]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/combine.c
Update copyright years.
[thirdparty/gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "expr.h"
103 #include "params.h"
104 #include "tree-pass.h"
105 #include "valtrack.h"
106 #include "rtl-iter.h"
107 #include "print-rtl.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx_insn *i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 struct reg_stat_type {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx_insn *last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx_insn *last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 };
254
255
256 static vec<reg_stat_type> reg_stat;
257
258 /* One plus the highest pseudo for which we track REG_N_SETS.
259 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
260 but during combine_split_insns new pseudos can be created. As we don't have
261 updated DF information in that case, it is hard to initialize the array
262 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
263 so instead of growing the arrays, just assume all newly created pseudos
264 during combine might be set multiple times. */
265
266 static unsigned int reg_n_sets_max;
267
268 /* Record the luid of the last insn that invalidated memory
269 (anything that writes memory, and subroutine calls, but not pushes). */
270
271 static int mem_last_set;
272
273 /* Record the luid of the last CALL_INSN
274 so we can tell whether a potential combination crosses any calls. */
275
276 static int last_call_luid;
277
278 /* When `subst' is called, this is the insn that is being modified
279 (by combining in a previous insn). The PATTERN of this insn
280 is still the old pattern partially modified and it should not be
281 looked at, but this may be used to examine the successors of the insn
282 to judge whether a simplification is valid. */
283
284 static rtx_insn *subst_insn;
285
286 /* This is the lowest LUID that `subst' is currently dealing with.
287 get_last_value will not return a value if the register was set at or
288 after this LUID. If not for this mechanism, we could get confused if
289 I2 or I1 in try_combine were an insn that used the old value of a register
290 to obtain a new value. In that case, we might erroneously get the
291 new value of the register when we wanted the old one. */
292
293 static int subst_low_luid;
294
295 /* This contains any hard registers that are used in newpat; reg_dead_at_p
296 must consider all these registers to be always live. */
297
298 static HARD_REG_SET newpat_used_regs;
299
300 /* This is an insn to which a LOG_LINKS entry has been added. If this
301 insn is the earlier than I2 or I3, combine should rescan starting at
302 that location. */
303
304 static rtx_insn *added_links_insn;
305
306 /* And similarly, for notes. */
307
308 static rtx_insn *added_notes_insn;
309
310 /* Basic block in which we are performing combines. */
311 static basic_block this_basic_block;
312 static bool optimize_this_for_speed_p;
313
314 \f
315 /* Length of the currently allocated uid_insn_cost array. */
316
317 static int max_uid_known;
318
319 /* The following array records the insn_cost for every insn
320 in the instruction stream. */
321
322 static int *uid_insn_cost;
323
324 /* The following array records the LOG_LINKS for every insn in the
325 instruction stream as struct insn_link pointers. */
326
327 struct insn_link {
328 rtx_insn *insn;
329 unsigned int regno;
330 struct insn_link *next;
331 };
332
333 static struct insn_link **uid_log_links;
334
335 static inline int
336 insn_uid_check (const_rtx insn)
337 {
338 int uid = INSN_UID (insn);
339 gcc_checking_assert (uid <= max_uid_known);
340 return uid;
341 }
342
343 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
344 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
345
346 #define FOR_EACH_LOG_LINK(L, INSN) \
347 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
348
349 /* Links for LOG_LINKS are allocated from this obstack. */
350
351 static struct obstack insn_link_obstack;
352
353 /* Allocate a link. */
354
355 static inline struct insn_link *
356 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
357 {
358 struct insn_link *l
359 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
360 sizeof (struct insn_link));
361 l->insn = insn;
362 l->regno = regno;
363 l->next = next;
364 return l;
365 }
366
367 /* Incremented for each basic block. */
368
369 static int label_tick;
370
371 /* Reset to label_tick for each extended basic block in scanning order. */
372
373 static int label_tick_ebb_start;
374
375 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
376 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
377
378 static scalar_int_mode nonzero_bits_mode;
379
380 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
381 be safely used. It is zero while computing them and after combine has
382 completed. This former test prevents propagating values based on
383 previously set values, which can be incorrect if a variable is modified
384 in a loop. */
385
386 static int nonzero_sign_valid;
387
388 \f
389 /* Record one modification to rtl structure
390 to be undone by storing old_contents into *where. */
391
392 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
393
394 struct undo
395 {
396 struct undo *next;
397 enum undo_kind kind;
398 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
399 union { rtx *r; int *i; struct insn_link **l; } where;
400 };
401
402 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
403 num_undo says how many are currently recorded.
404
405 other_insn is nonzero if we have modified some other insn in the process
406 of working on subst_insn. It must be verified too. */
407
408 struct undobuf
409 {
410 struct undo *undos;
411 struct undo *frees;
412 rtx_insn *other_insn;
413 };
414
415 static struct undobuf undobuf;
416
417 /* Number of times the pseudo being substituted for
418 was found and replaced. */
419
420 static int n_occurrences;
421
422 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
423 scalar_int_mode,
424 unsigned HOST_WIDE_INT *);
425 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
426 scalar_int_mode,
427 unsigned int *);
428 static void do_SUBST (rtx *, rtx);
429 static void do_SUBST_INT (int *, int);
430 static void init_reg_last (void);
431 static void setup_incoming_promotions (rtx_insn *);
432 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
433 static int cant_combine_insn_p (rtx_insn *);
434 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 rtx_insn *, rtx_insn *, rtx *, rtx *);
436 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
437 static int contains_muldiv (rtx);
438 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
439 int *, rtx_insn *);
440 static void undo_all (void);
441 static void undo_commit (void);
442 static rtx *find_split_point (rtx *, rtx_insn *, bool);
443 static rtx subst (rtx, rtx, rtx, int, int, int);
444 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
445 static rtx simplify_if_then_else (rtx);
446 static rtx simplify_set (rtx);
447 static rtx simplify_logical (rtx);
448 static rtx expand_compound_operation (rtx);
449 static const_rtx expand_field_assignment (const_rtx);
450 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
451 rtx, unsigned HOST_WIDE_INT, int, int, int);
452 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
453 unsigned HOST_WIDE_INT *);
454 static rtx canon_reg_for_combine (rtx, rtx);
455 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
456 scalar_int_mode, unsigned HOST_WIDE_INT, int);
457 static rtx force_to_mode (rtx, machine_mode,
458 unsigned HOST_WIDE_INT, int);
459 static rtx if_then_else_cond (rtx, rtx *, rtx *);
460 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
461 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
462 static rtx make_field_assignment (rtx);
463 static rtx apply_distributive_law (rtx);
464 static rtx distribute_and_simplify_rtx (rtx, int);
465 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
466 unsigned HOST_WIDE_INT);
467 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
468 unsigned HOST_WIDE_INT);
469 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
470 HOST_WIDE_INT, machine_mode, int *);
471 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
472 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
473 int);
474 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
475 static rtx gen_lowpart_for_combine (machine_mode, rtx);
476 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
477 rtx, rtx *);
478 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
479 static void update_table_tick (rtx);
480 static void record_value_for_reg (rtx, rtx_insn *, rtx);
481 static void check_promoted_subreg (rtx_insn *, rtx);
482 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
483 static void record_dead_and_set_regs (rtx_insn *);
484 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
485 static rtx get_last_value (const_rtx);
486 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
487 static int reg_dead_at_p (rtx, rtx_insn *);
488 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
489 static int reg_bitfield_target_p (rtx, rtx);
490 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
491 static void distribute_links (struct insn_link *);
492 static void mark_used_regs_combine (rtx);
493 static void record_promoted_value (rtx_insn *, rtx);
494 static bool unmentioned_reg_p (rtx, rtx);
495 static void record_truncated_values (rtx *, void *);
496 static bool reg_truncated_to_mode (machine_mode, const_rtx);
497 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
498 \f
499
500 /* It is not safe to use ordinary gen_lowpart in combine.
501 See comments in gen_lowpart_for_combine. */
502 #undef RTL_HOOKS_GEN_LOWPART
503 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
504
505 /* Our implementation of gen_lowpart never emits a new pseudo. */
506 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
507 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
508
509 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
510 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
511
512 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
513 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
514
515 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
516 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
517
518 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
519
520 \f
521 /* Convenience wrapper for the canonicalize_comparison target hook.
522 Target hooks cannot use enum rtx_code. */
523 static inline void
524 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
525 bool op0_preserve_value)
526 {
527 int code_int = (int)*code;
528 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
529 *code = (enum rtx_code)code_int;
530 }
531
532 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
533 PATTERN can not be split. Otherwise, it returns an insn sequence.
534 This is a wrapper around split_insns which ensures that the
535 reg_stat vector is made larger if the splitter creates a new
536 register. */
537
538 static rtx_insn *
539 combine_split_insns (rtx pattern, rtx_insn *insn)
540 {
541 rtx_insn *ret;
542 unsigned int nregs;
543
544 ret = split_insns (pattern, insn);
545 nregs = max_reg_num ();
546 if (nregs > reg_stat.length ())
547 reg_stat.safe_grow_cleared (nregs);
548 return ret;
549 }
550
551 /* This is used by find_single_use to locate an rtx in LOC that
552 contains exactly one use of DEST, which is typically either a REG
553 or CC0. It returns a pointer to the innermost rtx expression
554 containing DEST. Appearances of DEST that are being used to
555 totally replace it are not counted. */
556
557 static rtx *
558 find_single_use_1 (rtx dest, rtx *loc)
559 {
560 rtx x = *loc;
561 enum rtx_code code = GET_CODE (x);
562 rtx *result = NULL;
563 rtx *this_result;
564 int i;
565 const char *fmt;
566
567 switch (code)
568 {
569 case CONST:
570 case LABEL_REF:
571 case SYMBOL_REF:
572 CASE_CONST_ANY:
573 case CLOBBER:
574 case CLOBBER_HIGH:
575 return 0;
576
577 case SET:
578 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
579 of a REG that occupies all of the REG, the insn uses DEST if
580 it is mentioned in the destination or the source. Otherwise, we
581 need just check the source. */
582 if (GET_CODE (SET_DEST (x)) != CC0
583 && GET_CODE (SET_DEST (x)) != PC
584 && !REG_P (SET_DEST (x))
585 && ! (GET_CODE (SET_DEST (x)) == SUBREG
586 && REG_P (SUBREG_REG (SET_DEST (x)))
587 && !read_modify_subreg_p (SET_DEST (x))))
588 break;
589
590 return find_single_use_1 (dest, &SET_SRC (x));
591
592 case MEM:
593 case SUBREG:
594 return find_single_use_1 (dest, &XEXP (x, 0));
595
596 default:
597 break;
598 }
599
600 /* If it wasn't one of the common cases above, check each expression and
601 vector of this code. Look for a unique usage of DEST. */
602
603 fmt = GET_RTX_FORMAT (code);
604 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
605 {
606 if (fmt[i] == 'e')
607 {
608 if (dest == XEXP (x, i)
609 || (REG_P (dest) && REG_P (XEXP (x, i))
610 && REGNO (dest) == REGNO (XEXP (x, i))))
611 this_result = loc;
612 else
613 this_result = find_single_use_1 (dest, &XEXP (x, i));
614
615 if (result == NULL)
616 result = this_result;
617 else if (this_result)
618 /* Duplicate usage. */
619 return NULL;
620 }
621 else if (fmt[i] == 'E')
622 {
623 int j;
624
625 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
626 {
627 if (XVECEXP (x, i, j) == dest
628 || (REG_P (dest)
629 && REG_P (XVECEXP (x, i, j))
630 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
631 this_result = loc;
632 else
633 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
634
635 if (result == NULL)
636 result = this_result;
637 else if (this_result)
638 return NULL;
639 }
640 }
641 }
642
643 return result;
644 }
645
646
647 /* See if DEST, produced in INSN, is used only a single time in the
648 sequel. If so, return a pointer to the innermost rtx expression in which
649 it is used.
650
651 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
652
653 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
654 care about REG_DEAD notes or LOG_LINKS.
655
656 Otherwise, we find the single use by finding an insn that has a
657 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
658 only referenced once in that insn, we know that it must be the first
659 and last insn referencing DEST. */
660
661 static rtx *
662 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
663 {
664 basic_block bb;
665 rtx_insn *next;
666 rtx *result;
667 struct insn_link *link;
668
669 if (dest == cc0_rtx)
670 {
671 next = NEXT_INSN (insn);
672 if (next == 0
673 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
674 return 0;
675
676 result = find_single_use_1 (dest, &PATTERN (next));
677 if (result && ploc)
678 *ploc = next;
679 return result;
680 }
681
682 if (!REG_P (dest))
683 return 0;
684
685 bb = BLOCK_FOR_INSN (insn);
686 for (next = NEXT_INSN (insn);
687 next && BLOCK_FOR_INSN (next) == bb;
688 next = NEXT_INSN (next))
689 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
690 {
691 FOR_EACH_LOG_LINK (link, next)
692 if (link->insn == insn && link->regno == REGNO (dest))
693 break;
694
695 if (link)
696 {
697 result = find_single_use_1 (dest, &PATTERN (next));
698 if (ploc)
699 *ploc = next;
700 return result;
701 }
702 }
703
704 return 0;
705 }
706 \f
707 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
708 insn. The substitution can be undone by undo_all. If INTO is already
709 set to NEWVAL, do not record this change. Because computing NEWVAL might
710 also call SUBST, we have to compute it before we put anything into
711 the undo table. */
712
713 static void
714 do_SUBST (rtx *into, rtx newval)
715 {
716 struct undo *buf;
717 rtx oldval = *into;
718
719 if (oldval == newval)
720 return;
721
722 /* We'd like to catch as many invalid transformations here as
723 possible. Unfortunately, there are way too many mode changes
724 that are perfectly valid, so we'd waste too much effort for
725 little gain doing the checks here. Focus on catching invalid
726 transformations involving integer constants. */
727 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
728 && CONST_INT_P (newval))
729 {
730 /* Sanity check that we're replacing oldval with a CONST_INT
731 that is a valid sign-extension for the original mode. */
732 gcc_assert (INTVAL (newval)
733 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
734
735 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
736 CONST_INT is not valid, because after the replacement, the
737 original mode would be gone. Unfortunately, we can't tell
738 when do_SUBST is called to replace the operand thereof, so we
739 perform this test on oldval instead, checking whether an
740 invalid replacement took place before we got here. */
741 gcc_assert (!(GET_CODE (oldval) == SUBREG
742 && CONST_INT_P (SUBREG_REG (oldval))));
743 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
744 && CONST_INT_P (XEXP (oldval, 0))));
745 }
746
747 if (undobuf.frees)
748 buf = undobuf.frees, undobuf.frees = buf->next;
749 else
750 buf = XNEW (struct undo);
751
752 buf->kind = UNDO_RTX;
753 buf->where.r = into;
754 buf->old_contents.r = oldval;
755 *into = newval;
756
757 buf->next = undobuf.undos, undobuf.undos = buf;
758 }
759
760 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
761
762 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
763 for the value of a HOST_WIDE_INT value (including CONST_INT) is
764 not safe. */
765
766 static void
767 do_SUBST_INT (int *into, int newval)
768 {
769 struct undo *buf;
770 int oldval = *into;
771
772 if (oldval == newval)
773 return;
774
775 if (undobuf.frees)
776 buf = undobuf.frees, undobuf.frees = buf->next;
777 else
778 buf = XNEW (struct undo);
779
780 buf->kind = UNDO_INT;
781 buf->where.i = into;
782 buf->old_contents.i = oldval;
783 *into = newval;
784
785 buf->next = undobuf.undos, undobuf.undos = buf;
786 }
787
788 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
789
790 /* Similar to SUBST, but just substitute the mode. This is used when
791 changing the mode of a pseudo-register, so that any other
792 references to the entry in the regno_reg_rtx array will change as
793 well. */
794
795 static void
796 do_SUBST_MODE (rtx *into, machine_mode newval)
797 {
798 struct undo *buf;
799 machine_mode oldval = GET_MODE (*into);
800
801 if (oldval == newval)
802 return;
803
804 if (undobuf.frees)
805 buf = undobuf.frees, undobuf.frees = buf->next;
806 else
807 buf = XNEW (struct undo);
808
809 buf->kind = UNDO_MODE;
810 buf->where.r = into;
811 buf->old_contents.m = oldval;
812 adjust_reg_mode (*into, newval);
813
814 buf->next = undobuf.undos, undobuf.undos = buf;
815 }
816
817 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
818
819 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
820
821 static void
822 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
823 {
824 struct undo *buf;
825 struct insn_link * oldval = *into;
826
827 if (oldval == newval)
828 return;
829
830 if (undobuf.frees)
831 buf = undobuf.frees, undobuf.frees = buf->next;
832 else
833 buf = XNEW (struct undo);
834
835 buf->kind = UNDO_LINKS;
836 buf->where.l = into;
837 buf->old_contents.l = oldval;
838 *into = newval;
839
840 buf->next = undobuf.undos, undobuf.undos = buf;
841 }
842
843 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
844 \f
845 /* Subroutine of try_combine. Determine whether the replacement patterns
846 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
847 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
848 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
849 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
850 of all the instructions can be estimated and the replacements are more
851 expensive than the original sequence. */
852
853 static bool
854 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
855 rtx newpat, rtx newi2pat, rtx newotherpat)
856 {
857 int i0_cost, i1_cost, i2_cost, i3_cost;
858 int new_i2_cost, new_i3_cost;
859 int old_cost, new_cost;
860
861 /* Lookup the original insn_costs. */
862 i2_cost = INSN_COST (i2);
863 i3_cost = INSN_COST (i3);
864
865 if (i1)
866 {
867 i1_cost = INSN_COST (i1);
868 if (i0)
869 {
870 i0_cost = INSN_COST (i0);
871 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
872 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
873 }
874 else
875 {
876 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
877 ? i1_cost + i2_cost + i3_cost : 0);
878 i0_cost = 0;
879 }
880 }
881 else
882 {
883 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
884 i1_cost = i0_cost = 0;
885 }
886
887 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
888 correct that. */
889 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
890 old_cost -= i1_cost;
891
892
893 /* Calculate the replacement insn_costs. */
894 rtx tmp = PATTERN (i3);
895 PATTERN (i3) = newpat;
896 int tmpi = INSN_CODE (i3);
897 INSN_CODE (i3) = -1;
898 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
899 PATTERN (i3) = tmp;
900 INSN_CODE (i3) = tmpi;
901 if (newi2pat)
902 {
903 tmp = PATTERN (i2);
904 PATTERN (i2) = newi2pat;
905 tmpi = INSN_CODE (i2);
906 INSN_CODE (i2) = -1;
907 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
908 PATTERN (i2) = tmp;
909 INSN_CODE (i2) = tmpi;
910 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
911 ? new_i2_cost + new_i3_cost : 0;
912 }
913 else
914 {
915 new_cost = new_i3_cost;
916 new_i2_cost = 0;
917 }
918
919 if (undobuf.other_insn)
920 {
921 int old_other_cost, new_other_cost;
922
923 old_other_cost = INSN_COST (undobuf.other_insn);
924 tmp = PATTERN (undobuf.other_insn);
925 PATTERN (undobuf.other_insn) = newotherpat;
926 tmpi = INSN_CODE (undobuf.other_insn);
927 INSN_CODE (undobuf.other_insn) = -1;
928 new_other_cost = insn_cost (undobuf.other_insn,
929 optimize_this_for_speed_p);
930 PATTERN (undobuf.other_insn) = tmp;
931 INSN_CODE (undobuf.other_insn) = tmpi;
932 if (old_other_cost > 0 && new_other_cost > 0)
933 {
934 old_cost += old_other_cost;
935 new_cost += new_other_cost;
936 }
937 else
938 old_cost = 0;
939 }
940
941 /* Disallow this combination if both new_cost and old_cost are greater than
942 zero, and new_cost is greater than old cost. */
943 int reject = old_cost > 0 && new_cost > old_cost;
944
945 if (dump_file)
946 {
947 fprintf (dump_file, "%s combination of insns ",
948 reject ? "rejecting" : "allowing");
949 if (i0)
950 fprintf (dump_file, "%d, ", INSN_UID (i0));
951 if (i1 && INSN_UID (i1) != INSN_UID (i2))
952 fprintf (dump_file, "%d, ", INSN_UID (i1));
953 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
954
955 fprintf (dump_file, "original costs ");
956 if (i0)
957 fprintf (dump_file, "%d + ", i0_cost);
958 if (i1 && INSN_UID (i1) != INSN_UID (i2))
959 fprintf (dump_file, "%d + ", i1_cost);
960 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
961
962 if (newi2pat)
963 fprintf (dump_file, "replacement costs %d + %d = %d\n",
964 new_i2_cost, new_i3_cost, new_cost);
965 else
966 fprintf (dump_file, "replacement cost %d\n", new_cost);
967 }
968
969 if (reject)
970 return false;
971
972 /* Update the uid_insn_cost array with the replacement costs. */
973 INSN_COST (i2) = new_i2_cost;
974 INSN_COST (i3) = new_i3_cost;
975 if (i1)
976 {
977 INSN_COST (i1) = 0;
978 if (i0)
979 INSN_COST (i0) = 0;
980 }
981
982 return true;
983 }
984
985
986 /* Delete any insns that copy a register to itself. */
987
988 static void
989 delete_noop_moves (void)
990 {
991 rtx_insn *insn, *next;
992 basic_block bb;
993
994 FOR_EACH_BB_FN (bb, cfun)
995 {
996 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
997 {
998 next = NEXT_INSN (insn);
999 if (INSN_P (insn) && noop_move_p (insn))
1000 {
1001 if (dump_file)
1002 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1003
1004 delete_insn_and_edges (insn);
1005 }
1006 }
1007 }
1008 }
1009
1010 \f
1011 /* Return false if we do not want to (or cannot) combine DEF. */
1012 static bool
1013 can_combine_def_p (df_ref def)
1014 {
1015 /* Do not consider if it is pre/post modification in MEM. */
1016 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1017 return false;
1018
1019 unsigned int regno = DF_REF_REGNO (def);
1020
1021 /* Do not combine frame pointer adjustments. */
1022 if ((regno == FRAME_POINTER_REGNUM
1023 && (!reload_completed || frame_pointer_needed))
1024 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1025 && regno == HARD_FRAME_POINTER_REGNUM
1026 && (!reload_completed || frame_pointer_needed))
1027 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1028 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1029 return false;
1030
1031 return true;
1032 }
1033
1034 /* Return false if we do not want to (or cannot) combine USE. */
1035 static bool
1036 can_combine_use_p (df_ref use)
1037 {
1038 /* Do not consider the usage of the stack pointer by function call. */
1039 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1040 return false;
1041
1042 return true;
1043 }
1044
1045 /* Fill in log links field for all insns. */
1046
1047 static void
1048 create_log_links (void)
1049 {
1050 basic_block bb;
1051 rtx_insn **next_use;
1052 rtx_insn *insn;
1053 df_ref def, use;
1054
1055 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1056
1057 /* Pass through each block from the end, recording the uses of each
1058 register and establishing log links when def is encountered.
1059 Note that we do not clear next_use array in order to save time,
1060 so we have to test whether the use is in the same basic block as def.
1061
1062 There are a few cases below when we do not consider the definition or
1063 usage -- these are taken from original flow.c did. Don't ask me why it is
1064 done this way; I don't know and if it works, I don't want to know. */
1065
1066 FOR_EACH_BB_FN (bb, cfun)
1067 {
1068 FOR_BB_INSNS_REVERSE (bb, insn)
1069 {
1070 if (!NONDEBUG_INSN_P (insn))
1071 continue;
1072
1073 /* Log links are created only once. */
1074 gcc_assert (!LOG_LINKS (insn));
1075
1076 FOR_EACH_INSN_DEF (def, insn)
1077 {
1078 unsigned int regno = DF_REF_REGNO (def);
1079 rtx_insn *use_insn;
1080
1081 if (!next_use[regno])
1082 continue;
1083
1084 if (!can_combine_def_p (def))
1085 continue;
1086
1087 use_insn = next_use[regno];
1088 next_use[regno] = NULL;
1089
1090 if (BLOCK_FOR_INSN (use_insn) != bb)
1091 continue;
1092
1093 /* flow.c claimed:
1094
1095 We don't build a LOG_LINK for hard registers contained
1096 in ASM_OPERANDs. If these registers get replaced,
1097 we might wind up changing the semantics of the insn,
1098 even if reload can make what appear to be valid
1099 assignments later. */
1100 if (regno < FIRST_PSEUDO_REGISTER
1101 && asm_noperands (PATTERN (use_insn)) >= 0)
1102 continue;
1103
1104 /* Don't add duplicate links between instructions. */
1105 struct insn_link *links;
1106 FOR_EACH_LOG_LINK (links, use_insn)
1107 if (insn == links->insn && regno == links->regno)
1108 break;
1109
1110 if (!links)
1111 LOG_LINKS (use_insn)
1112 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1113 }
1114
1115 FOR_EACH_INSN_USE (use, insn)
1116 if (can_combine_use_p (use))
1117 next_use[DF_REF_REGNO (use)] = insn;
1118 }
1119 }
1120
1121 free (next_use);
1122 }
1123
1124 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1125 true if we found a LOG_LINK that proves that A feeds B. This only works
1126 if there are no instructions between A and B which could have a link
1127 depending on A, since in that case we would not record a link for B.
1128 We also check the implicit dependency created by a cc0 setter/user
1129 pair. */
1130
1131 static bool
1132 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1133 {
1134 struct insn_link *links;
1135 FOR_EACH_LOG_LINK (links, b)
1136 if (links->insn == a)
1137 return true;
1138 if (HAVE_cc0 && sets_cc0_p (a))
1139 return true;
1140 return false;
1141 }
1142 \f
1143 /* Main entry point for combiner. F is the first insn of the function.
1144 NREGS is the first unused pseudo-reg number.
1145
1146 Return nonzero if the combiner has turned an indirect jump
1147 instruction into a direct jump. */
1148 static int
1149 combine_instructions (rtx_insn *f, unsigned int nregs)
1150 {
1151 rtx_insn *insn, *next;
1152 rtx_insn *prev;
1153 struct insn_link *links, *nextlinks;
1154 rtx_insn *first;
1155 basic_block last_bb;
1156
1157 int new_direct_jump_p = 0;
1158
1159 for (first = f; first && !NONDEBUG_INSN_P (first); )
1160 first = NEXT_INSN (first);
1161 if (!first)
1162 return 0;
1163
1164 combine_attempts = 0;
1165 combine_merges = 0;
1166 combine_extras = 0;
1167 combine_successes = 0;
1168
1169 rtl_hooks = combine_rtl_hooks;
1170
1171 reg_stat.safe_grow_cleared (nregs);
1172
1173 init_recog_no_volatile ();
1174
1175 /* Allocate array for insn info. */
1176 max_uid_known = get_max_uid ();
1177 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1178 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1179 gcc_obstack_init (&insn_link_obstack);
1180
1181 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1182
1183 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1184 problems when, for example, we have j <<= 1 in a loop. */
1185
1186 nonzero_sign_valid = 0;
1187 label_tick = label_tick_ebb_start = 1;
1188
1189 /* Scan all SETs and see if we can deduce anything about what
1190 bits are known to be zero for some registers and how many copies
1191 of the sign bit are known to exist for those registers.
1192
1193 Also set any known values so that we can use it while searching
1194 for what bits are known to be set. */
1195
1196 setup_incoming_promotions (first);
1197 /* Allow the entry block and the first block to fall into the same EBB.
1198 Conceptually the incoming promotions are assigned to the entry block. */
1199 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1200
1201 create_log_links ();
1202 FOR_EACH_BB_FN (this_basic_block, cfun)
1203 {
1204 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1205 last_call_luid = 0;
1206 mem_last_set = -1;
1207
1208 label_tick++;
1209 if (!single_pred_p (this_basic_block)
1210 || single_pred (this_basic_block) != last_bb)
1211 label_tick_ebb_start = label_tick;
1212 last_bb = this_basic_block;
1213
1214 FOR_BB_INSNS (this_basic_block, insn)
1215 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1216 {
1217 rtx links;
1218
1219 subst_low_luid = DF_INSN_LUID (insn);
1220 subst_insn = insn;
1221
1222 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1223 insn);
1224 record_dead_and_set_regs (insn);
1225
1226 if (AUTO_INC_DEC)
1227 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1228 if (REG_NOTE_KIND (links) == REG_INC)
1229 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1230 insn);
1231
1232 /* Record the current insn_cost of this instruction. */
1233 if (NONJUMP_INSN_P (insn))
1234 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1235 if (dump_file)
1236 {
1237 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1238 dump_insn_slim (dump_file, insn);
1239 }
1240 }
1241 }
1242
1243 nonzero_sign_valid = 1;
1244
1245 /* Now scan all the insns in forward order. */
1246 label_tick = label_tick_ebb_start = 1;
1247 init_reg_last ();
1248 setup_incoming_promotions (first);
1249 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1250 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1251
1252 FOR_EACH_BB_FN (this_basic_block, cfun)
1253 {
1254 rtx_insn *last_combined_insn = NULL;
1255
1256 /* Ignore instruction combination in basic blocks that are going to
1257 be removed as unreachable anyway. See PR82386. */
1258 if (EDGE_COUNT (this_basic_block->preds) == 0)
1259 continue;
1260
1261 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1262 last_call_luid = 0;
1263 mem_last_set = -1;
1264
1265 label_tick++;
1266 if (!single_pred_p (this_basic_block)
1267 || single_pred (this_basic_block) != last_bb)
1268 label_tick_ebb_start = label_tick;
1269 last_bb = this_basic_block;
1270
1271 rtl_profile_for_bb (this_basic_block);
1272 for (insn = BB_HEAD (this_basic_block);
1273 insn != NEXT_INSN (BB_END (this_basic_block));
1274 insn = next ? next : NEXT_INSN (insn))
1275 {
1276 next = 0;
1277 if (!NONDEBUG_INSN_P (insn))
1278 continue;
1279
1280 while (last_combined_insn
1281 && (!NONDEBUG_INSN_P (last_combined_insn)
1282 || last_combined_insn->deleted ()))
1283 last_combined_insn = PREV_INSN (last_combined_insn);
1284 if (last_combined_insn == NULL_RTX
1285 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1286 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1287 last_combined_insn = insn;
1288
1289 /* See if we know about function return values before this
1290 insn based upon SUBREG flags. */
1291 check_promoted_subreg (insn, PATTERN (insn));
1292
1293 /* See if we can find hardregs and subreg of pseudos in
1294 narrower modes. This could help turning TRUNCATEs
1295 into SUBREGs. */
1296 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1297
1298 /* Try this insn with each insn it links back to. */
1299
1300 FOR_EACH_LOG_LINK (links, insn)
1301 if ((next = try_combine (insn, links->insn, NULL,
1302 NULL, &new_direct_jump_p,
1303 last_combined_insn)) != 0)
1304 {
1305 statistics_counter_event (cfun, "two-insn combine", 1);
1306 goto retry;
1307 }
1308
1309 /* Try each sequence of three linked insns ending with this one. */
1310
1311 if (max_combine >= 3)
1312 FOR_EACH_LOG_LINK (links, insn)
1313 {
1314 rtx_insn *link = links->insn;
1315
1316 /* If the linked insn has been replaced by a note, then there
1317 is no point in pursuing this chain any further. */
1318 if (NOTE_P (link))
1319 continue;
1320
1321 FOR_EACH_LOG_LINK (nextlinks, link)
1322 if ((next = try_combine (insn, link, nextlinks->insn,
1323 NULL, &new_direct_jump_p,
1324 last_combined_insn)) != 0)
1325 {
1326 statistics_counter_event (cfun, "three-insn combine", 1);
1327 goto retry;
1328 }
1329 }
1330
1331 /* Try to combine a jump insn that uses CC0
1332 with a preceding insn that sets CC0, and maybe with its
1333 logical predecessor as well.
1334 This is how we make decrement-and-branch insns.
1335 We need this special code because data flow connections
1336 via CC0 do not get entered in LOG_LINKS. */
1337
1338 if (HAVE_cc0
1339 && JUMP_P (insn)
1340 && (prev = prev_nonnote_insn (insn)) != 0
1341 && NONJUMP_INSN_P (prev)
1342 && sets_cc0_p (PATTERN (prev)))
1343 {
1344 if ((next = try_combine (insn, prev, NULL, NULL,
1345 &new_direct_jump_p,
1346 last_combined_insn)) != 0)
1347 goto retry;
1348
1349 FOR_EACH_LOG_LINK (nextlinks, prev)
1350 if ((next = try_combine (insn, prev, nextlinks->insn,
1351 NULL, &new_direct_jump_p,
1352 last_combined_insn)) != 0)
1353 goto retry;
1354 }
1355
1356 /* Do the same for an insn that explicitly references CC0. */
1357 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1358 && (prev = prev_nonnote_insn (insn)) != 0
1359 && NONJUMP_INSN_P (prev)
1360 && sets_cc0_p (PATTERN (prev))
1361 && GET_CODE (PATTERN (insn)) == SET
1362 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1363 {
1364 if ((next = try_combine (insn, prev, NULL, NULL,
1365 &new_direct_jump_p,
1366 last_combined_insn)) != 0)
1367 goto retry;
1368
1369 FOR_EACH_LOG_LINK (nextlinks, prev)
1370 if ((next = try_combine (insn, prev, nextlinks->insn,
1371 NULL, &new_direct_jump_p,
1372 last_combined_insn)) != 0)
1373 goto retry;
1374 }
1375
1376 /* Finally, see if any of the insns that this insn links to
1377 explicitly references CC0. If so, try this insn, that insn,
1378 and its predecessor if it sets CC0. */
1379 if (HAVE_cc0)
1380 {
1381 FOR_EACH_LOG_LINK (links, insn)
1382 if (NONJUMP_INSN_P (links->insn)
1383 && GET_CODE (PATTERN (links->insn)) == SET
1384 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1385 && (prev = prev_nonnote_insn (links->insn)) != 0
1386 && NONJUMP_INSN_P (prev)
1387 && sets_cc0_p (PATTERN (prev))
1388 && (next = try_combine (insn, links->insn,
1389 prev, NULL, &new_direct_jump_p,
1390 last_combined_insn)) != 0)
1391 goto retry;
1392 }
1393
1394 /* Try combining an insn with two different insns whose results it
1395 uses. */
1396 if (max_combine >= 3)
1397 FOR_EACH_LOG_LINK (links, insn)
1398 for (nextlinks = links->next; nextlinks;
1399 nextlinks = nextlinks->next)
1400 if ((next = try_combine (insn, links->insn,
1401 nextlinks->insn, NULL,
1402 &new_direct_jump_p,
1403 last_combined_insn)) != 0)
1404
1405 {
1406 statistics_counter_event (cfun, "three-insn combine", 1);
1407 goto retry;
1408 }
1409
1410 /* Try four-instruction combinations. */
1411 if (max_combine >= 4)
1412 FOR_EACH_LOG_LINK (links, insn)
1413 {
1414 struct insn_link *next1;
1415 rtx_insn *link = links->insn;
1416
1417 /* If the linked insn has been replaced by a note, then there
1418 is no point in pursuing this chain any further. */
1419 if (NOTE_P (link))
1420 continue;
1421
1422 FOR_EACH_LOG_LINK (next1, link)
1423 {
1424 rtx_insn *link1 = next1->insn;
1425 if (NOTE_P (link1))
1426 continue;
1427 /* I0 -> I1 -> I2 -> I3. */
1428 FOR_EACH_LOG_LINK (nextlinks, link1)
1429 if ((next = try_combine (insn, link, link1,
1430 nextlinks->insn,
1431 &new_direct_jump_p,
1432 last_combined_insn)) != 0)
1433 {
1434 statistics_counter_event (cfun, "four-insn combine", 1);
1435 goto retry;
1436 }
1437 /* I0, I1 -> I2, I2 -> I3. */
1438 for (nextlinks = next1->next; nextlinks;
1439 nextlinks = nextlinks->next)
1440 if ((next = try_combine (insn, link, link1,
1441 nextlinks->insn,
1442 &new_direct_jump_p,
1443 last_combined_insn)) != 0)
1444 {
1445 statistics_counter_event (cfun, "four-insn combine", 1);
1446 goto retry;
1447 }
1448 }
1449
1450 for (next1 = links->next; next1; next1 = next1->next)
1451 {
1452 rtx_insn *link1 = next1->insn;
1453 if (NOTE_P (link1))
1454 continue;
1455 /* I0 -> I2; I1, I2 -> I3. */
1456 FOR_EACH_LOG_LINK (nextlinks, link)
1457 if ((next = try_combine (insn, link, link1,
1458 nextlinks->insn,
1459 &new_direct_jump_p,
1460 last_combined_insn)) != 0)
1461 {
1462 statistics_counter_event (cfun, "four-insn combine", 1);
1463 goto retry;
1464 }
1465 /* I0 -> I1; I1, I2 -> I3. */
1466 FOR_EACH_LOG_LINK (nextlinks, link1)
1467 if ((next = try_combine (insn, link, link1,
1468 nextlinks->insn,
1469 &new_direct_jump_p,
1470 last_combined_insn)) != 0)
1471 {
1472 statistics_counter_event (cfun, "four-insn combine", 1);
1473 goto retry;
1474 }
1475 }
1476 }
1477
1478 /* Try this insn with each REG_EQUAL note it links back to. */
1479 FOR_EACH_LOG_LINK (links, insn)
1480 {
1481 rtx set, note;
1482 rtx_insn *temp = links->insn;
1483 if ((set = single_set (temp)) != 0
1484 && (note = find_reg_equal_equiv_note (temp)) != 0
1485 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1486 /* Avoid using a register that may already been marked
1487 dead by an earlier instruction. */
1488 && ! unmentioned_reg_p (note, SET_SRC (set))
1489 && (GET_MODE (note) == VOIDmode
1490 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1491 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1492 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1493 || (GET_MODE (XEXP (SET_DEST (set), 0))
1494 == GET_MODE (note))))))
1495 {
1496 /* Temporarily replace the set's source with the
1497 contents of the REG_EQUAL note. The insn will
1498 be deleted or recognized by try_combine. */
1499 rtx orig_src = SET_SRC (set);
1500 rtx orig_dest = SET_DEST (set);
1501 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1502 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1503 SET_SRC (set) = note;
1504 i2mod = temp;
1505 i2mod_old_rhs = copy_rtx (orig_src);
1506 i2mod_new_rhs = copy_rtx (note);
1507 next = try_combine (insn, i2mod, NULL, NULL,
1508 &new_direct_jump_p,
1509 last_combined_insn);
1510 i2mod = NULL;
1511 if (next)
1512 {
1513 statistics_counter_event (cfun, "insn-with-note combine", 1);
1514 goto retry;
1515 }
1516 SET_SRC (set) = orig_src;
1517 SET_DEST (set) = orig_dest;
1518 }
1519 }
1520
1521 if (!NOTE_P (insn))
1522 record_dead_and_set_regs (insn);
1523
1524 retry:
1525 ;
1526 }
1527 }
1528
1529 default_rtl_profile ();
1530 clear_bb_flags ();
1531 new_direct_jump_p |= purge_all_dead_edges ();
1532 delete_noop_moves ();
1533
1534 /* Clean up. */
1535 obstack_free (&insn_link_obstack, NULL);
1536 free (uid_log_links);
1537 free (uid_insn_cost);
1538 reg_stat.release ();
1539
1540 {
1541 struct undo *undo, *next;
1542 for (undo = undobuf.frees; undo; undo = next)
1543 {
1544 next = undo->next;
1545 free (undo);
1546 }
1547 undobuf.frees = 0;
1548 }
1549
1550 total_attempts += combine_attempts;
1551 total_merges += combine_merges;
1552 total_extras += combine_extras;
1553 total_successes += combine_successes;
1554
1555 nonzero_sign_valid = 0;
1556 rtl_hooks = general_rtl_hooks;
1557
1558 /* Make recognizer allow volatile MEMs again. */
1559 init_recog ();
1560
1561 return new_direct_jump_p;
1562 }
1563
1564 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1565
1566 static void
1567 init_reg_last (void)
1568 {
1569 unsigned int i;
1570 reg_stat_type *p;
1571
1572 FOR_EACH_VEC_ELT (reg_stat, i, p)
1573 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1574 }
1575 \f
1576 /* Set up any promoted values for incoming argument registers. */
1577
1578 static void
1579 setup_incoming_promotions (rtx_insn *first)
1580 {
1581 tree arg;
1582 bool strictly_local = false;
1583
1584 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1585 arg = DECL_CHAIN (arg))
1586 {
1587 rtx x, reg = DECL_INCOMING_RTL (arg);
1588 int uns1, uns3;
1589 machine_mode mode1, mode2, mode3, mode4;
1590
1591 /* Only continue if the incoming argument is in a register. */
1592 if (!REG_P (reg))
1593 continue;
1594
1595 /* Determine, if possible, whether all call sites of the current
1596 function lie within the current compilation unit. (This does
1597 take into account the exporting of a function via taking its
1598 address, and so forth.) */
1599 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1600
1601 /* The mode and signedness of the argument before any promotions happen
1602 (equal to the mode of the pseudo holding it at that stage). */
1603 mode1 = TYPE_MODE (TREE_TYPE (arg));
1604 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1605
1606 /* The mode and signedness of the argument after any source language and
1607 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1608 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1609 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1610
1611 /* The mode and signedness of the argument as it is actually passed,
1612 see assign_parm_setup_reg in function.c. */
1613 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1614 TREE_TYPE (cfun->decl), 0);
1615
1616 /* The mode of the register in which the argument is being passed. */
1617 mode4 = GET_MODE (reg);
1618
1619 /* Eliminate sign extensions in the callee when:
1620 (a) A mode promotion has occurred; */
1621 if (mode1 == mode3)
1622 continue;
1623 /* (b) The mode of the register is the same as the mode of
1624 the argument as it is passed; */
1625 if (mode3 != mode4)
1626 continue;
1627 /* (c) There's no language level extension; */
1628 if (mode1 == mode2)
1629 ;
1630 /* (c.1) All callers are from the current compilation unit. If that's
1631 the case we don't have to rely on an ABI, we only have to know
1632 what we're generating right now, and we know that we will do the
1633 mode1 to mode2 promotion with the given sign. */
1634 else if (!strictly_local)
1635 continue;
1636 /* (c.2) The combination of the two promotions is useful. This is
1637 true when the signs match, or if the first promotion is unsigned.
1638 In the later case, (sign_extend (zero_extend x)) is the same as
1639 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1640 else if (uns1)
1641 uns3 = true;
1642 else if (uns3)
1643 continue;
1644
1645 /* Record that the value was promoted from mode1 to mode3,
1646 so that any sign extension at the head of the current
1647 function may be eliminated. */
1648 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1649 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1650 record_value_for_reg (reg, first, x);
1651 }
1652 }
1653
1654 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1655 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1656 because some machines (maybe most) will actually do the sign-extension and
1657 this is the conservative approach.
1658
1659 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1660 kludge. */
1661
1662 static rtx
1663 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1664 {
1665 scalar_int_mode int_mode;
1666 if (CONST_INT_P (src)
1667 && is_a <scalar_int_mode> (mode, &int_mode)
1668 && GET_MODE_PRECISION (int_mode) < prec
1669 && INTVAL (src) > 0
1670 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1671 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1672
1673 return src;
1674 }
1675
1676 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1677 and SET. */
1678
1679 static void
1680 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1681 rtx x)
1682 {
1683 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1684 unsigned HOST_WIDE_INT bits = 0;
1685 rtx reg_equal = NULL, src = SET_SRC (set);
1686 unsigned int num = 0;
1687
1688 if (reg_equal_note)
1689 reg_equal = XEXP (reg_equal_note, 0);
1690
1691 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1692 {
1693 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1694 if (reg_equal)
1695 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1696 }
1697
1698 /* Don't call nonzero_bits if it cannot change anything. */
1699 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1700 {
1701 machine_mode mode = GET_MODE (x);
1702 if (GET_MODE_CLASS (mode) == MODE_INT
1703 && HWI_COMPUTABLE_MODE_P (mode))
1704 mode = nonzero_bits_mode;
1705 bits = nonzero_bits (src, mode);
1706 if (reg_equal && bits)
1707 bits &= nonzero_bits (reg_equal, mode);
1708 rsp->nonzero_bits |= bits;
1709 }
1710
1711 /* Don't call num_sign_bit_copies if it cannot change anything. */
1712 if (rsp->sign_bit_copies != 1)
1713 {
1714 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1715 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1716 {
1717 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1718 if (num == 0 || numeq > num)
1719 num = numeq;
1720 }
1721 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1722 rsp->sign_bit_copies = num;
1723 }
1724 }
1725
1726 /* Called via note_stores. If X is a pseudo that is narrower than
1727 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1728
1729 If we are setting only a portion of X and we can't figure out what
1730 portion, assume all bits will be used since we don't know what will
1731 be happening.
1732
1733 Similarly, set how many bits of X are known to be copies of the sign bit
1734 at all locations in the function. This is the smallest number implied
1735 by any set of X. */
1736
1737 static void
1738 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1739 {
1740 rtx_insn *insn = (rtx_insn *) data;
1741 scalar_int_mode mode;
1742
1743 if (REG_P (x)
1744 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1745 /* If this register is undefined at the start of the file, we can't
1746 say what its contents were. */
1747 && ! REGNO_REG_SET_P
1748 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1749 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1750 && HWI_COMPUTABLE_MODE_P (mode))
1751 {
1752 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1753
1754 if (set == 0 || GET_CODE (set) == CLOBBER)
1755 {
1756 rsp->nonzero_bits = GET_MODE_MASK (mode);
1757 rsp->sign_bit_copies = 1;
1758 return;
1759 }
1760
1761 /* Should not happen as we only using pseduo registers. */
1762 gcc_assert (GET_CODE (set) != CLOBBER_HIGH);
1763
1764 /* If this register is being initialized using itself, and the
1765 register is uninitialized in this basic block, and there are
1766 no LOG_LINKS which set the register, then part of the
1767 register is uninitialized. In that case we can't assume
1768 anything about the number of nonzero bits.
1769
1770 ??? We could do better if we checked this in
1771 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1772 could avoid making assumptions about the insn which initially
1773 sets the register, while still using the information in other
1774 insns. We would have to be careful to check every insn
1775 involved in the combination. */
1776
1777 if (insn
1778 && reg_referenced_p (x, PATTERN (insn))
1779 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1780 REGNO (x)))
1781 {
1782 struct insn_link *link;
1783
1784 FOR_EACH_LOG_LINK (link, insn)
1785 if (dead_or_set_p (link->insn, x))
1786 break;
1787 if (!link)
1788 {
1789 rsp->nonzero_bits = GET_MODE_MASK (mode);
1790 rsp->sign_bit_copies = 1;
1791 return;
1792 }
1793 }
1794
1795 /* If this is a complex assignment, see if we can convert it into a
1796 simple assignment. */
1797 set = expand_field_assignment (set);
1798
1799 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1800 set what we know about X. */
1801
1802 if (SET_DEST (set) == x
1803 || (paradoxical_subreg_p (SET_DEST (set))
1804 && SUBREG_REG (SET_DEST (set)) == x))
1805 update_rsp_from_reg_equal (rsp, insn, set, x);
1806 else
1807 {
1808 rsp->nonzero_bits = GET_MODE_MASK (mode);
1809 rsp->sign_bit_copies = 1;
1810 }
1811 }
1812 }
1813 \f
1814 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1815 optionally insns that were previously combined into I3 or that will be
1816 combined into the merger of INSN and I3. The order is PRED, PRED2,
1817 INSN, SUCC, SUCC2, I3.
1818
1819 Return 0 if the combination is not allowed for any reason.
1820
1821 If the combination is allowed, *PDEST will be set to the single
1822 destination of INSN and *PSRC to the single source, and this function
1823 will return 1. */
1824
1825 static int
1826 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1827 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1828 rtx *pdest, rtx *psrc)
1829 {
1830 int i;
1831 const_rtx set = 0;
1832 rtx src, dest;
1833 rtx_insn *p;
1834 rtx link;
1835 bool all_adjacent = true;
1836 int (*is_volatile_p) (const_rtx);
1837
1838 if (succ)
1839 {
1840 if (succ2)
1841 {
1842 if (next_active_insn (succ2) != i3)
1843 all_adjacent = false;
1844 if (next_active_insn (succ) != succ2)
1845 all_adjacent = false;
1846 }
1847 else if (next_active_insn (succ) != i3)
1848 all_adjacent = false;
1849 if (next_active_insn (insn) != succ)
1850 all_adjacent = false;
1851 }
1852 else if (next_active_insn (insn) != i3)
1853 all_adjacent = false;
1854
1855 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1856 or a PARALLEL consisting of such a SET and CLOBBERs.
1857
1858 If INSN has CLOBBER parallel parts, ignore them for our processing.
1859 By definition, these happen during the execution of the insn. When it
1860 is merged with another insn, all bets are off. If they are, in fact,
1861 needed and aren't also supplied in I3, they may be added by
1862 recog_for_combine. Otherwise, it won't match.
1863
1864 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1865 note.
1866
1867 Get the source and destination of INSN. If more than one, can't
1868 combine. */
1869
1870 if (GET_CODE (PATTERN (insn)) == SET)
1871 set = PATTERN (insn);
1872 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1873 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1874 {
1875 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1876 {
1877 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1878
1879 switch (GET_CODE (elt))
1880 {
1881 /* This is important to combine floating point insns
1882 for the SH4 port. */
1883 case USE:
1884 /* Combining an isolated USE doesn't make sense.
1885 We depend here on combinable_i3pat to reject them. */
1886 /* The code below this loop only verifies that the inputs of
1887 the SET in INSN do not change. We call reg_set_between_p
1888 to verify that the REG in the USE does not change between
1889 I3 and INSN.
1890 If the USE in INSN was for a pseudo register, the matching
1891 insn pattern will likely match any register; combining this
1892 with any other USE would only be safe if we knew that the
1893 used registers have identical values, or if there was
1894 something to tell them apart, e.g. different modes. For
1895 now, we forgo such complicated tests and simply disallow
1896 combining of USES of pseudo registers with any other USE. */
1897 if (REG_P (XEXP (elt, 0))
1898 && GET_CODE (PATTERN (i3)) == PARALLEL)
1899 {
1900 rtx i3pat = PATTERN (i3);
1901 int i = XVECLEN (i3pat, 0) - 1;
1902 unsigned int regno = REGNO (XEXP (elt, 0));
1903
1904 do
1905 {
1906 rtx i3elt = XVECEXP (i3pat, 0, i);
1907
1908 if (GET_CODE (i3elt) == USE
1909 && REG_P (XEXP (i3elt, 0))
1910 && (REGNO (XEXP (i3elt, 0)) == regno
1911 ? reg_set_between_p (XEXP (elt, 0),
1912 PREV_INSN (insn), i3)
1913 : regno >= FIRST_PSEUDO_REGISTER))
1914 return 0;
1915 }
1916 while (--i >= 0);
1917 }
1918 break;
1919
1920 /* We can ignore CLOBBERs. */
1921 case CLOBBER:
1922 case CLOBBER_HIGH:
1923 break;
1924
1925 case SET:
1926 /* Ignore SETs whose result isn't used but not those that
1927 have side-effects. */
1928 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1929 && insn_nothrow_p (insn)
1930 && !side_effects_p (elt))
1931 break;
1932
1933 /* If we have already found a SET, this is a second one and
1934 so we cannot combine with this insn. */
1935 if (set)
1936 return 0;
1937
1938 set = elt;
1939 break;
1940
1941 default:
1942 /* Anything else means we can't combine. */
1943 return 0;
1944 }
1945 }
1946
1947 if (set == 0
1948 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1949 so don't do anything with it. */
1950 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1951 return 0;
1952 }
1953 else
1954 return 0;
1955
1956 if (set == 0)
1957 return 0;
1958
1959 /* The simplification in expand_field_assignment may call back to
1960 get_last_value, so set safe guard here. */
1961 subst_low_luid = DF_INSN_LUID (insn);
1962
1963 set = expand_field_assignment (set);
1964 src = SET_SRC (set), dest = SET_DEST (set);
1965
1966 /* Do not eliminate user-specified register if it is in an
1967 asm input because we may break the register asm usage defined
1968 in GCC manual if allow to do so.
1969 Be aware that this may cover more cases than we expect but this
1970 should be harmless. */
1971 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1972 && extract_asm_operands (PATTERN (i3)))
1973 return 0;
1974
1975 /* Don't eliminate a store in the stack pointer. */
1976 if (dest == stack_pointer_rtx
1977 /* Don't combine with an insn that sets a register to itself if it has
1978 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1979 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1980 /* Can't merge an ASM_OPERANDS. */
1981 || GET_CODE (src) == ASM_OPERANDS
1982 /* Can't merge a function call. */
1983 || GET_CODE (src) == CALL
1984 /* Don't eliminate a function call argument. */
1985 || (CALL_P (i3)
1986 && (find_reg_fusage (i3, USE, dest)
1987 || (REG_P (dest)
1988 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1989 && global_regs[REGNO (dest)])))
1990 /* Don't substitute into an incremented register. */
1991 || FIND_REG_INC_NOTE (i3, dest)
1992 || (succ && FIND_REG_INC_NOTE (succ, dest))
1993 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1994 /* Don't substitute into a non-local goto, this confuses CFG. */
1995 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1996 /* Make sure that DEST is not used after INSN but before SUCC, or
1997 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1998 || (!all_adjacent
1999 && ((succ2
2000 && (reg_used_between_p (dest, succ2, i3)
2001 || reg_used_between_p (dest, succ, succ2)))
2002 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
2003 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
2004 || (succ
2005 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
2006 that case SUCC is not in the insn stream, so use SUCC2
2007 instead for this test. */
2008 && reg_used_between_p (dest, insn,
2009 succ2
2010 && INSN_UID (succ) == INSN_UID (succ2)
2011 ? succ2 : succ))))
2012 /* Make sure that the value that is to be substituted for the register
2013 does not use any registers whose values alter in between. However,
2014 If the insns are adjacent, a use can't cross a set even though we
2015 think it might (this can happen for a sequence of insns each setting
2016 the same destination; last_set of that register might point to
2017 a NOTE). If INSN has a REG_EQUIV note, the register is always
2018 equivalent to the memory so the substitution is valid even if there
2019 are intervening stores. Also, don't move a volatile asm or
2020 UNSPEC_VOLATILE across any other insns. */
2021 || (! all_adjacent
2022 && (((!MEM_P (src)
2023 || ! find_reg_note (insn, REG_EQUIV, src))
2024 && modified_between_p (src, insn, i3))
2025 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2026 || GET_CODE (src) == UNSPEC_VOLATILE))
2027 /* Don't combine across a CALL_INSN, because that would possibly
2028 change whether the life span of some REGs crosses calls or not,
2029 and it is a pain to update that information.
2030 Exception: if source is a constant, moving it later can't hurt.
2031 Accept that as a special case. */
2032 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2033 return 0;
2034
2035 /* DEST must either be a REG or CC0. */
2036 if (REG_P (dest))
2037 {
2038 /* If register alignment is being enforced for multi-word items in all
2039 cases except for parameters, it is possible to have a register copy
2040 insn referencing a hard register that is not allowed to contain the
2041 mode being copied and which would not be valid as an operand of most
2042 insns. Eliminate this problem by not combining with such an insn.
2043
2044 Also, on some machines we don't want to extend the life of a hard
2045 register. */
2046
2047 if (REG_P (src)
2048 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2049 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2050 /* Don't extend the life of a hard register unless it is
2051 user variable (if we have few registers) or it can't
2052 fit into the desired register (meaning something special
2053 is going on).
2054 Also avoid substituting a return register into I3, because
2055 reload can't handle a conflict with constraints of other
2056 inputs. */
2057 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2058 && !targetm.hard_regno_mode_ok (REGNO (src),
2059 GET_MODE (src)))))
2060 return 0;
2061 }
2062 else if (GET_CODE (dest) != CC0)
2063 return 0;
2064
2065
2066 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2067 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2068 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2069 {
2070 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2071
2072 /* If the clobber represents an earlyclobber operand, we must not
2073 substitute an expression containing the clobbered register.
2074 As we do not analyze the constraint strings here, we have to
2075 make the conservative assumption. However, if the register is
2076 a fixed hard reg, the clobber cannot represent any operand;
2077 we leave it up to the machine description to either accept or
2078 reject use-and-clobber patterns. */
2079 if (!REG_P (reg)
2080 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2081 || !fixed_regs[REGNO (reg)])
2082 if (reg_overlap_mentioned_p (reg, src))
2083 return 0;
2084 }
2085
2086 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2087 or not), reject, unless nothing volatile comes between it and I3 */
2088
2089 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2090 {
2091 /* Make sure neither succ nor succ2 contains a volatile reference. */
2092 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2093 return 0;
2094 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2095 return 0;
2096 /* We'll check insns between INSN and I3 below. */
2097 }
2098
2099 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2100 to be an explicit register variable, and was chosen for a reason. */
2101
2102 if (GET_CODE (src) == ASM_OPERANDS
2103 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2104 return 0;
2105
2106 /* If INSN contains volatile references (specifically volatile MEMs),
2107 we cannot combine across any other volatile references.
2108 Even if INSN doesn't contain volatile references, any intervening
2109 volatile insn might affect machine state. */
2110
2111 is_volatile_p = volatile_refs_p (PATTERN (insn))
2112 ? volatile_refs_p
2113 : volatile_insn_p;
2114
2115 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2116 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2117 return 0;
2118
2119 /* If INSN contains an autoincrement or autodecrement, make sure that
2120 register is not used between there and I3, and not already used in
2121 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2122 Also insist that I3 not be a jump; if it were one
2123 and the incremented register were spilled, we would lose. */
2124
2125 if (AUTO_INC_DEC)
2126 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2127 if (REG_NOTE_KIND (link) == REG_INC
2128 && (JUMP_P (i3)
2129 || reg_used_between_p (XEXP (link, 0), insn, i3)
2130 || (pred != NULL_RTX
2131 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2132 || (pred2 != NULL_RTX
2133 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2134 || (succ != NULL_RTX
2135 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2136 || (succ2 != NULL_RTX
2137 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2138 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2139 return 0;
2140
2141 /* Don't combine an insn that follows a CC0-setting insn.
2142 An insn that uses CC0 must not be separated from the one that sets it.
2143 We do, however, allow I2 to follow a CC0-setting insn if that insn
2144 is passed as I1; in that case it will be deleted also.
2145 We also allow combining in this case if all the insns are adjacent
2146 because that would leave the two CC0 insns adjacent as well.
2147 It would be more logical to test whether CC0 occurs inside I1 or I2,
2148 but that would be much slower, and this ought to be equivalent. */
2149
2150 if (HAVE_cc0)
2151 {
2152 p = prev_nonnote_insn (insn);
2153 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2154 && ! all_adjacent)
2155 return 0;
2156 }
2157
2158 /* If we get here, we have passed all the tests and the combination is
2159 to be allowed. */
2160
2161 *pdest = dest;
2162 *psrc = src;
2163
2164 return 1;
2165 }
2166 \f
2167 /* LOC is the location within I3 that contains its pattern or the component
2168 of a PARALLEL of the pattern. We validate that it is valid for combining.
2169
2170 One problem is if I3 modifies its output, as opposed to replacing it
2171 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2172 doing so would produce an insn that is not equivalent to the original insns.
2173
2174 Consider:
2175
2176 (set (reg:DI 101) (reg:DI 100))
2177 (set (subreg:SI (reg:DI 101) 0) <foo>)
2178
2179 This is NOT equivalent to:
2180
2181 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2182 (set (reg:DI 101) (reg:DI 100))])
2183
2184 Not only does this modify 100 (in which case it might still be valid
2185 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2186
2187 We can also run into a problem if I2 sets a register that I1
2188 uses and I1 gets directly substituted into I3 (not via I2). In that
2189 case, we would be getting the wrong value of I2DEST into I3, so we
2190 must reject the combination. This case occurs when I2 and I1 both
2191 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2192 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2193 of a SET must prevent combination from occurring. The same situation
2194 can occur for I0, in which case I0_NOT_IN_SRC is set.
2195
2196 Before doing the above check, we first try to expand a field assignment
2197 into a set of logical operations.
2198
2199 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2200 we place a register that is both set and used within I3. If more than one
2201 such register is detected, we fail.
2202
2203 Return 1 if the combination is valid, zero otherwise. */
2204
2205 static int
2206 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2207 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2208 {
2209 rtx x = *loc;
2210
2211 if (GET_CODE (x) == SET)
2212 {
2213 rtx set = x ;
2214 rtx dest = SET_DEST (set);
2215 rtx src = SET_SRC (set);
2216 rtx inner_dest = dest;
2217 rtx subdest;
2218
2219 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2220 || GET_CODE (inner_dest) == SUBREG
2221 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2222 inner_dest = XEXP (inner_dest, 0);
2223
2224 /* Check for the case where I3 modifies its output, as discussed
2225 above. We don't want to prevent pseudos from being combined
2226 into the address of a MEM, so only prevent the combination if
2227 i1 or i2 set the same MEM. */
2228 if ((inner_dest != dest &&
2229 (!MEM_P (inner_dest)
2230 || rtx_equal_p (i2dest, inner_dest)
2231 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2232 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2233 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2234 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2235 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2236
2237 /* This is the same test done in can_combine_p except we can't test
2238 all_adjacent; we don't have to, since this instruction will stay
2239 in place, thus we are not considering increasing the lifetime of
2240 INNER_DEST.
2241
2242 Also, if this insn sets a function argument, combining it with
2243 something that might need a spill could clobber a previous
2244 function argument; the all_adjacent test in can_combine_p also
2245 checks this; here, we do a more specific test for this case. */
2246
2247 || (REG_P (inner_dest)
2248 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2249 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2250 GET_MODE (inner_dest)))
2251 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2252 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2253 return 0;
2254
2255 /* If DEST is used in I3, it is being killed in this insn, so
2256 record that for later. We have to consider paradoxical
2257 subregs here, since they kill the whole register, but we
2258 ignore partial subregs, STRICT_LOW_PART, etc.
2259 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2260 STACK_POINTER_REGNUM, since these are always considered to be
2261 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2262 subdest = dest;
2263 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2264 subdest = SUBREG_REG (subdest);
2265 if (pi3dest_killed
2266 && REG_P (subdest)
2267 && reg_referenced_p (subdest, PATTERN (i3))
2268 && REGNO (subdest) != FRAME_POINTER_REGNUM
2269 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2270 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2271 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2272 || (REGNO (subdest) != ARG_POINTER_REGNUM
2273 || ! fixed_regs [REGNO (subdest)]))
2274 && REGNO (subdest) != STACK_POINTER_REGNUM)
2275 {
2276 if (*pi3dest_killed)
2277 return 0;
2278
2279 *pi3dest_killed = subdest;
2280 }
2281 }
2282
2283 else if (GET_CODE (x) == PARALLEL)
2284 {
2285 int i;
2286
2287 for (i = 0; i < XVECLEN (x, 0); i++)
2288 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2289 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2290 return 0;
2291 }
2292
2293 return 1;
2294 }
2295 \f
2296 /* Return 1 if X is an arithmetic expression that contains a multiplication
2297 and division. We don't count multiplications by powers of two here. */
2298
2299 static int
2300 contains_muldiv (rtx x)
2301 {
2302 switch (GET_CODE (x))
2303 {
2304 case MOD: case DIV: case UMOD: case UDIV:
2305 return 1;
2306
2307 case MULT:
2308 return ! (CONST_INT_P (XEXP (x, 1))
2309 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2310 default:
2311 if (BINARY_P (x))
2312 return contains_muldiv (XEXP (x, 0))
2313 || contains_muldiv (XEXP (x, 1));
2314
2315 if (UNARY_P (x))
2316 return contains_muldiv (XEXP (x, 0));
2317
2318 return 0;
2319 }
2320 }
2321 \f
2322 /* Determine whether INSN can be used in a combination. Return nonzero if
2323 not. This is used in try_combine to detect early some cases where we
2324 can't perform combinations. */
2325
2326 static int
2327 cant_combine_insn_p (rtx_insn *insn)
2328 {
2329 rtx set;
2330 rtx src, dest;
2331
2332 /* If this isn't really an insn, we can't do anything.
2333 This can occur when flow deletes an insn that it has merged into an
2334 auto-increment address. */
2335 if (!NONDEBUG_INSN_P (insn))
2336 return 1;
2337
2338 /* Never combine loads and stores involving hard regs that are likely
2339 to be spilled. The register allocator can usually handle such
2340 reg-reg moves by tying. If we allow the combiner to make
2341 substitutions of likely-spilled regs, reload might die.
2342 As an exception, we allow combinations involving fixed regs; these are
2343 not available to the register allocator so there's no risk involved. */
2344
2345 set = single_set (insn);
2346 if (! set)
2347 return 0;
2348 src = SET_SRC (set);
2349 dest = SET_DEST (set);
2350 if (GET_CODE (src) == SUBREG)
2351 src = SUBREG_REG (src);
2352 if (GET_CODE (dest) == SUBREG)
2353 dest = SUBREG_REG (dest);
2354 if (REG_P (src) && REG_P (dest)
2355 && ((HARD_REGISTER_P (src)
2356 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2357 #ifdef LEAF_REGISTERS
2358 && ! LEAF_REGISTERS [REGNO (src)])
2359 #else
2360 )
2361 #endif
2362 || (HARD_REGISTER_P (dest)
2363 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2364 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2365 return 1;
2366
2367 return 0;
2368 }
2369
2370 struct likely_spilled_retval_info
2371 {
2372 unsigned regno, nregs;
2373 unsigned mask;
2374 };
2375
2376 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2377 hard registers that are known to be written to / clobbered in full. */
2378 static void
2379 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2380 {
2381 struct likely_spilled_retval_info *const info =
2382 (struct likely_spilled_retval_info *) data;
2383 unsigned regno, nregs;
2384 unsigned new_mask;
2385
2386 if (!REG_P (XEXP (set, 0)))
2387 return;
2388 regno = REGNO (x);
2389 if (regno >= info->regno + info->nregs)
2390 return;
2391 nregs = REG_NREGS (x);
2392 if (regno + nregs <= info->regno)
2393 return;
2394 new_mask = (2U << (nregs - 1)) - 1;
2395 if (regno < info->regno)
2396 new_mask >>= info->regno - regno;
2397 else
2398 new_mask <<= regno - info->regno;
2399 info->mask &= ~new_mask;
2400 }
2401
2402 /* Return nonzero iff part of the return value is live during INSN, and
2403 it is likely spilled. This can happen when more than one insn is needed
2404 to copy the return value, e.g. when we consider to combine into the
2405 second copy insn for a complex value. */
2406
2407 static int
2408 likely_spilled_retval_p (rtx_insn *insn)
2409 {
2410 rtx_insn *use = BB_END (this_basic_block);
2411 rtx reg;
2412 rtx_insn *p;
2413 unsigned regno, nregs;
2414 /* We assume here that no machine mode needs more than
2415 32 hard registers when the value overlaps with a register
2416 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2417 unsigned mask;
2418 struct likely_spilled_retval_info info;
2419
2420 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2421 return 0;
2422 reg = XEXP (PATTERN (use), 0);
2423 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2424 return 0;
2425 regno = REGNO (reg);
2426 nregs = REG_NREGS (reg);
2427 if (nregs == 1)
2428 return 0;
2429 mask = (2U << (nregs - 1)) - 1;
2430
2431 /* Disregard parts of the return value that are set later. */
2432 info.regno = regno;
2433 info.nregs = nregs;
2434 info.mask = mask;
2435 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2436 if (INSN_P (p))
2437 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2438 mask = info.mask;
2439
2440 /* Check if any of the (probably) live return value registers is
2441 likely spilled. */
2442 nregs --;
2443 do
2444 {
2445 if ((mask & 1 << nregs)
2446 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2447 return 1;
2448 } while (nregs--);
2449 return 0;
2450 }
2451
2452 /* Adjust INSN after we made a change to its destination.
2453
2454 Changing the destination can invalidate notes that say something about
2455 the results of the insn and a LOG_LINK pointing to the insn. */
2456
2457 static void
2458 adjust_for_new_dest (rtx_insn *insn)
2459 {
2460 /* For notes, be conservative and simply remove them. */
2461 remove_reg_equal_equiv_notes (insn);
2462
2463 /* The new insn will have a destination that was previously the destination
2464 of an insn just above it. Call distribute_links to make a LOG_LINK from
2465 the next use of that destination. */
2466
2467 rtx set = single_set (insn);
2468 gcc_assert (set);
2469
2470 rtx reg = SET_DEST (set);
2471
2472 while (GET_CODE (reg) == ZERO_EXTRACT
2473 || GET_CODE (reg) == STRICT_LOW_PART
2474 || GET_CODE (reg) == SUBREG)
2475 reg = XEXP (reg, 0);
2476 gcc_assert (REG_P (reg));
2477
2478 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2479
2480 df_insn_rescan (insn);
2481 }
2482
2483 /* Return TRUE if combine can reuse reg X in mode MODE.
2484 ADDED_SETS is nonzero if the original set is still required. */
2485 static bool
2486 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2487 {
2488 unsigned int regno;
2489
2490 if (!REG_P (x))
2491 return false;
2492
2493 /* Don't change between modes with different underlying register sizes,
2494 since this could lead to invalid subregs. */
2495 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2496 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2497 return false;
2498
2499 regno = REGNO (x);
2500 /* Allow hard registers if the new mode is legal, and occupies no more
2501 registers than the old mode. */
2502 if (regno < FIRST_PSEUDO_REGISTER)
2503 return (targetm.hard_regno_mode_ok (regno, mode)
2504 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2505
2506 /* Or a pseudo that is only used once. */
2507 return (regno < reg_n_sets_max
2508 && REG_N_SETS (regno) == 1
2509 && !added_sets
2510 && !REG_USERVAR_P (x));
2511 }
2512
2513
2514 /* Check whether X, the destination of a set, refers to part of
2515 the register specified by REG. */
2516
2517 static bool
2518 reg_subword_p (rtx x, rtx reg)
2519 {
2520 /* Check that reg is an integer mode register. */
2521 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2522 return false;
2523
2524 if (GET_CODE (x) == STRICT_LOW_PART
2525 || GET_CODE (x) == ZERO_EXTRACT)
2526 x = XEXP (x, 0);
2527
2528 return GET_CODE (x) == SUBREG
2529 && SUBREG_REG (x) == reg
2530 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2531 }
2532
2533 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2534 Note that the INSN should be deleted *after* removing dead edges, so
2535 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2536 but not for a (set (pc) (label_ref FOO)). */
2537
2538 static void
2539 update_cfg_for_uncondjump (rtx_insn *insn)
2540 {
2541 basic_block bb = BLOCK_FOR_INSN (insn);
2542 gcc_assert (BB_END (bb) == insn);
2543
2544 purge_dead_edges (bb);
2545
2546 delete_insn (insn);
2547 if (EDGE_COUNT (bb->succs) == 1)
2548 {
2549 rtx_insn *insn;
2550
2551 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2552
2553 /* Remove barriers from the footer if there are any. */
2554 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2555 if (BARRIER_P (insn))
2556 {
2557 if (PREV_INSN (insn))
2558 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2559 else
2560 BB_FOOTER (bb) = NEXT_INSN (insn);
2561 if (NEXT_INSN (insn))
2562 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2563 }
2564 else if (LABEL_P (insn))
2565 break;
2566 }
2567 }
2568
2569 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2570 by an arbitrary number of CLOBBERs. */
2571 static bool
2572 is_parallel_of_n_reg_sets (rtx pat, int n)
2573 {
2574 if (GET_CODE (pat) != PARALLEL)
2575 return false;
2576
2577 int len = XVECLEN (pat, 0);
2578 if (len < n)
2579 return false;
2580
2581 int i;
2582 for (i = 0; i < n; i++)
2583 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2584 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2585 return false;
2586 for ( ; i < len; i++)
2587 switch (GET_CODE (XVECEXP (pat, 0, i)))
2588 {
2589 case CLOBBER:
2590 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2591 return false;
2592 break;
2593 case CLOBBER_HIGH:
2594 break;
2595 default:
2596 return false;
2597 }
2598 return true;
2599 }
2600
2601 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2602 CLOBBERs), can be split into individual SETs in that order, without
2603 changing semantics. */
2604 static bool
2605 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2606 {
2607 if (!insn_nothrow_p (insn))
2608 return false;
2609
2610 rtx pat = PATTERN (insn);
2611
2612 int i, j;
2613 for (i = 0; i < n; i++)
2614 {
2615 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2616 return false;
2617
2618 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2619
2620 for (j = i + 1; j < n; j++)
2621 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2622 return false;
2623 }
2624
2625 return true;
2626 }
2627
2628 /* Return whether X is just a single set, with the source
2629 a general_operand. */
2630 static bool
2631 is_just_move (rtx x)
2632 {
2633 if (INSN_P (x))
2634 x = PATTERN (x);
2635
2636 return (GET_CODE (x) == SET && general_operand (SET_SRC (x), VOIDmode));
2637 }
2638
2639 /* Try to combine the insns I0, I1 and I2 into I3.
2640 Here I0, I1 and I2 appear earlier than I3.
2641 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2642 I3.
2643
2644 If we are combining more than two insns and the resulting insn is not
2645 recognized, try splitting it into two insns. If that happens, I2 and I3
2646 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2647 Otherwise, I0, I1 and I2 are pseudo-deleted.
2648
2649 Return 0 if the combination does not work. Then nothing is changed.
2650 If we did the combination, return the insn at which combine should
2651 resume scanning.
2652
2653 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2654 new direct jump instruction.
2655
2656 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2657 been I3 passed to an earlier try_combine within the same basic
2658 block. */
2659
2660 static rtx_insn *
2661 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2662 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2663 {
2664 /* New patterns for I3 and I2, respectively. */
2665 rtx newpat, newi2pat = 0;
2666 rtvec newpat_vec_with_clobbers = 0;
2667 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2668 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2669 dead. */
2670 int added_sets_0, added_sets_1, added_sets_2;
2671 /* Total number of SETs to put into I3. */
2672 int total_sets;
2673 /* Nonzero if I2's or I1's body now appears in I3. */
2674 int i2_is_used = 0, i1_is_used = 0;
2675 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2676 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2677 /* Contains I3 if the destination of I3 is used in its source, which means
2678 that the old life of I3 is being killed. If that usage is placed into
2679 I2 and not in I3, a REG_DEAD note must be made. */
2680 rtx i3dest_killed = 0;
2681 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2682 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2683 /* Copy of SET_SRC of I1 and I0, if needed. */
2684 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2685 /* Set if I2DEST was reused as a scratch register. */
2686 bool i2scratch = false;
2687 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2688 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2689 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2690 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2691 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2692 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2693 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2694 /* Notes that must be added to REG_NOTES in I3 and I2. */
2695 rtx new_i3_notes, new_i2_notes;
2696 /* Notes that we substituted I3 into I2 instead of the normal case. */
2697 int i3_subst_into_i2 = 0;
2698 /* Notes that I1, I2 or I3 is a MULT operation. */
2699 int have_mult = 0;
2700 int swap_i2i3 = 0;
2701 int split_i2i3 = 0;
2702 int changed_i3_dest = 0;
2703 bool i2_was_move = false, i3_was_move = false;
2704
2705 int maxreg;
2706 rtx_insn *temp_insn;
2707 rtx temp_expr;
2708 struct insn_link *link;
2709 rtx other_pat = 0;
2710 rtx new_other_notes;
2711 int i;
2712 scalar_int_mode dest_mode, temp_mode;
2713
2714 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2715 never be). */
2716 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2717 return 0;
2718
2719 /* Only try four-insn combinations when there's high likelihood of
2720 success. Look for simple insns, such as loads of constants or
2721 binary operations involving a constant. */
2722 if (i0)
2723 {
2724 int i;
2725 int ngood = 0;
2726 int nshift = 0;
2727 rtx set0, set3;
2728
2729 if (!flag_expensive_optimizations)
2730 return 0;
2731
2732 for (i = 0; i < 4; i++)
2733 {
2734 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2735 rtx set = single_set (insn);
2736 rtx src;
2737 if (!set)
2738 continue;
2739 src = SET_SRC (set);
2740 if (CONSTANT_P (src))
2741 {
2742 ngood += 2;
2743 break;
2744 }
2745 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2746 ngood++;
2747 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2748 || GET_CODE (src) == LSHIFTRT)
2749 nshift++;
2750 }
2751
2752 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2753 are likely manipulating its value. Ideally we'll be able to combine
2754 all four insns into a bitfield insertion of some kind.
2755
2756 Note the source in I0 might be inside a sign/zero extension and the
2757 memory modes in I0 and I3 might be different. So extract the address
2758 from the destination of I3 and search for it in the source of I0.
2759
2760 In the event that there's a match but the source/dest do not actually
2761 refer to the same memory, the worst that happens is we try some
2762 combinations that we wouldn't have otherwise. */
2763 if ((set0 = single_set (i0))
2764 /* Ensure the source of SET0 is a MEM, possibly buried inside
2765 an extension. */
2766 && (GET_CODE (SET_SRC (set0)) == MEM
2767 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2768 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2769 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2770 && (set3 = single_set (i3))
2771 /* Ensure the destination of SET3 is a MEM. */
2772 && GET_CODE (SET_DEST (set3)) == MEM
2773 /* Would it be better to extract the base address for the MEM
2774 in SET3 and look for that? I don't have cases where it matters
2775 but I could envision such cases. */
2776 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2777 ngood += 2;
2778
2779 if (ngood < 2 && nshift < 2)
2780 return 0;
2781 }
2782
2783 /* Exit early if one of the insns involved can't be used for
2784 combinations. */
2785 if (CALL_P (i2)
2786 || (i1 && CALL_P (i1))
2787 || (i0 && CALL_P (i0))
2788 || cant_combine_insn_p (i3)
2789 || cant_combine_insn_p (i2)
2790 || (i1 && cant_combine_insn_p (i1))
2791 || (i0 && cant_combine_insn_p (i0))
2792 || likely_spilled_retval_p (i3))
2793 return 0;
2794
2795 combine_attempts++;
2796 undobuf.other_insn = 0;
2797
2798 /* Reset the hard register usage information. */
2799 CLEAR_HARD_REG_SET (newpat_used_regs);
2800
2801 if (dump_file && (dump_flags & TDF_DETAILS))
2802 {
2803 if (i0)
2804 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2805 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2806 else if (i1)
2807 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2808 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2809 else
2810 fprintf (dump_file, "\nTrying %d -> %d:\n",
2811 INSN_UID (i2), INSN_UID (i3));
2812
2813 if (i0)
2814 dump_insn_slim (dump_file, i0);
2815 if (i1)
2816 dump_insn_slim (dump_file, i1);
2817 dump_insn_slim (dump_file, i2);
2818 dump_insn_slim (dump_file, i3);
2819 }
2820
2821 /* If multiple insns feed into one of I2 or I3, they can be in any
2822 order. To simplify the code below, reorder them in sequence. */
2823 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2824 std::swap (i0, i2);
2825 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2826 std::swap (i0, i1);
2827 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2828 std::swap (i1, i2);
2829
2830 added_links_insn = 0;
2831 added_notes_insn = 0;
2832
2833 /* First check for one important special case that the code below will
2834 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2835 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2836 we may be able to replace that destination with the destination of I3.
2837 This occurs in the common code where we compute both a quotient and
2838 remainder into a structure, in which case we want to do the computation
2839 directly into the structure to avoid register-register copies.
2840
2841 Note that this case handles both multiple sets in I2 and also cases
2842 where I2 has a number of CLOBBERs inside the PARALLEL.
2843
2844 We make very conservative checks below and only try to handle the
2845 most common cases of this. For example, we only handle the case
2846 where I2 and I3 are adjacent to avoid making difficult register
2847 usage tests. */
2848
2849 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2850 && REG_P (SET_SRC (PATTERN (i3)))
2851 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2852 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2853 && GET_CODE (PATTERN (i2)) == PARALLEL
2854 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2855 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2856 below would need to check what is inside (and reg_overlap_mentioned_p
2857 doesn't support those codes anyway). Don't allow those destinations;
2858 the resulting insn isn't likely to be recognized anyway. */
2859 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2860 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2861 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2862 SET_DEST (PATTERN (i3)))
2863 && next_active_insn (i2) == i3)
2864 {
2865 rtx p2 = PATTERN (i2);
2866
2867 /* Make sure that the destination of I3,
2868 which we are going to substitute into one output of I2,
2869 is not used within another output of I2. We must avoid making this:
2870 (parallel [(set (mem (reg 69)) ...)
2871 (set (reg 69) ...)])
2872 which is not well-defined as to order of actions.
2873 (Besides, reload can't handle output reloads for this.)
2874
2875 The problem can also happen if the dest of I3 is a memory ref,
2876 if another dest in I2 is an indirect memory ref.
2877
2878 Neither can this PARALLEL be an asm. We do not allow combining
2879 that usually (see can_combine_p), so do not here either. */
2880 bool ok = true;
2881 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2882 {
2883 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2884 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER
2885 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER_HIGH)
2886 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2887 SET_DEST (XVECEXP (p2, 0, i))))
2888 ok = false;
2889 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2890 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2891 ok = false;
2892 }
2893
2894 if (ok)
2895 for (i = 0; i < XVECLEN (p2, 0); i++)
2896 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2897 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2898 {
2899 combine_merges++;
2900
2901 subst_insn = i3;
2902 subst_low_luid = DF_INSN_LUID (i2);
2903
2904 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2905 i2src = SET_SRC (XVECEXP (p2, 0, i));
2906 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2907 i2dest_killed = dead_or_set_p (i2, i2dest);
2908
2909 /* Replace the dest in I2 with our dest and make the resulting
2910 insn the new pattern for I3. Then skip to where we validate
2911 the pattern. Everything was set up above. */
2912 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2913 newpat = p2;
2914 i3_subst_into_i2 = 1;
2915 goto validate_replacement;
2916 }
2917 }
2918
2919 /* If I2 is setting a pseudo to a constant and I3 is setting some
2920 sub-part of it to another constant, merge them by making a new
2921 constant. */
2922 if (i1 == 0
2923 && (temp_expr = single_set (i2)) != 0
2924 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2925 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2926 && GET_CODE (PATTERN (i3)) == SET
2927 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2928 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2929 {
2930 rtx dest = SET_DEST (PATTERN (i3));
2931 rtx temp_dest = SET_DEST (temp_expr);
2932 int offset = -1;
2933 int width = 0;
2934
2935 if (GET_CODE (dest) == ZERO_EXTRACT)
2936 {
2937 if (CONST_INT_P (XEXP (dest, 1))
2938 && CONST_INT_P (XEXP (dest, 2))
2939 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2940 &dest_mode))
2941 {
2942 width = INTVAL (XEXP (dest, 1));
2943 offset = INTVAL (XEXP (dest, 2));
2944 dest = XEXP (dest, 0);
2945 if (BITS_BIG_ENDIAN)
2946 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2947 }
2948 }
2949 else
2950 {
2951 if (GET_CODE (dest) == STRICT_LOW_PART)
2952 dest = XEXP (dest, 0);
2953 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2954 {
2955 width = GET_MODE_PRECISION (dest_mode);
2956 offset = 0;
2957 }
2958 }
2959
2960 if (offset >= 0)
2961 {
2962 /* If this is the low part, we're done. */
2963 if (subreg_lowpart_p (dest))
2964 ;
2965 /* Handle the case where inner is twice the size of outer. */
2966 else if (GET_MODE_PRECISION (temp_mode)
2967 == 2 * GET_MODE_PRECISION (dest_mode))
2968 offset += GET_MODE_PRECISION (dest_mode);
2969 /* Otherwise give up for now. */
2970 else
2971 offset = -1;
2972 }
2973
2974 if (offset >= 0)
2975 {
2976 rtx inner = SET_SRC (PATTERN (i3));
2977 rtx outer = SET_SRC (temp_expr);
2978
2979 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2980 rtx_mode_t (inner, dest_mode),
2981 offset, width);
2982
2983 combine_merges++;
2984 subst_insn = i3;
2985 subst_low_luid = DF_INSN_LUID (i2);
2986 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2987 i2dest = temp_dest;
2988 i2dest_killed = dead_or_set_p (i2, i2dest);
2989
2990 /* Replace the source in I2 with the new constant and make the
2991 resulting insn the new pattern for I3. Then skip to where we
2992 validate the pattern. Everything was set up above. */
2993 SUBST (SET_SRC (temp_expr),
2994 immed_wide_int_const (o, temp_mode));
2995
2996 newpat = PATTERN (i2);
2997
2998 /* The dest of I3 has been replaced with the dest of I2. */
2999 changed_i3_dest = 1;
3000 goto validate_replacement;
3001 }
3002 }
3003
3004 /* If we have no I1 and I2 looks like:
3005 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
3006 (set Y OP)])
3007 make up a dummy I1 that is
3008 (set Y OP)
3009 and change I2 to be
3010 (set (reg:CC X) (compare:CC Y (const_int 0)))
3011
3012 (We can ignore any trailing CLOBBERs.)
3013
3014 This undoes a previous combination and allows us to match a branch-and-
3015 decrement insn. */
3016
3017 if (!HAVE_cc0 && i1 == 0
3018 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3019 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
3020 == MODE_CC)
3021 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
3022 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
3023 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
3024 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
3025 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3026 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3027 {
3028 /* We make I1 with the same INSN_UID as I2. This gives it
3029 the same DF_INSN_LUID for value tracking. Our fake I1 will
3030 never appear in the insn stream so giving it the same INSN_UID
3031 as I2 will not cause a problem. */
3032
3033 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3034 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3035 -1, NULL_RTX);
3036 INSN_UID (i1) = INSN_UID (i2);
3037
3038 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3039 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3040 SET_DEST (PATTERN (i1)));
3041 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3042 SUBST_LINK (LOG_LINKS (i2),
3043 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3044 }
3045
3046 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3047 make those two SETs separate I1 and I2 insns, and make an I0 that is
3048 the original I1. */
3049 if (!HAVE_cc0 && i0 == 0
3050 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3051 && can_split_parallel_of_n_reg_sets (i2, 2)
3052 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3053 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3054 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3055 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3056 {
3057 /* If there is no I1, there is no I0 either. */
3058 i0 = i1;
3059
3060 /* We make I1 with the same INSN_UID as I2. This gives it
3061 the same DF_INSN_LUID for value tracking. Our fake I1 will
3062 never appear in the insn stream so giving it the same INSN_UID
3063 as I2 will not cause a problem. */
3064
3065 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3066 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3067 -1, NULL_RTX);
3068 INSN_UID (i1) = INSN_UID (i2);
3069
3070 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3071 }
3072
3073 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3074 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3075 {
3076 if (dump_file)
3077 fprintf (dump_file, "Can't combine i2 into i3\n");
3078 undo_all ();
3079 return 0;
3080 }
3081 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3082 {
3083 if (dump_file)
3084 fprintf (dump_file, "Can't combine i1 into i3\n");
3085 undo_all ();
3086 return 0;
3087 }
3088 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3089 {
3090 if (dump_file)
3091 fprintf (dump_file, "Can't combine i0 into i3\n");
3092 undo_all ();
3093 return 0;
3094 }
3095
3096 /* Record whether i2 and i3 are trivial moves. */
3097 i2_was_move = is_just_move (i2);
3098 i3_was_move = is_just_move (i3);
3099
3100 /* Record whether I2DEST is used in I2SRC and similarly for the other
3101 cases. Knowing this will help in register status updating below. */
3102 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3103 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3104 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3105 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3106 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3107 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3108 i2dest_killed = dead_or_set_p (i2, i2dest);
3109 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3110 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3111
3112 /* For the earlier insns, determine which of the subsequent ones they
3113 feed. */
3114 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3115 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3116 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3117 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3118 && reg_overlap_mentioned_p (i0dest, i2src))));
3119
3120 /* Ensure that I3's pattern can be the destination of combines. */
3121 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3122 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3123 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3124 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3125 &i3dest_killed))
3126 {
3127 undo_all ();
3128 return 0;
3129 }
3130
3131 /* See if any of the insns is a MULT operation. Unless one is, we will
3132 reject a combination that is, since it must be slower. Be conservative
3133 here. */
3134 if (GET_CODE (i2src) == MULT
3135 || (i1 != 0 && GET_CODE (i1src) == MULT)
3136 || (i0 != 0 && GET_CODE (i0src) == MULT)
3137 || (GET_CODE (PATTERN (i3)) == SET
3138 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3139 have_mult = 1;
3140
3141 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3142 We used to do this EXCEPT in one case: I3 has a post-inc in an
3143 output operand. However, that exception can give rise to insns like
3144 mov r3,(r3)+
3145 which is a famous insn on the PDP-11 where the value of r3 used as the
3146 source was model-dependent. Avoid this sort of thing. */
3147
3148 #if 0
3149 if (!(GET_CODE (PATTERN (i3)) == SET
3150 && REG_P (SET_SRC (PATTERN (i3)))
3151 && MEM_P (SET_DEST (PATTERN (i3)))
3152 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3153 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3154 /* It's not the exception. */
3155 #endif
3156 if (AUTO_INC_DEC)
3157 {
3158 rtx link;
3159 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3160 if (REG_NOTE_KIND (link) == REG_INC
3161 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3162 || (i1 != 0
3163 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3164 {
3165 undo_all ();
3166 return 0;
3167 }
3168 }
3169
3170 /* See if the SETs in I1 or I2 need to be kept around in the merged
3171 instruction: whenever the value set there is still needed past I3.
3172 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3173
3174 For the SET in I1, we have two cases: if I1 and I2 independently feed
3175 into I3, the set in I1 needs to be kept around unless I1DEST dies
3176 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3177 in I1 needs to be kept around unless I1DEST dies or is set in either
3178 I2 or I3. The same considerations apply to I0. */
3179
3180 added_sets_2 = !dead_or_set_p (i3, i2dest);
3181
3182 if (i1)
3183 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3184 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3185 else
3186 added_sets_1 = 0;
3187
3188 if (i0)
3189 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3190 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3191 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3192 && dead_or_set_p (i2, i0dest)));
3193 else
3194 added_sets_0 = 0;
3195
3196 /* We are about to copy insns for the case where they need to be kept
3197 around. Check that they can be copied in the merged instruction. */
3198
3199 if (targetm.cannot_copy_insn_p
3200 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3201 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3202 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3203 {
3204 undo_all ();
3205 return 0;
3206 }
3207
3208 /* If the set in I2 needs to be kept around, we must make a copy of
3209 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3210 PATTERN (I2), we are only substituting for the original I1DEST, not into
3211 an already-substituted copy. This also prevents making self-referential
3212 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3213 I2DEST. */
3214
3215 if (added_sets_2)
3216 {
3217 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3218 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3219 else
3220 i2pat = copy_rtx (PATTERN (i2));
3221 }
3222
3223 if (added_sets_1)
3224 {
3225 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3226 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3227 else
3228 i1pat = copy_rtx (PATTERN (i1));
3229 }
3230
3231 if (added_sets_0)
3232 {
3233 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3234 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3235 else
3236 i0pat = copy_rtx (PATTERN (i0));
3237 }
3238
3239 combine_merges++;
3240
3241 /* Substitute in the latest insn for the regs set by the earlier ones. */
3242
3243 maxreg = max_reg_num ();
3244
3245 subst_insn = i3;
3246
3247 /* Many machines that don't use CC0 have insns that can both perform an
3248 arithmetic operation and set the condition code. These operations will
3249 be represented as a PARALLEL with the first element of the vector
3250 being a COMPARE of an arithmetic operation with the constant zero.
3251 The second element of the vector will set some pseudo to the result
3252 of the same arithmetic operation. If we simplify the COMPARE, we won't
3253 match such a pattern and so will generate an extra insn. Here we test
3254 for this case, where both the comparison and the operation result are
3255 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3256 I2SRC. Later we will make the PARALLEL that contains I2. */
3257
3258 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3259 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3260 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3261 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3262 {
3263 rtx newpat_dest;
3264 rtx *cc_use_loc = NULL;
3265 rtx_insn *cc_use_insn = NULL;
3266 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3267 machine_mode compare_mode, orig_compare_mode;
3268 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3269 scalar_int_mode mode;
3270
3271 newpat = PATTERN (i3);
3272 newpat_dest = SET_DEST (newpat);
3273 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3274
3275 if (undobuf.other_insn == 0
3276 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3277 &cc_use_insn)))
3278 {
3279 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3280 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3281 compare_code = simplify_compare_const (compare_code, mode,
3282 op0, &op1);
3283 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3284 }
3285
3286 /* Do the rest only if op1 is const0_rtx, which may be the
3287 result of simplification. */
3288 if (op1 == const0_rtx)
3289 {
3290 /* If a single use of the CC is found, prepare to modify it
3291 when SELECT_CC_MODE returns a new CC-class mode, or when
3292 the above simplify_compare_const() returned a new comparison
3293 operator. undobuf.other_insn is assigned the CC use insn
3294 when modifying it. */
3295 if (cc_use_loc)
3296 {
3297 #ifdef SELECT_CC_MODE
3298 machine_mode new_mode
3299 = SELECT_CC_MODE (compare_code, op0, op1);
3300 if (new_mode != orig_compare_mode
3301 && can_change_dest_mode (SET_DEST (newpat),
3302 added_sets_2, new_mode))
3303 {
3304 unsigned int regno = REGNO (newpat_dest);
3305 compare_mode = new_mode;
3306 if (regno < FIRST_PSEUDO_REGISTER)
3307 newpat_dest = gen_rtx_REG (compare_mode, regno);
3308 else
3309 {
3310 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3311 newpat_dest = regno_reg_rtx[regno];
3312 }
3313 }
3314 #endif
3315 /* Cases for modifying the CC-using comparison. */
3316 if (compare_code != orig_compare_code
3317 /* ??? Do we need to verify the zero rtx? */
3318 && XEXP (*cc_use_loc, 1) == const0_rtx)
3319 {
3320 /* Replace cc_use_loc with entire new RTX. */
3321 SUBST (*cc_use_loc,
3322 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3323 newpat_dest, const0_rtx));
3324 undobuf.other_insn = cc_use_insn;
3325 }
3326 else if (compare_mode != orig_compare_mode)
3327 {
3328 /* Just replace the CC reg with a new mode. */
3329 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3330 undobuf.other_insn = cc_use_insn;
3331 }
3332 }
3333
3334 /* Now we modify the current newpat:
3335 First, SET_DEST(newpat) is updated if the CC mode has been
3336 altered. For targets without SELECT_CC_MODE, this should be
3337 optimized away. */
3338 if (compare_mode != orig_compare_mode)
3339 SUBST (SET_DEST (newpat), newpat_dest);
3340 /* This is always done to propagate i2src into newpat. */
3341 SUBST (SET_SRC (newpat),
3342 gen_rtx_COMPARE (compare_mode, op0, op1));
3343 /* Create new version of i2pat if needed; the below PARALLEL
3344 creation needs this to work correctly. */
3345 if (! rtx_equal_p (i2src, op0))
3346 i2pat = gen_rtx_SET (i2dest, op0);
3347 i2_is_used = 1;
3348 }
3349 }
3350
3351 if (i2_is_used == 0)
3352 {
3353 /* It is possible that the source of I2 or I1 may be performing
3354 an unneeded operation, such as a ZERO_EXTEND of something
3355 that is known to have the high part zero. Handle that case
3356 by letting subst look at the inner insns.
3357
3358 Another way to do this would be to have a function that tries
3359 to simplify a single insn instead of merging two or more
3360 insns. We don't do this because of the potential of infinite
3361 loops and because of the potential extra memory required.
3362 However, doing it the way we are is a bit of a kludge and
3363 doesn't catch all cases.
3364
3365 But only do this if -fexpensive-optimizations since it slows
3366 things down and doesn't usually win.
3367
3368 This is not done in the COMPARE case above because the
3369 unmodified I2PAT is used in the PARALLEL and so a pattern
3370 with a modified I2SRC would not match. */
3371
3372 if (flag_expensive_optimizations)
3373 {
3374 /* Pass pc_rtx so no substitutions are done, just
3375 simplifications. */
3376 if (i1)
3377 {
3378 subst_low_luid = DF_INSN_LUID (i1);
3379 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3380 }
3381
3382 subst_low_luid = DF_INSN_LUID (i2);
3383 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3384 }
3385
3386 n_occurrences = 0; /* `subst' counts here */
3387 subst_low_luid = DF_INSN_LUID (i2);
3388
3389 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3390 copy of I2SRC each time we substitute it, in order to avoid creating
3391 self-referential RTL when we will be substituting I1SRC for I1DEST
3392 later. Likewise if I0 feeds into I2, either directly or indirectly
3393 through I1, and I0DEST is in I0SRC. */
3394 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3395 (i1_feeds_i2_n && i1dest_in_i1src)
3396 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3397 && i0dest_in_i0src));
3398 substed_i2 = 1;
3399
3400 /* Record whether I2's body now appears within I3's body. */
3401 i2_is_used = n_occurrences;
3402 }
3403
3404 /* If we already got a failure, don't try to do more. Otherwise, try to
3405 substitute I1 if we have it. */
3406
3407 if (i1 && GET_CODE (newpat) != CLOBBER)
3408 {
3409 /* Check that an autoincrement side-effect on I1 has not been lost.
3410 This happens if I1DEST is mentioned in I2 and dies there, and
3411 has disappeared from the new pattern. */
3412 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3413 && i1_feeds_i2_n
3414 && dead_or_set_p (i2, i1dest)
3415 && !reg_overlap_mentioned_p (i1dest, newpat))
3416 /* Before we can do this substitution, we must redo the test done
3417 above (see detailed comments there) that ensures I1DEST isn't
3418 mentioned in any SETs in NEWPAT that are field assignments. */
3419 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3420 0, 0, 0))
3421 {
3422 undo_all ();
3423 return 0;
3424 }
3425
3426 n_occurrences = 0;
3427 subst_low_luid = DF_INSN_LUID (i1);
3428
3429 /* If the following substitution will modify I1SRC, make a copy of it
3430 for the case where it is substituted for I1DEST in I2PAT later. */
3431 if (added_sets_2 && i1_feeds_i2_n)
3432 i1src_copy = copy_rtx (i1src);
3433
3434 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3435 copy of I1SRC each time we substitute it, in order to avoid creating
3436 self-referential RTL when we will be substituting I0SRC for I0DEST
3437 later. */
3438 newpat = subst (newpat, i1dest, i1src, 0, 0,
3439 i0_feeds_i1_n && i0dest_in_i0src);
3440 substed_i1 = 1;
3441
3442 /* Record whether I1's body now appears within I3's body. */
3443 i1_is_used = n_occurrences;
3444 }
3445
3446 /* Likewise for I0 if we have it. */
3447
3448 if (i0 && GET_CODE (newpat) != CLOBBER)
3449 {
3450 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3451 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3452 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3453 && !reg_overlap_mentioned_p (i0dest, newpat))
3454 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3455 0, 0, 0))
3456 {
3457 undo_all ();
3458 return 0;
3459 }
3460
3461 /* If the following substitution will modify I0SRC, make a copy of it
3462 for the case where it is substituted for I0DEST in I1PAT later. */
3463 if (added_sets_1 && i0_feeds_i1_n)
3464 i0src_copy = copy_rtx (i0src);
3465 /* And a copy for I0DEST in I2PAT substitution. */
3466 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3467 || (i0_feeds_i2_n)))
3468 i0src_copy2 = copy_rtx (i0src);
3469
3470 n_occurrences = 0;
3471 subst_low_luid = DF_INSN_LUID (i0);
3472 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3473 substed_i0 = 1;
3474 }
3475
3476 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3477 to count all the ways that I2SRC and I1SRC can be used. */
3478 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3479 && i2_is_used + added_sets_2 > 1)
3480 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3481 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3482 > 1))
3483 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3484 && (n_occurrences + added_sets_0
3485 + (added_sets_1 && i0_feeds_i1_n)
3486 + (added_sets_2 && i0_feeds_i2_n)
3487 > 1))
3488 /* Fail if we tried to make a new register. */
3489 || max_reg_num () != maxreg
3490 /* Fail if we couldn't do something and have a CLOBBER. */
3491 || GET_CODE (newpat) == CLOBBER
3492 /* Fail if this new pattern is a MULT and we didn't have one before
3493 at the outer level. */
3494 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3495 && ! have_mult))
3496 {
3497 undo_all ();
3498 return 0;
3499 }
3500
3501 /* If the actions of the earlier insns must be kept
3502 in addition to substituting them into the latest one,
3503 we must make a new PARALLEL for the latest insn
3504 to hold additional the SETs. */
3505
3506 if (added_sets_0 || added_sets_1 || added_sets_2)
3507 {
3508 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3509 combine_extras++;
3510
3511 if (GET_CODE (newpat) == PARALLEL)
3512 {
3513 rtvec old = XVEC (newpat, 0);
3514 total_sets = XVECLEN (newpat, 0) + extra_sets;
3515 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3516 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3517 sizeof (old->elem[0]) * old->num_elem);
3518 }
3519 else
3520 {
3521 rtx old = newpat;
3522 total_sets = 1 + extra_sets;
3523 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3524 XVECEXP (newpat, 0, 0) = old;
3525 }
3526
3527 if (added_sets_0)
3528 XVECEXP (newpat, 0, --total_sets) = i0pat;
3529
3530 if (added_sets_1)
3531 {
3532 rtx t = i1pat;
3533 if (i0_feeds_i1_n)
3534 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3535
3536 XVECEXP (newpat, 0, --total_sets) = t;
3537 }
3538 if (added_sets_2)
3539 {
3540 rtx t = i2pat;
3541 if (i1_feeds_i2_n)
3542 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3543 i0_feeds_i1_n && i0dest_in_i0src);
3544 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3545 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3546
3547 XVECEXP (newpat, 0, --total_sets) = t;
3548 }
3549 }
3550
3551 validate_replacement:
3552
3553 /* Note which hard regs this insn has as inputs. */
3554 mark_used_regs_combine (newpat);
3555
3556 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3557 consider splitting this pattern, we might need these clobbers. */
3558 if (i1 && GET_CODE (newpat) == PARALLEL
3559 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3560 {
3561 int len = XVECLEN (newpat, 0);
3562
3563 newpat_vec_with_clobbers = rtvec_alloc (len);
3564 for (i = 0; i < len; i++)
3565 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3566 }
3567
3568 /* We have recognized nothing yet. */
3569 insn_code_number = -1;
3570
3571 /* See if this is a PARALLEL of two SETs where one SET's destination is
3572 a register that is unused and this isn't marked as an instruction that
3573 might trap in an EH region. In that case, we just need the other SET.
3574 We prefer this over the PARALLEL.
3575
3576 This can occur when simplifying a divmod insn. We *must* test for this
3577 case here because the code below that splits two independent SETs doesn't
3578 handle this case correctly when it updates the register status.
3579
3580 It's pointless doing this if we originally had two sets, one from
3581 i3, and one from i2. Combining then splitting the parallel results
3582 in the original i2 again plus an invalid insn (which we delete).
3583 The net effect is only to move instructions around, which makes
3584 debug info less accurate.
3585
3586 If the remaining SET came from I2 its destination should not be used
3587 between I2 and I3. See PR82024. */
3588
3589 if (!(added_sets_2 && i1 == 0)
3590 && is_parallel_of_n_reg_sets (newpat, 2)
3591 && asm_noperands (newpat) < 0)
3592 {
3593 rtx set0 = XVECEXP (newpat, 0, 0);
3594 rtx set1 = XVECEXP (newpat, 0, 1);
3595 rtx oldpat = newpat;
3596
3597 if (((REG_P (SET_DEST (set1))
3598 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3599 || (GET_CODE (SET_DEST (set1)) == SUBREG
3600 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3601 && insn_nothrow_p (i3)
3602 && !side_effects_p (SET_SRC (set1)))
3603 {
3604 newpat = set0;
3605 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3606 }
3607
3608 else if (((REG_P (SET_DEST (set0))
3609 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3610 || (GET_CODE (SET_DEST (set0)) == SUBREG
3611 && find_reg_note (i3, REG_UNUSED,
3612 SUBREG_REG (SET_DEST (set0)))))
3613 && insn_nothrow_p (i3)
3614 && !side_effects_p (SET_SRC (set0)))
3615 {
3616 rtx dest = SET_DEST (set1);
3617 if (GET_CODE (dest) == SUBREG)
3618 dest = SUBREG_REG (dest);
3619 if (!reg_used_between_p (dest, i2, i3))
3620 {
3621 newpat = set1;
3622 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3623
3624 if (insn_code_number >= 0)
3625 changed_i3_dest = 1;
3626 }
3627 }
3628
3629 if (insn_code_number < 0)
3630 newpat = oldpat;
3631 }
3632
3633 /* Is the result of combination a valid instruction? */
3634 if (insn_code_number < 0)
3635 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3636
3637 /* If we were combining three insns and the result is a simple SET
3638 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3639 insns. There are two ways to do this. It can be split using a
3640 machine-specific method (like when you have an addition of a large
3641 constant) or by combine in the function find_split_point. */
3642
3643 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3644 && asm_noperands (newpat) < 0)
3645 {
3646 rtx parallel, *split;
3647 rtx_insn *m_split_insn;
3648
3649 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3650 use I2DEST as a scratch register will help. In the latter case,
3651 convert I2DEST to the mode of the source of NEWPAT if we can. */
3652
3653 m_split_insn = combine_split_insns (newpat, i3);
3654
3655 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3656 inputs of NEWPAT. */
3657
3658 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3659 possible to try that as a scratch reg. This would require adding
3660 more code to make it work though. */
3661
3662 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3663 {
3664 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3665
3666 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3667 (temporarily, until we are committed to this instruction
3668 combination) does not work: for example, any call to nonzero_bits
3669 on the register (from a splitter in the MD file, for example)
3670 will get the old information, which is invalid.
3671
3672 Since nowadays we can create registers during combine just fine,
3673 we should just create a new one here, not reuse i2dest. */
3674
3675 /* First try to split using the original register as a
3676 scratch register. */
3677 parallel = gen_rtx_PARALLEL (VOIDmode,
3678 gen_rtvec (2, newpat,
3679 gen_rtx_CLOBBER (VOIDmode,
3680 i2dest)));
3681 m_split_insn = combine_split_insns (parallel, i3);
3682
3683 /* If that didn't work, try changing the mode of I2DEST if
3684 we can. */
3685 if (m_split_insn == 0
3686 && new_mode != GET_MODE (i2dest)
3687 && new_mode != VOIDmode
3688 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3689 {
3690 machine_mode old_mode = GET_MODE (i2dest);
3691 rtx ni2dest;
3692
3693 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3694 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3695 else
3696 {
3697 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3698 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3699 }
3700
3701 parallel = (gen_rtx_PARALLEL
3702 (VOIDmode,
3703 gen_rtvec (2, newpat,
3704 gen_rtx_CLOBBER (VOIDmode,
3705 ni2dest))));
3706 m_split_insn = combine_split_insns (parallel, i3);
3707
3708 if (m_split_insn == 0
3709 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3710 {
3711 struct undo *buf;
3712
3713 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3714 buf = undobuf.undos;
3715 undobuf.undos = buf->next;
3716 buf->next = undobuf.frees;
3717 undobuf.frees = buf;
3718 }
3719 }
3720
3721 i2scratch = m_split_insn != 0;
3722 }
3723
3724 /* If recog_for_combine has discarded clobbers, try to use them
3725 again for the split. */
3726 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3727 {
3728 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3729 m_split_insn = combine_split_insns (parallel, i3);
3730 }
3731
3732 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3733 {
3734 rtx m_split_pat = PATTERN (m_split_insn);
3735 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3736 if (insn_code_number >= 0)
3737 newpat = m_split_pat;
3738 }
3739 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3740 && (next_nonnote_nondebug_insn (i2) == i3
3741 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3742 {
3743 rtx i2set, i3set;
3744 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3745 newi2pat = PATTERN (m_split_insn);
3746
3747 i3set = single_set (NEXT_INSN (m_split_insn));
3748 i2set = single_set (m_split_insn);
3749
3750 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3751
3752 /* If I2 or I3 has multiple SETs, we won't know how to track
3753 register status, so don't use these insns. If I2's destination
3754 is used between I2 and I3, we also can't use these insns. */
3755
3756 if (i2_code_number >= 0 && i2set && i3set
3757 && (next_nonnote_nondebug_insn (i2) == i3
3758 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3759 insn_code_number = recog_for_combine (&newi3pat, i3,
3760 &new_i3_notes);
3761 if (insn_code_number >= 0)
3762 newpat = newi3pat;
3763
3764 /* It is possible that both insns now set the destination of I3.
3765 If so, we must show an extra use of it. */
3766
3767 if (insn_code_number >= 0)
3768 {
3769 rtx new_i3_dest = SET_DEST (i3set);
3770 rtx new_i2_dest = SET_DEST (i2set);
3771
3772 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3773 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3774 || GET_CODE (new_i3_dest) == SUBREG)
3775 new_i3_dest = XEXP (new_i3_dest, 0);
3776
3777 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3778 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3779 || GET_CODE (new_i2_dest) == SUBREG)
3780 new_i2_dest = XEXP (new_i2_dest, 0);
3781
3782 if (REG_P (new_i3_dest)
3783 && REG_P (new_i2_dest)
3784 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3785 && REGNO (new_i2_dest) < reg_n_sets_max)
3786 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3787 }
3788 }
3789
3790 /* If we can split it and use I2DEST, go ahead and see if that
3791 helps things be recognized. Verify that none of the registers
3792 are set between I2 and I3. */
3793 if (insn_code_number < 0
3794 && (split = find_split_point (&newpat, i3, false)) != 0
3795 && (!HAVE_cc0 || REG_P (i2dest))
3796 /* We need I2DEST in the proper mode. If it is a hard register
3797 or the only use of a pseudo, we can change its mode.
3798 Make sure we don't change a hard register to have a mode that
3799 isn't valid for it, or change the number of registers. */
3800 && (GET_MODE (*split) == GET_MODE (i2dest)
3801 || GET_MODE (*split) == VOIDmode
3802 || can_change_dest_mode (i2dest, added_sets_2,
3803 GET_MODE (*split)))
3804 && (next_nonnote_nondebug_insn (i2) == i3
3805 || !modified_between_p (*split, i2, i3))
3806 /* We can't overwrite I2DEST if its value is still used by
3807 NEWPAT. */
3808 && ! reg_referenced_p (i2dest, newpat))
3809 {
3810 rtx newdest = i2dest;
3811 enum rtx_code split_code = GET_CODE (*split);
3812 machine_mode split_mode = GET_MODE (*split);
3813 bool subst_done = false;
3814 newi2pat = NULL_RTX;
3815
3816 i2scratch = true;
3817
3818 /* *SPLIT may be part of I2SRC, so make sure we have the
3819 original expression around for later debug processing.
3820 We should not need I2SRC any more in other cases. */
3821 if (MAY_HAVE_DEBUG_BIND_INSNS)
3822 i2src = copy_rtx (i2src);
3823 else
3824 i2src = NULL;
3825
3826 /* Get NEWDEST as a register in the proper mode. We have already
3827 validated that we can do this. */
3828 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3829 {
3830 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3831 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3832 else
3833 {
3834 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3835 newdest = regno_reg_rtx[REGNO (i2dest)];
3836 }
3837 }
3838
3839 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3840 an ASHIFT. This can occur if it was inside a PLUS and hence
3841 appeared to be a memory address. This is a kludge. */
3842 if (split_code == MULT
3843 && CONST_INT_P (XEXP (*split, 1))
3844 && INTVAL (XEXP (*split, 1)) > 0
3845 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3846 {
3847 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3848 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3849 XEXP (*split, 0), i_rtx));
3850 /* Update split_code because we may not have a multiply
3851 anymore. */
3852 split_code = GET_CODE (*split);
3853 }
3854
3855 /* Similarly for (plus (mult FOO (const_int pow2))). */
3856 if (split_code == PLUS
3857 && GET_CODE (XEXP (*split, 0)) == MULT
3858 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3859 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3860 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3861 {
3862 rtx nsplit = XEXP (*split, 0);
3863 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3864 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3865 XEXP (nsplit, 0),
3866 i_rtx));
3867 /* Update split_code because we may not have a multiply
3868 anymore. */
3869 split_code = GET_CODE (*split);
3870 }
3871
3872 #ifdef INSN_SCHEDULING
3873 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3874 be written as a ZERO_EXTEND. */
3875 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3876 {
3877 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3878 what it really is. */
3879 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3880 == SIGN_EXTEND)
3881 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3882 SUBREG_REG (*split)));
3883 else
3884 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3885 SUBREG_REG (*split)));
3886 }
3887 #endif
3888
3889 /* Attempt to split binary operators using arithmetic identities. */
3890 if (BINARY_P (SET_SRC (newpat))
3891 && split_mode == GET_MODE (SET_SRC (newpat))
3892 && ! side_effects_p (SET_SRC (newpat)))
3893 {
3894 rtx setsrc = SET_SRC (newpat);
3895 machine_mode mode = GET_MODE (setsrc);
3896 enum rtx_code code = GET_CODE (setsrc);
3897 rtx src_op0 = XEXP (setsrc, 0);
3898 rtx src_op1 = XEXP (setsrc, 1);
3899
3900 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3901 if (rtx_equal_p (src_op0, src_op1))
3902 {
3903 newi2pat = gen_rtx_SET (newdest, src_op0);
3904 SUBST (XEXP (setsrc, 0), newdest);
3905 SUBST (XEXP (setsrc, 1), newdest);
3906 subst_done = true;
3907 }
3908 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3909 else if ((code == PLUS || code == MULT)
3910 && GET_CODE (src_op0) == code
3911 && GET_CODE (XEXP (src_op0, 0)) == code
3912 && (INTEGRAL_MODE_P (mode)
3913 || (FLOAT_MODE_P (mode)
3914 && flag_unsafe_math_optimizations)))
3915 {
3916 rtx p = XEXP (XEXP (src_op0, 0), 0);
3917 rtx q = XEXP (XEXP (src_op0, 0), 1);
3918 rtx r = XEXP (src_op0, 1);
3919 rtx s = src_op1;
3920
3921 /* Split both "((X op Y) op X) op Y" and
3922 "((X op Y) op Y) op X" as "T op T" where T is
3923 "X op Y". */
3924 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3925 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3926 {
3927 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3928 SUBST (XEXP (setsrc, 0), newdest);
3929 SUBST (XEXP (setsrc, 1), newdest);
3930 subst_done = true;
3931 }
3932 /* Split "((X op X) op Y) op Y)" as "T op T" where
3933 T is "X op Y". */
3934 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3935 {
3936 rtx tmp = simplify_gen_binary (code, mode, p, r);
3937 newi2pat = gen_rtx_SET (newdest, tmp);
3938 SUBST (XEXP (setsrc, 0), newdest);
3939 SUBST (XEXP (setsrc, 1), newdest);
3940 subst_done = true;
3941 }
3942 }
3943 }
3944
3945 if (!subst_done)
3946 {
3947 newi2pat = gen_rtx_SET (newdest, *split);
3948 SUBST (*split, newdest);
3949 }
3950
3951 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3952
3953 /* recog_for_combine might have added CLOBBERs to newi2pat.
3954 Make sure NEWPAT does not depend on the clobbered regs. */
3955 if (GET_CODE (newi2pat) == PARALLEL)
3956 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3957 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3958 {
3959 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3960 if (reg_overlap_mentioned_p (reg, newpat))
3961 {
3962 undo_all ();
3963 return 0;
3964 }
3965 }
3966
3967 /* If the split point was a MULT and we didn't have one before,
3968 don't use one now. */
3969 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3970 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3971 }
3972 }
3973
3974 /* Check for a case where we loaded from memory in a narrow mode and
3975 then sign extended it, but we need both registers. In that case,
3976 we have a PARALLEL with both loads from the same memory location.
3977 We can split this into a load from memory followed by a register-register
3978 copy. This saves at least one insn, more if register allocation can
3979 eliminate the copy.
3980
3981 We cannot do this if the destination of the first assignment is a
3982 condition code register or cc0. We eliminate this case by making sure
3983 the SET_DEST and SET_SRC have the same mode.
3984
3985 We cannot do this if the destination of the second assignment is
3986 a register that we have already assumed is zero-extended. Similarly
3987 for a SUBREG of such a register. */
3988
3989 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3990 && GET_CODE (newpat) == PARALLEL
3991 && XVECLEN (newpat, 0) == 2
3992 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3993 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3994 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3995 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3996 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3997 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3998 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3999 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
4000 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4001 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4002 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
4003 (REG_P (temp_expr)
4004 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4005 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4006 BITS_PER_WORD)
4007 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4008 HOST_BITS_PER_INT)
4009 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4010 != GET_MODE_MASK (word_mode))))
4011 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
4012 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
4013 (REG_P (temp_expr)
4014 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4015 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4016 BITS_PER_WORD)
4017 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4018 HOST_BITS_PER_INT)
4019 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4020 != GET_MODE_MASK (word_mode)))))
4021 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4022 SET_SRC (XVECEXP (newpat, 0, 1)))
4023 && ! find_reg_note (i3, REG_UNUSED,
4024 SET_DEST (XVECEXP (newpat, 0, 0))))
4025 {
4026 rtx ni2dest;
4027
4028 newi2pat = XVECEXP (newpat, 0, 0);
4029 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
4030 newpat = XVECEXP (newpat, 0, 1);
4031 SUBST (SET_SRC (newpat),
4032 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
4033 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4034
4035 if (i2_code_number >= 0)
4036 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4037
4038 if (insn_code_number >= 0)
4039 swap_i2i3 = 1;
4040 }
4041
4042 /* Similarly, check for a case where we have a PARALLEL of two independent
4043 SETs but we started with three insns. In this case, we can do the sets
4044 as two separate insns. This case occurs when some SET allows two
4045 other insns to combine, but the destination of that SET is still live.
4046
4047 Also do this if we started with two insns and (at least) one of the
4048 resulting sets is a noop; this noop will be deleted later.
4049
4050 Also do this if we started with two insns neither of which was a simple
4051 move. */
4052
4053 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4054 && GET_CODE (newpat) == PARALLEL
4055 && XVECLEN (newpat, 0) == 2
4056 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4057 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4058 && (i1
4059 || set_noop_p (XVECEXP (newpat, 0, 0))
4060 || set_noop_p (XVECEXP (newpat, 0, 1))
4061 || (!i2_was_move && !i3_was_move))
4062 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4063 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4064 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4065 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4066 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4067 XVECEXP (newpat, 0, 0))
4068 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4069 XVECEXP (newpat, 0, 1))
4070 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4071 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4072 {
4073 rtx set0 = XVECEXP (newpat, 0, 0);
4074 rtx set1 = XVECEXP (newpat, 0, 1);
4075
4076 /* Normally, it doesn't matter which of the two is done first,
4077 but the one that references cc0 can't be the second, and
4078 one which uses any regs/memory set in between i2 and i3 can't
4079 be first. The PARALLEL might also have been pre-existing in i3,
4080 so we need to make sure that we won't wrongly hoist a SET to i2
4081 that would conflict with a death note present in there, or would
4082 have its dest modified between i2 and i3. */
4083 if (!modified_between_p (SET_SRC (set1), i2, i3)
4084 && !(REG_P (SET_DEST (set1))
4085 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4086 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4087 && find_reg_note (i2, REG_DEAD,
4088 SUBREG_REG (SET_DEST (set1))))
4089 && !modified_between_p (SET_DEST (set1), i2, i3)
4090 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4091 /* If I3 is a jump, ensure that set0 is a jump so that
4092 we do not create invalid RTL. */
4093 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4094 )
4095 {
4096 newi2pat = set1;
4097 newpat = set0;
4098 }
4099 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4100 && !(REG_P (SET_DEST (set0))
4101 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4102 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4103 && find_reg_note (i2, REG_DEAD,
4104 SUBREG_REG (SET_DEST (set0))))
4105 && !modified_between_p (SET_DEST (set0), i2, i3)
4106 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4107 /* If I3 is a jump, ensure that set1 is a jump so that
4108 we do not create invalid RTL. */
4109 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4110 )
4111 {
4112 newi2pat = set0;
4113 newpat = set1;
4114 }
4115 else
4116 {
4117 undo_all ();
4118 return 0;
4119 }
4120
4121 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4122
4123 if (i2_code_number >= 0)
4124 {
4125 /* recog_for_combine might have added CLOBBERs to newi2pat.
4126 Make sure NEWPAT does not depend on the clobbered regs. */
4127 if (GET_CODE (newi2pat) == PARALLEL)
4128 {
4129 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4130 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4131 {
4132 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4133 if (reg_overlap_mentioned_p (reg, newpat))
4134 {
4135 undo_all ();
4136 return 0;
4137 }
4138 }
4139 }
4140
4141 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4142
4143 if (insn_code_number >= 0)
4144 split_i2i3 = 1;
4145 }
4146 }
4147
4148 /* If it still isn't recognized, fail and change things back the way they
4149 were. */
4150 if ((insn_code_number < 0
4151 /* Is the result a reasonable ASM_OPERANDS? */
4152 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4153 {
4154 undo_all ();
4155 return 0;
4156 }
4157
4158 /* If we had to change another insn, make sure it is valid also. */
4159 if (undobuf.other_insn)
4160 {
4161 CLEAR_HARD_REG_SET (newpat_used_regs);
4162
4163 other_pat = PATTERN (undobuf.other_insn);
4164 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4165 &new_other_notes);
4166
4167 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4168 {
4169 undo_all ();
4170 return 0;
4171 }
4172 }
4173
4174 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4175 they are adjacent to each other or not. */
4176 if (HAVE_cc0)
4177 {
4178 rtx_insn *p = prev_nonnote_insn (i3);
4179 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4180 && sets_cc0_p (newi2pat))
4181 {
4182 undo_all ();
4183 return 0;
4184 }
4185 }
4186
4187 /* Only allow this combination if insn_cost reports that the
4188 replacement instructions are cheaper than the originals. */
4189 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4190 {
4191 undo_all ();
4192 return 0;
4193 }
4194
4195 if (MAY_HAVE_DEBUG_BIND_INSNS)
4196 {
4197 struct undo *undo;
4198
4199 for (undo = undobuf.undos; undo; undo = undo->next)
4200 if (undo->kind == UNDO_MODE)
4201 {
4202 rtx reg = *undo->where.r;
4203 machine_mode new_mode = GET_MODE (reg);
4204 machine_mode old_mode = undo->old_contents.m;
4205
4206 /* Temporarily revert mode back. */
4207 adjust_reg_mode (reg, old_mode);
4208
4209 if (reg == i2dest && i2scratch)
4210 {
4211 /* If we used i2dest as a scratch register with a
4212 different mode, substitute it for the original
4213 i2src while its original mode is temporarily
4214 restored, and then clear i2scratch so that we don't
4215 do it again later. */
4216 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4217 this_basic_block);
4218 i2scratch = false;
4219 /* Put back the new mode. */
4220 adjust_reg_mode (reg, new_mode);
4221 }
4222 else
4223 {
4224 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4225 rtx_insn *first, *last;
4226
4227 if (reg == i2dest)
4228 {
4229 first = i2;
4230 last = last_combined_insn;
4231 }
4232 else
4233 {
4234 first = i3;
4235 last = undobuf.other_insn;
4236 gcc_assert (last);
4237 if (DF_INSN_LUID (last)
4238 < DF_INSN_LUID (last_combined_insn))
4239 last = last_combined_insn;
4240 }
4241
4242 /* We're dealing with a reg that changed mode but not
4243 meaning, so we want to turn it into a subreg for
4244 the new mode. However, because of REG sharing and
4245 because its mode had already changed, we have to do
4246 it in two steps. First, replace any debug uses of
4247 reg, with its original mode temporarily restored,
4248 with this copy we have created; then, replace the
4249 copy with the SUBREG of the original shared reg,
4250 once again changed to the new mode. */
4251 propagate_for_debug (first, last, reg, tempreg,
4252 this_basic_block);
4253 adjust_reg_mode (reg, new_mode);
4254 propagate_for_debug (first, last, tempreg,
4255 lowpart_subreg (old_mode, reg, new_mode),
4256 this_basic_block);
4257 }
4258 }
4259 }
4260
4261 /* If we will be able to accept this, we have made a
4262 change to the destination of I3. This requires us to
4263 do a few adjustments. */
4264
4265 if (changed_i3_dest)
4266 {
4267 PATTERN (i3) = newpat;
4268 adjust_for_new_dest (i3);
4269 }
4270
4271 /* We now know that we can do this combination. Merge the insns and
4272 update the status of registers and LOG_LINKS. */
4273
4274 if (undobuf.other_insn)
4275 {
4276 rtx note, next;
4277
4278 PATTERN (undobuf.other_insn) = other_pat;
4279
4280 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4281 ensure that they are still valid. Then add any non-duplicate
4282 notes added by recog_for_combine. */
4283 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4284 {
4285 next = XEXP (note, 1);
4286
4287 if ((REG_NOTE_KIND (note) == REG_DEAD
4288 && !reg_referenced_p (XEXP (note, 0),
4289 PATTERN (undobuf.other_insn)))
4290 ||(REG_NOTE_KIND (note) == REG_UNUSED
4291 && !reg_set_p (XEXP (note, 0),
4292 PATTERN (undobuf.other_insn)))
4293 /* Simply drop equal note since it may be no longer valid
4294 for other_insn. It may be possible to record that CC
4295 register is changed and only discard those notes, but
4296 in practice it's unnecessary complication and doesn't
4297 give any meaningful improvement.
4298
4299 See PR78559. */
4300 || REG_NOTE_KIND (note) == REG_EQUAL
4301 || REG_NOTE_KIND (note) == REG_EQUIV)
4302 remove_note (undobuf.other_insn, note);
4303 }
4304
4305 distribute_notes (new_other_notes, undobuf.other_insn,
4306 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4307 NULL_RTX);
4308 }
4309
4310 if (swap_i2i3)
4311 {
4312 /* I3 now uses what used to be its destination and which is now
4313 I2's destination. This requires us to do a few adjustments. */
4314 PATTERN (i3) = newpat;
4315 adjust_for_new_dest (i3);
4316 }
4317
4318 if (swap_i2i3 || split_i2i3)
4319 {
4320 /* We might need a LOG_LINK from I3 to I2. But then we used to
4321 have one, so we still will.
4322
4323 However, some later insn might be using I2's dest and have
4324 a LOG_LINK pointing at I3. We should change it to point at
4325 I2 instead. */
4326
4327 /* newi2pat is usually a SET here; however, recog_for_combine might
4328 have added some clobbers. */
4329 rtx x = newi2pat;
4330 if (GET_CODE (x) == PARALLEL)
4331 x = XVECEXP (newi2pat, 0, 0);
4332
4333 /* It can only be a SET of a REG or of a SUBREG of a REG. */
4334 unsigned int regno = reg_or_subregno (SET_DEST (x));
4335
4336 bool done = false;
4337 for (rtx_insn *insn = NEXT_INSN (i3);
4338 !done
4339 && insn
4340 && NONDEBUG_INSN_P (insn)
4341 && BLOCK_FOR_INSN (insn) == this_basic_block;
4342 insn = NEXT_INSN (insn))
4343 {
4344 struct insn_link *link;
4345 FOR_EACH_LOG_LINK (link, insn)
4346 if (link->insn == i3 && link->regno == regno)
4347 {
4348 link->insn = i2;
4349 done = true;
4350 break;
4351 }
4352 }
4353 }
4354
4355 {
4356 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4357 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4358 rtx midnotes = 0;
4359 int from_luid;
4360 /* Compute which registers we expect to eliminate. newi2pat may be setting
4361 either i3dest or i2dest, so we must check it. */
4362 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4363 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4364 || !i2dest_killed
4365 ? 0 : i2dest);
4366 /* For i1, we need to compute both local elimination and global
4367 elimination information with respect to newi2pat because i1dest
4368 may be the same as i3dest, in which case newi2pat may be setting
4369 i1dest. Global information is used when distributing REG_DEAD
4370 note for i2 and i3, in which case it does matter if newi2pat sets
4371 i1dest or not.
4372
4373 Local information is used when distributing REG_DEAD note for i1,
4374 in which case it doesn't matter if newi2pat sets i1dest or not.
4375 See PR62151, if we have four insns combination:
4376 i0: r0 <- i0src
4377 i1: r1 <- i1src (using r0)
4378 REG_DEAD (r0)
4379 i2: r0 <- i2src (using r1)
4380 i3: r3 <- i3src (using r0)
4381 ix: using r0
4382 From i1's point of view, r0 is eliminated, no matter if it is set
4383 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4384 should be discarded.
4385
4386 Note local information only affects cases in forms like "I1->I2->I3",
4387 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4388 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4389 i0dest anyway. */
4390 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4391 || !i1dest_killed
4392 ? 0 : i1dest);
4393 rtx elim_i1 = (local_elim_i1 == 0
4394 || (newi2pat && reg_set_p (i1dest, newi2pat))
4395 ? 0 : i1dest);
4396 /* Same case as i1. */
4397 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4398 ? 0 : i0dest);
4399 rtx elim_i0 = (local_elim_i0 == 0
4400 || (newi2pat && reg_set_p (i0dest, newi2pat))
4401 ? 0 : i0dest);
4402
4403 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4404 clear them. */
4405 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4406 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4407 if (i1)
4408 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4409 if (i0)
4410 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4411
4412 /* Ensure that we do not have something that should not be shared but
4413 occurs multiple times in the new insns. Check this by first
4414 resetting all the `used' flags and then copying anything is shared. */
4415
4416 reset_used_flags (i3notes);
4417 reset_used_flags (i2notes);
4418 reset_used_flags (i1notes);
4419 reset_used_flags (i0notes);
4420 reset_used_flags (newpat);
4421 reset_used_flags (newi2pat);
4422 if (undobuf.other_insn)
4423 reset_used_flags (PATTERN (undobuf.other_insn));
4424
4425 i3notes = copy_rtx_if_shared (i3notes);
4426 i2notes = copy_rtx_if_shared (i2notes);
4427 i1notes = copy_rtx_if_shared (i1notes);
4428 i0notes = copy_rtx_if_shared (i0notes);
4429 newpat = copy_rtx_if_shared (newpat);
4430 newi2pat = copy_rtx_if_shared (newi2pat);
4431 if (undobuf.other_insn)
4432 reset_used_flags (PATTERN (undobuf.other_insn));
4433
4434 INSN_CODE (i3) = insn_code_number;
4435 PATTERN (i3) = newpat;
4436
4437 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4438 {
4439 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4440 link = XEXP (link, 1))
4441 {
4442 if (substed_i2)
4443 {
4444 /* I2SRC must still be meaningful at this point. Some
4445 splitting operations can invalidate I2SRC, but those
4446 operations do not apply to calls. */
4447 gcc_assert (i2src);
4448 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4449 i2dest, i2src);
4450 }
4451 if (substed_i1)
4452 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4453 i1dest, i1src);
4454 if (substed_i0)
4455 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4456 i0dest, i0src);
4457 }
4458 }
4459
4460 if (undobuf.other_insn)
4461 INSN_CODE (undobuf.other_insn) = other_code_number;
4462
4463 /* We had one special case above where I2 had more than one set and
4464 we replaced a destination of one of those sets with the destination
4465 of I3. In that case, we have to update LOG_LINKS of insns later
4466 in this basic block. Note that this (expensive) case is rare.
4467
4468 Also, in this case, we must pretend that all REG_NOTEs for I2
4469 actually came from I3, so that REG_UNUSED notes from I2 will be
4470 properly handled. */
4471
4472 if (i3_subst_into_i2)
4473 {
4474 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4475 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4476 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4477 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4478 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4479 && ! find_reg_note (i2, REG_UNUSED,
4480 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4481 for (temp_insn = NEXT_INSN (i2);
4482 temp_insn
4483 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4484 || BB_HEAD (this_basic_block) != temp_insn);
4485 temp_insn = NEXT_INSN (temp_insn))
4486 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4487 FOR_EACH_LOG_LINK (link, temp_insn)
4488 if (link->insn == i2)
4489 link->insn = i3;
4490
4491 if (i3notes)
4492 {
4493 rtx link = i3notes;
4494 while (XEXP (link, 1))
4495 link = XEXP (link, 1);
4496 XEXP (link, 1) = i2notes;
4497 }
4498 else
4499 i3notes = i2notes;
4500 i2notes = 0;
4501 }
4502
4503 LOG_LINKS (i3) = NULL;
4504 REG_NOTES (i3) = 0;
4505 LOG_LINKS (i2) = NULL;
4506 REG_NOTES (i2) = 0;
4507
4508 if (newi2pat)
4509 {
4510 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4511 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4512 this_basic_block);
4513 INSN_CODE (i2) = i2_code_number;
4514 PATTERN (i2) = newi2pat;
4515 }
4516 else
4517 {
4518 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4519 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4520 this_basic_block);
4521 SET_INSN_DELETED (i2);
4522 }
4523
4524 if (i1)
4525 {
4526 LOG_LINKS (i1) = NULL;
4527 REG_NOTES (i1) = 0;
4528 if (MAY_HAVE_DEBUG_BIND_INSNS)
4529 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4530 this_basic_block);
4531 SET_INSN_DELETED (i1);
4532 }
4533
4534 if (i0)
4535 {
4536 LOG_LINKS (i0) = NULL;
4537 REG_NOTES (i0) = 0;
4538 if (MAY_HAVE_DEBUG_BIND_INSNS)
4539 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4540 this_basic_block);
4541 SET_INSN_DELETED (i0);
4542 }
4543
4544 /* Get death notes for everything that is now used in either I3 or
4545 I2 and used to die in a previous insn. If we built two new
4546 patterns, move from I1 to I2 then I2 to I3 so that we get the
4547 proper movement on registers that I2 modifies. */
4548
4549 if (i0)
4550 from_luid = DF_INSN_LUID (i0);
4551 else if (i1)
4552 from_luid = DF_INSN_LUID (i1);
4553 else
4554 from_luid = DF_INSN_LUID (i2);
4555 if (newi2pat)
4556 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4557 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4558
4559 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4560 if (i3notes)
4561 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4562 elim_i2, elim_i1, elim_i0);
4563 if (i2notes)
4564 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4565 elim_i2, elim_i1, elim_i0);
4566 if (i1notes)
4567 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4568 elim_i2, local_elim_i1, local_elim_i0);
4569 if (i0notes)
4570 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4571 elim_i2, elim_i1, local_elim_i0);
4572 if (midnotes)
4573 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4574 elim_i2, elim_i1, elim_i0);
4575
4576 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4577 know these are REG_UNUSED and want them to go to the desired insn,
4578 so we always pass it as i3. */
4579
4580 if (newi2pat && new_i2_notes)
4581 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4582 NULL_RTX);
4583
4584 if (new_i3_notes)
4585 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4586 NULL_RTX);
4587
4588 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4589 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4590 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4591 in that case, it might delete I2. Similarly for I2 and I1.
4592 Show an additional death due to the REG_DEAD note we make here. If
4593 we discard it in distribute_notes, we will decrement it again. */
4594
4595 if (i3dest_killed)
4596 {
4597 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4598 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4599 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4600 elim_i1, elim_i0);
4601 else
4602 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4603 elim_i2, elim_i1, elim_i0);
4604 }
4605
4606 if (i2dest_in_i2src)
4607 {
4608 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4609 if (newi2pat && reg_set_p (i2dest, newi2pat))
4610 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4611 NULL_RTX, NULL_RTX);
4612 else
4613 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4614 NULL_RTX, NULL_RTX, NULL_RTX);
4615 }
4616
4617 if (i1dest_in_i1src)
4618 {
4619 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4620 if (newi2pat && reg_set_p (i1dest, newi2pat))
4621 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4622 NULL_RTX, NULL_RTX);
4623 else
4624 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4625 NULL_RTX, NULL_RTX, NULL_RTX);
4626 }
4627
4628 if (i0dest_in_i0src)
4629 {
4630 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4631 if (newi2pat && reg_set_p (i0dest, newi2pat))
4632 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4633 NULL_RTX, NULL_RTX);
4634 else
4635 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4636 NULL_RTX, NULL_RTX, NULL_RTX);
4637 }
4638
4639 distribute_links (i3links);
4640 distribute_links (i2links);
4641 distribute_links (i1links);
4642 distribute_links (i0links);
4643
4644 if (REG_P (i2dest))
4645 {
4646 struct insn_link *link;
4647 rtx_insn *i2_insn = 0;
4648 rtx i2_val = 0, set;
4649
4650 /* The insn that used to set this register doesn't exist, and
4651 this life of the register may not exist either. See if one of
4652 I3's links points to an insn that sets I2DEST. If it does,
4653 that is now the last known value for I2DEST. If we don't update
4654 this and I2 set the register to a value that depended on its old
4655 contents, we will get confused. If this insn is used, thing
4656 will be set correctly in combine_instructions. */
4657 FOR_EACH_LOG_LINK (link, i3)
4658 if ((set = single_set (link->insn)) != 0
4659 && rtx_equal_p (i2dest, SET_DEST (set)))
4660 i2_insn = link->insn, i2_val = SET_SRC (set);
4661
4662 record_value_for_reg (i2dest, i2_insn, i2_val);
4663
4664 /* If the reg formerly set in I2 died only once and that was in I3,
4665 zero its use count so it won't make `reload' do any work. */
4666 if (! added_sets_2
4667 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4668 && ! i2dest_in_i2src
4669 && REGNO (i2dest) < reg_n_sets_max)
4670 INC_REG_N_SETS (REGNO (i2dest), -1);
4671 }
4672
4673 if (i1 && REG_P (i1dest))
4674 {
4675 struct insn_link *link;
4676 rtx_insn *i1_insn = 0;
4677 rtx i1_val = 0, set;
4678
4679 FOR_EACH_LOG_LINK (link, i3)
4680 if ((set = single_set (link->insn)) != 0
4681 && rtx_equal_p (i1dest, SET_DEST (set)))
4682 i1_insn = link->insn, i1_val = SET_SRC (set);
4683
4684 record_value_for_reg (i1dest, i1_insn, i1_val);
4685
4686 if (! added_sets_1
4687 && ! i1dest_in_i1src
4688 && REGNO (i1dest) < reg_n_sets_max)
4689 INC_REG_N_SETS (REGNO (i1dest), -1);
4690 }
4691
4692 if (i0 && REG_P (i0dest))
4693 {
4694 struct insn_link *link;
4695 rtx_insn *i0_insn = 0;
4696 rtx i0_val = 0, set;
4697
4698 FOR_EACH_LOG_LINK (link, i3)
4699 if ((set = single_set (link->insn)) != 0
4700 && rtx_equal_p (i0dest, SET_DEST (set)))
4701 i0_insn = link->insn, i0_val = SET_SRC (set);
4702
4703 record_value_for_reg (i0dest, i0_insn, i0_val);
4704
4705 if (! added_sets_0
4706 && ! i0dest_in_i0src
4707 && REGNO (i0dest) < reg_n_sets_max)
4708 INC_REG_N_SETS (REGNO (i0dest), -1);
4709 }
4710
4711 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4712 been made to this insn. The order is important, because newi2pat
4713 can affect nonzero_bits of newpat. */
4714 if (newi2pat)
4715 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4716 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4717 }
4718
4719 if (undobuf.other_insn != NULL_RTX)
4720 {
4721 if (dump_file)
4722 {
4723 fprintf (dump_file, "modifying other_insn ");
4724 dump_insn_slim (dump_file, undobuf.other_insn);
4725 }
4726 df_insn_rescan (undobuf.other_insn);
4727 }
4728
4729 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4730 {
4731 if (dump_file)
4732 {
4733 fprintf (dump_file, "modifying insn i0 ");
4734 dump_insn_slim (dump_file, i0);
4735 }
4736 df_insn_rescan (i0);
4737 }
4738
4739 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4740 {
4741 if (dump_file)
4742 {
4743 fprintf (dump_file, "modifying insn i1 ");
4744 dump_insn_slim (dump_file, i1);
4745 }
4746 df_insn_rescan (i1);
4747 }
4748
4749 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4750 {
4751 if (dump_file)
4752 {
4753 fprintf (dump_file, "modifying insn i2 ");
4754 dump_insn_slim (dump_file, i2);
4755 }
4756 df_insn_rescan (i2);
4757 }
4758
4759 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4760 {
4761 if (dump_file)
4762 {
4763 fprintf (dump_file, "modifying insn i3 ");
4764 dump_insn_slim (dump_file, i3);
4765 }
4766 df_insn_rescan (i3);
4767 }
4768
4769 /* Set new_direct_jump_p if a new return or simple jump instruction
4770 has been created. Adjust the CFG accordingly. */
4771 if (returnjump_p (i3) || any_uncondjump_p (i3))
4772 {
4773 *new_direct_jump_p = 1;
4774 mark_jump_label (PATTERN (i3), i3, 0);
4775 update_cfg_for_uncondjump (i3);
4776 }
4777
4778 if (undobuf.other_insn != NULL_RTX
4779 && (returnjump_p (undobuf.other_insn)
4780 || any_uncondjump_p (undobuf.other_insn)))
4781 {
4782 *new_direct_jump_p = 1;
4783 update_cfg_for_uncondjump (undobuf.other_insn);
4784 }
4785
4786 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4787 && XEXP (PATTERN (i3), 0) == const1_rtx)
4788 {
4789 basic_block bb = BLOCK_FOR_INSN (i3);
4790 gcc_assert (bb);
4791 remove_edge (split_block (bb, i3));
4792 emit_barrier_after_bb (bb);
4793 *new_direct_jump_p = 1;
4794 }
4795
4796 if (undobuf.other_insn
4797 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4798 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4799 {
4800 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4801 gcc_assert (bb);
4802 remove_edge (split_block (bb, undobuf.other_insn));
4803 emit_barrier_after_bb (bb);
4804 *new_direct_jump_p = 1;
4805 }
4806
4807 /* A noop might also need cleaning up of CFG, if it comes from the
4808 simplification of a jump. */
4809 if (JUMP_P (i3)
4810 && GET_CODE (newpat) == SET
4811 && SET_SRC (newpat) == pc_rtx
4812 && SET_DEST (newpat) == pc_rtx)
4813 {
4814 *new_direct_jump_p = 1;
4815 update_cfg_for_uncondjump (i3);
4816 }
4817
4818 if (undobuf.other_insn != NULL_RTX
4819 && JUMP_P (undobuf.other_insn)
4820 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4821 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4822 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4823 {
4824 *new_direct_jump_p = 1;
4825 update_cfg_for_uncondjump (undobuf.other_insn);
4826 }
4827
4828 combine_successes++;
4829 undo_commit ();
4830
4831 rtx_insn *ret = newi2pat ? i2 : i3;
4832 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4833 ret = added_links_insn;
4834 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4835 ret = added_notes_insn;
4836
4837 return ret;
4838 }
4839 \f
4840 /* Get a marker for undoing to the current state. */
4841
4842 static void *
4843 get_undo_marker (void)
4844 {
4845 return undobuf.undos;
4846 }
4847
4848 /* Undo the modifications up to the marker. */
4849
4850 static void
4851 undo_to_marker (void *marker)
4852 {
4853 struct undo *undo, *next;
4854
4855 for (undo = undobuf.undos; undo != marker; undo = next)
4856 {
4857 gcc_assert (undo);
4858
4859 next = undo->next;
4860 switch (undo->kind)
4861 {
4862 case UNDO_RTX:
4863 *undo->where.r = undo->old_contents.r;
4864 break;
4865 case UNDO_INT:
4866 *undo->where.i = undo->old_contents.i;
4867 break;
4868 case UNDO_MODE:
4869 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4870 break;
4871 case UNDO_LINKS:
4872 *undo->where.l = undo->old_contents.l;
4873 break;
4874 default:
4875 gcc_unreachable ();
4876 }
4877
4878 undo->next = undobuf.frees;
4879 undobuf.frees = undo;
4880 }
4881
4882 undobuf.undos = (struct undo *) marker;
4883 }
4884
4885 /* Undo all the modifications recorded in undobuf. */
4886
4887 static void
4888 undo_all (void)
4889 {
4890 undo_to_marker (0);
4891 }
4892
4893 /* We've committed to accepting the changes we made. Move all
4894 of the undos to the free list. */
4895
4896 static void
4897 undo_commit (void)
4898 {
4899 struct undo *undo, *next;
4900
4901 for (undo = undobuf.undos; undo; undo = next)
4902 {
4903 next = undo->next;
4904 undo->next = undobuf.frees;
4905 undobuf.frees = undo;
4906 }
4907 undobuf.undos = 0;
4908 }
4909 \f
4910 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4911 where we have an arithmetic expression and return that point. LOC will
4912 be inside INSN.
4913
4914 try_combine will call this function to see if an insn can be split into
4915 two insns. */
4916
4917 static rtx *
4918 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4919 {
4920 rtx x = *loc;
4921 enum rtx_code code = GET_CODE (x);
4922 rtx *split;
4923 unsigned HOST_WIDE_INT len = 0;
4924 HOST_WIDE_INT pos = 0;
4925 int unsignedp = 0;
4926 rtx inner = NULL_RTX;
4927 scalar_int_mode mode, inner_mode;
4928
4929 /* First special-case some codes. */
4930 switch (code)
4931 {
4932 case SUBREG:
4933 #ifdef INSN_SCHEDULING
4934 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4935 point. */
4936 if (MEM_P (SUBREG_REG (x)))
4937 return loc;
4938 #endif
4939 return find_split_point (&SUBREG_REG (x), insn, false);
4940
4941 case MEM:
4942 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4943 using LO_SUM and HIGH. */
4944 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4945 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4946 {
4947 machine_mode address_mode = get_address_mode (x);
4948
4949 SUBST (XEXP (x, 0),
4950 gen_rtx_LO_SUM (address_mode,
4951 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4952 XEXP (x, 0)));
4953 return &XEXP (XEXP (x, 0), 0);
4954 }
4955
4956 /* If we have a PLUS whose second operand is a constant and the
4957 address is not valid, perhaps we can split it up using
4958 the machine-specific way to split large constants. We use
4959 the first pseudo-reg (one of the virtual regs) as a placeholder;
4960 it will not remain in the result. */
4961 if (GET_CODE (XEXP (x, 0)) == PLUS
4962 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4963 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4964 MEM_ADDR_SPACE (x)))
4965 {
4966 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4967 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4968 subst_insn);
4969
4970 /* This should have produced two insns, each of which sets our
4971 placeholder. If the source of the second is a valid address,
4972 we can put both sources together and make a split point
4973 in the middle. */
4974
4975 if (seq
4976 && NEXT_INSN (seq) != NULL_RTX
4977 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4978 && NONJUMP_INSN_P (seq)
4979 && GET_CODE (PATTERN (seq)) == SET
4980 && SET_DEST (PATTERN (seq)) == reg
4981 && ! reg_mentioned_p (reg,
4982 SET_SRC (PATTERN (seq)))
4983 && NONJUMP_INSN_P (NEXT_INSN (seq))
4984 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4985 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4986 && memory_address_addr_space_p
4987 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4988 MEM_ADDR_SPACE (x)))
4989 {
4990 rtx src1 = SET_SRC (PATTERN (seq));
4991 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4992
4993 /* Replace the placeholder in SRC2 with SRC1. If we can
4994 find where in SRC2 it was placed, that can become our
4995 split point and we can replace this address with SRC2.
4996 Just try two obvious places. */
4997
4998 src2 = replace_rtx (src2, reg, src1);
4999 split = 0;
5000 if (XEXP (src2, 0) == src1)
5001 split = &XEXP (src2, 0);
5002 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
5003 && XEXP (XEXP (src2, 0), 0) == src1)
5004 split = &XEXP (XEXP (src2, 0), 0);
5005
5006 if (split)
5007 {
5008 SUBST (XEXP (x, 0), src2);
5009 return split;
5010 }
5011 }
5012
5013 /* If that didn't work and we have a nested plus, like:
5014 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
5015 is valid address, try to split (REG1 * CONST1). */
5016 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5017 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5018 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5019 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
5020 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5021 0), 0)))))
5022 {
5023 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
5024 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
5025 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5026 MEM_ADDR_SPACE (x)))
5027 {
5028 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5029 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
5030 }
5031 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5032 }
5033 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5034 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5035 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5036 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
5037 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5038 0), 1)))))
5039 {
5040 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
5041 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
5042 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5043 MEM_ADDR_SPACE (x)))
5044 {
5045 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5046 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
5047 }
5048 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5049 }
5050
5051 /* If that didn't work, perhaps the first operand is complex and
5052 needs to be computed separately, so make a split point there.
5053 This will occur on machines that just support REG + CONST
5054 and have a constant moved through some previous computation. */
5055 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
5056 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5057 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5058 return &XEXP (XEXP (x, 0), 0);
5059 }
5060
5061 /* If we have a PLUS whose first operand is complex, try computing it
5062 separately by making a split there. */
5063 if (GET_CODE (XEXP (x, 0)) == PLUS
5064 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5065 MEM_ADDR_SPACE (x))
5066 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
5067 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5068 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5069 return &XEXP (XEXP (x, 0), 0);
5070 break;
5071
5072 case SET:
5073 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5074 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5075 we need to put the operand into a register. So split at that
5076 point. */
5077
5078 if (SET_DEST (x) == cc0_rtx
5079 && GET_CODE (SET_SRC (x)) != COMPARE
5080 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
5081 && !OBJECT_P (SET_SRC (x))
5082 && ! (GET_CODE (SET_SRC (x)) == SUBREG
5083 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5084 return &SET_SRC (x);
5085
5086 /* See if we can split SET_SRC as it stands. */
5087 split = find_split_point (&SET_SRC (x), insn, true);
5088 if (split && split != &SET_SRC (x))
5089 return split;
5090
5091 /* See if we can split SET_DEST as it stands. */
5092 split = find_split_point (&SET_DEST (x), insn, false);
5093 if (split && split != &SET_DEST (x))
5094 return split;
5095
5096 /* See if this is a bitfield assignment with everything constant. If
5097 so, this is an IOR of an AND, so split it into that. */
5098 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5099 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5100 &inner_mode)
5101 && HWI_COMPUTABLE_MODE_P (inner_mode)
5102 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5103 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5104 && CONST_INT_P (SET_SRC (x))
5105 && ((INTVAL (XEXP (SET_DEST (x), 1))
5106 + INTVAL (XEXP (SET_DEST (x), 2)))
5107 <= GET_MODE_PRECISION (inner_mode))
5108 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5109 {
5110 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5111 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5112 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5113 rtx dest = XEXP (SET_DEST (x), 0);
5114 unsigned HOST_WIDE_INT mask
5115 = (HOST_WIDE_INT_1U << len) - 1;
5116 rtx or_mask;
5117
5118 if (BITS_BIG_ENDIAN)
5119 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5120
5121 or_mask = gen_int_mode (src << pos, inner_mode);
5122 if (src == mask)
5123 SUBST (SET_SRC (x),
5124 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5125 else
5126 {
5127 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5128 SUBST (SET_SRC (x),
5129 simplify_gen_binary (IOR, inner_mode,
5130 simplify_gen_binary (AND, inner_mode,
5131 dest, negmask),
5132 or_mask));
5133 }
5134
5135 SUBST (SET_DEST (x), dest);
5136
5137 split = find_split_point (&SET_SRC (x), insn, true);
5138 if (split && split != &SET_SRC (x))
5139 return split;
5140 }
5141
5142 /* Otherwise, see if this is an operation that we can split into two.
5143 If so, try to split that. */
5144 code = GET_CODE (SET_SRC (x));
5145
5146 switch (code)
5147 {
5148 case AND:
5149 /* If we are AND'ing with a large constant that is only a single
5150 bit and the result is only being used in a context where we
5151 need to know if it is zero or nonzero, replace it with a bit
5152 extraction. This will avoid the large constant, which might
5153 have taken more than one insn to make. If the constant were
5154 not a valid argument to the AND but took only one insn to make,
5155 this is no worse, but if it took more than one insn, it will
5156 be better. */
5157
5158 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5159 && REG_P (XEXP (SET_SRC (x), 0))
5160 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5161 && REG_P (SET_DEST (x))
5162 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5163 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5164 && XEXP (*split, 0) == SET_DEST (x)
5165 && XEXP (*split, 1) == const0_rtx)
5166 {
5167 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5168 XEXP (SET_SRC (x), 0),
5169 pos, NULL_RTX, 1, 1, 0, 0);
5170 if (extraction != 0)
5171 {
5172 SUBST (SET_SRC (x), extraction);
5173 return find_split_point (loc, insn, false);
5174 }
5175 }
5176 break;
5177
5178 case NE:
5179 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5180 is known to be on, this can be converted into a NEG of a shift. */
5181 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5182 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5183 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5184 GET_MODE (XEXP (SET_SRC (x),
5185 0))))) >= 1))
5186 {
5187 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5188 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5189 SUBST (SET_SRC (x),
5190 gen_rtx_NEG (mode,
5191 gen_rtx_LSHIFTRT (mode,
5192 XEXP (SET_SRC (x), 0),
5193 pos_rtx)));
5194
5195 split = find_split_point (&SET_SRC (x), insn, true);
5196 if (split && split != &SET_SRC (x))
5197 return split;
5198 }
5199 break;
5200
5201 case SIGN_EXTEND:
5202 inner = XEXP (SET_SRC (x), 0);
5203
5204 /* We can't optimize if either mode is a partial integer
5205 mode as we don't know how many bits are significant
5206 in those modes. */
5207 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5208 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5209 break;
5210
5211 pos = 0;
5212 len = GET_MODE_PRECISION (inner_mode);
5213 unsignedp = 0;
5214 break;
5215
5216 case SIGN_EXTRACT:
5217 case ZERO_EXTRACT:
5218 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5219 &inner_mode)
5220 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5221 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5222 {
5223 inner = XEXP (SET_SRC (x), 0);
5224 len = INTVAL (XEXP (SET_SRC (x), 1));
5225 pos = INTVAL (XEXP (SET_SRC (x), 2));
5226
5227 if (BITS_BIG_ENDIAN)
5228 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5229 unsignedp = (code == ZERO_EXTRACT);
5230 }
5231 break;
5232
5233 default:
5234 break;
5235 }
5236
5237 if (len
5238 && known_subrange_p (pos, len,
5239 0, GET_MODE_PRECISION (GET_MODE (inner)))
5240 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5241 {
5242 /* For unsigned, we have a choice of a shift followed by an
5243 AND or two shifts. Use two shifts for field sizes where the
5244 constant might be too large. We assume here that we can
5245 always at least get 8-bit constants in an AND insn, which is
5246 true for every current RISC. */
5247
5248 if (unsignedp && len <= 8)
5249 {
5250 unsigned HOST_WIDE_INT mask
5251 = (HOST_WIDE_INT_1U << len) - 1;
5252 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5253 SUBST (SET_SRC (x),
5254 gen_rtx_AND (mode,
5255 gen_rtx_LSHIFTRT
5256 (mode, gen_lowpart (mode, inner), pos_rtx),
5257 gen_int_mode (mask, mode)));
5258
5259 split = find_split_point (&SET_SRC (x), insn, true);
5260 if (split && split != &SET_SRC (x))
5261 return split;
5262 }
5263 else
5264 {
5265 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5266 int right_bits = GET_MODE_PRECISION (mode) - len;
5267 SUBST (SET_SRC (x),
5268 gen_rtx_fmt_ee
5269 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5270 gen_rtx_ASHIFT (mode,
5271 gen_lowpart (mode, inner),
5272 gen_int_shift_amount (mode, left_bits)),
5273 gen_int_shift_amount (mode, right_bits)));
5274
5275 split = find_split_point (&SET_SRC (x), insn, true);
5276 if (split && split != &SET_SRC (x))
5277 return split;
5278 }
5279 }
5280
5281 /* See if this is a simple operation with a constant as the second
5282 operand. It might be that this constant is out of range and hence
5283 could be used as a split point. */
5284 if (BINARY_P (SET_SRC (x))
5285 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5286 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5287 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5288 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5289 return &XEXP (SET_SRC (x), 1);
5290
5291 /* Finally, see if this is a simple operation with its first operand
5292 not in a register. The operation might require this operand in a
5293 register, so return it as a split point. We can always do this
5294 because if the first operand were another operation, we would have
5295 already found it as a split point. */
5296 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5297 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5298 return &XEXP (SET_SRC (x), 0);
5299
5300 return 0;
5301
5302 case AND:
5303 case IOR:
5304 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5305 it is better to write this as (not (ior A B)) so we can split it.
5306 Similarly for IOR. */
5307 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5308 {
5309 SUBST (*loc,
5310 gen_rtx_NOT (GET_MODE (x),
5311 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5312 GET_MODE (x),
5313 XEXP (XEXP (x, 0), 0),
5314 XEXP (XEXP (x, 1), 0))));
5315 return find_split_point (loc, insn, set_src);
5316 }
5317
5318 /* Many RISC machines have a large set of logical insns. If the
5319 second operand is a NOT, put it first so we will try to split the
5320 other operand first. */
5321 if (GET_CODE (XEXP (x, 1)) == NOT)
5322 {
5323 rtx tem = XEXP (x, 0);
5324 SUBST (XEXP (x, 0), XEXP (x, 1));
5325 SUBST (XEXP (x, 1), tem);
5326 }
5327 break;
5328
5329 case PLUS:
5330 case MINUS:
5331 /* Canonicalization can produce (minus A (mult B C)), where C is a
5332 constant. It may be better to try splitting (plus (mult B -C) A)
5333 instead if this isn't a multiply by a power of two. */
5334 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5335 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5336 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5337 {
5338 machine_mode mode = GET_MODE (x);
5339 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5340 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5341 SUBST (*loc, gen_rtx_PLUS (mode,
5342 gen_rtx_MULT (mode,
5343 XEXP (XEXP (x, 1), 0),
5344 gen_int_mode (other_int,
5345 mode)),
5346 XEXP (x, 0)));
5347 return find_split_point (loc, insn, set_src);
5348 }
5349
5350 /* Split at a multiply-accumulate instruction. However if this is
5351 the SET_SRC, we likely do not have such an instruction and it's
5352 worthless to try this split. */
5353 if (!set_src
5354 && (GET_CODE (XEXP (x, 0)) == MULT
5355 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5356 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5357 return loc;
5358
5359 default:
5360 break;
5361 }
5362
5363 /* Otherwise, select our actions depending on our rtx class. */
5364 switch (GET_RTX_CLASS (code))
5365 {
5366 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5367 case RTX_TERNARY:
5368 split = find_split_point (&XEXP (x, 2), insn, false);
5369 if (split)
5370 return split;
5371 /* fall through */
5372 case RTX_BIN_ARITH:
5373 case RTX_COMM_ARITH:
5374 case RTX_COMPARE:
5375 case RTX_COMM_COMPARE:
5376 split = find_split_point (&XEXP (x, 1), insn, false);
5377 if (split)
5378 return split;
5379 /* fall through */
5380 case RTX_UNARY:
5381 /* Some machines have (and (shift ...) ...) insns. If X is not
5382 an AND, but XEXP (X, 0) is, use it as our split point. */
5383 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5384 return &XEXP (x, 0);
5385
5386 split = find_split_point (&XEXP (x, 0), insn, false);
5387 if (split)
5388 return split;
5389 return loc;
5390
5391 default:
5392 /* Otherwise, we don't have a split point. */
5393 return 0;
5394 }
5395 }
5396 \f
5397 /* Throughout X, replace FROM with TO, and return the result.
5398 The result is TO if X is FROM;
5399 otherwise the result is X, but its contents may have been modified.
5400 If they were modified, a record was made in undobuf so that
5401 undo_all will (among other things) return X to its original state.
5402
5403 If the number of changes necessary is too much to record to undo,
5404 the excess changes are not made, so the result is invalid.
5405 The changes already made can still be undone.
5406 undobuf.num_undo is incremented for such changes, so by testing that
5407 the caller can tell whether the result is valid.
5408
5409 `n_occurrences' is incremented each time FROM is replaced.
5410
5411 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5412
5413 IN_COND is nonzero if we are at the top level of a condition.
5414
5415 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5416 by copying if `n_occurrences' is nonzero. */
5417
5418 static rtx
5419 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5420 {
5421 enum rtx_code code = GET_CODE (x);
5422 machine_mode op0_mode = VOIDmode;
5423 const char *fmt;
5424 int len, i;
5425 rtx new_rtx;
5426
5427 /* Two expressions are equal if they are identical copies of a shared
5428 RTX or if they are both registers with the same register number
5429 and mode. */
5430
5431 #define COMBINE_RTX_EQUAL_P(X,Y) \
5432 ((X) == (Y) \
5433 || (REG_P (X) && REG_P (Y) \
5434 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5435
5436 /* Do not substitute into clobbers of regs -- this will never result in
5437 valid RTL. */
5438 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5439 return x;
5440
5441 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5442 {
5443 n_occurrences++;
5444 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5445 }
5446
5447 /* If X and FROM are the same register but different modes, they
5448 will not have been seen as equal above. However, the log links code
5449 will make a LOG_LINKS entry for that case. If we do nothing, we
5450 will try to rerecognize our original insn and, when it succeeds,
5451 we will delete the feeding insn, which is incorrect.
5452
5453 So force this insn not to match in this (rare) case. */
5454 if (! in_dest && code == REG && REG_P (from)
5455 && reg_overlap_mentioned_p (x, from))
5456 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5457
5458 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5459 of which may contain things that can be combined. */
5460 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5461 return x;
5462
5463 /* It is possible to have a subexpression appear twice in the insn.
5464 Suppose that FROM is a register that appears within TO.
5465 Then, after that subexpression has been scanned once by `subst',
5466 the second time it is scanned, TO may be found. If we were
5467 to scan TO here, we would find FROM within it and create a
5468 self-referent rtl structure which is completely wrong. */
5469 if (COMBINE_RTX_EQUAL_P (x, to))
5470 return to;
5471
5472 /* Parallel asm_operands need special attention because all of the
5473 inputs are shared across the arms. Furthermore, unsharing the
5474 rtl results in recognition failures. Failure to handle this case
5475 specially can result in circular rtl.
5476
5477 Solve this by doing a normal pass across the first entry of the
5478 parallel, and only processing the SET_DESTs of the subsequent
5479 entries. Ug. */
5480
5481 if (code == PARALLEL
5482 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5483 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5484 {
5485 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5486
5487 /* If this substitution failed, this whole thing fails. */
5488 if (GET_CODE (new_rtx) == CLOBBER
5489 && XEXP (new_rtx, 0) == const0_rtx)
5490 return new_rtx;
5491
5492 SUBST (XVECEXP (x, 0, 0), new_rtx);
5493
5494 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5495 {
5496 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5497
5498 if (!REG_P (dest)
5499 && GET_CODE (dest) != CC0
5500 && GET_CODE (dest) != PC)
5501 {
5502 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5503
5504 /* If this substitution failed, this whole thing fails. */
5505 if (GET_CODE (new_rtx) == CLOBBER
5506 && XEXP (new_rtx, 0) == const0_rtx)
5507 return new_rtx;
5508
5509 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5510 }
5511 }
5512 }
5513 else
5514 {
5515 len = GET_RTX_LENGTH (code);
5516 fmt = GET_RTX_FORMAT (code);
5517
5518 /* We don't need to process a SET_DEST that is a register, CC0,
5519 or PC, so set up to skip this common case. All other cases
5520 where we want to suppress replacing something inside a
5521 SET_SRC are handled via the IN_DEST operand. */
5522 if (code == SET
5523 && (REG_P (SET_DEST (x))
5524 || GET_CODE (SET_DEST (x)) == CC0
5525 || GET_CODE (SET_DEST (x)) == PC))
5526 fmt = "ie";
5527
5528 /* Trying to simplify the operands of a widening MULT is not likely
5529 to create RTL matching a machine insn. */
5530 if (code == MULT
5531 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5532 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5533 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5534 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5535 && REG_P (XEXP (XEXP (x, 0), 0))
5536 && REG_P (XEXP (XEXP (x, 1), 0))
5537 && from == to)
5538 return x;
5539
5540
5541 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5542 constant. */
5543 if (fmt[0] == 'e')
5544 op0_mode = GET_MODE (XEXP (x, 0));
5545
5546 for (i = 0; i < len; i++)
5547 {
5548 if (fmt[i] == 'E')
5549 {
5550 int j;
5551 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5552 {
5553 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5554 {
5555 new_rtx = (unique_copy && n_occurrences
5556 ? copy_rtx (to) : to);
5557 n_occurrences++;
5558 }
5559 else
5560 {
5561 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5562 unique_copy);
5563
5564 /* If this substitution failed, this whole thing
5565 fails. */
5566 if (GET_CODE (new_rtx) == CLOBBER
5567 && XEXP (new_rtx, 0) == const0_rtx)
5568 return new_rtx;
5569 }
5570
5571 SUBST (XVECEXP (x, i, j), new_rtx);
5572 }
5573 }
5574 else if (fmt[i] == 'e')
5575 {
5576 /* If this is a register being set, ignore it. */
5577 new_rtx = XEXP (x, i);
5578 if (in_dest
5579 && i == 0
5580 && (((code == SUBREG || code == ZERO_EXTRACT)
5581 && REG_P (new_rtx))
5582 || code == STRICT_LOW_PART))
5583 ;
5584
5585 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5586 {
5587 /* In general, don't install a subreg involving two
5588 modes not tieable. It can worsen register
5589 allocation, and can even make invalid reload
5590 insns, since the reg inside may need to be copied
5591 from in the outside mode, and that may be invalid
5592 if it is an fp reg copied in integer mode.
5593
5594 We allow two exceptions to this: It is valid if
5595 it is inside another SUBREG and the mode of that
5596 SUBREG and the mode of the inside of TO is
5597 tieable and it is valid if X is a SET that copies
5598 FROM to CC0. */
5599
5600 if (GET_CODE (to) == SUBREG
5601 && !targetm.modes_tieable_p (GET_MODE (to),
5602 GET_MODE (SUBREG_REG (to)))
5603 && ! (code == SUBREG
5604 && (targetm.modes_tieable_p
5605 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5606 && (!HAVE_cc0
5607 || (! (code == SET
5608 && i == 1
5609 && XEXP (x, 0) == cc0_rtx))))
5610 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5611
5612 if (code == SUBREG
5613 && REG_P (to)
5614 && REGNO (to) < FIRST_PSEUDO_REGISTER
5615 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5616 SUBREG_BYTE (x),
5617 GET_MODE (x)) < 0)
5618 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5619
5620 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5621 n_occurrences++;
5622 }
5623 else
5624 /* If we are in a SET_DEST, suppress most cases unless we
5625 have gone inside a MEM, in which case we want to
5626 simplify the address. We assume here that things that
5627 are actually part of the destination have their inner
5628 parts in the first expression. This is true for SUBREG,
5629 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5630 things aside from REG and MEM that should appear in a
5631 SET_DEST. */
5632 new_rtx = subst (XEXP (x, i), from, to,
5633 (((in_dest
5634 && (code == SUBREG || code == STRICT_LOW_PART
5635 || code == ZERO_EXTRACT))
5636 || code == SET)
5637 && i == 0),
5638 code == IF_THEN_ELSE && i == 0,
5639 unique_copy);
5640
5641 /* If we found that we will have to reject this combination,
5642 indicate that by returning the CLOBBER ourselves, rather than
5643 an expression containing it. This will speed things up as
5644 well as prevent accidents where two CLOBBERs are considered
5645 to be equal, thus producing an incorrect simplification. */
5646
5647 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5648 return new_rtx;
5649
5650 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5651 {
5652 machine_mode mode = GET_MODE (x);
5653
5654 x = simplify_subreg (GET_MODE (x), new_rtx,
5655 GET_MODE (SUBREG_REG (x)),
5656 SUBREG_BYTE (x));
5657 if (! x)
5658 x = gen_rtx_CLOBBER (mode, const0_rtx);
5659 }
5660 else if (CONST_SCALAR_INT_P (new_rtx)
5661 && (GET_CODE (x) == ZERO_EXTEND
5662 || GET_CODE (x) == FLOAT
5663 || GET_CODE (x) == UNSIGNED_FLOAT))
5664 {
5665 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5666 new_rtx,
5667 GET_MODE (XEXP (x, 0)));
5668 if (!x)
5669 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5670 }
5671 else
5672 SUBST (XEXP (x, i), new_rtx);
5673 }
5674 }
5675 }
5676
5677 /* Check if we are loading something from the constant pool via float
5678 extension; in this case we would undo compress_float_constant
5679 optimization and degenerate constant load to an immediate value. */
5680 if (GET_CODE (x) == FLOAT_EXTEND
5681 && MEM_P (XEXP (x, 0))
5682 && MEM_READONLY_P (XEXP (x, 0)))
5683 {
5684 rtx tmp = avoid_constant_pool_reference (x);
5685 if (x != tmp)
5686 return x;
5687 }
5688
5689 /* Try to simplify X. If the simplification changed the code, it is likely
5690 that further simplification will help, so loop, but limit the number
5691 of repetitions that will be performed. */
5692
5693 for (i = 0; i < 4; i++)
5694 {
5695 /* If X is sufficiently simple, don't bother trying to do anything
5696 with it. */
5697 if (code != CONST_INT && code != REG && code != CLOBBER)
5698 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5699
5700 if (GET_CODE (x) == code)
5701 break;
5702
5703 code = GET_CODE (x);
5704
5705 /* We no longer know the original mode of operand 0 since we
5706 have changed the form of X) */
5707 op0_mode = VOIDmode;
5708 }
5709
5710 return x;
5711 }
5712 \f
5713 /* If X is a commutative operation whose operands are not in the canonical
5714 order, use substitutions to swap them. */
5715
5716 static void
5717 maybe_swap_commutative_operands (rtx x)
5718 {
5719 if (COMMUTATIVE_ARITH_P (x)
5720 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5721 {
5722 rtx temp = XEXP (x, 0);
5723 SUBST (XEXP (x, 0), XEXP (x, 1));
5724 SUBST (XEXP (x, 1), temp);
5725 }
5726 }
5727
5728 /* Simplify X, a piece of RTL. We just operate on the expression at the
5729 outer level; call `subst' to simplify recursively. Return the new
5730 expression.
5731
5732 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5733 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5734 of a condition. */
5735
5736 static rtx
5737 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5738 int in_cond)
5739 {
5740 enum rtx_code code = GET_CODE (x);
5741 machine_mode mode = GET_MODE (x);
5742 scalar_int_mode int_mode;
5743 rtx temp;
5744 int i;
5745
5746 /* If this is a commutative operation, put a constant last and a complex
5747 expression first. We don't need to do this for comparisons here. */
5748 maybe_swap_commutative_operands (x);
5749
5750 /* Try to fold this expression in case we have constants that weren't
5751 present before. */
5752 temp = 0;
5753 switch (GET_RTX_CLASS (code))
5754 {
5755 case RTX_UNARY:
5756 if (op0_mode == VOIDmode)
5757 op0_mode = GET_MODE (XEXP (x, 0));
5758 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5759 break;
5760 case RTX_COMPARE:
5761 case RTX_COMM_COMPARE:
5762 {
5763 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5764 if (cmp_mode == VOIDmode)
5765 {
5766 cmp_mode = GET_MODE (XEXP (x, 1));
5767 if (cmp_mode == VOIDmode)
5768 cmp_mode = op0_mode;
5769 }
5770 temp = simplify_relational_operation (code, mode, cmp_mode,
5771 XEXP (x, 0), XEXP (x, 1));
5772 }
5773 break;
5774 case RTX_COMM_ARITH:
5775 case RTX_BIN_ARITH:
5776 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5777 break;
5778 case RTX_BITFIELD_OPS:
5779 case RTX_TERNARY:
5780 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5781 XEXP (x, 1), XEXP (x, 2));
5782 break;
5783 default:
5784 break;
5785 }
5786
5787 if (temp)
5788 {
5789 x = temp;
5790 code = GET_CODE (temp);
5791 op0_mode = VOIDmode;
5792 mode = GET_MODE (temp);
5793 }
5794
5795 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5796 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5797 things. Check for cases where both arms are testing the same
5798 condition.
5799
5800 Don't do anything if all operands are very simple. */
5801
5802 if ((BINARY_P (x)
5803 && ((!OBJECT_P (XEXP (x, 0))
5804 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5805 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5806 || (!OBJECT_P (XEXP (x, 1))
5807 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5808 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5809 || (UNARY_P (x)
5810 && (!OBJECT_P (XEXP (x, 0))
5811 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5812 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5813 {
5814 rtx cond, true_rtx, false_rtx;
5815
5816 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5817 if (cond != 0
5818 /* If everything is a comparison, what we have is highly unlikely
5819 to be simpler, so don't use it. */
5820 && ! (COMPARISON_P (x)
5821 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5822 /* Similarly, if we end up with one of the expressions the same
5823 as the original, it is certainly not simpler. */
5824 && ! rtx_equal_p (x, true_rtx)
5825 && ! rtx_equal_p (x, false_rtx))
5826 {
5827 rtx cop1 = const0_rtx;
5828 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5829
5830 if (cond_code == NE && COMPARISON_P (cond))
5831 return x;
5832
5833 /* Simplify the alternative arms; this may collapse the true and
5834 false arms to store-flag values. Be careful to use copy_rtx
5835 here since true_rtx or false_rtx might share RTL with x as a
5836 result of the if_then_else_cond call above. */
5837 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5838 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5839
5840 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5841 is unlikely to be simpler. */
5842 if (general_operand (true_rtx, VOIDmode)
5843 && general_operand (false_rtx, VOIDmode))
5844 {
5845 enum rtx_code reversed;
5846
5847 /* Restarting if we generate a store-flag expression will cause
5848 us to loop. Just drop through in this case. */
5849
5850 /* If the result values are STORE_FLAG_VALUE and zero, we can
5851 just make the comparison operation. */
5852 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5853 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5854 cond, cop1);
5855 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5856 && ((reversed = reversed_comparison_code_parts
5857 (cond_code, cond, cop1, NULL))
5858 != UNKNOWN))
5859 x = simplify_gen_relational (reversed, mode, VOIDmode,
5860 cond, cop1);
5861
5862 /* Likewise, we can make the negate of a comparison operation
5863 if the result values are - STORE_FLAG_VALUE and zero. */
5864 else if (CONST_INT_P (true_rtx)
5865 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5866 && false_rtx == const0_rtx)
5867 x = simplify_gen_unary (NEG, mode,
5868 simplify_gen_relational (cond_code,
5869 mode, VOIDmode,
5870 cond, cop1),
5871 mode);
5872 else if (CONST_INT_P (false_rtx)
5873 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5874 && true_rtx == const0_rtx
5875 && ((reversed = reversed_comparison_code_parts
5876 (cond_code, cond, cop1, NULL))
5877 != UNKNOWN))
5878 x = simplify_gen_unary (NEG, mode,
5879 simplify_gen_relational (reversed,
5880 mode, VOIDmode,
5881 cond, cop1),
5882 mode);
5883 else
5884 return gen_rtx_IF_THEN_ELSE (mode,
5885 simplify_gen_relational (cond_code,
5886 mode,
5887 VOIDmode,
5888 cond,
5889 cop1),
5890 true_rtx, false_rtx);
5891
5892 code = GET_CODE (x);
5893 op0_mode = VOIDmode;
5894 }
5895 }
5896 }
5897
5898 /* First see if we can apply the inverse distributive law. */
5899 if (code == PLUS || code == MINUS
5900 || code == AND || code == IOR || code == XOR)
5901 {
5902 x = apply_distributive_law (x);
5903 code = GET_CODE (x);
5904 op0_mode = VOIDmode;
5905 }
5906
5907 /* If CODE is an associative operation not otherwise handled, see if we
5908 can associate some operands. This can win if they are constants or
5909 if they are logically related (i.e. (a & b) & a). */
5910 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5911 || code == AND || code == IOR || code == XOR
5912 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5913 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5914 || (flag_associative_math && FLOAT_MODE_P (mode))))
5915 {
5916 if (GET_CODE (XEXP (x, 0)) == code)
5917 {
5918 rtx other = XEXP (XEXP (x, 0), 0);
5919 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5920 rtx inner_op1 = XEXP (x, 1);
5921 rtx inner;
5922
5923 /* Make sure we pass the constant operand if any as the second
5924 one if this is a commutative operation. */
5925 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5926 std::swap (inner_op0, inner_op1);
5927 inner = simplify_binary_operation (code == MINUS ? PLUS
5928 : code == DIV ? MULT
5929 : code,
5930 mode, inner_op0, inner_op1);
5931
5932 /* For commutative operations, try the other pair if that one
5933 didn't simplify. */
5934 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5935 {
5936 other = XEXP (XEXP (x, 0), 1);
5937 inner = simplify_binary_operation (code, mode,
5938 XEXP (XEXP (x, 0), 0),
5939 XEXP (x, 1));
5940 }
5941
5942 if (inner)
5943 return simplify_gen_binary (code, mode, other, inner);
5944 }
5945 }
5946
5947 /* A little bit of algebraic simplification here. */
5948 switch (code)
5949 {
5950 case MEM:
5951 /* Ensure that our address has any ASHIFTs converted to MULT in case
5952 address-recognizing predicates are called later. */
5953 temp = make_compound_operation (XEXP (x, 0), MEM);
5954 SUBST (XEXP (x, 0), temp);
5955 break;
5956
5957 case SUBREG:
5958 if (op0_mode == VOIDmode)
5959 op0_mode = GET_MODE (SUBREG_REG (x));
5960
5961 /* See if this can be moved to simplify_subreg. */
5962 if (CONSTANT_P (SUBREG_REG (x))
5963 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5964 /* Don't call gen_lowpart if the inner mode
5965 is VOIDmode and we cannot simplify it, as SUBREG without
5966 inner mode is invalid. */
5967 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5968 || gen_lowpart_common (mode, SUBREG_REG (x))))
5969 return gen_lowpart (mode, SUBREG_REG (x));
5970
5971 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5972 break;
5973 {
5974 rtx temp;
5975 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5976 SUBREG_BYTE (x));
5977 if (temp)
5978 return temp;
5979
5980 /* If op is known to have all lower bits zero, the result is zero. */
5981 scalar_int_mode int_mode, int_op0_mode;
5982 if (!in_dest
5983 && is_a <scalar_int_mode> (mode, &int_mode)
5984 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5985 && (GET_MODE_PRECISION (int_mode)
5986 < GET_MODE_PRECISION (int_op0_mode))
5987 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5988 SUBREG_BYTE (x))
5989 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5990 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
5991 & GET_MODE_MASK (int_mode)) == 0)
5992 && !side_effects_p (SUBREG_REG (x)))
5993 return CONST0_RTX (int_mode);
5994 }
5995
5996 /* Don't change the mode of the MEM if that would change the meaning
5997 of the address. */
5998 if (MEM_P (SUBREG_REG (x))
5999 && (MEM_VOLATILE_P (SUBREG_REG (x))
6000 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
6001 MEM_ADDR_SPACE (SUBREG_REG (x)))))
6002 return gen_rtx_CLOBBER (mode, const0_rtx);
6003
6004 /* Note that we cannot do any narrowing for non-constants since
6005 we might have been counting on using the fact that some bits were
6006 zero. We now do this in the SET. */
6007
6008 break;
6009
6010 case NEG:
6011 temp = expand_compound_operation (XEXP (x, 0));
6012
6013 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
6014 replaced by (lshiftrt X C). This will convert
6015 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
6016
6017 if (GET_CODE (temp) == ASHIFTRT
6018 && CONST_INT_P (XEXP (temp, 1))
6019 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
6020 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
6021 INTVAL (XEXP (temp, 1)));
6022
6023 /* If X has only a single bit that might be nonzero, say, bit I, convert
6024 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
6025 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
6026 (sign_extract X 1 Y). But only do this if TEMP isn't a register
6027 or a SUBREG of one since we'd be making the expression more
6028 complex if it was just a register. */
6029
6030 if (!REG_P (temp)
6031 && ! (GET_CODE (temp) == SUBREG
6032 && REG_P (SUBREG_REG (temp)))
6033 && is_a <scalar_int_mode> (mode, &int_mode)
6034 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
6035 {
6036 rtx temp1 = simplify_shift_const
6037 (NULL_RTX, ASHIFTRT, int_mode,
6038 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
6039 GET_MODE_PRECISION (int_mode) - 1 - i),
6040 GET_MODE_PRECISION (int_mode) - 1 - i);
6041
6042 /* If all we did was surround TEMP with the two shifts, we
6043 haven't improved anything, so don't use it. Otherwise,
6044 we are better off with TEMP1. */
6045 if (GET_CODE (temp1) != ASHIFTRT
6046 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
6047 || XEXP (XEXP (temp1, 0), 0) != temp)
6048 return temp1;
6049 }
6050 break;
6051
6052 case TRUNCATE:
6053 /* We can't handle truncation to a partial integer mode here
6054 because we don't know the real bitsize of the partial
6055 integer mode. */
6056 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6057 break;
6058
6059 if (HWI_COMPUTABLE_MODE_P (mode))
6060 SUBST (XEXP (x, 0),
6061 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6062 GET_MODE_MASK (mode), 0));
6063
6064 /* We can truncate a constant value and return it. */
6065 {
6066 poly_int64 c;
6067 if (poly_int_rtx_p (XEXP (x, 0), &c))
6068 return gen_int_mode (c, mode);
6069 }
6070
6071 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
6072 whose value is a comparison can be replaced with a subreg if
6073 STORE_FLAG_VALUE permits. */
6074 if (HWI_COMPUTABLE_MODE_P (mode)
6075 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6076 && (temp = get_last_value (XEXP (x, 0)))
6077 && COMPARISON_P (temp))
6078 return gen_lowpart (mode, XEXP (x, 0));
6079 break;
6080
6081 case CONST:
6082 /* (const (const X)) can become (const X). Do it this way rather than
6083 returning the inner CONST since CONST can be shared with a
6084 REG_EQUAL note. */
6085 if (GET_CODE (XEXP (x, 0)) == CONST)
6086 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6087 break;
6088
6089 case LO_SUM:
6090 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6091 can add in an offset. find_split_point will split this address up
6092 again if it doesn't match. */
6093 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6094 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6095 return XEXP (x, 1);
6096 break;
6097
6098 case PLUS:
6099 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6100 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6101 bit-field and can be replaced by either a sign_extend or a
6102 sign_extract. The `and' may be a zero_extend and the two
6103 <c>, -<c> constants may be reversed. */
6104 if (GET_CODE (XEXP (x, 0)) == XOR
6105 && is_a <scalar_int_mode> (mode, &int_mode)
6106 && CONST_INT_P (XEXP (x, 1))
6107 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6108 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6109 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6110 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6111 && HWI_COMPUTABLE_MODE_P (int_mode)
6112 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6113 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6114 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6115 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6116 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6117 && known_eq ((GET_MODE_PRECISION
6118 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6119 (unsigned int) i + 1))))
6120 return simplify_shift_const
6121 (NULL_RTX, ASHIFTRT, int_mode,
6122 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6123 XEXP (XEXP (XEXP (x, 0), 0), 0),
6124 GET_MODE_PRECISION (int_mode) - (i + 1)),
6125 GET_MODE_PRECISION (int_mode) - (i + 1));
6126
6127 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6128 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6129 the bitsize of the mode - 1. This allows simplification of
6130 "a = (b & 8) == 0;" */
6131 if (XEXP (x, 1) == constm1_rtx
6132 && !REG_P (XEXP (x, 0))
6133 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6134 && REG_P (SUBREG_REG (XEXP (x, 0))))
6135 && is_a <scalar_int_mode> (mode, &int_mode)
6136 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6137 return simplify_shift_const
6138 (NULL_RTX, ASHIFTRT, int_mode,
6139 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6140 gen_rtx_XOR (int_mode, XEXP (x, 0),
6141 const1_rtx),
6142 GET_MODE_PRECISION (int_mode) - 1),
6143 GET_MODE_PRECISION (int_mode) - 1);
6144
6145 /* If we are adding two things that have no bits in common, convert
6146 the addition into an IOR. This will often be further simplified,
6147 for example in cases like ((a & 1) + (a & 2)), which can
6148 become a & 3. */
6149
6150 if (HWI_COMPUTABLE_MODE_P (mode)
6151 && (nonzero_bits (XEXP (x, 0), mode)
6152 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6153 {
6154 /* Try to simplify the expression further. */
6155 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6156 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6157
6158 /* If we could, great. If not, do not go ahead with the IOR
6159 replacement, since PLUS appears in many special purpose
6160 address arithmetic instructions. */
6161 if (GET_CODE (temp) != CLOBBER
6162 && (GET_CODE (temp) != IOR
6163 || ((XEXP (temp, 0) != XEXP (x, 0)
6164 || XEXP (temp, 1) != XEXP (x, 1))
6165 && (XEXP (temp, 0) != XEXP (x, 1)
6166 || XEXP (temp, 1) != XEXP (x, 0)))))
6167 return temp;
6168 }
6169
6170 /* Canonicalize x + x into x << 1. */
6171 if (GET_MODE_CLASS (mode) == MODE_INT
6172 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6173 && !side_effects_p (XEXP (x, 0)))
6174 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6175
6176 break;
6177
6178 case MINUS:
6179 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6180 (and <foo> (const_int pow2-1)) */
6181 if (is_a <scalar_int_mode> (mode, &int_mode)
6182 && GET_CODE (XEXP (x, 1)) == AND
6183 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6184 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6185 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6186 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6187 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6188 break;
6189
6190 case MULT:
6191 /* If we have (mult (plus A B) C), apply the distributive law and then
6192 the inverse distributive law to see if things simplify. This
6193 occurs mostly in addresses, often when unrolling loops. */
6194
6195 if (GET_CODE (XEXP (x, 0)) == PLUS)
6196 {
6197 rtx result = distribute_and_simplify_rtx (x, 0);
6198 if (result)
6199 return result;
6200 }
6201
6202 /* Try simplify a*(b/c) as (a*b)/c. */
6203 if (FLOAT_MODE_P (mode) && flag_associative_math
6204 && GET_CODE (XEXP (x, 0)) == DIV)
6205 {
6206 rtx tem = simplify_binary_operation (MULT, mode,
6207 XEXP (XEXP (x, 0), 0),
6208 XEXP (x, 1));
6209 if (tem)
6210 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6211 }
6212 break;
6213
6214 case UDIV:
6215 /* If this is a divide by a power of two, treat it as a shift if
6216 its first operand is a shift. */
6217 if (is_a <scalar_int_mode> (mode, &int_mode)
6218 && CONST_INT_P (XEXP (x, 1))
6219 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6220 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6221 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6222 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6223 || GET_CODE (XEXP (x, 0)) == ROTATE
6224 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6225 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6226 XEXP (x, 0), i);
6227 break;
6228
6229 case EQ: case NE:
6230 case GT: case GTU: case GE: case GEU:
6231 case LT: case LTU: case LE: case LEU:
6232 case UNEQ: case LTGT:
6233 case UNGT: case UNGE:
6234 case UNLT: case UNLE:
6235 case UNORDERED: case ORDERED:
6236 /* If the first operand is a condition code, we can't do anything
6237 with it. */
6238 if (GET_CODE (XEXP (x, 0)) == COMPARE
6239 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6240 && ! CC0_P (XEXP (x, 0))))
6241 {
6242 rtx op0 = XEXP (x, 0);
6243 rtx op1 = XEXP (x, 1);
6244 enum rtx_code new_code;
6245
6246 if (GET_CODE (op0) == COMPARE)
6247 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6248
6249 /* Simplify our comparison, if possible. */
6250 new_code = simplify_comparison (code, &op0, &op1);
6251
6252 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6253 if only the low-order bit is possibly nonzero in X (such as when
6254 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6255 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6256 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6257 (plus X 1).
6258
6259 Remove any ZERO_EXTRACT we made when thinking this was a
6260 comparison. It may now be simpler to use, e.g., an AND. If a
6261 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6262 the call to make_compound_operation in the SET case.
6263
6264 Don't apply these optimizations if the caller would
6265 prefer a comparison rather than a value.
6266 E.g., for the condition in an IF_THEN_ELSE most targets need
6267 an explicit comparison. */
6268
6269 if (in_cond)
6270 ;
6271
6272 else if (STORE_FLAG_VALUE == 1
6273 && new_code == NE
6274 && is_int_mode (mode, &int_mode)
6275 && op1 == const0_rtx
6276 && int_mode == GET_MODE (op0)
6277 && nonzero_bits (op0, int_mode) == 1)
6278 return gen_lowpart (int_mode,
6279 expand_compound_operation (op0));
6280
6281 else if (STORE_FLAG_VALUE == 1
6282 && new_code == NE
6283 && is_int_mode (mode, &int_mode)
6284 && op1 == const0_rtx
6285 && int_mode == GET_MODE (op0)
6286 && (num_sign_bit_copies (op0, int_mode)
6287 == GET_MODE_PRECISION (int_mode)))
6288 {
6289 op0 = expand_compound_operation (op0);
6290 return simplify_gen_unary (NEG, int_mode,
6291 gen_lowpart (int_mode, op0),
6292 int_mode);
6293 }
6294
6295 else if (STORE_FLAG_VALUE == 1
6296 && new_code == EQ
6297 && is_int_mode (mode, &int_mode)
6298 && op1 == const0_rtx
6299 && int_mode == GET_MODE (op0)
6300 && nonzero_bits (op0, int_mode) == 1)
6301 {
6302 op0 = expand_compound_operation (op0);
6303 return simplify_gen_binary (XOR, int_mode,
6304 gen_lowpart (int_mode, op0),
6305 const1_rtx);
6306 }
6307
6308 else if (STORE_FLAG_VALUE == 1
6309 && new_code == EQ
6310 && is_int_mode (mode, &int_mode)
6311 && op1 == const0_rtx
6312 && int_mode == GET_MODE (op0)
6313 && (num_sign_bit_copies (op0, int_mode)
6314 == GET_MODE_PRECISION (int_mode)))
6315 {
6316 op0 = expand_compound_operation (op0);
6317 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6318 }
6319
6320 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6321 those above. */
6322 if (in_cond)
6323 ;
6324
6325 else if (STORE_FLAG_VALUE == -1
6326 && new_code == NE
6327 && is_int_mode (mode, &int_mode)
6328 && op1 == const0_rtx
6329 && int_mode == GET_MODE (op0)
6330 && (num_sign_bit_copies (op0, int_mode)
6331 == GET_MODE_PRECISION (int_mode)))
6332 return gen_lowpart (int_mode, expand_compound_operation (op0));
6333
6334 else if (STORE_FLAG_VALUE == -1
6335 && new_code == NE
6336 && is_int_mode (mode, &int_mode)
6337 && op1 == const0_rtx
6338 && int_mode == GET_MODE (op0)
6339 && nonzero_bits (op0, int_mode) == 1)
6340 {
6341 op0 = expand_compound_operation (op0);
6342 return simplify_gen_unary (NEG, int_mode,
6343 gen_lowpart (int_mode, op0),
6344 int_mode);
6345 }
6346
6347 else if (STORE_FLAG_VALUE == -1
6348 && new_code == EQ
6349 && is_int_mode (mode, &int_mode)
6350 && op1 == const0_rtx
6351 && int_mode == GET_MODE (op0)
6352 && (num_sign_bit_copies (op0, int_mode)
6353 == GET_MODE_PRECISION (int_mode)))
6354 {
6355 op0 = expand_compound_operation (op0);
6356 return simplify_gen_unary (NOT, int_mode,
6357 gen_lowpart (int_mode, op0),
6358 int_mode);
6359 }
6360
6361 /* If X is 0/1, (eq X 0) is X-1. */
6362 else if (STORE_FLAG_VALUE == -1
6363 && new_code == EQ
6364 && is_int_mode (mode, &int_mode)
6365 && op1 == const0_rtx
6366 && int_mode == GET_MODE (op0)
6367 && nonzero_bits (op0, int_mode) == 1)
6368 {
6369 op0 = expand_compound_operation (op0);
6370 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6371 }
6372
6373 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6374 one bit that might be nonzero, we can convert (ne x 0) to
6375 (ashift x c) where C puts the bit in the sign bit. Remove any
6376 AND with STORE_FLAG_VALUE when we are done, since we are only
6377 going to test the sign bit. */
6378 if (new_code == NE
6379 && is_int_mode (mode, &int_mode)
6380 && HWI_COMPUTABLE_MODE_P (int_mode)
6381 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6382 && op1 == const0_rtx
6383 && int_mode == GET_MODE (op0)
6384 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6385 {
6386 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6387 expand_compound_operation (op0),
6388 GET_MODE_PRECISION (int_mode) - 1 - i);
6389 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6390 return XEXP (x, 0);
6391 else
6392 return x;
6393 }
6394
6395 /* If the code changed, return a whole new comparison.
6396 We also need to avoid using SUBST in cases where
6397 simplify_comparison has widened a comparison with a CONST_INT,
6398 since in that case the wider CONST_INT may fail the sanity
6399 checks in do_SUBST. */
6400 if (new_code != code
6401 || (CONST_INT_P (op1)
6402 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6403 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6404 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6405
6406 /* Otherwise, keep this operation, but maybe change its operands.
6407 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6408 SUBST (XEXP (x, 0), op0);
6409 SUBST (XEXP (x, 1), op1);
6410 }
6411 break;
6412
6413 case IF_THEN_ELSE:
6414 return simplify_if_then_else (x);
6415
6416 case ZERO_EXTRACT:
6417 case SIGN_EXTRACT:
6418 case ZERO_EXTEND:
6419 case SIGN_EXTEND:
6420 /* If we are processing SET_DEST, we are done. */
6421 if (in_dest)
6422 return x;
6423
6424 return expand_compound_operation (x);
6425
6426 case SET:
6427 return simplify_set (x);
6428
6429 case AND:
6430 case IOR:
6431 return simplify_logical (x);
6432
6433 case ASHIFT:
6434 case LSHIFTRT:
6435 case ASHIFTRT:
6436 case ROTATE:
6437 case ROTATERT:
6438 /* If this is a shift by a constant amount, simplify it. */
6439 if (CONST_INT_P (XEXP (x, 1)))
6440 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6441 INTVAL (XEXP (x, 1)));
6442
6443 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6444 SUBST (XEXP (x, 1),
6445 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6446 (HOST_WIDE_INT_1U
6447 << exact_log2 (GET_MODE_UNIT_BITSIZE
6448 (GET_MODE (x))))
6449 - 1,
6450 0));
6451 break;
6452
6453 default:
6454 break;
6455 }
6456
6457 return x;
6458 }
6459 \f
6460 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6461
6462 static rtx
6463 simplify_if_then_else (rtx x)
6464 {
6465 machine_mode mode = GET_MODE (x);
6466 rtx cond = XEXP (x, 0);
6467 rtx true_rtx = XEXP (x, 1);
6468 rtx false_rtx = XEXP (x, 2);
6469 enum rtx_code true_code = GET_CODE (cond);
6470 int comparison_p = COMPARISON_P (cond);
6471 rtx temp;
6472 int i;
6473 enum rtx_code false_code;
6474 rtx reversed;
6475 scalar_int_mode int_mode, inner_mode;
6476
6477 /* Simplify storing of the truth value. */
6478 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6479 return simplify_gen_relational (true_code, mode, VOIDmode,
6480 XEXP (cond, 0), XEXP (cond, 1));
6481
6482 /* Also when the truth value has to be reversed. */
6483 if (comparison_p
6484 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6485 && (reversed = reversed_comparison (cond, mode)))
6486 return reversed;
6487
6488 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6489 in it is being compared against certain values. Get the true and false
6490 comparisons and see if that says anything about the value of each arm. */
6491
6492 if (comparison_p
6493 && ((false_code = reversed_comparison_code (cond, NULL))
6494 != UNKNOWN)
6495 && REG_P (XEXP (cond, 0)))
6496 {
6497 HOST_WIDE_INT nzb;
6498 rtx from = XEXP (cond, 0);
6499 rtx true_val = XEXP (cond, 1);
6500 rtx false_val = true_val;
6501 int swapped = 0;
6502
6503 /* If FALSE_CODE is EQ, swap the codes and arms. */
6504
6505 if (false_code == EQ)
6506 {
6507 swapped = 1, true_code = EQ, false_code = NE;
6508 std::swap (true_rtx, false_rtx);
6509 }
6510
6511 scalar_int_mode from_mode;
6512 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6513 {
6514 /* If we are comparing against zero and the expression being
6515 tested has only a single bit that might be nonzero, that is
6516 its value when it is not equal to zero. Similarly if it is
6517 known to be -1 or 0. */
6518 if (true_code == EQ
6519 && true_val == const0_rtx
6520 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6521 {
6522 false_code = EQ;
6523 false_val = gen_int_mode (nzb, from_mode);
6524 }
6525 else if (true_code == EQ
6526 && true_val == const0_rtx
6527 && (num_sign_bit_copies (from, from_mode)
6528 == GET_MODE_PRECISION (from_mode)))
6529 {
6530 false_code = EQ;
6531 false_val = constm1_rtx;
6532 }
6533 }
6534
6535 /* Now simplify an arm if we know the value of the register in the
6536 branch and it is used in the arm. Be careful due to the potential
6537 of locally-shared RTL. */
6538
6539 if (reg_mentioned_p (from, true_rtx))
6540 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6541 from, true_val),
6542 pc_rtx, pc_rtx, 0, 0, 0);
6543 if (reg_mentioned_p (from, false_rtx))
6544 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6545 from, false_val),
6546 pc_rtx, pc_rtx, 0, 0, 0);
6547
6548 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6549 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6550
6551 true_rtx = XEXP (x, 1);
6552 false_rtx = XEXP (x, 2);
6553 true_code = GET_CODE (cond);
6554 }
6555
6556 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6557 reversed, do so to avoid needing two sets of patterns for
6558 subtract-and-branch insns. Similarly if we have a constant in the true
6559 arm, the false arm is the same as the first operand of the comparison, or
6560 the false arm is more complicated than the true arm. */
6561
6562 if (comparison_p
6563 && reversed_comparison_code (cond, NULL) != UNKNOWN
6564 && (true_rtx == pc_rtx
6565 || (CONSTANT_P (true_rtx)
6566 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6567 || true_rtx == const0_rtx
6568 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6569 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6570 && !OBJECT_P (false_rtx))
6571 || reg_mentioned_p (true_rtx, false_rtx)
6572 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6573 {
6574 true_code = reversed_comparison_code (cond, NULL);
6575 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6576 SUBST (XEXP (x, 1), false_rtx);
6577 SUBST (XEXP (x, 2), true_rtx);
6578
6579 std::swap (true_rtx, false_rtx);
6580 cond = XEXP (x, 0);
6581
6582 /* It is possible that the conditional has been simplified out. */
6583 true_code = GET_CODE (cond);
6584 comparison_p = COMPARISON_P (cond);
6585 }
6586
6587 /* If the two arms are identical, we don't need the comparison. */
6588
6589 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6590 return true_rtx;
6591
6592 /* Convert a == b ? b : a to "a". */
6593 if (true_code == EQ && ! side_effects_p (cond)
6594 && !HONOR_NANS (mode)
6595 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6596 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6597 return false_rtx;
6598 else if (true_code == NE && ! side_effects_p (cond)
6599 && !HONOR_NANS (mode)
6600 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6601 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6602 return true_rtx;
6603
6604 /* Look for cases where we have (abs x) or (neg (abs X)). */
6605
6606 if (GET_MODE_CLASS (mode) == MODE_INT
6607 && comparison_p
6608 && XEXP (cond, 1) == const0_rtx
6609 && GET_CODE (false_rtx) == NEG
6610 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6611 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6612 && ! side_effects_p (true_rtx))
6613 switch (true_code)
6614 {
6615 case GT:
6616 case GE:
6617 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6618 case LT:
6619 case LE:
6620 return
6621 simplify_gen_unary (NEG, mode,
6622 simplify_gen_unary (ABS, mode, true_rtx, mode),
6623 mode);
6624 default:
6625 break;
6626 }
6627
6628 /* Look for MIN or MAX. */
6629
6630 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6631 && comparison_p
6632 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6633 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6634 && ! side_effects_p (cond))
6635 switch (true_code)
6636 {
6637 case GE:
6638 case GT:
6639 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6640 case LE:
6641 case LT:
6642 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6643 case GEU:
6644 case GTU:
6645 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6646 case LEU:
6647 case LTU:
6648 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6649 default:
6650 break;
6651 }
6652
6653 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6654 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6655 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6656 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6657 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6658 neither 1 or -1, but it isn't worth checking for. */
6659
6660 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6661 && comparison_p
6662 && is_int_mode (mode, &int_mode)
6663 && ! side_effects_p (x))
6664 {
6665 rtx t = make_compound_operation (true_rtx, SET);
6666 rtx f = make_compound_operation (false_rtx, SET);
6667 rtx cond_op0 = XEXP (cond, 0);
6668 rtx cond_op1 = XEXP (cond, 1);
6669 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6670 scalar_int_mode m = int_mode;
6671 rtx z = 0, c1 = NULL_RTX;
6672
6673 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6674 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6675 || GET_CODE (t) == ASHIFT
6676 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6677 && rtx_equal_p (XEXP (t, 0), f))
6678 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6679
6680 /* If an identity-zero op is commutative, check whether there
6681 would be a match if we swapped the operands. */
6682 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6683 || GET_CODE (t) == XOR)
6684 && rtx_equal_p (XEXP (t, 1), f))
6685 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6686 else if (GET_CODE (t) == SIGN_EXTEND
6687 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6688 && (GET_CODE (XEXP (t, 0)) == PLUS
6689 || GET_CODE (XEXP (t, 0)) == MINUS
6690 || GET_CODE (XEXP (t, 0)) == IOR
6691 || GET_CODE (XEXP (t, 0)) == XOR
6692 || GET_CODE (XEXP (t, 0)) == ASHIFT
6693 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6694 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6695 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6696 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6697 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6698 && (num_sign_bit_copies (f, GET_MODE (f))
6699 > (unsigned int)
6700 (GET_MODE_PRECISION (int_mode)
6701 - GET_MODE_PRECISION (inner_mode))))
6702 {
6703 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6704 extend_op = SIGN_EXTEND;
6705 m = inner_mode;
6706 }
6707 else if (GET_CODE (t) == SIGN_EXTEND
6708 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6709 && (GET_CODE (XEXP (t, 0)) == PLUS
6710 || GET_CODE (XEXP (t, 0)) == IOR
6711 || GET_CODE (XEXP (t, 0)) == XOR)
6712 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6713 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6714 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6715 && (num_sign_bit_copies (f, GET_MODE (f))
6716 > (unsigned int)
6717 (GET_MODE_PRECISION (int_mode)
6718 - GET_MODE_PRECISION (inner_mode))))
6719 {
6720 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6721 extend_op = SIGN_EXTEND;
6722 m = inner_mode;
6723 }
6724 else if (GET_CODE (t) == ZERO_EXTEND
6725 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6726 && (GET_CODE (XEXP (t, 0)) == PLUS
6727 || GET_CODE (XEXP (t, 0)) == MINUS
6728 || GET_CODE (XEXP (t, 0)) == IOR
6729 || GET_CODE (XEXP (t, 0)) == XOR
6730 || GET_CODE (XEXP (t, 0)) == ASHIFT
6731 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6732 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6733 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6734 && HWI_COMPUTABLE_MODE_P (int_mode)
6735 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6736 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6737 && ((nonzero_bits (f, GET_MODE (f))
6738 & ~GET_MODE_MASK (inner_mode))
6739 == 0))
6740 {
6741 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6742 extend_op = ZERO_EXTEND;
6743 m = inner_mode;
6744 }
6745 else if (GET_CODE (t) == ZERO_EXTEND
6746 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6747 && (GET_CODE (XEXP (t, 0)) == PLUS
6748 || GET_CODE (XEXP (t, 0)) == IOR
6749 || GET_CODE (XEXP (t, 0)) == XOR)
6750 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6751 && HWI_COMPUTABLE_MODE_P (int_mode)
6752 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6753 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6754 && ((nonzero_bits (f, GET_MODE (f))
6755 & ~GET_MODE_MASK (inner_mode))
6756 == 0))
6757 {
6758 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6759 extend_op = ZERO_EXTEND;
6760 m = inner_mode;
6761 }
6762
6763 if (z)
6764 {
6765 machine_mode cm = m;
6766 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6767 && GET_MODE (c1) != VOIDmode)
6768 cm = GET_MODE (c1);
6769 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6770 cond_op0, cond_op1),
6771 pc_rtx, pc_rtx, 0, 0, 0);
6772 temp = simplify_gen_binary (MULT, cm, temp,
6773 simplify_gen_binary (MULT, cm, c1,
6774 const_true_rtx));
6775 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6776 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6777
6778 if (extend_op != UNKNOWN)
6779 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6780
6781 return temp;
6782 }
6783 }
6784
6785 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6786 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6787 negation of a single bit, we can convert this operation to a shift. We
6788 can actually do this more generally, but it doesn't seem worth it. */
6789
6790 if (true_code == NE
6791 && is_a <scalar_int_mode> (mode, &int_mode)
6792 && XEXP (cond, 1) == const0_rtx
6793 && false_rtx == const0_rtx
6794 && CONST_INT_P (true_rtx)
6795 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6796 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6797 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6798 == GET_MODE_PRECISION (int_mode))
6799 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6800 return
6801 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6802 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6803
6804 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6805 non-zero bit in A is C1. */
6806 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6807 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6808 && is_a <scalar_int_mode> (mode, &int_mode)
6809 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6810 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6811 == nonzero_bits (XEXP (cond, 0), inner_mode)
6812 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6813 {
6814 rtx val = XEXP (cond, 0);
6815 if (inner_mode == int_mode)
6816 return val;
6817 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6818 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6819 }
6820
6821 return x;
6822 }
6823 \f
6824 /* Simplify X, a SET expression. Return the new expression. */
6825
6826 static rtx
6827 simplify_set (rtx x)
6828 {
6829 rtx src = SET_SRC (x);
6830 rtx dest = SET_DEST (x);
6831 machine_mode mode
6832 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6833 rtx_insn *other_insn;
6834 rtx *cc_use;
6835 scalar_int_mode int_mode;
6836
6837 /* (set (pc) (return)) gets written as (return). */
6838 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6839 return src;
6840
6841 /* Now that we know for sure which bits of SRC we are using, see if we can
6842 simplify the expression for the object knowing that we only need the
6843 low-order bits. */
6844
6845 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6846 {
6847 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6848 SUBST (SET_SRC (x), src);
6849 }
6850
6851 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6852 the comparison result and try to simplify it unless we already have used
6853 undobuf.other_insn. */
6854 if ((GET_MODE_CLASS (mode) == MODE_CC
6855 || GET_CODE (src) == COMPARE
6856 || CC0_P (dest))
6857 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6858 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6859 && COMPARISON_P (*cc_use)
6860 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6861 {
6862 enum rtx_code old_code = GET_CODE (*cc_use);
6863 enum rtx_code new_code;
6864 rtx op0, op1, tmp;
6865 int other_changed = 0;
6866 rtx inner_compare = NULL_RTX;
6867 machine_mode compare_mode = GET_MODE (dest);
6868
6869 if (GET_CODE (src) == COMPARE)
6870 {
6871 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6872 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6873 {
6874 inner_compare = op0;
6875 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6876 }
6877 }
6878 else
6879 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6880
6881 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6882 op0, op1);
6883 if (!tmp)
6884 new_code = old_code;
6885 else if (!CONSTANT_P (tmp))
6886 {
6887 new_code = GET_CODE (tmp);
6888 op0 = XEXP (tmp, 0);
6889 op1 = XEXP (tmp, 1);
6890 }
6891 else
6892 {
6893 rtx pat = PATTERN (other_insn);
6894 undobuf.other_insn = other_insn;
6895 SUBST (*cc_use, tmp);
6896
6897 /* Attempt to simplify CC user. */
6898 if (GET_CODE (pat) == SET)
6899 {
6900 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6901 if (new_rtx != NULL_RTX)
6902 SUBST (SET_SRC (pat), new_rtx);
6903 }
6904
6905 /* Convert X into a no-op move. */
6906 SUBST (SET_DEST (x), pc_rtx);
6907 SUBST (SET_SRC (x), pc_rtx);
6908 return x;
6909 }
6910
6911 /* Simplify our comparison, if possible. */
6912 new_code = simplify_comparison (new_code, &op0, &op1);
6913
6914 #ifdef SELECT_CC_MODE
6915 /* If this machine has CC modes other than CCmode, check to see if we
6916 need to use a different CC mode here. */
6917 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6918 compare_mode = GET_MODE (op0);
6919 else if (inner_compare
6920 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6921 && new_code == old_code
6922 && op0 == XEXP (inner_compare, 0)
6923 && op1 == XEXP (inner_compare, 1))
6924 compare_mode = GET_MODE (inner_compare);
6925 else
6926 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6927
6928 /* If the mode changed, we have to change SET_DEST, the mode in the
6929 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6930 a hard register, just build new versions with the proper mode. If it
6931 is a pseudo, we lose unless it is only time we set the pseudo, in
6932 which case we can safely change its mode. */
6933 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6934 {
6935 if (can_change_dest_mode (dest, 0, compare_mode))
6936 {
6937 unsigned int regno = REGNO (dest);
6938 rtx new_dest;
6939
6940 if (regno < FIRST_PSEUDO_REGISTER)
6941 new_dest = gen_rtx_REG (compare_mode, regno);
6942 else
6943 {
6944 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6945 new_dest = regno_reg_rtx[regno];
6946 }
6947
6948 SUBST (SET_DEST (x), new_dest);
6949 SUBST (XEXP (*cc_use, 0), new_dest);
6950 other_changed = 1;
6951
6952 dest = new_dest;
6953 }
6954 }
6955 #endif /* SELECT_CC_MODE */
6956
6957 /* If the code changed, we have to build a new comparison in
6958 undobuf.other_insn. */
6959 if (new_code != old_code)
6960 {
6961 int other_changed_previously = other_changed;
6962 unsigned HOST_WIDE_INT mask;
6963 rtx old_cc_use = *cc_use;
6964
6965 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6966 dest, const0_rtx));
6967 other_changed = 1;
6968
6969 /* If the only change we made was to change an EQ into an NE or
6970 vice versa, OP0 has only one bit that might be nonzero, and OP1
6971 is zero, check if changing the user of the condition code will
6972 produce a valid insn. If it won't, we can keep the original code
6973 in that insn by surrounding our operation with an XOR. */
6974
6975 if (((old_code == NE && new_code == EQ)
6976 || (old_code == EQ && new_code == NE))
6977 && ! other_changed_previously && op1 == const0_rtx
6978 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6979 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6980 {
6981 rtx pat = PATTERN (other_insn), note = 0;
6982
6983 if ((recog_for_combine (&pat, other_insn, &note) < 0
6984 && ! check_asm_operands (pat)))
6985 {
6986 *cc_use = old_cc_use;
6987 other_changed = 0;
6988
6989 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6990 gen_int_mode (mask,
6991 GET_MODE (op0)));
6992 }
6993 }
6994 }
6995
6996 if (other_changed)
6997 undobuf.other_insn = other_insn;
6998
6999 /* Don't generate a compare of a CC with 0, just use that CC. */
7000 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
7001 {
7002 SUBST (SET_SRC (x), op0);
7003 src = SET_SRC (x);
7004 }
7005 /* Otherwise, if we didn't previously have the same COMPARE we
7006 want, create it from scratch. */
7007 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
7008 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
7009 {
7010 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
7011 src = SET_SRC (x);
7012 }
7013 }
7014 else
7015 {
7016 /* Get SET_SRC in a form where we have placed back any
7017 compound expressions. Then do the checks below. */
7018 src = make_compound_operation (src, SET);
7019 SUBST (SET_SRC (x), src);
7020 }
7021
7022 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
7023 and X being a REG or (subreg (reg)), we may be able to convert this to
7024 (set (subreg:m2 x) (op)).
7025
7026 We can always do this if M1 is narrower than M2 because that means that
7027 we only care about the low bits of the result.
7028
7029 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
7030 perform a narrower operation than requested since the high-order bits will
7031 be undefined. On machine where it is defined, this transformation is safe
7032 as long as M1 and M2 have the same number of words. */
7033
7034 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
7035 && !OBJECT_P (SUBREG_REG (src))
7036 && (known_equal_after_align_up
7037 (GET_MODE_SIZE (GET_MODE (src)),
7038 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
7039 UNITS_PER_WORD))
7040 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
7041 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
7042 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
7043 GET_MODE (SUBREG_REG (src)),
7044 GET_MODE (src)))
7045 && (REG_P (dest)
7046 || (GET_CODE (dest) == SUBREG
7047 && REG_P (SUBREG_REG (dest)))))
7048 {
7049 SUBST (SET_DEST (x),
7050 gen_lowpart (GET_MODE (SUBREG_REG (src)),
7051 dest));
7052 SUBST (SET_SRC (x), SUBREG_REG (src));
7053
7054 src = SET_SRC (x), dest = SET_DEST (x);
7055 }
7056
7057 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
7058 in SRC. */
7059 if (dest == cc0_rtx
7060 && partial_subreg_p (src)
7061 && subreg_lowpart_p (src))
7062 {
7063 rtx inner = SUBREG_REG (src);
7064 machine_mode inner_mode = GET_MODE (inner);
7065
7066 /* Here we make sure that we don't have a sign bit on. */
7067 if (val_signbit_known_clear_p (GET_MODE (src),
7068 nonzero_bits (inner, inner_mode)))
7069 {
7070 SUBST (SET_SRC (x), inner);
7071 src = SET_SRC (x);
7072 }
7073 }
7074
7075 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7076 would require a paradoxical subreg. Replace the subreg with a
7077 zero_extend to avoid the reload that would otherwise be required.
7078 Don't do this unless we have a scalar integer mode, otherwise the
7079 transformation is incorrect. */
7080
7081 enum rtx_code extend_op;
7082 if (paradoxical_subreg_p (src)
7083 && MEM_P (SUBREG_REG (src))
7084 && SCALAR_INT_MODE_P (GET_MODE (src))
7085 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7086 {
7087 SUBST (SET_SRC (x),
7088 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7089
7090 src = SET_SRC (x);
7091 }
7092
7093 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7094 are comparing an item known to be 0 or -1 against 0, use a logical
7095 operation instead. Check for one of the arms being an IOR of the other
7096 arm with some value. We compute three terms to be IOR'ed together. In
7097 practice, at most two will be nonzero. Then we do the IOR's. */
7098
7099 if (GET_CODE (dest) != PC
7100 && GET_CODE (src) == IF_THEN_ELSE
7101 && is_int_mode (GET_MODE (src), &int_mode)
7102 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7103 && XEXP (XEXP (src, 0), 1) == const0_rtx
7104 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7105 && (!HAVE_conditional_move
7106 || ! can_conditionally_move_p (int_mode))
7107 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7108 == GET_MODE_PRECISION (int_mode))
7109 && ! side_effects_p (src))
7110 {
7111 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7112 ? XEXP (src, 1) : XEXP (src, 2));
7113 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7114 ? XEXP (src, 2) : XEXP (src, 1));
7115 rtx term1 = const0_rtx, term2, term3;
7116
7117 if (GET_CODE (true_rtx) == IOR
7118 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7119 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7120 else if (GET_CODE (true_rtx) == IOR
7121 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7122 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7123 else if (GET_CODE (false_rtx) == IOR
7124 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7125 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7126 else if (GET_CODE (false_rtx) == IOR
7127 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7128 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7129
7130 term2 = simplify_gen_binary (AND, int_mode,
7131 XEXP (XEXP (src, 0), 0), true_rtx);
7132 term3 = simplify_gen_binary (AND, int_mode,
7133 simplify_gen_unary (NOT, int_mode,
7134 XEXP (XEXP (src, 0), 0),
7135 int_mode),
7136 false_rtx);
7137
7138 SUBST (SET_SRC (x),
7139 simplify_gen_binary (IOR, int_mode,
7140 simplify_gen_binary (IOR, int_mode,
7141 term1, term2),
7142 term3));
7143
7144 src = SET_SRC (x);
7145 }
7146
7147 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7148 whole thing fail. */
7149 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7150 return src;
7151 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7152 return dest;
7153 else
7154 /* Convert this into a field assignment operation, if possible. */
7155 return make_field_assignment (x);
7156 }
7157 \f
7158 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7159 result. */
7160
7161 static rtx
7162 simplify_logical (rtx x)
7163 {
7164 rtx op0 = XEXP (x, 0);
7165 rtx op1 = XEXP (x, 1);
7166 scalar_int_mode mode;
7167
7168 switch (GET_CODE (x))
7169 {
7170 case AND:
7171 /* We can call simplify_and_const_int only if we don't lose
7172 any (sign) bits when converting INTVAL (op1) to
7173 "unsigned HOST_WIDE_INT". */
7174 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7175 && CONST_INT_P (op1)
7176 && (HWI_COMPUTABLE_MODE_P (mode)
7177 || INTVAL (op1) > 0))
7178 {
7179 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7180 if (GET_CODE (x) != AND)
7181 return x;
7182
7183 op0 = XEXP (x, 0);
7184 op1 = XEXP (x, 1);
7185 }
7186
7187 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7188 apply the distributive law and then the inverse distributive
7189 law to see if things simplify. */
7190 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7191 {
7192 rtx result = distribute_and_simplify_rtx (x, 0);
7193 if (result)
7194 return result;
7195 }
7196 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7197 {
7198 rtx result = distribute_and_simplify_rtx (x, 1);
7199 if (result)
7200 return result;
7201 }
7202 break;
7203
7204 case IOR:
7205 /* If we have (ior (and A B) C), apply the distributive law and then
7206 the inverse distributive law to see if things simplify. */
7207
7208 if (GET_CODE (op0) == AND)
7209 {
7210 rtx result = distribute_and_simplify_rtx (x, 0);
7211 if (result)
7212 return result;
7213 }
7214
7215 if (GET_CODE (op1) == AND)
7216 {
7217 rtx result = distribute_and_simplify_rtx (x, 1);
7218 if (result)
7219 return result;
7220 }
7221 break;
7222
7223 default:
7224 gcc_unreachable ();
7225 }
7226
7227 return x;
7228 }
7229 \f
7230 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7231 operations" because they can be replaced with two more basic operations.
7232 ZERO_EXTEND is also considered "compound" because it can be replaced with
7233 an AND operation, which is simpler, though only one operation.
7234
7235 The function expand_compound_operation is called with an rtx expression
7236 and will convert it to the appropriate shifts and AND operations,
7237 simplifying at each stage.
7238
7239 The function make_compound_operation is called to convert an expression
7240 consisting of shifts and ANDs into the equivalent compound expression.
7241 It is the inverse of this function, loosely speaking. */
7242
7243 static rtx
7244 expand_compound_operation (rtx x)
7245 {
7246 unsigned HOST_WIDE_INT pos = 0, len;
7247 int unsignedp = 0;
7248 unsigned int modewidth;
7249 rtx tem;
7250 scalar_int_mode inner_mode;
7251
7252 switch (GET_CODE (x))
7253 {
7254 case ZERO_EXTEND:
7255 unsignedp = 1;
7256 /* FALLTHRU */
7257 case SIGN_EXTEND:
7258 /* We can't necessarily use a const_int for a multiword mode;
7259 it depends on implicitly extending the value.
7260 Since we don't know the right way to extend it,
7261 we can't tell whether the implicit way is right.
7262
7263 Even for a mode that is no wider than a const_int,
7264 we can't win, because we need to sign extend one of its bits through
7265 the rest of it, and we don't know which bit. */
7266 if (CONST_INT_P (XEXP (x, 0)))
7267 return x;
7268
7269 /* Reject modes that aren't scalar integers because turning vector
7270 or complex modes into shifts causes problems. */
7271 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7272 return x;
7273
7274 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7275 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7276 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7277 reloaded. If not for that, MEM's would very rarely be safe.
7278
7279 Reject modes bigger than a word, because we might not be able
7280 to reference a two-register group starting with an arbitrary register
7281 (and currently gen_lowpart might crash for a SUBREG). */
7282
7283 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7284 return x;
7285
7286 len = GET_MODE_PRECISION (inner_mode);
7287 /* If the inner object has VOIDmode (the only way this can happen
7288 is if it is an ASM_OPERANDS), we can't do anything since we don't
7289 know how much masking to do. */
7290 if (len == 0)
7291 return x;
7292
7293 break;
7294
7295 case ZERO_EXTRACT:
7296 unsignedp = 1;
7297
7298 /* fall through */
7299
7300 case SIGN_EXTRACT:
7301 /* If the operand is a CLOBBER, just return it. */
7302 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7303 return XEXP (x, 0);
7304
7305 if (!CONST_INT_P (XEXP (x, 1))
7306 || !CONST_INT_P (XEXP (x, 2)))
7307 return x;
7308
7309 /* Reject modes that aren't scalar integers because turning vector
7310 or complex modes into shifts causes problems. */
7311 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7312 return x;
7313
7314 len = INTVAL (XEXP (x, 1));
7315 pos = INTVAL (XEXP (x, 2));
7316
7317 /* This should stay within the object being extracted, fail otherwise. */
7318 if (len + pos > GET_MODE_PRECISION (inner_mode))
7319 return x;
7320
7321 if (BITS_BIG_ENDIAN)
7322 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7323
7324 break;
7325
7326 default:
7327 return x;
7328 }
7329
7330 /* We've rejected non-scalar operations by now. */
7331 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7332
7333 /* Convert sign extension to zero extension, if we know that the high
7334 bit is not set, as this is easier to optimize. It will be converted
7335 back to cheaper alternative in make_extraction. */
7336 if (GET_CODE (x) == SIGN_EXTEND
7337 && HWI_COMPUTABLE_MODE_P (mode)
7338 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7339 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7340 == 0))
7341 {
7342 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7343 rtx temp2 = expand_compound_operation (temp);
7344
7345 /* Make sure this is a profitable operation. */
7346 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7347 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7348 return temp2;
7349 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7350 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7351 return temp;
7352 else
7353 return x;
7354 }
7355
7356 /* We can optimize some special cases of ZERO_EXTEND. */
7357 if (GET_CODE (x) == ZERO_EXTEND)
7358 {
7359 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7360 know that the last value didn't have any inappropriate bits
7361 set. */
7362 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7363 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7364 && HWI_COMPUTABLE_MODE_P (mode)
7365 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7366 & ~GET_MODE_MASK (inner_mode)) == 0)
7367 return XEXP (XEXP (x, 0), 0);
7368
7369 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7370 if (GET_CODE (XEXP (x, 0)) == SUBREG
7371 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7372 && subreg_lowpart_p (XEXP (x, 0))
7373 && HWI_COMPUTABLE_MODE_P (mode)
7374 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7375 & ~GET_MODE_MASK (inner_mode)) == 0)
7376 return SUBREG_REG (XEXP (x, 0));
7377
7378 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7379 is a comparison and STORE_FLAG_VALUE permits. This is like
7380 the first case, but it works even when MODE is larger
7381 than HOST_WIDE_INT. */
7382 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7383 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7384 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7385 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7386 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7387 return XEXP (XEXP (x, 0), 0);
7388
7389 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7390 if (GET_CODE (XEXP (x, 0)) == SUBREG
7391 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7392 && subreg_lowpart_p (XEXP (x, 0))
7393 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7394 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7395 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7396 return SUBREG_REG (XEXP (x, 0));
7397
7398 }
7399
7400 /* If we reach here, we want to return a pair of shifts. The inner
7401 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7402 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7403 logical depending on the value of UNSIGNEDP.
7404
7405 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7406 converted into an AND of a shift.
7407
7408 We must check for the case where the left shift would have a negative
7409 count. This can happen in a case like (x >> 31) & 255 on machines
7410 that can't shift by a constant. On those machines, we would first
7411 combine the shift with the AND to produce a variable-position
7412 extraction. Then the constant of 31 would be substituted in
7413 to produce such a position. */
7414
7415 modewidth = GET_MODE_PRECISION (mode);
7416 if (modewidth >= pos + len)
7417 {
7418 tem = gen_lowpart (mode, XEXP (x, 0));
7419 if (!tem || GET_CODE (tem) == CLOBBER)
7420 return x;
7421 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7422 tem, modewidth - pos - len);
7423 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7424 mode, tem, modewidth - len);
7425 }
7426 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7427 tem = simplify_and_const_int (NULL_RTX, mode,
7428 simplify_shift_const (NULL_RTX, LSHIFTRT,
7429 mode, XEXP (x, 0),
7430 pos),
7431 (HOST_WIDE_INT_1U << len) - 1);
7432 else
7433 /* Any other cases we can't handle. */
7434 return x;
7435
7436 /* If we couldn't do this for some reason, return the original
7437 expression. */
7438 if (GET_CODE (tem) == CLOBBER)
7439 return x;
7440
7441 return tem;
7442 }
7443 \f
7444 /* X is a SET which contains an assignment of one object into
7445 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7446 or certain SUBREGS). If possible, convert it into a series of
7447 logical operations.
7448
7449 We half-heartedly support variable positions, but do not at all
7450 support variable lengths. */
7451
7452 static const_rtx
7453 expand_field_assignment (const_rtx x)
7454 {
7455 rtx inner;
7456 rtx pos; /* Always counts from low bit. */
7457 int len, inner_len;
7458 rtx mask, cleared, masked;
7459 scalar_int_mode compute_mode;
7460
7461 /* Loop until we find something we can't simplify. */
7462 while (1)
7463 {
7464 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7465 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7466 {
7467 rtx x0 = XEXP (SET_DEST (x), 0);
7468 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7469 break;
7470 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7471 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7472 MAX_MODE_INT);
7473 }
7474 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7475 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7476 {
7477 inner = XEXP (SET_DEST (x), 0);
7478 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7479 break;
7480
7481 len = INTVAL (XEXP (SET_DEST (x), 1));
7482 pos = XEXP (SET_DEST (x), 2);
7483
7484 /* A constant position should stay within the width of INNER. */
7485 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7486 break;
7487
7488 if (BITS_BIG_ENDIAN)
7489 {
7490 if (CONST_INT_P (pos))
7491 pos = GEN_INT (inner_len - len - INTVAL (pos));
7492 else if (GET_CODE (pos) == MINUS
7493 && CONST_INT_P (XEXP (pos, 1))
7494 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7495 /* If position is ADJUST - X, new position is X. */
7496 pos = XEXP (pos, 0);
7497 else
7498 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7499 gen_int_mode (inner_len - len,
7500 GET_MODE (pos)),
7501 pos);
7502 }
7503 }
7504
7505 /* If the destination is a subreg that overwrites the whole of the inner
7506 register, we can move the subreg to the source. */
7507 else if (GET_CODE (SET_DEST (x)) == SUBREG
7508 /* We need SUBREGs to compute nonzero_bits properly. */
7509 && nonzero_sign_valid
7510 && !read_modify_subreg_p (SET_DEST (x)))
7511 {
7512 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7513 gen_lowpart
7514 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7515 SET_SRC (x)));
7516 continue;
7517 }
7518 else
7519 break;
7520
7521 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7522 inner = SUBREG_REG (inner);
7523
7524 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7525 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7526 {
7527 /* Don't do anything for vector or complex integral types. */
7528 if (! FLOAT_MODE_P (GET_MODE (inner)))
7529 break;
7530
7531 /* Try to find an integral mode to pun with. */
7532 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7533 .exists (&compute_mode))
7534 break;
7535
7536 inner = gen_lowpart (compute_mode, inner);
7537 }
7538
7539 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7540 if (len >= HOST_BITS_PER_WIDE_INT)
7541 break;
7542
7543 /* Don't try to compute in too wide unsupported modes. */
7544 if (!targetm.scalar_mode_supported_p (compute_mode))
7545 break;
7546
7547 /* Now compute the equivalent expression. Make a copy of INNER
7548 for the SET_DEST in case it is a MEM into which we will substitute;
7549 we don't want shared RTL in that case. */
7550 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7551 compute_mode);
7552 cleared = simplify_gen_binary (AND, compute_mode,
7553 simplify_gen_unary (NOT, compute_mode,
7554 simplify_gen_binary (ASHIFT,
7555 compute_mode,
7556 mask, pos),
7557 compute_mode),
7558 inner);
7559 masked = simplify_gen_binary (ASHIFT, compute_mode,
7560 simplify_gen_binary (
7561 AND, compute_mode,
7562 gen_lowpart (compute_mode, SET_SRC (x)),
7563 mask),
7564 pos);
7565
7566 x = gen_rtx_SET (copy_rtx (inner),
7567 simplify_gen_binary (IOR, compute_mode,
7568 cleared, masked));
7569 }
7570
7571 return x;
7572 }
7573 \f
7574 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7575 it is an RTX that represents the (variable) starting position; otherwise,
7576 POS is the (constant) starting bit position. Both are counted from the LSB.
7577
7578 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7579
7580 IN_DEST is nonzero if this is a reference in the destination of a SET.
7581 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7582 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7583 be used.
7584
7585 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7586 ZERO_EXTRACT should be built even for bits starting at bit 0.
7587
7588 MODE is the desired mode of the result (if IN_DEST == 0).
7589
7590 The result is an RTX for the extraction or NULL_RTX if the target
7591 can't handle it. */
7592
7593 static rtx
7594 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7595 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7596 int in_dest, int in_compare)
7597 {
7598 /* This mode describes the size of the storage area
7599 to fetch the overall value from. Within that, we
7600 ignore the POS lowest bits, etc. */
7601 machine_mode is_mode = GET_MODE (inner);
7602 machine_mode inner_mode;
7603 scalar_int_mode wanted_inner_mode;
7604 scalar_int_mode wanted_inner_reg_mode = word_mode;
7605 scalar_int_mode pos_mode = word_mode;
7606 machine_mode extraction_mode = word_mode;
7607 rtx new_rtx = 0;
7608 rtx orig_pos_rtx = pos_rtx;
7609 HOST_WIDE_INT orig_pos;
7610
7611 if (pos_rtx && CONST_INT_P (pos_rtx))
7612 pos = INTVAL (pos_rtx), pos_rtx = 0;
7613
7614 if (GET_CODE (inner) == SUBREG
7615 && subreg_lowpart_p (inner)
7616 && (paradoxical_subreg_p (inner)
7617 /* If trying or potentionally trying to extract
7618 bits outside of is_mode, don't look through
7619 non-paradoxical SUBREGs. See PR82192. */
7620 || (pos_rtx == NULL_RTX
7621 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7622 {
7623 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7624 consider just the QI as the memory to extract from.
7625 The subreg adds or removes high bits; its mode is
7626 irrelevant to the meaning of this extraction,
7627 since POS and LEN count from the lsb. */
7628 if (MEM_P (SUBREG_REG (inner)))
7629 is_mode = GET_MODE (SUBREG_REG (inner));
7630 inner = SUBREG_REG (inner);
7631 }
7632 else if (GET_CODE (inner) == ASHIFT
7633 && CONST_INT_P (XEXP (inner, 1))
7634 && pos_rtx == 0 && pos == 0
7635 && len > UINTVAL (XEXP (inner, 1)))
7636 {
7637 /* We're extracting the least significant bits of an rtx
7638 (ashift X (const_int C)), where LEN > C. Extract the
7639 least significant (LEN - C) bits of X, giving an rtx
7640 whose mode is MODE, then shift it left C times. */
7641 new_rtx = make_extraction (mode, XEXP (inner, 0),
7642 0, 0, len - INTVAL (XEXP (inner, 1)),
7643 unsignedp, in_dest, in_compare);
7644 if (new_rtx != 0)
7645 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7646 }
7647 else if (GET_CODE (inner) == TRUNCATE
7648 /* If trying or potentionally trying to extract
7649 bits outside of is_mode, don't look through
7650 TRUNCATE. See PR82192. */
7651 && pos_rtx == NULL_RTX
7652 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7653 inner = XEXP (inner, 0);
7654
7655 inner_mode = GET_MODE (inner);
7656
7657 /* See if this can be done without an extraction. We never can if the
7658 width of the field is not the same as that of some integer mode. For
7659 registers, we can only avoid the extraction if the position is at the
7660 low-order bit and this is either not in the destination or we have the
7661 appropriate STRICT_LOW_PART operation available.
7662
7663 For MEM, we can avoid an extract if the field starts on an appropriate
7664 boundary and we can change the mode of the memory reference. */
7665
7666 scalar_int_mode tmode;
7667 if (int_mode_for_size (len, 1).exists (&tmode)
7668 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7669 && !MEM_P (inner)
7670 && (pos == 0 || REG_P (inner))
7671 && (inner_mode == tmode
7672 || !REG_P (inner)
7673 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7674 || reg_truncated_to_mode (tmode, inner))
7675 && (! in_dest
7676 || (REG_P (inner)
7677 && have_insn_for (STRICT_LOW_PART, tmode))))
7678 || (MEM_P (inner) && pos_rtx == 0
7679 && (pos
7680 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7681 : BITS_PER_UNIT)) == 0
7682 /* We can't do this if we are widening INNER_MODE (it
7683 may not be aligned, for one thing). */
7684 && !paradoxical_subreg_p (tmode, inner_mode)
7685 && (inner_mode == tmode
7686 || (! mode_dependent_address_p (XEXP (inner, 0),
7687 MEM_ADDR_SPACE (inner))
7688 && ! MEM_VOLATILE_P (inner))))))
7689 {
7690 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7691 field. If the original and current mode are the same, we need not
7692 adjust the offset. Otherwise, we do if bytes big endian.
7693
7694 If INNER is not a MEM, get a piece consisting of just the field
7695 of interest (in this case POS % BITS_PER_WORD must be 0). */
7696
7697 if (MEM_P (inner))
7698 {
7699 poly_int64 offset;
7700
7701 /* POS counts from lsb, but make OFFSET count in memory order. */
7702 if (BYTES_BIG_ENDIAN)
7703 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7704 - len - pos);
7705 else
7706 offset = pos / BITS_PER_UNIT;
7707
7708 new_rtx = adjust_address_nv (inner, tmode, offset);
7709 }
7710 else if (REG_P (inner))
7711 {
7712 if (tmode != inner_mode)
7713 {
7714 /* We can't call gen_lowpart in a DEST since we
7715 always want a SUBREG (see below) and it would sometimes
7716 return a new hard register. */
7717 if (pos || in_dest)
7718 {
7719 poly_uint64 offset
7720 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7721
7722 /* Avoid creating invalid subregs, for example when
7723 simplifying (x>>32)&255. */
7724 if (!validate_subreg (tmode, inner_mode, inner, offset))
7725 return NULL_RTX;
7726
7727 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7728 }
7729 else
7730 new_rtx = gen_lowpart (tmode, inner);
7731 }
7732 else
7733 new_rtx = inner;
7734 }
7735 else
7736 new_rtx = force_to_mode (inner, tmode,
7737 len >= HOST_BITS_PER_WIDE_INT
7738 ? HOST_WIDE_INT_M1U
7739 : (HOST_WIDE_INT_1U << len) - 1, 0);
7740
7741 /* If this extraction is going into the destination of a SET,
7742 make a STRICT_LOW_PART unless we made a MEM. */
7743
7744 if (in_dest)
7745 return (MEM_P (new_rtx) ? new_rtx
7746 : (GET_CODE (new_rtx) != SUBREG
7747 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7748 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7749
7750 if (mode == tmode)
7751 return new_rtx;
7752
7753 if (CONST_SCALAR_INT_P (new_rtx))
7754 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7755 mode, new_rtx, tmode);
7756
7757 /* If we know that no extraneous bits are set, and that the high
7758 bit is not set, convert the extraction to the cheaper of
7759 sign and zero extension, that are equivalent in these cases. */
7760 if (flag_expensive_optimizations
7761 && (HWI_COMPUTABLE_MODE_P (tmode)
7762 && ((nonzero_bits (new_rtx, tmode)
7763 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7764 == 0)))
7765 {
7766 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7767 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7768
7769 /* Prefer ZERO_EXTENSION, since it gives more information to
7770 backends. */
7771 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7772 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7773 return temp;
7774 return temp1;
7775 }
7776
7777 /* Otherwise, sign- or zero-extend unless we already are in the
7778 proper mode. */
7779
7780 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7781 mode, new_rtx));
7782 }
7783
7784 /* Unless this is a COMPARE or we have a funny memory reference,
7785 don't do anything with zero-extending field extracts starting at
7786 the low-order bit since they are simple AND operations. */
7787 if (pos_rtx == 0 && pos == 0 && ! in_dest
7788 && ! in_compare && unsignedp)
7789 return 0;
7790
7791 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7792 if the position is not a constant and the length is not 1. In all
7793 other cases, we would only be going outside our object in cases when
7794 an original shift would have been undefined. */
7795 if (MEM_P (inner)
7796 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7797 || (pos_rtx != 0 && len != 1)))
7798 return 0;
7799
7800 enum extraction_pattern pattern = (in_dest ? EP_insv
7801 : unsignedp ? EP_extzv : EP_extv);
7802
7803 /* If INNER is not from memory, we want it to have the mode of a register
7804 extraction pattern's structure operand, or word_mode if there is no
7805 such pattern. The same applies to extraction_mode and pos_mode
7806 and their respective operands.
7807
7808 For memory, assume that the desired extraction_mode and pos_mode
7809 are the same as for a register operation, since at present we don't
7810 have named patterns for aligned memory structures. */
7811 struct extraction_insn insn;
7812 unsigned int inner_size;
7813 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7814 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7815 {
7816 wanted_inner_reg_mode = insn.struct_mode.require ();
7817 pos_mode = insn.pos_mode;
7818 extraction_mode = insn.field_mode;
7819 }
7820
7821 /* Never narrow an object, since that might not be safe. */
7822
7823 if (mode != VOIDmode
7824 && partial_subreg_p (extraction_mode, mode))
7825 extraction_mode = mode;
7826
7827 if (!MEM_P (inner))
7828 wanted_inner_mode = wanted_inner_reg_mode;
7829 else
7830 {
7831 /* Be careful not to go beyond the extracted object and maintain the
7832 natural alignment of the memory. */
7833 wanted_inner_mode = smallest_int_mode_for_size (len);
7834 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7835 > GET_MODE_BITSIZE (wanted_inner_mode))
7836 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7837 }
7838
7839 orig_pos = pos;
7840
7841 if (BITS_BIG_ENDIAN)
7842 {
7843 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7844 BITS_BIG_ENDIAN style. If position is constant, compute new
7845 position. Otherwise, build subtraction.
7846 Note that POS is relative to the mode of the original argument.
7847 If it's a MEM we need to recompute POS relative to that.
7848 However, if we're extracting from (or inserting into) a register,
7849 we want to recompute POS relative to wanted_inner_mode. */
7850 int width;
7851 if (!MEM_P (inner))
7852 width = GET_MODE_BITSIZE (wanted_inner_mode);
7853 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7854 return NULL_RTX;
7855
7856 if (pos_rtx == 0)
7857 pos = width - len - pos;
7858 else
7859 pos_rtx
7860 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7861 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7862 pos_rtx);
7863 /* POS may be less than 0 now, but we check for that below.
7864 Note that it can only be less than 0 if !MEM_P (inner). */
7865 }
7866
7867 /* If INNER has a wider mode, and this is a constant extraction, try to
7868 make it smaller and adjust the byte to point to the byte containing
7869 the value. */
7870 if (wanted_inner_mode != VOIDmode
7871 && inner_mode != wanted_inner_mode
7872 && ! pos_rtx
7873 && partial_subreg_p (wanted_inner_mode, is_mode)
7874 && MEM_P (inner)
7875 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7876 && ! MEM_VOLATILE_P (inner))
7877 {
7878 poly_int64 offset = 0;
7879
7880 /* The computations below will be correct if the machine is big
7881 endian in both bits and bytes or little endian in bits and bytes.
7882 If it is mixed, we must adjust. */
7883
7884 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7885 adjust OFFSET to compensate. */
7886 if (BYTES_BIG_ENDIAN
7887 && paradoxical_subreg_p (is_mode, inner_mode))
7888 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7889
7890 /* We can now move to the desired byte. */
7891 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7892 * GET_MODE_SIZE (wanted_inner_mode);
7893 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7894
7895 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7896 && is_mode != wanted_inner_mode)
7897 offset = (GET_MODE_SIZE (is_mode)
7898 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7899
7900 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7901 }
7902
7903 /* If INNER is not memory, get it into the proper mode. If we are changing
7904 its mode, POS must be a constant and smaller than the size of the new
7905 mode. */
7906 else if (!MEM_P (inner))
7907 {
7908 /* On the LHS, don't create paradoxical subregs implicitely truncating
7909 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7910 if (in_dest
7911 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7912 wanted_inner_mode))
7913 return NULL_RTX;
7914
7915 if (GET_MODE (inner) != wanted_inner_mode
7916 && (pos_rtx != 0
7917 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7918 return NULL_RTX;
7919
7920 if (orig_pos < 0)
7921 return NULL_RTX;
7922
7923 inner = force_to_mode (inner, wanted_inner_mode,
7924 pos_rtx
7925 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7926 ? HOST_WIDE_INT_M1U
7927 : (((HOST_WIDE_INT_1U << len) - 1)
7928 << orig_pos),
7929 0);
7930 }
7931
7932 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7933 have to zero extend. Otherwise, we can just use a SUBREG.
7934
7935 We dealt with constant rtxes earlier, so pos_rtx cannot
7936 have VOIDmode at this point. */
7937 if (pos_rtx != 0
7938 && (GET_MODE_SIZE (pos_mode)
7939 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7940 {
7941 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7942 GET_MODE (pos_rtx));
7943
7944 /* If we know that no extraneous bits are set, and that the high
7945 bit is not set, convert extraction to cheaper one - either
7946 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7947 cases. */
7948 if (flag_expensive_optimizations
7949 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7950 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7951 & ~(((unsigned HOST_WIDE_INT)
7952 GET_MODE_MASK (GET_MODE (pos_rtx)))
7953 >> 1))
7954 == 0)))
7955 {
7956 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7957 GET_MODE (pos_rtx));
7958
7959 /* Prefer ZERO_EXTENSION, since it gives more information to
7960 backends. */
7961 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7962 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7963 temp = temp1;
7964 }
7965 pos_rtx = temp;
7966 }
7967
7968 /* Make POS_RTX unless we already have it and it is correct. If we don't
7969 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7970 be a CONST_INT. */
7971 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7972 pos_rtx = orig_pos_rtx;
7973
7974 else if (pos_rtx == 0)
7975 pos_rtx = GEN_INT (pos);
7976
7977 /* Make the required operation. See if we can use existing rtx. */
7978 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7979 extraction_mode, inner, GEN_INT (len), pos_rtx);
7980 if (! in_dest)
7981 new_rtx = gen_lowpart (mode, new_rtx);
7982
7983 return new_rtx;
7984 }
7985 \f
7986 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7987 can be commuted with any other operations in X. Return X without
7988 that shift if so. */
7989
7990 static rtx
7991 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7992 {
7993 enum rtx_code code = GET_CODE (x);
7994 rtx tem;
7995
7996 switch (code)
7997 {
7998 case ASHIFT:
7999 /* This is the shift itself. If it is wide enough, we will return
8000 either the value being shifted if the shift count is equal to
8001 COUNT or a shift for the difference. */
8002 if (CONST_INT_P (XEXP (x, 1))
8003 && INTVAL (XEXP (x, 1)) >= count)
8004 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
8005 INTVAL (XEXP (x, 1)) - count);
8006 break;
8007
8008 case NEG: case NOT:
8009 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8010 return simplify_gen_unary (code, mode, tem, mode);
8011
8012 break;
8013
8014 case PLUS: case IOR: case XOR: case AND:
8015 /* If we can safely shift this constant and we find the inner shift,
8016 make a new operation. */
8017 if (CONST_INT_P (XEXP (x, 1))
8018 && (UINTVAL (XEXP (x, 1))
8019 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
8020 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8021 {
8022 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
8023 return simplify_gen_binary (code, mode, tem,
8024 gen_int_mode (val, mode));
8025 }
8026 break;
8027
8028 default:
8029 break;
8030 }
8031
8032 return 0;
8033 }
8034 \f
8035 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
8036 level of the expression and MODE is its mode. IN_CODE is as for
8037 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
8038 that should be used when recursing on operands of *X_PTR.
8039
8040 There are two possible actions:
8041
8042 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
8043 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
8044
8045 - Return a new rtx, which the caller returns directly. */
8046
8047 static rtx
8048 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
8049 enum rtx_code in_code,
8050 enum rtx_code *next_code_ptr)
8051 {
8052 rtx x = *x_ptr;
8053 enum rtx_code next_code = *next_code_ptr;
8054 enum rtx_code code = GET_CODE (x);
8055 int mode_width = GET_MODE_PRECISION (mode);
8056 rtx rhs, lhs;
8057 rtx new_rtx = 0;
8058 int i;
8059 rtx tem;
8060 scalar_int_mode inner_mode;
8061 bool equality_comparison = false;
8062
8063 if (in_code == EQ)
8064 {
8065 equality_comparison = true;
8066 in_code = COMPARE;
8067 }
8068
8069 /* Process depending on the code of this operation. If NEW is set
8070 nonzero, it will be returned. */
8071
8072 switch (code)
8073 {
8074 case ASHIFT:
8075 /* Convert shifts by constants into multiplications if inside
8076 an address. */
8077 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8078 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8079 && INTVAL (XEXP (x, 1)) >= 0)
8080 {
8081 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8082 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8083
8084 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8085 if (GET_CODE (new_rtx) == NEG)
8086 {
8087 new_rtx = XEXP (new_rtx, 0);
8088 multval = -multval;
8089 }
8090 multval = trunc_int_for_mode (multval, mode);
8091 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8092 }
8093 break;
8094
8095 case PLUS:
8096 lhs = XEXP (x, 0);
8097 rhs = XEXP (x, 1);
8098 lhs = make_compound_operation (lhs, next_code);
8099 rhs = make_compound_operation (rhs, next_code);
8100 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8101 {
8102 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8103 XEXP (lhs, 1));
8104 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8105 }
8106 else if (GET_CODE (lhs) == MULT
8107 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8108 {
8109 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8110 simplify_gen_unary (NEG, mode,
8111 XEXP (lhs, 1),
8112 mode));
8113 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8114 }
8115 else
8116 {
8117 SUBST (XEXP (x, 0), lhs);
8118 SUBST (XEXP (x, 1), rhs);
8119 }
8120 maybe_swap_commutative_operands (x);
8121 return x;
8122
8123 case MINUS:
8124 lhs = XEXP (x, 0);
8125 rhs = XEXP (x, 1);
8126 lhs = make_compound_operation (lhs, next_code);
8127 rhs = make_compound_operation (rhs, next_code);
8128 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8129 {
8130 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8131 XEXP (rhs, 1));
8132 return simplify_gen_binary (PLUS, mode, tem, lhs);
8133 }
8134 else if (GET_CODE (rhs) == MULT
8135 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8136 {
8137 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8138 simplify_gen_unary (NEG, mode,
8139 XEXP (rhs, 1),
8140 mode));
8141 return simplify_gen_binary (PLUS, mode, tem, lhs);
8142 }
8143 else
8144 {
8145 SUBST (XEXP (x, 0), lhs);
8146 SUBST (XEXP (x, 1), rhs);
8147 return x;
8148 }
8149
8150 case AND:
8151 /* If the second operand is not a constant, we can't do anything
8152 with it. */
8153 if (!CONST_INT_P (XEXP (x, 1)))
8154 break;
8155
8156 /* If the constant is a power of two minus one and the first operand
8157 is a logical right shift, make an extraction. */
8158 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8159 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8160 {
8161 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8162 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8163 i, 1, 0, in_code == COMPARE);
8164 }
8165
8166 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8167 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8168 && subreg_lowpart_p (XEXP (x, 0))
8169 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8170 &inner_mode)
8171 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8172 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8173 {
8174 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8175 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8176 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8177 XEXP (inner_x0, 1),
8178 i, 1, 0, in_code == COMPARE);
8179
8180 /* If we narrowed the mode when dropping the subreg, then we lose. */
8181 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8182 new_rtx = NULL;
8183
8184 /* If that didn't give anything, see if the AND simplifies on
8185 its own. */
8186 if (!new_rtx && i >= 0)
8187 {
8188 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8189 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8190 0, in_code == COMPARE);
8191 }
8192 }
8193 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8194 else if ((GET_CODE (XEXP (x, 0)) == XOR
8195 || GET_CODE (XEXP (x, 0)) == IOR)
8196 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8197 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8198 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8199 {
8200 /* Apply the distributive law, and then try to make extractions. */
8201 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8202 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8203 XEXP (x, 1)),
8204 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8205 XEXP (x, 1)));
8206 new_rtx = make_compound_operation (new_rtx, in_code);
8207 }
8208
8209 /* If we are have (and (rotate X C) M) and C is larger than the number
8210 of bits in M, this is an extraction. */
8211
8212 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8213 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8214 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8215 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8216 {
8217 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8218 new_rtx = make_extraction (mode, new_rtx,
8219 (GET_MODE_PRECISION (mode)
8220 - INTVAL (XEXP (XEXP (x, 0), 1))),
8221 NULL_RTX, i, 1, 0, in_code == COMPARE);
8222 }
8223
8224 /* On machines without logical shifts, if the operand of the AND is
8225 a logical shift and our mask turns off all the propagated sign
8226 bits, we can replace the logical shift with an arithmetic shift. */
8227 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8228 && !have_insn_for (LSHIFTRT, mode)
8229 && have_insn_for (ASHIFTRT, mode)
8230 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8231 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8232 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8233 && mode_width <= HOST_BITS_PER_WIDE_INT)
8234 {
8235 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8236
8237 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8238 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8239 SUBST (XEXP (x, 0),
8240 gen_rtx_ASHIFTRT (mode,
8241 make_compound_operation (XEXP (XEXP (x,
8242 0),
8243 0),
8244 next_code),
8245 XEXP (XEXP (x, 0), 1)));
8246 }
8247
8248 /* If the constant is one less than a power of two, this might be
8249 representable by an extraction even if no shift is present.
8250 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8251 we are in a COMPARE. */
8252 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8253 new_rtx = make_extraction (mode,
8254 make_compound_operation (XEXP (x, 0),
8255 next_code),
8256 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8257
8258 /* If we are in a comparison and this is an AND with a power of two,
8259 convert this into the appropriate bit extract. */
8260 else if (in_code == COMPARE
8261 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8262 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8263 new_rtx = make_extraction (mode,
8264 make_compound_operation (XEXP (x, 0),
8265 next_code),
8266 i, NULL_RTX, 1, 1, 0, 1);
8267
8268 /* If the one operand is a paradoxical subreg of a register or memory and
8269 the constant (limited to the smaller mode) has only zero bits where
8270 the sub expression has known zero bits, this can be expressed as
8271 a zero_extend. */
8272 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8273 {
8274 rtx sub;
8275
8276 sub = XEXP (XEXP (x, 0), 0);
8277 machine_mode sub_mode = GET_MODE (sub);
8278 int sub_width;
8279 if ((REG_P (sub) || MEM_P (sub))
8280 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8281 && sub_width < mode_width)
8282 {
8283 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8284 unsigned HOST_WIDE_INT mask;
8285
8286 /* original AND constant with all the known zero bits set */
8287 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8288 if ((mask & mode_mask) == mode_mask)
8289 {
8290 new_rtx = make_compound_operation (sub, next_code);
8291 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8292 1, 0, in_code == COMPARE);
8293 }
8294 }
8295 }
8296
8297 break;
8298
8299 case LSHIFTRT:
8300 /* If the sign bit is known to be zero, replace this with an
8301 arithmetic shift. */
8302 if (have_insn_for (ASHIFTRT, mode)
8303 && ! have_insn_for (LSHIFTRT, mode)
8304 && mode_width <= HOST_BITS_PER_WIDE_INT
8305 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8306 {
8307 new_rtx = gen_rtx_ASHIFTRT (mode,
8308 make_compound_operation (XEXP (x, 0),
8309 next_code),
8310 XEXP (x, 1));
8311 break;
8312 }
8313
8314 /* fall through */
8315
8316 case ASHIFTRT:
8317 lhs = XEXP (x, 0);
8318 rhs = XEXP (x, 1);
8319
8320 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8321 this is a SIGN_EXTRACT. */
8322 if (CONST_INT_P (rhs)
8323 && GET_CODE (lhs) == ASHIFT
8324 && CONST_INT_P (XEXP (lhs, 1))
8325 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8326 && INTVAL (XEXP (lhs, 1)) >= 0
8327 && INTVAL (rhs) < mode_width)
8328 {
8329 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8330 new_rtx = make_extraction (mode, new_rtx,
8331 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8332 NULL_RTX, mode_width - INTVAL (rhs),
8333 code == LSHIFTRT, 0, in_code == COMPARE);
8334 break;
8335 }
8336
8337 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8338 If so, try to merge the shifts into a SIGN_EXTEND. We could
8339 also do this for some cases of SIGN_EXTRACT, but it doesn't
8340 seem worth the effort; the case checked for occurs on Alpha. */
8341
8342 if (!OBJECT_P (lhs)
8343 && ! (GET_CODE (lhs) == SUBREG
8344 && (OBJECT_P (SUBREG_REG (lhs))))
8345 && CONST_INT_P (rhs)
8346 && INTVAL (rhs) >= 0
8347 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8348 && INTVAL (rhs) < mode_width
8349 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8350 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8351 next_code),
8352 0, NULL_RTX, mode_width - INTVAL (rhs),
8353 code == LSHIFTRT, 0, in_code == COMPARE);
8354
8355 break;
8356
8357 case SUBREG:
8358 /* Call ourselves recursively on the inner expression. If we are
8359 narrowing the object and it has a different RTL code from
8360 what it originally did, do this SUBREG as a force_to_mode. */
8361 {
8362 rtx inner = SUBREG_REG (x), simplified;
8363 enum rtx_code subreg_code = in_code;
8364
8365 /* If the SUBREG is masking of a logical right shift,
8366 make an extraction. */
8367 if (GET_CODE (inner) == LSHIFTRT
8368 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8369 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8370 && CONST_INT_P (XEXP (inner, 1))
8371 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8372 && subreg_lowpart_p (x))
8373 {
8374 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8375 int width = GET_MODE_PRECISION (inner_mode)
8376 - INTVAL (XEXP (inner, 1));
8377 if (width > mode_width)
8378 width = mode_width;
8379 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8380 width, 1, 0, in_code == COMPARE);
8381 break;
8382 }
8383
8384 /* If in_code is COMPARE, it isn't always safe to pass it through
8385 to the recursive make_compound_operation call. */
8386 if (subreg_code == COMPARE
8387 && (!subreg_lowpart_p (x)
8388 || GET_CODE (inner) == SUBREG
8389 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8390 is (const_int 0), rather than
8391 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8392 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8393 for non-equality comparisons against 0 is not equivalent
8394 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8395 || (GET_CODE (inner) == AND
8396 && CONST_INT_P (XEXP (inner, 1))
8397 && partial_subreg_p (x)
8398 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8399 >= GET_MODE_BITSIZE (mode) - 1)))
8400 subreg_code = SET;
8401
8402 tem = make_compound_operation (inner, subreg_code);
8403
8404 simplified
8405 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8406 if (simplified)
8407 tem = simplified;
8408
8409 if (GET_CODE (tem) != GET_CODE (inner)
8410 && partial_subreg_p (x)
8411 && subreg_lowpart_p (x))
8412 {
8413 rtx newer
8414 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8415
8416 /* If we have something other than a SUBREG, we might have
8417 done an expansion, so rerun ourselves. */
8418 if (GET_CODE (newer) != SUBREG)
8419 newer = make_compound_operation (newer, in_code);
8420
8421 /* force_to_mode can expand compounds. If it just re-expanded
8422 the compound, use gen_lowpart to convert to the desired
8423 mode. */
8424 if (rtx_equal_p (newer, x)
8425 /* Likewise if it re-expanded the compound only partially.
8426 This happens for SUBREG of ZERO_EXTRACT if they extract
8427 the same number of bits. */
8428 || (GET_CODE (newer) == SUBREG
8429 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8430 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8431 && GET_CODE (inner) == AND
8432 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8433 return gen_lowpart (GET_MODE (x), tem);
8434
8435 return newer;
8436 }
8437
8438 if (simplified)
8439 return tem;
8440 }
8441 break;
8442
8443 default:
8444 break;
8445 }
8446
8447 if (new_rtx)
8448 *x_ptr = gen_lowpart (mode, new_rtx);
8449 *next_code_ptr = next_code;
8450 return NULL_RTX;
8451 }
8452
8453 /* Look at the expression rooted at X. Look for expressions
8454 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8455 Form these expressions.
8456
8457 Return the new rtx, usually just X.
8458
8459 Also, for machines like the VAX that don't have logical shift insns,
8460 try to convert logical to arithmetic shift operations in cases where
8461 they are equivalent. This undoes the canonicalizations to logical
8462 shifts done elsewhere.
8463
8464 We try, as much as possible, to re-use rtl expressions to save memory.
8465
8466 IN_CODE says what kind of expression we are processing. Normally, it is
8467 SET. In a memory address it is MEM. When processing the arguments of
8468 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8469 precisely it is an equality comparison against zero. */
8470
8471 rtx
8472 make_compound_operation (rtx x, enum rtx_code in_code)
8473 {
8474 enum rtx_code code = GET_CODE (x);
8475 const char *fmt;
8476 int i, j;
8477 enum rtx_code next_code;
8478 rtx new_rtx, tem;
8479
8480 /* Select the code to be used in recursive calls. Once we are inside an
8481 address, we stay there. If we have a comparison, set to COMPARE,
8482 but once inside, go back to our default of SET. */
8483
8484 next_code = (code == MEM ? MEM
8485 : ((code == COMPARE || COMPARISON_P (x))
8486 && XEXP (x, 1) == const0_rtx) ? COMPARE
8487 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8488
8489 scalar_int_mode mode;
8490 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8491 {
8492 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8493 &next_code);
8494 if (new_rtx)
8495 return new_rtx;
8496 code = GET_CODE (x);
8497 }
8498
8499 /* Now recursively process each operand of this operation. We need to
8500 handle ZERO_EXTEND specially so that we don't lose track of the
8501 inner mode. */
8502 if (code == ZERO_EXTEND)
8503 {
8504 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8505 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8506 new_rtx, GET_MODE (XEXP (x, 0)));
8507 if (tem)
8508 return tem;
8509 SUBST (XEXP (x, 0), new_rtx);
8510 return x;
8511 }
8512
8513 fmt = GET_RTX_FORMAT (code);
8514 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8515 if (fmt[i] == 'e')
8516 {
8517 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8518 SUBST (XEXP (x, i), new_rtx);
8519 }
8520 else if (fmt[i] == 'E')
8521 for (j = 0; j < XVECLEN (x, i); j++)
8522 {
8523 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8524 SUBST (XVECEXP (x, i, j), new_rtx);
8525 }
8526
8527 maybe_swap_commutative_operands (x);
8528 return x;
8529 }
8530 \f
8531 /* Given M see if it is a value that would select a field of bits
8532 within an item, but not the entire word. Return -1 if not.
8533 Otherwise, return the starting position of the field, where 0 is the
8534 low-order bit.
8535
8536 *PLEN is set to the length of the field. */
8537
8538 static int
8539 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8540 {
8541 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8542 int pos = m ? ctz_hwi (m) : -1;
8543 int len = 0;
8544
8545 if (pos >= 0)
8546 /* Now shift off the low-order zero bits and see if we have a
8547 power of two minus 1. */
8548 len = exact_log2 ((m >> pos) + 1);
8549
8550 if (len <= 0)
8551 pos = -1;
8552
8553 *plen = len;
8554 return pos;
8555 }
8556 \f
8557 /* If X refers to a register that equals REG in value, replace these
8558 references with REG. */
8559 static rtx
8560 canon_reg_for_combine (rtx x, rtx reg)
8561 {
8562 rtx op0, op1, op2;
8563 const char *fmt;
8564 int i;
8565 bool copied;
8566
8567 enum rtx_code code = GET_CODE (x);
8568 switch (GET_RTX_CLASS (code))
8569 {
8570 case RTX_UNARY:
8571 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8572 if (op0 != XEXP (x, 0))
8573 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8574 GET_MODE (reg));
8575 break;
8576
8577 case RTX_BIN_ARITH:
8578 case RTX_COMM_ARITH:
8579 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8580 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8581 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8582 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8583 break;
8584
8585 case RTX_COMPARE:
8586 case RTX_COMM_COMPARE:
8587 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8588 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8589 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8590 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8591 GET_MODE (op0), op0, op1);
8592 break;
8593
8594 case RTX_TERNARY:
8595 case RTX_BITFIELD_OPS:
8596 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8597 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8598 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8599 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8600 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8601 GET_MODE (op0), op0, op1, op2);
8602 /* FALLTHRU */
8603
8604 case RTX_OBJ:
8605 if (REG_P (x))
8606 {
8607 if (rtx_equal_p (get_last_value (reg), x)
8608 || rtx_equal_p (reg, get_last_value (x)))
8609 return reg;
8610 else
8611 break;
8612 }
8613
8614 /* fall through */
8615
8616 default:
8617 fmt = GET_RTX_FORMAT (code);
8618 copied = false;
8619 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8620 if (fmt[i] == 'e')
8621 {
8622 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8623 if (op != XEXP (x, i))
8624 {
8625 if (!copied)
8626 {
8627 copied = true;
8628 x = copy_rtx (x);
8629 }
8630 XEXP (x, i) = op;
8631 }
8632 }
8633 else if (fmt[i] == 'E')
8634 {
8635 int j;
8636 for (j = 0; j < XVECLEN (x, i); j++)
8637 {
8638 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8639 if (op != XVECEXP (x, i, j))
8640 {
8641 if (!copied)
8642 {
8643 copied = true;
8644 x = copy_rtx (x);
8645 }
8646 XVECEXP (x, i, j) = op;
8647 }
8648 }
8649 }
8650
8651 break;
8652 }
8653
8654 return x;
8655 }
8656
8657 /* Return X converted to MODE. If the value is already truncated to
8658 MODE we can just return a subreg even though in the general case we
8659 would need an explicit truncation. */
8660
8661 static rtx
8662 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8663 {
8664 if (!CONST_INT_P (x)
8665 && partial_subreg_p (mode, GET_MODE (x))
8666 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8667 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8668 {
8669 /* Bit-cast X into an integer mode. */
8670 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8671 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8672 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8673 x, GET_MODE (x));
8674 }
8675
8676 return gen_lowpart (mode, x);
8677 }
8678
8679 /* See if X can be simplified knowing that we will only refer to it in
8680 MODE and will only refer to those bits that are nonzero in MASK.
8681 If other bits are being computed or if masking operations are done
8682 that select a superset of the bits in MASK, they can sometimes be
8683 ignored.
8684
8685 Return a possibly simplified expression, but always convert X to
8686 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8687
8688 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8689 are all off in X. This is used when X will be complemented, by either
8690 NOT, NEG, or XOR. */
8691
8692 static rtx
8693 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8694 int just_select)
8695 {
8696 enum rtx_code code = GET_CODE (x);
8697 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8698 machine_mode op_mode;
8699 unsigned HOST_WIDE_INT nonzero;
8700
8701 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8702 code below will do the wrong thing since the mode of such an
8703 expression is VOIDmode.
8704
8705 Also do nothing if X is a CLOBBER; this can happen if X was
8706 the return value from a call to gen_lowpart. */
8707 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8708 return x;
8709
8710 /* We want to perform the operation in its present mode unless we know
8711 that the operation is valid in MODE, in which case we do the operation
8712 in MODE. */
8713 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8714 && have_insn_for (code, mode))
8715 ? mode : GET_MODE (x));
8716
8717 /* It is not valid to do a right-shift in a narrower mode
8718 than the one it came in with. */
8719 if ((code == LSHIFTRT || code == ASHIFTRT)
8720 && partial_subreg_p (mode, GET_MODE (x)))
8721 op_mode = GET_MODE (x);
8722
8723 /* Truncate MASK to fit OP_MODE. */
8724 if (op_mode)
8725 mask &= GET_MODE_MASK (op_mode);
8726
8727 /* Determine what bits of X are guaranteed to be (non)zero. */
8728 nonzero = nonzero_bits (x, mode);
8729
8730 /* If none of the bits in X are needed, return a zero. */
8731 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8732 x = const0_rtx;
8733
8734 /* If X is a CONST_INT, return a new one. Do this here since the
8735 test below will fail. */
8736 if (CONST_INT_P (x))
8737 {
8738 if (SCALAR_INT_MODE_P (mode))
8739 return gen_int_mode (INTVAL (x) & mask, mode);
8740 else
8741 {
8742 x = GEN_INT (INTVAL (x) & mask);
8743 return gen_lowpart_common (mode, x);
8744 }
8745 }
8746
8747 /* If X is narrower than MODE and we want all the bits in X's mode, just
8748 get X in the proper mode. */
8749 if (paradoxical_subreg_p (mode, GET_MODE (x))
8750 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8751 return gen_lowpart (mode, x);
8752
8753 /* We can ignore the effect of a SUBREG if it narrows the mode or
8754 if the constant masks to zero all the bits the mode doesn't have. */
8755 if (GET_CODE (x) == SUBREG
8756 && subreg_lowpart_p (x)
8757 && (partial_subreg_p (x)
8758 || (mask
8759 & GET_MODE_MASK (GET_MODE (x))
8760 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8761 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8762
8763 scalar_int_mode int_mode, xmode;
8764 if (is_a <scalar_int_mode> (mode, &int_mode)
8765 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8766 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8767 integer too. */
8768 return force_int_to_mode (x, int_mode, xmode,
8769 as_a <scalar_int_mode> (op_mode),
8770 mask, just_select);
8771
8772 return gen_lowpart_or_truncate (mode, x);
8773 }
8774
8775 /* Subroutine of force_to_mode that handles cases in which both X and
8776 the result are scalar integers. MODE is the mode of the result,
8777 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8778 is preferred for simplified versions of X. The other arguments
8779 are as for force_to_mode. */
8780
8781 static rtx
8782 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8783 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8784 int just_select)
8785 {
8786 enum rtx_code code = GET_CODE (x);
8787 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8788 unsigned HOST_WIDE_INT fuller_mask;
8789 rtx op0, op1, temp;
8790 poly_int64 const_op0;
8791
8792 /* When we have an arithmetic operation, or a shift whose count we
8793 do not know, we need to assume that all bits up to the highest-order
8794 bit in MASK will be needed. This is how we form such a mask. */
8795 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8796 fuller_mask = HOST_WIDE_INT_M1U;
8797 else
8798 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8799 - 1);
8800
8801 switch (code)
8802 {
8803 case CLOBBER:
8804 /* If X is a (clobber (const_int)), return it since we know we are
8805 generating something that won't match. */
8806 return x;
8807
8808 case SIGN_EXTEND:
8809 case ZERO_EXTEND:
8810 case ZERO_EXTRACT:
8811 case SIGN_EXTRACT:
8812 x = expand_compound_operation (x);
8813 if (GET_CODE (x) != code)
8814 return force_to_mode (x, mode, mask, next_select);
8815 break;
8816
8817 case TRUNCATE:
8818 /* Similarly for a truncate. */
8819 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8820
8821 case AND:
8822 /* If this is an AND with a constant, convert it into an AND
8823 whose constant is the AND of that constant with MASK. If it
8824 remains an AND of MASK, delete it since it is redundant. */
8825
8826 if (CONST_INT_P (XEXP (x, 1)))
8827 {
8828 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8829 mask & INTVAL (XEXP (x, 1)));
8830 xmode = op_mode;
8831
8832 /* If X is still an AND, see if it is an AND with a mask that
8833 is just some low-order bits. If so, and it is MASK, we don't
8834 need it. */
8835
8836 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8837 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8838 x = XEXP (x, 0);
8839
8840 /* If it remains an AND, try making another AND with the bits
8841 in the mode mask that aren't in MASK turned on. If the
8842 constant in the AND is wide enough, this might make a
8843 cheaper constant. */
8844
8845 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8846 && GET_MODE_MASK (xmode) != mask
8847 && HWI_COMPUTABLE_MODE_P (xmode))
8848 {
8849 unsigned HOST_WIDE_INT cval
8850 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8851 rtx y;
8852
8853 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8854 gen_int_mode (cval, xmode));
8855 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8856 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8857 x = y;
8858 }
8859
8860 break;
8861 }
8862
8863 goto binop;
8864
8865 case PLUS:
8866 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8867 low-order bits (as in an alignment operation) and FOO is already
8868 aligned to that boundary, mask C1 to that boundary as well.
8869 This may eliminate that PLUS and, later, the AND. */
8870
8871 {
8872 unsigned int width = GET_MODE_PRECISION (mode);
8873 unsigned HOST_WIDE_INT smask = mask;
8874
8875 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8876 number, sign extend it. */
8877
8878 if (width < HOST_BITS_PER_WIDE_INT
8879 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8880 smask |= HOST_WIDE_INT_M1U << width;
8881
8882 if (CONST_INT_P (XEXP (x, 1))
8883 && pow2p_hwi (- smask)
8884 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8885 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8886 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8887 (INTVAL (XEXP (x, 1)) & smask)),
8888 mode, smask, next_select);
8889 }
8890
8891 /* fall through */
8892
8893 case MULT:
8894 /* Substituting into the operands of a widening MULT is not likely to
8895 create RTL matching a machine insn. */
8896 if (code == MULT
8897 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8898 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8899 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8900 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8901 && REG_P (XEXP (XEXP (x, 0), 0))
8902 && REG_P (XEXP (XEXP (x, 1), 0)))
8903 return gen_lowpart_or_truncate (mode, x);
8904
8905 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8906 most significant bit in MASK since carries from those bits will
8907 affect the bits we are interested in. */
8908 mask = fuller_mask;
8909 goto binop;
8910
8911 case MINUS:
8912 /* If X is (minus C Y) where C's least set bit is larger than any bit
8913 in the mask, then we may replace with (neg Y). */
8914 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8915 && (unsigned HOST_WIDE_INT) known_alignment (const_op0) > mask)
8916 {
8917 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8918 return force_to_mode (x, mode, mask, next_select);
8919 }
8920
8921 /* Similarly, if C contains every bit in the fuller_mask, then we may
8922 replace with (not Y). */
8923 if (CONST_INT_P (XEXP (x, 0))
8924 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8925 {
8926 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8927 return force_to_mode (x, mode, mask, next_select);
8928 }
8929
8930 mask = fuller_mask;
8931 goto binop;
8932
8933 case IOR:
8934 case XOR:
8935 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8936 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8937 operation which may be a bitfield extraction. Ensure that the
8938 constant we form is not wider than the mode of X. */
8939
8940 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8941 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8942 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8943 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8944 && CONST_INT_P (XEXP (x, 1))
8945 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8946 + floor_log2 (INTVAL (XEXP (x, 1))))
8947 < GET_MODE_PRECISION (xmode))
8948 && (UINTVAL (XEXP (x, 1))
8949 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8950 {
8951 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8952 << INTVAL (XEXP (XEXP (x, 0), 1)),
8953 xmode);
8954 temp = simplify_gen_binary (GET_CODE (x), xmode,
8955 XEXP (XEXP (x, 0), 0), temp);
8956 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8957 XEXP (XEXP (x, 0), 1));
8958 return force_to_mode (x, mode, mask, next_select);
8959 }
8960
8961 binop:
8962 /* For most binary operations, just propagate into the operation and
8963 change the mode if we have an operation of that mode. */
8964
8965 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8966 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8967
8968 /* If we ended up truncating both operands, truncate the result of the
8969 operation instead. */
8970 if (GET_CODE (op0) == TRUNCATE
8971 && GET_CODE (op1) == TRUNCATE)
8972 {
8973 op0 = XEXP (op0, 0);
8974 op1 = XEXP (op1, 0);
8975 }
8976
8977 op0 = gen_lowpart_or_truncate (op_mode, op0);
8978 op1 = gen_lowpart_or_truncate (op_mode, op1);
8979
8980 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8981 {
8982 x = simplify_gen_binary (code, op_mode, op0, op1);
8983 xmode = op_mode;
8984 }
8985 break;
8986
8987 case ASHIFT:
8988 /* For left shifts, do the same, but just for the first operand.
8989 However, we cannot do anything with shifts where we cannot
8990 guarantee that the counts are smaller than the size of the mode
8991 because such a count will have a different meaning in a
8992 wider mode. */
8993
8994 if (! (CONST_INT_P (XEXP (x, 1))
8995 && INTVAL (XEXP (x, 1)) >= 0
8996 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8997 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8998 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8999 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
9000 break;
9001
9002 /* If the shift count is a constant and we can do arithmetic in
9003 the mode of the shift, refine which bits we need. Otherwise, use the
9004 conservative form of the mask. */
9005 if (CONST_INT_P (XEXP (x, 1))
9006 && INTVAL (XEXP (x, 1)) >= 0
9007 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
9008 && HWI_COMPUTABLE_MODE_P (op_mode))
9009 mask >>= INTVAL (XEXP (x, 1));
9010 else
9011 mask = fuller_mask;
9012
9013 op0 = gen_lowpart_or_truncate (op_mode,
9014 force_to_mode (XEXP (x, 0), mode,
9015 mask, next_select));
9016
9017 if (op_mode != xmode || op0 != XEXP (x, 0))
9018 {
9019 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
9020 xmode = op_mode;
9021 }
9022 break;
9023
9024 case LSHIFTRT:
9025 /* Here we can only do something if the shift count is a constant,
9026 this shift constant is valid for the host, and we can do arithmetic
9027 in OP_MODE. */
9028
9029 if (CONST_INT_P (XEXP (x, 1))
9030 && INTVAL (XEXP (x, 1)) >= 0
9031 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
9032 && HWI_COMPUTABLE_MODE_P (op_mode))
9033 {
9034 rtx inner = XEXP (x, 0);
9035 unsigned HOST_WIDE_INT inner_mask;
9036
9037 /* Select the mask of the bits we need for the shift operand. */
9038 inner_mask = mask << INTVAL (XEXP (x, 1));
9039
9040 /* We can only change the mode of the shift if we can do arithmetic
9041 in the mode of the shift and INNER_MASK is no wider than the
9042 width of X's mode. */
9043 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
9044 op_mode = xmode;
9045
9046 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
9047
9048 if (xmode != op_mode || inner != XEXP (x, 0))
9049 {
9050 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
9051 xmode = op_mode;
9052 }
9053 }
9054
9055 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9056 shift and AND produces only copies of the sign bit (C2 is one less
9057 than a power of two), we can do this with just a shift. */
9058
9059 if (GET_CODE (x) == LSHIFTRT
9060 && CONST_INT_P (XEXP (x, 1))
9061 /* The shift puts one of the sign bit copies in the least significant
9062 bit. */
9063 && ((INTVAL (XEXP (x, 1))
9064 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9065 >= GET_MODE_PRECISION (xmode))
9066 && pow2p_hwi (mask + 1)
9067 /* Number of bits left after the shift must be more than the mask
9068 needs. */
9069 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
9070 <= GET_MODE_PRECISION (xmode))
9071 /* Must be more sign bit copies than the mask needs. */
9072 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9073 >= exact_log2 (mask + 1)))
9074 {
9075 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9076 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9077 gen_int_shift_amount (xmode, nbits));
9078 }
9079 goto shiftrt;
9080
9081 case ASHIFTRT:
9082 /* If we are just looking for the sign bit, we don't need this shift at
9083 all, even if it has a variable count. */
9084 if (val_signbit_p (xmode, mask))
9085 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9086
9087 /* If this is a shift by a constant, get a mask that contains those bits
9088 that are not copies of the sign bit. We then have two cases: If
9089 MASK only includes those bits, this can be a logical shift, which may
9090 allow simplifications. If MASK is a single-bit field not within
9091 those bits, we are requesting a copy of the sign bit and hence can
9092 shift the sign bit to the appropriate location. */
9093
9094 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9095 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9096 {
9097 unsigned HOST_WIDE_INT nonzero;
9098 int i;
9099
9100 /* If the considered data is wider than HOST_WIDE_INT, we can't
9101 represent a mask for all its bits in a single scalar.
9102 But we only care about the lower bits, so calculate these. */
9103
9104 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9105 {
9106 nonzero = HOST_WIDE_INT_M1U;
9107
9108 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9109 is the number of bits a full-width mask would have set.
9110 We need only shift if these are fewer than nonzero can
9111 hold. If not, we must keep all bits set in nonzero. */
9112
9113 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9114 < HOST_BITS_PER_WIDE_INT)
9115 nonzero >>= INTVAL (XEXP (x, 1))
9116 + HOST_BITS_PER_WIDE_INT
9117 - GET_MODE_PRECISION (xmode);
9118 }
9119 else
9120 {
9121 nonzero = GET_MODE_MASK (xmode);
9122 nonzero >>= INTVAL (XEXP (x, 1));
9123 }
9124
9125 if ((mask & ~nonzero) == 0)
9126 {
9127 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9128 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9129 if (GET_CODE (x) != ASHIFTRT)
9130 return force_to_mode (x, mode, mask, next_select);
9131 }
9132
9133 else if ((i = exact_log2 (mask)) >= 0)
9134 {
9135 x = simplify_shift_const
9136 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9137 GET_MODE_PRECISION (xmode) - 1 - i);
9138
9139 if (GET_CODE (x) != ASHIFTRT)
9140 return force_to_mode (x, mode, mask, next_select);
9141 }
9142 }
9143
9144 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9145 even if the shift count isn't a constant. */
9146 if (mask == 1)
9147 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9148
9149 shiftrt:
9150
9151 /* If this is a zero- or sign-extension operation that just affects bits
9152 we don't care about, remove it. Be sure the call above returned
9153 something that is still a shift. */
9154
9155 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9156 && CONST_INT_P (XEXP (x, 1))
9157 && INTVAL (XEXP (x, 1)) >= 0
9158 && (INTVAL (XEXP (x, 1))
9159 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9160 && GET_CODE (XEXP (x, 0)) == ASHIFT
9161 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9162 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9163 next_select);
9164
9165 break;
9166
9167 case ROTATE:
9168 case ROTATERT:
9169 /* If the shift count is constant and we can do computations
9170 in the mode of X, compute where the bits we care about are.
9171 Otherwise, we can't do anything. Don't change the mode of
9172 the shift or propagate MODE into the shift, though. */
9173 if (CONST_INT_P (XEXP (x, 1))
9174 && INTVAL (XEXP (x, 1)) >= 0)
9175 {
9176 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9177 xmode, gen_int_mode (mask, xmode),
9178 XEXP (x, 1));
9179 if (temp && CONST_INT_P (temp))
9180 x = simplify_gen_binary (code, xmode,
9181 force_to_mode (XEXP (x, 0), xmode,
9182 INTVAL (temp), next_select),
9183 XEXP (x, 1));
9184 }
9185 break;
9186
9187 case NEG:
9188 /* If we just want the low-order bit, the NEG isn't needed since it
9189 won't change the low-order bit. */
9190 if (mask == 1)
9191 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9192
9193 /* We need any bits less significant than the most significant bit in
9194 MASK since carries from those bits will affect the bits we are
9195 interested in. */
9196 mask = fuller_mask;
9197 goto unop;
9198
9199 case NOT:
9200 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9201 same as the XOR case above. Ensure that the constant we form is not
9202 wider than the mode of X. */
9203
9204 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9205 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9206 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9207 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9208 < GET_MODE_PRECISION (xmode))
9209 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9210 {
9211 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9212 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9213 x = simplify_gen_binary (LSHIFTRT, xmode,
9214 temp, XEXP (XEXP (x, 0), 1));
9215
9216 return force_to_mode (x, mode, mask, next_select);
9217 }
9218
9219 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9220 use the full mask inside the NOT. */
9221 mask = fuller_mask;
9222
9223 unop:
9224 op0 = gen_lowpart_or_truncate (op_mode,
9225 force_to_mode (XEXP (x, 0), mode, mask,
9226 next_select));
9227 if (op_mode != xmode || op0 != XEXP (x, 0))
9228 {
9229 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9230 xmode = op_mode;
9231 }
9232 break;
9233
9234 case NE:
9235 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9236 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9237 which is equal to STORE_FLAG_VALUE. */
9238 if ((mask & ~STORE_FLAG_VALUE) == 0
9239 && XEXP (x, 1) == const0_rtx
9240 && GET_MODE (XEXP (x, 0)) == mode
9241 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9242 && (nonzero_bits (XEXP (x, 0), mode)
9243 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9244 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9245
9246 break;
9247
9248 case IF_THEN_ELSE:
9249 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9250 written in a narrower mode. We play it safe and do not do so. */
9251
9252 op0 = gen_lowpart_or_truncate (xmode,
9253 force_to_mode (XEXP (x, 1), mode,
9254 mask, next_select));
9255 op1 = gen_lowpart_or_truncate (xmode,
9256 force_to_mode (XEXP (x, 2), mode,
9257 mask, next_select));
9258 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9259 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9260 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9261 op0, op1);
9262 break;
9263
9264 default:
9265 break;
9266 }
9267
9268 /* Ensure we return a value of the proper mode. */
9269 return gen_lowpart_or_truncate (mode, x);
9270 }
9271 \f
9272 /* Return nonzero if X is an expression that has one of two values depending on
9273 whether some other value is zero or nonzero. In that case, we return the
9274 value that is being tested, *PTRUE is set to the value if the rtx being
9275 returned has a nonzero value, and *PFALSE is set to the other alternative.
9276
9277 If we return zero, we set *PTRUE and *PFALSE to X. */
9278
9279 static rtx
9280 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9281 {
9282 machine_mode mode = GET_MODE (x);
9283 enum rtx_code code = GET_CODE (x);
9284 rtx cond0, cond1, true0, true1, false0, false1;
9285 unsigned HOST_WIDE_INT nz;
9286 scalar_int_mode int_mode;
9287
9288 /* If we are comparing a value against zero, we are done. */
9289 if ((code == NE || code == EQ)
9290 && XEXP (x, 1) == const0_rtx)
9291 {
9292 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9293 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9294 return XEXP (x, 0);
9295 }
9296
9297 /* If this is a unary operation whose operand has one of two values, apply
9298 our opcode to compute those values. */
9299 else if (UNARY_P (x)
9300 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9301 {
9302 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9303 *pfalse = simplify_gen_unary (code, mode, false0,
9304 GET_MODE (XEXP (x, 0)));
9305 return cond0;
9306 }
9307
9308 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9309 make can't possibly match and would suppress other optimizations. */
9310 else if (code == COMPARE)
9311 ;
9312
9313 /* If this is a binary operation, see if either side has only one of two
9314 values. If either one does or if both do and they are conditional on
9315 the same value, compute the new true and false values. */
9316 else if (BINARY_P (x))
9317 {
9318 rtx op0 = XEXP (x, 0);
9319 rtx op1 = XEXP (x, 1);
9320 cond0 = if_then_else_cond (op0, &true0, &false0);
9321 cond1 = if_then_else_cond (op1, &true1, &false1);
9322
9323 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9324 && (REG_P (op0) || REG_P (op1)))
9325 {
9326 /* Try to enable a simplification by undoing work done by
9327 if_then_else_cond if it converted a REG into something more
9328 complex. */
9329 if (REG_P (op0))
9330 {
9331 cond0 = 0;
9332 true0 = false0 = op0;
9333 }
9334 else
9335 {
9336 cond1 = 0;
9337 true1 = false1 = op1;
9338 }
9339 }
9340
9341 if ((cond0 != 0 || cond1 != 0)
9342 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9343 {
9344 /* If if_then_else_cond returned zero, then true/false are the
9345 same rtl. We must copy one of them to prevent invalid rtl
9346 sharing. */
9347 if (cond0 == 0)
9348 true0 = copy_rtx (true0);
9349 else if (cond1 == 0)
9350 true1 = copy_rtx (true1);
9351
9352 if (COMPARISON_P (x))
9353 {
9354 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9355 true0, true1);
9356 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9357 false0, false1);
9358 }
9359 else
9360 {
9361 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9362 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9363 }
9364
9365 return cond0 ? cond0 : cond1;
9366 }
9367
9368 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9369 operands is zero when the other is nonzero, and vice-versa,
9370 and STORE_FLAG_VALUE is 1 or -1. */
9371
9372 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9373 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9374 || code == UMAX)
9375 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9376 {
9377 rtx op0 = XEXP (XEXP (x, 0), 1);
9378 rtx op1 = XEXP (XEXP (x, 1), 1);
9379
9380 cond0 = XEXP (XEXP (x, 0), 0);
9381 cond1 = XEXP (XEXP (x, 1), 0);
9382
9383 if (COMPARISON_P (cond0)
9384 && COMPARISON_P (cond1)
9385 && SCALAR_INT_MODE_P (mode)
9386 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9387 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9388 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9389 || ((swap_condition (GET_CODE (cond0))
9390 == reversed_comparison_code (cond1, NULL))
9391 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9392 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9393 && ! side_effects_p (x))
9394 {
9395 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9396 *pfalse = simplify_gen_binary (MULT, mode,
9397 (code == MINUS
9398 ? simplify_gen_unary (NEG, mode,
9399 op1, mode)
9400 : op1),
9401 const_true_rtx);
9402 return cond0;
9403 }
9404 }
9405
9406 /* Similarly for MULT, AND and UMIN, except that for these the result
9407 is always zero. */
9408 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9409 && (code == MULT || code == AND || code == UMIN)
9410 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9411 {
9412 cond0 = XEXP (XEXP (x, 0), 0);
9413 cond1 = XEXP (XEXP (x, 1), 0);
9414
9415 if (COMPARISON_P (cond0)
9416 && COMPARISON_P (cond1)
9417 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9418 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9419 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9420 || ((swap_condition (GET_CODE (cond0))
9421 == reversed_comparison_code (cond1, NULL))
9422 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9423 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9424 && ! side_effects_p (x))
9425 {
9426 *ptrue = *pfalse = const0_rtx;
9427 return cond0;
9428 }
9429 }
9430 }
9431
9432 else if (code == IF_THEN_ELSE)
9433 {
9434 /* If we have IF_THEN_ELSE already, extract the condition and
9435 canonicalize it if it is NE or EQ. */
9436 cond0 = XEXP (x, 0);
9437 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9438 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9439 return XEXP (cond0, 0);
9440 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9441 {
9442 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9443 return XEXP (cond0, 0);
9444 }
9445 else
9446 return cond0;
9447 }
9448
9449 /* If X is a SUBREG, we can narrow both the true and false values
9450 if the inner expression, if there is a condition. */
9451 else if (code == SUBREG
9452 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9453 &false0)) != 0)
9454 {
9455 true0 = simplify_gen_subreg (mode, true0,
9456 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9457 false0 = simplify_gen_subreg (mode, false0,
9458 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9459 if (true0 && false0)
9460 {
9461 *ptrue = true0;
9462 *pfalse = false0;
9463 return cond0;
9464 }
9465 }
9466
9467 /* If X is a constant, this isn't special and will cause confusions
9468 if we treat it as such. Likewise if it is equivalent to a constant. */
9469 else if (CONSTANT_P (x)
9470 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9471 ;
9472
9473 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9474 will be least confusing to the rest of the compiler. */
9475 else if (mode == BImode)
9476 {
9477 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9478 return x;
9479 }
9480
9481 /* If X is known to be either 0 or -1, those are the true and
9482 false values when testing X. */
9483 else if (x == constm1_rtx || x == const0_rtx
9484 || (is_a <scalar_int_mode> (mode, &int_mode)
9485 && (num_sign_bit_copies (x, int_mode)
9486 == GET_MODE_PRECISION (int_mode))))
9487 {
9488 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9489 return x;
9490 }
9491
9492 /* Likewise for 0 or a single bit. */
9493 else if (HWI_COMPUTABLE_MODE_P (mode)
9494 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9495 {
9496 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9497 return x;
9498 }
9499
9500 /* Otherwise fail; show no condition with true and false values the same. */
9501 *ptrue = *pfalse = x;
9502 return 0;
9503 }
9504 \f
9505 /* Return the value of expression X given the fact that condition COND
9506 is known to be true when applied to REG as its first operand and VAL
9507 as its second. X is known to not be shared and so can be modified in
9508 place.
9509
9510 We only handle the simplest cases, and specifically those cases that
9511 arise with IF_THEN_ELSE expressions. */
9512
9513 static rtx
9514 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9515 {
9516 enum rtx_code code = GET_CODE (x);
9517 const char *fmt;
9518 int i, j;
9519
9520 if (side_effects_p (x))
9521 return x;
9522
9523 /* If either operand of the condition is a floating point value,
9524 then we have to avoid collapsing an EQ comparison. */
9525 if (cond == EQ
9526 && rtx_equal_p (x, reg)
9527 && ! FLOAT_MODE_P (GET_MODE (x))
9528 && ! FLOAT_MODE_P (GET_MODE (val)))
9529 return val;
9530
9531 if (cond == UNEQ && rtx_equal_p (x, reg))
9532 return val;
9533
9534 /* If X is (abs REG) and we know something about REG's relationship
9535 with zero, we may be able to simplify this. */
9536
9537 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9538 switch (cond)
9539 {
9540 case GE: case GT: case EQ:
9541 return XEXP (x, 0);
9542 case LT: case LE:
9543 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9544 XEXP (x, 0),
9545 GET_MODE (XEXP (x, 0)));
9546 default:
9547 break;
9548 }
9549
9550 /* The only other cases we handle are MIN, MAX, and comparisons if the
9551 operands are the same as REG and VAL. */
9552
9553 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9554 {
9555 if (rtx_equal_p (XEXP (x, 0), val))
9556 {
9557 std::swap (val, reg);
9558 cond = swap_condition (cond);
9559 }
9560
9561 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9562 {
9563 if (COMPARISON_P (x))
9564 {
9565 if (comparison_dominates_p (cond, code))
9566 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9567
9568 code = reversed_comparison_code (x, NULL);
9569 if (code != UNKNOWN
9570 && comparison_dominates_p (cond, code))
9571 return CONST0_RTX (GET_MODE (x));
9572 else
9573 return x;
9574 }
9575 else if (code == SMAX || code == SMIN
9576 || code == UMIN || code == UMAX)
9577 {
9578 int unsignedp = (code == UMIN || code == UMAX);
9579
9580 /* Do not reverse the condition when it is NE or EQ.
9581 This is because we cannot conclude anything about
9582 the value of 'SMAX (x, y)' when x is not equal to y,
9583 but we can when x equals y. */
9584 if ((code == SMAX || code == UMAX)
9585 && ! (cond == EQ || cond == NE))
9586 cond = reverse_condition (cond);
9587
9588 switch (cond)
9589 {
9590 case GE: case GT:
9591 return unsignedp ? x : XEXP (x, 1);
9592 case LE: case LT:
9593 return unsignedp ? x : XEXP (x, 0);
9594 case GEU: case GTU:
9595 return unsignedp ? XEXP (x, 1) : x;
9596 case LEU: case LTU:
9597 return unsignedp ? XEXP (x, 0) : x;
9598 default:
9599 break;
9600 }
9601 }
9602 }
9603 }
9604 else if (code == SUBREG)
9605 {
9606 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9607 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9608
9609 if (SUBREG_REG (x) != r)
9610 {
9611 /* We must simplify subreg here, before we lose track of the
9612 original inner_mode. */
9613 new_rtx = simplify_subreg (GET_MODE (x), r,
9614 inner_mode, SUBREG_BYTE (x));
9615 if (new_rtx)
9616 return new_rtx;
9617 else
9618 SUBST (SUBREG_REG (x), r);
9619 }
9620
9621 return x;
9622 }
9623 /* We don't have to handle SIGN_EXTEND here, because even in the
9624 case of replacing something with a modeless CONST_INT, a
9625 CONST_INT is already (supposed to be) a valid sign extension for
9626 its narrower mode, which implies it's already properly
9627 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9628 story is different. */
9629 else if (code == ZERO_EXTEND)
9630 {
9631 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9632 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9633
9634 if (XEXP (x, 0) != r)
9635 {
9636 /* We must simplify the zero_extend here, before we lose
9637 track of the original inner_mode. */
9638 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9639 r, inner_mode);
9640 if (new_rtx)
9641 return new_rtx;
9642 else
9643 SUBST (XEXP (x, 0), r);
9644 }
9645
9646 return x;
9647 }
9648
9649 fmt = GET_RTX_FORMAT (code);
9650 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9651 {
9652 if (fmt[i] == 'e')
9653 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9654 else if (fmt[i] == 'E')
9655 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9656 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9657 cond, reg, val));
9658 }
9659
9660 return x;
9661 }
9662 \f
9663 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9664 assignment as a field assignment. */
9665
9666 static int
9667 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9668 {
9669 if (widen_x && GET_MODE (x) != GET_MODE (y))
9670 {
9671 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9672 return 0;
9673 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9674 return 0;
9675 x = adjust_address_nv (x, GET_MODE (y),
9676 byte_lowpart_offset (GET_MODE (y),
9677 GET_MODE (x)));
9678 }
9679
9680 if (x == y || rtx_equal_p (x, y))
9681 return 1;
9682
9683 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9684 return 0;
9685
9686 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9687 Note that all SUBREGs of MEM are paradoxical; otherwise they
9688 would have been rewritten. */
9689 if (MEM_P (x) && GET_CODE (y) == SUBREG
9690 && MEM_P (SUBREG_REG (y))
9691 && rtx_equal_p (SUBREG_REG (y),
9692 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9693 return 1;
9694
9695 if (MEM_P (y) && GET_CODE (x) == SUBREG
9696 && MEM_P (SUBREG_REG (x))
9697 && rtx_equal_p (SUBREG_REG (x),
9698 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9699 return 1;
9700
9701 /* We used to see if get_last_value of X and Y were the same but that's
9702 not correct. In one direction, we'll cause the assignment to have
9703 the wrong destination and in the case, we'll import a register into this
9704 insn that might have already have been dead. So fail if none of the
9705 above cases are true. */
9706 return 0;
9707 }
9708 \f
9709 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9710 Return that assignment if so.
9711
9712 We only handle the most common cases. */
9713
9714 static rtx
9715 make_field_assignment (rtx x)
9716 {
9717 rtx dest = SET_DEST (x);
9718 rtx src = SET_SRC (x);
9719 rtx assign;
9720 rtx rhs, lhs;
9721 HOST_WIDE_INT c1;
9722 HOST_WIDE_INT pos;
9723 unsigned HOST_WIDE_INT len;
9724 rtx other;
9725
9726 /* All the rules in this function are specific to scalar integers. */
9727 scalar_int_mode mode;
9728 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9729 return x;
9730
9731 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9732 a clear of a one-bit field. We will have changed it to
9733 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9734 for a SUBREG. */
9735
9736 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9737 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9738 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9739 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9740 {
9741 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9742 1, 1, 1, 0);
9743 if (assign != 0)
9744 return gen_rtx_SET (assign, const0_rtx);
9745 return x;
9746 }
9747
9748 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9749 && subreg_lowpart_p (XEXP (src, 0))
9750 && partial_subreg_p (XEXP (src, 0))
9751 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9752 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9753 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9754 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9755 {
9756 assign = make_extraction (VOIDmode, dest, 0,
9757 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9758 1, 1, 1, 0);
9759 if (assign != 0)
9760 return gen_rtx_SET (assign, const0_rtx);
9761 return x;
9762 }
9763
9764 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9765 one-bit field. */
9766 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9767 && XEXP (XEXP (src, 0), 0) == const1_rtx
9768 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9769 {
9770 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9771 1, 1, 1, 0);
9772 if (assign != 0)
9773 return gen_rtx_SET (assign, const1_rtx);
9774 return x;
9775 }
9776
9777 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9778 SRC is an AND with all bits of that field set, then we can discard
9779 the AND. */
9780 if (GET_CODE (dest) == ZERO_EXTRACT
9781 && CONST_INT_P (XEXP (dest, 1))
9782 && GET_CODE (src) == AND
9783 && CONST_INT_P (XEXP (src, 1)))
9784 {
9785 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9786 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9787 unsigned HOST_WIDE_INT ze_mask;
9788
9789 if (width >= HOST_BITS_PER_WIDE_INT)
9790 ze_mask = -1;
9791 else
9792 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9793
9794 /* Complete overlap. We can remove the source AND. */
9795 if ((and_mask & ze_mask) == ze_mask)
9796 return gen_rtx_SET (dest, XEXP (src, 0));
9797
9798 /* Partial overlap. We can reduce the source AND. */
9799 if ((and_mask & ze_mask) != and_mask)
9800 {
9801 src = gen_rtx_AND (mode, XEXP (src, 0),
9802 gen_int_mode (and_mask & ze_mask, mode));
9803 return gen_rtx_SET (dest, src);
9804 }
9805 }
9806
9807 /* The other case we handle is assignments into a constant-position
9808 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9809 a mask that has all one bits except for a group of zero bits and
9810 OTHER is known to have zeros where C1 has ones, this is such an
9811 assignment. Compute the position and length from C1. Shift OTHER
9812 to the appropriate position, force it to the required mode, and
9813 make the extraction. Check for the AND in both operands. */
9814
9815 /* One or more SUBREGs might obscure the constant-position field
9816 assignment. The first one we are likely to encounter is an outer
9817 narrowing SUBREG, which we can just strip for the purposes of
9818 identifying the constant-field assignment. */
9819 scalar_int_mode src_mode = mode;
9820 if (GET_CODE (src) == SUBREG
9821 && subreg_lowpart_p (src)
9822 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9823 src = SUBREG_REG (src);
9824
9825 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9826 return x;
9827
9828 rhs = expand_compound_operation (XEXP (src, 0));
9829 lhs = expand_compound_operation (XEXP (src, 1));
9830
9831 if (GET_CODE (rhs) == AND
9832 && CONST_INT_P (XEXP (rhs, 1))
9833 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9834 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9835 /* The second SUBREG that might get in the way is a paradoxical
9836 SUBREG around the first operand of the AND. We want to
9837 pretend the operand is as wide as the destination here. We
9838 do this by adjusting the MEM to wider mode for the sole
9839 purpose of the call to rtx_equal_for_field_assignment_p. Also
9840 note this trick only works for MEMs. */
9841 else if (GET_CODE (rhs) == AND
9842 && paradoxical_subreg_p (XEXP (rhs, 0))
9843 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9844 && CONST_INT_P (XEXP (rhs, 1))
9845 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9846 dest, true))
9847 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9848 else if (GET_CODE (lhs) == AND
9849 && CONST_INT_P (XEXP (lhs, 1))
9850 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9851 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9852 /* The second SUBREG that might get in the way is a paradoxical
9853 SUBREG around the first operand of the AND. We want to
9854 pretend the operand is as wide as the destination here. We
9855 do this by adjusting the MEM to wider mode for the sole
9856 purpose of the call to rtx_equal_for_field_assignment_p. Also
9857 note this trick only works for MEMs. */
9858 else if (GET_CODE (lhs) == AND
9859 && paradoxical_subreg_p (XEXP (lhs, 0))
9860 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9861 && CONST_INT_P (XEXP (lhs, 1))
9862 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9863 dest, true))
9864 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9865 else
9866 return x;
9867
9868 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9869 if (pos < 0
9870 || pos + len > GET_MODE_PRECISION (mode)
9871 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9872 || (c1 & nonzero_bits (other, mode)) != 0)
9873 return x;
9874
9875 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9876 if (assign == 0)
9877 return x;
9878
9879 /* The mode to use for the source is the mode of the assignment, or of
9880 what is inside a possible STRICT_LOW_PART. */
9881 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9882 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9883
9884 /* Shift OTHER right POS places and make it the source, restricting it
9885 to the proper length and mode. */
9886
9887 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9888 src_mode, other, pos),
9889 dest);
9890 src = force_to_mode (src, new_mode,
9891 len >= HOST_BITS_PER_WIDE_INT
9892 ? HOST_WIDE_INT_M1U
9893 : (HOST_WIDE_INT_1U << len) - 1,
9894 0);
9895
9896 /* If SRC is masked by an AND that does not make a difference in
9897 the value being stored, strip it. */
9898 if (GET_CODE (assign) == ZERO_EXTRACT
9899 && CONST_INT_P (XEXP (assign, 1))
9900 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9901 && GET_CODE (src) == AND
9902 && CONST_INT_P (XEXP (src, 1))
9903 && UINTVAL (XEXP (src, 1))
9904 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9905 src = XEXP (src, 0);
9906
9907 return gen_rtx_SET (assign, src);
9908 }
9909 \f
9910 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9911 if so. */
9912
9913 static rtx
9914 apply_distributive_law (rtx x)
9915 {
9916 enum rtx_code code = GET_CODE (x);
9917 enum rtx_code inner_code;
9918 rtx lhs, rhs, other;
9919 rtx tem;
9920
9921 /* Distributivity is not true for floating point as it can change the
9922 value. So we don't do it unless -funsafe-math-optimizations. */
9923 if (FLOAT_MODE_P (GET_MODE (x))
9924 && ! flag_unsafe_math_optimizations)
9925 return x;
9926
9927 /* The outer operation can only be one of the following: */
9928 if (code != IOR && code != AND && code != XOR
9929 && code != PLUS && code != MINUS)
9930 return x;
9931
9932 lhs = XEXP (x, 0);
9933 rhs = XEXP (x, 1);
9934
9935 /* If either operand is a primitive we can't do anything, so get out
9936 fast. */
9937 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9938 return x;
9939
9940 lhs = expand_compound_operation (lhs);
9941 rhs = expand_compound_operation (rhs);
9942 inner_code = GET_CODE (lhs);
9943 if (inner_code != GET_CODE (rhs))
9944 return x;
9945
9946 /* See if the inner and outer operations distribute. */
9947 switch (inner_code)
9948 {
9949 case LSHIFTRT:
9950 case ASHIFTRT:
9951 case AND:
9952 case IOR:
9953 /* These all distribute except over PLUS. */
9954 if (code == PLUS || code == MINUS)
9955 return x;
9956 break;
9957
9958 case MULT:
9959 if (code != PLUS && code != MINUS)
9960 return x;
9961 break;
9962
9963 case ASHIFT:
9964 /* This is also a multiply, so it distributes over everything. */
9965 break;
9966
9967 /* This used to handle SUBREG, but this turned out to be counter-
9968 productive, since (subreg (op ...)) usually is not handled by
9969 insn patterns, and this "optimization" therefore transformed
9970 recognizable patterns into unrecognizable ones. Therefore the
9971 SUBREG case was removed from here.
9972
9973 It is possible that distributing SUBREG over arithmetic operations
9974 leads to an intermediate result than can then be optimized further,
9975 e.g. by moving the outer SUBREG to the other side of a SET as done
9976 in simplify_set. This seems to have been the original intent of
9977 handling SUBREGs here.
9978
9979 However, with current GCC this does not appear to actually happen,
9980 at least on major platforms. If some case is found where removing
9981 the SUBREG case here prevents follow-on optimizations, distributing
9982 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9983
9984 default:
9985 return x;
9986 }
9987
9988 /* Set LHS and RHS to the inner operands (A and B in the example
9989 above) and set OTHER to the common operand (C in the example).
9990 There is only one way to do this unless the inner operation is
9991 commutative. */
9992 if (COMMUTATIVE_ARITH_P (lhs)
9993 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9994 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9995 else if (COMMUTATIVE_ARITH_P (lhs)
9996 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9997 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9998 else if (COMMUTATIVE_ARITH_P (lhs)
9999 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
10000 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
10001 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
10002 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
10003 else
10004 return x;
10005
10006 /* Form the new inner operation, seeing if it simplifies first. */
10007 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
10008
10009 /* There is one exception to the general way of distributing:
10010 (a | c) ^ (b | c) -> (a ^ b) & ~c */
10011 if (code == XOR && inner_code == IOR)
10012 {
10013 inner_code = AND;
10014 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
10015 }
10016
10017 /* We may be able to continuing distributing the result, so call
10018 ourselves recursively on the inner operation before forming the
10019 outer operation, which we return. */
10020 return simplify_gen_binary (inner_code, GET_MODE (x),
10021 apply_distributive_law (tem), other);
10022 }
10023
10024 /* See if X is of the form (* (+ A B) C), and if so convert to
10025 (+ (* A C) (* B C)) and try to simplify.
10026
10027 Most of the time, this results in no change. However, if some of
10028 the operands are the same or inverses of each other, simplifications
10029 will result.
10030
10031 For example, (and (ior A B) (not B)) can occur as the result of
10032 expanding a bit field assignment. When we apply the distributive
10033 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
10034 which then simplifies to (and (A (not B))).
10035
10036 Note that no checks happen on the validity of applying the inverse
10037 distributive law. This is pointless since we can do it in the
10038 few places where this routine is called.
10039
10040 N is the index of the term that is decomposed (the arithmetic operation,
10041 i.e. (+ A B) in the first example above). !N is the index of the term that
10042 is distributed, i.e. of C in the first example above. */
10043 static rtx
10044 distribute_and_simplify_rtx (rtx x, int n)
10045 {
10046 machine_mode mode;
10047 enum rtx_code outer_code, inner_code;
10048 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
10049
10050 /* Distributivity is not true for floating point as it can change the
10051 value. So we don't do it unless -funsafe-math-optimizations. */
10052 if (FLOAT_MODE_P (GET_MODE (x))
10053 && ! flag_unsafe_math_optimizations)
10054 return NULL_RTX;
10055
10056 decomposed = XEXP (x, n);
10057 if (!ARITHMETIC_P (decomposed))
10058 return NULL_RTX;
10059
10060 mode = GET_MODE (x);
10061 outer_code = GET_CODE (x);
10062 distributed = XEXP (x, !n);
10063
10064 inner_code = GET_CODE (decomposed);
10065 inner_op0 = XEXP (decomposed, 0);
10066 inner_op1 = XEXP (decomposed, 1);
10067
10068 /* Special case (and (xor B C) (not A)), which is equivalent to
10069 (xor (ior A B) (ior A C)) */
10070 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10071 {
10072 distributed = XEXP (distributed, 0);
10073 outer_code = IOR;
10074 }
10075
10076 if (n == 0)
10077 {
10078 /* Distribute the second term. */
10079 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10080 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10081 }
10082 else
10083 {
10084 /* Distribute the first term. */
10085 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10086 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10087 }
10088
10089 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10090 new_op0, new_op1));
10091 if (GET_CODE (tmp) != outer_code
10092 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10093 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10094 return tmp;
10095
10096 return NULL_RTX;
10097 }
10098 \f
10099 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10100 in MODE. Return an equivalent form, if different from (and VAROP
10101 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10102
10103 static rtx
10104 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10105 unsigned HOST_WIDE_INT constop)
10106 {
10107 unsigned HOST_WIDE_INT nonzero;
10108 unsigned HOST_WIDE_INT orig_constop;
10109 rtx orig_varop;
10110 int i;
10111
10112 orig_varop = varop;
10113 orig_constop = constop;
10114 if (GET_CODE (varop) == CLOBBER)
10115 return NULL_RTX;
10116
10117 /* Simplify VAROP knowing that we will be only looking at some of the
10118 bits in it.
10119
10120 Note by passing in CONSTOP, we guarantee that the bits not set in
10121 CONSTOP are not significant and will never be examined. We must
10122 ensure that is the case by explicitly masking out those bits
10123 before returning. */
10124 varop = force_to_mode (varop, mode, constop, 0);
10125
10126 /* If VAROP is a CLOBBER, we will fail so return it. */
10127 if (GET_CODE (varop) == CLOBBER)
10128 return varop;
10129
10130 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10131 to VAROP and return the new constant. */
10132 if (CONST_INT_P (varop))
10133 return gen_int_mode (INTVAL (varop) & constop, mode);
10134
10135 /* See what bits may be nonzero in VAROP. Unlike the general case of
10136 a call to nonzero_bits, here we don't care about bits outside
10137 MODE. */
10138
10139 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10140
10141 /* Turn off all bits in the constant that are known to already be zero.
10142 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10143 which is tested below. */
10144
10145 constop &= nonzero;
10146
10147 /* If we don't have any bits left, return zero. */
10148 if (constop == 0)
10149 return const0_rtx;
10150
10151 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10152 a power of two, we can replace this with an ASHIFT. */
10153 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10154 && (i = exact_log2 (constop)) >= 0)
10155 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10156
10157 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10158 or XOR, then try to apply the distributive law. This may eliminate
10159 operations if either branch can be simplified because of the AND.
10160 It may also make some cases more complex, but those cases probably
10161 won't match a pattern either with or without this. */
10162
10163 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10164 {
10165 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10166 return
10167 gen_lowpart
10168 (mode,
10169 apply_distributive_law
10170 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10171 simplify_and_const_int (NULL_RTX, varop_mode,
10172 XEXP (varop, 0),
10173 constop),
10174 simplify_and_const_int (NULL_RTX, varop_mode,
10175 XEXP (varop, 1),
10176 constop))));
10177 }
10178
10179 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10180 the AND and see if one of the operands simplifies to zero. If so, we
10181 may eliminate it. */
10182
10183 if (GET_CODE (varop) == PLUS
10184 && pow2p_hwi (constop + 1))
10185 {
10186 rtx o0, o1;
10187
10188 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10189 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10190 if (o0 == const0_rtx)
10191 return o1;
10192 if (o1 == const0_rtx)
10193 return o0;
10194 }
10195
10196 /* Make a SUBREG if necessary. If we can't make it, fail. */
10197 varop = gen_lowpart (mode, varop);
10198 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10199 return NULL_RTX;
10200
10201 /* If we are only masking insignificant bits, return VAROP. */
10202 if (constop == nonzero)
10203 return varop;
10204
10205 if (varop == orig_varop && constop == orig_constop)
10206 return NULL_RTX;
10207
10208 /* Otherwise, return an AND. */
10209 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10210 }
10211
10212
10213 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10214 in MODE.
10215
10216 Return an equivalent form, if different from X. Otherwise, return X. If
10217 X is zero, we are to always construct the equivalent form. */
10218
10219 static rtx
10220 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10221 unsigned HOST_WIDE_INT constop)
10222 {
10223 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10224 if (tem)
10225 return tem;
10226
10227 if (!x)
10228 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10229 gen_int_mode (constop, mode));
10230 if (GET_MODE (x) != mode)
10231 x = gen_lowpart (mode, x);
10232 return x;
10233 }
10234 \f
10235 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10236 We don't care about bits outside of those defined in MODE.
10237 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10238
10239 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10240 a shift, AND, or zero_extract, we can do better. */
10241
10242 static rtx
10243 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10244 scalar_int_mode mode,
10245 unsigned HOST_WIDE_INT *nonzero)
10246 {
10247 rtx tem;
10248 reg_stat_type *rsp;
10249
10250 /* If X is a register whose nonzero bits value is current, use it.
10251 Otherwise, if X is a register whose value we can find, use that
10252 value. Otherwise, use the previously-computed global nonzero bits
10253 for this register. */
10254
10255 rsp = &reg_stat[REGNO (x)];
10256 if (rsp->last_set_value != 0
10257 && (rsp->last_set_mode == mode
10258 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10259 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10260 && GET_MODE_CLASS (mode) == MODE_INT))
10261 && ((rsp->last_set_label >= label_tick_ebb_start
10262 && rsp->last_set_label < label_tick)
10263 || (rsp->last_set_label == label_tick
10264 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10265 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10266 && REGNO (x) < reg_n_sets_max
10267 && REG_N_SETS (REGNO (x)) == 1
10268 && !REGNO_REG_SET_P
10269 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10270 REGNO (x)))))
10271 {
10272 /* Note that, even if the precision of last_set_mode is lower than that
10273 of mode, record_value_for_reg invoked nonzero_bits on the register
10274 with nonzero_bits_mode (because last_set_mode is necessarily integral
10275 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10276 are all valid, hence in mode too since nonzero_bits_mode is defined
10277 to the largest HWI_COMPUTABLE_MODE_P mode. */
10278 *nonzero &= rsp->last_set_nonzero_bits;
10279 return NULL;
10280 }
10281
10282 tem = get_last_value (x);
10283 if (tem)
10284 {
10285 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10286 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10287
10288 return tem;
10289 }
10290
10291 if (nonzero_sign_valid && rsp->nonzero_bits)
10292 {
10293 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10294
10295 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10296 /* We don't know anything about the upper bits. */
10297 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10298
10299 *nonzero &= mask;
10300 }
10301
10302 return NULL;
10303 }
10304
10305 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10306 end of X that are known to be equal to the sign bit. X will be used
10307 in mode MODE; the returned value will always be between 1 and the
10308 number of bits in MODE. */
10309
10310 static rtx
10311 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10312 scalar_int_mode mode,
10313 unsigned int *result)
10314 {
10315 rtx tem;
10316 reg_stat_type *rsp;
10317
10318 rsp = &reg_stat[REGNO (x)];
10319 if (rsp->last_set_value != 0
10320 && rsp->last_set_mode == mode
10321 && ((rsp->last_set_label >= label_tick_ebb_start
10322 && rsp->last_set_label < label_tick)
10323 || (rsp->last_set_label == label_tick
10324 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10325 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10326 && REGNO (x) < reg_n_sets_max
10327 && REG_N_SETS (REGNO (x)) == 1
10328 && !REGNO_REG_SET_P
10329 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10330 REGNO (x)))))
10331 {
10332 *result = rsp->last_set_sign_bit_copies;
10333 return NULL;
10334 }
10335
10336 tem = get_last_value (x);
10337 if (tem != 0)
10338 return tem;
10339
10340 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10341 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10342 *result = rsp->sign_bit_copies;
10343
10344 return NULL;
10345 }
10346 \f
10347 /* Return the number of "extended" bits there are in X, when interpreted
10348 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10349 unsigned quantities, this is the number of high-order zero bits.
10350 For signed quantities, this is the number of copies of the sign bit
10351 minus 1. In both case, this function returns the number of "spare"
10352 bits. For example, if two quantities for which this function returns
10353 at least 1 are added, the addition is known not to overflow.
10354
10355 This function will always return 0 unless called during combine, which
10356 implies that it must be called from a define_split. */
10357
10358 unsigned int
10359 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10360 {
10361 if (nonzero_sign_valid == 0)
10362 return 0;
10363
10364 scalar_int_mode int_mode;
10365 return (unsignedp
10366 ? (is_a <scalar_int_mode> (mode, &int_mode)
10367 && HWI_COMPUTABLE_MODE_P (int_mode)
10368 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10369 - floor_log2 (nonzero_bits (x, int_mode)))
10370 : 0)
10371 : num_sign_bit_copies (x, mode) - 1);
10372 }
10373
10374 /* This function is called from `simplify_shift_const' to merge two
10375 outer operations. Specifically, we have already found that we need
10376 to perform operation *POP0 with constant *PCONST0 at the outermost
10377 position. We would now like to also perform OP1 with constant CONST1
10378 (with *POP0 being done last).
10379
10380 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10381 the resulting operation. *PCOMP_P is set to 1 if we would need to
10382 complement the innermost operand, otherwise it is unchanged.
10383
10384 MODE is the mode in which the operation will be done. No bits outside
10385 the width of this mode matter. It is assumed that the width of this mode
10386 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10387
10388 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10389 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10390 result is simply *PCONST0.
10391
10392 If the resulting operation cannot be expressed as one operation, we
10393 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10394
10395 static int
10396 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10397 {
10398 enum rtx_code op0 = *pop0;
10399 HOST_WIDE_INT const0 = *pconst0;
10400
10401 const0 &= GET_MODE_MASK (mode);
10402 const1 &= GET_MODE_MASK (mode);
10403
10404 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10405 if (op0 == AND)
10406 const1 &= const0;
10407
10408 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10409 if OP0 is SET. */
10410
10411 if (op1 == UNKNOWN || op0 == SET)
10412 return 1;
10413
10414 else if (op0 == UNKNOWN)
10415 op0 = op1, const0 = const1;
10416
10417 else if (op0 == op1)
10418 {
10419 switch (op0)
10420 {
10421 case AND:
10422 const0 &= const1;
10423 break;
10424 case IOR:
10425 const0 |= const1;
10426 break;
10427 case XOR:
10428 const0 ^= const1;
10429 break;
10430 case PLUS:
10431 const0 += const1;
10432 break;
10433 case NEG:
10434 op0 = UNKNOWN;
10435 break;
10436 default:
10437 break;
10438 }
10439 }
10440
10441 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10442 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10443 return 0;
10444
10445 /* If the two constants aren't the same, we can't do anything. The
10446 remaining six cases can all be done. */
10447 else if (const0 != const1)
10448 return 0;
10449
10450 else
10451 switch (op0)
10452 {
10453 case IOR:
10454 if (op1 == AND)
10455 /* (a & b) | b == b */
10456 op0 = SET;
10457 else /* op1 == XOR */
10458 /* (a ^ b) | b == a | b */
10459 {;}
10460 break;
10461
10462 case XOR:
10463 if (op1 == AND)
10464 /* (a & b) ^ b == (~a) & b */
10465 op0 = AND, *pcomp_p = 1;
10466 else /* op1 == IOR */
10467 /* (a | b) ^ b == a & ~b */
10468 op0 = AND, const0 = ~const0;
10469 break;
10470
10471 case AND:
10472 if (op1 == IOR)
10473 /* (a | b) & b == b */
10474 op0 = SET;
10475 else /* op1 == XOR */
10476 /* (a ^ b) & b) == (~a) & b */
10477 *pcomp_p = 1;
10478 break;
10479 default:
10480 break;
10481 }
10482
10483 /* Check for NO-OP cases. */
10484 const0 &= GET_MODE_MASK (mode);
10485 if (const0 == 0
10486 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10487 op0 = UNKNOWN;
10488 else if (const0 == 0 && op0 == AND)
10489 op0 = SET;
10490 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10491 && op0 == AND)
10492 op0 = UNKNOWN;
10493
10494 *pop0 = op0;
10495
10496 /* ??? Slightly redundant with the above mask, but not entirely.
10497 Moving this above means we'd have to sign-extend the mode mask
10498 for the final test. */
10499 if (op0 != UNKNOWN && op0 != NEG)
10500 *pconst0 = trunc_int_for_mode (const0, mode);
10501
10502 return 1;
10503 }
10504 \f
10505 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10506 the shift in. The original shift operation CODE is performed on OP in
10507 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10508 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10509 result of the shift is subject to operation OUTER_CODE with operand
10510 OUTER_CONST. */
10511
10512 static scalar_int_mode
10513 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10514 scalar_int_mode orig_mode, scalar_int_mode mode,
10515 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10516 {
10517 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10518
10519 /* In general we can't perform in wider mode for right shift and rotate. */
10520 switch (code)
10521 {
10522 case ASHIFTRT:
10523 /* We can still widen if the bits brought in from the left are identical
10524 to the sign bit of ORIG_MODE. */
10525 if (num_sign_bit_copies (op, mode)
10526 > (unsigned) (GET_MODE_PRECISION (mode)
10527 - GET_MODE_PRECISION (orig_mode)))
10528 return mode;
10529 return orig_mode;
10530
10531 case LSHIFTRT:
10532 /* Similarly here but with zero bits. */
10533 if (HWI_COMPUTABLE_MODE_P (mode)
10534 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10535 return mode;
10536
10537 /* We can also widen if the bits brought in will be masked off. This
10538 operation is performed in ORIG_MODE. */
10539 if (outer_code == AND)
10540 {
10541 int care_bits = low_bitmask_len (orig_mode, outer_const);
10542
10543 if (care_bits >= 0
10544 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10545 return mode;
10546 }
10547 /* fall through */
10548
10549 case ROTATE:
10550 return orig_mode;
10551
10552 case ROTATERT:
10553 gcc_unreachable ();
10554
10555 default:
10556 return mode;
10557 }
10558 }
10559
10560 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10561 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10562 if we cannot simplify it. Otherwise, return a simplified value.
10563
10564 The shift is normally computed in the widest mode we find in VAROP, as
10565 long as it isn't a different number of words than RESULT_MODE. Exceptions
10566 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10567
10568 static rtx
10569 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10570 rtx varop, int orig_count)
10571 {
10572 enum rtx_code orig_code = code;
10573 rtx orig_varop = varop;
10574 int count, log2;
10575 machine_mode mode = result_mode;
10576 machine_mode shift_mode;
10577 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10578 /* We form (outer_op (code varop count) (outer_const)). */
10579 enum rtx_code outer_op = UNKNOWN;
10580 HOST_WIDE_INT outer_const = 0;
10581 int complement_p = 0;
10582 rtx new_rtx, x;
10583
10584 /* Make sure and truncate the "natural" shift on the way in. We don't
10585 want to do this inside the loop as it makes it more difficult to
10586 combine shifts. */
10587 if (SHIFT_COUNT_TRUNCATED)
10588 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10589
10590 /* If we were given an invalid count, don't do anything except exactly
10591 what was requested. */
10592
10593 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10594 return NULL_RTX;
10595
10596 count = orig_count;
10597
10598 /* Unless one of the branches of the `if' in this loop does a `continue',
10599 we will `break' the loop after the `if'. */
10600
10601 while (count != 0)
10602 {
10603 /* If we have an operand of (clobber (const_int 0)), fail. */
10604 if (GET_CODE (varop) == CLOBBER)
10605 return NULL_RTX;
10606
10607 /* Convert ROTATERT to ROTATE. */
10608 if (code == ROTATERT)
10609 {
10610 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10611 code = ROTATE;
10612 count = bitsize - count;
10613 }
10614
10615 shift_mode = result_mode;
10616 if (shift_mode != mode)
10617 {
10618 /* We only change the modes of scalar shifts. */
10619 int_mode = as_a <scalar_int_mode> (mode);
10620 int_result_mode = as_a <scalar_int_mode> (result_mode);
10621 shift_mode = try_widen_shift_mode (code, varop, count,
10622 int_result_mode, int_mode,
10623 outer_op, outer_const);
10624 }
10625
10626 scalar_int_mode shift_unit_mode
10627 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10628
10629 /* Handle cases where the count is greater than the size of the mode
10630 minus 1. For ASHIFT, use the size minus one as the count (this can
10631 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10632 take the count modulo the size. For other shifts, the result is
10633 zero.
10634
10635 Since these shifts are being produced by the compiler by combining
10636 multiple operations, each of which are defined, we know what the
10637 result is supposed to be. */
10638
10639 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10640 {
10641 if (code == ASHIFTRT)
10642 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10643 else if (code == ROTATE || code == ROTATERT)
10644 count %= GET_MODE_PRECISION (shift_unit_mode);
10645 else
10646 {
10647 /* We can't simply return zero because there may be an
10648 outer op. */
10649 varop = const0_rtx;
10650 count = 0;
10651 break;
10652 }
10653 }
10654
10655 /* If we discovered we had to complement VAROP, leave. Making a NOT
10656 here would cause an infinite loop. */
10657 if (complement_p)
10658 break;
10659
10660 if (shift_mode == shift_unit_mode)
10661 {
10662 /* An arithmetic right shift of a quantity known to be -1 or 0
10663 is a no-op. */
10664 if (code == ASHIFTRT
10665 && (num_sign_bit_copies (varop, shift_unit_mode)
10666 == GET_MODE_PRECISION (shift_unit_mode)))
10667 {
10668 count = 0;
10669 break;
10670 }
10671
10672 /* If we are doing an arithmetic right shift and discarding all but
10673 the sign bit copies, this is equivalent to doing a shift by the
10674 bitsize minus one. Convert it into that shift because it will
10675 often allow other simplifications. */
10676
10677 if (code == ASHIFTRT
10678 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10679 >= GET_MODE_PRECISION (shift_unit_mode)))
10680 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10681
10682 /* We simplify the tests below and elsewhere by converting
10683 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10684 `make_compound_operation' will convert it to an ASHIFTRT for
10685 those machines (such as VAX) that don't have an LSHIFTRT. */
10686 if (code == ASHIFTRT
10687 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10688 && val_signbit_known_clear_p (shift_unit_mode,
10689 nonzero_bits (varop,
10690 shift_unit_mode)))
10691 code = LSHIFTRT;
10692
10693 if (((code == LSHIFTRT
10694 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10695 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10696 || (code == ASHIFT
10697 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10698 && !((nonzero_bits (varop, shift_unit_mode) << count)
10699 & GET_MODE_MASK (shift_unit_mode))))
10700 && !side_effects_p (varop))
10701 varop = const0_rtx;
10702 }
10703
10704 switch (GET_CODE (varop))
10705 {
10706 case SIGN_EXTEND:
10707 case ZERO_EXTEND:
10708 case SIGN_EXTRACT:
10709 case ZERO_EXTRACT:
10710 new_rtx = expand_compound_operation (varop);
10711 if (new_rtx != varop)
10712 {
10713 varop = new_rtx;
10714 continue;
10715 }
10716 break;
10717
10718 case MEM:
10719 /* The following rules apply only to scalars. */
10720 if (shift_mode != shift_unit_mode)
10721 break;
10722 int_mode = as_a <scalar_int_mode> (mode);
10723
10724 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10725 minus the width of a smaller mode, we can do this with a
10726 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10727 if ((code == ASHIFTRT || code == LSHIFTRT)
10728 && ! mode_dependent_address_p (XEXP (varop, 0),
10729 MEM_ADDR_SPACE (varop))
10730 && ! MEM_VOLATILE_P (varop)
10731 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10732 .exists (&tmode)))
10733 {
10734 new_rtx = adjust_address_nv (varop, tmode,
10735 BYTES_BIG_ENDIAN ? 0
10736 : count / BITS_PER_UNIT);
10737
10738 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10739 : ZERO_EXTEND, int_mode, new_rtx);
10740 count = 0;
10741 continue;
10742 }
10743 break;
10744
10745 case SUBREG:
10746 /* The following rules apply only to scalars. */
10747 if (shift_mode != shift_unit_mode)
10748 break;
10749 int_mode = as_a <scalar_int_mode> (mode);
10750 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10751
10752 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10753 the same number of words as what we've seen so far. Then store
10754 the widest mode in MODE. */
10755 if (subreg_lowpart_p (varop)
10756 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10757 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10758 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10759 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10760 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10761 {
10762 varop = SUBREG_REG (varop);
10763 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10764 mode = inner_mode;
10765 continue;
10766 }
10767 break;
10768
10769 case MULT:
10770 /* Some machines use MULT instead of ASHIFT because MULT
10771 is cheaper. But it is still better on those machines to
10772 merge two shifts into one. */
10773 if (CONST_INT_P (XEXP (varop, 1))
10774 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10775 {
10776 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10777 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10778 XEXP (varop, 0), log2_rtx);
10779 continue;
10780 }
10781 break;
10782
10783 case UDIV:
10784 /* Similar, for when divides are cheaper. */
10785 if (CONST_INT_P (XEXP (varop, 1))
10786 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10787 {
10788 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10789 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10790 XEXP (varop, 0), log2_rtx);
10791 continue;
10792 }
10793 break;
10794
10795 case ASHIFTRT:
10796 /* If we are extracting just the sign bit of an arithmetic
10797 right shift, that shift is not needed. However, the sign
10798 bit of a wider mode may be different from what would be
10799 interpreted as the sign bit in a narrower mode, so, if
10800 the result is narrower, don't discard the shift. */
10801 if (code == LSHIFTRT
10802 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10803 && (GET_MODE_UNIT_BITSIZE (result_mode)
10804 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10805 {
10806 varop = XEXP (varop, 0);
10807 continue;
10808 }
10809
10810 /* fall through */
10811
10812 case LSHIFTRT:
10813 case ASHIFT:
10814 case ROTATE:
10815 /* The following rules apply only to scalars. */
10816 if (shift_mode != shift_unit_mode)
10817 break;
10818 int_mode = as_a <scalar_int_mode> (mode);
10819 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10820 int_result_mode = as_a <scalar_int_mode> (result_mode);
10821
10822 /* Here we have two nested shifts. The result is usually the
10823 AND of a new shift with a mask. We compute the result below. */
10824 if (CONST_INT_P (XEXP (varop, 1))
10825 && INTVAL (XEXP (varop, 1)) >= 0
10826 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10827 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10828 && HWI_COMPUTABLE_MODE_P (int_mode))
10829 {
10830 enum rtx_code first_code = GET_CODE (varop);
10831 unsigned int first_count = INTVAL (XEXP (varop, 1));
10832 unsigned HOST_WIDE_INT mask;
10833 rtx mask_rtx;
10834
10835 /* We have one common special case. We can't do any merging if
10836 the inner code is an ASHIFTRT of a smaller mode. However, if
10837 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10838 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10839 we can convert it to
10840 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10841 This simplifies certain SIGN_EXTEND operations. */
10842 if (code == ASHIFT && first_code == ASHIFTRT
10843 && count == (GET_MODE_PRECISION (int_result_mode)
10844 - GET_MODE_PRECISION (int_varop_mode)))
10845 {
10846 /* C3 has the low-order C1 bits zero. */
10847
10848 mask = GET_MODE_MASK (int_mode)
10849 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10850
10851 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10852 XEXP (varop, 0), mask);
10853 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10854 int_result_mode, varop, count);
10855 count = first_count;
10856 code = ASHIFTRT;
10857 continue;
10858 }
10859
10860 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10861 than C1 high-order bits equal to the sign bit, we can convert
10862 this to either an ASHIFT or an ASHIFTRT depending on the
10863 two counts.
10864
10865 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10866
10867 if (code == ASHIFTRT && first_code == ASHIFT
10868 && int_varop_mode == shift_unit_mode
10869 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10870 > first_count))
10871 {
10872 varop = XEXP (varop, 0);
10873 count -= first_count;
10874 if (count < 0)
10875 {
10876 count = -count;
10877 code = ASHIFT;
10878 }
10879
10880 continue;
10881 }
10882
10883 /* There are some cases we can't do. If CODE is ASHIFTRT,
10884 we can only do this if FIRST_CODE is also ASHIFTRT.
10885
10886 We can't do the case when CODE is ROTATE and FIRST_CODE is
10887 ASHIFTRT.
10888
10889 If the mode of this shift is not the mode of the outer shift,
10890 we can't do this if either shift is a right shift or ROTATE.
10891
10892 Finally, we can't do any of these if the mode is too wide
10893 unless the codes are the same.
10894
10895 Handle the case where the shift codes are the same
10896 first. */
10897
10898 if (code == first_code)
10899 {
10900 if (int_varop_mode != int_result_mode
10901 && (code == ASHIFTRT || code == LSHIFTRT
10902 || code == ROTATE))
10903 break;
10904
10905 count += first_count;
10906 varop = XEXP (varop, 0);
10907 continue;
10908 }
10909
10910 if (code == ASHIFTRT
10911 || (code == ROTATE && first_code == ASHIFTRT)
10912 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10913 || (int_varop_mode != int_result_mode
10914 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10915 || first_code == ROTATE
10916 || code == ROTATE)))
10917 break;
10918
10919 /* To compute the mask to apply after the shift, shift the
10920 nonzero bits of the inner shift the same way the
10921 outer shift will. */
10922
10923 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10924 int_result_mode);
10925 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10926 mask_rtx
10927 = simplify_const_binary_operation (code, int_result_mode,
10928 mask_rtx, count_rtx);
10929
10930 /* Give up if we can't compute an outer operation to use. */
10931 if (mask_rtx == 0
10932 || !CONST_INT_P (mask_rtx)
10933 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10934 INTVAL (mask_rtx),
10935 int_result_mode, &complement_p))
10936 break;
10937
10938 /* If the shifts are in the same direction, we add the
10939 counts. Otherwise, we subtract them. */
10940 if ((code == ASHIFTRT || code == LSHIFTRT)
10941 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10942 count += first_count;
10943 else
10944 count -= first_count;
10945
10946 /* If COUNT is positive, the new shift is usually CODE,
10947 except for the two exceptions below, in which case it is
10948 FIRST_CODE. If the count is negative, FIRST_CODE should
10949 always be used */
10950 if (count > 0
10951 && ((first_code == ROTATE && code == ASHIFT)
10952 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10953 code = first_code;
10954 else if (count < 0)
10955 code = first_code, count = -count;
10956
10957 varop = XEXP (varop, 0);
10958 continue;
10959 }
10960
10961 /* If we have (A << B << C) for any shift, we can convert this to
10962 (A << C << B). This wins if A is a constant. Only try this if
10963 B is not a constant. */
10964
10965 else if (GET_CODE (varop) == code
10966 && CONST_INT_P (XEXP (varop, 0))
10967 && !CONST_INT_P (XEXP (varop, 1)))
10968 {
10969 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10970 sure the result will be masked. See PR70222. */
10971 if (code == LSHIFTRT
10972 && int_mode != int_result_mode
10973 && !merge_outer_ops (&outer_op, &outer_const, AND,
10974 GET_MODE_MASK (int_result_mode)
10975 >> orig_count, int_result_mode,
10976 &complement_p))
10977 break;
10978 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10979 up outer sign extension (often left and right shift) is
10980 hardly more efficient than the original. See PR70429. */
10981 if (code == ASHIFTRT && int_mode != int_result_mode)
10982 break;
10983
10984 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10985 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10986 XEXP (varop, 0),
10987 count_rtx);
10988 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10989 count = 0;
10990 continue;
10991 }
10992 break;
10993
10994 case NOT:
10995 /* The following rules apply only to scalars. */
10996 if (shift_mode != shift_unit_mode)
10997 break;
10998
10999 /* Make this fit the case below. */
11000 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
11001 continue;
11002
11003 case IOR:
11004 case AND:
11005 case XOR:
11006 /* The following rules apply only to scalars. */
11007 if (shift_mode != shift_unit_mode)
11008 break;
11009 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11010 int_result_mode = as_a <scalar_int_mode> (result_mode);
11011
11012 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
11013 with C the size of VAROP - 1 and the shift is logical if
11014 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11015 we have an (le X 0) operation. If we have an arithmetic shift
11016 and STORE_FLAG_VALUE is 1 or we have a logical shift with
11017 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
11018
11019 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
11020 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
11021 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11022 && (code == LSHIFTRT || code == ASHIFTRT)
11023 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11024 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11025 {
11026 count = 0;
11027 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
11028 const0_rtx);
11029
11030 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11031 varop = gen_rtx_NEG (int_varop_mode, varop);
11032
11033 continue;
11034 }
11035
11036 /* If we have (shift (logical)), move the logical to the outside
11037 to allow it to possibly combine with another logical and the
11038 shift to combine with another shift. This also canonicalizes to
11039 what a ZERO_EXTRACT looks like. Also, some machines have
11040 (and (shift)) insns. */
11041
11042 if (CONST_INT_P (XEXP (varop, 1))
11043 /* We can't do this if we have (ashiftrt (xor)) and the
11044 constant has its sign bit set in shift_unit_mode with
11045 shift_unit_mode wider than result_mode. */
11046 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11047 && int_result_mode != shift_unit_mode
11048 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11049 shift_unit_mode) < 0)
11050 && (new_rtx = simplify_const_binary_operation
11051 (code, int_result_mode,
11052 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11053 gen_int_shift_amount (int_result_mode, count))) != 0
11054 && CONST_INT_P (new_rtx)
11055 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
11056 INTVAL (new_rtx), int_result_mode,
11057 &complement_p))
11058 {
11059 varop = XEXP (varop, 0);
11060 continue;
11061 }
11062
11063 /* If we can't do that, try to simplify the shift in each arm of the
11064 logical expression, make a new logical expression, and apply
11065 the inverse distributive law. This also can't be done for
11066 (ashiftrt (xor)) where we've widened the shift and the constant
11067 changes the sign bit. */
11068 if (CONST_INT_P (XEXP (varop, 1))
11069 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11070 && int_result_mode != shift_unit_mode
11071 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11072 shift_unit_mode) < 0))
11073 {
11074 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11075 XEXP (varop, 0), count);
11076 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11077 XEXP (varop, 1), count);
11078
11079 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11080 lhs, rhs);
11081 varop = apply_distributive_law (varop);
11082
11083 count = 0;
11084 continue;
11085 }
11086 break;
11087
11088 case EQ:
11089 /* The following rules apply only to scalars. */
11090 if (shift_mode != shift_unit_mode)
11091 break;
11092 int_result_mode = as_a <scalar_int_mode> (result_mode);
11093
11094 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11095 says that the sign bit can be tested, FOO has mode MODE, C is
11096 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11097 that may be nonzero. */
11098 if (code == LSHIFTRT
11099 && XEXP (varop, 1) == const0_rtx
11100 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11101 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11102 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11103 && STORE_FLAG_VALUE == -1
11104 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11105 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11106 int_result_mode, &complement_p))
11107 {
11108 varop = XEXP (varop, 0);
11109 count = 0;
11110 continue;
11111 }
11112 break;
11113
11114 case NEG:
11115 /* The following rules apply only to scalars. */
11116 if (shift_mode != shift_unit_mode)
11117 break;
11118 int_result_mode = as_a <scalar_int_mode> (result_mode);
11119
11120 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11121 than the number of bits in the mode is equivalent to A. */
11122 if (code == LSHIFTRT
11123 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11124 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11125 {
11126 varop = XEXP (varop, 0);
11127 count = 0;
11128 continue;
11129 }
11130
11131 /* NEG commutes with ASHIFT since it is multiplication. Move the
11132 NEG outside to allow shifts to combine. */
11133 if (code == ASHIFT
11134 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11135 int_result_mode, &complement_p))
11136 {
11137 varop = XEXP (varop, 0);
11138 continue;
11139 }
11140 break;
11141
11142 case PLUS:
11143 /* The following rules apply only to scalars. */
11144 if (shift_mode != shift_unit_mode)
11145 break;
11146 int_result_mode = as_a <scalar_int_mode> (result_mode);
11147
11148 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11149 is one less than the number of bits in the mode is
11150 equivalent to (xor A 1). */
11151 if (code == LSHIFTRT
11152 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11153 && XEXP (varop, 1) == constm1_rtx
11154 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11155 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11156 int_result_mode, &complement_p))
11157 {
11158 count = 0;
11159 varop = XEXP (varop, 0);
11160 continue;
11161 }
11162
11163 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11164 that might be nonzero in BAR are those being shifted out and those
11165 bits are known zero in FOO, we can replace the PLUS with FOO.
11166 Similarly in the other operand order. This code occurs when
11167 we are computing the size of a variable-size array. */
11168
11169 if ((code == ASHIFTRT || code == LSHIFTRT)
11170 && count < HOST_BITS_PER_WIDE_INT
11171 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11172 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11173 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11174 {
11175 varop = XEXP (varop, 0);
11176 continue;
11177 }
11178 else if ((code == ASHIFTRT || code == LSHIFTRT)
11179 && count < HOST_BITS_PER_WIDE_INT
11180 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11181 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11182 >> count) == 0
11183 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11184 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11185 {
11186 varop = XEXP (varop, 1);
11187 continue;
11188 }
11189
11190 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11191 if (code == ASHIFT
11192 && CONST_INT_P (XEXP (varop, 1))
11193 && (new_rtx = simplify_const_binary_operation
11194 (ASHIFT, int_result_mode,
11195 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11196 gen_int_shift_amount (int_result_mode, count))) != 0
11197 && CONST_INT_P (new_rtx)
11198 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11199 INTVAL (new_rtx), int_result_mode,
11200 &complement_p))
11201 {
11202 varop = XEXP (varop, 0);
11203 continue;
11204 }
11205
11206 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11207 signbit', and attempt to change the PLUS to an XOR and move it to
11208 the outer operation as is done above in the AND/IOR/XOR case
11209 leg for shift(logical). See details in logical handling above
11210 for reasoning in doing so. */
11211 if (code == LSHIFTRT
11212 && CONST_INT_P (XEXP (varop, 1))
11213 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11214 && (new_rtx = simplify_const_binary_operation
11215 (code, int_result_mode,
11216 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11217 gen_int_shift_amount (int_result_mode, count))) != 0
11218 && CONST_INT_P (new_rtx)
11219 && merge_outer_ops (&outer_op, &outer_const, XOR,
11220 INTVAL (new_rtx), int_result_mode,
11221 &complement_p))
11222 {
11223 varop = XEXP (varop, 0);
11224 continue;
11225 }
11226
11227 break;
11228
11229 case MINUS:
11230 /* The following rules apply only to scalars. */
11231 if (shift_mode != shift_unit_mode)
11232 break;
11233 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11234
11235 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11236 with C the size of VAROP - 1 and the shift is logical if
11237 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11238 we have a (gt X 0) operation. If the shift is arithmetic with
11239 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11240 we have a (neg (gt X 0)) operation. */
11241
11242 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11243 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11244 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11245 && (code == LSHIFTRT || code == ASHIFTRT)
11246 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11247 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11248 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11249 {
11250 count = 0;
11251 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11252 const0_rtx);
11253
11254 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11255 varop = gen_rtx_NEG (int_varop_mode, varop);
11256
11257 continue;
11258 }
11259 break;
11260
11261 case TRUNCATE:
11262 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11263 if the truncate does not affect the value. */
11264 if (code == LSHIFTRT
11265 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11266 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11267 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11268 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11269 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11270 {
11271 rtx varop_inner = XEXP (varop, 0);
11272 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11273 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11274 new_count);
11275 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11276 XEXP (varop_inner, 0),
11277 new_count_rtx);
11278 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11279 count = 0;
11280 continue;
11281 }
11282 break;
11283
11284 default:
11285 break;
11286 }
11287
11288 break;
11289 }
11290
11291 shift_mode = result_mode;
11292 if (shift_mode != mode)
11293 {
11294 /* We only change the modes of scalar shifts. */
11295 int_mode = as_a <scalar_int_mode> (mode);
11296 int_result_mode = as_a <scalar_int_mode> (result_mode);
11297 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11298 int_mode, outer_op, outer_const);
11299 }
11300
11301 /* We have now finished analyzing the shift. The result should be
11302 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11303 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11304 to the result of the shift. OUTER_CONST is the relevant constant,
11305 but we must turn off all bits turned off in the shift. */
11306
11307 if (outer_op == UNKNOWN
11308 && orig_code == code && orig_count == count
11309 && varop == orig_varop
11310 && shift_mode == GET_MODE (varop))
11311 return NULL_RTX;
11312
11313 /* Make a SUBREG if necessary. If we can't make it, fail. */
11314 varop = gen_lowpart (shift_mode, varop);
11315 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11316 return NULL_RTX;
11317
11318 /* If we have an outer operation and we just made a shift, it is
11319 possible that we could have simplified the shift were it not
11320 for the outer operation. So try to do the simplification
11321 recursively. */
11322
11323 if (outer_op != UNKNOWN)
11324 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11325 else
11326 x = NULL_RTX;
11327
11328 if (x == NULL_RTX)
11329 x = simplify_gen_binary (code, shift_mode, varop,
11330 gen_int_shift_amount (shift_mode, count));
11331
11332 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11333 turn off all the bits that the shift would have turned off. */
11334 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11335 /* We only change the modes of scalar shifts. */
11336 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11337 x, GET_MODE_MASK (result_mode) >> orig_count);
11338
11339 /* Do the remainder of the processing in RESULT_MODE. */
11340 x = gen_lowpart_or_truncate (result_mode, x);
11341
11342 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11343 operation. */
11344 if (complement_p)
11345 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11346
11347 if (outer_op != UNKNOWN)
11348 {
11349 int_result_mode = as_a <scalar_int_mode> (result_mode);
11350
11351 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11352 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11353 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11354
11355 if (outer_op == AND)
11356 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11357 else if (outer_op == SET)
11358 {
11359 /* This means that we have determined that the result is
11360 equivalent to a constant. This should be rare. */
11361 if (!side_effects_p (x))
11362 x = GEN_INT (outer_const);
11363 }
11364 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11365 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11366 else
11367 x = simplify_gen_binary (outer_op, int_result_mode, x,
11368 GEN_INT (outer_const));
11369 }
11370
11371 return x;
11372 }
11373
11374 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11375 The result of the shift is RESULT_MODE. If we cannot simplify it,
11376 return X or, if it is NULL, synthesize the expression with
11377 simplify_gen_binary. Otherwise, return a simplified value.
11378
11379 The shift is normally computed in the widest mode we find in VAROP, as
11380 long as it isn't a different number of words than RESULT_MODE. Exceptions
11381 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11382
11383 static rtx
11384 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11385 rtx varop, int count)
11386 {
11387 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11388 if (tem)
11389 return tem;
11390
11391 if (!x)
11392 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11393 gen_int_shift_amount (GET_MODE (varop), count));
11394 if (GET_MODE (x) != result_mode)
11395 x = gen_lowpart (result_mode, x);
11396 return x;
11397 }
11398
11399 \f
11400 /* A subroutine of recog_for_combine. See there for arguments and
11401 return value. */
11402
11403 static int
11404 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11405 {
11406 rtx pat = *pnewpat;
11407 rtx pat_without_clobbers;
11408 int insn_code_number;
11409 int num_clobbers_to_add = 0;
11410 int i;
11411 rtx notes = NULL_RTX;
11412 rtx old_notes, old_pat;
11413 int old_icode;
11414
11415 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11416 we use to indicate that something didn't match. If we find such a
11417 thing, force rejection. */
11418 if (GET_CODE (pat) == PARALLEL)
11419 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11420 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11421 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11422 return -1;
11423
11424 old_pat = PATTERN (insn);
11425 old_notes = REG_NOTES (insn);
11426 PATTERN (insn) = pat;
11427 REG_NOTES (insn) = NULL_RTX;
11428
11429 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11430 if (dump_file && (dump_flags & TDF_DETAILS))
11431 {
11432 if (insn_code_number < 0)
11433 fputs ("Failed to match this instruction:\n", dump_file);
11434 else
11435 fputs ("Successfully matched this instruction:\n", dump_file);
11436 print_rtl_single (dump_file, pat);
11437 }
11438
11439 /* If it isn't, there is the possibility that we previously had an insn
11440 that clobbered some register as a side effect, but the combined
11441 insn doesn't need to do that. So try once more without the clobbers
11442 unless this represents an ASM insn. */
11443
11444 if (insn_code_number < 0 && ! check_asm_operands (pat)
11445 && GET_CODE (pat) == PARALLEL)
11446 {
11447 int pos;
11448
11449 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11450 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11451 {
11452 if (i != pos)
11453 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11454 pos++;
11455 }
11456
11457 SUBST_INT (XVECLEN (pat, 0), pos);
11458
11459 if (pos == 1)
11460 pat = XVECEXP (pat, 0, 0);
11461
11462 PATTERN (insn) = pat;
11463 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11464 if (dump_file && (dump_flags & TDF_DETAILS))
11465 {
11466 if (insn_code_number < 0)
11467 fputs ("Failed to match this instruction:\n", dump_file);
11468 else
11469 fputs ("Successfully matched this instruction:\n", dump_file);
11470 print_rtl_single (dump_file, pat);
11471 }
11472 }
11473
11474 pat_without_clobbers = pat;
11475
11476 PATTERN (insn) = old_pat;
11477 REG_NOTES (insn) = old_notes;
11478
11479 /* Recognize all noop sets, these will be killed by followup pass. */
11480 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11481 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11482
11483 /* If we had any clobbers to add, make a new pattern than contains
11484 them. Then check to make sure that all of them are dead. */
11485 if (num_clobbers_to_add)
11486 {
11487 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11488 rtvec_alloc (GET_CODE (pat) == PARALLEL
11489 ? (XVECLEN (pat, 0)
11490 + num_clobbers_to_add)
11491 : num_clobbers_to_add + 1));
11492
11493 if (GET_CODE (pat) == PARALLEL)
11494 for (i = 0; i < XVECLEN (pat, 0); i++)
11495 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11496 else
11497 XVECEXP (newpat, 0, 0) = pat;
11498
11499 add_clobbers (newpat, insn_code_number);
11500
11501 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11502 i < XVECLEN (newpat, 0); i++)
11503 {
11504 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11505 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11506 return -1;
11507 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11508 {
11509 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11510 notes = alloc_reg_note (REG_UNUSED,
11511 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11512 }
11513 }
11514 pat = newpat;
11515 }
11516
11517 if (insn_code_number >= 0
11518 && insn_code_number != NOOP_MOVE_INSN_CODE)
11519 {
11520 old_pat = PATTERN (insn);
11521 old_notes = REG_NOTES (insn);
11522 old_icode = INSN_CODE (insn);
11523 PATTERN (insn) = pat;
11524 REG_NOTES (insn) = notes;
11525 INSN_CODE (insn) = insn_code_number;
11526
11527 /* Allow targets to reject combined insn. */
11528 if (!targetm.legitimate_combined_insn (insn))
11529 {
11530 if (dump_file && (dump_flags & TDF_DETAILS))
11531 fputs ("Instruction not appropriate for target.",
11532 dump_file);
11533
11534 /* Callers expect recog_for_combine to strip
11535 clobbers from the pattern on failure. */
11536 pat = pat_without_clobbers;
11537 notes = NULL_RTX;
11538
11539 insn_code_number = -1;
11540 }
11541
11542 PATTERN (insn) = old_pat;
11543 REG_NOTES (insn) = old_notes;
11544 INSN_CODE (insn) = old_icode;
11545 }
11546
11547 *pnewpat = pat;
11548 *pnotes = notes;
11549
11550 return insn_code_number;
11551 }
11552
11553 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11554 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11555 Return whether anything was so changed. */
11556
11557 static bool
11558 change_zero_ext (rtx pat)
11559 {
11560 bool changed = false;
11561 rtx *src = &SET_SRC (pat);
11562
11563 subrtx_ptr_iterator::array_type array;
11564 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11565 {
11566 rtx x = **iter;
11567 scalar_int_mode mode, inner_mode;
11568 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11569 continue;
11570 int size;
11571
11572 if (GET_CODE (x) == ZERO_EXTRACT
11573 && CONST_INT_P (XEXP (x, 1))
11574 && CONST_INT_P (XEXP (x, 2))
11575 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11576 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11577 {
11578 size = INTVAL (XEXP (x, 1));
11579
11580 int start = INTVAL (XEXP (x, 2));
11581 if (BITS_BIG_ENDIAN)
11582 start = GET_MODE_PRECISION (inner_mode) - size - start;
11583
11584 if (start != 0)
11585 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11586 gen_int_shift_amount (inner_mode, start));
11587 else
11588 x = XEXP (x, 0);
11589
11590 if (mode != inner_mode)
11591 {
11592 if (REG_P (x) && HARD_REGISTER_P (x)
11593 && !can_change_dest_mode (x, 0, mode))
11594 continue;
11595
11596 x = gen_lowpart_SUBREG (mode, x);
11597 }
11598 }
11599 else if (GET_CODE (x) == ZERO_EXTEND
11600 && GET_CODE (XEXP (x, 0)) == SUBREG
11601 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11602 && !paradoxical_subreg_p (XEXP (x, 0))
11603 && subreg_lowpart_p (XEXP (x, 0)))
11604 {
11605 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11606 size = GET_MODE_PRECISION (inner_mode);
11607 x = SUBREG_REG (XEXP (x, 0));
11608 if (GET_MODE (x) != mode)
11609 {
11610 if (REG_P (x) && HARD_REGISTER_P (x)
11611 && !can_change_dest_mode (x, 0, mode))
11612 continue;
11613
11614 x = gen_lowpart_SUBREG (mode, x);
11615 }
11616 }
11617 else if (GET_CODE (x) == ZERO_EXTEND
11618 && REG_P (XEXP (x, 0))
11619 && HARD_REGISTER_P (XEXP (x, 0))
11620 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11621 {
11622 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11623 size = GET_MODE_PRECISION (inner_mode);
11624 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11625 }
11626 else
11627 continue;
11628
11629 if (!(GET_CODE (x) == LSHIFTRT
11630 && CONST_INT_P (XEXP (x, 1))
11631 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11632 {
11633 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11634 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11635 }
11636
11637 SUBST (**iter, x);
11638 changed = true;
11639 }
11640
11641 if (changed)
11642 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11643 maybe_swap_commutative_operands (**iter);
11644
11645 rtx *dst = &SET_DEST (pat);
11646 scalar_int_mode mode;
11647 if (GET_CODE (*dst) == ZERO_EXTRACT
11648 && REG_P (XEXP (*dst, 0))
11649 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11650 && CONST_INT_P (XEXP (*dst, 1))
11651 && CONST_INT_P (XEXP (*dst, 2)))
11652 {
11653 rtx reg = XEXP (*dst, 0);
11654 int width = INTVAL (XEXP (*dst, 1));
11655 int offset = INTVAL (XEXP (*dst, 2));
11656 int reg_width = GET_MODE_PRECISION (mode);
11657 if (BITS_BIG_ENDIAN)
11658 offset = reg_width - width - offset;
11659
11660 rtx x, y, z, w;
11661 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11662 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11663 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11664 if (offset)
11665 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11666 else
11667 y = SET_SRC (pat);
11668 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11669 w = gen_rtx_IOR (mode, x, z);
11670 SUBST (SET_DEST (pat), reg);
11671 SUBST (SET_SRC (pat), w);
11672
11673 changed = true;
11674 }
11675
11676 return changed;
11677 }
11678
11679 /* Like recog, but we receive the address of a pointer to a new pattern.
11680 We try to match the rtx that the pointer points to.
11681 If that fails, we may try to modify or replace the pattern,
11682 storing the replacement into the same pointer object.
11683
11684 Modifications include deletion or addition of CLOBBERs. If the
11685 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11686 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11687 (and undo if that fails).
11688
11689 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11690 the CLOBBERs are placed.
11691
11692 The value is the final insn code from the pattern ultimately matched,
11693 or -1. */
11694
11695 static int
11696 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11697 {
11698 rtx pat = *pnewpat;
11699 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11700 if (insn_code_number >= 0 || check_asm_operands (pat))
11701 return insn_code_number;
11702
11703 void *marker = get_undo_marker ();
11704 bool changed = false;
11705
11706 if (GET_CODE (pat) == SET)
11707 changed = change_zero_ext (pat);
11708 else if (GET_CODE (pat) == PARALLEL)
11709 {
11710 int i;
11711 for (i = 0; i < XVECLEN (pat, 0); i++)
11712 {
11713 rtx set = XVECEXP (pat, 0, i);
11714 if (GET_CODE (set) == SET)
11715 changed |= change_zero_ext (set);
11716 }
11717 }
11718
11719 if (changed)
11720 {
11721 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11722
11723 if (insn_code_number < 0)
11724 undo_to_marker (marker);
11725 }
11726
11727 return insn_code_number;
11728 }
11729 \f
11730 /* Like gen_lowpart_general but for use by combine. In combine it
11731 is not possible to create any new pseudoregs. However, it is
11732 safe to create invalid memory addresses, because combine will
11733 try to recognize them and all they will do is make the combine
11734 attempt fail.
11735
11736 If for some reason this cannot do its job, an rtx
11737 (clobber (const_int 0)) is returned.
11738 An insn containing that will not be recognized. */
11739
11740 static rtx
11741 gen_lowpart_for_combine (machine_mode omode, rtx x)
11742 {
11743 machine_mode imode = GET_MODE (x);
11744 rtx result;
11745
11746 if (omode == imode)
11747 return x;
11748
11749 /* We can only support MODE being wider than a word if X is a
11750 constant integer or has a mode the same size. */
11751 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11752 && ! (CONST_SCALAR_INT_P (x)
11753 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11754 goto fail;
11755
11756 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11757 won't know what to do. So we will strip off the SUBREG here and
11758 process normally. */
11759 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11760 {
11761 x = SUBREG_REG (x);
11762
11763 /* For use in case we fall down into the address adjustments
11764 further below, we need to adjust the known mode and size of
11765 x; imode and isize, since we just adjusted x. */
11766 imode = GET_MODE (x);
11767
11768 if (imode == omode)
11769 return x;
11770 }
11771
11772 result = gen_lowpart_common (omode, x);
11773
11774 if (result)
11775 return result;
11776
11777 if (MEM_P (x))
11778 {
11779 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11780 address. */
11781 if (MEM_VOLATILE_P (x)
11782 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11783 goto fail;
11784
11785 /* If we want to refer to something bigger than the original memref,
11786 generate a paradoxical subreg instead. That will force a reload
11787 of the original memref X. */
11788 if (paradoxical_subreg_p (omode, imode))
11789 return gen_rtx_SUBREG (omode, x, 0);
11790
11791 poly_int64 offset = byte_lowpart_offset (omode, imode);
11792 return adjust_address_nv (x, omode, offset);
11793 }
11794
11795 /* If X is a comparison operator, rewrite it in a new mode. This
11796 probably won't match, but may allow further simplifications. */
11797 else if (COMPARISON_P (x))
11798 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11799
11800 /* If we couldn't simplify X any other way, just enclose it in a
11801 SUBREG. Normally, this SUBREG won't match, but some patterns may
11802 include an explicit SUBREG or we may simplify it further in combine. */
11803 else
11804 {
11805 rtx res;
11806
11807 if (imode == VOIDmode)
11808 {
11809 imode = int_mode_for_mode (omode).require ();
11810 x = gen_lowpart_common (imode, x);
11811 if (x == NULL)
11812 goto fail;
11813 }
11814 res = lowpart_subreg (omode, x, imode);
11815 if (res)
11816 return res;
11817 }
11818
11819 fail:
11820 return gen_rtx_CLOBBER (omode, const0_rtx);
11821 }
11822 \f
11823 /* Try to simplify a comparison between OP0 and a constant OP1,
11824 where CODE is the comparison code that will be tested, into a
11825 (CODE OP0 const0_rtx) form.
11826
11827 The result is a possibly different comparison code to use.
11828 *POP1 may be updated. */
11829
11830 static enum rtx_code
11831 simplify_compare_const (enum rtx_code code, machine_mode mode,
11832 rtx op0, rtx *pop1)
11833 {
11834 scalar_int_mode int_mode;
11835 HOST_WIDE_INT const_op = INTVAL (*pop1);
11836
11837 /* Get the constant we are comparing against and turn off all bits
11838 not on in our mode. */
11839 if (mode != VOIDmode)
11840 const_op = trunc_int_for_mode (const_op, mode);
11841
11842 /* If we are comparing against a constant power of two and the value
11843 being compared can only have that single bit nonzero (e.g., it was
11844 `and'ed with that bit), we can replace this with a comparison
11845 with zero. */
11846 if (const_op
11847 && (code == EQ || code == NE || code == GE || code == GEU
11848 || code == LT || code == LTU)
11849 && is_a <scalar_int_mode> (mode, &int_mode)
11850 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11851 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11852 && (nonzero_bits (op0, int_mode)
11853 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11854 {
11855 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11856 const_op = 0;
11857 }
11858
11859 /* Similarly, if we are comparing a value known to be either -1 or
11860 0 with -1, change it to the opposite comparison against zero. */
11861 if (const_op == -1
11862 && (code == EQ || code == NE || code == GT || code == LE
11863 || code == GEU || code == LTU)
11864 && is_a <scalar_int_mode> (mode, &int_mode)
11865 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11866 {
11867 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11868 const_op = 0;
11869 }
11870
11871 /* Do some canonicalizations based on the comparison code. We prefer
11872 comparisons against zero and then prefer equality comparisons.
11873 If we can reduce the size of a constant, we will do that too. */
11874 switch (code)
11875 {
11876 case LT:
11877 /* < C is equivalent to <= (C - 1) */
11878 if (const_op > 0)
11879 {
11880 const_op -= 1;
11881 code = LE;
11882 /* ... fall through to LE case below. */
11883 gcc_fallthrough ();
11884 }
11885 else
11886 break;
11887
11888 case LE:
11889 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11890 if (const_op < 0)
11891 {
11892 const_op += 1;
11893 code = LT;
11894 }
11895
11896 /* If we are doing a <= 0 comparison on a value known to have
11897 a zero sign bit, we can replace this with == 0. */
11898 else if (const_op == 0
11899 && is_a <scalar_int_mode> (mode, &int_mode)
11900 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11901 && (nonzero_bits (op0, int_mode)
11902 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11903 == 0)
11904 code = EQ;
11905 break;
11906
11907 case GE:
11908 /* >= C is equivalent to > (C - 1). */
11909 if (const_op > 0)
11910 {
11911 const_op -= 1;
11912 code = GT;
11913 /* ... fall through to GT below. */
11914 gcc_fallthrough ();
11915 }
11916 else
11917 break;
11918
11919 case GT:
11920 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11921 if (const_op < 0)
11922 {
11923 const_op += 1;
11924 code = GE;
11925 }
11926
11927 /* If we are doing a > 0 comparison on a value known to have
11928 a zero sign bit, we can replace this with != 0. */
11929 else if (const_op == 0
11930 && is_a <scalar_int_mode> (mode, &int_mode)
11931 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11932 && (nonzero_bits (op0, int_mode)
11933 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11934 == 0)
11935 code = NE;
11936 break;
11937
11938 case LTU:
11939 /* < C is equivalent to <= (C - 1). */
11940 if (const_op > 0)
11941 {
11942 const_op -= 1;
11943 code = LEU;
11944 /* ... fall through ... */
11945 gcc_fallthrough ();
11946 }
11947 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11948 else if (is_a <scalar_int_mode> (mode, &int_mode)
11949 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11950 && ((unsigned HOST_WIDE_INT) const_op
11951 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11952 {
11953 const_op = 0;
11954 code = GE;
11955 break;
11956 }
11957 else
11958 break;
11959
11960 case LEU:
11961 /* unsigned <= 0 is equivalent to == 0 */
11962 if (const_op == 0)
11963 code = EQ;
11964 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11965 else if (is_a <scalar_int_mode> (mode, &int_mode)
11966 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11967 && ((unsigned HOST_WIDE_INT) const_op
11968 == ((HOST_WIDE_INT_1U
11969 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11970 {
11971 const_op = 0;
11972 code = GE;
11973 }
11974 break;
11975
11976 case GEU:
11977 /* >= C is equivalent to > (C - 1). */
11978 if (const_op > 1)
11979 {
11980 const_op -= 1;
11981 code = GTU;
11982 /* ... fall through ... */
11983 gcc_fallthrough ();
11984 }
11985
11986 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11987 else if (is_a <scalar_int_mode> (mode, &int_mode)
11988 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11989 && ((unsigned HOST_WIDE_INT) const_op
11990 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11991 {
11992 const_op = 0;
11993 code = LT;
11994 break;
11995 }
11996 else
11997 break;
11998
11999 case GTU:
12000 /* unsigned > 0 is equivalent to != 0 */
12001 if (const_op == 0)
12002 code = NE;
12003 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
12004 else if (is_a <scalar_int_mode> (mode, &int_mode)
12005 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12006 && ((unsigned HOST_WIDE_INT) const_op
12007 == (HOST_WIDE_INT_1U
12008 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
12009 {
12010 const_op = 0;
12011 code = LT;
12012 }
12013 break;
12014
12015 default:
12016 break;
12017 }
12018
12019 *pop1 = GEN_INT (const_op);
12020 return code;
12021 }
12022 \f
12023 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
12024 comparison code that will be tested.
12025
12026 The result is a possibly different comparison code to use. *POP0 and
12027 *POP1 may be updated.
12028
12029 It is possible that we might detect that a comparison is either always
12030 true or always false. However, we do not perform general constant
12031 folding in combine, so this knowledge isn't useful. Such tautologies
12032 should have been detected earlier. Hence we ignore all such cases. */
12033
12034 static enum rtx_code
12035 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12036 {
12037 rtx op0 = *pop0;
12038 rtx op1 = *pop1;
12039 rtx tem, tem1;
12040 int i;
12041 scalar_int_mode mode, inner_mode, tmode;
12042 opt_scalar_int_mode tmode_iter;
12043
12044 /* Try a few ways of applying the same transformation to both operands. */
12045 while (1)
12046 {
12047 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12048 so check specially. */
12049 if (!WORD_REGISTER_OPERATIONS
12050 && code != GTU && code != GEU && code != LTU && code != LEU
12051 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12052 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12053 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12054 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12055 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12056 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
12057 && (is_a <scalar_int_mode>
12058 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
12059 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12060 && CONST_INT_P (XEXP (op0, 1))
12061 && XEXP (op0, 1) == XEXP (op1, 1)
12062 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12063 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12064 && (INTVAL (XEXP (op0, 1))
12065 == (GET_MODE_PRECISION (mode)
12066 - GET_MODE_PRECISION (inner_mode))))
12067 {
12068 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12069 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12070 }
12071
12072 /* If both operands are the same constant shift, see if we can ignore the
12073 shift. We can if the shift is a rotate or if the bits shifted out of
12074 this shift are known to be zero for both inputs and if the type of
12075 comparison is compatible with the shift. */
12076 if (GET_CODE (op0) == GET_CODE (op1)
12077 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12078 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12079 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12080 && (code != GT && code != LT && code != GE && code != LE))
12081 || (GET_CODE (op0) == ASHIFTRT
12082 && (code != GTU && code != LTU
12083 && code != GEU && code != LEU)))
12084 && CONST_INT_P (XEXP (op0, 1))
12085 && INTVAL (XEXP (op0, 1)) >= 0
12086 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12087 && XEXP (op0, 1) == XEXP (op1, 1))
12088 {
12089 machine_mode mode = GET_MODE (op0);
12090 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12091 int shift_count = INTVAL (XEXP (op0, 1));
12092
12093 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12094 mask &= (mask >> shift_count) << shift_count;
12095 else if (GET_CODE (op0) == ASHIFT)
12096 mask = (mask & (mask << shift_count)) >> shift_count;
12097
12098 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12099 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12100 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12101 else
12102 break;
12103 }
12104
12105 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12106 SUBREGs are of the same mode, and, in both cases, the AND would
12107 be redundant if the comparison was done in the narrower mode,
12108 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12109 and the operand's possibly nonzero bits are 0xffffff01; in that case
12110 if we only care about QImode, we don't need the AND). This case
12111 occurs if the output mode of an scc insn is not SImode and
12112 STORE_FLAG_VALUE == 1 (e.g., the 386).
12113
12114 Similarly, check for a case where the AND's are ZERO_EXTEND
12115 operations from some narrower mode even though a SUBREG is not
12116 present. */
12117
12118 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12119 && CONST_INT_P (XEXP (op0, 1))
12120 && CONST_INT_P (XEXP (op1, 1)))
12121 {
12122 rtx inner_op0 = XEXP (op0, 0);
12123 rtx inner_op1 = XEXP (op1, 0);
12124 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12125 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12126 int changed = 0;
12127
12128 if (paradoxical_subreg_p (inner_op0)
12129 && GET_CODE (inner_op1) == SUBREG
12130 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12131 && (GET_MODE (SUBREG_REG (inner_op0))
12132 == GET_MODE (SUBREG_REG (inner_op1)))
12133 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12134 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12135 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12136 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12137 {
12138 op0 = SUBREG_REG (inner_op0);
12139 op1 = SUBREG_REG (inner_op1);
12140
12141 /* The resulting comparison is always unsigned since we masked
12142 off the original sign bit. */
12143 code = unsigned_condition (code);
12144
12145 changed = 1;
12146 }
12147
12148 else if (c0 == c1)
12149 FOR_EACH_MODE_UNTIL (tmode,
12150 as_a <scalar_int_mode> (GET_MODE (op0)))
12151 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12152 {
12153 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12154 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12155 code = unsigned_condition (code);
12156 changed = 1;
12157 break;
12158 }
12159
12160 if (! changed)
12161 break;
12162 }
12163
12164 /* If both operands are NOT, we can strip off the outer operation
12165 and adjust the comparison code for swapped operands; similarly for
12166 NEG, except that this must be an equality comparison. */
12167 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12168 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12169 && (code == EQ || code == NE)))
12170 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12171
12172 else
12173 break;
12174 }
12175
12176 /* If the first operand is a constant, swap the operands and adjust the
12177 comparison code appropriately, but don't do this if the second operand
12178 is already a constant integer. */
12179 if (swap_commutative_operands_p (op0, op1))
12180 {
12181 std::swap (op0, op1);
12182 code = swap_condition (code);
12183 }
12184
12185 /* We now enter a loop during which we will try to simplify the comparison.
12186 For the most part, we only are concerned with comparisons with zero,
12187 but some things may really be comparisons with zero but not start
12188 out looking that way. */
12189
12190 while (CONST_INT_P (op1))
12191 {
12192 machine_mode raw_mode = GET_MODE (op0);
12193 scalar_int_mode int_mode;
12194 int equality_comparison_p;
12195 int sign_bit_comparison_p;
12196 int unsigned_comparison_p;
12197 HOST_WIDE_INT const_op;
12198
12199 /* We only want to handle integral modes. This catches VOIDmode,
12200 CCmode, and the floating-point modes. An exception is that we
12201 can handle VOIDmode if OP0 is a COMPARE or a comparison
12202 operation. */
12203
12204 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12205 && ! (raw_mode == VOIDmode
12206 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12207 break;
12208
12209 /* Try to simplify the compare to constant, possibly changing the
12210 comparison op, and/or changing op1 to zero. */
12211 code = simplify_compare_const (code, raw_mode, op0, &op1);
12212 const_op = INTVAL (op1);
12213
12214 /* Compute some predicates to simplify code below. */
12215
12216 equality_comparison_p = (code == EQ || code == NE);
12217 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12218 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12219 || code == GEU);
12220
12221 /* If this is a sign bit comparison and we can do arithmetic in
12222 MODE, say that we will only be needing the sign bit of OP0. */
12223 if (sign_bit_comparison_p
12224 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12225 && HWI_COMPUTABLE_MODE_P (int_mode))
12226 op0 = force_to_mode (op0, int_mode,
12227 HOST_WIDE_INT_1U
12228 << (GET_MODE_PRECISION (int_mode) - 1),
12229 0);
12230
12231 if (COMPARISON_P (op0))
12232 {
12233 /* We can't do anything if OP0 is a condition code value, rather
12234 than an actual data value. */
12235 if (const_op != 0
12236 || CC0_P (XEXP (op0, 0))
12237 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12238 break;
12239
12240 /* Get the two operands being compared. */
12241 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12242 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12243 else
12244 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12245
12246 /* Check for the cases where we simply want the result of the
12247 earlier test or the opposite of that result. */
12248 if (code == NE || code == EQ
12249 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12250 && (code == LT || code == GE)))
12251 {
12252 enum rtx_code new_code;
12253 if (code == LT || code == NE)
12254 new_code = GET_CODE (op0);
12255 else
12256 new_code = reversed_comparison_code (op0, NULL);
12257
12258 if (new_code != UNKNOWN)
12259 {
12260 code = new_code;
12261 op0 = tem;
12262 op1 = tem1;
12263 continue;
12264 }
12265 }
12266 break;
12267 }
12268
12269 if (raw_mode == VOIDmode)
12270 break;
12271 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12272
12273 /* Now try cases based on the opcode of OP0. If none of the cases
12274 does a "continue", we exit this loop immediately after the
12275 switch. */
12276
12277 unsigned int mode_width = GET_MODE_PRECISION (mode);
12278 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12279 switch (GET_CODE (op0))
12280 {
12281 case ZERO_EXTRACT:
12282 /* If we are extracting a single bit from a variable position in
12283 a constant that has only a single bit set and are comparing it
12284 with zero, we can convert this into an equality comparison
12285 between the position and the location of the single bit. */
12286 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12287 have already reduced the shift count modulo the word size. */
12288 if (!SHIFT_COUNT_TRUNCATED
12289 && CONST_INT_P (XEXP (op0, 0))
12290 && XEXP (op0, 1) == const1_rtx
12291 && equality_comparison_p && const_op == 0
12292 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12293 {
12294 if (BITS_BIG_ENDIAN)
12295 i = BITS_PER_WORD - 1 - i;
12296
12297 op0 = XEXP (op0, 2);
12298 op1 = GEN_INT (i);
12299 const_op = i;
12300
12301 /* Result is nonzero iff shift count is equal to I. */
12302 code = reverse_condition (code);
12303 continue;
12304 }
12305
12306 /* fall through */
12307
12308 case SIGN_EXTRACT:
12309 tem = expand_compound_operation (op0);
12310 if (tem != op0)
12311 {
12312 op0 = tem;
12313 continue;
12314 }
12315 break;
12316
12317 case NOT:
12318 /* If testing for equality, we can take the NOT of the constant. */
12319 if (equality_comparison_p
12320 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12321 {
12322 op0 = XEXP (op0, 0);
12323 op1 = tem;
12324 continue;
12325 }
12326
12327 /* If just looking at the sign bit, reverse the sense of the
12328 comparison. */
12329 if (sign_bit_comparison_p)
12330 {
12331 op0 = XEXP (op0, 0);
12332 code = (code == GE ? LT : GE);
12333 continue;
12334 }
12335 break;
12336
12337 case NEG:
12338 /* If testing for equality, we can take the NEG of the constant. */
12339 if (equality_comparison_p
12340 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12341 {
12342 op0 = XEXP (op0, 0);
12343 op1 = tem;
12344 continue;
12345 }
12346
12347 /* The remaining cases only apply to comparisons with zero. */
12348 if (const_op != 0)
12349 break;
12350
12351 /* When X is ABS or is known positive,
12352 (neg X) is < 0 if and only if X != 0. */
12353
12354 if (sign_bit_comparison_p
12355 && (GET_CODE (XEXP (op0, 0)) == ABS
12356 || (mode_width <= HOST_BITS_PER_WIDE_INT
12357 && (nonzero_bits (XEXP (op0, 0), mode)
12358 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12359 == 0)))
12360 {
12361 op0 = XEXP (op0, 0);
12362 code = (code == LT ? NE : EQ);
12363 continue;
12364 }
12365
12366 /* If we have NEG of something whose two high-order bits are the
12367 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12368 if (num_sign_bit_copies (op0, mode) >= 2)
12369 {
12370 op0 = XEXP (op0, 0);
12371 code = swap_condition (code);
12372 continue;
12373 }
12374 break;
12375
12376 case ROTATE:
12377 /* If we are testing equality and our count is a constant, we
12378 can perform the inverse operation on our RHS. */
12379 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12380 && (tem = simplify_binary_operation (ROTATERT, mode,
12381 op1, XEXP (op0, 1))) != 0)
12382 {
12383 op0 = XEXP (op0, 0);
12384 op1 = tem;
12385 continue;
12386 }
12387
12388 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12389 a particular bit. Convert it to an AND of a constant of that
12390 bit. This will be converted into a ZERO_EXTRACT. */
12391 if (const_op == 0 && sign_bit_comparison_p
12392 && CONST_INT_P (XEXP (op0, 1))
12393 && mode_width <= HOST_BITS_PER_WIDE_INT)
12394 {
12395 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12396 (HOST_WIDE_INT_1U
12397 << (mode_width - 1
12398 - INTVAL (XEXP (op0, 1)))));
12399 code = (code == LT ? NE : EQ);
12400 continue;
12401 }
12402
12403 /* Fall through. */
12404
12405 case ABS:
12406 /* ABS is ignorable inside an equality comparison with zero. */
12407 if (const_op == 0 && equality_comparison_p)
12408 {
12409 op0 = XEXP (op0, 0);
12410 continue;
12411 }
12412 break;
12413
12414 case SIGN_EXTEND:
12415 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12416 (compare FOO CONST) if CONST fits in FOO's mode and we
12417 are either testing inequality or have an unsigned
12418 comparison with ZERO_EXTEND or a signed comparison with
12419 SIGN_EXTEND. But don't do it if we don't have a compare
12420 insn of the given mode, since we'd have to revert it
12421 later on, and then we wouldn't know whether to sign- or
12422 zero-extend. */
12423 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12424 && ! unsigned_comparison_p
12425 && HWI_COMPUTABLE_MODE_P (mode)
12426 && trunc_int_for_mode (const_op, mode) == const_op
12427 && have_insn_for (COMPARE, mode))
12428 {
12429 op0 = XEXP (op0, 0);
12430 continue;
12431 }
12432 break;
12433
12434 case SUBREG:
12435 /* Check for the case where we are comparing A - C1 with C2, that is
12436
12437 (subreg:MODE (plus (A) (-C1))) op (C2)
12438
12439 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12440 comparison in the wider mode. One of the following two conditions
12441 must be true in order for this to be valid:
12442
12443 1. The mode extension results in the same bit pattern being added
12444 on both sides and the comparison is equality or unsigned. As
12445 C2 has been truncated to fit in MODE, the pattern can only be
12446 all 0s or all 1s.
12447
12448 2. The mode extension results in the sign bit being copied on
12449 each side.
12450
12451 The difficulty here is that we have predicates for A but not for
12452 (A - C1) so we need to check that C1 is within proper bounds so
12453 as to perturbate A as little as possible. */
12454
12455 if (mode_width <= HOST_BITS_PER_WIDE_INT
12456 && subreg_lowpart_p (op0)
12457 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12458 &inner_mode)
12459 && GET_MODE_PRECISION (inner_mode) > mode_width
12460 && GET_CODE (SUBREG_REG (op0)) == PLUS
12461 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12462 {
12463 rtx a = XEXP (SUBREG_REG (op0), 0);
12464 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12465
12466 if ((c1 > 0
12467 && (unsigned HOST_WIDE_INT) c1
12468 < HOST_WIDE_INT_1U << (mode_width - 1)
12469 && (equality_comparison_p || unsigned_comparison_p)
12470 /* (A - C1) zero-extends if it is positive and sign-extends
12471 if it is negative, C2 both zero- and sign-extends. */
12472 && (((nonzero_bits (a, inner_mode)
12473 & ~GET_MODE_MASK (mode)) == 0
12474 && const_op >= 0)
12475 /* (A - C1) sign-extends if it is positive and 1-extends
12476 if it is negative, C2 both sign- and 1-extends. */
12477 || (num_sign_bit_copies (a, inner_mode)
12478 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12479 - mode_width)
12480 && const_op < 0)))
12481 || ((unsigned HOST_WIDE_INT) c1
12482 < HOST_WIDE_INT_1U << (mode_width - 2)
12483 /* (A - C1) always sign-extends, like C2. */
12484 && num_sign_bit_copies (a, inner_mode)
12485 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12486 - (mode_width - 1))))
12487 {
12488 op0 = SUBREG_REG (op0);
12489 continue;
12490 }
12491 }
12492
12493 /* If the inner mode is narrower and we are extracting the low part,
12494 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12495 if (paradoxical_subreg_p (op0))
12496 ;
12497 else if (subreg_lowpart_p (op0)
12498 && GET_MODE_CLASS (mode) == MODE_INT
12499 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12500 && (code == NE || code == EQ)
12501 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12502 && !paradoxical_subreg_p (op0)
12503 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12504 & ~GET_MODE_MASK (mode)) == 0)
12505 {
12506 /* Remove outer subregs that don't do anything. */
12507 tem = gen_lowpart (inner_mode, op1);
12508
12509 if ((nonzero_bits (tem, inner_mode)
12510 & ~GET_MODE_MASK (mode)) == 0)
12511 {
12512 op0 = SUBREG_REG (op0);
12513 op1 = tem;
12514 continue;
12515 }
12516 break;
12517 }
12518 else
12519 break;
12520
12521 /* FALLTHROUGH */
12522
12523 case ZERO_EXTEND:
12524 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12525 && (unsigned_comparison_p || equality_comparison_p)
12526 && HWI_COMPUTABLE_MODE_P (mode)
12527 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12528 && const_op >= 0
12529 && have_insn_for (COMPARE, mode))
12530 {
12531 op0 = XEXP (op0, 0);
12532 continue;
12533 }
12534 break;
12535
12536 case PLUS:
12537 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12538 this for equality comparisons due to pathological cases involving
12539 overflows. */
12540 if (equality_comparison_p
12541 && (tem = simplify_binary_operation (MINUS, mode,
12542 op1, XEXP (op0, 1))) != 0)
12543 {
12544 op0 = XEXP (op0, 0);
12545 op1 = tem;
12546 continue;
12547 }
12548
12549 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12550 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12551 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12552 {
12553 op0 = XEXP (XEXP (op0, 0), 0);
12554 code = (code == LT ? EQ : NE);
12555 continue;
12556 }
12557 break;
12558
12559 case MINUS:
12560 /* We used to optimize signed comparisons against zero, but that
12561 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12562 arrive here as equality comparisons, or (GEU, LTU) are
12563 optimized away. No need to special-case them. */
12564
12565 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12566 (eq B (minus A C)), whichever simplifies. We can only do
12567 this for equality comparisons due to pathological cases involving
12568 overflows. */
12569 if (equality_comparison_p
12570 && (tem = simplify_binary_operation (PLUS, mode,
12571 XEXP (op0, 1), op1)) != 0)
12572 {
12573 op0 = XEXP (op0, 0);
12574 op1 = tem;
12575 continue;
12576 }
12577
12578 if (equality_comparison_p
12579 && (tem = simplify_binary_operation (MINUS, mode,
12580 XEXP (op0, 0), op1)) != 0)
12581 {
12582 op0 = XEXP (op0, 1);
12583 op1 = tem;
12584 continue;
12585 }
12586
12587 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12588 of bits in X minus 1, is one iff X > 0. */
12589 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12590 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12591 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12592 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12593 {
12594 op0 = XEXP (op0, 1);
12595 code = (code == GE ? LE : GT);
12596 continue;
12597 }
12598 break;
12599
12600 case XOR:
12601 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12602 if C is zero or B is a constant. */
12603 if (equality_comparison_p
12604 && (tem = simplify_binary_operation (XOR, mode,
12605 XEXP (op0, 1), op1)) != 0)
12606 {
12607 op0 = XEXP (op0, 0);
12608 op1 = tem;
12609 continue;
12610 }
12611 break;
12612
12613
12614 case IOR:
12615 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12616 iff X <= 0. */
12617 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12618 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12619 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12620 {
12621 op0 = XEXP (op0, 1);
12622 code = (code == GE ? GT : LE);
12623 continue;
12624 }
12625 break;
12626
12627 case AND:
12628 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12629 will be converted to a ZERO_EXTRACT later. */
12630 if (const_op == 0 && equality_comparison_p
12631 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12632 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12633 {
12634 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12635 XEXP (XEXP (op0, 0), 1));
12636 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12637 continue;
12638 }
12639
12640 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12641 zero and X is a comparison and C1 and C2 describe only bits set
12642 in STORE_FLAG_VALUE, we can compare with X. */
12643 if (const_op == 0 && equality_comparison_p
12644 && mode_width <= HOST_BITS_PER_WIDE_INT
12645 && CONST_INT_P (XEXP (op0, 1))
12646 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12647 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12648 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12649 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12650 {
12651 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12652 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12653 if ((~STORE_FLAG_VALUE & mask) == 0
12654 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12655 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12656 && COMPARISON_P (tem))))
12657 {
12658 op0 = XEXP (XEXP (op0, 0), 0);
12659 continue;
12660 }
12661 }
12662
12663 /* If we are doing an equality comparison of an AND of a bit equal
12664 to the sign bit, replace this with a LT or GE comparison of
12665 the underlying value. */
12666 if (equality_comparison_p
12667 && const_op == 0
12668 && CONST_INT_P (XEXP (op0, 1))
12669 && mode_width <= HOST_BITS_PER_WIDE_INT
12670 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12671 == HOST_WIDE_INT_1U << (mode_width - 1)))
12672 {
12673 op0 = XEXP (op0, 0);
12674 code = (code == EQ ? GE : LT);
12675 continue;
12676 }
12677
12678 /* If this AND operation is really a ZERO_EXTEND from a narrower
12679 mode, the constant fits within that mode, and this is either an
12680 equality or unsigned comparison, try to do this comparison in
12681 the narrower mode.
12682
12683 Note that in:
12684
12685 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12686 -> (ne:DI (reg:SI 4) (const_int 0))
12687
12688 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12689 known to hold a value of the required mode the
12690 transformation is invalid. */
12691 if ((equality_comparison_p || unsigned_comparison_p)
12692 && CONST_INT_P (XEXP (op0, 1))
12693 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12694 & GET_MODE_MASK (mode))
12695 + 1)) >= 0
12696 && const_op >> i == 0
12697 && int_mode_for_size (i, 1).exists (&tmode))
12698 {
12699 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12700 continue;
12701 }
12702
12703 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12704 fits in both M1 and M2 and the SUBREG is either paradoxical
12705 or represents the low part, permute the SUBREG and the AND
12706 and try again. */
12707 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12708 && CONST_INT_P (XEXP (op0, 1)))
12709 {
12710 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12711 /* Require an integral mode, to avoid creating something like
12712 (AND:SF ...). */
12713 if ((is_a <scalar_int_mode>
12714 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12715 /* It is unsafe to commute the AND into the SUBREG if the
12716 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12717 not defined. As originally written the upper bits
12718 have a defined value due to the AND operation.
12719 However, if we commute the AND inside the SUBREG then
12720 they no longer have defined values and the meaning of
12721 the code has been changed.
12722 Also C1 should not change value in the smaller mode,
12723 see PR67028 (a positive C1 can become negative in the
12724 smaller mode, so that the AND does no longer mask the
12725 upper bits). */
12726 && ((WORD_REGISTER_OPERATIONS
12727 && mode_width > GET_MODE_PRECISION (tmode)
12728 && mode_width <= BITS_PER_WORD
12729 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12730 || (mode_width <= GET_MODE_PRECISION (tmode)
12731 && subreg_lowpart_p (XEXP (op0, 0))))
12732 && mode_width <= HOST_BITS_PER_WIDE_INT
12733 && HWI_COMPUTABLE_MODE_P (tmode)
12734 && (c1 & ~mask) == 0
12735 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12736 && c1 != mask
12737 && c1 != GET_MODE_MASK (tmode))
12738 {
12739 op0 = simplify_gen_binary (AND, tmode,
12740 SUBREG_REG (XEXP (op0, 0)),
12741 gen_int_mode (c1, tmode));
12742 op0 = gen_lowpart (mode, op0);
12743 continue;
12744 }
12745 }
12746
12747 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12748 if (const_op == 0 && equality_comparison_p
12749 && XEXP (op0, 1) == const1_rtx
12750 && GET_CODE (XEXP (op0, 0)) == NOT)
12751 {
12752 op0 = simplify_and_const_int (NULL_RTX, mode,
12753 XEXP (XEXP (op0, 0), 0), 1);
12754 code = (code == NE ? EQ : NE);
12755 continue;
12756 }
12757
12758 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12759 (eq (and (lshiftrt X) 1) 0).
12760 Also handle the case where (not X) is expressed using xor. */
12761 if (const_op == 0 && equality_comparison_p
12762 && XEXP (op0, 1) == const1_rtx
12763 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12764 {
12765 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12766 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12767
12768 if (GET_CODE (shift_op) == NOT
12769 || (GET_CODE (shift_op) == XOR
12770 && CONST_INT_P (XEXP (shift_op, 1))
12771 && CONST_INT_P (shift_count)
12772 && HWI_COMPUTABLE_MODE_P (mode)
12773 && (UINTVAL (XEXP (shift_op, 1))
12774 == HOST_WIDE_INT_1U
12775 << INTVAL (shift_count))))
12776 {
12777 op0
12778 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12779 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12780 code = (code == NE ? EQ : NE);
12781 continue;
12782 }
12783 }
12784 break;
12785
12786 case ASHIFT:
12787 /* If we have (compare (ashift FOO N) (const_int C)) and
12788 the high order N bits of FOO (N+1 if an inequality comparison)
12789 are known to be zero, we can do this by comparing FOO with C
12790 shifted right N bits so long as the low-order N bits of C are
12791 zero. */
12792 if (CONST_INT_P (XEXP (op0, 1))
12793 && INTVAL (XEXP (op0, 1)) >= 0
12794 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12795 < HOST_BITS_PER_WIDE_INT)
12796 && (((unsigned HOST_WIDE_INT) const_op
12797 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12798 - 1)) == 0)
12799 && mode_width <= HOST_BITS_PER_WIDE_INT
12800 && (nonzero_bits (XEXP (op0, 0), mode)
12801 & ~(mask >> (INTVAL (XEXP (op0, 1))
12802 + ! equality_comparison_p))) == 0)
12803 {
12804 /* We must perform a logical shift, not an arithmetic one,
12805 as we want the top N bits of C to be zero. */
12806 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12807
12808 temp >>= INTVAL (XEXP (op0, 1));
12809 op1 = gen_int_mode (temp, mode);
12810 op0 = XEXP (op0, 0);
12811 continue;
12812 }
12813
12814 /* If we are doing a sign bit comparison, it means we are testing
12815 a particular bit. Convert it to the appropriate AND. */
12816 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12817 && mode_width <= HOST_BITS_PER_WIDE_INT)
12818 {
12819 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12820 (HOST_WIDE_INT_1U
12821 << (mode_width - 1
12822 - INTVAL (XEXP (op0, 1)))));
12823 code = (code == LT ? NE : EQ);
12824 continue;
12825 }
12826
12827 /* If this an equality comparison with zero and we are shifting
12828 the low bit to the sign bit, we can convert this to an AND of the
12829 low-order bit. */
12830 if (const_op == 0 && equality_comparison_p
12831 && CONST_INT_P (XEXP (op0, 1))
12832 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12833 {
12834 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12835 continue;
12836 }
12837 break;
12838
12839 case ASHIFTRT:
12840 /* If this is an equality comparison with zero, we can do this
12841 as a logical shift, which might be much simpler. */
12842 if (equality_comparison_p && const_op == 0
12843 && CONST_INT_P (XEXP (op0, 1)))
12844 {
12845 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12846 XEXP (op0, 0),
12847 INTVAL (XEXP (op0, 1)));
12848 continue;
12849 }
12850
12851 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12852 do the comparison in a narrower mode. */
12853 if (! unsigned_comparison_p
12854 && CONST_INT_P (XEXP (op0, 1))
12855 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12856 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12857 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12858 .exists (&tmode))
12859 && (((unsigned HOST_WIDE_INT) const_op
12860 + (GET_MODE_MASK (tmode) >> 1) + 1)
12861 <= GET_MODE_MASK (tmode)))
12862 {
12863 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12864 continue;
12865 }
12866
12867 /* Likewise if OP0 is a PLUS of a sign extension with a
12868 constant, which is usually represented with the PLUS
12869 between the shifts. */
12870 if (! unsigned_comparison_p
12871 && CONST_INT_P (XEXP (op0, 1))
12872 && GET_CODE (XEXP (op0, 0)) == PLUS
12873 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12874 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12875 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12876 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12877 .exists (&tmode))
12878 && (((unsigned HOST_WIDE_INT) const_op
12879 + (GET_MODE_MASK (tmode) >> 1) + 1)
12880 <= GET_MODE_MASK (tmode)))
12881 {
12882 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12883 rtx add_const = XEXP (XEXP (op0, 0), 1);
12884 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12885 add_const, XEXP (op0, 1));
12886
12887 op0 = simplify_gen_binary (PLUS, tmode,
12888 gen_lowpart (tmode, inner),
12889 new_const);
12890 continue;
12891 }
12892
12893 /* FALLTHROUGH */
12894 case LSHIFTRT:
12895 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12896 the low order N bits of FOO are known to be zero, we can do this
12897 by comparing FOO with C shifted left N bits so long as no
12898 overflow occurs. Even if the low order N bits of FOO aren't known
12899 to be zero, if the comparison is >= or < we can use the same
12900 optimization and for > or <= by setting all the low
12901 order N bits in the comparison constant. */
12902 if (CONST_INT_P (XEXP (op0, 1))
12903 && INTVAL (XEXP (op0, 1)) > 0
12904 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12905 && mode_width <= HOST_BITS_PER_WIDE_INT
12906 && (((unsigned HOST_WIDE_INT) const_op
12907 + (GET_CODE (op0) != LSHIFTRT
12908 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12909 + 1)
12910 : 0))
12911 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12912 {
12913 unsigned HOST_WIDE_INT low_bits
12914 = (nonzero_bits (XEXP (op0, 0), mode)
12915 & ((HOST_WIDE_INT_1U
12916 << INTVAL (XEXP (op0, 1))) - 1));
12917 if (low_bits == 0 || !equality_comparison_p)
12918 {
12919 /* If the shift was logical, then we must make the condition
12920 unsigned. */
12921 if (GET_CODE (op0) == LSHIFTRT)
12922 code = unsigned_condition (code);
12923
12924 const_op = (unsigned HOST_WIDE_INT) const_op
12925 << INTVAL (XEXP (op0, 1));
12926 if (low_bits != 0
12927 && (code == GT || code == GTU
12928 || code == LE || code == LEU))
12929 const_op
12930 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12931 op1 = GEN_INT (const_op);
12932 op0 = XEXP (op0, 0);
12933 continue;
12934 }
12935 }
12936
12937 /* If we are using this shift to extract just the sign bit, we
12938 can replace this with an LT or GE comparison. */
12939 if (const_op == 0
12940 && (equality_comparison_p || sign_bit_comparison_p)
12941 && CONST_INT_P (XEXP (op0, 1))
12942 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12943 {
12944 op0 = XEXP (op0, 0);
12945 code = (code == NE || code == GT ? LT : GE);
12946 continue;
12947 }
12948 break;
12949
12950 default:
12951 break;
12952 }
12953
12954 break;
12955 }
12956
12957 /* Now make any compound operations involved in this comparison. Then,
12958 check for an outmost SUBREG on OP0 that is not doing anything or is
12959 paradoxical. The latter transformation must only be performed when
12960 it is known that the "extra" bits will be the same in op0 and op1 or
12961 that they don't matter. There are three cases to consider:
12962
12963 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12964 care bits and we can assume they have any convenient value. So
12965 making the transformation is safe.
12966
12967 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12968 In this case the upper bits of op0 are undefined. We should not make
12969 the simplification in that case as we do not know the contents of
12970 those bits.
12971
12972 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12973 In that case we know those bits are zeros or ones. We must also be
12974 sure that they are the same as the upper bits of op1.
12975
12976 We can never remove a SUBREG for a non-equality comparison because
12977 the sign bit is in a different place in the underlying object. */
12978
12979 rtx_code op0_mco_code = SET;
12980 if (op1 == const0_rtx)
12981 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12982
12983 op0 = make_compound_operation (op0, op0_mco_code);
12984 op1 = make_compound_operation (op1, SET);
12985
12986 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12987 && is_int_mode (GET_MODE (op0), &mode)
12988 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12989 && (code == NE || code == EQ))
12990 {
12991 if (paradoxical_subreg_p (op0))
12992 {
12993 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12994 implemented. */
12995 if (REG_P (SUBREG_REG (op0)))
12996 {
12997 op0 = SUBREG_REG (op0);
12998 op1 = gen_lowpart (inner_mode, op1);
12999 }
13000 }
13001 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
13002 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
13003 & ~GET_MODE_MASK (mode)) == 0)
13004 {
13005 tem = gen_lowpart (inner_mode, op1);
13006
13007 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
13008 op0 = SUBREG_REG (op0), op1 = tem;
13009 }
13010 }
13011
13012 /* We now do the opposite procedure: Some machines don't have compare
13013 insns in all modes. If OP0's mode is an integer mode smaller than a
13014 word and we can't do a compare in that mode, see if there is a larger
13015 mode for which we can do the compare. There are a number of cases in
13016 which we can use the wider mode. */
13017
13018 if (is_int_mode (GET_MODE (op0), &mode)
13019 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
13020 && ! have_insn_for (COMPARE, mode))
13021 FOR_EACH_WIDER_MODE (tmode_iter, mode)
13022 {
13023 tmode = tmode_iter.require ();
13024 if (!HWI_COMPUTABLE_MODE_P (tmode))
13025 break;
13026 if (have_insn_for (COMPARE, tmode))
13027 {
13028 int zero_extended;
13029
13030 /* If this is a test for negative, we can make an explicit
13031 test of the sign bit. Test this first so we can use
13032 a paradoxical subreg to extend OP0. */
13033
13034 if (op1 == const0_rtx && (code == LT || code == GE)
13035 && HWI_COMPUTABLE_MODE_P (mode))
13036 {
13037 unsigned HOST_WIDE_INT sign
13038 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13039 op0 = simplify_gen_binary (AND, tmode,
13040 gen_lowpart (tmode, op0),
13041 gen_int_mode (sign, tmode));
13042 code = (code == LT) ? NE : EQ;
13043 break;
13044 }
13045
13046 /* If the only nonzero bits in OP0 and OP1 are those in the
13047 narrower mode and this is an equality or unsigned comparison,
13048 we can use the wider mode. Similarly for sign-extended
13049 values, in which case it is true for all comparisons. */
13050 zero_extended = ((code == EQ || code == NE
13051 || code == GEU || code == GTU
13052 || code == LEU || code == LTU)
13053 && (nonzero_bits (op0, tmode)
13054 & ~GET_MODE_MASK (mode)) == 0
13055 && ((CONST_INT_P (op1)
13056 || (nonzero_bits (op1, tmode)
13057 & ~GET_MODE_MASK (mode)) == 0)));
13058
13059 if (zero_extended
13060 || ((num_sign_bit_copies (op0, tmode)
13061 > (unsigned int) (GET_MODE_PRECISION (tmode)
13062 - GET_MODE_PRECISION (mode)))
13063 && (num_sign_bit_copies (op1, tmode)
13064 > (unsigned int) (GET_MODE_PRECISION (tmode)
13065 - GET_MODE_PRECISION (mode)))))
13066 {
13067 /* If OP0 is an AND and we don't have an AND in MODE either,
13068 make a new AND in the proper mode. */
13069 if (GET_CODE (op0) == AND
13070 && !have_insn_for (AND, mode))
13071 op0 = simplify_gen_binary (AND, tmode,
13072 gen_lowpart (tmode,
13073 XEXP (op0, 0)),
13074 gen_lowpart (tmode,
13075 XEXP (op0, 1)));
13076 else
13077 {
13078 if (zero_extended)
13079 {
13080 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13081 op0, mode);
13082 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13083 op1, mode);
13084 }
13085 else
13086 {
13087 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13088 op0, mode);
13089 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13090 op1, mode);
13091 }
13092 break;
13093 }
13094 }
13095 }
13096 }
13097
13098 /* We may have changed the comparison operands. Re-canonicalize. */
13099 if (swap_commutative_operands_p (op0, op1))
13100 {
13101 std::swap (op0, op1);
13102 code = swap_condition (code);
13103 }
13104
13105 /* If this machine only supports a subset of valid comparisons, see if we
13106 can convert an unsupported one into a supported one. */
13107 target_canonicalize_comparison (&code, &op0, &op1, 0);
13108
13109 *pop0 = op0;
13110 *pop1 = op1;
13111
13112 return code;
13113 }
13114 \f
13115 /* Utility function for record_value_for_reg. Count number of
13116 rtxs in X. */
13117 static int
13118 count_rtxs (rtx x)
13119 {
13120 enum rtx_code code = GET_CODE (x);
13121 const char *fmt;
13122 int i, j, ret = 1;
13123
13124 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13125 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13126 {
13127 rtx x0 = XEXP (x, 0);
13128 rtx x1 = XEXP (x, 1);
13129
13130 if (x0 == x1)
13131 return 1 + 2 * count_rtxs (x0);
13132
13133 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13134 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13135 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13136 return 2 + 2 * count_rtxs (x0)
13137 + count_rtxs (x == XEXP (x1, 0)
13138 ? XEXP (x1, 1) : XEXP (x1, 0));
13139
13140 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13141 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13142 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13143 return 2 + 2 * count_rtxs (x1)
13144 + count_rtxs (x == XEXP (x0, 0)
13145 ? XEXP (x0, 1) : XEXP (x0, 0));
13146 }
13147
13148 fmt = GET_RTX_FORMAT (code);
13149 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13150 if (fmt[i] == 'e')
13151 ret += count_rtxs (XEXP (x, i));
13152 else if (fmt[i] == 'E')
13153 for (j = 0; j < XVECLEN (x, i); j++)
13154 ret += count_rtxs (XVECEXP (x, i, j));
13155
13156 return ret;
13157 }
13158 \f
13159 /* Utility function for following routine. Called when X is part of a value
13160 being stored into last_set_value. Sets last_set_table_tick
13161 for each register mentioned. Similar to mention_regs in cse.c */
13162
13163 static void
13164 update_table_tick (rtx x)
13165 {
13166 enum rtx_code code = GET_CODE (x);
13167 const char *fmt = GET_RTX_FORMAT (code);
13168 int i, j;
13169
13170 if (code == REG)
13171 {
13172 unsigned int regno = REGNO (x);
13173 unsigned int endregno = END_REGNO (x);
13174 unsigned int r;
13175
13176 for (r = regno; r < endregno; r++)
13177 {
13178 reg_stat_type *rsp = &reg_stat[r];
13179 rsp->last_set_table_tick = label_tick;
13180 }
13181
13182 return;
13183 }
13184
13185 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13186 if (fmt[i] == 'e')
13187 {
13188 /* Check for identical subexpressions. If x contains
13189 identical subexpression we only have to traverse one of
13190 them. */
13191 if (i == 0 && ARITHMETIC_P (x))
13192 {
13193 /* Note that at this point x1 has already been
13194 processed. */
13195 rtx x0 = XEXP (x, 0);
13196 rtx x1 = XEXP (x, 1);
13197
13198 /* If x0 and x1 are identical then there is no need to
13199 process x0. */
13200 if (x0 == x1)
13201 break;
13202
13203 /* If x0 is identical to a subexpression of x1 then while
13204 processing x1, x0 has already been processed. Thus we
13205 are done with x. */
13206 if (ARITHMETIC_P (x1)
13207 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13208 break;
13209
13210 /* If x1 is identical to a subexpression of x0 then we
13211 still have to process the rest of x0. */
13212 if (ARITHMETIC_P (x0)
13213 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13214 {
13215 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13216 break;
13217 }
13218 }
13219
13220 update_table_tick (XEXP (x, i));
13221 }
13222 else if (fmt[i] == 'E')
13223 for (j = 0; j < XVECLEN (x, i); j++)
13224 update_table_tick (XVECEXP (x, i, j));
13225 }
13226
13227 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13228 are saying that the register is clobbered and we no longer know its
13229 value. If INSN is zero, don't update reg_stat[].last_set; this is
13230 only permitted with VALUE also zero and is used to invalidate the
13231 register. */
13232
13233 static void
13234 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13235 {
13236 unsigned int regno = REGNO (reg);
13237 unsigned int endregno = END_REGNO (reg);
13238 unsigned int i;
13239 reg_stat_type *rsp;
13240
13241 /* If VALUE contains REG and we have a previous value for REG, substitute
13242 the previous value. */
13243 if (value && insn && reg_overlap_mentioned_p (reg, value))
13244 {
13245 rtx tem;
13246
13247 /* Set things up so get_last_value is allowed to see anything set up to
13248 our insn. */
13249 subst_low_luid = DF_INSN_LUID (insn);
13250 tem = get_last_value (reg);
13251
13252 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13253 it isn't going to be useful and will take a lot of time to process,
13254 so just use the CLOBBER. */
13255
13256 if (tem)
13257 {
13258 if (ARITHMETIC_P (tem)
13259 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13260 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13261 tem = XEXP (tem, 0);
13262 else if (count_occurrences (value, reg, 1) >= 2)
13263 {
13264 /* If there are two or more occurrences of REG in VALUE,
13265 prevent the value from growing too much. */
13266 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13267 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13268 }
13269
13270 value = replace_rtx (copy_rtx (value), reg, tem);
13271 }
13272 }
13273
13274 /* For each register modified, show we don't know its value, that
13275 we don't know about its bitwise content, that its value has been
13276 updated, and that we don't know the location of the death of the
13277 register. */
13278 for (i = regno; i < endregno; i++)
13279 {
13280 rsp = &reg_stat[i];
13281
13282 if (insn)
13283 rsp->last_set = insn;
13284
13285 rsp->last_set_value = 0;
13286 rsp->last_set_mode = VOIDmode;
13287 rsp->last_set_nonzero_bits = 0;
13288 rsp->last_set_sign_bit_copies = 0;
13289 rsp->last_death = 0;
13290 rsp->truncated_to_mode = VOIDmode;
13291 }
13292
13293 /* Mark registers that are being referenced in this value. */
13294 if (value)
13295 update_table_tick (value);
13296
13297 /* Now update the status of each register being set.
13298 If someone is using this register in this block, set this register
13299 to invalid since we will get confused between the two lives in this
13300 basic block. This makes using this register always invalid. In cse, we
13301 scan the table to invalidate all entries using this register, but this
13302 is too much work for us. */
13303
13304 for (i = regno; i < endregno; i++)
13305 {
13306 rsp = &reg_stat[i];
13307 rsp->last_set_label = label_tick;
13308 if (!insn
13309 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13310 rsp->last_set_invalid = 1;
13311 else
13312 rsp->last_set_invalid = 0;
13313 }
13314
13315 /* The value being assigned might refer to X (like in "x++;"). In that
13316 case, we must replace it with (clobber (const_int 0)) to prevent
13317 infinite loops. */
13318 rsp = &reg_stat[regno];
13319 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13320 {
13321 value = copy_rtx (value);
13322 if (!get_last_value_validate (&value, insn, label_tick, 1))
13323 value = 0;
13324 }
13325
13326 /* For the main register being modified, update the value, the mode, the
13327 nonzero bits, and the number of sign bit copies. */
13328
13329 rsp->last_set_value = value;
13330
13331 if (value)
13332 {
13333 machine_mode mode = GET_MODE (reg);
13334 subst_low_luid = DF_INSN_LUID (insn);
13335 rsp->last_set_mode = mode;
13336 if (GET_MODE_CLASS (mode) == MODE_INT
13337 && HWI_COMPUTABLE_MODE_P (mode))
13338 mode = nonzero_bits_mode;
13339 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13340 rsp->last_set_sign_bit_copies
13341 = num_sign_bit_copies (value, GET_MODE (reg));
13342 }
13343 }
13344
13345 /* Called via note_stores from record_dead_and_set_regs to handle one
13346 SET or CLOBBER in an insn. DATA is the instruction in which the
13347 set is occurring. */
13348
13349 static void
13350 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13351 {
13352 rtx_insn *record_dead_insn = (rtx_insn *) data;
13353
13354 if (GET_CODE (dest) == SUBREG)
13355 dest = SUBREG_REG (dest);
13356
13357 if (!record_dead_insn)
13358 {
13359 if (REG_P (dest))
13360 record_value_for_reg (dest, NULL, NULL_RTX);
13361 return;
13362 }
13363
13364 if (REG_P (dest))
13365 {
13366 /* If we are setting the whole register, we know its value. Otherwise
13367 show that we don't know the value. We can handle a SUBREG if it's
13368 the low part, but we must be careful with paradoxical SUBREGs on
13369 RISC architectures because we cannot strip e.g. an extension around
13370 a load and record the naked load since the RTL middle-end considers
13371 that the upper bits are defined according to LOAD_EXTEND_OP. */
13372 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13373 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13374 else if (GET_CODE (setter) == SET
13375 && GET_CODE (SET_DEST (setter)) == SUBREG
13376 && SUBREG_REG (SET_DEST (setter)) == dest
13377 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13378 BITS_PER_WORD)
13379 && subreg_lowpart_p (SET_DEST (setter)))
13380 record_value_for_reg (dest, record_dead_insn,
13381 WORD_REGISTER_OPERATIONS
13382 && word_register_operation_p (SET_SRC (setter))
13383 && paradoxical_subreg_p (SET_DEST (setter))
13384 ? SET_SRC (setter)
13385 : gen_lowpart (GET_MODE (dest),
13386 SET_SRC (setter)));
13387 else if (GET_CODE (setter) == CLOBBER_HIGH)
13388 {
13389 reg_stat_type *rsp = &reg_stat[REGNO (dest)];
13390 if (rsp->last_set_value
13391 && reg_is_clobbered_by_clobber_high
13392 (REGNO (dest), GET_MODE (rsp->last_set_value),
13393 XEXP (setter, 0)))
13394 record_value_for_reg (dest, NULL, NULL_RTX);
13395 }
13396 else
13397 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13398 }
13399 else if (MEM_P (dest)
13400 /* Ignore pushes, they clobber nothing. */
13401 && ! push_operand (dest, GET_MODE (dest)))
13402 mem_last_set = DF_INSN_LUID (record_dead_insn);
13403 }
13404
13405 /* Update the records of when each REG was most recently set or killed
13406 for the things done by INSN. This is the last thing done in processing
13407 INSN in the combiner loop.
13408
13409 We update reg_stat[], in particular fields last_set, last_set_value,
13410 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13411 last_death, and also the similar information mem_last_set (which insn
13412 most recently modified memory) and last_call_luid (which insn was the
13413 most recent subroutine call). */
13414
13415 static void
13416 record_dead_and_set_regs (rtx_insn *insn)
13417 {
13418 rtx link;
13419 unsigned int i;
13420
13421 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13422 {
13423 if (REG_NOTE_KIND (link) == REG_DEAD
13424 && REG_P (XEXP (link, 0)))
13425 {
13426 unsigned int regno = REGNO (XEXP (link, 0));
13427 unsigned int endregno = END_REGNO (XEXP (link, 0));
13428
13429 for (i = regno; i < endregno; i++)
13430 {
13431 reg_stat_type *rsp;
13432
13433 rsp = &reg_stat[i];
13434 rsp->last_death = insn;
13435 }
13436 }
13437 else if (REG_NOTE_KIND (link) == REG_INC)
13438 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13439 }
13440
13441 if (CALL_P (insn))
13442 {
13443 hard_reg_set_iterator hrsi;
13444 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13445 {
13446 reg_stat_type *rsp;
13447
13448 rsp = &reg_stat[i];
13449 rsp->last_set_invalid = 1;
13450 rsp->last_set = insn;
13451 rsp->last_set_value = 0;
13452 rsp->last_set_mode = VOIDmode;
13453 rsp->last_set_nonzero_bits = 0;
13454 rsp->last_set_sign_bit_copies = 0;
13455 rsp->last_death = 0;
13456 rsp->truncated_to_mode = VOIDmode;
13457 }
13458
13459 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13460
13461 /* We can't combine into a call pattern. Remember, though, that
13462 the return value register is set at this LUID. We could
13463 still replace a register with the return value from the
13464 wrong subroutine call! */
13465 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13466 }
13467 else
13468 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13469 }
13470
13471 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13472 register present in the SUBREG, so for each such SUBREG go back and
13473 adjust nonzero and sign bit information of the registers that are
13474 known to have some zero/sign bits set.
13475
13476 This is needed because when combine blows the SUBREGs away, the
13477 information on zero/sign bits is lost and further combines can be
13478 missed because of that. */
13479
13480 static void
13481 record_promoted_value (rtx_insn *insn, rtx subreg)
13482 {
13483 struct insn_link *links;
13484 rtx set;
13485 unsigned int regno = REGNO (SUBREG_REG (subreg));
13486 machine_mode mode = GET_MODE (subreg);
13487
13488 if (!HWI_COMPUTABLE_MODE_P (mode))
13489 return;
13490
13491 for (links = LOG_LINKS (insn); links;)
13492 {
13493 reg_stat_type *rsp;
13494
13495 insn = links->insn;
13496 set = single_set (insn);
13497
13498 if (! set || !REG_P (SET_DEST (set))
13499 || REGNO (SET_DEST (set)) != regno
13500 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13501 {
13502 links = links->next;
13503 continue;
13504 }
13505
13506 rsp = &reg_stat[regno];
13507 if (rsp->last_set == insn)
13508 {
13509 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13510 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13511 }
13512
13513 if (REG_P (SET_SRC (set)))
13514 {
13515 regno = REGNO (SET_SRC (set));
13516 links = LOG_LINKS (insn);
13517 }
13518 else
13519 break;
13520 }
13521 }
13522
13523 /* Check if X, a register, is known to contain a value already
13524 truncated to MODE. In this case we can use a subreg to refer to
13525 the truncated value even though in the generic case we would need
13526 an explicit truncation. */
13527
13528 static bool
13529 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13530 {
13531 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13532 machine_mode truncated = rsp->truncated_to_mode;
13533
13534 if (truncated == 0
13535 || rsp->truncation_label < label_tick_ebb_start)
13536 return false;
13537 if (!partial_subreg_p (mode, truncated))
13538 return true;
13539 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13540 return true;
13541 return false;
13542 }
13543
13544 /* If X is a hard reg or a subreg record the mode that the register is
13545 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13546 able to turn a truncate into a subreg using this information. Return true
13547 if traversing X is complete. */
13548
13549 static bool
13550 record_truncated_value (rtx x)
13551 {
13552 machine_mode truncated_mode;
13553 reg_stat_type *rsp;
13554
13555 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13556 {
13557 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13558 truncated_mode = GET_MODE (x);
13559
13560 if (!partial_subreg_p (truncated_mode, original_mode))
13561 return true;
13562
13563 truncated_mode = GET_MODE (x);
13564 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13565 return true;
13566
13567 x = SUBREG_REG (x);
13568 }
13569 /* ??? For hard-regs we now record everything. We might be able to
13570 optimize this using last_set_mode. */
13571 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13572 truncated_mode = GET_MODE (x);
13573 else
13574 return false;
13575
13576 rsp = &reg_stat[REGNO (x)];
13577 if (rsp->truncated_to_mode == 0
13578 || rsp->truncation_label < label_tick_ebb_start
13579 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13580 {
13581 rsp->truncated_to_mode = truncated_mode;
13582 rsp->truncation_label = label_tick;
13583 }
13584
13585 return true;
13586 }
13587
13588 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13589 the modes they are used in. This can help truning TRUNCATEs into
13590 SUBREGs. */
13591
13592 static void
13593 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13594 {
13595 subrtx_var_iterator::array_type array;
13596 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13597 if (record_truncated_value (*iter))
13598 iter.skip_subrtxes ();
13599 }
13600
13601 /* Scan X for promoted SUBREGs. For each one found,
13602 note what it implies to the registers used in it. */
13603
13604 static void
13605 check_promoted_subreg (rtx_insn *insn, rtx x)
13606 {
13607 if (GET_CODE (x) == SUBREG
13608 && SUBREG_PROMOTED_VAR_P (x)
13609 && REG_P (SUBREG_REG (x)))
13610 record_promoted_value (insn, x);
13611 else
13612 {
13613 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13614 int i, j;
13615
13616 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13617 switch (format[i])
13618 {
13619 case 'e':
13620 check_promoted_subreg (insn, XEXP (x, i));
13621 break;
13622 case 'V':
13623 case 'E':
13624 if (XVEC (x, i) != 0)
13625 for (j = 0; j < XVECLEN (x, i); j++)
13626 check_promoted_subreg (insn, XVECEXP (x, i, j));
13627 break;
13628 }
13629 }
13630 }
13631 \f
13632 /* Verify that all the registers and memory references mentioned in *LOC are
13633 still valid. *LOC was part of a value set in INSN when label_tick was
13634 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13635 the invalid references with (clobber (const_int 0)) and return 1. This
13636 replacement is useful because we often can get useful information about
13637 the form of a value (e.g., if it was produced by a shift that always
13638 produces -1 or 0) even though we don't know exactly what registers it
13639 was produced from. */
13640
13641 static int
13642 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13643 {
13644 rtx x = *loc;
13645 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13646 int len = GET_RTX_LENGTH (GET_CODE (x));
13647 int i, j;
13648
13649 if (REG_P (x))
13650 {
13651 unsigned int regno = REGNO (x);
13652 unsigned int endregno = END_REGNO (x);
13653 unsigned int j;
13654
13655 for (j = regno; j < endregno; j++)
13656 {
13657 reg_stat_type *rsp = &reg_stat[j];
13658 if (rsp->last_set_invalid
13659 /* If this is a pseudo-register that was only set once and not
13660 live at the beginning of the function, it is always valid. */
13661 || (! (regno >= FIRST_PSEUDO_REGISTER
13662 && regno < reg_n_sets_max
13663 && REG_N_SETS (regno) == 1
13664 && (!REGNO_REG_SET_P
13665 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13666 regno)))
13667 && rsp->last_set_label > tick))
13668 {
13669 if (replace)
13670 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13671 return replace;
13672 }
13673 }
13674
13675 return 1;
13676 }
13677 /* If this is a memory reference, make sure that there were no stores after
13678 it that might have clobbered the value. We don't have alias info, so we
13679 assume any store invalidates it. Moreover, we only have local UIDs, so
13680 we also assume that there were stores in the intervening basic blocks. */
13681 else if (MEM_P (x) && !MEM_READONLY_P (x)
13682 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13683 {
13684 if (replace)
13685 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13686 return replace;
13687 }
13688
13689 for (i = 0; i < len; i++)
13690 {
13691 if (fmt[i] == 'e')
13692 {
13693 /* Check for identical subexpressions. If x contains
13694 identical subexpression we only have to traverse one of
13695 them. */
13696 if (i == 1 && ARITHMETIC_P (x))
13697 {
13698 /* Note that at this point x0 has already been checked
13699 and found valid. */
13700 rtx x0 = XEXP (x, 0);
13701 rtx x1 = XEXP (x, 1);
13702
13703 /* If x0 and x1 are identical then x is also valid. */
13704 if (x0 == x1)
13705 return 1;
13706
13707 /* If x1 is identical to a subexpression of x0 then
13708 while checking x0, x1 has already been checked. Thus
13709 it is valid and so as x. */
13710 if (ARITHMETIC_P (x0)
13711 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13712 return 1;
13713
13714 /* If x0 is identical to a subexpression of x1 then x is
13715 valid iff the rest of x1 is valid. */
13716 if (ARITHMETIC_P (x1)
13717 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13718 return
13719 get_last_value_validate (&XEXP (x1,
13720 x0 == XEXP (x1, 0) ? 1 : 0),
13721 insn, tick, replace);
13722 }
13723
13724 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13725 replace) == 0)
13726 return 0;
13727 }
13728 else if (fmt[i] == 'E')
13729 for (j = 0; j < XVECLEN (x, i); j++)
13730 if (get_last_value_validate (&XVECEXP (x, i, j),
13731 insn, tick, replace) == 0)
13732 return 0;
13733 }
13734
13735 /* If we haven't found a reason for it to be invalid, it is valid. */
13736 return 1;
13737 }
13738
13739 /* Get the last value assigned to X, if known. Some registers
13740 in the value may be replaced with (clobber (const_int 0)) if their value
13741 is known longer known reliably. */
13742
13743 static rtx
13744 get_last_value (const_rtx x)
13745 {
13746 unsigned int regno;
13747 rtx value;
13748 reg_stat_type *rsp;
13749
13750 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13751 then convert it to the desired mode. If this is a paradoxical SUBREG,
13752 we cannot predict what values the "extra" bits might have. */
13753 if (GET_CODE (x) == SUBREG
13754 && subreg_lowpart_p (x)
13755 && !paradoxical_subreg_p (x)
13756 && (value = get_last_value (SUBREG_REG (x))) != 0)
13757 return gen_lowpart (GET_MODE (x), value);
13758
13759 if (!REG_P (x))
13760 return 0;
13761
13762 regno = REGNO (x);
13763 rsp = &reg_stat[regno];
13764 value = rsp->last_set_value;
13765
13766 /* If we don't have a value, or if it isn't for this basic block and
13767 it's either a hard register, set more than once, or it's a live
13768 at the beginning of the function, return 0.
13769
13770 Because if it's not live at the beginning of the function then the reg
13771 is always set before being used (is never used without being set).
13772 And, if it's set only once, and it's always set before use, then all
13773 uses must have the same last value, even if it's not from this basic
13774 block. */
13775
13776 if (value == 0
13777 || (rsp->last_set_label < label_tick_ebb_start
13778 && (regno < FIRST_PSEUDO_REGISTER
13779 || regno >= reg_n_sets_max
13780 || REG_N_SETS (regno) != 1
13781 || REGNO_REG_SET_P
13782 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13783 return 0;
13784
13785 /* If the value was set in a later insn than the ones we are processing,
13786 we can't use it even if the register was only set once. */
13787 if (rsp->last_set_label == label_tick
13788 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13789 return 0;
13790
13791 /* If fewer bits were set than what we are asked for now, we cannot use
13792 the value. */
13793 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13794 GET_MODE_PRECISION (GET_MODE (x))))
13795 return 0;
13796
13797 /* If the value has all its registers valid, return it. */
13798 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13799 return value;
13800
13801 /* Otherwise, make a copy and replace any invalid register with
13802 (clobber (const_int 0)). If that fails for some reason, return 0. */
13803
13804 value = copy_rtx (value);
13805 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13806 return value;
13807
13808 return 0;
13809 }
13810 \f
13811 /* Define three variables used for communication between the following
13812 routines. */
13813
13814 static unsigned int reg_dead_regno, reg_dead_endregno;
13815 static int reg_dead_flag;
13816 rtx reg_dead_reg;
13817
13818 /* Function called via note_stores from reg_dead_at_p.
13819
13820 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13821 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13822
13823 static void
13824 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13825 {
13826 unsigned int regno, endregno;
13827
13828 if (!REG_P (dest))
13829 return;
13830
13831 if (GET_CODE (x) == CLOBBER_HIGH
13832 && !reg_is_clobbered_by_clobber_high (reg_dead_reg, XEXP (x, 0)))
13833 return;
13834
13835 regno = REGNO (dest);
13836 endregno = END_REGNO (dest);
13837 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13838 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13839 }
13840
13841 /* Return nonzero if REG is known to be dead at INSN.
13842
13843 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13844 referencing REG, it is dead. If we hit a SET referencing REG, it is
13845 live. Otherwise, see if it is live or dead at the start of the basic
13846 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13847 must be assumed to be always live. */
13848
13849 static int
13850 reg_dead_at_p (rtx reg, rtx_insn *insn)
13851 {
13852 basic_block block;
13853 unsigned int i;
13854
13855 /* Set variables for reg_dead_at_p_1. */
13856 reg_dead_regno = REGNO (reg);
13857 reg_dead_endregno = END_REGNO (reg);
13858 reg_dead_reg = reg;
13859
13860 reg_dead_flag = 0;
13861
13862 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13863 we allow the machine description to decide whether use-and-clobber
13864 patterns are OK. */
13865 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13866 {
13867 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13868 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13869 return 0;
13870 }
13871
13872 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13873 beginning of basic block. */
13874 block = BLOCK_FOR_INSN (insn);
13875 for (;;)
13876 {
13877 if (INSN_P (insn))
13878 {
13879 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13880 return 1;
13881
13882 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13883 if (reg_dead_flag)
13884 return reg_dead_flag == 1 ? 1 : 0;
13885
13886 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13887 return 1;
13888 }
13889
13890 if (insn == BB_HEAD (block))
13891 break;
13892
13893 insn = PREV_INSN (insn);
13894 }
13895
13896 /* Look at live-in sets for the basic block that we were in. */
13897 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13898 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13899 return 0;
13900
13901 return 1;
13902 }
13903 \f
13904 /* Note hard registers in X that are used. */
13905
13906 static void
13907 mark_used_regs_combine (rtx x)
13908 {
13909 RTX_CODE code = GET_CODE (x);
13910 unsigned int regno;
13911 int i;
13912
13913 switch (code)
13914 {
13915 case LABEL_REF:
13916 case SYMBOL_REF:
13917 case CONST:
13918 CASE_CONST_ANY:
13919 case PC:
13920 case ADDR_VEC:
13921 case ADDR_DIFF_VEC:
13922 case ASM_INPUT:
13923 /* CC0 must die in the insn after it is set, so we don't need to take
13924 special note of it here. */
13925 case CC0:
13926 return;
13927
13928 case CLOBBER:
13929 /* If we are clobbering a MEM, mark any hard registers inside the
13930 address as used. */
13931 if (MEM_P (XEXP (x, 0)))
13932 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13933 return;
13934
13935 case REG:
13936 regno = REGNO (x);
13937 /* A hard reg in a wide mode may really be multiple registers.
13938 If so, mark all of them just like the first. */
13939 if (regno < FIRST_PSEUDO_REGISTER)
13940 {
13941 /* None of this applies to the stack, frame or arg pointers. */
13942 if (regno == STACK_POINTER_REGNUM
13943 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13944 && regno == HARD_FRAME_POINTER_REGNUM)
13945 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13946 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13947 || regno == FRAME_POINTER_REGNUM)
13948 return;
13949
13950 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13951 }
13952 return;
13953
13954 case SET:
13955 {
13956 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13957 the address. */
13958 rtx testreg = SET_DEST (x);
13959
13960 while (GET_CODE (testreg) == SUBREG
13961 || GET_CODE (testreg) == ZERO_EXTRACT
13962 || GET_CODE (testreg) == STRICT_LOW_PART)
13963 testreg = XEXP (testreg, 0);
13964
13965 if (MEM_P (testreg))
13966 mark_used_regs_combine (XEXP (testreg, 0));
13967
13968 mark_used_regs_combine (SET_SRC (x));
13969 }
13970 return;
13971
13972 default:
13973 break;
13974 }
13975
13976 /* Recursively scan the operands of this expression. */
13977
13978 {
13979 const char *fmt = GET_RTX_FORMAT (code);
13980
13981 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13982 {
13983 if (fmt[i] == 'e')
13984 mark_used_regs_combine (XEXP (x, i));
13985 else if (fmt[i] == 'E')
13986 {
13987 int j;
13988
13989 for (j = 0; j < XVECLEN (x, i); j++)
13990 mark_used_regs_combine (XVECEXP (x, i, j));
13991 }
13992 }
13993 }
13994 }
13995 \f
13996 /* Remove register number REGNO from the dead registers list of INSN.
13997
13998 Return the note used to record the death, if there was one. */
13999
14000 rtx
14001 remove_death (unsigned int regno, rtx_insn *insn)
14002 {
14003 rtx note = find_regno_note (insn, REG_DEAD, regno);
14004
14005 if (note)
14006 remove_note (insn, note);
14007
14008 return note;
14009 }
14010
14011 /* For each register (hardware or pseudo) used within expression X, if its
14012 death is in an instruction with luid between FROM_LUID (inclusive) and
14013 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14014 list headed by PNOTES.
14015
14016 That said, don't move registers killed by maybe_kill_insn.
14017
14018 This is done when X is being merged by combination into TO_INSN. These
14019 notes will then be distributed as needed. */
14020
14021 static void
14022 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
14023 rtx *pnotes)
14024 {
14025 const char *fmt;
14026 int len, i;
14027 enum rtx_code code = GET_CODE (x);
14028
14029 if (code == REG)
14030 {
14031 unsigned int regno = REGNO (x);
14032 rtx_insn *where_dead = reg_stat[regno].last_death;
14033
14034 /* If we do not know where the register died, it may still die between
14035 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14036 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14037 {
14038 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14039 while (insn
14040 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
14041 && DF_INSN_LUID (insn) >= from_luid)
14042 {
14043 if (dead_or_set_regno_p (insn, regno))
14044 {
14045 if (find_regno_note (insn, REG_DEAD, regno))
14046 where_dead = insn;
14047 break;
14048 }
14049
14050 insn = prev_real_nondebug_insn (insn);
14051 }
14052 }
14053
14054 /* Don't move the register if it gets killed in between from and to. */
14055 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14056 && ! reg_referenced_p (x, maybe_kill_insn))
14057 return;
14058
14059 if (where_dead
14060 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
14061 && DF_INSN_LUID (where_dead) >= from_luid
14062 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14063 {
14064 rtx note = remove_death (regno, where_dead);
14065
14066 /* It is possible for the call above to return 0. This can occur
14067 when last_death points to I2 or I1 that we combined with.
14068 In that case make a new note.
14069
14070 We must also check for the case where X is a hard register
14071 and NOTE is a death note for a range of hard registers
14072 including X. In that case, we must put REG_DEAD notes for
14073 the remaining registers in place of NOTE. */
14074
14075 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14076 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14077 {
14078 unsigned int deadregno = REGNO (XEXP (note, 0));
14079 unsigned int deadend = END_REGNO (XEXP (note, 0));
14080 unsigned int ourend = END_REGNO (x);
14081 unsigned int i;
14082
14083 for (i = deadregno; i < deadend; i++)
14084 if (i < regno || i >= ourend)
14085 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14086 }
14087
14088 /* If we didn't find any note, or if we found a REG_DEAD note that
14089 covers only part of the given reg, and we have a multi-reg hard
14090 register, then to be safe we must check for REG_DEAD notes
14091 for each register other than the first. They could have
14092 their own REG_DEAD notes lying around. */
14093 else if ((note == 0
14094 || (note != 0
14095 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14096 GET_MODE (x))))
14097 && regno < FIRST_PSEUDO_REGISTER
14098 && REG_NREGS (x) > 1)
14099 {
14100 unsigned int ourend = END_REGNO (x);
14101 unsigned int i, offset;
14102 rtx oldnotes = 0;
14103
14104 if (note)
14105 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14106 else
14107 offset = 1;
14108
14109 for (i = regno + offset; i < ourend; i++)
14110 move_deaths (regno_reg_rtx[i],
14111 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14112 }
14113
14114 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14115 {
14116 XEXP (note, 1) = *pnotes;
14117 *pnotes = note;
14118 }
14119 else
14120 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14121 }
14122
14123 return;
14124 }
14125
14126 else if (GET_CODE (x) == SET)
14127 {
14128 rtx dest = SET_DEST (x);
14129
14130 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14131
14132 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14133 that accesses one word of a multi-word item, some
14134 piece of everything register in the expression is used by
14135 this insn, so remove any old death. */
14136 /* ??? So why do we test for equality of the sizes? */
14137
14138 if (GET_CODE (dest) == ZERO_EXTRACT
14139 || GET_CODE (dest) == STRICT_LOW_PART
14140 || (GET_CODE (dest) == SUBREG
14141 && !read_modify_subreg_p (dest)))
14142 {
14143 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14144 return;
14145 }
14146
14147 /* If this is some other SUBREG, we know it replaces the entire
14148 value, so use that as the destination. */
14149 if (GET_CODE (dest) == SUBREG)
14150 dest = SUBREG_REG (dest);
14151
14152 /* If this is a MEM, adjust deaths of anything used in the address.
14153 For a REG (the only other possibility), the entire value is
14154 being replaced so the old value is not used in this insn. */
14155
14156 if (MEM_P (dest))
14157 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14158 to_insn, pnotes);
14159 return;
14160 }
14161
14162 else if (GET_CODE (x) == CLOBBER)
14163 return;
14164
14165 len = GET_RTX_LENGTH (code);
14166 fmt = GET_RTX_FORMAT (code);
14167
14168 for (i = 0; i < len; i++)
14169 {
14170 if (fmt[i] == 'E')
14171 {
14172 int j;
14173 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14174 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14175 to_insn, pnotes);
14176 }
14177 else if (fmt[i] == 'e')
14178 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14179 }
14180 }
14181 \f
14182 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14183 pattern of an insn. X must be a REG. */
14184
14185 static int
14186 reg_bitfield_target_p (rtx x, rtx body)
14187 {
14188 int i;
14189
14190 if (GET_CODE (body) == SET)
14191 {
14192 rtx dest = SET_DEST (body);
14193 rtx target;
14194 unsigned int regno, tregno, endregno, endtregno;
14195
14196 if (GET_CODE (dest) == ZERO_EXTRACT)
14197 target = XEXP (dest, 0);
14198 else if (GET_CODE (dest) == STRICT_LOW_PART)
14199 target = SUBREG_REG (XEXP (dest, 0));
14200 else
14201 return 0;
14202
14203 if (GET_CODE (target) == SUBREG)
14204 target = SUBREG_REG (target);
14205
14206 if (!REG_P (target))
14207 return 0;
14208
14209 tregno = REGNO (target), regno = REGNO (x);
14210 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14211 return target == x;
14212
14213 endtregno = end_hard_regno (GET_MODE (target), tregno);
14214 endregno = end_hard_regno (GET_MODE (x), regno);
14215
14216 return endregno > tregno && regno < endtregno;
14217 }
14218
14219 else if (GET_CODE (body) == PARALLEL)
14220 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14221 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14222 return 1;
14223
14224 return 0;
14225 }
14226 \f
14227 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14228 as appropriate. I3 and I2 are the insns resulting from the combination
14229 insns including FROM (I2 may be zero).
14230
14231 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14232 not need REG_DEAD notes because they are being substituted for. This
14233 saves searching in the most common cases.
14234
14235 Each note in the list is either ignored or placed on some insns, depending
14236 on the type of note. */
14237
14238 static void
14239 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14240 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14241 {
14242 rtx note, next_note;
14243 rtx tem_note;
14244 rtx_insn *tem_insn;
14245
14246 for (note = notes; note; note = next_note)
14247 {
14248 rtx_insn *place = 0, *place2 = 0;
14249
14250 next_note = XEXP (note, 1);
14251 switch (REG_NOTE_KIND (note))
14252 {
14253 case REG_BR_PROB:
14254 case REG_BR_PRED:
14255 /* Doesn't matter much where we put this, as long as it's somewhere.
14256 It is preferable to keep these notes on branches, which is most
14257 likely to be i3. */
14258 place = i3;
14259 break;
14260
14261 case REG_NON_LOCAL_GOTO:
14262 if (JUMP_P (i3))
14263 place = i3;
14264 else
14265 {
14266 gcc_assert (i2 && JUMP_P (i2));
14267 place = i2;
14268 }
14269 break;
14270
14271 case REG_EH_REGION:
14272 /* These notes must remain with the call or trapping instruction. */
14273 if (CALL_P (i3))
14274 place = i3;
14275 else if (i2 && CALL_P (i2))
14276 place = i2;
14277 else
14278 {
14279 gcc_assert (cfun->can_throw_non_call_exceptions);
14280 if (may_trap_p (i3))
14281 place = i3;
14282 else if (i2 && may_trap_p (i2))
14283 place = i2;
14284 /* ??? Otherwise assume we've combined things such that we
14285 can now prove that the instructions can't trap. Drop the
14286 note in this case. */
14287 }
14288 break;
14289
14290 case REG_ARGS_SIZE:
14291 /* ??? How to distribute between i3-i1. Assume i3 contains the
14292 entire adjustment. Assert i3 contains at least some adjust. */
14293 if (!noop_move_p (i3))
14294 {
14295 poly_int64 old_size, args_size = get_args_size (note);
14296 /* fixup_args_size_notes looks at REG_NORETURN note,
14297 so ensure the note is placed there first. */
14298 if (CALL_P (i3))
14299 {
14300 rtx *np;
14301 for (np = &next_note; *np; np = &XEXP (*np, 1))
14302 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14303 {
14304 rtx n = *np;
14305 *np = XEXP (n, 1);
14306 XEXP (n, 1) = REG_NOTES (i3);
14307 REG_NOTES (i3) = n;
14308 break;
14309 }
14310 }
14311 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14312 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14313 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14314 gcc_assert (maybe_ne (old_size, args_size)
14315 || (CALL_P (i3)
14316 && !ACCUMULATE_OUTGOING_ARGS
14317 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14318 }
14319 break;
14320
14321 case REG_NORETURN:
14322 case REG_SETJMP:
14323 case REG_TM:
14324 case REG_CALL_DECL:
14325 case REG_CALL_NOCF_CHECK:
14326 /* These notes must remain with the call. It should not be
14327 possible for both I2 and I3 to be a call. */
14328 if (CALL_P (i3))
14329 place = i3;
14330 else
14331 {
14332 gcc_assert (i2 && CALL_P (i2));
14333 place = i2;
14334 }
14335 break;
14336
14337 case REG_UNUSED:
14338 /* Any clobbers for i3 may still exist, and so we must process
14339 REG_UNUSED notes from that insn.
14340
14341 Any clobbers from i2 or i1 can only exist if they were added by
14342 recog_for_combine. In that case, recog_for_combine created the
14343 necessary REG_UNUSED notes. Trying to keep any original
14344 REG_UNUSED notes from these insns can cause incorrect output
14345 if it is for the same register as the original i3 dest.
14346 In that case, we will notice that the register is set in i3,
14347 and then add a REG_UNUSED note for the destination of i3, which
14348 is wrong. However, it is possible to have REG_UNUSED notes from
14349 i2 or i1 for register which were both used and clobbered, so
14350 we keep notes from i2 or i1 if they will turn into REG_DEAD
14351 notes. */
14352
14353 /* If this register is set or clobbered in I3, put the note there
14354 unless there is one already. */
14355 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14356 {
14357 if (from_insn != i3)
14358 break;
14359
14360 if (! (REG_P (XEXP (note, 0))
14361 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14362 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14363 place = i3;
14364 }
14365 /* Otherwise, if this register is used by I3, then this register
14366 now dies here, so we must put a REG_DEAD note here unless there
14367 is one already. */
14368 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14369 && ! (REG_P (XEXP (note, 0))
14370 ? find_regno_note (i3, REG_DEAD,
14371 REGNO (XEXP (note, 0)))
14372 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14373 {
14374 PUT_REG_NOTE_KIND (note, REG_DEAD);
14375 place = i3;
14376 }
14377
14378 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14379 but we can't tell which at this point. We must reset any
14380 expectations we had about the value that was previously
14381 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14382 and, if appropriate, restore its previous value, but we
14383 don't have enough information for that at this point. */
14384 else
14385 {
14386 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14387
14388 /* Otherwise, if this register is now referenced in i2
14389 then the register used to be modified in one of the
14390 original insns. If it was i3 (say, in an unused
14391 parallel), it's now completely gone, so the note can
14392 be discarded. But if it was modified in i2, i1 or i0
14393 and we still reference it in i2, then we're
14394 referencing the previous value, and since the
14395 register was modified and REG_UNUSED, we know that
14396 the previous value is now dead. So, if we only
14397 reference the register in i2, we change the note to
14398 REG_DEAD, to reflect the previous value. However, if
14399 we're also setting or clobbering the register as
14400 scratch, we know (because the register was not
14401 referenced in i3) that it's unused, just as it was
14402 unused before, and we place the note in i2. */
14403 if (from_insn != i3 && i2 && INSN_P (i2)
14404 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14405 {
14406 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14407 PUT_REG_NOTE_KIND (note, REG_DEAD);
14408 if (! (REG_P (XEXP (note, 0))
14409 ? find_regno_note (i2, REG_NOTE_KIND (note),
14410 REGNO (XEXP (note, 0)))
14411 : find_reg_note (i2, REG_NOTE_KIND (note),
14412 XEXP (note, 0))))
14413 place = i2;
14414 }
14415 }
14416
14417 break;
14418
14419 case REG_EQUAL:
14420 case REG_EQUIV:
14421 case REG_NOALIAS:
14422 /* These notes say something about results of an insn. We can
14423 only support them if they used to be on I3 in which case they
14424 remain on I3. Otherwise they are ignored.
14425
14426 If the note refers to an expression that is not a constant, we
14427 must also ignore the note since we cannot tell whether the
14428 equivalence is still true. It might be possible to do
14429 slightly better than this (we only have a problem if I2DEST
14430 or I1DEST is present in the expression), but it doesn't
14431 seem worth the trouble. */
14432
14433 if (from_insn == i3
14434 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14435 place = i3;
14436 break;
14437
14438 case REG_INC:
14439 /* These notes say something about how a register is used. They must
14440 be present on any use of the register in I2 or I3. */
14441 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14442 place = i3;
14443
14444 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14445 {
14446 if (place)
14447 place2 = i2;
14448 else
14449 place = i2;
14450 }
14451 break;
14452
14453 case REG_LABEL_TARGET:
14454 case REG_LABEL_OPERAND:
14455 /* This can show up in several ways -- either directly in the
14456 pattern, or hidden off in the constant pool with (or without?)
14457 a REG_EQUAL note. */
14458 /* ??? Ignore the without-reg_equal-note problem for now. */
14459 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14460 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14461 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14462 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14463 place = i3;
14464
14465 if (i2
14466 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14467 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14468 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14469 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14470 {
14471 if (place)
14472 place2 = i2;
14473 else
14474 place = i2;
14475 }
14476
14477 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14478 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14479 there. */
14480 if (place && JUMP_P (place)
14481 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14482 && (JUMP_LABEL (place) == NULL
14483 || JUMP_LABEL (place) == XEXP (note, 0)))
14484 {
14485 rtx label = JUMP_LABEL (place);
14486
14487 if (!label)
14488 JUMP_LABEL (place) = XEXP (note, 0);
14489 else if (LABEL_P (label))
14490 LABEL_NUSES (label)--;
14491 }
14492
14493 if (place2 && JUMP_P (place2)
14494 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14495 && (JUMP_LABEL (place2) == NULL
14496 || JUMP_LABEL (place2) == XEXP (note, 0)))
14497 {
14498 rtx label = JUMP_LABEL (place2);
14499
14500 if (!label)
14501 JUMP_LABEL (place2) = XEXP (note, 0);
14502 else if (LABEL_P (label))
14503 LABEL_NUSES (label)--;
14504 place2 = 0;
14505 }
14506 break;
14507
14508 case REG_NONNEG:
14509 /* This note says something about the value of a register prior
14510 to the execution of an insn. It is too much trouble to see
14511 if the note is still correct in all situations. It is better
14512 to simply delete it. */
14513 break;
14514
14515 case REG_DEAD:
14516 /* If we replaced the right hand side of FROM_INSN with a
14517 REG_EQUAL note, the original use of the dying register
14518 will not have been combined into I3 and I2. In such cases,
14519 FROM_INSN is guaranteed to be the first of the combined
14520 instructions, so we simply need to search back before
14521 FROM_INSN for the previous use or set of this register,
14522 then alter the notes there appropriately.
14523
14524 If the register is used as an input in I3, it dies there.
14525 Similarly for I2, if it is nonzero and adjacent to I3.
14526
14527 If the register is not used as an input in either I3 or I2
14528 and it is not one of the registers we were supposed to eliminate,
14529 there are two possibilities. We might have a non-adjacent I2
14530 or we might have somehow eliminated an additional register
14531 from a computation. For example, we might have had A & B where
14532 we discover that B will always be zero. In this case we will
14533 eliminate the reference to A.
14534
14535 In both cases, we must search to see if we can find a previous
14536 use of A and put the death note there. */
14537
14538 if (from_insn
14539 && from_insn == i2mod
14540 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14541 tem_insn = from_insn;
14542 else
14543 {
14544 if (from_insn
14545 && CALL_P (from_insn)
14546 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14547 place = from_insn;
14548 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14549 {
14550 /* If the new I2 sets the same register that is marked
14551 dead in the note, we do not in general know where to
14552 put the note. One important case we _can_ handle is
14553 when the note comes from I3. */
14554 if (from_insn == i3)
14555 place = i3;
14556 else
14557 break;
14558 }
14559 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14560 place = i3;
14561 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14562 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14563 place = i2;
14564 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14565 && !(i2mod
14566 && reg_overlap_mentioned_p (XEXP (note, 0),
14567 i2mod_old_rhs)))
14568 || rtx_equal_p (XEXP (note, 0), elim_i1)
14569 || rtx_equal_p (XEXP (note, 0), elim_i0))
14570 break;
14571 tem_insn = i3;
14572 }
14573
14574 if (place == 0)
14575 {
14576 basic_block bb = this_basic_block;
14577
14578 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14579 {
14580 if (!NONDEBUG_INSN_P (tem_insn))
14581 {
14582 if (tem_insn == BB_HEAD (bb))
14583 break;
14584 continue;
14585 }
14586
14587 /* If the register is being set at TEM_INSN, see if that is all
14588 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14589 into a REG_UNUSED note instead. Don't delete sets to
14590 global register vars. */
14591 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14592 || !global_regs[REGNO (XEXP (note, 0))])
14593 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14594 {
14595 rtx set = single_set (tem_insn);
14596 rtx inner_dest = 0;
14597 rtx_insn *cc0_setter = NULL;
14598
14599 if (set != 0)
14600 for (inner_dest = SET_DEST (set);
14601 (GET_CODE (inner_dest) == STRICT_LOW_PART
14602 || GET_CODE (inner_dest) == SUBREG
14603 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14604 inner_dest = XEXP (inner_dest, 0))
14605 ;
14606
14607 /* Verify that it was the set, and not a clobber that
14608 modified the register.
14609
14610 CC0 targets must be careful to maintain setter/user
14611 pairs. If we cannot delete the setter due to side
14612 effects, mark the user with an UNUSED note instead
14613 of deleting it. */
14614
14615 if (set != 0 && ! side_effects_p (SET_SRC (set))
14616 && rtx_equal_p (XEXP (note, 0), inner_dest)
14617 && (!HAVE_cc0
14618 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14619 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14620 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14621 {
14622 /* Move the notes and links of TEM_INSN elsewhere.
14623 This might delete other dead insns recursively.
14624 First set the pattern to something that won't use
14625 any register. */
14626 rtx old_notes = REG_NOTES (tem_insn);
14627
14628 PATTERN (tem_insn) = pc_rtx;
14629 REG_NOTES (tem_insn) = NULL;
14630
14631 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14632 NULL_RTX, NULL_RTX, NULL_RTX);
14633 distribute_links (LOG_LINKS (tem_insn));
14634
14635 unsigned int regno = REGNO (XEXP (note, 0));
14636 reg_stat_type *rsp = &reg_stat[regno];
14637 if (rsp->last_set == tem_insn)
14638 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14639
14640 SET_INSN_DELETED (tem_insn);
14641 if (tem_insn == i2)
14642 i2 = NULL;
14643
14644 /* Delete the setter too. */
14645 if (cc0_setter)
14646 {
14647 PATTERN (cc0_setter) = pc_rtx;
14648 old_notes = REG_NOTES (cc0_setter);
14649 REG_NOTES (cc0_setter) = NULL;
14650
14651 distribute_notes (old_notes, cc0_setter,
14652 cc0_setter, NULL,
14653 NULL_RTX, NULL_RTX, NULL_RTX);
14654 distribute_links (LOG_LINKS (cc0_setter));
14655
14656 SET_INSN_DELETED (cc0_setter);
14657 if (cc0_setter == i2)
14658 i2 = NULL;
14659 }
14660 }
14661 else
14662 {
14663 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14664
14665 /* If there isn't already a REG_UNUSED note, put one
14666 here. Do not place a REG_DEAD note, even if
14667 the register is also used here; that would not
14668 match the algorithm used in lifetime analysis
14669 and can cause the consistency check in the
14670 scheduler to fail. */
14671 if (! find_regno_note (tem_insn, REG_UNUSED,
14672 REGNO (XEXP (note, 0))))
14673 place = tem_insn;
14674 break;
14675 }
14676 }
14677 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14678 || (CALL_P (tem_insn)
14679 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14680 {
14681 place = tem_insn;
14682
14683 /* If we are doing a 3->2 combination, and we have a
14684 register which formerly died in i3 and was not used
14685 by i2, which now no longer dies in i3 and is used in
14686 i2 but does not die in i2, and place is between i2
14687 and i3, then we may need to move a link from place to
14688 i2. */
14689 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14690 && from_insn
14691 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14692 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14693 {
14694 struct insn_link *links = LOG_LINKS (place);
14695 LOG_LINKS (place) = NULL;
14696 distribute_links (links);
14697 }
14698 break;
14699 }
14700
14701 if (tem_insn == BB_HEAD (bb))
14702 break;
14703 }
14704
14705 }
14706
14707 /* If the register is set or already dead at PLACE, we needn't do
14708 anything with this note if it is still a REG_DEAD note.
14709 We check here if it is set at all, not if is it totally replaced,
14710 which is what `dead_or_set_p' checks, so also check for it being
14711 set partially. */
14712
14713 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14714 {
14715 unsigned int regno = REGNO (XEXP (note, 0));
14716 reg_stat_type *rsp = &reg_stat[regno];
14717
14718 if (dead_or_set_p (place, XEXP (note, 0))
14719 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14720 {
14721 /* Unless the register previously died in PLACE, clear
14722 last_death. [I no longer understand why this is
14723 being done.] */
14724 if (rsp->last_death != place)
14725 rsp->last_death = 0;
14726 place = 0;
14727 }
14728 else
14729 rsp->last_death = place;
14730
14731 /* If this is a death note for a hard reg that is occupying
14732 multiple registers, ensure that we are still using all
14733 parts of the object. If we find a piece of the object
14734 that is unused, we must arrange for an appropriate REG_DEAD
14735 note to be added for it. However, we can't just emit a USE
14736 and tag the note to it, since the register might actually
14737 be dead; so we recourse, and the recursive call then finds
14738 the previous insn that used this register. */
14739
14740 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14741 {
14742 unsigned int endregno = END_REGNO (XEXP (note, 0));
14743 bool all_used = true;
14744 unsigned int i;
14745
14746 for (i = regno; i < endregno; i++)
14747 if ((! refers_to_regno_p (i, PATTERN (place))
14748 && ! find_regno_fusage (place, USE, i))
14749 || dead_or_set_regno_p (place, i))
14750 {
14751 all_used = false;
14752 break;
14753 }
14754
14755 if (! all_used)
14756 {
14757 /* Put only REG_DEAD notes for pieces that are
14758 not already dead or set. */
14759
14760 for (i = regno; i < endregno;
14761 i += hard_regno_nregs (i, reg_raw_mode[i]))
14762 {
14763 rtx piece = regno_reg_rtx[i];
14764 basic_block bb = this_basic_block;
14765
14766 if (! dead_or_set_p (place, piece)
14767 && ! reg_bitfield_target_p (piece,
14768 PATTERN (place)))
14769 {
14770 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14771 NULL_RTX);
14772
14773 distribute_notes (new_note, place, place,
14774 NULL, NULL_RTX, NULL_RTX,
14775 NULL_RTX);
14776 }
14777 else if (! refers_to_regno_p (i, PATTERN (place))
14778 && ! find_regno_fusage (place, USE, i))
14779 for (tem_insn = PREV_INSN (place); ;
14780 tem_insn = PREV_INSN (tem_insn))
14781 {
14782 if (!NONDEBUG_INSN_P (tem_insn))
14783 {
14784 if (tem_insn == BB_HEAD (bb))
14785 break;
14786 continue;
14787 }
14788 if (dead_or_set_p (tem_insn, piece)
14789 || reg_bitfield_target_p (piece,
14790 PATTERN (tem_insn)))
14791 {
14792 add_reg_note (tem_insn, REG_UNUSED, piece);
14793 break;
14794 }
14795 }
14796 }
14797
14798 place = 0;
14799 }
14800 }
14801 }
14802 break;
14803
14804 default:
14805 /* Any other notes should not be present at this point in the
14806 compilation. */
14807 gcc_unreachable ();
14808 }
14809
14810 if (place)
14811 {
14812 XEXP (note, 1) = REG_NOTES (place);
14813 REG_NOTES (place) = note;
14814
14815 /* Set added_notes_insn to the earliest insn we added a note to. */
14816 if (added_notes_insn == 0
14817 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14818 added_notes_insn = place;
14819 }
14820
14821 if (place2)
14822 {
14823 add_shallow_copy_of_reg_note (place2, note);
14824
14825 /* Set added_notes_insn to the earliest insn we added a note to. */
14826 if (added_notes_insn == 0
14827 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14828 added_notes_insn = place2;
14829 }
14830 }
14831 }
14832 \f
14833 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14834 I3, I2, and I1 to new locations. This is also called to add a link
14835 pointing at I3 when I3's destination is changed. */
14836
14837 static void
14838 distribute_links (struct insn_link *links)
14839 {
14840 struct insn_link *link, *next_link;
14841
14842 for (link = links; link; link = next_link)
14843 {
14844 rtx_insn *place = 0;
14845 rtx_insn *insn;
14846 rtx set, reg;
14847
14848 next_link = link->next;
14849
14850 /* If the insn that this link points to is a NOTE, ignore it. */
14851 if (NOTE_P (link->insn))
14852 continue;
14853
14854 set = 0;
14855 rtx pat = PATTERN (link->insn);
14856 if (GET_CODE (pat) == SET)
14857 set = pat;
14858 else if (GET_CODE (pat) == PARALLEL)
14859 {
14860 int i;
14861 for (i = 0; i < XVECLEN (pat, 0); i++)
14862 {
14863 set = XVECEXP (pat, 0, i);
14864 if (GET_CODE (set) != SET)
14865 continue;
14866
14867 reg = SET_DEST (set);
14868 while (GET_CODE (reg) == ZERO_EXTRACT
14869 || GET_CODE (reg) == STRICT_LOW_PART
14870 || GET_CODE (reg) == SUBREG)
14871 reg = XEXP (reg, 0);
14872
14873 if (!REG_P (reg))
14874 continue;
14875
14876 if (REGNO (reg) == link->regno)
14877 break;
14878 }
14879 if (i == XVECLEN (pat, 0))
14880 continue;
14881 }
14882 else
14883 continue;
14884
14885 reg = SET_DEST (set);
14886
14887 while (GET_CODE (reg) == ZERO_EXTRACT
14888 || GET_CODE (reg) == STRICT_LOW_PART
14889 || GET_CODE (reg) == SUBREG)
14890 reg = XEXP (reg, 0);
14891
14892 if (reg == pc_rtx)
14893 continue;
14894
14895 /* A LOG_LINK is defined as being placed on the first insn that uses
14896 a register and points to the insn that sets the register. Start
14897 searching at the next insn after the target of the link and stop
14898 when we reach a set of the register or the end of the basic block.
14899
14900 Note that this correctly handles the link that used to point from
14901 I3 to I2. Also note that not much searching is typically done here
14902 since most links don't point very far away. */
14903
14904 for (insn = NEXT_INSN (link->insn);
14905 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14906 || BB_HEAD (this_basic_block->next_bb) != insn));
14907 insn = NEXT_INSN (insn))
14908 if (DEBUG_INSN_P (insn))
14909 continue;
14910 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14911 {
14912 if (reg_referenced_p (reg, PATTERN (insn)))
14913 place = insn;
14914 break;
14915 }
14916 else if (CALL_P (insn)
14917 && find_reg_fusage (insn, USE, reg))
14918 {
14919 place = insn;
14920 break;
14921 }
14922 else if (INSN_P (insn) && reg_set_p (reg, insn))
14923 break;
14924
14925 /* If we found a place to put the link, place it there unless there
14926 is already a link to the same insn as LINK at that point. */
14927
14928 if (place)
14929 {
14930 struct insn_link *link2;
14931
14932 FOR_EACH_LOG_LINK (link2, place)
14933 if (link2->insn == link->insn && link2->regno == link->regno)
14934 break;
14935
14936 if (link2 == NULL)
14937 {
14938 link->next = LOG_LINKS (place);
14939 LOG_LINKS (place) = link;
14940
14941 /* Set added_links_insn to the earliest insn we added a
14942 link to. */
14943 if (added_links_insn == 0
14944 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14945 added_links_insn = place;
14946 }
14947 }
14948 }
14949 }
14950 \f
14951 /* Check for any register or memory mentioned in EQUIV that is not
14952 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14953 of EXPR where some registers may have been replaced by constants. */
14954
14955 static bool
14956 unmentioned_reg_p (rtx equiv, rtx expr)
14957 {
14958 subrtx_iterator::array_type array;
14959 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14960 {
14961 const_rtx x = *iter;
14962 if ((REG_P (x) || MEM_P (x))
14963 && !reg_mentioned_p (x, expr))
14964 return true;
14965 }
14966 return false;
14967 }
14968 \f
14969 DEBUG_FUNCTION void
14970 dump_combine_stats (FILE *file)
14971 {
14972 fprintf
14973 (file,
14974 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14975 combine_attempts, combine_merges, combine_extras, combine_successes);
14976 }
14977
14978 void
14979 dump_combine_total_stats (FILE *file)
14980 {
14981 fprintf
14982 (file,
14983 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14984 total_attempts, total_merges, total_extras, total_successes);
14985 }
14986 \f
14987 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
14988 the reg-to-reg copy can usefully combine with later instructions, but we
14989 do not want to combine the hard reg into later instructions, for that
14990 restricts register allocation. */
14991 static void
14992 make_more_copies (void)
14993 {
14994 basic_block bb;
14995
14996 FOR_EACH_BB_FN (bb, cfun)
14997 {
14998 rtx_insn *insn;
14999
15000 FOR_BB_INSNS (bb, insn)
15001 {
15002 if (!NONDEBUG_INSN_P (insn))
15003 continue;
15004
15005 rtx set = single_set (insn);
15006 if (!set)
15007 continue;
15008
15009 rtx dest = SET_DEST (set);
15010 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
15011 continue;
15012
15013 rtx src = SET_SRC (set);
15014 if (!(REG_P (src) && HARD_REGISTER_P (src)))
15015 continue;
15016 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
15017 continue;
15018
15019 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
15020 rtx_insn *new_insn = gen_move_insn (new_reg, src);
15021 SET_SRC (set) = new_reg;
15022 emit_insn_before (new_insn, insn);
15023 df_insn_rescan (insn);
15024 }
15025 }
15026 }
15027
15028 /* Try combining insns through substitution. */
15029 static unsigned int
15030 rest_of_handle_combine (void)
15031 {
15032 make_more_copies ();
15033
15034 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
15035 df_note_add_problem ();
15036 df_analyze ();
15037
15038 regstat_init_n_sets_and_refs ();
15039 reg_n_sets_max = max_reg_num ();
15040
15041 int rebuild_jump_labels_after_combine
15042 = combine_instructions (get_insns (), max_reg_num ());
15043
15044 /* Combining insns may have turned an indirect jump into a
15045 direct jump. Rebuild the JUMP_LABEL fields of jumping
15046 instructions. */
15047 if (rebuild_jump_labels_after_combine)
15048 {
15049 if (dom_info_available_p (CDI_DOMINATORS))
15050 free_dominance_info (CDI_DOMINATORS);
15051 timevar_push (TV_JUMP);
15052 rebuild_jump_labels (get_insns ());
15053 cleanup_cfg (0);
15054 timevar_pop (TV_JUMP);
15055 }
15056
15057 regstat_free_n_sets_and_refs ();
15058 return 0;
15059 }
15060
15061 namespace {
15062
15063 const pass_data pass_data_combine =
15064 {
15065 RTL_PASS, /* type */
15066 "combine", /* name */
15067 OPTGROUP_NONE, /* optinfo_flags */
15068 TV_COMBINE, /* tv_id */
15069 PROP_cfglayout, /* properties_required */
15070 0, /* properties_provided */
15071 0, /* properties_destroyed */
15072 0, /* todo_flags_start */
15073 TODO_df_finish, /* todo_flags_finish */
15074 };
15075
15076 class pass_combine : public rtl_opt_pass
15077 {
15078 public:
15079 pass_combine (gcc::context *ctxt)
15080 : rtl_opt_pass (pass_data_combine, ctxt)
15081 {}
15082
15083 /* opt_pass methods: */
15084 virtual bool gate (function *) { return (optimize > 0); }
15085 virtual unsigned int execute (function *)
15086 {
15087 return rest_of_handle_combine ();
15088 }
15089
15090 }; // class pass_combine
15091
15092 } // anon namespace
15093
15094 rtl_opt_pass *
15095 make_pass_combine (gcc::context *ctxt)
15096 {
15097 return new pass_combine (ctxt);
15098 }