operations. */
10367 if (code == ASHIFT && first_code == ASHIFTRT
10368 && count == (GET_MODE_PRECISION (result_mode)
10369 - GET_MODE_PRECISION (GET_MODE (varop))))
10370 {
10371 /* C3 has the low-order C1 bits zero. */
10372
10373 mask = GET_MODE_MASK (mode)
10374 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10375
10376 varop = simplify_and_const_int (NULL_RTX, result_mode,
10377 XEXP (varop, 0), mask);
10378 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10379 varop, count);
10380 count = first_count;
10381 code = ASHIFTRT;
10382 continue;
10383 }
10384
10385 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10386 than C1 high-order bits equal to the sign bit, we can convert
10387 this to either an ASHIFT or an ASHIFTRT depending on the
10388 two counts.
10389
10390 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10391
10392 if (code == ASHIFTRT && first_code == ASHIFT
10393 && GET_MODE (varop) == shift_mode
10394 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10395 > first_count))
10396 {
10397 varop = XEXP (varop, 0);
10398 count -= first_count;
10399 if (count < 0)
10400 {
10401 count = -count;
10402 code = ASHIFT;
10403 }
10404
10405 continue;
10406 }
10407
10408 /* There are some cases we can't do. If CODE is ASHIFTRT,
10409 we can only do this if FIRST_CODE is also ASHIFTRT.
10410
10411 We can't do the case when CODE is ROTATE and FIRST_CODE is
10412 ASHIFTRT.
10413
10414 If the mode of this shift is not the mode of the outer shift,
10415 we can't do this if either shift is a right shift or ROTATE.
10416
10417 Finally, we can't do any of these if the mode is too wide
10418 unless the codes are the same.
10419
10420 Handle the case where the shift codes are the same
10421 first. */
10422
10423 if (code == first_code)
10424 {
10425 if (GET_MODE (varop) != result_mode
10426 && (code == ASHIFTRT || code == LSHIFTRT
10427 || code == ROTATE))
10428 break;
10429
10430 count += first_count;
10431 varop = XEXP (varop, 0);
10432 continue;
10433 }
10434
10435 if (code == ASHIFTRT
10436 || (code == ROTATE && first_code == ASHIFTRT)
10437 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10438 || (GET_MODE (varop) != result_mode
10439 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10440 || first_code == ROTATE
10441 || code == ROTATE)))
10442 break;
10443
10444 /* To compute the mask to apply after the shift, shift the
10445 nonzero bits of the inner shift the same way the
10446 outer shift will. */
10447
10448 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10449 result_mode);
10450
10451 mask_rtx
10452 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10453 GEN_INT (count));
10454
10455 /* Give up if we can't compute an outer operation to use. */
10456 if (mask_rtx == 0
10457 || !CONST_INT_P (mask_rtx)
10458 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10459 INTVAL (mask_rtx),
10460 result_mode, &complement_p))
10461 break;
10462
10463 /* If the shifts are in the same direction, we add the
10464 counts. Otherwise, we subtract them. */
10465 if ((code == ASHIFTRT || code == LSHIFTRT)
10466 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10467 count += first_count;
10468 else
10469 count -= first_count;
10470
10471 /* If COUNT is positive, the new shift is usually CODE,
10472 except for the two exceptions below, in which case it is
10473 FIRST_CODE. If the count is negative, FIRST_CODE should
10474 always be used */
10475 if (count > 0
10476 && ((first_code == ROTATE && code == ASHIFT)
10477 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10478 code = first_code;
10479 else if (count < 0)
10480 code = first_code, count = -count;
10481
10482 varop = XEXP (varop, 0);
10483 continue;
10484 }
10485
10486 /* If we have (A << B << C) for any shift, we can convert this to
10487 (A << C << B). This wins if A is a constant. Only try this if
10488 B is not a constant. */
10489
10490 else if (GET_CODE (varop) == code
10491 && CONST_INT_P (XEXP (varop, 0))
10492 && !CONST_INT_P (XEXP (varop, 1)))
10493 {
10494 rtx new_rtx = simplify_const_binary_operation (code, mode,
10495 XEXP (varop, 0),
10496 GEN_INT (count));
10497 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10498 count = 0;
10499 continue;
10500 }
10501 break;
10502
10503 case NOT:
10504 if (VECTOR_MODE_P (mode))
10505 break;
10506
10507 /* Make this fit the case below. */
10508 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10509 continue;
10510
10511 case IOR:
10512 case AND:
10513 case XOR:
10514 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10515 with C the size of VAROP - 1 and the shift is logical if
10516 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10517 we have an (le X 0) operation. If we have an arithmetic shift
10518 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10519 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10520
10521 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10522 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10523 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10524 && (code == LSHIFTRT || code == ASHIFTRT)
10525 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10526 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10527 {
10528 count = 0;
10529 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10530 const0_rtx);
10531
10532 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10533 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10534
10535 continue;
10536 }
10537
10538 /* If we have (shift (logical)), move the logical to the outside
10539 to allow it to possibly combine with another logical and the
10540 shift to combine with another shift. This also canonicalizes to
10541 what a ZERO_EXTRACT looks like. Also, some machines have
10542 (and (shift)) insns. */
10543
10544 if (CONST_INT_P (XEXP (varop, 1))
10545 /* We can't do this if we have (ashiftrt (xor)) and the
10546 constant has its sign bit set in shift_mode with shift_mode
10547 wider than result_mode. */
10548 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10549 && result_mode != shift_mode
10550 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10551 shift_mode))
10552 && (new_rtx = simplify_const_binary_operation
10553 (code, result_mode,
10554 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10555 GEN_INT (count))) != 0
10556 && CONST_INT_P (new_rtx)
10557 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10558 INTVAL (new_rtx), result_mode, &complement_p))
10559 {
10560 varop = XEXP (varop, 0);
10561 continue;
10562 }
10563
10564 /* If we can't do that, try to simplify the shift in each arm of the
10565 logical expression, make a new logical expression, and apply
10566 the inverse distributive law. This also can't be done for
10567 (ashiftrt (xor)) where we've widened the shift and the constant
10568 changes the sign bit. */
10569 if (CONST_INT_P (XEXP (varop, 1))
10570 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10571 && result_mode != shift_mode
10572 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10573 shift_mode)))
10574 {
10575 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10576 XEXP (varop, 0), count);
10577 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10578 XEXP (varop, 1), count);
10579
10580 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10581 lhs, rhs);
10582 varop = apply_distributive_law (varop);
10583
10584 count = 0;
10585 continue;
10586 }
10587 break;
10588
10589 case EQ:
10590 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10591 says that the sign bit can be tested, FOO has mode MODE, C is
10592 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10593 that may be nonzero. */
10594 if (code == LSHIFTRT
10595 && XEXP (varop, 1) == const0_rtx
10596 && GET_MODE (XEXP (varop, 0)) == result_mode
10597 && count == (GET_MODE_PRECISION (result_mode) - 1)
10598 && HWI_COMPUTABLE_MODE_P (result_mode)
10599 && STORE_FLAG_VALUE == -1
10600 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10601 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10602 &complement_p))
10603 {
10604 varop = XEXP (varop, 0);
10605 count = 0;
10606 continue;
10607 }
10608 break;
10609
10610 case NEG:
10611 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10612 than the number of bits in the mode is equivalent to A. */
10613 if (code == LSHIFTRT
10614 && count == (GET_MODE_PRECISION (result_mode) - 1)
10615 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10616 {
10617 varop = XEXP (varop, 0);
10618 count = 0;
10619 continue;
10620 }
10621
10622 /* NEG commutes with ASHIFT since it is multiplication. Move the
10623 NEG outside to allow shifts to combine. */
10624 if (code == ASHIFT
10625 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10626 &complement_p))
10627 {
10628 varop = XEXP (varop, 0);
10629 continue;
10630 }
10631 break;
10632
10633 case PLUS:
10634 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10635 is one less than the number of bits in the mode is
10636 equivalent to (xor A 1). */
10637 if (code == LSHIFTRT
10638 && count == (GET_MODE_PRECISION (result_mode) - 1)
10639 && XEXP (varop, 1) == constm1_rtx
10640 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10641 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10642 &complement_p))
10643 {
10644 count = 0;
10645 varop = XEXP (varop, 0);
10646 continue;
10647 }
10648
10649 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10650 that might be nonzero in BAR are those being shifted out and those
10651 bits are known zero in FOO, we can replace the PLUS with FOO.
10652 Similarly in the other operand order. This code occurs when
10653 we are computing the size of a variable-size array. */
10654
10655 if ((code == ASHIFTRT || code == LSHIFTRT)
10656 && count < HOST_BITS_PER_WIDE_INT
10657 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10658 && (nonzero_bits (XEXP (varop, 1), result_mode)
10659 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10660 {
10661 varop = XEXP (varop, 0);
10662 continue;
10663 }
10664 else if ((code == ASHIFTRT || code == LSHIFTRT)
10665 && count < HOST_BITS_PER_WIDE_INT
10666 && HWI_COMPUTABLE_MODE_P (result_mode)
10667 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10668 >> count)
10669 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10670 & nonzero_bits (XEXP (varop, 1),
10671 result_mode)))
10672 {
10673 varop = XEXP (varop, 1);
10674 continue;
10675 }
10676
10677 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10678 if (code == ASHIFT
10679 && CONST_INT_P (XEXP (varop, 1))
10680 && (new_rtx = simplify_const_binary_operation
10681 (ASHIFT, result_mode,
10682 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10683 GEN_INT (count))) != 0
10684 && CONST_INT_P (new_rtx)
10685 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10686 INTVAL (new_rtx), result_mode, &complement_p))
10687 {
10688 varop = XEXP (varop, 0);
10689 continue;
10690 }
10691
10692 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10693 signbit', and attempt to change the PLUS to an XOR and move it to
10694 the outer operation as is done above in the AND/IOR/XOR case
10695 leg for shift(logical). See details in logical handling above
10696 for reasoning in doing so. */
10697 if (code == LSHIFTRT
10698 && CONST_INT_P (XEXP (varop, 1))
10699 && mode_signbit_p (result_mode, XEXP (varop, 1))
10700 && (new_rtx = simplify_const_binary_operation
10701 (code, result_mode,
10702 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10703 GEN_INT (count))) != 0
10704 && CONST_INT_P (new_rtx)
10705 && merge_outer_ops (&outer_op, &outer_const, XOR,
10706 INTVAL (new_rtx), result_mode, &complement_p))
10707 {
10708 varop = XEXP (varop, 0);
10709 continue;
10710 }
10711
10712 break;
10713
10714 case MINUS:
10715 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10716 with C the size of VAROP - 1 and the shift is logical if
10717 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10718 we have a (gt X 0) operation. If the shift is arithmetic with
10719 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10720 we have a (neg (gt X 0)) operation. */
10721
10722 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10723 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10724 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10725 && (code == LSHIFTRT || code == ASHIFTRT)
10726 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10727 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10728 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10729 {
10730 count = 0;
10731 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10732 const0_rtx);
10733
10734 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10735 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10736
10737 continue;
10738 }
10739 break;
10740
10741 case TRUNCATE:
10742 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10743 if the truncate does not affect the value. */
10744 if (code == LSHIFTRT
10745 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10746 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10747 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10748 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10749 - GET_MODE_PRECISION (GET_MODE (varop)))))
10750 {
10751 rtx varop_inner = XEXP (varop, 0);
10752
10753 varop_inner
10754 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10755 XEXP (varop_inner, 0),
10756 GEN_INT
10757 (count + INTVAL (XEXP (varop_inner, 1))));
10758 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10759 count = 0;
10760 continue;
10761 }
10762 break;
10763
10764 default:
10765 break;
10766 }
10767
10768 break;
10769 }
10770
10771 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10772 outer_op, outer_const);
10773
10774 /* We have now finished analyzing the shift. The result should be
10775 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10776 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10777 to the result of the shift. OUTER_CONST is the relevant constant,
10778 but we must turn off all bits turned off in the shift. */
10779
10780 if (outer_op == UNKNOWN
10781 && orig_code == code && orig_count == count
10782 && varop == orig_varop
10783 && shift_mode == GET_MODE (varop))
10784 return NULL_RTX;
10785
10786 /* Make a SUBREG if necessary. If we can't make it, fail. */
10787 varop = gen_lowpart (shift_mode, varop);
10788 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10789 return NULL_RTX;
10790
10791 /* If we have an outer operation and we just made a shift, it is
10792 possible that we could have simplified the shift were it not
10793 for the outer operation. So try to do the simplification
10794 recursively. */
10795
10796 if (outer_op != UNKNOWN)
10797 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10798 else
10799 x = NULL_RTX;
10800
10801 if (x == NULL_RTX)
10802 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10803
10804 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10805 turn off all the bits that the shift would have turned off. */
10806 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10807 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10808 GET_MODE_MASK (result_mode) >> orig_count);
10809
10810 /* Do the remainder of the processing in RESULT_MODE. */
10811 x = gen_lowpart_or_truncate (result_mode, x);
10812
10813 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10814 operation. */
10815 if (complement_p)
10816 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10817
10818 if (outer_op != UNKNOWN)
10819 {
10820 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10821 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10822 outer_const = trunc_int_for_mode (outer_const, result_mode);
10823
10824 if (outer_op == AND)
10825 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10826 else if (outer_op == SET)
10827 {
10828 /* This means that we have determined that the result is
10829 equivalent to a constant. This should be rare. */
10830 if (!side_effects_p (x))
10831 x = GEN_INT (outer_const);
10832 }
10833 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10834 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10835 else
10836 x = simplify_gen_binary (outer_op, result_mode, x,
10837 GEN_INT (outer_const));
10838 }
10839
10840 return x;
10841 }
10842
10843 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10844 The result of the shift is RESULT_MODE. If we cannot simplify it,
10845 return X or, if it is NULL, synthesize the expression with
10846 simplify_gen_binary. Otherwise, return a simplified value.
10847
10848 The shift is normally computed in the widest mode we find in VAROP, as
10849 long as it isn't a different number of words than RESULT_MODE. Exceptions
10850 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10851
10852 static rtx
10853 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
10854 rtx varop, int count)
10855 {
10856 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10857 if (tem)
10858 return tem;
10859
10860 if (!x)
10861 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10862 if (GET_MODE (x) != result_mode)
10863 x = gen_lowpart (result_mode, x);
10864 return x;
10865 }
10866
10867 \f
10868 /* A subroutine of recog_for_combine. See there for arguments and
10869 return value. */
10870
10871 static int
10872 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
10873 {
10874 rtx pat = *pnewpat;
10875 rtx pat_without_clobbers;
10876 int insn_code_number;
10877 int num_clobbers_to_add = 0;
10878 int i;
10879 rtx notes = NULL_RTX;
10880 rtx old_notes, old_pat;
10881 int old_icode;
10882
10883 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10884 we use to indicate that something didn't match. If we find such a
10885 thing, force rejection. */
10886 if (GET_CODE (pat) == PARALLEL)
10887 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10888 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10889 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10890 return -1;
10891
10892 old_pat = PATTERN (insn);
10893 old_notes = REG_NOTES (insn);
10894 PATTERN (insn) = pat;
10895 REG_NOTES (insn) = NULL_RTX;
10896
10897 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10898 if (dump_file && (dump_flags & TDF_DETAILS))
10899 {
10900 if (insn_code_number < 0)
10901 fputs ("Failed to match this instruction:\n", dump_file);
10902 else
10903 fputs ("Successfully matched this instruction:\n", dump_file);
10904 print_rtl_single (dump_file, pat);
10905 }
10906
10907 /* If it isn't, there is the possibility that we previously had an insn
10908 that clobbered some register as a side effect, but the combined
10909 insn doesn't need to do that. So try once more without the clobbers
10910 unless this represents an ASM insn. */
10911
10912 if (insn_code_number < 0 && ! check_asm_operands (pat)
10913 && GET_CODE (pat) == PARALLEL)
10914 {
10915 int pos;
10916
10917 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10918 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10919 {
10920 if (i != pos)
10921 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10922 pos++;
10923 }
10924
10925 SUBST_INT (XVECLEN (pat, 0), pos);
10926
10927 if (pos == 1)
10928 pat = XVECEXP (pat, 0, 0);
10929
10930 PATTERN (insn) = pat;
10931 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10932 if (dump_file && (dump_flags & TDF_DETAILS))
10933 {
10934 if (insn_code_number < 0)
10935 fputs ("Failed to match this instruction:\n", dump_file);
10936 else
10937 fputs ("Successfully matched this instruction:\n", dump_file);
10938 print_rtl_single (dump_file, pat);
10939 }
10940 }
10941
10942 pat_without_clobbers = pat;
10943
10944 PATTERN (insn) = old_pat;
10945 REG_NOTES (insn) = old_notes;
10946
10947 /* Recognize all noop sets, these will be killed by followup pass. */
10948 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10949 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10950
10951 /* If we had any clobbers to add, make a new pattern than contains
10952 them. Then check to make sure that all of them are dead. */
10953 if (num_clobbers_to_add)
10954 {
10955 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10956 rtvec_alloc (GET_CODE (pat) == PARALLEL
10957 ? (XVECLEN (pat, 0)
10958 + num_clobbers_to_add)
10959 : num_clobbers_to_add + 1));
10960
10961 if (GET_CODE (pat) == PARALLEL)
10962 for (i = 0; i < XVECLEN (pat, 0); i++)
10963 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10964 else
10965 XVECEXP (newpat, 0, 0) = pat;
10966
10967 add_clobbers (newpat, insn_code_number);
10968
10969 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10970 i < XVECLEN (newpat, 0); i++)
10971 {
10972 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10973 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10974 return -1;
10975 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10976 {
10977 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10978 notes = alloc_reg_note (REG_UNUSED,
10979 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10980 }
10981 }
10982 pat = newpat;
10983 }
10984
10985 if (insn_code_number >= 0
10986 && insn_code_number != NOOP_MOVE_INSN_CODE)
10987 {
10988 old_pat = PATTERN (insn);
10989 old_notes = REG_NOTES (insn);
10990 old_icode = INSN_CODE (insn);
10991 PATTERN (insn) = pat;
10992 REG_NOTES (insn) = notes;
10993
10994 /* Allow targets to reject combined insn. */
10995 if (!targetm.legitimate_combined_insn (insn))
10996 {
10997 if (dump_file && (dump_flags & TDF_DETAILS))
10998 fputs ("Instruction not appropriate for target.",
10999 dump_file);
11000
11001 /* Callers expect recog_for_combine to strip
11002 clobbers from the pattern on failure. */
11003 pat = pat_without_clobbers;
11004 notes = NULL_RTX;
11005
11006 insn_code_number = -1;
11007 }
11008
11009 PATTERN (insn) = old_pat;
11010 REG_NOTES (insn) = old_notes;
11011 INSN_CODE (insn) = old_icode;
11012 }
11013
11014 *pnewpat = pat;
11015 *pnotes = notes;
11016
11017 return insn_code_number;
11018 }
11019
11020 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11021 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11022 Return whether anything was so changed. */
11023
11024 static bool
11025 change_zero_ext (rtx *src)
11026 {
11027 bool changed = false;
11028
11029 subrtx_ptr_iterator::array_type array;
11030 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11031 {
11032 rtx x = **iter;
11033 machine_mode mode = GET_MODE (x);
11034 int size;
11035
11036 if (GET_CODE (x) == ZERO_EXTRACT
11037 && CONST_INT_P (XEXP (x, 1))
11038 && CONST_INT_P (XEXP (x, 2))
11039 && GET_MODE (XEXP (x, 0)) == mode)
11040 {
11041 size = INTVAL (XEXP (x, 1));
11042
11043 int start = INTVAL (XEXP (x, 2));
11044 if (BITS_BIG_ENDIAN)
11045 start = GET_MODE_PRECISION (mode) - size - start;
11046
11047 x = gen_rtx_LSHIFTRT (mode, XEXP (x, 0), GEN_INT (start));
11048 }
11049 else if (GET_CODE (x) == ZERO_EXTEND
11050 && GET_CODE (XEXP (x, 0)) == SUBREG
11051 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
11052 && subreg_lowpart_p (XEXP (x, 0)))
11053 {
11054 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11055 x = SUBREG_REG (XEXP (x, 0));
11056 }
11057 else
11058 continue;
11059
11060 unsigned HOST_WIDE_INT mask = 1;
11061 mask <<= size;
11062 mask--;
11063
11064 x = gen_rtx_AND (mode, x, GEN_INT (mask));
11065
11066 SUBST (**iter, x);
11067 changed = true;
11068 }
11069
11070 return changed;
11071 }
11072
11073 /* Like recog, but we receive the address of a pointer to a new pattern.
11074 We try to match the rtx that the pointer points to.
11075 If that fails, we may try to modify or replace the pattern,
11076 storing the replacement into the same pointer object.
11077
11078 Modifications include deletion or addition of CLOBBERs. If the
11079 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11080 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11081 (and undo if that fails).
11082
11083 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11084 the CLOBBERs are placed.
11085
11086 The value is the final insn code from the pattern ultimately matched,
11087 or -1. */
11088
11089 static int
11090 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11091 {
11092 rtx pat = PATTERN (insn);
11093 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11094 if (insn_code_number >= 0 || check_asm_operands (pat))
11095 return insn_code_number;
11096
11097 void *marker = get_undo_marker ();
11098 bool changed = false;
11099
11100 if (GET_CODE (pat) == SET)
11101 changed = change_zero_ext (&SET_SRC (pat));
11102 else if (GET_CODE (pat) == PARALLEL)
11103 {
11104 int i;
11105 for (i = 0; i < XVECLEN (pat, 0); i++)
11106 {
11107 rtx set = XVECEXP (pat, 0, i);
11108 if (GET_CODE (set) == SET)
11109 changed |= change_zero_ext (&SET_SRC (set));
11110 }
11111 }
11112
11113 if (changed)
11114 {
11115 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11116
11117 if (insn_code_number < 0)
11118 undo_to_marker (marker);
11119 }
11120
11121 return insn_code_number;
11122 }
11123 \f
11124 /* Like gen_lowpart_general but for use by combine. In combine it
11125 is not possible to create any new pseudoregs. However, it is
11126 safe to create invalid memory addresses, because combine will
11127 try to recognize them and all they will do is make the combine
11128 attempt fail.
11129
11130 If for some reason this cannot do its job, an rtx
11131 (clobber (const_int 0)) is returned.
11132 An insn containing that will not be recognized. */
11133
11134 static rtx
11135 gen_lowpart_for_combine (machine_mode omode, rtx x)
11136 {
11137 machine_mode imode = GET_MODE (x);
11138 unsigned int osize = GET_MODE_SIZE (omode);
11139 unsigned int isize = GET_MODE_SIZE (imode);
11140 rtx result;
11141
11142 if (omode == imode)
11143 return x;
11144
11145 /* We can only support MODE being wider than a word if X is a
11146 constant integer or has a mode the same size. */
11147 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11148 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11149 goto fail;
11150
11151 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11152 won't know what to do. So we will strip off the SUBREG here and
11153 process normally. */
11154 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11155 {
11156 x = SUBREG_REG (x);
11157
11158 /* For use in case we fall down into the address adjustments
11159 further below, we need to adjust the known mode and size of
11160 x; imode and isize, since we just adjusted x. */
11161 imode = GET_MODE (x);
11162
11163 if (imode == omode)
11164 return x;
11165
11166 isize = GET_MODE_SIZE (imode);
11167 }
11168
11169 result = gen_lowpart_common (omode, x);
11170
11171 if (result)
11172 return result;
11173
11174 if (MEM_P (x))
11175 {
11176 int offset = 0;
11177
11178 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11179 address. */
11180 if (MEM_VOLATILE_P (x)
11181 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11182 goto fail;
11183
11184 /* If we want to refer to something bigger than the original memref,
11185 generate a paradoxical subreg instead. That will force a reload
11186 of the original memref X. */
11187 if (isize < osize)
11188 return gen_rtx_SUBREG (omode, x, 0);
11189
11190 if (WORDS_BIG_ENDIAN)
11191 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11192
11193 /* Adjust the address so that the address-after-the-data is
11194 unchanged. */
11195 if (BYTES_BIG_ENDIAN)
11196 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11197
11198 return adjust_address_nv (x, omode, offset);
11199 }
11200
11201 /* If X is a comparison operator, rewrite it in a new mode. This
11202 probably won't match, but may allow further simplifications. */
11203 else if (COMPARISON_P (x))
11204 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11205
11206 /* If we couldn't simplify X any other way, just enclose it in a
11207 SUBREG. Normally, this SUBREG won't match, but some patterns may
11208 include an explicit SUBREG or we may simplify it further in combine. */
11209 else
11210 {
11211 int offset = 0;
11212 rtx res;
11213
11214 offset = subreg_lowpart_offset (omode, imode);
11215 if (imode == VOIDmode)
11216 {
11217 imode = int_mode_for_mode (omode);
11218 x = gen_lowpart_common (imode, x);
11219 if (x == NULL)
11220 goto fail;
11221 }
11222 res = simplify_gen_subreg (omode, x, imode, offset);
11223 if (res)
11224 return res;
11225 }
11226
11227 fail:
11228 return gen_rtx_CLOBBER (omode, const0_rtx);
11229 }
11230 \f
11231 /* Try to simplify a comparison between OP0 and a constant OP1,
11232 where CODE is the comparison code that will be tested, into a
11233 (CODE OP0 const0_rtx) form.
11234
11235 The result is a possibly different comparison code to use.
11236 *POP1 may be updated. */
11237
11238 static enum rtx_code
11239 simplify_compare_const (enum rtx_code code, machine_mode mode,
11240 rtx op0, rtx *pop1)
11241 {
11242 unsigned int mode_width = GET_MODE_PRECISION (mode);
11243 HOST_WIDE_INT const_op = INTVAL (*pop1);
11244
11245 /* Get the constant we are comparing against and turn off all bits
11246 not on in our mode. */
11247 if (mode != VOIDmode)
11248 const_op = trunc_int_for_mode (const_op, mode);
11249
11250 /* If we are comparing against a constant power of two and the value
11251 being compared can only have that single bit nonzero (e.g., it was
11252 `and'ed with that bit), we can replace this with a comparison
11253 with zero. */
11254 if (const_op
11255 && (code == EQ || code == NE || code == GE || code == GEU
11256 || code == LT || code == LTU)
11257 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11258 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
11259 && (nonzero_bits (op0, mode)
11260 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11261 {
11262 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11263 const_op = 0;
11264 }
11265
11266 /* Similarly, if we are comparing a value known to be either -1 or
11267 0 with -1, change it to the opposite comparison against zero. */
11268 if (const_op == -1
11269 && (code == EQ || code == NE || code == GT || code == LE
11270 || code == GEU || code == LTU)
11271 && num_sign_bit_copies (op0, mode) == mode_width)
11272 {
11273 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11274 const_op = 0;
11275 }
11276
11277 /* Do some canonicalizations based on the comparison code. We prefer
11278 comparisons against zero and then prefer equality comparisons.
11279 If we can reduce the size of a constant, we will do that too. */
11280 switch (code)
11281 {
11282 case LT:
11283 /* < C is equivalent to <= (C - 1) */
11284 if (const_op > 0)
11285 {
11286 const_op -= 1;
11287 code = LE;
11288 /* ... fall through to LE case below. */
11289 }
11290 else
11291 break;
11292
11293 case LE:
11294 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11295 if (const_op < 0)
11296 {
11297 const_op += 1;
11298 code = LT;
11299 }
11300
11301 /* If we are doing a <= 0 comparison on a value known to have
11302 a zero sign bit, we can replace this with == 0. */
11303 else if (const_op == 0
11304 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11305 && (nonzero_bits (op0, mode)
11306 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11307 == 0)
11308 code = EQ;
11309 break;
11310
11311 case GE:
11312 /* >= C is equivalent to > (C - 1). */
11313 if (const_op > 0)
11314 {
11315 const_op -= 1;
11316 code = GT;
11317 /* ... fall through to GT below. */
11318 }
11319 else
11320 break;
11321
11322 case GT:
11323 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11324 if (const_op < 0)
11325 {
11326 const_op += 1;
11327 code = GE;
11328 }
11329
11330 /* If we are doing a > 0 comparison on a value known to have
11331 a zero sign bit, we can replace this with != 0. */
11332 else if (const_op == 0
11333 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11334 && (nonzero_bits (op0, mode)
11335 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11336 == 0)
11337 code = NE;
11338 break;
11339
11340 case LTU:
11341 /* < C is equivalent to <= (C - 1). */
11342 if (const_op > 0)
11343 {
11344 const_op -= 1;
11345 code = LEU;
11346 /* ... fall through ... */
11347 }
11348 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11349 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11350 && (unsigned HOST_WIDE_INT) const_op
11351 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11352 {
11353 const_op = 0;
11354 code = GE;
11355 break;
11356 }
11357 else
11358 break;
11359
11360 case LEU:
11361 /* unsigned <= 0 is equivalent to == 0 */
11362 if (const_op == 0)
11363 code = EQ;
11364 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11365 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11366 && (unsigned HOST_WIDE_INT) const_op
11367 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11368 {
11369 const_op = 0;
11370 code = GE;
11371 }
11372 break;
11373
11374 case GEU:
11375 /* >= C is equivalent to > (C - 1). */
11376 if (const_op > 1)
11377 {
11378 const_op -= 1;
11379 code = GTU;
11380 /* ... fall through ... */
11381 }
11382
11383 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11384 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11385 && (unsigned HOST_WIDE_INT) const_op
11386 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11387 {
11388 const_op = 0;
11389 code = LT;
11390 break;
11391 }
11392 else
11393 break;
11394
11395 case GTU:
11396 /* unsigned > 0 is equivalent to != 0 */
11397 if (const_op == 0)
11398 code = NE;
11399 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11400 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11401 && (unsigned HOST_WIDE_INT) const_op
11402 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11403 {
11404 const_op = 0;
11405 code = LT;
11406 }
11407 break;
11408
11409 default:
11410 break;
11411 }
11412
11413 *pop1 = GEN_INT (const_op);
11414 return code;
11415 }
11416 \f
11417 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11418 comparison code that will be tested.
11419
11420 The result is a possibly different comparison code to use. *POP0 and
11421 *POP1 may be updated.
11422
11423 It is possible that we might detect that a comparison is either always
11424 true or always false. However, we do not perform general constant
11425 folding in combine, so this knowledge isn't useful. Such tautologies
11426 should have been detected earlier. Hence we ignore all such cases. */
11427
11428 static enum rtx_code
11429 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11430 {
11431 rtx op0 = *pop0;
11432 rtx op1 = *pop1;
11433 rtx tem, tem1;
11434 int i;
11435 machine_mode mode, tmode;
11436
11437 /* Try a few ways of applying the same transformation to both operands. */
11438 while (1)
11439 {
11440 #ifndef WORD_REGISTER_OPERATIONS
11441 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11442 so check specially. */
11443 if (code != GTU && code != GEU && code != LTU && code != LEU
11444 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11445 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11446 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11447 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11448 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11449 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11450 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11451 && CONST_INT_P (XEXP (op0, 1))
11452 && XEXP (op0, 1) == XEXP (op1, 1)
11453 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11454 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11455 && (INTVAL (XEXP (op0, 1))
11456 == (GET_MODE_PRECISION (GET_MODE (op0))
11457 - (GET_MODE_PRECISION
11458 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11459 {
11460 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11461 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11462 }
11463 #endif
11464
11465 /* If both operands are the same constant shift, see if we can ignore the
11466 shift. We can if the shift is a rotate or if the bits shifted out of
11467 this shift are known to be zero for both inputs and if the type of
11468 comparison is compatible with the shift. */
11469 if (GET_CODE (op0) == GET_CODE (op1)
11470 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11471 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11472 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11473 && (code != GT && code != LT && code != GE && code != LE))
11474 || (GET_CODE (op0) == ASHIFTRT
11475 && (code != GTU && code != LTU
11476 && code != GEU && code != LEU)))
11477 && CONST_INT_P (XEXP (op0, 1))
11478 && INTVAL (XEXP (op0, 1)) >= 0
11479 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11480 && XEXP (op0, 1) == XEXP (op1, 1))
11481 {
11482 machine_mode mode = GET_MODE (op0);
11483 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11484 int shift_count = INTVAL (XEXP (op0, 1));
11485
11486 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11487 mask &= (mask >> shift_count) << shift_count;
11488 else if (GET_CODE (op0) == ASHIFT)
11489 mask = (mask & (mask << shift_count)) >> shift_count;
11490
11491 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11492 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11493 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11494 else
11495 break;
11496 }
11497
11498 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11499 SUBREGs are of the same mode, and, in both cases, the AND would
11500 be redundant if the comparison was done in the narrower mode,
11501 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11502 and the operand's possibly nonzero bits are 0xffffff01; in that case
11503 if we only care about QImode, we don't need the AND). This case
11504 occurs if the output mode of an scc insn is not SImode and
11505 STORE_FLAG_VALUE == 1 (e.g., the 386).
11506
11507 Similarly, check for a case where the AND's are ZERO_EXTEND
11508 operations from some narrower mode even though a SUBREG is not
11509 present. */
11510
11511 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11512 && CONST_INT_P (XEXP (op0, 1))
11513 && CONST_INT_P (XEXP (op1, 1)))
11514 {
11515 rtx inner_op0 = XEXP (op0, 0);
11516 rtx inner_op1 = XEXP (op1, 0);
11517 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11518 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11519 int changed = 0;
11520
11521 if (paradoxical_subreg_p (inner_op0)
11522 && GET_CODE (inner_op1) == SUBREG
11523 && (GET_MODE (SUBREG_REG (inner_op0))
11524 == GET_MODE (SUBREG_REG (inner_op1)))
11525 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11526 <= HOST_BITS_PER_WIDE_INT)
11527 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11528 GET_MODE (SUBREG_REG (inner_op0)))))
11529 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11530 GET_MODE (SUBREG_REG (inner_op1))))))
11531 {
11532 op0 = SUBREG_REG (inner_op0);
11533 op1 = SUBREG_REG (inner_op1);
11534
11535 /* The resulting comparison is always unsigned since we masked
11536 off the original sign bit. */
11537 code = unsigned_condition (code);
11538
11539 changed = 1;
11540 }
11541
11542 else if (c0 == c1)
11543 for (tmode = GET_CLASS_NARROWEST_MODE
11544 (GET_MODE_CLASS (GET_MODE (op0)));
11545 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11546 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11547 {
11548 op0 = gen_lowpart (tmode, inner_op0);
11549 op1 = gen_lowpart (tmode, inner_op1);
11550 code = unsigned_condition (code);
11551 changed = 1;
11552 break;
11553 }
11554
11555 if (! changed)
11556 break;
11557 }
11558
11559 /* If both operands are NOT, we can strip off the outer operation
11560 and adjust the comparison code for swapped operands; similarly for
11561 NEG, except that this must be an equality comparison. */
11562 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11563 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11564 && (code == EQ || code == NE)))
11565 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11566
11567 else
11568 break;
11569 }
11570
11571 /* If the first operand is a constant, swap the operands and adjust the
11572 comparison code appropriately, but don't do this if the second operand
11573 is already a constant integer. */
11574 if (swap_commutative_operands_p (op0, op1))
11575 {
11576 std::swap (op0, op1);
11577 code = swap_condition (code);
11578 }
11579
11580 /* We now enter a loop during which we will try to simplify the comparison.
11581 For the most part, we only are concerned with comparisons with zero,
11582 but some things may really be comparisons with zero but not start
11583 out looking that way. */
11584
11585 while (CONST_INT_P (op1))
11586 {
11587 machine_mode mode = GET_MODE (op0);
11588 unsigned int mode_width = GET_MODE_PRECISION (mode);
11589 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11590 int equality_comparison_p;
11591 int sign_bit_comparison_p;
11592 int unsigned_comparison_p;
11593 HOST_WIDE_INT const_op;
11594
11595 /* We only want to handle integral modes. This catches VOIDmode,
11596 CCmode, and the floating-point modes. An exception is that we
11597 can handle VOIDmode if OP0 is a COMPARE or a comparison
11598 operation. */
11599
11600 if (GET_MODE_CLASS (mode) != MODE_INT
11601 && ! (mode == VOIDmode
11602 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11603 break;
11604
11605 /* Try to simplify the compare to constant, possibly changing the
11606 comparison op, and/or changing op1 to zero. */
11607 code = simplify_compare_const (code, mode, op0, &op1);
11608 const_op = INTVAL (op1);
11609
11610 /* Compute some predicates to simplify code below. */
11611
11612 equality_comparison_p = (code == EQ || code == NE);
11613 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11614 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11615 || code == GEU);
11616
11617 /* If this is a sign bit comparison and we can do arithmetic in
11618 MODE, say that we will only be needing the sign bit of OP0. */
11619 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11620 op0 = force_to_mode (op0, mode,
11621 (unsigned HOST_WIDE_INT) 1
11622 << (GET_MODE_PRECISION (mode) - 1),
11623 0);
11624
11625 /* Now try cases based on the opcode of OP0. If none of the cases
11626 does a "continue", we exit this loop immediately after the
11627 switch. */
11628
11629 switch (GET_CODE (op0))
11630 {
11631 case ZERO_EXTRACT:
11632 /* If we are extracting a single bit from a variable position in
11633 a constant that has only a single bit set and are comparing it
11634 with zero, we can convert this into an equality comparison
11635 between the position and the location of the single bit. */
11636 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11637 have already reduced the shift count modulo the word size. */
11638 if (!SHIFT_COUNT_TRUNCATED
11639 && CONST_INT_P (XEXP (op0, 0))
11640 && XEXP (op0, 1) == const1_rtx
11641 && equality_comparison_p && const_op == 0
11642 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11643 {
11644 if (BITS_BIG_ENDIAN)
11645 i = BITS_PER_WORD - 1 - i;
11646
11647 op0 = XEXP (op0, 2);
11648 op1 = GEN_INT (i);
11649 const_op = i;
11650
11651 /* Result is nonzero iff shift count is equal to I. */
11652 code = reverse_condition (code);
11653 continue;
11654 }
11655
11656 /* ... fall through ... */
11657
11658 case SIGN_EXTRACT:
11659 tem = expand_compound_operation (op0);
11660 if (tem != op0)
11661 {
11662 op0 = tem;
11663 continue;
11664 }
11665 break;
11666
11667 case NOT:
11668 /* If testing for equality, we can take the NOT of the constant. */
11669 if (equality_comparison_p
11670 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11671 {
11672 op0 = XEXP (op0, 0);
11673 op1 = tem;
11674 continue;
11675 }
11676
11677 /* If just looking at the sign bit, reverse the sense of the
11678 comparison. */
11679 if (sign_bit_comparison_p)
11680 {
11681 op0 = XEXP (op0, 0);
11682 code = (code == GE ? LT : GE);
11683 continue;
11684 }
11685 break;
11686
11687 case NEG:
11688 /* If testing for equality, we can take the NEG of the constant. */
11689 if (equality_comparison_p
11690 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11691 {
11692 op0 = XEXP (op0, 0);
11693 op1 = tem;
11694 continue;
11695 }
11696
11697 /* The remaining cases only apply to comparisons with zero. */
11698 if (const_op != 0)
11699 break;
11700
11701 /* When X is ABS or is known positive,
11702 (neg X) is < 0 if and only if X != 0. */
11703
11704 if (sign_bit_comparison_p
11705 && (GET_CODE (XEXP (op0, 0)) == ABS
11706 || (mode_width <= HOST_BITS_PER_WIDE_INT
11707 && (nonzero_bits (XEXP (op0, 0), mode)
11708 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11709 == 0)))
11710 {
11711 op0 = XEXP (op0, 0);
11712 code = (code == LT ? NE : EQ);
11713 continue;
11714 }
11715
11716 /* If we have NEG of something whose two high-order bits are the
11717 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11718 if (num_sign_bit_copies (op0, mode) >= 2)
11719 {
11720 op0 = XEXP (op0, 0);
11721 code = swap_condition (code);
11722 continue;
11723 }
11724 break;
11725
11726 case ROTATE:
11727 /* If we are testing equality and our count is a constant, we
11728 can perform the inverse operation on our RHS. */
11729 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11730 && (tem = simplify_binary_operation (ROTATERT, mode,
11731 op1, XEXP (op0, 1))) != 0)
11732 {
11733 op0 = XEXP (op0, 0);
11734 op1 = tem;
11735 continue;
11736 }
11737
11738 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11739 a particular bit. Convert it to an AND of a constant of that
11740 bit. This will be converted into a ZERO_EXTRACT. */
11741 if (const_op == 0 && sign_bit_comparison_p
11742 && CONST_INT_P (XEXP (op0, 1))
11743 && mode_width <= HOST_BITS_PER_WIDE_INT)
11744 {
11745 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11746 ((unsigned HOST_WIDE_INT) 1
11747 << (mode_width - 1
11748 - INTVAL (XEXP (op0, 1)))));
11749 code = (code == LT ? NE : EQ);
11750 continue;
11751 }
11752
11753 /* Fall through. */
11754
11755 case ABS:
11756 /* ABS is ignorable inside an equality comparison with zero. */
11757 if (const_op == 0 && equality_comparison_p)
11758 {
11759 op0 = XEXP (op0, 0);
11760 continue;
11761 }
11762 break;
11763
11764 case SIGN_EXTEND:
11765 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11766 (compare FOO CONST) if CONST fits in FOO's mode and we
11767 are either testing inequality or have an unsigned
11768 comparison with ZERO_EXTEND or a signed comparison with
11769 SIGN_EXTEND. But don't do it if we don't have a compare
11770 insn of the given mode, since we'd have to revert it
11771 later on, and then we wouldn't know whether to sign- or
11772 zero-extend. */
11773 mode = GET_MODE (XEXP (op0, 0));
11774 if (GET_MODE_CLASS (mode) == MODE_INT
11775 && ! unsigned_comparison_p
11776 && HWI_COMPUTABLE_MODE_P (mode)
11777 && trunc_int_for_mode (const_op, mode) == const_op
11778 && have_insn_for (COMPARE, mode))
11779 {
11780 op0 = XEXP (op0, 0);
11781 continue;
11782 }
11783 break;
11784
11785 case SUBREG:
11786 /* Check for the case where we are comparing A - C1 with C2, that is
11787
11788 (subreg:MODE (plus (A) (-C1))) op (C2)
11789
11790 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11791 comparison in the wider mode. One of the following two conditions
11792 must be true in order for this to be valid:
11793
11794 1. The mode extension results in the same bit pattern being added
11795 on both sides and the comparison is equality or unsigned. As
11796 C2 has been truncated to fit in MODE, the pattern can only be
11797 all 0s or all 1s.
11798
11799 2. The mode extension results in the sign bit being copied on
11800 each side.
11801
11802 The difficulty here is that we have predicates for A but not for
11803 (A - C1) so we need to check that C1 is within proper bounds so
11804 as to perturbate A as little as possible. */
11805
11806 if (mode_width <= HOST_BITS_PER_WIDE_INT
11807 && subreg_lowpart_p (op0)
11808 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11809 && GET_CODE (SUBREG_REG (op0)) == PLUS
11810 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11811 {
11812 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11813 rtx a = XEXP (SUBREG_REG (op0), 0);
11814 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11815
11816 if ((c1 > 0
11817 && (unsigned HOST_WIDE_INT) c1
11818 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11819 && (equality_comparison_p || unsigned_comparison_p)
11820 /* (A - C1) zero-extends if it is positive and sign-extends
11821 if it is negative, C2 both zero- and sign-extends. */
11822 && ((0 == (nonzero_bits (a, inner_mode)
11823 & ~GET_MODE_MASK (mode))
11824 && const_op >= 0)
11825 /* (A - C1) sign-extends if it is positive and 1-extends
11826 if it is negative, C2 both sign- and 1-extends. */
11827 || (num_sign_bit_copies (a, inner_mode)
11828 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11829 - mode_width)
11830 && const_op < 0)))
11831 || ((unsigned HOST_WIDE_INT) c1
11832 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11833 /* (A - C1) always sign-extends, like C2. */
11834 && num_sign_bit_copies (a, inner_mode)
11835 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11836 - (mode_width - 1))))
11837 {
11838 op0 = SUBREG_REG (op0);
11839 continue;
11840 }
11841 }
11842
11843 /* If the inner mode is narrower and we are extracting the low part,
11844 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11845 if (subreg_lowpart_p (op0)
11846 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11847 /* Fall through */ ;
11848 else
11849 break;
11850
11851 /* ... fall through ... */
11852
11853 case ZERO_EXTEND:
11854 mode = GET_MODE (XEXP (op0, 0));
11855 if (GET_MODE_CLASS (mode) == MODE_INT
11856 && (unsigned_comparison_p || equality_comparison_p)
11857 && HWI_COMPUTABLE_MODE_P (mode)
11858 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11859 && const_op >= 0
11860 && have_insn_for (COMPARE, mode))
11861 {
11862 op0 = XEXP (op0, 0);
11863 continue;
11864 }
11865 break;
11866
11867 case PLUS:
11868 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11869 this for equality comparisons due to pathological cases involving
11870 overflows. */
11871 if (equality_comparison_p
11872 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11873 op1, XEXP (op0, 1))))
11874 {
11875 op0 = XEXP (op0, 0);
11876 op1 = tem;
11877 continue;
11878 }
11879
11880 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11881 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11882 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11883 {
11884 op0 = XEXP (XEXP (op0, 0), 0);
11885 code = (code == LT ? EQ : NE);
11886 continue;
11887 }
11888 break;
11889
11890 case MINUS:
11891 /* We used to optimize signed comparisons against zero, but that
11892 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11893 arrive here as equality comparisons, or (GEU, LTU) are
11894 optimized away. No need to special-case them. */
11895
11896 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11897 (eq B (minus A C)), whichever simplifies. We can only do
11898 this for equality comparisons due to pathological cases involving
11899 overflows. */
11900 if (equality_comparison_p
11901 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11902 XEXP (op0, 1), op1)))
11903 {
11904 op0 = XEXP (op0, 0);
11905 op1 = tem;
11906 continue;
11907 }
11908
11909 if (equality_comparison_p
11910 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11911 XEXP (op0, 0), op1)))
11912 {
11913 op0 = XEXP (op0, 1);
11914 op1 = tem;
11915 continue;
11916 }
11917
11918 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11919 of bits in X minus 1, is one iff X > 0. */
11920 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11921 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11922 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11923 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11924 {
11925 op0 = XEXP (op0, 1);
11926 code = (code == GE ? LE : GT);
11927 continue;
11928 }
11929 break;
11930
11931 case XOR:
11932 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11933 if C is zero or B is a constant. */
11934 if (equality_comparison_p
11935 && 0 != (tem = simplify_binary_operation (XOR, mode,
11936 XEXP (op0, 1), op1)))
11937 {
11938 op0 = XEXP (op0, 0);
11939 op1 = tem;
11940 continue;
11941 }
11942 break;
11943
11944 case EQ: case NE:
11945 case UNEQ: case LTGT:
11946 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11947 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11948 case UNORDERED: case ORDERED:
11949 /* We can't do anything if OP0 is a condition code value, rather
11950 than an actual data value. */
11951 if (const_op != 0
11952 || CC0_P (XEXP (op0, 0))
11953 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11954 break;
11955
11956 /* Get the two operands being compared. */
11957 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11958 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11959 else
11960 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11961
11962 /* Check for the cases where we simply want the result of the
11963 earlier test or the opposite of that result. */
11964 if (code == NE || code == EQ
11965 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11966 && (code == LT || code == GE)))
11967 {
11968 enum rtx_code new_code;
11969 if (code == LT || code == NE)
11970 new_code = GET_CODE (op0);
11971 else
11972 new_code = reversed_comparison_code (op0, NULL);
11973
11974 if (new_code != UNKNOWN)
11975 {
11976 code = new_code;
11977 op0 = tem;
11978 op1 = tem1;
11979 continue;
11980 }
11981 }
11982 break;
11983
11984 case IOR:
11985 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11986 iff X <= 0. */
11987 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11988 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11989 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11990 {
11991 op0 = XEXP (op0, 1);
11992 code = (code == GE ? GT : LE);
11993 continue;
11994 }
11995 break;
11996
11997 case AND:
11998 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11999 will be converted to a ZERO_EXTRACT later. */
12000 if (const_op == 0 && equality_comparison_p
12001 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12002 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12003 {
12004 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12005 XEXP (XEXP (op0, 0), 1));
12006 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12007 continue;
12008 }
12009
12010 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12011 zero and X is a comparison and C1 and C2 describe only bits set
12012 in STORE_FLAG_VALUE, we can compare with X. */
12013 if (const_op == 0 && equality_comparison_p
12014 && mode_width <= HOST_BITS_PER_WIDE_INT
12015 && CONST_INT_P (XEXP (op0, 1))
12016 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12017 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12018 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12019 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12020 {
12021 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12022 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12023 if ((~STORE_FLAG_VALUE & mask) == 0
12024 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12025 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12026 && COMPARISON_P (tem))))
12027 {
12028 op0 = XEXP (XEXP (op0, 0), 0);
12029 continue;
12030 }
12031 }
12032
12033 /* If we are doing an equality comparison of an AND of a bit equal
12034 to the sign bit, replace this with a LT or GE comparison of
12035 the underlying value. */
12036 if (equality_comparison_p
12037 && const_op == 0
12038 && CONST_INT_P (XEXP (op0, 1))
12039 && mode_width <= HOST_BITS_PER_WIDE_INT
12040 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12041 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
12042 {
12043 op0 = XEXP (op0, 0);
12044 code = (code == EQ ? GE : LT);
12045 continue;
12046 }
12047
12048 /* If this AND operation is really a ZERO_EXTEND from a narrower
12049 mode, the constant fits within that mode, and this is either an
12050 equality or unsigned comparison, try to do this comparison in
12051 the narrower mode.
12052
12053 Note that in:
12054
12055 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12056 -> (ne:DI (reg:SI 4) (const_int 0))
12057
12058 unless TRULY_NOOP_TRUNCATION allows it or the register is
12059 known to hold a value of the required mode the
12060 transformation is invalid. */
12061 if ((equality_comparison_p || unsigned_comparison_p)
12062 && CONST_INT_P (XEXP (op0, 1))
12063 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12064 & GET_MODE_MASK (mode))
12065 + 1)) >= 0
12066 && const_op >> i == 0
12067 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
12068 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
12069 || (REG_P (XEXP (op0, 0))
12070 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
12071 {
12072 op0 = gen_lowpart (tmode, XEXP (op0, 0));
12073 continue;
12074 }
12075
12076 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
12077 fits in both M1 and M2 and the SUBREG is either paradoxical
12078 or represents the low part, permute the SUBREG and the AND
12079 and try again. */
12080 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
12081 {
12082 unsigned HOST_WIDE_INT c1;
12083 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12084 /* Require an integral mode, to avoid creating something like
12085 (AND:SF ...). */
12086 if (SCALAR_INT_MODE_P (tmode)
12087 /* It is unsafe to commute the AND into the SUBREG if the
12088 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12089 not defined. As originally written the upper bits
12090 have a defined value due to the AND operation.
12091 However, if we commute the AND inside the SUBREG then
12092 they no longer have defined values and the meaning of
12093 the code has been changed. */
12094 && (0
12095 #ifdef WORD_REGISTER_OPERATIONS
12096 || (mode_width > GET_MODE_PRECISION (tmode)
12097 && mode_width <= BITS_PER_WORD)
12098 #endif
12099 || (mode_width <= GET_MODE_PRECISION (tmode)
12100 && subreg_lowpart_p (XEXP (op0, 0))))
12101 && CONST_INT_P (XEXP (op0, 1))
12102 && mode_width <= HOST_BITS_PER_WIDE_INT
12103 && HWI_COMPUTABLE_MODE_P (tmode)
12104 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
12105 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12106 && c1 != mask
12107 && c1 != GET_MODE_MASK (tmode))
12108 {
12109 op0 = simplify_gen_binary (AND, tmode,
12110 SUBREG_REG (XEXP (op0, 0)),
12111 gen_int_mode (c1, tmode));
12112 op0 = gen_lowpart (mode, op0);
12113 continue;
12114 }
12115 }
12116
12117 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12118 if (const_op == 0 && equality_comparison_p
12119 && XEXP (op0, 1) == const1_rtx
12120 && GET_CODE (XEXP (op0, 0)) == NOT)
12121 {
12122 op0 = simplify_and_const_int (NULL_RTX, mode,
12123 XEXP (XEXP (op0, 0), 0), 1);
12124 code = (code == NE ? EQ : NE);
12125 continue;
12126 }
12127
12128 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12129 (eq (and (lshiftrt X) 1) 0).
12130 Also handle the case where (not X) is expressed using xor. */
12131 if (const_op == 0 && equality_comparison_p
12132 && XEXP (op0, 1) == const1_rtx
12133 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12134 {
12135 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12136 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12137
12138 if (GET_CODE (shift_op) == NOT
12139 || (GET_CODE (shift_op) == XOR
12140 && CONST_INT_P (XEXP (shift_op, 1))
12141 && CONST_INT_P (shift_count)
12142 && HWI_COMPUTABLE_MODE_P (mode)
12143 && (UINTVAL (XEXP (shift_op, 1))
12144 == (unsigned HOST_WIDE_INT) 1
12145 << INTVAL (shift_count))))
12146 {
12147 op0
12148 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12149 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12150 code = (code == NE ? EQ : NE);
12151 continue;
12152 }
12153 }
12154 break;
12155
12156 case ASHIFT:
12157 /* If we have (compare (ashift FOO N) (const_int C)) and
12158 the high order N bits of FOO (N+1 if an inequality comparison)
12159 are known to be zero, we can do this by comparing FOO with C
12160 shifted right N bits so long as the low-order N bits of C are
12161 zero. */
12162 if (CONST_INT_P (XEXP (op0, 1))
12163 && INTVAL (XEXP (op0, 1)) >= 0
12164 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12165 < HOST_BITS_PER_WIDE_INT)
12166 && (((unsigned HOST_WIDE_INT) const_op
12167 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
12168 - 1)) == 0)
12169 && mode_width <= HOST_BITS_PER_WIDE_INT
12170 && (nonzero_bits (XEXP (op0, 0), mode)
12171 & ~(mask >> (INTVAL (XEXP (op0, 1))
12172 + ! equality_comparison_p))) == 0)
12173 {
12174 /* We must perform a logical shift, not an arithmetic one,
12175 as we want the top N bits of C to be zero. */
12176 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12177
12178 temp >>= INTVAL (XEXP (op0, 1));
12179 op1 = gen_int_mode (temp, mode);
12180 op0 = XEXP (op0, 0);
12181 continue;
12182 }
12183
12184 /* If we are doing a sign bit comparison, it means we are testing
12185 a particular bit. Convert it to the appropriate AND. */
12186 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12187 && mode_width <= HOST_BITS_PER_WIDE_INT)
12188 {
12189 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12190 ((unsigned HOST_WIDE_INT) 1
12191 << (mode_width - 1
12192 - INTVAL (XEXP (op0, 1)))));
12193 code = (code == LT ? NE : EQ);
12194 continue;
12195 }
12196
12197 /* If this an equality comparison with zero and we are shifting
12198 the low bit to the sign bit, we can convert this to an AND of the
12199 low-order bit. */
12200 if (const_op == 0 && equality_comparison_p
12201 && CONST_INT_P (XEXP (op0, 1))
12202 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12203 {
12204 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12205 continue;
12206 }
12207 break;
12208
12209 case ASHIFTRT:
12210 /* If this is an equality comparison with zero, we can do this
12211 as a logical shift, which might be much simpler. */
12212 if (equality_comparison_p && const_op == 0
12213 && CONST_INT_P (XEXP (op0, 1)))
12214 {
12215 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12216 XEXP (op0, 0),
12217 INTVAL (XEXP (op0, 1)));
12218 continue;
12219 }
12220
12221 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12222 do the comparison in a narrower mode. */
12223 if (! unsigned_comparison_p
12224 && CONST_INT_P (XEXP (op0, 1))
12225 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12226 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12227 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12228 MODE_INT, 1)) != BLKmode
12229 && (((unsigned HOST_WIDE_INT) const_op
12230 + (GET_MODE_MASK (tmode) >> 1) + 1)
12231 <= GET_MODE_MASK (tmode)))
12232 {
12233 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12234 continue;
12235 }
12236
12237 /* Likewise if OP0 is a PLUS of a sign extension with a
12238 constant, which is usually represented with the PLUS
12239 between the shifts. */
12240 if (! unsigned_comparison_p
12241 && CONST_INT_P (XEXP (op0, 1))
12242 && GET_CODE (XEXP (op0, 0)) == PLUS
12243 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12244 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12245 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12246 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12247 MODE_INT, 1)) != BLKmode
12248 && (((unsigned HOST_WIDE_INT) const_op
12249 + (GET_MODE_MASK (tmode) >> 1) + 1)
12250 <= GET_MODE_MASK (tmode)))
12251 {
12252 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12253 rtx add_const = XEXP (XEXP (op0, 0), 1);
12254 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12255 add_const, XEXP (op0, 1));
12256
12257 op0 = simplify_gen_binary (PLUS, tmode,
12258 gen_lowpart (tmode, inner),
12259 new_const);
12260 continue;
12261 }
12262
12263 /* ... fall through ... */
12264 case LSHIFTRT:
12265 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12266 the low order N bits of FOO are known to be zero, we can do this
12267 by comparing FOO with C shifted left N bits so long as no
12268 overflow occurs. Even if the low order N bits of FOO aren't known
12269 to be zero, if the comparison is >= or < we can use the same
12270 optimization and for > or <= by setting all the low
12271 order N bits in the comparison constant. */
12272 if (CONST_INT_P (XEXP (op0, 1))
12273 && INTVAL (XEXP (op0, 1)) > 0
12274 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12275 && mode_width <= HOST_BITS_PER_WIDE_INT
12276 && (((unsigned HOST_WIDE_INT) const_op
12277 + (GET_CODE (op0) != LSHIFTRT
12278 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12279 + 1)
12280 : 0))
12281 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12282 {
12283 unsigned HOST_WIDE_INT low_bits
12284 = (nonzero_bits (XEXP (op0, 0), mode)
12285 & (((unsigned HOST_WIDE_INT) 1
12286 << INTVAL (XEXP (op0, 1))) - 1));
12287 if (low_bits == 0 || !equality_comparison_p)
12288 {
12289 /* If the shift was logical, then we must make the condition
12290 unsigned. */
12291 if (GET_CODE (op0) == LSHIFTRT)
12292 code = unsigned_condition (code);
12293
12294 const_op <<= INTVAL (XEXP (op0, 1));
12295 if (low_bits != 0
12296 && (code == GT || code == GTU
12297 || code == LE || code == LEU))
12298 const_op
12299 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
12300 op1 = GEN_INT (const_op);
12301 op0 = XEXP (op0, 0);
12302 continue;
12303 }
12304 }
12305
12306 /* If we are using this shift to extract just the sign bit, we
12307 can replace this with an LT or GE comparison. */
12308 if (const_op == 0
12309 && (equality_comparison_p || sign_bit_comparison_p)
12310 && CONST_INT_P (XEXP (op0, 1))
12311 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12312 {
12313 op0 = XEXP (op0, 0);
12314 code = (code == NE || code == GT ? LT : GE);
12315 continue;
12316 }
12317 break;
12318
12319 default:
12320 break;
12321 }
12322
12323 break;
12324 }
12325
12326 /* Now make any compound operations involved in this comparison. Then,
12327 check for an outmost SUBREG on OP0 that is not doing anything or is
12328 paradoxical. The latter transformation must only be performed when
12329 it is known that the "extra" bits will be the same in op0 and op1 or
12330 that they don't matter. There are three cases to consider:
12331
12332 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12333 care bits and we can assume they have any convenient value. So
12334 making the transformation is safe.
12335
12336 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
12337 In this case the upper bits of op0 are undefined. We should not make
12338 the simplification in that case as we do not know the contents of
12339 those bits.
12340
12341 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12342 UNKNOWN. In that case we know those bits are zeros or ones. We must
12343 also be sure that they are the same as the upper bits of op1.
12344
12345 We can never remove a SUBREG for a non-equality comparison because
12346 the sign bit is in a different place in the underlying object. */
12347
12348 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12349 op1 = make_compound_operation (op1, SET);
12350
12351 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12352 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12353 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12354 && (code == NE || code == EQ))
12355 {
12356 if (paradoxical_subreg_p (op0))
12357 {
12358 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12359 implemented. */
12360 if (REG_P (SUBREG_REG (op0)))
12361 {
12362 op0 = SUBREG_REG (op0);
12363 op1 = gen_lowpart (GET_MODE (op0), op1);
12364 }
12365 }
12366 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12367 <= HOST_BITS_PER_WIDE_INT)
12368 && (nonzero_bits (SUBREG_REG (op0),
12369 GET_MODE (SUBREG_REG (op0)))
12370 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12371 {
12372 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12373
12374 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12375 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12376 op0 = SUBREG_REG (op0), op1 = tem;
12377 }
12378 }
12379
12380 /* We now do the opposite procedure: Some machines don't have compare
12381 insns in all modes. If OP0's mode is an integer mode smaller than a
12382 word and we can't do a compare in that mode, see if there is a larger
12383 mode for which we can do the compare. There are a number of cases in
12384 which we can use the wider mode. */
12385
12386 mode = GET_MODE (op0);
12387 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12388 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12389 && ! have_insn_for (COMPARE, mode))
12390 for (tmode = GET_MODE_WIDER_MODE (mode);
12391 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12392 tmode = GET_MODE_WIDER_MODE (tmode))
12393 if (have_insn_for (COMPARE, tmode))
12394 {
12395 int zero_extended;
12396
12397 /* If this is a test for negative, we can make an explicit
12398 test of the sign bit. Test this first so we can use
12399 a paradoxical subreg to extend OP0. */
12400
12401 if (op1 == const0_rtx && (code == LT || code == GE)
12402 && HWI_COMPUTABLE_MODE_P (mode))
12403 {
12404 unsigned HOST_WIDE_INT sign
12405 = (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
12406 op0 = simplify_gen_binary (AND, tmode,
12407 gen_lowpart (tmode, op0),
12408 gen_int_mode (sign, tmode));
12409 code = (code == LT) ? NE : EQ;
12410 break;
12411 }
12412
12413 /* If the only nonzero bits in OP0 and OP1 are those in the
12414 narrower mode and this is an equality or unsigned comparison,
12415 we can use the wider mode. Similarly for sign-extended
12416 values, in which case it is true for all comparisons. */
12417 zero_extended = ((code == EQ || code == NE
12418 || code == GEU || code == GTU
12419 || code == LEU || code == LTU)
12420 && (nonzero_bits (op0, tmode)
12421 & ~GET_MODE_MASK (mode)) == 0
12422 && ((CONST_INT_P (op1)
12423 || (nonzero_bits (op1, tmode)
12424 & ~GET_MODE_MASK (mode)) == 0)));
12425
12426 if (zero_extended
12427 || ((num_sign_bit_copies (op0, tmode)
12428 > (unsigned int) (GET_MODE_PRECISION (tmode)
12429 - GET_MODE_PRECISION (mode)))
12430 && (num_sign_bit_copies (op1, tmode)
12431 > (unsigned int) (GET_MODE_PRECISION (tmode)
12432 - GET_MODE_PRECISION (mode)))))
12433 {
12434 /* If OP0 is an AND and we don't have an AND in MODE either,
12435 make a new AND in the proper mode. */
12436 if (GET_CODE (op0) == AND
12437 && !have_insn_for (AND, mode))
12438 op0 = simplify_gen_binary (AND, tmode,
12439 gen_lowpart (tmode,
12440 XEXP (op0, 0)),
12441 gen_lowpart (tmode,
12442 XEXP (op0, 1)));
12443 else
12444 {
12445 if (zero_extended)
12446 {
12447 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12448 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12449 }
12450 else
12451 {
12452 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12453 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12454 }
12455 break;
12456 }
12457 }
12458 }
12459
12460 /* We may have changed the comparison operands. Re-canonicalize. */
12461 if (swap_commutative_operands_p (op0, op1))
12462 {
12463 std::swap (op0, op1);
12464 code = swap_condition (code);
12465 }
12466
12467 /* If this machine only supports a subset of valid comparisons, see if we
12468 can convert an unsupported one into a supported one. */
12469 target_canonicalize_comparison (&code, &op0, &op1, 0);
12470
12471 *pop0 = op0;
12472 *pop1 = op1;
12473
12474 return code;
12475 }
12476 \f
12477 /* Utility function for record_value_for_reg. Count number of
12478 rtxs in X. */
12479 static int
12480 count_rtxs (rtx x)
12481 {
12482 enum rtx_code code = GET_CODE (x);
12483 const char *fmt;
12484 int i, j, ret = 1;
12485
12486 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12487 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12488 {
12489 rtx x0 = XEXP (x, 0);
12490 rtx x1 = XEXP (x, 1);
12491
12492 if (x0 == x1)
12493 return 1 + 2 * count_rtxs (x0);
12494
12495 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12496 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12497 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12498 return 2 + 2 * count_rtxs (x0)
12499 + count_rtxs (x == XEXP (x1, 0)
12500 ? XEXP (x1, 1) : XEXP (x1, 0));
12501
12502 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12503 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12504 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12505 return 2 + 2 * count_rtxs (x1)
12506 + count_rtxs (x == XEXP (x0, 0)
12507 ? XEXP (x0, 1) : XEXP (x0, 0));
12508 }
12509
12510 fmt = GET_RTX_FORMAT (code);
12511 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12512 if (fmt[i] == 'e')
12513 ret += count_rtxs (XEXP (x, i));
12514 else if (fmt[i] == 'E')
12515 for (j = 0; j < XVECLEN (x, i); j++)
12516 ret += count_rtxs (XVECEXP (x, i, j));
12517
12518 return ret;
12519 }
12520 \f
12521 /* Utility function for following routine. Called when X is part of a value
12522 being stored into last_set_value. Sets last_set_table_tick
12523 for each register mentioned. Similar to mention_regs in cse.c */
12524
12525 static void
12526 update_table_tick (rtx x)
12527 {
12528 enum rtx_code code = GET_CODE (x);
12529 const char *fmt = GET_RTX_FORMAT (code);
12530 int i, j;
12531
12532 if (code == REG)
12533 {
12534 unsigned int regno = REGNO (x);
12535 unsigned int endregno = END_REGNO (x);
12536 unsigned int r;
12537
12538 for (r = regno; r < endregno; r++)
12539 {
12540 reg_stat_type *rsp = &reg_stat[r];
12541 rsp->last_set_table_tick = label_tick;
12542 }
12543
12544 return;
12545 }
12546
12547 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12548 if (fmt[i] == 'e')
12549 {
12550 /* Check for identical subexpressions. If x contains
12551 identical subexpression we only have to traverse one of
12552 them. */
12553 if (i == 0 && ARITHMETIC_P (x))
12554 {
12555 /* Note that at this point x1 has already been
12556 processed. */
12557 rtx x0 = XEXP (x, 0);
12558 rtx x1 = XEXP (x, 1);
12559
12560 /* If x0 and x1 are identical then there is no need to
12561 process x0. */
12562 if (x0 == x1)
12563 break;
12564
12565 /* If x0 is identical to a subexpression of x1 then while
12566 processing x1, x0 has already been processed. Thus we
12567 are done with x. */
12568 if (ARITHMETIC_P (x1)
12569 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12570 break;
12571
12572 /* If x1 is identical to a subexpression of x0 then we
12573 still have to process the rest of x0. */
12574 if (ARITHMETIC_P (x0)
12575 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12576 {
12577 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12578 break;
12579 }
12580 }
12581
12582 update_table_tick (XEXP (x, i));
12583 }
12584 else if (fmt[i] == 'E')
12585 for (j = 0; j < XVECLEN (x, i); j++)
12586 update_table_tick (XVECEXP (x, i, j));
12587 }
12588
12589 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12590 are saying that the register is clobbered and we no longer know its
12591 value. If INSN is zero, don't update reg_stat[].last_set; this is
12592 only permitted with VALUE also zero and is used to invalidate the
12593 register. */
12594
12595 static void
12596 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12597 {
12598 unsigned int regno = REGNO (reg);
12599 unsigned int endregno = END_REGNO (reg);
12600 unsigned int i;
12601 reg_stat_type *rsp;
12602
12603 /* If VALUE contains REG and we have a previous value for REG, substitute
12604 the previous value. */
12605 if (value && insn && reg_overlap_mentioned_p (reg, value))
12606 {
12607 rtx tem;
12608
12609 /* Set things up so get_last_value is allowed to see anything set up to
12610 our insn. */
12611 subst_low_luid = DF_INSN_LUID (insn);
12612 tem = get_last_value (reg);
12613
12614 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12615 it isn't going to be useful and will take a lot of time to process,
12616 so just use the CLOBBER. */
12617
12618 if (tem)
12619 {
12620 if (ARITHMETIC_P (tem)
12621 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12622 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12623 tem = XEXP (tem, 0);
12624 else if (count_occurrences (value, reg, 1) >= 2)
12625 {
12626 /* If there are two or more occurrences of REG in VALUE,
12627 prevent the value from growing too much. */
12628 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12629 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12630 }
12631
12632 value = replace_rtx (copy_rtx (value), reg, tem);
12633 }
12634 }
12635
12636 /* For each register modified, show we don't know its value, that
12637 we don't know about its bitwise content, that its value has been
12638 updated, and that we don't know the location of the death of the
12639 register. */
12640 for (i = regno; i < endregno; i++)
12641 {
12642 rsp = &reg_stat[i];
12643
12644 if (insn)
12645 rsp->last_set = insn;
12646
12647 rsp->last_set_value = 0;
12648 rsp->last_set_mode = VOIDmode;
12649 rsp->last_set_nonzero_bits = 0;
12650 rsp->last_set_sign_bit_copies = 0;
12651 rsp->last_death = 0;
12652 rsp->truncated_to_mode = VOIDmode;
12653 }
12654
12655 /* Mark registers that are being referenced in this value. */
12656 if (value)
12657 update_table_tick (value);
12658
12659 /* Now update the status of each register being set.
12660 If someone is using this register in this block, set this register
12661 to invalid since we will get confused between the two lives in this
12662 basic block. This makes using this register always invalid. In cse, we
12663 scan the table to invalidate all entries using this register, but this
12664 is too much work for us. */
12665
12666 for (i = regno; i < endregno; i++)
12667 {
12668 rsp = &reg_stat[i];
12669 rsp->last_set_label = label_tick;
12670 if (!insn
12671 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12672 rsp->last_set_invalid = 1;
12673 else
12674 rsp->last_set_invalid = 0;
12675 }
12676
12677 /* The value being assigned might refer to X (like in "x++;"). In that
12678 case, we must replace it with (clobber (const_int 0)) to prevent
12679 infinite loops. */
12680 rsp = &reg_stat[regno];
12681 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12682 {
12683 value = copy_rtx (value);
12684 if (!get_last_value_validate (&value, insn, label_tick, 1))
12685 value = 0;
12686 }
12687
12688 /* For the main register being modified, update the value, the mode, the
12689 nonzero bits, and the number of sign bit copies. */
12690
12691 rsp->last_set_value = value;
12692
12693 if (value)
12694 {
12695 machine_mode mode = GET_MODE (reg);
12696 subst_low_luid = DF_INSN_LUID (insn);
12697 rsp->last_set_mode = mode;
12698 if (GET_MODE_CLASS (mode) == MODE_INT
12699 && HWI_COMPUTABLE_MODE_P (mode))
12700 mode = nonzero_bits_mode;
12701 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12702 rsp->last_set_sign_bit_copies
12703 = num_sign_bit_copies (value, GET_MODE (reg));
12704 }
12705 }
12706
12707 /* Called via note_stores from record_dead_and_set_regs to handle one
12708 SET or CLOBBER in an insn. DATA is the instruction in which the
12709 set is occurring. */
12710
12711 static void
12712 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12713 {
12714 rtx_insn *record_dead_insn = (rtx_insn *) data;
12715
12716 if (GET_CODE (dest) == SUBREG)
12717 dest = SUBREG_REG (dest);
12718
12719 if (!record_dead_insn)
12720 {
12721 if (REG_P (dest))
12722 record_value_for_reg (dest, NULL, NULL_RTX);
12723 return;
12724 }
12725
12726 if (REG_P (dest))
12727 {
12728 /* If we are setting the whole register, we know its value. Otherwise
12729 show that we don't know the value. We can handle SUBREG in
12730 some cases. */
12731 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12732 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12733 else if (GET_CODE (setter) == SET
12734 && GET_CODE (SET_DEST (setter)) == SUBREG
12735 && SUBREG_REG (SET_DEST (setter)) == dest
12736 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12737 && subreg_lowpart_p (SET_DEST (setter)))
12738 record_value_for_reg (dest, record_dead_insn,
12739 gen_lowpart (GET_MODE (dest),
12740 SET_SRC (setter)));
12741 else
12742 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12743 }
12744 else if (MEM_P (dest)
12745 /* Ignore pushes, they clobber nothing. */
12746 && ! push_operand (dest, GET_MODE (dest)))
12747 mem_last_set = DF_INSN_LUID (record_dead_insn);
12748 }
12749
12750 /* Update the records of when each REG was most recently set or killed
12751 for the things done by INSN. This is the last thing done in processing
12752 INSN in the combiner loop.
12753
12754 We update reg_stat[], in particular fields last_set, last_set_value,
12755 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12756 last_death, and also the similar information mem_last_set (which insn
12757 most recently modified memory) and last_call_luid (which insn was the
12758 most recent subroutine call). */
12759
12760 static void
12761 record_dead_and_set_regs (rtx_insn *insn)
12762 {
12763 rtx link;
12764 unsigned int i;
12765
12766 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12767 {
12768 if (REG_NOTE_KIND (link) == REG_DEAD
12769 && REG_P (XEXP (link, 0)))
12770 {
12771 unsigned int regno = REGNO (XEXP (link, 0));
12772 unsigned int endregno = END_REGNO (XEXP (link, 0));
12773
12774 for (i = regno; i < endregno; i++)
12775 {
12776 reg_stat_type *rsp;
12777
12778 rsp = &reg_stat[i];
12779 rsp->last_death = insn;
12780 }
12781 }
12782 else if (REG_NOTE_KIND (link) == REG_INC)
12783 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12784 }
12785
12786 if (CALL_P (insn))
12787 {
12788 hard_reg_set_iterator hrsi;
12789 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12790 {
12791 reg_stat_type *rsp;
12792
12793 rsp = &reg_stat[i];
12794 rsp->last_set_invalid = 1;
12795 rsp->last_set = insn;
12796 rsp->last_set_value = 0;
12797 rsp->last_set_mode = VOIDmode;
12798 rsp->last_set_nonzero_bits = 0;
12799 rsp->last_set_sign_bit_copies = 0;
12800 rsp->last_death = 0;
12801 rsp->truncated_to_mode = VOIDmode;
12802 }
12803
12804 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12805
12806 /* We can't combine into a call pattern. Remember, though, that
12807 the return value register is set at this LUID. We could
12808 still replace a register with the return value from the
12809 wrong subroutine call! */
12810 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12811 }
12812 else
12813 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12814 }
12815
12816 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12817 register present in the SUBREG, so for each such SUBREG go back and
12818 adjust nonzero and sign bit information of the registers that are
12819 known to have some zero/sign bits set.
12820
12821 This is needed because when combine blows the SUBREGs away, the
12822 information on zero/sign bits is lost and further combines can be
12823 missed because of that. */
12824
12825 static void
12826 record_promoted_value (rtx_insn *insn, rtx subreg)
12827 {
12828 struct insn_link *links;
12829 rtx set;
12830 unsigned int regno = REGNO (SUBREG_REG (subreg));
12831 machine_mode mode = GET_MODE (subreg);
12832
12833 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12834 return;
12835
12836 for (links = LOG_LINKS (insn); links;)
12837 {
12838 reg_stat_type *rsp;
12839
12840 insn = links->insn;
12841 set = single_set (insn);
12842
12843 if (! set || !REG_P (SET_DEST (set))
12844 || REGNO (SET_DEST (set)) != regno
12845 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12846 {
12847 links = links->next;
12848 continue;
12849 }
12850
12851 rsp = &reg_stat[regno];
12852 if (rsp->last_set == insn)
12853 {
12854 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
12855 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12856 }
12857
12858 if (REG_P (SET_SRC (set)))
12859 {
12860 regno = REGNO (SET_SRC (set));
12861 links = LOG_LINKS (insn);
12862 }
12863 else
12864 break;
12865 }
12866 }
12867
12868 /* Check if X, a register, is known to contain a value already
12869 truncated to MODE. In this case we can use a subreg to refer to
12870 the truncated value even though in the generic case we would need
12871 an explicit truncation. */
12872
12873 static bool
12874 reg_truncated_to_mode (machine_mode mode, const_rtx x)
12875 {
12876 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12877 machine_mode truncated = rsp->truncated_to_mode;
12878
12879 if (truncated == 0
12880 || rsp->truncation_label < label_tick_ebb_start)
12881 return false;
12882 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12883 return true;
12884 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12885 return true;
12886 return false;
12887 }
12888
12889 /* If X is a hard reg or a subreg record the mode that the register is
12890 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
12891 to turn a truncate into a subreg using this information. Return true
12892 if traversing X is complete. */
12893
12894 static bool
12895 record_truncated_value (rtx x)
12896 {
12897 machine_mode truncated_mode;
12898 reg_stat_type *rsp;
12899
12900 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12901 {
12902 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12903 truncated_mode = GET_MODE (x);
12904
12905 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12906 return true;
12907
12908 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12909 return true;
12910
12911 x = SUBREG_REG (x);
12912 }
12913 /* ??? For hard-regs we now record everything. We might be able to
12914 optimize this using last_set_mode. */
12915 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12916 truncated_mode = GET_MODE (x);
12917 else
12918 return false;
12919
12920 rsp = &reg_stat[REGNO (x)];
12921 if (rsp->truncated_to_mode == 0
12922 || rsp->truncation_label < label_tick_ebb_start
12923 || (GET_MODE_SIZE (truncated_mode)
12924 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12925 {
12926 rsp->truncated_to_mode = truncated_mode;
12927 rsp->truncation_label = label_tick;
12928 }
12929
12930 return true;
12931 }
12932
12933 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12934 the modes they are used in. This can help truning TRUNCATEs into
12935 SUBREGs. */
12936
12937 static void
12938 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
12939 {
12940 subrtx_var_iterator::array_type array;
12941 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
12942 if (record_truncated_value (*iter))
12943 iter.skip_subrtxes ();
12944 }
12945
12946 /* Scan X for promoted SUBREGs. For each one found,
12947 note what it implies to the registers used in it. */
12948
12949 static void
12950 check_promoted_subreg (rtx_insn *insn, rtx x)
12951 {
12952 if (GET_CODE (x) == SUBREG
12953 && SUBREG_PROMOTED_VAR_P (x)
12954 && REG_P (SUBREG_REG (x)))
12955 record_promoted_value (insn, x);
12956 else
12957 {
12958 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12959 int i, j;
12960
12961 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12962 switch (format[i])
12963 {
12964 case 'e':
12965 check_promoted_subreg (insn, XEXP (x, i));
12966 break;
12967 case 'V':
12968 case 'E':
12969 if (XVEC (x, i) != 0)
12970 for (j = 0; j < XVECLEN (x, i); j++)
12971 check_promoted_subreg (insn, XVECEXP (x, i, j));
12972 break;
12973 }
12974 }
12975 }
12976 \f
12977 /* Verify that all the registers and memory references mentioned in *LOC are
12978 still valid. *LOC was part of a value set in INSN when label_tick was
12979 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12980 the invalid references with (clobber (const_int 0)) and return 1. This
12981 replacement is useful because we often can get useful information about
12982 the form of a value (e.g., if it was produced by a shift that always
12983 produces -1 or 0) even though we don't know exactly what registers it
12984 was produced from. */
12985
12986 static int
12987 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
12988 {
12989 rtx x = *loc;
12990 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12991 int len = GET_RTX_LENGTH (GET_CODE (x));
12992 int i, j;
12993
12994 if (REG_P (x))
12995 {
12996 unsigned int regno = REGNO (x);
12997 unsigned int endregno = END_REGNO (x);
12998 unsigned int j;
12999
13000 for (j = regno; j < endregno; j++)
13001 {
13002 reg_stat_type *rsp = &reg_stat[j];
13003 if (rsp->last_set_invalid
13004 /* If this is a pseudo-register that was only set once and not
13005 live at the beginning of the function, it is always valid. */
13006 || (! (regno >= FIRST_PSEUDO_REGISTER
13007 && regno < reg_n_sets_max
13008 && REG_N_SETS (regno) == 1
13009 && (!REGNO_REG_SET_P
13010 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13011 regno)))
13012 && rsp->last_set_label > tick))
13013 {
13014 if (replace)
13015 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13016 return replace;
13017 }
13018 }
13019
13020 return 1;
13021 }
13022 /* If this is a memory reference, make sure that there were no stores after
13023 it that might have clobbered the value. We don't have alias info, so we
13024 assume any store invalidates it. Moreover, we only have local UIDs, so
13025 we also assume that there were stores in the intervening basic blocks. */
13026 else if (MEM_P (x) && !MEM_READONLY_P (x)
13027 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13028 {
13029 if (replace)
13030 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13031 return replace;
13032 }
13033
13034 for (i = 0; i < len; i++)
13035 {
13036 if (fmt[i] == 'e')
13037 {
13038 /* Check for identical subexpressions. If x contains
13039 identical subexpression we only have to traverse one of
13040 them. */
13041 if (i == 1 && ARITHMETIC_P (x))
13042 {
13043 /* Note that at this point x0 has already been checked
13044 and found valid. */
13045 rtx x0 = XEXP (x, 0);
13046 rtx x1 = XEXP (x, 1);
13047
13048 /* If x0 and x1 are identical then x is also valid. */
13049 if (x0 == x1)
13050 return 1;
13051
13052 /* If x1 is identical to a subexpression of x0 then
13053 while checking x0, x1 has already been checked. Thus
13054 it is valid and so as x. */
13055 if (ARITHMETIC_P (x0)
13056 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13057 return 1;
13058
13059 /* If x0 is identical to a subexpression of x1 then x is
13060 valid iff the rest of x1 is valid. */
13061 if (ARITHMETIC_P (x1)
13062 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13063 return
13064 get_last_value_validate (&XEXP (x1,
13065 x0 == XEXP (x1, 0) ? 1 : 0),
13066 insn, tick, replace);
13067 }
13068
13069 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13070 replace) == 0)
13071 return 0;
13072 }
13073 else if (fmt[i] == 'E')
13074 for (j = 0; j < XVECLEN (x, i); j++)
13075 if (get_last_value_validate (&XVECEXP (x, i, j),
13076 insn, tick, replace) == 0)
13077 return 0;
13078 }
13079
13080 /* If we haven't found a reason for it to be invalid, it is valid. */
13081 return 1;
13082 }
13083
13084 /* Get the last value assigned to X, if known. Some registers
13085 in the value may be replaced with (clobber (const_int 0)) if their value
13086 is known longer known reliably. */
13087
13088 static rtx
13089 get_last_value (const_rtx x)
13090 {
13091 unsigned int regno;
13092 rtx value;
13093 reg_stat_type *rsp;
13094
13095 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13096 then convert it to the desired mode. If this is a paradoxical SUBREG,
13097 we cannot predict what values the "extra" bits might have. */
13098 if (GET_CODE (x) == SUBREG
13099 && subreg_lowpart_p (x)
13100 && !paradoxical_subreg_p (x)
13101 && (value = get_last_value (SUBREG_REG (x))) != 0)
13102 return gen_lowpart (GET_MODE (x), value);
13103
13104 if (!REG_P (x))
13105 return 0;
13106
13107 regno = REGNO (x);
13108 rsp = &reg_stat[regno];
13109 value = rsp->last_set_value;
13110
13111 /* If we don't have a value, or if it isn't for this basic block and
13112 it's either a hard register, set more than once, or it's a live
13113 at the beginning of the function, return 0.
13114
13115 Because if it's not live at the beginning of the function then the reg
13116 is always set before being used (is never used without being set).
13117 And, if it's set only once, and it's always set before use, then all
13118 uses must have the same last value, even if it's not from this basic
13119 block. */
13120
13121 if (value == 0
13122 || (rsp->last_set_label < label_tick_ebb_start
13123 && (regno < FIRST_PSEUDO_REGISTER
13124 || regno >= reg_n_sets_max
13125 || REG_N_SETS (regno) != 1
13126 || REGNO_REG_SET_P
13127 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13128 return 0;
13129
13130 /* If the value was set in a later insn than the ones we are processing,
13131 we can't use it even if the register was only set once. */
13132 if (rsp->last_set_label == label_tick
13133 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13134 return 0;
13135
13136 /* If the value has all its registers valid, return it. */
13137 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13138 return value;
13139
13140 /* Otherwise, make a copy and replace any invalid register with
13141 (clobber (const_int 0)). If that fails for some reason, return 0. */
13142
13143 value = copy_rtx (value);
13144 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13145 return value;
13146
13147 return 0;
13148 }
13149 \f
13150 /* Return nonzero if expression X refers to a REG or to memory
13151 that is set in an instruction more recent than FROM_LUID. */
13152
13153 static int
13154 use_crosses_set_p (const_rtx x, int from_luid)
13155 {
13156 const char *fmt;
13157 int i;
13158 enum rtx_code code = GET_CODE (x);
13159
13160 if (code == REG)
13161 {
13162 unsigned int regno = REGNO (x);
13163 unsigned endreg = END_REGNO (x);
13164
13165 #ifdef PUSH_ROUNDING
13166 /* Don't allow uses of the stack pointer to be moved,
13167 because we don't know whether the move crosses a push insn. */
13168 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13169 return 1;
13170 #endif
13171 for (; regno < endreg; regno++)
13172 {
13173 reg_stat_type *rsp = &reg_stat[regno];
13174 if (rsp->last_set
13175 && rsp->last_set_label == label_tick
13176 && DF_INSN_LUID (rsp->last_set) > from_luid)
13177 return 1;
13178 }
13179 return 0;
13180 }
13181
13182 if (code == MEM && mem_last_set > from_luid)
13183 return 1;
13184
13185 fmt = GET_RTX_FORMAT (code);
13186
13187 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13188 {
13189 if (fmt[i] == 'E')
13190 {
13191 int j;
13192 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13193 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13194 return 1;
13195 }
13196 else if (fmt[i] == 'e'
13197 && use_crosses_set_p (XEXP (x, i), from_luid))
13198 return 1;
13199 }
13200 return 0;
13201 }
13202 \f
13203 /* Define three variables used for communication between the following
13204 routines. */
13205
13206 static unsigned int reg_dead_regno, reg_dead_endregno;
13207 static int reg_dead_flag;
13208
13209 /* Function called via note_stores from reg_dead_at_p.
13210
13211 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13212 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13213
13214 static void
13215 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13216 {
13217 unsigned int regno, endregno;
13218
13219 if (!REG_P (dest))
13220 return;
13221
13222 regno = REGNO (dest);
13223 endregno = END_REGNO (dest);
13224 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13225 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13226 }
13227
13228 /* Return nonzero if REG is known to be dead at INSN.
13229
13230 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13231 referencing REG, it is dead. If we hit a SET referencing REG, it is
13232 live. Otherwise, see if it is live or dead at the start of the basic
13233 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13234 must be assumed to be always live. */
13235
13236 static int
13237 reg_dead_at_p (rtx reg, rtx_insn *insn)
13238 {
13239 basic_block block;
13240 unsigned int i;
13241
13242 /* Set variables for reg_dead_at_p_1. */
13243 reg_dead_regno = REGNO (reg);
13244 reg_dead_endregno = END_REGNO (reg);
13245
13246 reg_dead_flag = 0;
13247
13248 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13249 we allow the machine description to decide whether use-and-clobber
13250 patterns are OK. */
13251 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13252 {
13253 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13254 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13255 return 0;
13256 }
13257
13258 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13259 beginning of basic block. */
13260 block = BLOCK_FOR_INSN (insn);
13261 for (;;)
13262 {
13263 if (INSN_P (insn))
13264 {
13265 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13266 return 1;
13267
13268 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13269 if (reg_dead_flag)
13270 return reg_dead_flag == 1 ? 1 : 0;
13271
13272 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13273 return 1;
13274 }
13275
13276 if (insn == BB_HEAD (block))
13277 break;
13278
13279 insn = PREV_INSN (insn);
13280 }
13281
13282 /* Look at live-in sets for the basic block that we were in. */
13283 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13284 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13285 return 0;
13286
13287 return 1;
13288 }
13289 \f
13290 /* Note hard registers in X that are used. */
13291
13292 static void
13293 mark_used_regs_combine (rtx x)
13294 {
13295 RTX_CODE code = GET_CODE (x);
13296 unsigned int regno;
13297 int i;
13298
13299 switch (code)
13300 {
13301 case LABEL_REF:
13302 case SYMBOL_REF:
13303 case CONST:
13304 CASE_CONST_ANY:
13305 case PC:
13306 case ADDR_VEC:
13307 case ADDR_DIFF_VEC:
13308 case ASM_INPUT:
13309 /* CC0 must die in the insn after it is set, so we don't need to take
13310 special note of it here. */
13311 case CC0:
13312 return;
13313
13314 case CLOBBER:
13315 /* If we are clobbering a MEM, mark any hard registers inside the
13316 address as used. */
13317 if (MEM_P (XEXP (x, 0)))
13318 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13319 return;
13320
13321 case REG:
13322 regno = REGNO (x);
13323 /* A hard reg in a wide mode may really be multiple registers.
13324 If so, mark all of them just like the first. */
13325 if (regno < FIRST_PSEUDO_REGISTER)
13326 {
13327 /* None of this applies to the stack, frame or arg pointers. */
13328 if (regno == STACK_POINTER_REGNUM
13329 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
13330 || regno == HARD_FRAME_POINTER_REGNUM
13331 #endif
13332 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13333 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13334 || regno == FRAME_POINTER_REGNUM)
13335 return;
13336
13337 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13338 }
13339 return;
13340
13341 case SET:
13342 {
13343 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13344 the address. */
13345 rtx testreg = SET_DEST (x);
13346
13347 while (GET_CODE (testreg) == SUBREG
13348 || GET_CODE (testreg) == ZERO_EXTRACT
13349 || GET_CODE (testreg) == STRICT_LOW_PART)
13350 testreg = XEXP (testreg, 0);
13351
13352 if (MEM_P (testreg))
13353 mark_used_regs_combine (XEXP (testreg, 0));
13354
13355 mark_used_regs_combine (SET_SRC (x));
13356 }
13357 return;
13358
13359 default:
13360 break;
13361 }
13362
13363 /* Recursively scan the operands of this expression. */
13364
13365 {
13366 const char *fmt = GET_RTX_FORMAT (code);
13367
13368 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13369 {
13370 if (fmt[i] == 'e')
13371 mark_used_regs_combine (XEXP (x, i));
13372 else if (fmt[i] == 'E')
13373 {
13374 int j;
13375
13376 for (j = 0; j < XVECLEN (x, i); j++)
13377 mark_used_regs_combine (XVECEXP (x, i, j));
13378 }
13379 }
13380 }
13381 }
13382 \f
13383 /* Remove register number REGNO from the dead registers list of INSN.
13384
13385 Return the note used to record the death, if there was one. */
13386
13387 rtx
13388 remove_death (unsigned int regno, rtx_insn *insn)
13389 {
13390 rtx note = find_regno_note (insn, REG_DEAD, regno);
13391
13392 if (note)
13393 remove_note (insn, note);
13394
13395 return note;
13396 }
13397
13398 /* For each register (hardware or pseudo) used within expression X, if its
13399 death is in an instruction with luid between FROM_LUID (inclusive) and
13400 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13401 list headed by PNOTES.
13402
13403 That said, don't move registers killed by maybe_kill_insn.
13404
13405 This is done when X is being merged by combination into TO_INSN. These
13406 notes will then be distributed as needed. */
13407
13408 static void
13409 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13410 rtx *pnotes)
13411 {
13412 const char *fmt;
13413 int len, i;
13414 enum rtx_code code = GET_CODE (x);
13415
13416 if (code == REG)
13417 {
13418 unsigned int regno = REGNO (x);
13419 rtx_insn *where_dead = reg_stat[regno].last_death;
13420
13421 /* Don't move the register if it gets killed in between from and to. */
13422 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13423 && ! reg_referenced_p (x, maybe_kill_insn))
13424 return;
13425
13426 if (where_dead
13427 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13428 && DF_INSN_LUID (where_dead) >= from_luid
13429 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13430 {
13431 rtx note = remove_death (regno, where_dead);
13432
13433 /* It is possible for the call above to return 0. This can occur
13434 when last_death points to I2 or I1 that we combined with.
13435 In that case make a new note.
13436
13437 We must also check for the case where X is a hard register
13438 and NOTE is a death note for a range of hard registers
13439 including X. In that case, we must put REG_DEAD notes for
13440 the remaining registers in place of NOTE. */
13441
13442 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13443 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13444 > GET_MODE_SIZE (GET_MODE (x))))
13445 {
13446 unsigned int deadregno = REGNO (XEXP (note, 0));
13447 unsigned int deadend = END_REGNO (XEXP (note, 0));
13448 unsigned int ourend = END_REGNO (x);
13449 unsigned int i;
13450
13451 for (i = deadregno; i < deadend; i++)
13452 if (i < regno || i >= ourend)
13453 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13454 }
13455
13456 /* If we didn't find any note, or if we found a REG_DEAD note that
13457 covers only part of the given reg, and we have a multi-reg hard
13458 register, then to be safe we must check for REG_DEAD notes
13459 for each register other than the first. They could have
13460 their own REG_DEAD notes lying around. */
13461 else if ((note == 0
13462 || (note != 0
13463 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13464 < GET_MODE_SIZE (GET_MODE (x)))))
13465 && regno < FIRST_PSEUDO_REGISTER
13466 && REG_NREGS (x) > 1)
13467 {
13468 unsigned int ourend = END_REGNO (x);
13469 unsigned int i, offset;
13470 rtx oldnotes = 0;
13471
13472 if (note)
13473 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13474 else
13475 offset = 1;
13476
13477 for (i = regno + offset; i < ourend; i++)
13478 move_deaths (regno_reg_rtx[i],
13479 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13480 }
13481
13482 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13483 {
13484 XEXP (note, 1) = *pnotes;
13485 *pnotes = note;
13486 }
13487 else
13488 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13489 }
13490
13491 return;
13492 }
13493
13494 else if (GET_CODE (x) == SET)
13495 {
13496 rtx dest = SET_DEST (x);
13497
13498 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13499
13500 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13501 that accesses one word of a multi-word item, some
13502 piece of everything register in the expression is used by
13503 this insn, so remove any old death. */
13504 /* ??? So why do we test for equality of the sizes? */
13505
13506 if (GET_CODE (dest) == ZERO_EXTRACT
13507 || GET_CODE (dest) == STRICT_LOW_PART
13508 || (GET_CODE (dest) == SUBREG
13509 && (((GET_MODE_SIZE (GET_MODE (dest))
13510 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13511 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13512 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13513 {
13514 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13515 return;
13516 }
13517
13518 /* If this is some other SUBREG, we know it replaces the entire
13519 value, so use that as the destination. */
13520 if (GET_CODE (dest) == SUBREG)
13521 dest = SUBREG_REG (dest);
13522
13523 /* If this is a MEM, adjust deaths of anything used in the address.
13524 For a REG (the only other possibility), the entire value is
13525 being replaced so the old value is not used in this insn. */
13526
13527 if (MEM_P (dest))
13528 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13529 to_insn, pnotes);
13530 return;
13531 }
13532
13533 else if (GET_CODE (x) == CLOBBER)
13534 return;
13535
13536 len = GET_RTX_LENGTH (code);
13537 fmt = GET_RTX_FORMAT (code);
13538
13539 for (i = 0; i < len; i++)
13540 {
13541 if (fmt[i] == 'E')
13542 {
13543 int j;
13544 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13545 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13546 to_insn, pnotes);
13547 }
13548 else if (fmt[i] == 'e')
13549 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13550 }
13551 }
13552 \f
13553 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13554 pattern of an insn. X must be a REG. */
13555
13556 static int
13557 reg_bitfield_target_p (rtx x, rtx body)
13558 {
13559 int i;
13560
13561 if (GET_CODE (body) == SET)
13562 {
13563 rtx dest = SET_DEST (body);
13564 rtx target;
13565 unsigned int regno, tregno, endregno, endtregno;
13566
13567 if (GET_CODE (dest) == ZERO_EXTRACT)
13568 target = XEXP (dest, 0);
13569 else if (GET_CODE (dest) == STRICT_LOW_PART)
13570 target = SUBREG_REG (XEXP (dest, 0));
13571 else
13572 return 0;
13573
13574 if (GET_CODE (target) == SUBREG)
13575 target = SUBREG_REG (target);
13576
13577 if (!REG_P (target))
13578 return 0;
13579
13580 tregno = REGNO (target), regno = REGNO (x);
13581 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13582 return target == x;
13583
13584 endtregno = end_hard_regno (GET_MODE (target), tregno);
13585 endregno = end_hard_regno (GET_MODE (x), regno);
13586
13587 return endregno > tregno && regno < endtregno;
13588 }
13589
13590 else if (GET_CODE (body) == PARALLEL)
13591 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13592 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13593 return 1;
13594
13595 return 0;
13596 }
13597 \f
13598 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13599 as appropriate. I3 and I2 are the insns resulting from the combination
13600 insns including FROM (I2 may be zero).
13601
13602 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13603 not need REG_DEAD notes because they are being substituted for. This
13604 saves searching in the most common cases.
13605
13606 Each note in the list is either ignored or placed on some insns, depending
13607 on the type of note. */
13608
13609 static void
13610 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13611 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13612 {
13613 rtx note, next_note;
13614 rtx tem_note;
13615 rtx_insn *tem_insn;
13616
13617 for (note = notes; note; note = next_note)
13618 {
13619 rtx_insn *place = 0, *place2 = 0;
13620
13621 next_note = XEXP (note, 1);
13622 switch (REG_NOTE_KIND (note))
13623 {
13624 case REG_BR_PROB:
13625 case REG_BR_PRED:
13626 /* Doesn't matter much where we put this, as long as it's somewhere.
13627 It is preferable to keep these notes on branches, which is most
13628 likely to be i3. */
13629 place = i3;
13630 break;
13631
13632 case REG_NON_LOCAL_GOTO:
13633 if (JUMP_P (i3))
13634 place = i3;
13635 else
13636 {
13637 gcc_assert (i2 && JUMP_P (i2));
13638 place = i2;
13639 }
13640 break;
13641
13642 case REG_EH_REGION:
13643 /* These notes must remain with the call or trapping instruction. */
13644 if (CALL_P (i3))
13645 place = i3;
13646 else if (i2 && CALL_P (i2))
13647 place = i2;
13648 else
13649 {
13650 gcc_assert (cfun->can_throw_non_call_exceptions);
13651 if (may_trap_p (i3))
13652 place = i3;
13653 else if (i2 && may_trap_p (i2))
13654 place = i2;
13655 /* ??? Otherwise assume we've combined things such that we
13656 can now prove that the instructions can't trap. Drop the
13657 note in this case. */
13658 }
13659 break;
13660
13661 case REG_ARGS_SIZE:
13662 /* ??? How to distribute between i3-i1. Assume i3 contains the
13663 entire adjustment. Assert i3 contains at least some adjust. */
13664 if (!noop_move_p (i3))
13665 {
13666 int old_size, args_size = INTVAL (XEXP (note, 0));
13667 /* fixup_args_size_notes looks at REG_NORETURN note,
13668 so ensure the note is placed there first. */
13669 if (CALL_P (i3))
13670 {
13671 rtx *np;
13672 for (np = &next_note; *np; np = &XEXP (*np, 1))
13673 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13674 {
13675 rtx n = *np;
13676 *np = XEXP (n, 1);
13677 XEXP (n, 1) = REG_NOTES (i3);
13678 REG_NOTES (i3) = n;
13679 break;
13680 }
13681 }
13682 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13683 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13684 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13685 gcc_assert (old_size != args_size
13686 || (CALL_P (i3)
13687 && !ACCUMULATE_OUTGOING_ARGS
13688 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13689 }
13690 break;
13691
13692 case REG_NORETURN:
13693 case REG_SETJMP:
13694 case REG_TM:
13695 case REG_CALL_DECL:
13696 /* These notes must remain with the call. It should not be
13697 possible for both I2 and I3 to be a call. */
13698 if (CALL_P (i3))
13699 place = i3;
13700 else
13701 {
13702 gcc_assert (i2 && CALL_P (i2));
13703 place = i2;
13704 }
13705 break;
13706
13707 case REG_UNUSED:
13708 /* Any clobbers for i3 may still exist, and so we must process
13709 REG_UNUSED notes from that insn.
13710
13711 Any clobbers from i2 or i1 can only exist if they were added by
13712 recog_for_combine. In that case, recog_for_combine created the
13713 necessary REG_UNUSED notes. Trying to keep any original
13714 REG_UNUSED notes from these insns can cause incorrect output
13715 if it is for the same register as the original i3 dest.
13716 In that case, we will notice that the register is set in i3,
13717 and then add a REG_UNUSED note for the destination of i3, which
13718 is wrong. However, it is possible to have REG_UNUSED notes from
13719 i2 or i1 for register which were both used and clobbered, so
13720 we keep notes from i2 or i1 if they will turn into REG_DEAD
13721 notes. */
13722
13723 /* If this register is set or clobbered in I3, put the note there
13724 unless there is one already. */
13725 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13726 {
13727 if (from_insn != i3)
13728 break;
13729
13730 if (! (REG_P (XEXP (note, 0))
13731 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13732 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13733 place = i3;
13734 }
13735 /* Otherwise, if this register is used by I3, then this register
13736 now dies here, so we must put a REG_DEAD note here unless there
13737 is one already. */
13738 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13739 && ! (REG_P (XEXP (note, 0))
13740 ? find_regno_note (i3, REG_DEAD,
13741 REGNO (XEXP (note, 0)))
13742 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13743 {
13744 PUT_REG_NOTE_KIND (note, REG_DEAD);
13745 place = i3;
13746 }
13747 break;
13748
13749 case REG_EQUAL:
13750 case REG_EQUIV:
13751 case REG_NOALIAS:
13752 /* These notes say something about results of an insn. We can
13753 only support them if they used to be on I3 in which case they
13754 remain on I3. Otherwise they are ignored.
13755
13756 If the note refers to an expression that is not a constant, we
13757 must also ignore the note since we cannot tell whether the
13758 equivalence is still true. It might be possible to do
13759 slightly better than this (we only have a problem if I2DEST
13760 or I1DEST is present in the expression), but it doesn't
13761 seem worth the trouble. */
13762
13763 if (from_insn == i3
13764 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13765 place = i3;
13766 break;
13767
13768 case REG_INC:
13769 /* These notes say something about how a register is used. They must
13770 be present on any use of the register in I2 or I3. */
13771 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13772 place = i3;
13773
13774 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13775 {
13776 if (place)
13777 place2 = i2;
13778 else
13779 place = i2;
13780 }
13781 break;
13782
13783 case REG_LABEL_TARGET:
13784 case REG_LABEL_OPERAND:
13785 /* This can show up in several ways -- either directly in the
13786 pattern, or hidden off in the constant pool with (or without?)
13787 a REG_EQUAL note. */
13788 /* ??? Ignore the without-reg_equal-note problem for now. */
13789 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13790 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13791 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13792 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0)))
13793 place = i3;
13794
13795 if (i2
13796 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13797 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13798 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13799 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0))))
13800 {
13801 if (place)
13802 place2 = i2;
13803 else
13804 place = i2;
13805 }
13806
13807 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13808 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13809 there. */
13810 if (place && JUMP_P (place)
13811 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13812 && (JUMP_LABEL (place) == NULL
13813 || JUMP_LABEL (place) == XEXP (note, 0)))
13814 {
13815 rtx label = JUMP_LABEL (place);
13816
13817 if (!label)
13818 JUMP_LABEL (place) = XEXP (note, 0);
13819 else if (LABEL_P (label))
13820 LABEL_NUSES (label)--;
13821 }
13822
13823 if (place2 && JUMP_P (place2)
13824 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13825 && (JUMP_LABEL (place2) == NULL
13826 || JUMP_LABEL (place2) == XEXP (note, 0)))
13827 {
13828 rtx label = JUMP_LABEL (place2);
13829
13830 if (!label)
13831 JUMP_LABEL (place2) = XEXP (note, 0);
13832 else if (LABEL_P (label))
13833 LABEL_NUSES (label)--;
13834 place2 = 0;
13835 }
13836 break;
13837
13838 case REG_NONNEG:
13839 /* This note says something about the value of a register prior
13840 to the execution of an insn. It is too much trouble to see
13841 if the note is still correct in all situations. It is better
13842 to simply delete it. */
13843 break;
13844
13845 case REG_DEAD:
13846 /* If we replaced the right hand side of FROM_INSN with a
13847 REG_EQUAL note, the original use of the dying register
13848 will not have been combined into I3 and I2. In such cases,
13849 FROM_INSN is guaranteed to be the first of the combined
13850 instructions, so we simply need to search back before
13851 FROM_INSN for the previous use or set of this register,
13852 then alter the notes there appropriately.
13853
13854 If the register is used as an input in I3, it dies there.
13855 Similarly for I2, if it is nonzero and adjacent to I3.
13856
13857 If the register is not used as an input in either I3 or I2
13858 and it is not one of the registers we were supposed to eliminate,
13859 there are two possibilities. We might have a non-adjacent I2
13860 or we might have somehow eliminated an additional register
13861 from a computation. For example, we might have had A & B where
13862 we discover that B will always be zero. In this case we will
13863 eliminate the reference to A.
13864
13865 In both cases, we must search to see if we can find a previous
13866 use of A and put the death note there. */
13867
13868 if (from_insn
13869 && from_insn == i2mod
13870 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13871 tem_insn = from_insn;
13872 else
13873 {
13874 if (from_insn
13875 && CALL_P (from_insn)
13876 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13877 place = from_insn;
13878 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13879 place = i3;
13880 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13881 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13882 place = i2;
13883 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13884 && !(i2mod
13885 && reg_overlap_mentioned_p (XEXP (note, 0),
13886 i2mod_old_rhs)))
13887 || rtx_equal_p (XEXP (note, 0), elim_i1)
13888 || rtx_equal_p (XEXP (note, 0), elim_i0))
13889 break;
13890 tem_insn = i3;
13891 /* If the new I2 sets the same register that is marked dead
13892 in the note, the note now should not be put on I2, as the
13893 note refers to a previous incarnation of the reg. */
13894 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
13895 tem_insn = i2;
13896 }
13897
13898 if (place == 0)
13899 {
13900 basic_block bb = this_basic_block;
13901
13902 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
13903 {
13904 if (!NONDEBUG_INSN_P (tem_insn))
13905 {
13906 if (tem_insn == BB_HEAD (bb))
13907 break;
13908 continue;
13909 }
13910
13911 /* If the register is being set at TEM_INSN, see if that is all
13912 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
13913 into a REG_UNUSED note instead. Don't delete sets to
13914 global register vars. */
13915 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13916 || !global_regs[REGNO (XEXP (note, 0))])
13917 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
13918 {
13919 rtx set = single_set (tem_insn);
13920 rtx inner_dest = 0;
13921 rtx_insn *cc0_setter = NULL;
13922
13923 if (set != 0)
13924 for (inner_dest = SET_DEST (set);
13925 (GET_CODE (inner_dest) == STRICT_LOW_PART
13926 || GET_CODE (inner_dest) == SUBREG
13927 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13928 inner_dest = XEXP (inner_dest, 0))
13929 ;
13930
13931 /* Verify that it was the set, and not a clobber that
13932 modified the register.
13933
13934 CC0 targets must be careful to maintain setter/user
13935 pairs. If we cannot delete the setter due to side
13936 effects, mark the user with an UNUSED note instead
13937 of deleting it. */
13938
13939 if (set != 0 && ! side_effects_p (SET_SRC (set))
13940 && rtx_equal_p (XEXP (note, 0), inner_dest)
13941 #if HAVE_cc0
13942 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13943 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
13944 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13945 #endif
13946 )
13947 {
13948 /* Move the notes and links of TEM_INSN elsewhere.
13949 This might delete other dead insns recursively.
13950 First set the pattern to something that won't use
13951 any register. */
13952 rtx old_notes = REG_NOTES (tem_insn);
13953
13954 PATTERN (tem_insn) = pc_rtx;
13955 REG_NOTES (tem_insn) = NULL;
13956
13957 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
13958 NULL_RTX, NULL_RTX, NULL_RTX);
13959 distribute_links (LOG_LINKS (tem_insn));
13960
13961 SET_INSN_DELETED (tem_insn);
13962 if (tem_insn == i2)
13963 i2 = NULL;
13964
13965 /* Delete the setter too. */
13966 if (cc0_setter)
13967 {
13968 PATTERN (cc0_setter) = pc_rtx;
13969 old_notes = REG_NOTES (cc0_setter);
13970 REG_NOTES (cc0_setter) = NULL;
13971
13972 distribute_notes (old_notes, cc0_setter,
13973 cc0_setter, NULL,
13974 NULL_RTX, NULL_RTX, NULL_RTX);
13975 distribute_links (LOG_LINKS (cc0_setter));
13976
13977 SET_INSN_DELETED (cc0_setter);
13978 if (cc0_setter == i2)
13979 i2 = NULL;
13980 }
13981 }
13982 else
13983 {
13984 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13985
13986 /* If there isn't already a REG_UNUSED note, put one
13987 here. Do not place a REG_DEAD note, even if
13988 the register is also used here; that would not
13989 match the algorithm used in lifetime analysis
13990 and can cause the consistency check in the
13991 scheduler to fail. */
13992 if (! find_regno_note (tem_insn, REG_UNUSED,
13993 REGNO (XEXP (note, 0))))
13994 place = tem_insn;
13995 break;
13996 }
13997 }
13998 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
13999 || (CALL_P (tem_insn)
14000 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14001 {
14002 place = tem_insn;
14003
14004 /* If we are doing a 3->2 combination, and we have a
14005 register which formerly died in i3 and was not used
14006 by i2, which now no longer dies in i3 and is used in
14007 i2 but does not die in i2, and place is between i2
14008 and i3, then we may need to move a link from place to
14009 i2. */
14010 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14011 && from_insn
14012 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14013 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14014 {
14015 struct insn_link *links = LOG_LINKS (place);
14016 LOG_LINKS (place) = NULL;
14017 distribute_links (links);
14018 }
14019 break;
14020 }
14021
14022 if (tem_insn == BB_HEAD (bb))
14023 break;
14024 }
14025
14026 }
14027
14028 /* If the register is set or already dead at PLACE, we needn't do
14029 anything with this note if it is still a REG_DEAD note.
14030 We check here if it is set at all, not if is it totally replaced,
14031 which is what `dead_or_set_p' checks, so also check for it being
14032 set partially. */
14033
14034 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14035 {
14036 unsigned int regno = REGNO (XEXP (note, 0));
14037 reg_stat_type *rsp = &reg_stat[regno];
14038
14039 if (dead_or_set_p (place, XEXP (note, 0))
14040 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14041 {
14042 /* Unless the register previously died in PLACE, clear
14043 last_death. [I no longer understand why this is
14044 being done.] */
14045 if (rsp->last_death != place)
14046 rsp->last_death = 0;
14047 place = 0;
14048 }
14049 else
14050 rsp->last_death = place;
14051
14052 /* If this is a death note for a hard reg that is occupying
14053 multiple registers, ensure that we are still using all
14054 parts of the object. If we find a piece of the object
14055 that is unused, we must arrange for an appropriate REG_DEAD
14056 note to be added for it. However, we can't just emit a USE
14057 and tag the note to it, since the register might actually
14058 be dead; so we recourse, and the recursive call then finds
14059 the previous insn that used this register. */
14060
14061 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14062 {
14063 unsigned int endregno = END_REGNO (XEXP (note, 0));
14064 bool all_used = true;
14065 unsigned int i;
14066
14067 for (i = regno; i < endregno; i++)
14068 if ((! refers_to_regno_p (i, PATTERN (place))
14069 && ! find_regno_fusage (place, USE, i))
14070 || dead_or_set_regno_p (place, i))
14071 {
14072 all_used = false;
14073 break;
14074 }
14075
14076 if (! all_used)
14077 {
14078 /* Put only REG_DEAD notes for pieces that are
14079 not already dead or set. */
14080
14081 for (i = regno; i < endregno;
14082 i += hard_regno_nregs[i][reg_raw_mode[i]])
14083 {
14084 rtx piece = regno_reg_rtx[i];
14085 basic_block bb = this_basic_block;
14086
14087 if (! dead_or_set_p (place, piece)
14088 && ! reg_bitfield_target_p (piece,
14089 PATTERN (place)))
14090 {
14091 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14092 NULL_RTX);
14093
14094 distribute_notes (new_note, place, place,
14095 NULL, NULL_RTX, NULL_RTX,
14096 NULL_RTX);
14097 }
14098 else if (! refers_to_regno_p (i, PATTERN (place))
14099 && ! find_regno_fusage (place, USE, i))
14100 for (tem_insn = PREV_INSN (place); ;
14101 tem_insn = PREV_INSN (tem_insn))
14102 {
14103 if (!NONDEBUG_INSN_P (tem_insn))
14104 {
14105 if (tem_insn == BB_HEAD (bb))
14106 break;
14107 continue;
14108 }
14109 if (dead_or_set_p (tem_insn, piece)
14110 || reg_bitfield_target_p (piece,
14111 PATTERN (tem_insn)))
14112 {
14113 add_reg_note (tem_insn, REG_UNUSED, piece);
14114 break;
14115 }
14116 }
14117 }
14118
14119 place = 0;
14120 }
14121 }
14122 }
14123 break;
14124
14125 default:
14126 /* Any other notes should not be present at this point in the
14127 compilation. */
14128 gcc_unreachable ();
14129 }
14130
14131 if (place)
14132 {
14133 XEXP (note, 1) = REG_NOTES (place);
14134 REG_NOTES (place) = note;
14135 }
14136
14137 if (place2)
14138 add_shallow_copy_of_reg_note (place2, note);
14139 }
14140 }
14141 \f
14142 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14143 I3, I2, and I1 to new locations. This is also called to add a link
14144 pointing at I3 when I3's destination is changed. */
14145
14146 static void
14147 distribute_links (struct insn_link *links)
14148 {
14149 struct insn_link *link, *next_link;
14150
14151 for (link = links; link; link = next_link)
14152 {
14153 rtx_insn *place = 0;
14154 rtx_insn *insn;
14155 rtx set, reg;
14156
14157 next_link = link->next;
14158
14159 /* If the insn that this link points to is a NOTE, ignore it. */
14160 if (NOTE_P (link->insn))
14161 continue;
14162
14163 set = 0;
14164 rtx pat = PATTERN (link->insn);
14165 if (GET_CODE (pat) == SET)
14166 set = pat;
14167 else if (GET_CODE (pat) == PARALLEL)
14168 {
14169 int i;
14170 for (i = 0; i < XVECLEN (pat, 0); i++)
14171 {
14172 set = XVECEXP (pat, 0, i);
14173 if (GET_CODE (set) != SET)
14174 continue;
14175
14176 reg = SET_DEST (set);
14177 while (GET_CODE (reg) == ZERO_EXTRACT
14178 || GET_CODE (reg) == STRICT_LOW_PART
14179 || GET_CODE (reg) == SUBREG)
14180 reg = XEXP (reg, 0);
14181
14182 if (!REG_P (reg))
14183 continue;
14184
14185 if (REGNO (reg) == link->regno)
14186 break;
14187 }
14188 if (i == XVECLEN (pat, 0))
14189 continue;
14190 }
14191 else
14192 continue;
14193
14194 reg = SET_DEST (set);
14195
14196 while (GET_CODE (reg) == ZERO_EXTRACT
14197 || GET_CODE (reg) == STRICT_LOW_PART
14198 || GET_CODE (reg) == SUBREG)
14199 reg = XEXP (reg, 0);
14200
14201 /* A LOG_LINK is defined as being placed on the first insn that uses
14202 a register and points to the insn that sets the register. Start
14203 searching at the next insn after the target of the link and stop
14204 when we reach a set of the register or the end of the basic block.
14205
14206 Note that this correctly handles the link that used to point from
14207 I3 to I2. Also note that not much searching is typically done here
14208 since most links don't point very far away. */
14209
14210 for (insn = NEXT_INSN (link->insn);
14211 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14212 || BB_HEAD (this_basic_block->next_bb) != insn));
14213 insn = NEXT_INSN (insn))
14214 if (DEBUG_INSN_P (insn))
14215 continue;
14216 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14217 {
14218 if (reg_referenced_p (reg, PATTERN (insn)))
14219 place = insn;
14220 break;
14221 }
14222 else if (CALL_P (insn)
14223 && find_reg_fusage (insn, USE, reg))
14224 {
14225 place = insn;
14226 break;
14227 }
14228 else if (INSN_P (insn) && reg_set_p (reg, insn))
14229 break;
14230
14231 /* If we found a place to put the link, place it there unless there
14232 is already a link to the same insn as LINK at that point. */
14233
14234 if (place)
14235 {
14236 struct insn_link *link2;
14237
14238 FOR_EACH_LOG_LINK (link2, place)
14239 if (link2->insn == link->insn && link2->regno == link->regno)
14240 break;
14241
14242 if (link2 == NULL)
14243 {
14244 link->next = LOG_LINKS (place);
14245 LOG_LINKS (place) = link;
14246
14247 /* Set added_links_insn to the earliest insn we added a
14248 link to. */
14249 if (added_links_insn == 0
14250 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14251 added_links_insn = place;
14252 }
14253 }
14254 }
14255 }
14256 \f
14257 /* Check for any register or memory mentioned in EQUIV that is not
14258 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14259 of EXPR where some registers may have been replaced by constants. */
14260
14261 static bool
14262 unmentioned_reg_p (rtx equiv, rtx expr)
14263 {
14264 subrtx_iterator::array_type array;
14265 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14266 {
14267 const_rtx x = *iter;
14268 if ((REG_P (x) || MEM_P (x))
14269 && !reg_mentioned_p (x, expr))
14270 return true;
14271 }
14272 return false;
14273 }
14274 \f
14275 DEBUG_FUNCTION void
14276 dump_combine_stats (FILE *file)
14277 {
14278 fprintf
14279 (file,
14280 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14281 combine_attempts, combine_merges, combine_extras, combine_successes);
14282 }
14283
14284 void
14285 dump_combine_total_stats (FILE *file)
14286 {
14287 fprintf
14288 (file,
14289 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14290 total_attempts, total_merges, total_extras, total_successes);
14291 }
14292 \f
14293 /* Try combining insns through substitution. */
14294 static unsigned int
14295 rest_of_handle_combine (void)
14296 {
14297 int rebuild_jump_labels_after_combine;
14298
14299 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14300 df_note_add_problem ();
14301 df_analyze ();
14302
14303 regstat_init_n_sets_and_refs ();
14304 reg_n_sets_max = max_reg_num ();
14305
14306 rebuild_jump_labels_after_combine
14307 = combine_instructions (get_insns (), max_reg_num ());
14308
14309 /* Combining insns may have turned an indirect jump into a
14310 direct jump. Rebuild the JUMP_LABEL fields of jumping
14311 instructions. */
14312 if (rebuild_jump_labels_after_combine)
14313 {
14314 timevar_push (TV_JUMP);
14315 rebuild_jump_labels (get_insns ());
14316 cleanup_cfg (0);
14317 timevar_pop (TV_JUMP);
14318 }
14319
14320 regstat_free_n_sets_and_refs ();
14321 return 0;
14322 }
14323
14324 namespace {
14325
14326 const pass_data pass_data_combine =
14327 {
14328 RTL_PASS, /* type */
14329 "combine", /* name */
14330 OPTGROUP_NONE, /* optinfo_flags */
14331 TV_COMBINE, /* tv_id */
14332 PROP_cfglayout, /* properties_required */
14333 0, /* properties_provided */
14334 0, /* properties_destroyed */
14335 0, /* todo_flags_start */
14336 TODO_df_finish, /* todo_flags_finish */
14337 };
14338
14339 class pass_combine : public rtl_opt_pass
14340 {
14341 public:
14342 pass_combine (gcc::context *ctxt)
14343 : rtl_opt_pass (pass_data_combine, ctxt)
14344 {}
14345
14346 /* opt_pass methods: */
14347 virtual bool gate (function *) { return (optimize > 0); }
14348 virtual unsigned int execute (function *)
14349 {
14350 return rest_of_handle_combine ();
14351 }
14352
14353 }; // class pass_combine
14354
14355 } // anon namespace
14356
14357 rtl_opt_pass *
14358 make_pass_combine (gcc::context *ctxt)
14359 {
14360 return new pass_combine (ctxt);
14361 }