]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/combine.c
re PR target/37170 (gcc.dg/weak/weak-1.c)
[thirdparty/gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "real.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
254
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257
258 static VEC(reg_stat_type,heap) *reg_stat;
259
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
262
263 static int mem_last_set;
264
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
267
268 static int last_call_luid;
269
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
275
276 static rtx subst_insn;
277
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
284
285 static int subst_low_luid;
286
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
289
290 static HARD_REG_SET newpat_used_regs;
291
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
295
296 static rtx added_links_insn;
297
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
301
302 \f
303 /* Length of the currently allocated uid_insn_cost array. */
304
305 static int max_uid_known;
306
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
309
310 static int *uid_insn_cost;
311
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
314
315 static rtx *uid_log_links;
316
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
319
320 /* Incremented for each basic block. */
321
322 static int label_tick;
323
324 /* Reset to label_tick for each label. */
325
326 static int label_tick_ebb_start;
327
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
330
331 static enum machine_mode nonzero_bits_mode;
332
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
338
339 static int nonzero_sign_valid;
340
341 \f
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
344
345 struct undo
346 {
347 struct undo *next;
348 enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
349 union { rtx r; int i; enum machine_mode m; } old_contents;
350 union { rtx *r; int *i; } where;
351 };
352
353 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
354 num_undo says how many are currently recorded.
355
356 other_insn is nonzero if we have modified some other insn in the process
357 of working on subst_insn. It must be verified too. */
358
359 struct undobuf
360 {
361 struct undo *undos;
362 struct undo *frees;
363 rtx other_insn;
364 };
365
366 static struct undobuf undobuf;
367
368 /* Number of times the pseudo being substituted for
369 was found and replaced. */
370
371 static int n_occurrences;
372
373 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
374 enum machine_mode,
375 unsigned HOST_WIDE_INT,
376 unsigned HOST_WIDE_INT *);
377 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
378 enum machine_mode,
379 unsigned int, unsigned int *);
380 static void do_SUBST (rtx *, rtx);
381 static void do_SUBST_INT (int *, int);
382 static void init_reg_last (void);
383 static void setup_incoming_promotions (rtx);
384 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
385 static int cant_combine_insn_p (rtx);
386 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
387 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
388 static int contains_muldiv (rtx);
389 static rtx try_combine (rtx, rtx, rtx, int *);
390 static void undo_all (void);
391 static void undo_commit (void);
392 static rtx *find_split_point (rtx *, rtx);
393 static rtx subst (rtx, rtx, rtx, int, int);
394 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
395 static rtx simplify_if_then_else (rtx);
396 static rtx simplify_set (rtx);
397 static rtx simplify_logical (rtx);
398 static rtx expand_compound_operation (rtx);
399 static const_rtx expand_field_assignment (const_rtx);
400 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
401 rtx, unsigned HOST_WIDE_INT, int, int, int);
402 static rtx extract_left_shift (rtx, int);
403 static rtx make_compound_operation (rtx, enum rtx_code);
404 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
405 unsigned HOST_WIDE_INT *);
406 static rtx canon_reg_for_combine (rtx, rtx);
407 static rtx force_to_mode (rtx, enum machine_mode,
408 unsigned HOST_WIDE_INT, int);
409 static rtx if_then_else_cond (rtx, rtx *, rtx *);
410 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
411 static int rtx_equal_for_field_assignment_p (rtx, rtx);
412 static rtx make_field_assignment (rtx);
413 static rtx apply_distributive_law (rtx);
414 static rtx distribute_and_simplify_rtx (rtx, int);
415 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
416 unsigned HOST_WIDE_INT);
417 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
420 HOST_WIDE_INT, enum machine_mode, int *);
421 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
422 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
423 int);
424 static int recog_for_combine (rtx *, rtx, rtx *);
425 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
426 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
427 static void update_table_tick (rtx);
428 static void record_value_for_reg (rtx, rtx, rtx);
429 static void check_promoted_subreg (rtx, rtx);
430 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
431 static void record_dead_and_set_regs (rtx);
432 static int get_last_value_validate (rtx *, rtx, int, int);
433 static rtx get_last_value (const_rtx);
434 static int use_crosses_set_p (const_rtx, int);
435 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
436 static int reg_dead_at_p (rtx, rtx);
437 static void move_deaths (rtx, rtx, int, rtx, rtx *);
438 static int reg_bitfield_target_p (rtx, rtx);
439 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
440 static void distribute_links (rtx);
441 static void mark_used_regs_combine (rtx);
442 static void record_promoted_value (rtx, rtx);
443 static int unmentioned_reg_p_1 (rtx *, void *);
444 static bool unmentioned_reg_p (rtx, rtx);
445 static int record_truncated_value (rtx *, void *);
446 static void record_truncated_values (rtx *, void *);
447 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
448 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
449 \f
450
451 /* It is not safe to use ordinary gen_lowpart in combine.
452 See comments in gen_lowpart_for_combine. */
453 #undef RTL_HOOKS_GEN_LOWPART
454 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
455
456 /* Our implementation of gen_lowpart never emits a new pseudo. */
457 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
458 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
459
460 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
461 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
462
463 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
464 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
465
466 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
467 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
468
469 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
470
471 \f
472 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
473 PATTERN can not be split. Otherwise, it returns an insn sequence.
474 This is a wrapper around split_insns which ensures that the
475 reg_stat vector is made larger if the splitter creates a new
476 register. */
477
478 static rtx
479 combine_split_insns (rtx pattern, rtx insn)
480 {
481 rtx ret;
482 unsigned int nregs;
483
484 ret = split_insns (pattern, insn);
485 nregs = max_reg_num ();
486 if (nregs > VEC_length (reg_stat_type, reg_stat))
487 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
488 return ret;
489 }
490
491 /* This is used by find_single_use to locate an rtx in LOC that
492 contains exactly one use of DEST, which is typically either a REG
493 or CC0. It returns a pointer to the innermost rtx expression
494 containing DEST. Appearances of DEST that are being used to
495 totally replace it are not counted. */
496
497 static rtx *
498 find_single_use_1 (rtx dest, rtx *loc)
499 {
500 rtx x = *loc;
501 enum rtx_code code = GET_CODE (x);
502 rtx *result = NULL;
503 rtx *this_result;
504 int i;
505 const char *fmt;
506
507 switch (code)
508 {
509 case CONST_INT:
510 case CONST:
511 case LABEL_REF:
512 case SYMBOL_REF:
513 case CONST_DOUBLE:
514 case CONST_VECTOR:
515 case CLOBBER:
516 return 0;
517
518 case SET:
519 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
520 of a REG that occupies all of the REG, the insn uses DEST if
521 it is mentioned in the destination or the source. Otherwise, we
522 need just check the source. */
523 if (GET_CODE (SET_DEST (x)) != CC0
524 && GET_CODE (SET_DEST (x)) != PC
525 && !REG_P (SET_DEST (x))
526 && ! (GET_CODE (SET_DEST (x)) == SUBREG
527 && REG_P (SUBREG_REG (SET_DEST (x)))
528 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
529 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
530 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
532 break;
533
534 return find_single_use_1 (dest, &SET_SRC (x));
535
536 case MEM:
537 case SUBREG:
538 return find_single_use_1 (dest, &XEXP (x, 0));
539
540 default:
541 break;
542 }
543
544 /* If it wasn't one of the common cases above, check each expression and
545 vector of this code. Look for a unique usage of DEST. */
546
547 fmt = GET_RTX_FORMAT (code);
548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
549 {
550 if (fmt[i] == 'e')
551 {
552 if (dest == XEXP (x, i)
553 || (REG_P (dest) && REG_P (XEXP (x, i))
554 && REGNO (dest) == REGNO (XEXP (x, i))))
555 this_result = loc;
556 else
557 this_result = find_single_use_1 (dest, &XEXP (x, i));
558
559 if (result == NULL)
560 result = this_result;
561 else if (this_result)
562 /* Duplicate usage. */
563 return NULL;
564 }
565 else if (fmt[i] == 'E')
566 {
567 int j;
568
569 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
570 {
571 if (XVECEXP (x, i, j) == dest
572 || (REG_P (dest)
573 && REG_P (XVECEXP (x, i, j))
574 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
575 this_result = loc;
576 else
577 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
578
579 if (result == NULL)
580 result = this_result;
581 else if (this_result)
582 return NULL;
583 }
584 }
585 }
586
587 return result;
588 }
589
590
591 /* See if DEST, produced in INSN, is used only a single time in the
592 sequel. If so, return a pointer to the innermost rtx expression in which
593 it is used.
594
595 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
596
597 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
598 care about REG_DEAD notes or LOG_LINKS.
599
600 Otherwise, we find the single use by finding an insn that has a
601 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
602 only referenced once in that insn, we know that it must be the first
603 and last insn referencing DEST. */
604
605 static rtx *
606 find_single_use (rtx dest, rtx insn, rtx *ploc)
607 {
608 rtx next;
609 rtx *result;
610 rtx link;
611
612 #ifdef HAVE_cc0
613 if (dest == cc0_rtx)
614 {
615 next = NEXT_INSN (insn);
616 if (next == 0
617 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
618 return 0;
619
620 result = find_single_use_1 (dest, &PATTERN (next));
621 if (result && ploc)
622 *ploc = next;
623 return result;
624 }
625 #endif
626
627 if (!REG_P (dest))
628 return 0;
629
630 for (next = next_nonnote_insn (insn);
631 next != 0 && !LABEL_P (next);
632 next = next_nonnote_insn (next))
633 if (INSN_P (next) && dead_or_set_p (next, dest))
634 {
635 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
636 if (XEXP (link, 0) == insn)
637 break;
638
639 if (link)
640 {
641 result = find_single_use_1 (dest, &PATTERN (next));
642 if (ploc)
643 *ploc = next;
644 return result;
645 }
646 }
647
648 return 0;
649 }
650 \f
651 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
652 insn. The substitution can be undone by undo_all. If INTO is already
653 set to NEWVAL, do not record this change. Because computing NEWVAL might
654 also call SUBST, we have to compute it before we put anything into
655 the undo table. */
656
657 static void
658 do_SUBST (rtx *into, rtx newval)
659 {
660 struct undo *buf;
661 rtx oldval = *into;
662
663 if (oldval == newval)
664 return;
665
666 /* We'd like to catch as many invalid transformations here as
667 possible. Unfortunately, there are way too many mode changes
668 that are perfectly valid, so we'd waste too much effort for
669 little gain doing the checks here. Focus on catching invalid
670 transformations involving integer constants. */
671 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
672 && GET_CODE (newval) == CONST_INT)
673 {
674 /* Sanity check that we're replacing oldval with a CONST_INT
675 that is a valid sign-extension for the original mode. */
676 gcc_assert (INTVAL (newval)
677 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
678
679 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
680 CONST_INT is not valid, because after the replacement, the
681 original mode would be gone. Unfortunately, we can't tell
682 when do_SUBST is called to replace the operand thereof, so we
683 perform this test on oldval instead, checking whether an
684 invalid replacement took place before we got here. */
685 gcc_assert (!(GET_CODE (oldval) == SUBREG
686 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
687 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
688 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
689 }
690
691 if (undobuf.frees)
692 buf = undobuf.frees, undobuf.frees = buf->next;
693 else
694 buf = XNEW (struct undo);
695
696 buf->kind = UNDO_RTX;
697 buf->where.r = into;
698 buf->old_contents.r = oldval;
699 *into = newval;
700
701 buf->next = undobuf.undos, undobuf.undos = buf;
702 }
703
704 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
705
706 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
707 for the value of a HOST_WIDE_INT value (including CONST_INT) is
708 not safe. */
709
710 static void
711 do_SUBST_INT (int *into, int newval)
712 {
713 struct undo *buf;
714 int oldval = *into;
715
716 if (oldval == newval)
717 return;
718
719 if (undobuf.frees)
720 buf = undobuf.frees, undobuf.frees = buf->next;
721 else
722 buf = XNEW (struct undo);
723
724 buf->kind = UNDO_INT;
725 buf->where.i = into;
726 buf->old_contents.i = oldval;
727 *into = newval;
728
729 buf->next = undobuf.undos, undobuf.undos = buf;
730 }
731
732 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
733
734 /* Similar to SUBST, but just substitute the mode. This is used when
735 changing the mode of a pseudo-register, so that any other
736 references to the entry in the regno_reg_rtx array will change as
737 well. */
738
739 static void
740 do_SUBST_MODE (rtx *into, enum machine_mode newval)
741 {
742 struct undo *buf;
743 enum machine_mode oldval = GET_MODE (*into);
744
745 if (oldval == newval)
746 return;
747
748 if (undobuf.frees)
749 buf = undobuf.frees, undobuf.frees = buf->next;
750 else
751 buf = XNEW (struct undo);
752
753 buf->kind = UNDO_MODE;
754 buf->where.r = into;
755 buf->old_contents.m = oldval;
756 adjust_reg_mode (*into, newval);
757
758 buf->next = undobuf.undos, undobuf.undos = buf;
759 }
760
761 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
762 \f
763 /* Subroutine of try_combine. Determine whether the combine replacement
764 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
765 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
766 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
767 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
768 function returns false, if the costs of all instructions can be
769 estimated, and the replacements are more expensive than the original
770 sequence. */
771
772 static bool
773 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
774 rtx newotherpat)
775 {
776 int i1_cost, i2_cost, i3_cost;
777 int new_i2_cost, new_i3_cost;
778 int old_cost, new_cost;
779
780 /* Lookup the original insn_rtx_costs. */
781 i2_cost = INSN_COST (i2);
782 i3_cost = INSN_COST (i3);
783
784 if (i1)
785 {
786 i1_cost = INSN_COST (i1);
787 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
788 ? i1_cost + i2_cost + i3_cost : 0;
789 }
790 else
791 {
792 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
793 i1_cost = 0;
794 }
795
796 /* Calculate the replacement insn_rtx_costs. */
797 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
798 if (newi2pat)
799 {
800 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
801 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
802 ? new_i2_cost + new_i3_cost : 0;
803 }
804 else
805 {
806 new_cost = new_i3_cost;
807 new_i2_cost = 0;
808 }
809
810 if (undobuf.other_insn)
811 {
812 int old_other_cost, new_other_cost;
813
814 old_other_cost = INSN_COST (undobuf.other_insn);
815 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
816 if (old_other_cost > 0 && new_other_cost > 0)
817 {
818 old_cost += old_other_cost;
819 new_cost += new_other_cost;
820 }
821 else
822 old_cost = 0;
823 }
824
825 /* Disallow this recombination if both new_cost and old_cost are
826 greater than zero, and new_cost is greater than old cost. */
827 if (old_cost > 0
828 && new_cost > old_cost)
829 {
830 if (dump_file)
831 {
832 if (i1)
833 {
834 fprintf (dump_file,
835 "rejecting combination of insns %d, %d and %d\n",
836 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
837 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
838 i1_cost, i2_cost, i3_cost, old_cost);
839 }
840 else
841 {
842 fprintf (dump_file,
843 "rejecting combination of insns %d and %d\n",
844 INSN_UID (i2), INSN_UID (i3));
845 fprintf (dump_file, "original costs %d + %d = %d\n",
846 i2_cost, i3_cost, old_cost);
847 }
848
849 if (newi2pat)
850 {
851 fprintf (dump_file, "replacement costs %d + %d = %d\n",
852 new_i2_cost, new_i3_cost, new_cost);
853 }
854 else
855 fprintf (dump_file, "replacement cost %d\n", new_cost);
856 }
857
858 return false;
859 }
860
861 /* Update the uid_insn_cost array with the replacement costs. */
862 INSN_COST (i2) = new_i2_cost;
863 INSN_COST (i3) = new_i3_cost;
864 if (i1)
865 INSN_COST (i1) = 0;
866
867 return true;
868 }
869
870
871 /* Delete any insns that copy a register to itself. */
872
873 static void
874 delete_noop_moves (void)
875 {
876 rtx insn, next;
877 basic_block bb;
878
879 FOR_EACH_BB (bb)
880 {
881 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
882 {
883 next = NEXT_INSN (insn);
884 if (INSN_P (insn) && noop_move_p (insn))
885 {
886 if (dump_file)
887 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
888
889 delete_insn_and_edges (insn);
890 }
891 }
892 }
893 }
894
895 \f
896 /* Fill in log links field for all insns. */
897
898 static void
899 create_log_links (void)
900 {
901 basic_block bb;
902 rtx *next_use, insn;
903 df_ref *def_vec, *use_vec;
904
905 next_use = XCNEWVEC (rtx, max_reg_num ());
906
907 /* Pass through each block from the end, recording the uses of each
908 register and establishing log links when def is encountered.
909 Note that we do not clear next_use array in order to save time,
910 so we have to test whether the use is in the same basic block as def.
911
912 There are a few cases below when we do not consider the definition or
913 usage -- these are taken from original flow.c did. Don't ask me why it is
914 done this way; I don't know and if it works, I don't want to know. */
915
916 FOR_EACH_BB (bb)
917 {
918 FOR_BB_INSNS_REVERSE (bb, insn)
919 {
920 if (!INSN_P (insn))
921 continue;
922
923 /* Log links are created only once. */
924 gcc_assert (!LOG_LINKS (insn));
925
926 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
927 {
928 df_ref def = *def_vec;
929 int regno = DF_REF_REGNO (def);
930 rtx use_insn;
931
932 if (!next_use[regno])
933 continue;
934
935 /* Do not consider if it is pre/post modification in MEM. */
936 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
937 continue;
938
939 /* Do not make the log link for frame pointer. */
940 if ((regno == FRAME_POINTER_REGNUM
941 && (! reload_completed || frame_pointer_needed))
942 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
943 || (regno == HARD_FRAME_POINTER_REGNUM
944 && (! reload_completed || frame_pointer_needed))
945 #endif
946 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
947 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
948 #endif
949 )
950 continue;
951
952 use_insn = next_use[regno];
953 if (BLOCK_FOR_INSN (use_insn) == bb)
954 {
955 /* flow.c claimed:
956
957 We don't build a LOG_LINK for hard registers contained
958 in ASM_OPERANDs. If these registers get replaced,
959 we might wind up changing the semantics of the insn,
960 even if reload can make what appear to be valid
961 assignments later. */
962 if (regno >= FIRST_PSEUDO_REGISTER
963 || asm_noperands (PATTERN (use_insn)) < 0)
964 {
965 /* Don't add duplicate links between instructions. */
966 rtx links;
967 for (links = LOG_LINKS (use_insn); links;
968 links = XEXP (links, 1))
969 if (insn == XEXP (links, 0))
970 break;
971
972 if (!links)
973 LOG_LINKS (use_insn) =
974 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
975 }
976 }
977 next_use[regno] = NULL_RTX;
978 }
979
980 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
981 {
982 df_ref use = *use_vec;
983 int regno = DF_REF_REGNO (use);
984
985 /* Do not consider the usage of the stack pointer
986 by function call. */
987 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
988 continue;
989
990 next_use[regno] = insn;
991 }
992 }
993 }
994
995 free (next_use);
996 }
997
998 /* Clear LOG_LINKS fields of insns. */
999
1000 static void
1001 clear_log_links (void)
1002 {
1003 rtx insn;
1004
1005 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1006 if (INSN_P (insn))
1007 free_INSN_LIST_list (&LOG_LINKS (insn));
1008 }
1009
1010
1011
1012 \f
1013 /* Main entry point for combiner. F is the first insn of the function.
1014 NREGS is the first unused pseudo-reg number.
1015
1016 Return nonzero if the combiner has turned an indirect jump
1017 instruction into a direct jump. */
1018 static int
1019 combine_instructions (rtx f, unsigned int nregs)
1020 {
1021 rtx insn, next;
1022 #ifdef HAVE_cc0
1023 rtx prev;
1024 #endif
1025 rtx links, nextlinks;
1026 rtx first;
1027
1028 int new_direct_jump_p = 0;
1029
1030 for (first = f; first && !INSN_P (first); )
1031 first = NEXT_INSN (first);
1032 if (!first)
1033 return 0;
1034
1035 combine_attempts = 0;
1036 combine_merges = 0;
1037 combine_extras = 0;
1038 combine_successes = 0;
1039
1040 rtl_hooks = combine_rtl_hooks;
1041
1042 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1043
1044 init_recog_no_volatile ();
1045
1046 /* Allocate array for insn info. */
1047 max_uid_known = get_max_uid ();
1048 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1049 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1050
1051 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1052
1053 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1054 problems when, for example, we have j <<= 1 in a loop. */
1055
1056 nonzero_sign_valid = 0;
1057
1058 /* Scan all SETs and see if we can deduce anything about what
1059 bits are known to be zero for some registers and how many copies
1060 of the sign bit are known to exist for those registers.
1061
1062 Also set any known values so that we can use it while searching
1063 for what bits are known to be set. */
1064
1065 label_tick = label_tick_ebb_start = 1;
1066
1067 setup_incoming_promotions (first);
1068
1069 create_log_links ();
1070 FOR_EACH_BB (this_basic_block)
1071 {
1072 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1073 last_call_luid = 0;
1074 mem_last_set = -1;
1075 label_tick++;
1076 FOR_BB_INSNS (this_basic_block, insn)
1077 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1078 {
1079 subst_low_luid = DF_INSN_LUID (insn);
1080 subst_insn = insn;
1081
1082 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1083 insn);
1084 record_dead_and_set_regs (insn);
1085
1086 #ifdef AUTO_INC_DEC
1087 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1088 if (REG_NOTE_KIND (links) == REG_INC)
1089 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1090 insn);
1091 #endif
1092
1093 /* Record the current insn_rtx_cost of this instruction. */
1094 if (NONJUMP_INSN_P (insn))
1095 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1096 optimize_this_for_speed_p);
1097 if (dump_file)
1098 fprintf(dump_file, "insn_cost %d: %d\n",
1099 INSN_UID (insn), INSN_COST (insn));
1100 }
1101 else if (LABEL_P (insn))
1102 label_tick_ebb_start = label_tick;
1103 }
1104
1105 nonzero_sign_valid = 1;
1106
1107 /* Now scan all the insns in forward order. */
1108
1109 label_tick = label_tick_ebb_start = 1;
1110 init_reg_last ();
1111 setup_incoming_promotions (first);
1112
1113 FOR_EACH_BB (this_basic_block)
1114 {
1115 last_call_luid = 0;
1116 mem_last_set = -1;
1117 label_tick++;
1118 rtl_profile_for_bb (this_basic_block);
1119 for (insn = BB_HEAD (this_basic_block);
1120 insn != NEXT_INSN (BB_END (this_basic_block));
1121 insn = next ? next : NEXT_INSN (insn))
1122 {
1123 next = 0;
1124 if (INSN_P (insn))
1125 {
1126 /* See if we know about function return values before this
1127 insn based upon SUBREG flags. */
1128 check_promoted_subreg (insn, PATTERN (insn));
1129
1130 /* See if we can find hardregs and subreg of pseudos in
1131 narrower modes. This could help turning TRUNCATEs
1132 into SUBREGs. */
1133 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1134
1135 /* Try this insn with each insn it links back to. */
1136
1137 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1138 if ((next = try_combine (insn, XEXP (links, 0),
1139 NULL_RTX, &new_direct_jump_p)) != 0)
1140 goto retry;
1141
1142 /* Try each sequence of three linked insns ending with this one. */
1143
1144 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1145 {
1146 rtx link = XEXP (links, 0);
1147
1148 /* If the linked insn has been replaced by a note, then there
1149 is no point in pursuing this chain any further. */
1150 if (NOTE_P (link))
1151 continue;
1152
1153 for (nextlinks = LOG_LINKS (link);
1154 nextlinks;
1155 nextlinks = XEXP (nextlinks, 1))
1156 if ((next = try_combine (insn, link,
1157 XEXP (nextlinks, 0),
1158 &new_direct_jump_p)) != 0)
1159 goto retry;
1160 }
1161
1162 #ifdef HAVE_cc0
1163 /* Try to combine a jump insn that uses CC0
1164 with a preceding insn that sets CC0, and maybe with its
1165 logical predecessor as well.
1166 This is how we make decrement-and-branch insns.
1167 We need this special code because data flow connections
1168 via CC0 do not get entered in LOG_LINKS. */
1169
1170 if (JUMP_P (insn)
1171 && (prev = prev_nonnote_insn (insn)) != 0
1172 && NONJUMP_INSN_P (prev)
1173 && sets_cc0_p (PATTERN (prev)))
1174 {
1175 if ((next = try_combine (insn, prev,
1176 NULL_RTX, &new_direct_jump_p)) != 0)
1177 goto retry;
1178
1179 for (nextlinks = LOG_LINKS (prev); nextlinks;
1180 nextlinks = XEXP (nextlinks, 1))
1181 if ((next = try_combine (insn, prev,
1182 XEXP (nextlinks, 0),
1183 &new_direct_jump_p)) != 0)
1184 goto retry;
1185 }
1186
1187 /* Do the same for an insn that explicitly references CC0. */
1188 if (NONJUMP_INSN_P (insn)
1189 && (prev = prev_nonnote_insn (insn)) != 0
1190 && NONJUMP_INSN_P (prev)
1191 && sets_cc0_p (PATTERN (prev))
1192 && GET_CODE (PATTERN (insn)) == SET
1193 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1194 {
1195 if ((next = try_combine (insn, prev,
1196 NULL_RTX, &new_direct_jump_p)) != 0)
1197 goto retry;
1198
1199 for (nextlinks = LOG_LINKS (prev); nextlinks;
1200 nextlinks = XEXP (nextlinks, 1))
1201 if ((next = try_combine (insn, prev,
1202 XEXP (nextlinks, 0),
1203 &new_direct_jump_p)) != 0)
1204 goto retry;
1205 }
1206
1207 /* Finally, see if any of the insns that this insn links to
1208 explicitly references CC0. If so, try this insn, that insn,
1209 and its predecessor if it sets CC0. */
1210 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1211 if (NONJUMP_INSN_P (XEXP (links, 0))
1212 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1213 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1214 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1215 && NONJUMP_INSN_P (prev)
1216 && sets_cc0_p (PATTERN (prev))
1217 && (next = try_combine (insn, XEXP (links, 0),
1218 prev, &new_direct_jump_p)) != 0)
1219 goto retry;
1220 #endif
1221
1222 /* Try combining an insn with two different insns whose results it
1223 uses. */
1224 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1225 for (nextlinks = XEXP (links, 1); nextlinks;
1226 nextlinks = XEXP (nextlinks, 1))
1227 if ((next = try_combine (insn, XEXP (links, 0),
1228 XEXP (nextlinks, 0),
1229 &new_direct_jump_p)) != 0)
1230 goto retry;
1231
1232 /* Try this insn with each REG_EQUAL note it links back to. */
1233 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1234 {
1235 rtx set, note;
1236 rtx temp = XEXP (links, 0);
1237 if ((set = single_set (temp)) != 0
1238 && (note = find_reg_equal_equiv_note (temp)) != 0
1239 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1240 /* Avoid using a register that may already been marked
1241 dead by an earlier instruction. */
1242 && ! unmentioned_reg_p (note, SET_SRC (set))
1243 && (GET_MODE (note) == VOIDmode
1244 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1245 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1246 {
1247 /* Temporarily replace the set's source with the
1248 contents of the REG_EQUAL note. The insn will
1249 be deleted or recognized by try_combine. */
1250 rtx orig = SET_SRC (set);
1251 SET_SRC (set) = note;
1252 i2mod = temp;
1253 i2mod_old_rhs = copy_rtx (orig);
1254 i2mod_new_rhs = copy_rtx (note);
1255 next = try_combine (insn, i2mod, NULL_RTX,
1256 &new_direct_jump_p);
1257 i2mod = NULL_RTX;
1258 if (next)
1259 goto retry;
1260 SET_SRC (set) = orig;
1261 }
1262 }
1263
1264 if (!NOTE_P (insn))
1265 record_dead_and_set_regs (insn);
1266
1267 retry:
1268 ;
1269 }
1270 else if (LABEL_P (insn))
1271 label_tick_ebb_start = label_tick;
1272 }
1273 }
1274
1275 default_rtl_profile ();
1276 clear_log_links ();
1277 clear_bb_flags ();
1278 new_direct_jump_p |= purge_all_dead_edges ();
1279 delete_noop_moves ();
1280
1281 /* Clean up. */
1282 free (uid_log_links);
1283 free (uid_insn_cost);
1284 VEC_free (reg_stat_type, heap, reg_stat);
1285
1286 {
1287 struct undo *undo, *next;
1288 for (undo = undobuf.frees; undo; undo = next)
1289 {
1290 next = undo->next;
1291 free (undo);
1292 }
1293 undobuf.frees = 0;
1294 }
1295
1296 total_attempts += combine_attempts;
1297 total_merges += combine_merges;
1298 total_extras += combine_extras;
1299 total_successes += combine_successes;
1300
1301 nonzero_sign_valid = 0;
1302 rtl_hooks = general_rtl_hooks;
1303
1304 /* Make recognizer allow volatile MEMs again. */
1305 init_recog ();
1306
1307 return new_direct_jump_p;
1308 }
1309
1310 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1311
1312 static void
1313 init_reg_last (void)
1314 {
1315 unsigned int i;
1316 reg_stat_type *p;
1317
1318 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1319 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1320 }
1321 \f
1322 /* Set up any promoted values for incoming argument registers. */
1323
1324 static void
1325 setup_incoming_promotions (rtx first)
1326 {
1327 tree arg;
1328 bool strictly_local = false;
1329
1330 if (!targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1331 return;
1332
1333 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1334 arg = TREE_CHAIN (arg))
1335 {
1336 rtx reg = DECL_INCOMING_RTL (arg);
1337 int uns1, uns3;
1338 enum machine_mode mode1, mode2, mode3, mode4;
1339
1340 /* Only continue if the incoming argument is in a register. */
1341 if (!REG_P (reg))
1342 continue;
1343
1344 /* Determine, if possible, whether all call sites of the current
1345 function lie within the current compilation unit. (This does
1346 take into account the exporting of a function via taking its
1347 address, and so forth.) */
1348 strictly_local = cgraph_local_info (current_function_decl)->local;
1349
1350 /* The mode and signedness of the argument before any promotions happen
1351 (equal to the mode of the pseudo holding it at that stage). */
1352 mode1 = TYPE_MODE (TREE_TYPE (arg));
1353 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1354
1355 /* The mode and signedness of the argument after any source language and
1356 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1357 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1358 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1359
1360 /* The mode and signedness of the argument as it is actually passed,
1361 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1362 mode3 = promote_mode (DECL_ARG_TYPE (arg), mode2, &uns3, 1);
1363
1364 /* The mode of the register in which the argument is being passed. */
1365 mode4 = GET_MODE (reg);
1366
1367 /* Eliminate sign extensions in the callee when possible. Only
1368 do this when:
1369 (a) a mode promotion has occurred;
1370 (b) the mode of the register is the same as the mode of
1371 the argument as it is passed; and
1372 (c) the signedness does not change across any of the promotions; and
1373 (d) when no language-level promotions (which we cannot guarantee
1374 will have been done by an external caller) are necessary,
1375 unless we know that this function is only ever called from
1376 the current compilation unit -- all of whose call sites will
1377 do the mode1 --> mode2 promotion. */
1378 if (mode1 != mode3
1379 && mode3 == mode4
1380 && uns1 == uns3
1381 && (mode1 == mode2 || strictly_local))
1382 {
1383 /* Record that the value was promoted from mode1 to mode3,
1384 so that any sign extension at the head of the current
1385 function may be eliminated. */
1386 rtx x;
1387 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1388 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1389 record_value_for_reg (reg, first, x);
1390 }
1391 }
1392 }
1393
1394 /* Called via note_stores. If X is a pseudo that is narrower than
1395 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1396
1397 If we are setting only a portion of X and we can't figure out what
1398 portion, assume all bits will be used since we don't know what will
1399 be happening.
1400
1401 Similarly, set how many bits of X are known to be copies of the sign bit
1402 at all locations in the function. This is the smallest number implied
1403 by any set of X. */
1404
1405 static void
1406 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1407 {
1408 rtx insn = (rtx) data;
1409 unsigned int num;
1410
1411 if (REG_P (x)
1412 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1413 /* If this register is undefined at the start of the file, we can't
1414 say what its contents were. */
1415 && ! REGNO_REG_SET_P
1416 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1417 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1418 {
1419 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1420
1421 if (set == 0 || GET_CODE (set) == CLOBBER)
1422 {
1423 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1424 rsp->sign_bit_copies = 1;
1425 return;
1426 }
1427
1428 /* If this register is being initialized using itself, and the
1429 register is uninitialized in this basic block, and there are
1430 no LOG_LINKS which set the register, then part of the
1431 register is uninitialized. In that case we can't assume
1432 anything about the number of nonzero bits.
1433
1434 ??? We could do better if we checked this in
1435 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1436 could avoid making assumptions about the insn which initially
1437 sets the register, while still using the information in other
1438 insns. We would have to be careful to check every insn
1439 involved in the combination. */
1440
1441 if (insn
1442 && reg_referenced_p (x, PATTERN (insn))
1443 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1444 REGNO (x)))
1445 {
1446 rtx link;
1447
1448 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1449 {
1450 if (dead_or_set_p (XEXP (link, 0), x))
1451 break;
1452 }
1453 if (!link)
1454 {
1455 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1456 rsp->sign_bit_copies = 1;
1457 return;
1458 }
1459 }
1460
1461 /* If this is a complex assignment, see if we can convert it into a
1462 simple assignment. */
1463 set = expand_field_assignment (set);
1464
1465 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1466 set what we know about X. */
1467
1468 if (SET_DEST (set) == x
1469 || (GET_CODE (SET_DEST (set)) == SUBREG
1470 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1471 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1472 && SUBREG_REG (SET_DEST (set)) == x))
1473 {
1474 rtx src = SET_SRC (set);
1475
1476 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1477 /* If X is narrower than a word and SRC is a non-negative
1478 constant that would appear negative in the mode of X,
1479 sign-extend it for use in reg_stat[].nonzero_bits because some
1480 machines (maybe most) will actually do the sign-extension
1481 and this is the conservative approach.
1482
1483 ??? For 2.5, try to tighten up the MD files in this regard
1484 instead of this kludge. */
1485
1486 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1487 && GET_CODE (src) == CONST_INT
1488 && INTVAL (src) > 0
1489 && 0 != (INTVAL (src)
1490 & ((HOST_WIDE_INT) 1
1491 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1492 src = GEN_INT (INTVAL (src)
1493 | ((HOST_WIDE_INT) (-1)
1494 << GET_MODE_BITSIZE (GET_MODE (x))));
1495 #endif
1496
1497 /* Don't call nonzero_bits if it cannot change anything. */
1498 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1499 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1500 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1501 if (rsp->sign_bit_copies == 0
1502 || rsp->sign_bit_copies > num)
1503 rsp->sign_bit_copies = num;
1504 }
1505 else
1506 {
1507 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1508 rsp->sign_bit_copies = 1;
1509 }
1510 }
1511 }
1512 \f
1513 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1514 insns that were previously combined into I3 or that will be combined
1515 into the merger of INSN and I3.
1516
1517 Return 0 if the combination is not allowed for any reason.
1518
1519 If the combination is allowed, *PDEST will be set to the single
1520 destination of INSN and *PSRC to the single source, and this function
1521 will return 1. */
1522
1523 static int
1524 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1525 rtx *pdest, rtx *psrc)
1526 {
1527 int i;
1528 const_rtx set = 0;
1529 rtx src, dest;
1530 rtx p;
1531 #ifdef AUTO_INC_DEC
1532 rtx link;
1533 #endif
1534 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1535 && next_active_insn (succ) == i3)
1536 : next_active_insn (insn) == i3);
1537
1538 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1539 or a PARALLEL consisting of such a SET and CLOBBERs.
1540
1541 If INSN has CLOBBER parallel parts, ignore them for our processing.
1542 By definition, these happen during the execution of the insn. When it
1543 is merged with another insn, all bets are off. If they are, in fact,
1544 needed and aren't also supplied in I3, they may be added by
1545 recog_for_combine. Otherwise, it won't match.
1546
1547 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1548 note.
1549
1550 Get the source and destination of INSN. If more than one, can't
1551 combine. */
1552
1553 if (GET_CODE (PATTERN (insn)) == SET)
1554 set = PATTERN (insn);
1555 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1556 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1557 {
1558 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1559 {
1560 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1561 rtx note;
1562
1563 switch (GET_CODE (elt))
1564 {
1565 /* This is important to combine floating point insns
1566 for the SH4 port. */
1567 case USE:
1568 /* Combining an isolated USE doesn't make sense.
1569 We depend here on combinable_i3pat to reject them. */
1570 /* The code below this loop only verifies that the inputs of
1571 the SET in INSN do not change. We call reg_set_between_p
1572 to verify that the REG in the USE does not change between
1573 I3 and INSN.
1574 If the USE in INSN was for a pseudo register, the matching
1575 insn pattern will likely match any register; combining this
1576 with any other USE would only be safe if we knew that the
1577 used registers have identical values, or if there was
1578 something to tell them apart, e.g. different modes. For
1579 now, we forgo such complicated tests and simply disallow
1580 combining of USES of pseudo registers with any other USE. */
1581 if (REG_P (XEXP (elt, 0))
1582 && GET_CODE (PATTERN (i3)) == PARALLEL)
1583 {
1584 rtx i3pat = PATTERN (i3);
1585 int i = XVECLEN (i3pat, 0) - 1;
1586 unsigned int regno = REGNO (XEXP (elt, 0));
1587
1588 do
1589 {
1590 rtx i3elt = XVECEXP (i3pat, 0, i);
1591
1592 if (GET_CODE (i3elt) == USE
1593 && REG_P (XEXP (i3elt, 0))
1594 && (REGNO (XEXP (i3elt, 0)) == regno
1595 ? reg_set_between_p (XEXP (elt, 0),
1596 PREV_INSN (insn), i3)
1597 : regno >= FIRST_PSEUDO_REGISTER))
1598 return 0;
1599 }
1600 while (--i >= 0);
1601 }
1602 break;
1603
1604 /* We can ignore CLOBBERs. */
1605 case CLOBBER:
1606 break;
1607
1608 case SET:
1609 /* Ignore SETs whose result isn't used but not those that
1610 have side-effects. */
1611 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1612 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1613 || INTVAL (XEXP (note, 0)) <= 0)
1614 && ! side_effects_p (elt))
1615 break;
1616
1617 /* If we have already found a SET, this is a second one and
1618 so we cannot combine with this insn. */
1619 if (set)
1620 return 0;
1621
1622 set = elt;
1623 break;
1624
1625 default:
1626 /* Anything else means we can't combine. */
1627 return 0;
1628 }
1629 }
1630
1631 if (set == 0
1632 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1633 so don't do anything with it. */
1634 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1635 return 0;
1636 }
1637 else
1638 return 0;
1639
1640 if (set == 0)
1641 return 0;
1642
1643 set = expand_field_assignment (set);
1644 src = SET_SRC (set), dest = SET_DEST (set);
1645
1646 /* Don't eliminate a store in the stack pointer. */
1647 if (dest == stack_pointer_rtx
1648 /* Don't combine with an insn that sets a register to itself if it has
1649 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1650 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1651 /* Can't merge an ASM_OPERANDS. */
1652 || GET_CODE (src) == ASM_OPERANDS
1653 /* Can't merge a function call. */
1654 || GET_CODE (src) == CALL
1655 /* Don't eliminate a function call argument. */
1656 || (CALL_P (i3)
1657 && (find_reg_fusage (i3, USE, dest)
1658 || (REG_P (dest)
1659 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1660 && global_regs[REGNO (dest)])))
1661 /* Don't substitute into an incremented register. */
1662 || FIND_REG_INC_NOTE (i3, dest)
1663 || (succ && FIND_REG_INC_NOTE (succ, dest))
1664 /* Don't substitute into a non-local goto, this confuses CFG. */
1665 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1666 /* Make sure that DEST is not used after SUCC but before I3. */
1667 || (succ && ! all_adjacent
1668 && reg_used_between_p (dest, succ, i3))
1669 /* Make sure that the value that is to be substituted for the register
1670 does not use any registers whose values alter in between. However,
1671 If the insns are adjacent, a use can't cross a set even though we
1672 think it might (this can happen for a sequence of insns each setting
1673 the same destination; last_set of that register might point to
1674 a NOTE). If INSN has a REG_EQUIV note, the register is always
1675 equivalent to the memory so the substitution is valid even if there
1676 are intervening stores. Also, don't move a volatile asm or
1677 UNSPEC_VOLATILE across any other insns. */
1678 || (! all_adjacent
1679 && (((!MEM_P (src)
1680 || ! find_reg_note (insn, REG_EQUIV, src))
1681 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1682 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1683 || GET_CODE (src) == UNSPEC_VOLATILE))
1684 /* Don't combine across a CALL_INSN, because that would possibly
1685 change whether the life span of some REGs crosses calls or not,
1686 and it is a pain to update that information.
1687 Exception: if source is a constant, moving it later can't hurt.
1688 Accept that as a special case. */
1689 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1690 return 0;
1691
1692 /* DEST must either be a REG or CC0. */
1693 if (REG_P (dest))
1694 {
1695 /* If register alignment is being enforced for multi-word items in all
1696 cases except for parameters, it is possible to have a register copy
1697 insn referencing a hard register that is not allowed to contain the
1698 mode being copied and which would not be valid as an operand of most
1699 insns. Eliminate this problem by not combining with such an insn.
1700
1701 Also, on some machines we don't want to extend the life of a hard
1702 register. */
1703
1704 if (REG_P (src)
1705 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1706 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1707 /* Don't extend the life of a hard register unless it is
1708 user variable (if we have few registers) or it can't
1709 fit into the desired register (meaning something special
1710 is going on).
1711 Also avoid substituting a return register into I3, because
1712 reload can't handle a conflict with constraints of other
1713 inputs. */
1714 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1715 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1716 return 0;
1717 }
1718 else if (GET_CODE (dest) != CC0)
1719 return 0;
1720
1721
1722 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1723 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1724 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1725 {
1726 /* Don't substitute for a register intended as a clobberable
1727 operand. */
1728 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1729 if (rtx_equal_p (reg, dest))
1730 return 0;
1731
1732 /* If the clobber represents an earlyclobber operand, we must not
1733 substitute an expression containing the clobbered register.
1734 As we do not analyze the constraint strings here, we have to
1735 make the conservative assumption. However, if the register is
1736 a fixed hard reg, the clobber cannot represent any operand;
1737 we leave it up to the machine description to either accept or
1738 reject use-and-clobber patterns. */
1739 if (!REG_P (reg)
1740 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1741 || !fixed_regs[REGNO (reg)])
1742 if (reg_overlap_mentioned_p (reg, src))
1743 return 0;
1744 }
1745
1746 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1747 or not), reject, unless nothing volatile comes between it and I3 */
1748
1749 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1750 {
1751 /* Make sure succ doesn't contain a volatile reference. */
1752 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1753 return 0;
1754
1755 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1756 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1757 return 0;
1758 }
1759
1760 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1761 to be an explicit register variable, and was chosen for a reason. */
1762
1763 if (GET_CODE (src) == ASM_OPERANDS
1764 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1765 return 0;
1766
1767 /* If there are any volatile insns between INSN and I3, reject, because
1768 they might affect machine state. */
1769
1770 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1771 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1772 return 0;
1773
1774 /* If INSN contains an autoincrement or autodecrement, make sure that
1775 register is not used between there and I3, and not already used in
1776 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1777 Also insist that I3 not be a jump; if it were one
1778 and the incremented register were spilled, we would lose. */
1779
1780 #ifdef AUTO_INC_DEC
1781 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1782 if (REG_NOTE_KIND (link) == REG_INC
1783 && (JUMP_P (i3)
1784 || reg_used_between_p (XEXP (link, 0), insn, i3)
1785 || (pred != NULL_RTX
1786 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1787 || (succ != NULL_RTX
1788 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1789 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1790 return 0;
1791 #endif
1792
1793 #ifdef HAVE_cc0
1794 /* Don't combine an insn that follows a CC0-setting insn.
1795 An insn that uses CC0 must not be separated from the one that sets it.
1796 We do, however, allow I2 to follow a CC0-setting insn if that insn
1797 is passed as I1; in that case it will be deleted also.
1798 We also allow combining in this case if all the insns are adjacent
1799 because that would leave the two CC0 insns adjacent as well.
1800 It would be more logical to test whether CC0 occurs inside I1 or I2,
1801 but that would be much slower, and this ought to be equivalent. */
1802
1803 p = prev_nonnote_insn (insn);
1804 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1805 && ! all_adjacent)
1806 return 0;
1807 #endif
1808
1809 /* If we get here, we have passed all the tests and the combination is
1810 to be allowed. */
1811
1812 *pdest = dest;
1813 *psrc = src;
1814
1815 return 1;
1816 }
1817 \f
1818 /* LOC is the location within I3 that contains its pattern or the component
1819 of a PARALLEL of the pattern. We validate that it is valid for combining.
1820
1821 One problem is if I3 modifies its output, as opposed to replacing it
1822 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1823 so would produce an insn that is not equivalent to the original insns.
1824
1825 Consider:
1826
1827 (set (reg:DI 101) (reg:DI 100))
1828 (set (subreg:SI (reg:DI 101) 0) <foo>)
1829
1830 This is NOT equivalent to:
1831
1832 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1833 (set (reg:DI 101) (reg:DI 100))])
1834
1835 Not only does this modify 100 (in which case it might still be valid
1836 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1837
1838 We can also run into a problem if I2 sets a register that I1
1839 uses and I1 gets directly substituted into I3 (not via I2). In that
1840 case, we would be getting the wrong value of I2DEST into I3, so we
1841 must reject the combination. This case occurs when I2 and I1 both
1842 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1843 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1844 of a SET must prevent combination from occurring.
1845
1846 Before doing the above check, we first try to expand a field assignment
1847 into a set of logical operations.
1848
1849 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1850 we place a register that is both set and used within I3. If more than one
1851 such register is detected, we fail.
1852
1853 Return 1 if the combination is valid, zero otherwise. */
1854
1855 static int
1856 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1857 int i1_not_in_src, rtx *pi3dest_killed)
1858 {
1859 rtx x = *loc;
1860
1861 if (GET_CODE (x) == SET)
1862 {
1863 rtx set = x ;
1864 rtx dest = SET_DEST (set);
1865 rtx src = SET_SRC (set);
1866 rtx inner_dest = dest;
1867 rtx subdest;
1868
1869 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1870 || GET_CODE (inner_dest) == SUBREG
1871 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1872 inner_dest = XEXP (inner_dest, 0);
1873
1874 /* Check for the case where I3 modifies its output, as discussed
1875 above. We don't want to prevent pseudos from being combined
1876 into the address of a MEM, so only prevent the combination if
1877 i1 or i2 set the same MEM. */
1878 if ((inner_dest != dest &&
1879 (!MEM_P (inner_dest)
1880 || rtx_equal_p (i2dest, inner_dest)
1881 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1882 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1883 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1884
1885 /* This is the same test done in can_combine_p except we can't test
1886 all_adjacent; we don't have to, since this instruction will stay
1887 in place, thus we are not considering increasing the lifetime of
1888 INNER_DEST.
1889
1890 Also, if this insn sets a function argument, combining it with
1891 something that might need a spill could clobber a previous
1892 function argument; the all_adjacent test in can_combine_p also
1893 checks this; here, we do a more specific test for this case. */
1894
1895 || (REG_P (inner_dest)
1896 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1897 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1898 GET_MODE (inner_dest))))
1899 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1900 return 0;
1901
1902 /* If DEST is used in I3, it is being killed in this insn, so
1903 record that for later. We have to consider paradoxical
1904 subregs here, since they kill the whole register, but we
1905 ignore partial subregs, STRICT_LOW_PART, etc.
1906 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1907 STACK_POINTER_REGNUM, since these are always considered to be
1908 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1909 subdest = dest;
1910 if (GET_CODE (subdest) == SUBREG
1911 && (GET_MODE_SIZE (GET_MODE (subdest))
1912 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1913 subdest = SUBREG_REG (subdest);
1914 if (pi3dest_killed
1915 && REG_P (subdest)
1916 && reg_referenced_p (subdest, PATTERN (i3))
1917 && REGNO (subdest) != FRAME_POINTER_REGNUM
1918 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1919 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1920 #endif
1921 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1922 && (REGNO (subdest) != ARG_POINTER_REGNUM
1923 || ! fixed_regs [REGNO (subdest)])
1924 #endif
1925 && REGNO (subdest) != STACK_POINTER_REGNUM)
1926 {
1927 if (*pi3dest_killed)
1928 return 0;
1929
1930 *pi3dest_killed = subdest;
1931 }
1932 }
1933
1934 else if (GET_CODE (x) == PARALLEL)
1935 {
1936 int i;
1937
1938 for (i = 0; i < XVECLEN (x, 0); i++)
1939 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1940 i1_not_in_src, pi3dest_killed))
1941 return 0;
1942 }
1943
1944 return 1;
1945 }
1946 \f
1947 /* Return 1 if X is an arithmetic expression that contains a multiplication
1948 and division. We don't count multiplications by powers of two here. */
1949
1950 static int
1951 contains_muldiv (rtx x)
1952 {
1953 switch (GET_CODE (x))
1954 {
1955 case MOD: case DIV: case UMOD: case UDIV:
1956 return 1;
1957
1958 case MULT:
1959 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1960 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1961 default:
1962 if (BINARY_P (x))
1963 return contains_muldiv (XEXP (x, 0))
1964 || contains_muldiv (XEXP (x, 1));
1965
1966 if (UNARY_P (x))
1967 return contains_muldiv (XEXP (x, 0));
1968
1969 return 0;
1970 }
1971 }
1972 \f
1973 /* Determine whether INSN can be used in a combination. Return nonzero if
1974 not. This is used in try_combine to detect early some cases where we
1975 can't perform combinations. */
1976
1977 static int
1978 cant_combine_insn_p (rtx insn)
1979 {
1980 rtx set;
1981 rtx src, dest;
1982
1983 /* If this isn't really an insn, we can't do anything.
1984 This can occur when flow deletes an insn that it has merged into an
1985 auto-increment address. */
1986 if (! INSN_P (insn))
1987 return 1;
1988
1989 /* Never combine loads and stores involving hard regs that are likely
1990 to be spilled. The register allocator can usually handle such
1991 reg-reg moves by tying. If we allow the combiner to make
1992 substitutions of likely-spilled regs, reload might die.
1993 As an exception, we allow combinations involving fixed regs; these are
1994 not available to the register allocator so there's no risk involved. */
1995
1996 set = single_set (insn);
1997 if (! set)
1998 return 0;
1999 src = SET_SRC (set);
2000 dest = SET_DEST (set);
2001 if (GET_CODE (src) == SUBREG)
2002 src = SUBREG_REG (src);
2003 if (GET_CODE (dest) == SUBREG)
2004 dest = SUBREG_REG (dest);
2005 if (REG_P (src) && REG_P (dest)
2006 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2007 && ! fixed_regs[REGNO (src)]
2008 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2009 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2010 && ! fixed_regs[REGNO (dest)]
2011 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2012 return 1;
2013
2014 return 0;
2015 }
2016
2017 struct likely_spilled_retval_info
2018 {
2019 unsigned regno, nregs;
2020 unsigned mask;
2021 };
2022
2023 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2024 hard registers that are known to be written to / clobbered in full. */
2025 static void
2026 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2027 {
2028 struct likely_spilled_retval_info *const info =
2029 (struct likely_spilled_retval_info *) data;
2030 unsigned regno, nregs;
2031 unsigned new_mask;
2032
2033 if (!REG_P (XEXP (set, 0)))
2034 return;
2035 regno = REGNO (x);
2036 if (regno >= info->regno + info->nregs)
2037 return;
2038 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2039 if (regno + nregs <= info->regno)
2040 return;
2041 new_mask = (2U << (nregs - 1)) - 1;
2042 if (regno < info->regno)
2043 new_mask >>= info->regno - regno;
2044 else
2045 new_mask <<= regno - info->regno;
2046 info->mask &= ~new_mask;
2047 }
2048
2049 /* Return nonzero iff part of the return value is live during INSN, and
2050 it is likely spilled. This can happen when more than one insn is needed
2051 to copy the return value, e.g. when we consider to combine into the
2052 second copy insn for a complex value. */
2053
2054 static int
2055 likely_spilled_retval_p (rtx insn)
2056 {
2057 rtx use = BB_END (this_basic_block);
2058 rtx reg, p;
2059 unsigned regno, nregs;
2060 /* We assume here that no machine mode needs more than
2061 32 hard registers when the value overlaps with a register
2062 for which FUNCTION_VALUE_REGNO_P is true. */
2063 unsigned mask;
2064 struct likely_spilled_retval_info info;
2065
2066 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2067 return 0;
2068 reg = XEXP (PATTERN (use), 0);
2069 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2070 return 0;
2071 regno = REGNO (reg);
2072 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2073 if (nregs == 1)
2074 return 0;
2075 mask = (2U << (nregs - 1)) - 1;
2076
2077 /* Disregard parts of the return value that are set later. */
2078 info.regno = regno;
2079 info.nregs = nregs;
2080 info.mask = mask;
2081 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2082 if (INSN_P (p))
2083 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2084 mask = info.mask;
2085
2086 /* Check if any of the (probably) live return value registers is
2087 likely spilled. */
2088 nregs --;
2089 do
2090 {
2091 if ((mask & 1 << nregs)
2092 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2093 return 1;
2094 } while (nregs--);
2095 return 0;
2096 }
2097
2098 /* Adjust INSN after we made a change to its destination.
2099
2100 Changing the destination can invalidate notes that say something about
2101 the results of the insn and a LOG_LINK pointing to the insn. */
2102
2103 static void
2104 adjust_for_new_dest (rtx insn)
2105 {
2106 /* For notes, be conservative and simply remove them. */
2107 remove_reg_equal_equiv_notes (insn);
2108
2109 /* The new insn will have a destination that was previously the destination
2110 of an insn just above it. Call distribute_links to make a LOG_LINK from
2111 the next use of that destination. */
2112 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2113
2114 df_insn_rescan (insn);
2115 }
2116
2117 /* Return TRUE if combine can reuse reg X in mode MODE.
2118 ADDED_SETS is nonzero if the original set is still required. */
2119 static bool
2120 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2121 {
2122 unsigned int regno;
2123
2124 if (!REG_P(x))
2125 return false;
2126
2127 regno = REGNO (x);
2128 /* Allow hard registers if the new mode is legal, and occupies no more
2129 registers than the old mode. */
2130 if (regno < FIRST_PSEUDO_REGISTER)
2131 return (HARD_REGNO_MODE_OK (regno, mode)
2132 && (hard_regno_nregs[regno][GET_MODE (x)]
2133 >= hard_regno_nregs[regno][mode]));
2134
2135 /* Or a pseudo that is only used once. */
2136 return (REG_N_SETS (regno) == 1 && !added_sets
2137 && !REG_USERVAR_P (x));
2138 }
2139
2140
2141 /* Check whether X, the destination of a set, refers to part of
2142 the register specified by REG. */
2143
2144 static bool
2145 reg_subword_p (rtx x, rtx reg)
2146 {
2147 /* Check that reg is an integer mode register. */
2148 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2149 return false;
2150
2151 if (GET_CODE (x) == STRICT_LOW_PART
2152 || GET_CODE (x) == ZERO_EXTRACT)
2153 x = XEXP (x, 0);
2154
2155 return GET_CODE (x) == SUBREG
2156 && SUBREG_REG (x) == reg
2157 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2158 }
2159
2160
2161 /* Try to combine the insns I1 and I2 into I3.
2162 Here I1 and I2 appear earlier than I3.
2163 I1 can be zero; then we combine just I2 into I3.
2164
2165 If we are combining three insns and the resulting insn is not recognized,
2166 try splitting it into two insns. If that happens, I2 and I3 are retained
2167 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2168 are pseudo-deleted.
2169
2170 Return 0 if the combination does not work. Then nothing is changed.
2171 If we did the combination, return the insn at which combine should
2172 resume scanning.
2173
2174 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2175 new direct jump instruction. */
2176
2177 static rtx
2178 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2179 {
2180 /* New patterns for I3 and I2, respectively. */
2181 rtx newpat, newi2pat = 0;
2182 rtvec newpat_vec_with_clobbers = 0;
2183 int substed_i2 = 0, substed_i1 = 0;
2184 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2185 int added_sets_1, added_sets_2;
2186 /* Total number of SETs to put into I3. */
2187 int total_sets;
2188 /* Nonzero if I2's body now appears in I3. */
2189 int i2_is_used;
2190 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2191 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2192 /* Contains I3 if the destination of I3 is used in its source, which means
2193 that the old life of I3 is being killed. If that usage is placed into
2194 I2 and not in I3, a REG_DEAD note must be made. */
2195 rtx i3dest_killed = 0;
2196 /* SET_DEST and SET_SRC of I2 and I1. */
2197 rtx i2dest, i2src, i1dest = 0, i1src = 0;
2198 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2199 rtx i1pat = 0, i2pat = 0;
2200 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2201 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2202 int i2dest_killed = 0, i1dest_killed = 0;
2203 int i1_feeds_i3 = 0;
2204 /* Notes that must be added to REG_NOTES in I3 and I2. */
2205 rtx new_i3_notes, new_i2_notes;
2206 /* Notes that we substituted I3 into I2 instead of the normal case. */
2207 int i3_subst_into_i2 = 0;
2208 /* Notes that I1, I2 or I3 is a MULT operation. */
2209 int have_mult = 0;
2210 int swap_i2i3 = 0;
2211
2212 int maxreg;
2213 rtx temp;
2214 rtx link;
2215 rtx other_pat = 0;
2216 rtx new_other_notes;
2217 int i;
2218
2219 /* Exit early if one of the insns involved can't be used for
2220 combinations. */
2221 if (cant_combine_insn_p (i3)
2222 || cant_combine_insn_p (i2)
2223 || (i1 && cant_combine_insn_p (i1))
2224 || likely_spilled_retval_p (i3))
2225 return 0;
2226
2227 combine_attempts++;
2228 undobuf.other_insn = 0;
2229
2230 /* Reset the hard register usage information. */
2231 CLEAR_HARD_REG_SET (newpat_used_regs);
2232
2233 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2234 code below, set I1 to be the earlier of the two insns. */
2235 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2236 temp = i1, i1 = i2, i2 = temp;
2237
2238 added_links_insn = 0;
2239
2240 /* First check for one important special-case that the code below will
2241 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2242 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2243 we may be able to replace that destination with the destination of I3.
2244 This occurs in the common code where we compute both a quotient and
2245 remainder into a structure, in which case we want to do the computation
2246 directly into the structure to avoid register-register copies.
2247
2248 Note that this case handles both multiple sets in I2 and also
2249 cases where I2 has a number of CLOBBER or PARALLELs.
2250
2251 We make very conservative checks below and only try to handle the
2252 most common cases of this. For example, we only handle the case
2253 where I2 and I3 are adjacent to avoid making difficult register
2254 usage tests. */
2255
2256 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2257 && REG_P (SET_SRC (PATTERN (i3)))
2258 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2259 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2260 && GET_CODE (PATTERN (i2)) == PARALLEL
2261 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2262 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2263 below would need to check what is inside (and reg_overlap_mentioned_p
2264 doesn't support those codes anyway). Don't allow those destinations;
2265 the resulting insn isn't likely to be recognized anyway. */
2266 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2267 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2268 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2269 SET_DEST (PATTERN (i3)))
2270 && next_real_insn (i2) == i3)
2271 {
2272 rtx p2 = PATTERN (i2);
2273
2274 /* Make sure that the destination of I3,
2275 which we are going to substitute into one output of I2,
2276 is not used within another output of I2. We must avoid making this:
2277 (parallel [(set (mem (reg 69)) ...)
2278 (set (reg 69) ...)])
2279 which is not well-defined as to order of actions.
2280 (Besides, reload can't handle output reloads for this.)
2281
2282 The problem can also happen if the dest of I3 is a memory ref,
2283 if another dest in I2 is an indirect memory ref. */
2284 for (i = 0; i < XVECLEN (p2, 0); i++)
2285 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2286 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2287 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2288 SET_DEST (XVECEXP (p2, 0, i))))
2289 break;
2290
2291 if (i == XVECLEN (p2, 0))
2292 for (i = 0; i < XVECLEN (p2, 0); i++)
2293 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2294 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2295 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2296 {
2297 combine_merges++;
2298
2299 subst_insn = i3;
2300 subst_low_luid = DF_INSN_LUID (i2);
2301
2302 added_sets_2 = added_sets_1 = 0;
2303 i2dest = SET_SRC (PATTERN (i3));
2304 i2dest_killed = dead_or_set_p (i2, i2dest);
2305
2306 /* Replace the dest in I2 with our dest and make the resulting
2307 insn the new pattern for I3. Then skip to where we
2308 validate the pattern. Everything was set up above. */
2309 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2310 SET_DEST (PATTERN (i3)));
2311
2312 newpat = p2;
2313 i3_subst_into_i2 = 1;
2314 goto validate_replacement;
2315 }
2316 }
2317
2318 /* If I2 is setting a pseudo to a constant and I3 is setting some
2319 sub-part of it to another constant, merge them by making a new
2320 constant. */
2321 if (i1 == 0
2322 && (temp = single_set (i2)) != 0
2323 && (GET_CODE (SET_SRC (temp)) == CONST_INT
2324 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2325 && GET_CODE (PATTERN (i3)) == SET
2326 && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
2327 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2328 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2329 {
2330 rtx dest = SET_DEST (PATTERN (i3));
2331 int offset = -1;
2332 int width = 0;
2333
2334 if (GET_CODE (dest) == ZERO_EXTRACT)
2335 {
2336 if (GET_CODE (XEXP (dest, 1)) == CONST_INT
2337 && GET_CODE (XEXP (dest, 2)) == CONST_INT)
2338 {
2339 width = INTVAL (XEXP (dest, 1));
2340 offset = INTVAL (XEXP (dest, 2));
2341 dest = XEXP (dest, 0);
2342 if (BITS_BIG_ENDIAN)
2343 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2344 }
2345 }
2346 else
2347 {
2348 if (GET_CODE (dest) == STRICT_LOW_PART)
2349 dest = XEXP (dest, 0);
2350 width = GET_MODE_BITSIZE (GET_MODE (dest));
2351 offset = 0;
2352 }
2353
2354 if (offset >= 0)
2355 {
2356 /* If this is the low part, we're done. */
2357 if (subreg_lowpart_p (dest))
2358 ;
2359 /* Handle the case where inner is twice the size of outer. */
2360 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2361 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2362 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2363 /* Otherwise give up for now. */
2364 else
2365 offset = -1;
2366 }
2367
2368 if (offset >= 0
2369 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2370 <= HOST_BITS_PER_WIDE_INT * 2))
2371 {
2372 HOST_WIDE_INT mhi, ohi, ihi;
2373 HOST_WIDE_INT mlo, olo, ilo;
2374 rtx inner = SET_SRC (PATTERN (i3));
2375 rtx outer = SET_SRC (temp);
2376
2377 if (GET_CODE (outer) == CONST_INT)
2378 {
2379 olo = INTVAL (outer);
2380 ohi = olo < 0 ? -1 : 0;
2381 }
2382 else
2383 {
2384 olo = CONST_DOUBLE_LOW (outer);
2385 ohi = CONST_DOUBLE_HIGH (outer);
2386 }
2387
2388 if (GET_CODE (inner) == CONST_INT)
2389 {
2390 ilo = INTVAL (inner);
2391 ihi = ilo < 0 ? -1 : 0;
2392 }
2393 else
2394 {
2395 ilo = CONST_DOUBLE_LOW (inner);
2396 ihi = CONST_DOUBLE_HIGH (inner);
2397 }
2398
2399 if (width < HOST_BITS_PER_WIDE_INT)
2400 {
2401 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2402 mhi = 0;
2403 }
2404 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2405 {
2406 mhi = ((unsigned HOST_WIDE_INT) 1
2407 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2408 mlo = -1;
2409 }
2410 else
2411 {
2412 mlo = -1;
2413 mhi = -1;
2414 }
2415
2416 ilo &= mlo;
2417 ihi &= mhi;
2418
2419 if (offset >= HOST_BITS_PER_WIDE_INT)
2420 {
2421 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2422 mlo = 0;
2423 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2424 ilo = 0;
2425 }
2426 else if (offset > 0)
2427 {
2428 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2429 >> (HOST_BITS_PER_WIDE_INT - offset));
2430 mlo = mlo << offset;
2431 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2432 >> (HOST_BITS_PER_WIDE_INT - offset));
2433 ilo = ilo << offset;
2434 }
2435
2436 olo = (olo & ~mlo) | ilo;
2437 ohi = (ohi & ~mhi) | ihi;
2438
2439 combine_merges++;
2440 subst_insn = i3;
2441 subst_low_luid = DF_INSN_LUID (i2);
2442 added_sets_2 = added_sets_1 = 0;
2443 i2dest = SET_DEST (temp);
2444 i2dest_killed = dead_or_set_p (i2, i2dest);
2445
2446 SUBST (SET_SRC (temp),
2447 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2448
2449 newpat = PATTERN (i2);
2450 goto validate_replacement;
2451 }
2452 }
2453
2454 #ifndef HAVE_cc0
2455 /* If we have no I1 and I2 looks like:
2456 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2457 (set Y OP)])
2458 make up a dummy I1 that is
2459 (set Y OP)
2460 and change I2 to be
2461 (set (reg:CC X) (compare:CC Y (const_int 0)))
2462
2463 (We can ignore any trailing CLOBBERs.)
2464
2465 This undoes a previous combination and allows us to match a branch-and-
2466 decrement insn. */
2467
2468 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2469 && XVECLEN (PATTERN (i2), 0) >= 2
2470 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2471 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2472 == MODE_CC)
2473 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2474 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2475 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2476 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2477 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2478 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2479 {
2480 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2481 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2482 break;
2483
2484 if (i == 1)
2485 {
2486 /* We make I1 with the same INSN_UID as I2. This gives it
2487 the same DF_INSN_LUID for value tracking. Our fake I1 will
2488 never appear in the insn stream so giving it the same INSN_UID
2489 as I2 will not cause a problem. */
2490
2491 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2492 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2493 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2494
2495 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2496 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2497 SET_DEST (PATTERN (i1)));
2498 }
2499 }
2500 #endif
2501
2502 /* Verify that I2 and I1 are valid for combining. */
2503 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2504 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2505 {
2506 undo_all ();
2507 return 0;
2508 }
2509
2510 /* Record whether I2DEST is used in I2SRC and similarly for the other
2511 cases. Knowing this will help in register status updating below. */
2512 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2513 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2514 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2515 i2dest_killed = dead_or_set_p (i2, i2dest);
2516 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2517
2518 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2519 in I2SRC. */
2520 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2521
2522 /* Ensure that I3's pattern can be the destination of combines. */
2523 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2524 i1 && i2dest_in_i1src && i1_feeds_i3,
2525 &i3dest_killed))
2526 {
2527 undo_all ();
2528 return 0;
2529 }
2530
2531 /* See if any of the insns is a MULT operation. Unless one is, we will
2532 reject a combination that is, since it must be slower. Be conservative
2533 here. */
2534 if (GET_CODE (i2src) == MULT
2535 || (i1 != 0 && GET_CODE (i1src) == MULT)
2536 || (GET_CODE (PATTERN (i3)) == SET
2537 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2538 have_mult = 1;
2539
2540 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2541 We used to do this EXCEPT in one case: I3 has a post-inc in an
2542 output operand. However, that exception can give rise to insns like
2543 mov r3,(r3)+
2544 which is a famous insn on the PDP-11 where the value of r3 used as the
2545 source was model-dependent. Avoid this sort of thing. */
2546
2547 #if 0
2548 if (!(GET_CODE (PATTERN (i3)) == SET
2549 && REG_P (SET_SRC (PATTERN (i3)))
2550 && MEM_P (SET_DEST (PATTERN (i3)))
2551 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2552 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2553 /* It's not the exception. */
2554 #endif
2555 #ifdef AUTO_INC_DEC
2556 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2557 if (REG_NOTE_KIND (link) == REG_INC
2558 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2559 || (i1 != 0
2560 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2561 {
2562 undo_all ();
2563 return 0;
2564 }
2565 #endif
2566
2567 /* See if the SETs in I1 or I2 need to be kept around in the merged
2568 instruction: whenever the value set there is still needed past I3.
2569 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2570
2571 For the SET in I1, we have two cases: If I1 and I2 independently
2572 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2573 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2574 in I1 needs to be kept around unless I1DEST dies or is set in either
2575 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2576 I1DEST. If so, we know I1 feeds into I2. */
2577
2578 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2579
2580 added_sets_1
2581 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2582 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2583
2584 /* If the set in I2 needs to be kept around, we must make a copy of
2585 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2586 PATTERN (I2), we are only substituting for the original I1DEST, not into
2587 an already-substituted copy. This also prevents making self-referential
2588 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2589 I2DEST. */
2590
2591 if (added_sets_2)
2592 {
2593 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2594 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2595 else
2596 i2pat = copy_rtx (PATTERN (i2));
2597 }
2598
2599 if (added_sets_1)
2600 {
2601 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2602 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2603 else
2604 i1pat = copy_rtx (PATTERN (i1));
2605 }
2606
2607 combine_merges++;
2608
2609 /* Substitute in the latest insn for the regs set by the earlier ones. */
2610
2611 maxreg = max_reg_num ();
2612
2613 subst_insn = i3;
2614
2615 #ifndef HAVE_cc0
2616 /* Many machines that don't use CC0 have insns that can both perform an
2617 arithmetic operation and set the condition code. These operations will
2618 be represented as a PARALLEL with the first element of the vector
2619 being a COMPARE of an arithmetic operation with the constant zero.
2620 The second element of the vector will set some pseudo to the result
2621 of the same arithmetic operation. If we simplify the COMPARE, we won't
2622 match such a pattern and so will generate an extra insn. Here we test
2623 for this case, where both the comparison and the operation result are
2624 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2625 I2SRC. Later we will make the PARALLEL that contains I2. */
2626
2627 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2628 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2629 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2630 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2631 {
2632 #ifdef SELECT_CC_MODE
2633 rtx *cc_use;
2634 enum machine_mode compare_mode;
2635 #endif
2636
2637 newpat = PATTERN (i3);
2638 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2639
2640 i2_is_used = 1;
2641
2642 #ifdef SELECT_CC_MODE
2643 /* See if a COMPARE with the operand we substituted in should be done
2644 with the mode that is currently being used. If not, do the same
2645 processing we do in `subst' for a SET; namely, if the destination
2646 is used only once, try to replace it with a register of the proper
2647 mode and also replace the COMPARE. */
2648 if (undobuf.other_insn == 0
2649 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2650 &undobuf.other_insn))
2651 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2652 i2src, const0_rtx))
2653 != GET_MODE (SET_DEST (newpat))))
2654 {
2655 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2656 compare_mode))
2657 {
2658 unsigned int regno = REGNO (SET_DEST (newpat));
2659 rtx new_dest;
2660
2661 if (regno < FIRST_PSEUDO_REGISTER)
2662 new_dest = gen_rtx_REG (compare_mode, regno);
2663 else
2664 {
2665 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2666 new_dest = regno_reg_rtx[regno];
2667 }
2668
2669 SUBST (SET_DEST (newpat), new_dest);
2670 SUBST (XEXP (*cc_use, 0), new_dest);
2671 SUBST (SET_SRC (newpat),
2672 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2673 }
2674 else
2675 undobuf.other_insn = 0;
2676 }
2677 #endif
2678 }
2679 else
2680 #endif
2681 {
2682 /* It is possible that the source of I2 or I1 may be performing
2683 an unneeded operation, such as a ZERO_EXTEND of something
2684 that is known to have the high part zero. Handle that case
2685 by letting subst look at the innermost one of them.
2686
2687 Another way to do this would be to have a function that tries
2688 to simplify a single insn instead of merging two or more
2689 insns. We don't do this because of the potential of infinite
2690 loops and because of the potential extra memory required.
2691 However, doing it the way we are is a bit of a kludge and
2692 doesn't catch all cases.
2693
2694 But only do this if -fexpensive-optimizations since it slows
2695 things down and doesn't usually win.
2696
2697 This is not done in the COMPARE case above because the
2698 unmodified I2PAT is used in the PARALLEL and so a pattern
2699 with a modified I2SRC would not match. */
2700
2701 if (flag_expensive_optimizations)
2702 {
2703 /* Pass pc_rtx so no substitutions are done, just
2704 simplifications. */
2705 if (i1)
2706 {
2707 subst_low_luid = DF_INSN_LUID (i1);
2708 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2709 }
2710 else
2711 {
2712 subst_low_luid = DF_INSN_LUID (i2);
2713 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2714 }
2715 }
2716
2717 n_occurrences = 0; /* `subst' counts here */
2718
2719 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2720 need to make a unique copy of I2SRC each time we substitute it
2721 to avoid self-referential rtl. */
2722
2723 subst_low_luid = DF_INSN_LUID (i2);
2724 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2725 ! i1_feeds_i3 && i1dest_in_i1src);
2726 substed_i2 = 1;
2727
2728 /* Record whether i2's body now appears within i3's body. */
2729 i2_is_used = n_occurrences;
2730 }
2731
2732 /* If we already got a failure, don't try to do more. Otherwise,
2733 try to substitute in I1 if we have it. */
2734
2735 if (i1 && GET_CODE (newpat) != CLOBBER)
2736 {
2737 /* Check that an autoincrement side-effect on I1 has not been lost.
2738 This happens if I1DEST is mentioned in I2 and dies there, and
2739 has disappeared from the new pattern. */
2740 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2741 && !i1_feeds_i3
2742 && dead_or_set_p (i2, i1dest)
2743 && !reg_overlap_mentioned_p (i1dest, newpat))
2744 /* Before we can do this substitution, we must redo the test done
2745 above (see detailed comments there) that ensures that I1DEST
2746 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2747 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, 0, 0))
2748 {
2749 undo_all ();
2750 return 0;
2751 }
2752
2753 n_occurrences = 0;
2754 subst_low_luid = DF_INSN_LUID (i1);
2755 newpat = subst (newpat, i1dest, i1src, 0, 0);
2756 substed_i1 = 1;
2757 }
2758
2759 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2760 to count all the ways that I2SRC and I1SRC can be used. */
2761 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2762 && i2_is_used + added_sets_2 > 1)
2763 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2764 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2765 > 1))
2766 /* Fail if we tried to make a new register. */
2767 || max_reg_num () != maxreg
2768 /* Fail if we couldn't do something and have a CLOBBER. */
2769 || GET_CODE (newpat) == CLOBBER
2770 /* Fail if this new pattern is a MULT and we didn't have one before
2771 at the outer level. */
2772 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2773 && ! have_mult))
2774 {
2775 undo_all ();
2776 return 0;
2777 }
2778
2779 /* If the actions of the earlier insns must be kept
2780 in addition to substituting them into the latest one,
2781 we must make a new PARALLEL for the latest insn
2782 to hold additional the SETs. */
2783
2784 if (added_sets_1 || added_sets_2)
2785 {
2786 combine_extras++;
2787
2788 if (GET_CODE (newpat) == PARALLEL)
2789 {
2790 rtvec old = XVEC (newpat, 0);
2791 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2792 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2793 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2794 sizeof (old->elem[0]) * old->num_elem);
2795 }
2796 else
2797 {
2798 rtx old = newpat;
2799 total_sets = 1 + added_sets_1 + added_sets_2;
2800 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2801 XVECEXP (newpat, 0, 0) = old;
2802 }
2803
2804 if (added_sets_1)
2805 XVECEXP (newpat, 0, --total_sets) = i1pat;
2806
2807 if (added_sets_2)
2808 {
2809 /* If there is no I1, use I2's body as is. We used to also not do
2810 the subst call below if I2 was substituted into I3,
2811 but that could lose a simplification. */
2812 if (i1 == 0)
2813 XVECEXP (newpat, 0, --total_sets) = i2pat;
2814 else
2815 /* See comment where i2pat is assigned. */
2816 XVECEXP (newpat, 0, --total_sets)
2817 = subst (i2pat, i1dest, i1src, 0, 0);
2818 }
2819 }
2820
2821 /* We come here when we are replacing a destination in I2 with the
2822 destination of I3. */
2823 validate_replacement:
2824
2825 /* Note which hard regs this insn has as inputs. */
2826 mark_used_regs_combine (newpat);
2827
2828 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2829 consider splitting this pattern, we might need these clobbers. */
2830 if (i1 && GET_CODE (newpat) == PARALLEL
2831 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2832 {
2833 int len = XVECLEN (newpat, 0);
2834
2835 newpat_vec_with_clobbers = rtvec_alloc (len);
2836 for (i = 0; i < len; i++)
2837 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2838 }
2839
2840 /* Is the result of combination a valid instruction? */
2841 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2842
2843 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2844 the second SET's destination is a register that is unused and isn't
2845 marked as an instruction that might trap in an EH region. In that case,
2846 we just need the first SET. This can occur when simplifying a divmod
2847 insn. We *must* test for this case here because the code below that
2848 splits two independent SETs doesn't handle this case correctly when it
2849 updates the register status.
2850
2851 It's pointless doing this if we originally had two sets, one from
2852 i3, and one from i2. Combining then splitting the parallel results
2853 in the original i2 again plus an invalid insn (which we delete).
2854 The net effect is only to move instructions around, which makes
2855 debug info less accurate.
2856
2857 Also check the case where the first SET's destination is unused.
2858 That would not cause incorrect code, but does cause an unneeded
2859 insn to remain. */
2860
2861 if (insn_code_number < 0
2862 && !(added_sets_2 && i1 == 0)
2863 && GET_CODE (newpat) == PARALLEL
2864 && XVECLEN (newpat, 0) == 2
2865 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2866 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2867 && asm_noperands (newpat) < 0)
2868 {
2869 rtx set0 = XVECEXP (newpat, 0, 0);
2870 rtx set1 = XVECEXP (newpat, 0, 1);
2871 rtx note;
2872
2873 if (((REG_P (SET_DEST (set1))
2874 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2875 || (GET_CODE (SET_DEST (set1)) == SUBREG
2876 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2877 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2878 || INTVAL (XEXP (note, 0)) <= 0)
2879 && ! side_effects_p (SET_SRC (set1)))
2880 {
2881 newpat = set0;
2882 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2883 }
2884
2885 else if (((REG_P (SET_DEST (set0))
2886 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2887 || (GET_CODE (SET_DEST (set0)) == SUBREG
2888 && find_reg_note (i3, REG_UNUSED,
2889 SUBREG_REG (SET_DEST (set0)))))
2890 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2891 || INTVAL (XEXP (note, 0)) <= 0)
2892 && ! side_effects_p (SET_SRC (set0)))
2893 {
2894 newpat = set1;
2895 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2896
2897 if (insn_code_number >= 0)
2898 {
2899 /* If we will be able to accept this, we have made a
2900 change to the destination of I3. This requires us to
2901 do a few adjustments. */
2902
2903 PATTERN (i3) = newpat;
2904 adjust_for_new_dest (i3);
2905 }
2906 }
2907 }
2908
2909 /* If we were combining three insns and the result is a simple SET
2910 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2911 insns. There are two ways to do this. It can be split using a
2912 machine-specific method (like when you have an addition of a large
2913 constant) or by combine in the function find_split_point. */
2914
2915 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2916 && asm_noperands (newpat) < 0)
2917 {
2918 rtx parallel, m_split, *split;
2919
2920 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2921 use I2DEST as a scratch register will help. In the latter case,
2922 convert I2DEST to the mode of the source of NEWPAT if we can. */
2923
2924 m_split = combine_split_insns (newpat, i3);
2925
2926 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2927 inputs of NEWPAT. */
2928
2929 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2930 possible to try that as a scratch reg. This would require adding
2931 more code to make it work though. */
2932
2933 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2934 {
2935 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2936
2937 /* First try to split using the original register as a
2938 scratch register. */
2939 parallel = gen_rtx_PARALLEL (VOIDmode,
2940 gen_rtvec (2, newpat,
2941 gen_rtx_CLOBBER (VOIDmode,
2942 i2dest)));
2943 m_split = combine_split_insns (parallel, i3);
2944
2945 /* If that didn't work, try changing the mode of I2DEST if
2946 we can. */
2947 if (m_split == 0
2948 && new_mode != GET_MODE (i2dest)
2949 && new_mode != VOIDmode
2950 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2951 {
2952 enum machine_mode old_mode = GET_MODE (i2dest);
2953 rtx ni2dest;
2954
2955 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2956 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2957 else
2958 {
2959 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2960 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2961 }
2962
2963 parallel = (gen_rtx_PARALLEL
2964 (VOIDmode,
2965 gen_rtvec (2, newpat,
2966 gen_rtx_CLOBBER (VOIDmode,
2967 ni2dest))));
2968 m_split = combine_split_insns (parallel, i3);
2969
2970 if (m_split == 0
2971 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2972 {
2973 struct undo *buf;
2974
2975 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
2976 buf = undobuf.undos;
2977 undobuf.undos = buf->next;
2978 buf->next = undobuf.frees;
2979 undobuf.frees = buf;
2980 }
2981 }
2982 }
2983
2984 /* If recog_for_combine has discarded clobbers, try to use them
2985 again for the split. */
2986 if (m_split == 0 && newpat_vec_with_clobbers)
2987 {
2988 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
2989 m_split = combine_split_insns (parallel, i3);
2990 }
2991
2992 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2993 {
2994 m_split = PATTERN (m_split);
2995 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2996 if (insn_code_number >= 0)
2997 newpat = m_split;
2998 }
2999 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3000 && (next_real_insn (i2) == i3
3001 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3002 {
3003 rtx i2set, i3set;
3004 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3005 newi2pat = PATTERN (m_split);
3006
3007 i3set = single_set (NEXT_INSN (m_split));
3008 i2set = single_set (m_split);
3009
3010 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3011
3012 /* If I2 or I3 has multiple SETs, we won't know how to track
3013 register status, so don't use these insns. If I2's destination
3014 is used between I2 and I3, we also can't use these insns. */
3015
3016 if (i2_code_number >= 0 && i2set && i3set
3017 && (next_real_insn (i2) == i3
3018 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3019 insn_code_number = recog_for_combine (&newi3pat, i3,
3020 &new_i3_notes);
3021 if (insn_code_number >= 0)
3022 newpat = newi3pat;
3023
3024 /* It is possible that both insns now set the destination of I3.
3025 If so, we must show an extra use of it. */
3026
3027 if (insn_code_number >= 0)
3028 {
3029 rtx new_i3_dest = SET_DEST (i3set);
3030 rtx new_i2_dest = SET_DEST (i2set);
3031
3032 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3033 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3034 || GET_CODE (new_i3_dest) == SUBREG)
3035 new_i3_dest = XEXP (new_i3_dest, 0);
3036
3037 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3038 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3039 || GET_CODE (new_i2_dest) == SUBREG)
3040 new_i2_dest = XEXP (new_i2_dest, 0);
3041
3042 if (REG_P (new_i3_dest)
3043 && REG_P (new_i2_dest)
3044 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3045 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3046 }
3047 }
3048
3049 /* If we can split it and use I2DEST, go ahead and see if that
3050 helps things be recognized. Verify that none of the registers
3051 are set between I2 and I3. */
3052 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3053 #ifdef HAVE_cc0
3054 && REG_P (i2dest)
3055 #endif
3056 /* We need I2DEST in the proper mode. If it is a hard register
3057 or the only use of a pseudo, we can change its mode.
3058 Make sure we don't change a hard register to have a mode that
3059 isn't valid for it, or change the number of registers. */
3060 && (GET_MODE (*split) == GET_MODE (i2dest)
3061 || GET_MODE (*split) == VOIDmode
3062 || can_change_dest_mode (i2dest, added_sets_2,
3063 GET_MODE (*split)))
3064 && (next_real_insn (i2) == i3
3065 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3066 /* We can't overwrite I2DEST if its value is still used by
3067 NEWPAT. */
3068 && ! reg_referenced_p (i2dest, newpat))
3069 {
3070 rtx newdest = i2dest;
3071 enum rtx_code split_code = GET_CODE (*split);
3072 enum machine_mode split_mode = GET_MODE (*split);
3073 bool subst_done = false;
3074 newi2pat = NULL_RTX;
3075
3076 /* Get NEWDEST as a register in the proper mode. We have already
3077 validated that we can do this. */
3078 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3079 {
3080 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3081 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3082 else
3083 {
3084 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3085 newdest = regno_reg_rtx[REGNO (i2dest)];
3086 }
3087 }
3088
3089 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3090 an ASHIFT. This can occur if it was inside a PLUS and hence
3091 appeared to be a memory address. This is a kludge. */
3092 if (split_code == MULT
3093 && GET_CODE (XEXP (*split, 1)) == CONST_INT
3094 && INTVAL (XEXP (*split, 1)) > 0
3095 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3096 {
3097 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3098 XEXP (*split, 0), GEN_INT (i)));
3099 /* Update split_code because we may not have a multiply
3100 anymore. */
3101 split_code = GET_CODE (*split);
3102 }
3103
3104 #ifdef INSN_SCHEDULING
3105 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3106 be written as a ZERO_EXTEND. */
3107 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3108 {
3109 #ifdef LOAD_EXTEND_OP
3110 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3111 what it really is. */
3112 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3113 == SIGN_EXTEND)
3114 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3115 SUBREG_REG (*split)));
3116 else
3117 #endif
3118 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3119 SUBREG_REG (*split)));
3120 }
3121 #endif
3122
3123 /* Attempt to split binary operators using arithmetic identities. */
3124 if (BINARY_P (SET_SRC (newpat))
3125 && split_mode == GET_MODE (SET_SRC (newpat))
3126 && ! side_effects_p (SET_SRC (newpat)))
3127 {
3128 rtx setsrc = SET_SRC (newpat);
3129 enum machine_mode mode = GET_MODE (setsrc);
3130 enum rtx_code code = GET_CODE (setsrc);
3131 rtx src_op0 = XEXP (setsrc, 0);
3132 rtx src_op1 = XEXP (setsrc, 1);
3133
3134 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3135 if (rtx_equal_p (src_op0, src_op1))
3136 {
3137 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3138 SUBST (XEXP (setsrc, 0), newdest);
3139 SUBST (XEXP (setsrc, 1), newdest);
3140 subst_done = true;
3141 }
3142 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3143 else if ((code == PLUS || code == MULT)
3144 && GET_CODE (src_op0) == code
3145 && GET_CODE (XEXP (src_op0, 0)) == code
3146 && (INTEGRAL_MODE_P (mode)
3147 || (FLOAT_MODE_P (mode)
3148 && flag_unsafe_math_optimizations)))
3149 {
3150 rtx p = XEXP (XEXP (src_op0, 0), 0);
3151 rtx q = XEXP (XEXP (src_op0, 0), 1);
3152 rtx r = XEXP (src_op0, 1);
3153 rtx s = src_op1;
3154
3155 /* Split both "((X op Y) op X) op Y" and
3156 "((X op Y) op Y) op X" as "T op T" where T is
3157 "X op Y". */
3158 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3159 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3160 {
3161 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3162 XEXP (src_op0, 0));
3163 SUBST (XEXP (setsrc, 0), newdest);
3164 SUBST (XEXP (setsrc, 1), newdest);
3165 subst_done = true;
3166 }
3167 /* Split "((X op X) op Y) op Y)" as "T op T" where
3168 T is "X op Y". */
3169 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3170 {
3171 rtx tmp = simplify_gen_binary (code, mode, p, r);
3172 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3173 SUBST (XEXP (setsrc, 0), newdest);
3174 SUBST (XEXP (setsrc, 1), newdest);
3175 subst_done = true;
3176 }
3177 }
3178 }
3179
3180 if (!subst_done)
3181 {
3182 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3183 SUBST (*split, newdest);
3184 }
3185
3186 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3187
3188 /* recog_for_combine might have added CLOBBERs to newi2pat.
3189 Make sure NEWPAT does not depend on the clobbered regs. */
3190 if (GET_CODE (newi2pat) == PARALLEL)
3191 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3192 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3193 {
3194 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3195 if (reg_overlap_mentioned_p (reg, newpat))
3196 {
3197 undo_all ();
3198 return 0;
3199 }
3200 }
3201
3202 /* If the split point was a MULT and we didn't have one before,
3203 don't use one now. */
3204 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3205 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3206 }
3207 }
3208
3209 /* Check for a case where we loaded from memory in a narrow mode and
3210 then sign extended it, but we need both registers. In that case,
3211 we have a PARALLEL with both loads from the same memory location.
3212 We can split this into a load from memory followed by a register-register
3213 copy. This saves at least one insn, more if register allocation can
3214 eliminate the copy.
3215
3216 We cannot do this if the destination of the first assignment is a
3217 condition code register or cc0. We eliminate this case by making sure
3218 the SET_DEST and SET_SRC have the same mode.
3219
3220 We cannot do this if the destination of the second assignment is
3221 a register that we have already assumed is zero-extended. Similarly
3222 for a SUBREG of such a register. */
3223
3224 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3225 && GET_CODE (newpat) == PARALLEL
3226 && XVECLEN (newpat, 0) == 2
3227 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3228 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3229 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3230 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3231 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3232 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3233 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3234 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3235 DF_INSN_LUID (i2))
3236 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3237 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3238 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3239 (REG_P (temp)
3240 && VEC_index (reg_stat_type, reg_stat,
3241 REGNO (temp))->nonzero_bits != 0
3242 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3243 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3244 && (VEC_index (reg_stat_type, reg_stat,
3245 REGNO (temp))->nonzero_bits
3246 != GET_MODE_MASK (word_mode))))
3247 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3248 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3249 (REG_P (temp)
3250 && VEC_index (reg_stat_type, reg_stat,
3251 REGNO (temp))->nonzero_bits != 0
3252 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3253 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3254 && (VEC_index (reg_stat_type, reg_stat,
3255 REGNO (temp))->nonzero_bits
3256 != GET_MODE_MASK (word_mode)))))
3257 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3258 SET_SRC (XVECEXP (newpat, 0, 1)))
3259 && ! find_reg_note (i3, REG_UNUSED,
3260 SET_DEST (XVECEXP (newpat, 0, 0))))
3261 {
3262 rtx ni2dest;
3263
3264 newi2pat = XVECEXP (newpat, 0, 0);
3265 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3266 newpat = XVECEXP (newpat, 0, 1);
3267 SUBST (SET_SRC (newpat),
3268 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3269 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3270
3271 if (i2_code_number >= 0)
3272 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3273
3274 if (insn_code_number >= 0)
3275 swap_i2i3 = 1;
3276 }
3277
3278 /* Similarly, check for a case where we have a PARALLEL of two independent
3279 SETs but we started with three insns. In this case, we can do the sets
3280 as two separate insns. This case occurs when some SET allows two
3281 other insns to combine, but the destination of that SET is still live. */
3282
3283 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3284 && GET_CODE (newpat) == PARALLEL
3285 && XVECLEN (newpat, 0) == 2
3286 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3287 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3288 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3289 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3290 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3291 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3292 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3293 DF_INSN_LUID (i2))
3294 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3295 XVECEXP (newpat, 0, 0))
3296 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3297 XVECEXP (newpat, 0, 1))
3298 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3299 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3300 #ifdef HAVE_cc0
3301 /* We cannot split the parallel into two sets if both sets
3302 reference cc0. */
3303 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3304 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3305 #endif
3306 )
3307 {
3308 /* Normally, it doesn't matter which of the two is done first,
3309 but it does if one references cc0. In that case, it has to
3310 be first. */
3311 #ifdef HAVE_cc0
3312 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3313 {
3314 newi2pat = XVECEXP (newpat, 0, 0);
3315 newpat = XVECEXP (newpat, 0, 1);
3316 }
3317 else
3318 #endif
3319 {
3320 newi2pat = XVECEXP (newpat, 0, 1);
3321 newpat = XVECEXP (newpat, 0, 0);
3322 }
3323
3324 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3325
3326 if (i2_code_number >= 0)
3327 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3328 }
3329
3330 /* If it still isn't recognized, fail and change things back the way they
3331 were. */
3332 if ((insn_code_number < 0
3333 /* Is the result a reasonable ASM_OPERANDS? */
3334 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3335 {
3336 undo_all ();
3337 return 0;
3338 }
3339
3340 /* If we had to change another insn, make sure it is valid also. */
3341 if (undobuf.other_insn)
3342 {
3343 CLEAR_HARD_REG_SET (newpat_used_regs);
3344
3345 other_pat = PATTERN (undobuf.other_insn);
3346 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3347 &new_other_notes);
3348
3349 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3350 {
3351 undo_all ();
3352 return 0;
3353 }
3354 }
3355
3356 #ifdef HAVE_cc0
3357 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3358 they are adjacent to each other or not. */
3359 {
3360 rtx p = prev_nonnote_insn (i3);
3361 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3362 && sets_cc0_p (newi2pat))
3363 {
3364 undo_all ();
3365 return 0;
3366 }
3367 }
3368 #endif
3369
3370 /* Only allow this combination if insn_rtx_costs reports that the
3371 replacement instructions are cheaper than the originals. */
3372 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3373 {
3374 undo_all ();
3375 return 0;
3376 }
3377
3378 /* We now know that we can do this combination. Merge the insns and
3379 update the status of registers and LOG_LINKS. */
3380
3381 if (undobuf.other_insn)
3382 {
3383 rtx note, next;
3384
3385 PATTERN (undobuf.other_insn) = other_pat;
3386
3387 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3388 are still valid. Then add any non-duplicate notes added by
3389 recog_for_combine. */
3390 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3391 {
3392 next = XEXP (note, 1);
3393
3394 if (REG_NOTE_KIND (note) == REG_UNUSED
3395 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3396 remove_note (undobuf.other_insn, note);
3397 }
3398
3399 distribute_notes (new_other_notes, undobuf.other_insn,
3400 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3401 }
3402
3403 if (swap_i2i3)
3404 {
3405 rtx insn;
3406 rtx link;
3407 rtx ni2dest;
3408
3409 /* I3 now uses what used to be its destination and which is now
3410 I2's destination. This requires us to do a few adjustments. */
3411 PATTERN (i3) = newpat;
3412 adjust_for_new_dest (i3);
3413
3414 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3415 so we still will.
3416
3417 However, some later insn might be using I2's dest and have
3418 a LOG_LINK pointing at I3. We must remove this link.
3419 The simplest way to remove the link is to point it at I1,
3420 which we know will be a NOTE. */
3421
3422 /* newi2pat is usually a SET here; however, recog_for_combine might
3423 have added some clobbers. */
3424 if (GET_CODE (newi2pat) == PARALLEL)
3425 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3426 else
3427 ni2dest = SET_DEST (newi2pat);
3428
3429 for (insn = NEXT_INSN (i3);
3430 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3431 || insn != BB_HEAD (this_basic_block->next_bb));
3432 insn = NEXT_INSN (insn))
3433 {
3434 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3435 {
3436 for (link = LOG_LINKS (insn); link;
3437 link = XEXP (link, 1))
3438 if (XEXP (link, 0) == i3)
3439 XEXP (link, 0) = i1;
3440
3441 break;
3442 }
3443 }
3444 }
3445
3446 {
3447 rtx i3notes, i2notes, i1notes = 0;
3448 rtx i3links, i2links, i1links = 0;
3449 rtx midnotes = 0;
3450 unsigned int regno;
3451 /* Compute which registers we expect to eliminate. newi2pat may be setting
3452 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3453 same as i3dest, in which case newi2pat may be setting i1dest. */
3454 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3455 || i2dest_in_i2src || i2dest_in_i1src
3456 || !i2dest_killed
3457 ? 0 : i2dest);
3458 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3459 || (newi2pat && reg_set_p (i1dest, newi2pat))
3460 || !i1dest_killed
3461 ? 0 : i1dest);
3462
3463 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3464 clear them. */
3465 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3466 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3467 if (i1)
3468 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3469
3470 /* Ensure that we do not have something that should not be shared but
3471 occurs multiple times in the new insns. Check this by first
3472 resetting all the `used' flags and then copying anything is shared. */
3473
3474 reset_used_flags (i3notes);
3475 reset_used_flags (i2notes);
3476 reset_used_flags (i1notes);
3477 reset_used_flags (newpat);
3478 reset_used_flags (newi2pat);
3479 if (undobuf.other_insn)
3480 reset_used_flags (PATTERN (undobuf.other_insn));
3481
3482 i3notes = copy_rtx_if_shared (i3notes);
3483 i2notes = copy_rtx_if_shared (i2notes);
3484 i1notes = copy_rtx_if_shared (i1notes);
3485 newpat = copy_rtx_if_shared (newpat);
3486 newi2pat = copy_rtx_if_shared (newi2pat);
3487 if (undobuf.other_insn)
3488 reset_used_flags (PATTERN (undobuf.other_insn));
3489
3490 INSN_CODE (i3) = insn_code_number;
3491 PATTERN (i3) = newpat;
3492
3493 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3494 {
3495 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3496
3497 reset_used_flags (call_usage);
3498 call_usage = copy_rtx (call_usage);
3499
3500 if (substed_i2)
3501 replace_rtx (call_usage, i2dest, i2src);
3502
3503 if (substed_i1)
3504 replace_rtx (call_usage, i1dest, i1src);
3505
3506 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3507 }
3508
3509 if (undobuf.other_insn)
3510 INSN_CODE (undobuf.other_insn) = other_code_number;
3511
3512 /* We had one special case above where I2 had more than one set and
3513 we replaced a destination of one of those sets with the destination
3514 of I3. In that case, we have to update LOG_LINKS of insns later
3515 in this basic block. Note that this (expensive) case is rare.
3516
3517 Also, in this case, we must pretend that all REG_NOTEs for I2
3518 actually came from I3, so that REG_UNUSED notes from I2 will be
3519 properly handled. */
3520
3521 if (i3_subst_into_i2)
3522 {
3523 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3524 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3525 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3526 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3527 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3528 && ! find_reg_note (i2, REG_UNUSED,
3529 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3530 for (temp = NEXT_INSN (i2);
3531 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3532 || BB_HEAD (this_basic_block) != temp);
3533 temp = NEXT_INSN (temp))
3534 if (temp != i3 && INSN_P (temp))
3535 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3536 if (XEXP (link, 0) == i2)
3537 XEXP (link, 0) = i3;
3538
3539 if (i3notes)
3540 {
3541 rtx link = i3notes;
3542 while (XEXP (link, 1))
3543 link = XEXP (link, 1);
3544 XEXP (link, 1) = i2notes;
3545 }
3546 else
3547 i3notes = i2notes;
3548 i2notes = 0;
3549 }
3550
3551 LOG_LINKS (i3) = 0;
3552 REG_NOTES (i3) = 0;
3553 LOG_LINKS (i2) = 0;
3554 REG_NOTES (i2) = 0;
3555
3556 if (newi2pat)
3557 {
3558 INSN_CODE (i2) = i2_code_number;
3559 PATTERN (i2) = newi2pat;
3560 }
3561 else
3562 SET_INSN_DELETED (i2);
3563
3564 if (i1)
3565 {
3566 LOG_LINKS (i1) = 0;
3567 REG_NOTES (i1) = 0;
3568 SET_INSN_DELETED (i1);
3569 }
3570
3571 /* Get death notes for everything that is now used in either I3 or
3572 I2 and used to die in a previous insn. If we built two new
3573 patterns, move from I1 to I2 then I2 to I3 so that we get the
3574 proper movement on registers that I2 modifies. */
3575
3576 if (newi2pat)
3577 {
3578 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3579 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3580 }
3581 else
3582 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3583 i3, &midnotes);
3584
3585 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3586 if (i3notes)
3587 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3588 elim_i2, elim_i1);
3589 if (i2notes)
3590 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3591 elim_i2, elim_i1);
3592 if (i1notes)
3593 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3594 elim_i2, elim_i1);
3595 if (midnotes)
3596 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3597 elim_i2, elim_i1);
3598
3599 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3600 know these are REG_UNUSED and want them to go to the desired insn,
3601 so we always pass it as i3. */
3602
3603 if (newi2pat && new_i2_notes)
3604 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3605
3606 if (new_i3_notes)
3607 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3608
3609 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3610 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3611 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3612 in that case, it might delete I2. Similarly for I2 and I1.
3613 Show an additional death due to the REG_DEAD note we make here. If
3614 we discard it in distribute_notes, we will decrement it again. */
3615
3616 if (i3dest_killed)
3617 {
3618 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3619 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3620 NULL_RTX),
3621 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3622 else
3623 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3624 NULL_RTX),
3625 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3626 elim_i2, elim_i1);
3627 }
3628
3629 if (i2dest_in_i2src)
3630 {
3631 if (newi2pat && reg_set_p (i2dest, newi2pat))
3632 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3633 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3634 else
3635 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3636 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3637 NULL_RTX, NULL_RTX);
3638 }
3639
3640 if (i1dest_in_i1src)
3641 {
3642 if (newi2pat && reg_set_p (i1dest, newi2pat))
3643 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3644 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3645 else
3646 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3647 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3648 NULL_RTX, NULL_RTX);
3649 }
3650
3651 distribute_links (i3links);
3652 distribute_links (i2links);
3653 distribute_links (i1links);
3654
3655 if (REG_P (i2dest))
3656 {
3657 rtx link;
3658 rtx i2_insn = 0, i2_val = 0, set;
3659
3660 /* The insn that used to set this register doesn't exist, and
3661 this life of the register may not exist either. See if one of
3662 I3's links points to an insn that sets I2DEST. If it does,
3663 that is now the last known value for I2DEST. If we don't update
3664 this and I2 set the register to a value that depended on its old
3665 contents, we will get confused. If this insn is used, thing
3666 will be set correctly in combine_instructions. */
3667
3668 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3669 if ((set = single_set (XEXP (link, 0))) != 0
3670 && rtx_equal_p (i2dest, SET_DEST (set)))
3671 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3672
3673 record_value_for_reg (i2dest, i2_insn, i2_val);
3674
3675 /* If the reg formerly set in I2 died only once and that was in I3,
3676 zero its use count so it won't make `reload' do any work. */
3677 if (! added_sets_2
3678 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3679 && ! i2dest_in_i2src)
3680 {
3681 regno = REGNO (i2dest);
3682 INC_REG_N_SETS (regno, -1);
3683 }
3684 }
3685
3686 if (i1 && REG_P (i1dest))
3687 {
3688 rtx link;
3689 rtx i1_insn = 0, i1_val = 0, set;
3690
3691 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3692 if ((set = single_set (XEXP (link, 0))) != 0
3693 && rtx_equal_p (i1dest, SET_DEST (set)))
3694 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3695
3696 record_value_for_reg (i1dest, i1_insn, i1_val);
3697
3698 regno = REGNO (i1dest);
3699 if (! added_sets_1 && ! i1dest_in_i1src)
3700 INC_REG_N_SETS (regno, -1);
3701 }
3702
3703 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3704 been made to this insn. The order of
3705 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3706 can affect nonzero_bits of newpat */
3707 if (newi2pat)
3708 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3709 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3710
3711 /* Set new_direct_jump_p if a new return or simple jump instruction
3712 has been created.
3713
3714 If I3 is now an unconditional jump, ensure that it has a
3715 BARRIER following it since it may have initially been a
3716 conditional jump. It may also be the last nonnote insn. */
3717
3718 if (returnjump_p (i3) || any_uncondjump_p (i3))
3719 {
3720 *new_direct_jump_p = 1;
3721 mark_jump_label (PATTERN (i3), i3, 0);
3722
3723 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3724 || !BARRIER_P (temp))
3725 emit_barrier_after (i3);
3726 }
3727
3728 if (undobuf.other_insn != NULL_RTX
3729 && (returnjump_p (undobuf.other_insn)
3730 || any_uncondjump_p (undobuf.other_insn)))
3731 {
3732 *new_direct_jump_p = 1;
3733
3734 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3735 || !BARRIER_P (temp))
3736 emit_barrier_after (undobuf.other_insn);
3737 }
3738
3739 /* An NOOP jump does not need barrier, but it does need cleaning up
3740 of CFG. */
3741 if (GET_CODE (newpat) == SET
3742 && SET_SRC (newpat) == pc_rtx
3743 && SET_DEST (newpat) == pc_rtx)
3744 *new_direct_jump_p = 1;
3745 }
3746
3747 if (undobuf.other_insn != NULL_RTX)
3748 {
3749 if (dump_file)
3750 {
3751 fprintf (dump_file, "modifying other_insn ");
3752 dump_insn_slim (dump_file, undobuf.other_insn);
3753 }
3754 df_insn_rescan (undobuf.other_insn);
3755 }
3756
3757 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
3758 {
3759 if (dump_file)
3760 {
3761 fprintf (dump_file, "modifying insn i1 ");
3762 dump_insn_slim (dump_file, i1);
3763 }
3764 df_insn_rescan (i1);
3765 }
3766
3767 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
3768 {
3769 if (dump_file)
3770 {
3771 fprintf (dump_file, "modifying insn i2 ");
3772 dump_insn_slim (dump_file, i2);
3773 }
3774 df_insn_rescan (i2);
3775 }
3776
3777 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
3778 {
3779 if (dump_file)
3780 {
3781 fprintf (dump_file, "modifying insn i3 ");
3782 dump_insn_slim (dump_file, i3);
3783 }
3784 df_insn_rescan (i3);
3785 }
3786
3787 combine_successes++;
3788 undo_commit ();
3789
3790 if (added_links_insn
3791 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
3792 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
3793 return added_links_insn;
3794 else
3795 return newi2pat ? i2 : i3;
3796 }
3797 \f
3798 /* Undo all the modifications recorded in undobuf. */
3799
3800 static void
3801 undo_all (void)
3802 {
3803 struct undo *undo, *next;
3804
3805 for (undo = undobuf.undos; undo; undo = next)
3806 {
3807 next = undo->next;
3808 switch (undo->kind)
3809 {
3810 case UNDO_RTX:
3811 *undo->where.r = undo->old_contents.r;
3812 break;
3813 case UNDO_INT:
3814 *undo->where.i = undo->old_contents.i;
3815 break;
3816 case UNDO_MODE:
3817 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
3818 break;
3819 default:
3820 gcc_unreachable ();
3821 }
3822
3823 undo->next = undobuf.frees;
3824 undobuf.frees = undo;
3825 }
3826
3827 undobuf.undos = 0;
3828 }
3829
3830 /* We've committed to accepting the changes we made. Move all
3831 of the undos to the free list. */
3832
3833 static void
3834 undo_commit (void)
3835 {
3836 struct undo *undo, *next;
3837
3838 for (undo = undobuf.undos; undo; undo = next)
3839 {
3840 next = undo->next;
3841 undo->next = undobuf.frees;
3842 undobuf.frees = undo;
3843 }
3844 undobuf.undos = 0;
3845 }
3846 \f
3847 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3848 where we have an arithmetic expression and return that point. LOC will
3849 be inside INSN.
3850
3851 try_combine will call this function to see if an insn can be split into
3852 two insns. */
3853
3854 static rtx *
3855 find_split_point (rtx *loc, rtx insn)
3856 {
3857 rtx x = *loc;
3858 enum rtx_code code = GET_CODE (x);
3859 rtx *split;
3860 unsigned HOST_WIDE_INT len = 0;
3861 HOST_WIDE_INT pos = 0;
3862 int unsignedp = 0;
3863 rtx inner = NULL_RTX;
3864
3865 /* First special-case some codes. */
3866 switch (code)
3867 {
3868 case SUBREG:
3869 #ifdef INSN_SCHEDULING
3870 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3871 point. */
3872 if (MEM_P (SUBREG_REG (x)))
3873 return loc;
3874 #endif
3875 return find_split_point (&SUBREG_REG (x), insn);
3876
3877 case MEM:
3878 #ifdef HAVE_lo_sum
3879 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3880 using LO_SUM and HIGH. */
3881 if (GET_CODE (XEXP (x, 0)) == CONST
3882 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3883 {
3884 SUBST (XEXP (x, 0),
3885 gen_rtx_LO_SUM (Pmode,
3886 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3887 XEXP (x, 0)));
3888 return &XEXP (XEXP (x, 0), 0);
3889 }
3890 #endif
3891
3892 /* If we have a PLUS whose second operand is a constant and the
3893 address is not valid, perhaps will can split it up using
3894 the machine-specific way to split large constants. We use
3895 the first pseudo-reg (one of the virtual regs) as a placeholder;
3896 it will not remain in the result. */
3897 if (GET_CODE (XEXP (x, 0)) == PLUS
3898 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3899 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3900 {
3901 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3902 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
3903 XEXP (x, 0)),
3904 subst_insn);
3905
3906 /* This should have produced two insns, each of which sets our
3907 placeholder. If the source of the second is a valid address,
3908 we can make put both sources together and make a split point
3909 in the middle. */
3910
3911 if (seq
3912 && NEXT_INSN (seq) != NULL_RTX
3913 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3914 && NONJUMP_INSN_P (seq)
3915 && GET_CODE (PATTERN (seq)) == SET
3916 && SET_DEST (PATTERN (seq)) == reg
3917 && ! reg_mentioned_p (reg,
3918 SET_SRC (PATTERN (seq)))
3919 && NONJUMP_INSN_P (NEXT_INSN (seq))
3920 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3921 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3922 && memory_address_p (GET_MODE (x),
3923 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3924 {
3925 rtx src1 = SET_SRC (PATTERN (seq));
3926 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3927
3928 /* Replace the placeholder in SRC2 with SRC1. If we can
3929 find where in SRC2 it was placed, that can become our
3930 split point and we can replace this address with SRC2.
3931 Just try two obvious places. */
3932
3933 src2 = replace_rtx (src2, reg, src1);
3934 split = 0;
3935 if (XEXP (src2, 0) == src1)
3936 split = &XEXP (src2, 0);
3937 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3938 && XEXP (XEXP (src2, 0), 0) == src1)
3939 split = &XEXP (XEXP (src2, 0), 0);
3940
3941 if (split)
3942 {
3943 SUBST (XEXP (x, 0), src2);
3944 return split;
3945 }
3946 }
3947
3948 /* If that didn't work, perhaps the first operand is complex and
3949 needs to be computed separately, so make a split point there.
3950 This will occur on machines that just support REG + CONST
3951 and have a constant moved through some previous computation. */
3952
3953 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3954 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3955 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3956 return &XEXP (XEXP (x, 0), 0);
3957 }
3958
3959 /* If we have a PLUS whose first operand is complex, try computing it
3960 separately by making a split there. */
3961 if (GET_CODE (XEXP (x, 0)) == PLUS
3962 && ! memory_address_p (GET_MODE (x), XEXP (x, 0))
3963 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
3964 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3965 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3966 return &XEXP (XEXP (x, 0), 0);
3967 break;
3968
3969 case SET:
3970 #ifdef HAVE_cc0
3971 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3972 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3973 we need to put the operand into a register. So split at that
3974 point. */
3975
3976 if (SET_DEST (x) == cc0_rtx
3977 && GET_CODE (SET_SRC (x)) != COMPARE
3978 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3979 && !OBJECT_P (SET_SRC (x))
3980 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3981 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3982 return &SET_SRC (x);
3983 #endif
3984
3985 /* See if we can split SET_SRC as it stands. */
3986 split = find_split_point (&SET_SRC (x), insn);
3987 if (split && split != &SET_SRC (x))
3988 return split;
3989
3990 /* See if we can split SET_DEST as it stands. */
3991 split = find_split_point (&SET_DEST (x), insn);
3992 if (split && split != &SET_DEST (x))
3993 return split;
3994
3995 /* See if this is a bitfield assignment with everything constant. If
3996 so, this is an IOR of an AND, so split it into that. */
3997 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3998 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3999 <= HOST_BITS_PER_WIDE_INT)
4000 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
4001 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
4002 && GET_CODE (SET_SRC (x)) == CONST_INT
4003 && ((INTVAL (XEXP (SET_DEST (x), 1))
4004 + INTVAL (XEXP (SET_DEST (x), 2)))
4005 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4006 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4007 {
4008 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4009 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4010 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4011 rtx dest = XEXP (SET_DEST (x), 0);
4012 enum machine_mode mode = GET_MODE (dest);
4013 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4014 rtx or_mask;
4015
4016 if (BITS_BIG_ENDIAN)
4017 pos = GET_MODE_BITSIZE (mode) - len - pos;
4018
4019 or_mask = gen_int_mode (src << pos, mode);
4020 if (src == mask)
4021 SUBST (SET_SRC (x),
4022 simplify_gen_binary (IOR, mode, dest, or_mask));
4023 else
4024 {
4025 rtx negmask = gen_int_mode (~(mask << pos), mode);
4026 SUBST (SET_SRC (x),
4027 simplify_gen_binary (IOR, mode,
4028 simplify_gen_binary (AND, mode,
4029 dest, negmask),
4030 or_mask));
4031 }
4032
4033 SUBST (SET_DEST (x), dest);
4034
4035 split = find_split_point (&SET_SRC (x), insn);
4036 if (split && split != &SET_SRC (x))
4037 return split;
4038 }
4039
4040 /* Otherwise, see if this is an operation that we can split into two.
4041 If so, try to split that. */
4042 code = GET_CODE (SET_SRC (x));
4043
4044 switch (code)
4045 {
4046 case AND:
4047 /* If we are AND'ing with a large constant that is only a single
4048 bit and the result is only being used in a context where we
4049 need to know if it is zero or nonzero, replace it with a bit
4050 extraction. This will avoid the large constant, which might
4051 have taken more than one insn to make. If the constant were
4052 not a valid argument to the AND but took only one insn to make,
4053 this is no worse, but if it took more than one insn, it will
4054 be better. */
4055
4056 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4057 && REG_P (XEXP (SET_SRC (x), 0))
4058 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4059 && REG_P (SET_DEST (x))
4060 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4061 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4062 && XEXP (*split, 0) == SET_DEST (x)
4063 && XEXP (*split, 1) == const0_rtx)
4064 {
4065 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4066 XEXP (SET_SRC (x), 0),
4067 pos, NULL_RTX, 1, 1, 0, 0);
4068 if (extraction != 0)
4069 {
4070 SUBST (SET_SRC (x), extraction);
4071 return find_split_point (loc, insn);
4072 }
4073 }
4074 break;
4075
4076 case NE:
4077 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4078 is known to be on, this can be converted into a NEG of a shift. */
4079 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4080 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4081 && 1 <= (pos = exact_log2
4082 (nonzero_bits (XEXP (SET_SRC (x), 0),
4083 GET_MODE (XEXP (SET_SRC (x), 0))))))
4084 {
4085 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4086
4087 SUBST (SET_SRC (x),
4088 gen_rtx_NEG (mode,
4089 gen_rtx_LSHIFTRT (mode,
4090 XEXP (SET_SRC (x), 0),
4091 GEN_INT (pos))));
4092
4093 split = find_split_point (&SET_SRC (x), insn);
4094 if (split && split != &SET_SRC (x))
4095 return split;
4096 }
4097 break;
4098
4099 case SIGN_EXTEND:
4100 inner = XEXP (SET_SRC (x), 0);
4101
4102 /* We can't optimize if either mode is a partial integer
4103 mode as we don't know how many bits are significant
4104 in those modes. */
4105 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4106 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4107 break;
4108
4109 pos = 0;
4110 len = GET_MODE_BITSIZE (GET_MODE (inner));
4111 unsignedp = 0;
4112 break;
4113
4114 case SIGN_EXTRACT:
4115 case ZERO_EXTRACT:
4116 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4117 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
4118 {
4119 inner = XEXP (SET_SRC (x), 0);
4120 len = INTVAL (XEXP (SET_SRC (x), 1));
4121 pos = INTVAL (XEXP (SET_SRC (x), 2));
4122
4123 if (BITS_BIG_ENDIAN)
4124 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4125 unsignedp = (code == ZERO_EXTRACT);
4126 }
4127 break;
4128
4129 default:
4130 break;
4131 }
4132
4133 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4134 {
4135 enum machine_mode mode = GET_MODE (SET_SRC (x));
4136
4137 /* For unsigned, we have a choice of a shift followed by an
4138 AND or two shifts. Use two shifts for field sizes where the
4139 constant might be too large. We assume here that we can
4140 always at least get 8-bit constants in an AND insn, which is
4141 true for every current RISC. */
4142
4143 if (unsignedp && len <= 8)
4144 {
4145 SUBST (SET_SRC (x),
4146 gen_rtx_AND (mode,
4147 gen_rtx_LSHIFTRT
4148 (mode, gen_lowpart (mode, inner),
4149 GEN_INT (pos)),
4150 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4151
4152 split = find_split_point (&SET_SRC (x), insn);
4153 if (split && split != &SET_SRC (x))
4154 return split;
4155 }
4156 else
4157 {
4158 SUBST (SET_SRC (x),
4159 gen_rtx_fmt_ee
4160 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4161 gen_rtx_ASHIFT (mode,
4162 gen_lowpart (mode, inner),
4163 GEN_INT (GET_MODE_BITSIZE (mode)
4164 - len - pos)),
4165 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4166
4167 split = find_split_point (&SET_SRC (x), insn);
4168 if (split && split != &SET_SRC (x))
4169 return split;
4170 }
4171 }
4172
4173 /* See if this is a simple operation with a constant as the second
4174 operand. It might be that this constant is out of range and hence
4175 could be used as a split point. */
4176 if (BINARY_P (SET_SRC (x))
4177 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4178 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4179 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4180 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4181 return &XEXP (SET_SRC (x), 1);
4182
4183 /* Finally, see if this is a simple operation with its first operand
4184 not in a register. The operation might require this operand in a
4185 register, so return it as a split point. We can always do this
4186 because if the first operand were another operation, we would have
4187 already found it as a split point. */
4188 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4189 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4190 return &XEXP (SET_SRC (x), 0);
4191
4192 return 0;
4193
4194 case AND:
4195 case IOR:
4196 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4197 it is better to write this as (not (ior A B)) so we can split it.
4198 Similarly for IOR. */
4199 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4200 {
4201 SUBST (*loc,
4202 gen_rtx_NOT (GET_MODE (x),
4203 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4204 GET_MODE (x),
4205 XEXP (XEXP (x, 0), 0),
4206 XEXP (XEXP (x, 1), 0))));
4207 return find_split_point (loc, insn);
4208 }
4209
4210 /* Many RISC machines have a large set of logical insns. If the
4211 second operand is a NOT, put it first so we will try to split the
4212 other operand first. */
4213 if (GET_CODE (XEXP (x, 1)) == NOT)
4214 {
4215 rtx tem = XEXP (x, 0);
4216 SUBST (XEXP (x, 0), XEXP (x, 1));
4217 SUBST (XEXP (x, 1), tem);
4218 }
4219 break;
4220
4221 default:
4222 break;
4223 }
4224
4225 /* Otherwise, select our actions depending on our rtx class. */
4226 switch (GET_RTX_CLASS (code))
4227 {
4228 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4229 case RTX_TERNARY:
4230 split = find_split_point (&XEXP (x, 2), insn);
4231 if (split)
4232 return split;
4233 /* ... fall through ... */
4234 case RTX_BIN_ARITH:
4235 case RTX_COMM_ARITH:
4236 case RTX_COMPARE:
4237 case RTX_COMM_COMPARE:
4238 split = find_split_point (&XEXP (x, 1), insn);
4239 if (split)
4240 return split;
4241 /* ... fall through ... */
4242 case RTX_UNARY:
4243 /* Some machines have (and (shift ...) ...) insns. If X is not
4244 an AND, but XEXP (X, 0) is, use it as our split point. */
4245 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4246 return &XEXP (x, 0);
4247
4248 split = find_split_point (&XEXP (x, 0), insn);
4249 if (split)
4250 return split;
4251 return loc;
4252
4253 default:
4254 /* Otherwise, we don't have a split point. */
4255 return 0;
4256 }
4257 }
4258 \f
4259 /* Throughout X, replace FROM with TO, and return the result.
4260 The result is TO if X is FROM;
4261 otherwise the result is X, but its contents may have been modified.
4262 If they were modified, a record was made in undobuf so that
4263 undo_all will (among other things) return X to its original state.
4264
4265 If the number of changes necessary is too much to record to undo,
4266 the excess changes are not made, so the result is invalid.
4267 The changes already made can still be undone.
4268 undobuf.num_undo is incremented for such changes, so by testing that
4269 the caller can tell whether the result is valid.
4270
4271 `n_occurrences' is incremented each time FROM is replaced.
4272
4273 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4274
4275 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4276 by copying if `n_occurrences' is nonzero. */
4277
4278 static rtx
4279 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4280 {
4281 enum rtx_code code = GET_CODE (x);
4282 enum machine_mode op0_mode = VOIDmode;
4283 const char *fmt;
4284 int len, i;
4285 rtx new_rtx;
4286
4287 /* Two expressions are equal if they are identical copies of a shared
4288 RTX or if they are both registers with the same register number
4289 and mode. */
4290
4291 #define COMBINE_RTX_EQUAL_P(X,Y) \
4292 ((X) == (Y) \
4293 || (REG_P (X) && REG_P (Y) \
4294 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4295
4296 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4297 {
4298 n_occurrences++;
4299 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4300 }
4301
4302 /* If X and FROM are the same register but different modes, they
4303 will not have been seen as equal above. However, the log links code
4304 will make a LOG_LINKS entry for that case. If we do nothing, we
4305 will try to rerecognize our original insn and, when it succeeds,
4306 we will delete the feeding insn, which is incorrect.
4307
4308 So force this insn not to match in this (rare) case. */
4309 if (! in_dest && code == REG && REG_P (from)
4310 && reg_overlap_mentioned_p (x, from))
4311 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4312
4313 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4314 of which may contain things that can be combined. */
4315 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4316 return x;
4317
4318 /* It is possible to have a subexpression appear twice in the insn.
4319 Suppose that FROM is a register that appears within TO.
4320 Then, after that subexpression has been scanned once by `subst',
4321 the second time it is scanned, TO may be found. If we were
4322 to scan TO here, we would find FROM within it and create a
4323 self-referent rtl structure which is completely wrong. */
4324 if (COMBINE_RTX_EQUAL_P (x, to))
4325 return to;
4326
4327 /* Parallel asm_operands need special attention because all of the
4328 inputs are shared across the arms. Furthermore, unsharing the
4329 rtl results in recognition failures. Failure to handle this case
4330 specially can result in circular rtl.
4331
4332 Solve this by doing a normal pass across the first entry of the
4333 parallel, and only processing the SET_DESTs of the subsequent
4334 entries. Ug. */
4335
4336 if (code == PARALLEL
4337 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4338 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4339 {
4340 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4341
4342 /* If this substitution failed, this whole thing fails. */
4343 if (GET_CODE (new_rtx) == CLOBBER
4344 && XEXP (new_rtx, 0) == const0_rtx)
4345 return new_rtx;
4346
4347 SUBST (XVECEXP (x, 0, 0), new_rtx);
4348
4349 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4350 {
4351 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4352
4353 if (!REG_P (dest)
4354 && GET_CODE (dest) != CC0
4355 && GET_CODE (dest) != PC)
4356 {
4357 new_rtx = subst (dest, from, to, 0, unique_copy);
4358
4359 /* If this substitution failed, this whole thing fails. */
4360 if (GET_CODE (new_rtx) == CLOBBER
4361 && XEXP (new_rtx, 0) == const0_rtx)
4362 return new_rtx;
4363
4364 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4365 }
4366 }
4367 }
4368 else
4369 {
4370 len = GET_RTX_LENGTH (code);
4371 fmt = GET_RTX_FORMAT (code);
4372
4373 /* We don't need to process a SET_DEST that is a register, CC0,
4374 or PC, so set up to skip this common case. All other cases
4375 where we want to suppress replacing something inside a
4376 SET_SRC are handled via the IN_DEST operand. */
4377 if (code == SET
4378 && (REG_P (SET_DEST (x))
4379 || GET_CODE (SET_DEST (x)) == CC0
4380 || GET_CODE (SET_DEST (x)) == PC))
4381 fmt = "ie";
4382
4383 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4384 constant. */
4385 if (fmt[0] == 'e')
4386 op0_mode = GET_MODE (XEXP (x, 0));
4387
4388 for (i = 0; i < len; i++)
4389 {
4390 if (fmt[i] == 'E')
4391 {
4392 int j;
4393 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4394 {
4395 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4396 {
4397 new_rtx = (unique_copy && n_occurrences
4398 ? copy_rtx (to) : to);
4399 n_occurrences++;
4400 }
4401 else
4402 {
4403 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
4404 unique_copy);
4405
4406 /* If this substitution failed, this whole thing
4407 fails. */
4408 if (GET_CODE (new_rtx) == CLOBBER
4409 && XEXP (new_rtx, 0) == const0_rtx)
4410 return new_rtx;
4411 }
4412
4413 SUBST (XVECEXP (x, i, j), new_rtx);
4414 }
4415 }
4416 else if (fmt[i] == 'e')
4417 {
4418 /* If this is a register being set, ignore it. */
4419 new_rtx = XEXP (x, i);
4420 if (in_dest
4421 && i == 0
4422 && (((code == SUBREG || code == ZERO_EXTRACT)
4423 && REG_P (new_rtx))
4424 || code == STRICT_LOW_PART))
4425 ;
4426
4427 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4428 {
4429 /* In general, don't install a subreg involving two
4430 modes not tieable. It can worsen register
4431 allocation, and can even make invalid reload
4432 insns, since the reg inside may need to be copied
4433 from in the outside mode, and that may be invalid
4434 if it is an fp reg copied in integer mode.
4435
4436 We allow two exceptions to this: It is valid if
4437 it is inside another SUBREG and the mode of that
4438 SUBREG and the mode of the inside of TO is
4439 tieable and it is valid if X is a SET that copies
4440 FROM to CC0. */
4441
4442 if (GET_CODE (to) == SUBREG
4443 && ! MODES_TIEABLE_P (GET_MODE (to),
4444 GET_MODE (SUBREG_REG (to)))
4445 && ! (code == SUBREG
4446 && MODES_TIEABLE_P (GET_MODE (x),
4447 GET_MODE (SUBREG_REG (to))))
4448 #ifdef HAVE_cc0
4449 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4450 #endif
4451 )
4452 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4453
4454 #ifdef CANNOT_CHANGE_MODE_CLASS
4455 if (code == SUBREG
4456 && REG_P (to)
4457 && REGNO (to) < FIRST_PSEUDO_REGISTER
4458 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4459 GET_MODE (to),
4460 GET_MODE (x)))
4461 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4462 #endif
4463
4464 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4465 n_occurrences++;
4466 }
4467 else
4468 /* If we are in a SET_DEST, suppress most cases unless we
4469 have gone inside a MEM, in which case we want to
4470 simplify the address. We assume here that things that
4471 are actually part of the destination have their inner
4472 parts in the first expression. This is true for SUBREG,
4473 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4474 things aside from REG and MEM that should appear in a
4475 SET_DEST. */
4476 new_rtx = subst (XEXP (x, i), from, to,
4477 (((in_dest
4478 && (code == SUBREG || code == STRICT_LOW_PART
4479 || code == ZERO_EXTRACT))
4480 || code == SET)
4481 && i == 0), unique_copy);
4482
4483 /* If we found that we will have to reject this combination,
4484 indicate that by returning the CLOBBER ourselves, rather than
4485 an expression containing it. This will speed things up as
4486 well as prevent accidents where two CLOBBERs are considered
4487 to be equal, thus producing an incorrect simplification. */
4488
4489 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
4490 return new_rtx;
4491
4492 if (GET_CODE (x) == SUBREG
4493 && (GET_CODE (new_rtx) == CONST_INT
4494 || GET_CODE (new_rtx) == CONST_DOUBLE))
4495 {
4496 enum machine_mode mode = GET_MODE (x);
4497
4498 x = simplify_subreg (GET_MODE (x), new_rtx,
4499 GET_MODE (SUBREG_REG (x)),
4500 SUBREG_BYTE (x));
4501 if (! x)
4502 x = gen_rtx_CLOBBER (mode, const0_rtx);
4503 }
4504 else if (GET_CODE (new_rtx) == CONST_INT
4505 && GET_CODE (x) == ZERO_EXTEND)
4506 {
4507 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4508 new_rtx, GET_MODE (XEXP (x, 0)));
4509 gcc_assert (x);
4510 }
4511 else
4512 SUBST (XEXP (x, i), new_rtx);
4513 }
4514 }
4515 }
4516
4517 /* Check if we are loading something from the constant pool via float
4518 extension; in this case we would undo compress_float_constant
4519 optimization and degenerate constant load to an immediate value. */
4520 if (GET_CODE (x) == FLOAT_EXTEND
4521 && MEM_P (XEXP (x, 0))
4522 && MEM_READONLY_P (XEXP (x, 0)))
4523 {
4524 rtx tmp = avoid_constant_pool_reference (x);
4525 if (x != tmp)
4526 return x;
4527 }
4528
4529 /* Try to simplify X. If the simplification changed the code, it is likely
4530 that further simplification will help, so loop, but limit the number
4531 of repetitions that will be performed. */
4532
4533 for (i = 0; i < 4; i++)
4534 {
4535 /* If X is sufficiently simple, don't bother trying to do anything
4536 with it. */
4537 if (code != CONST_INT && code != REG && code != CLOBBER)
4538 x = combine_simplify_rtx (x, op0_mode, in_dest);
4539
4540 if (GET_CODE (x) == code)
4541 break;
4542
4543 code = GET_CODE (x);
4544
4545 /* We no longer know the original mode of operand 0 since we
4546 have changed the form of X) */
4547 op0_mode = VOIDmode;
4548 }
4549
4550 return x;
4551 }
4552 \f
4553 /* Simplify X, a piece of RTL. We just operate on the expression at the
4554 outer level; call `subst' to simplify recursively. Return the new
4555 expression.
4556
4557 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4558 if we are inside a SET_DEST. */
4559
4560 static rtx
4561 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4562 {
4563 enum rtx_code code = GET_CODE (x);
4564 enum machine_mode mode = GET_MODE (x);
4565 rtx temp;
4566 int i;
4567
4568 /* If this is a commutative operation, put a constant last and a complex
4569 expression first. We don't need to do this for comparisons here. */
4570 if (COMMUTATIVE_ARITH_P (x)
4571 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4572 {
4573 temp = XEXP (x, 0);
4574 SUBST (XEXP (x, 0), XEXP (x, 1));
4575 SUBST (XEXP (x, 1), temp);
4576 }
4577
4578 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4579 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4580 things. Check for cases where both arms are testing the same
4581 condition.
4582
4583 Don't do anything if all operands are very simple. */
4584
4585 if ((BINARY_P (x)
4586 && ((!OBJECT_P (XEXP (x, 0))
4587 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4588 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4589 || (!OBJECT_P (XEXP (x, 1))
4590 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4591 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4592 || (UNARY_P (x)
4593 && (!OBJECT_P (XEXP (x, 0))
4594 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4595 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4596 {
4597 rtx cond, true_rtx, false_rtx;
4598
4599 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4600 if (cond != 0
4601 /* If everything is a comparison, what we have is highly unlikely
4602 to be simpler, so don't use it. */
4603 && ! (COMPARISON_P (x)
4604 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4605 {
4606 rtx cop1 = const0_rtx;
4607 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4608
4609 if (cond_code == NE && COMPARISON_P (cond))
4610 return x;
4611
4612 /* Simplify the alternative arms; this may collapse the true and
4613 false arms to store-flag values. Be careful to use copy_rtx
4614 here since true_rtx or false_rtx might share RTL with x as a
4615 result of the if_then_else_cond call above. */
4616 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4617 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4618
4619 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4620 is unlikely to be simpler. */
4621 if (general_operand (true_rtx, VOIDmode)
4622 && general_operand (false_rtx, VOIDmode))
4623 {
4624 enum rtx_code reversed;
4625
4626 /* Restarting if we generate a store-flag expression will cause
4627 us to loop. Just drop through in this case. */
4628
4629 /* If the result values are STORE_FLAG_VALUE and zero, we can
4630 just make the comparison operation. */
4631 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4632 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4633 cond, cop1);
4634 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4635 && ((reversed = reversed_comparison_code_parts
4636 (cond_code, cond, cop1, NULL))
4637 != UNKNOWN))
4638 x = simplify_gen_relational (reversed, mode, VOIDmode,
4639 cond, cop1);
4640
4641 /* Likewise, we can make the negate of a comparison operation
4642 if the result values are - STORE_FLAG_VALUE and zero. */
4643 else if (GET_CODE (true_rtx) == CONST_INT
4644 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4645 && false_rtx == const0_rtx)
4646 x = simplify_gen_unary (NEG, mode,
4647 simplify_gen_relational (cond_code,
4648 mode, VOIDmode,
4649 cond, cop1),
4650 mode);
4651 else if (GET_CODE (false_rtx) == CONST_INT
4652 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4653 && true_rtx == const0_rtx
4654 && ((reversed = reversed_comparison_code_parts
4655 (cond_code, cond, cop1, NULL))
4656 != UNKNOWN))
4657 x = simplify_gen_unary (NEG, mode,
4658 simplify_gen_relational (reversed,
4659 mode, VOIDmode,
4660 cond, cop1),
4661 mode);
4662 else
4663 return gen_rtx_IF_THEN_ELSE (mode,
4664 simplify_gen_relational (cond_code,
4665 mode,
4666 VOIDmode,
4667 cond,
4668 cop1),
4669 true_rtx, false_rtx);
4670
4671 code = GET_CODE (x);
4672 op0_mode = VOIDmode;
4673 }
4674 }
4675 }
4676
4677 /* Try to fold this expression in case we have constants that weren't
4678 present before. */
4679 temp = 0;
4680 switch (GET_RTX_CLASS (code))
4681 {
4682 case RTX_UNARY:
4683 if (op0_mode == VOIDmode)
4684 op0_mode = GET_MODE (XEXP (x, 0));
4685 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4686 break;
4687 case RTX_COMPARE:
4688 case RTX_COMM_COMPARE:
4689 {
4690 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4691 if (cmp_mode == VOIDmode)
4692 {
4693 cmp_mode = GET_MODE (XEXP (x, 1));
4694 if (cmp_mode == VOIDmode)
4695 cmp_mode = op0_mode;
4696 }
4697 temp = simplify_relational_operation (code, mode, cmp_mode,
4698 XEXP (x, 0), XEXP (x, 1));
4699 }
4700 break;
4701 case RTX_COMM_ARITH:
4702 case RTX_BIN_ARITH:
4703 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4704 break;
4705 case RTX_BITFIELD_OPS:
4706 case RTX_TERNARY:
4707 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4708 XEXP (x, 1), XEXP (x, 2));
4709 break;
4710 default:
4711 break;
4712 }
4713
4714 if (temp)
4715 {
4716 x = temp;
4717 code = GET_CODE (temp);
4718 op0_mode = VOIDmode;
4719 mode = GET_MODE (temp);
4720 }
4721
4722 /* First see if we can apply the inverse distributive law. */
4723 if (code == PLUS || code == MINUS
4724 || code == AND || code == IOR || code == XOR)
4725 {
4726 x = apply_distributive_law (x);
4727 code = GET_CODE (x);
4728 op0_mode = VOIDmode;
4729 }
4730
4731 /* If CODE is an associative operation not otherwise handled, see if we
4732 can associate some operands. This can win if they are constants or
4733 if they are logically related (i.e. (a & b) & a). */
4734 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4735 || code == AND || code == IOR || code == XOR
4736 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4737 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4738 || (flag_associative_math && FLOAT_MODE_P (mode))))
4739 {
4740 if (GET_CODE (XEXP (x, 0)) == code)
4741 {
4742 rtx other = XEXP (XEXP (x, 0), 0);
4743 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4744 rtx inner_op1 = XEXP (x, 1);
4745 rtx inner;
4746
4747 /* Make sure we pass the constant operand if any as the second
4748 one if this is a commutative operation. */
4749 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4750 {
4751 rtx tem = inner_op0;
4752 inner_op0 = inner_op1;
4753 inner_op1 = tem;
4754 }
4755 inner = simplify_binary_operation (code == MINUS ? PLUS
4756 : code == DIV ? MULT
4757 : code,
4758 mode, inner_op0, inner_op1);
4759
4760 /* For commutative operations, try the other pair if that one
4761 didn't simplify. */
4762 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4763 {
4764 other = XEXP (XEXP (x, 0), 1);
4765 inner = simplify_binary_operation (code, mode,
4766 XEXP (XEXP (x, 0), 0),
4767 XEXP (x, 1));
4768 }
4769
4770 if (inner)
4771 return simplify_gen_binary (code, mode, other, inner);
4772 }
4773 }
4774
4775 /* A little bit of algebraic simplification here. */
4776 switch (code)
4777 {
4778 case MEM:
4779 /* Ensure that our address has any ASHIFTs converted to MULT in case
4780 address-recognizing predicates are called later. */
4781 temp = make_compound_operation (XEXP (x, 0), MEM);
4782 SUBST (XEXP (x, 0), temp);
4783 break;
4784
4785 case SUBREG:
4786 if (op0_mode == VOIDmode)
4787 op0_mode = GET_MODE (SUBREG_REG (x));
4788
4789 /* See if this can be moved to simplify_subreg. */
4790 if (CONSTANT_P (SUBREG_REG (x))
4791 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4792 /* Don't call gen_lowpart if the inner mode
4793 is VOIDmode and we cannot simplify it, as SUBREG without
4794 inner mode is invalid. */
4795 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4796 || gen_lowpart_common (mode, SUBREG_REG (x))))
4797 return gen_lowpart (mode, SUBREG_REG (x));
4798
4799 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4800 break;
4801 {
4802 rtx temp;
4803 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4804 SUBREG_BYTE (x));
4805 if (temp)
4806 return temp;
4807 }
4808
4809 /* Don't change the mode of the MEM if that would change the meaning
4810 of the address. */
4811 if (MEM_P (SUBREG_REG (x))
4812 && (MEM_VOLATILE_P (SUBREG_REG (x))
4813 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4814 return gen_rtx_CLOBBER (mode, const0_rtx);
4815
4816 /* Note that we cannot do any narrowing for non-constants since
4817 we might have been counting on using the fact that some bits were
4818 zero. We now do this in the SET. */
4819
4820 break;
4821
4822 case NEG:
4823 temp = expand_compound_operation (XEXP (x, 0));
4824
4825 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4826 replaced by (lshiftrt X C). This will convert
4827 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4828
4829 if (GET_CODE (temp) == ASHIFTRT
4830 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4831 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4832 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4833 INTVAL (XEXP (temp, 1)));
4834
4835 /* If X has only a single bit that might be nonzero, say, bit I, convert
4836 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4837 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4838 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4839 or a SUBREG of one since we'd be making the expression more
4840 complex if it was just a register. */
4841
4842 if (!REG_P (temp)
4843 && ! (GET_CODE (temp) == SUBREG
4844 && REG_P (SUBREG_REG (temp)))
4845 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4846 {
4847 rtx temp1 = simplify_shift_const
4848 (NULL_RTX, ASHIFTRT, mode,
4849 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4850 GET_MODE_BITSIZE (mode) - 1 - i),
4851 GET_MODE_BITSIZE (mode) - 1 - i);
4852
4853 /* If all we did was surround TEMP with the two shifts, we
4854 haven't improved anything, so don't use it. Otherwise,
4855 we are better off with TEMP1. */
4856 if (GET_CODE (temp1) != ASHIFTRT
4857 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4858 || XEXP (XEXP (temp1, 0), 0) != temp)
4859 return temp1;
4860 }
4861 break;
4862
4863 case TRUNCATE:
4864 /* We can't handle truncation to a partial integer mode here
4865 because we don't know the real bitsize of the partial
4866 integer mode. */
4867 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4868 break;
4869
4870 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4871 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4872 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4873 SUBST (XEXP (x, 0),
4874 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4875 GET_MODE_MASK (mode), 0));
4876
4877 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4878 whose value is a comparison can be replaced with a subreg if
4879 STORE_FLAG_VALUE permits. */
4880 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4881 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4882 && (temp = get_last_value (XEXP (x, 0)))
4883 && COMPARISON_P (temp))
4884 return gen_lowpart (mode, XEXP (x, 0));
4885 break;
4886
4887 #ifdef HAVE_cc0
4888 case COMPARE:
4889 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4890 using cc0, in which case we want to leave it as a COMPARE
4891 so we can distinguish it from a register-register-copy. */
4892 if (XEXP (x, 1) == const0_rtx)
4893 return XEXP (x, 0);
4894
4895 /* x - 0 is the same as x unless x's mode has signed zeros and
4896 allows rounding towards -infinity. Under those conditions,
4897 0 - 0 is -0. */
4898 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4899 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4900 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4901 return XEXP (x, 0);
4902 break;
4903 #endif
4904
4905 case CONST:
4906 /* (const (const X)) can become (const X). Do it this way rather than
4907 returning the inner CONST since CONST can be shared with a
4908 REG_EQUAL note. */
4909 if (GET_CODE (XEXP (x, 0)) == CONST)
4910 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4911 break;
4912
4913 #ifdef HAVE_lo_sum
4914 case LO_SUM:
4915 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4916 can add in an offset. find_split_point will split this address up
4917 again if it doesn't match. */
4918 if (GET_CODE (XEXP (x, 0)) == HIGH
4919 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4920 return XEXP (x, 1);
4921 break;
4922 #endif
4923
4924 case PLUS:
4925 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4926 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4927 bit-field and can be replaced by either a sign_extend or a
4928 sign_extract. The `and' may be a zero_extend and the two
4929 <c>, -<c> constants may be reversed. */
4930 if (GET_CODE (XEXP (x, 0)) == XOR
4931 && GET_CODE (XEXP (x, 1)) == CONST_INT
4932 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4933 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4934 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4935 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4936 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4937 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4938 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4939 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4940 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4941 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4942 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4943 == (unsigned int) i + 1))))
4944 return simplify_shift_const
4945 (NULL_RTX, ASHIFTRT, mode,
4946 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4947 XEXP (XEXP (XEXP (x, 0), 0), 0),
4948 GET_MODE_BITSIZE (mode) - (i + 1)),
4949 GET_MODE_BITSIZE (mode) - (i + 1));
4950
4951 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4952 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4953 the bitsize of the mode - 1. This allows simplification of
4954 "a = (b & 8) == 0;" */
4955 if (XEXP (x, 1) == constm1_rtx
4956 && !REG_P (XEXP (x, 0))
4957 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4958 && REG_P (SUBREG_REG (XEXP (x, 0))))
4959 && nonzero_bits (XEXP (x, 0), mode) == 1)
4960 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4961 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4962 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4963 GET_MODE_BITSIZE (mode) - 1),
4964 GET_MODE_BITSIZE (mode) - 1);
4965
4966 /* If we are adding two things that have no bits in common, convert
4967 the addition into an IOR. This will often be further simplified,
4968 for example in cases like ((a & 1) + (a & 2)), which can
4969 become a & 3. */
4970
4971 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4972 && (nonzero_bits (XEXP (x, 0), mode)
4973 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4974 {
4975 /* Try to simplify the expression further. */
4976 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4977 temp = combine_simplify_rtx (tor, mode, in_dest);
4978
4979 /* If we could, great. If not, do not go ahead with the IOR
4980 replacement, since PLUS appears in many special purpose
4981 address arithmetic instructions. */
4982 if (GET_CODE (temp) != CLOBBER && temp != tor)
4983 return temp;
4984 }
4985 break;
4986
4987 case MINUS:
4988 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4989 (and <foo> (const_int pow2-1)) */
4990 if (GET_CODE (XEXP (x, 1)) == AND
4991 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4992 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4993 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4994 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4995 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4996 break;
4997
4998 case MULT:
4999 /* If we have (mult (plus A B) C), apply the distributive law and then
5000 the inverse distributive law to see if things simplify. This
5001 occurs mostly in addresses, often when unrolling loops. */
5002
5003 if (GET_CODE (XEXP (x, 0)) == PLUS)
5004 {
5005 rtx result = distribute_and_simplify_rtx (x, 0);
5006 if (result)
5007 return result;
5008 }
5009
5010 /* Try simplify a*(b/c) as (a*b)/c. */
5011 if (FLOAT_MODE_P (mode) && flag_associative_math
5012 && GET_CODE (XEXP (x, 0)) == DIV)
5013 {
5014 rtx tem = simplify_binary_operation (MULT, mode,
5015 XEXP (XEXP (x, 0), 0),
5016 XEXP (x, 1));
5017 if (tem)
5018 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5019 }
5020 break;
5021
5022 case UDIV:
5023 /* If this is a divide by a power of two, treat it as a shift if
5024 its first operand is a shift. */
5025 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5026 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5027 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5028 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5029 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5030 || GET_CODE (XEXP (x, 0)) == ROTATE
5031 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5032 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5033 break;
5034
5035 case EQ: case NE:
5036 case GT: case GTU: case GE: case GEU:
5037 case LT: case LTU: case LE: case LEU:
5038 case UNEQ: case LTGT:
5039 case UNGT: case UNGE:
5040 case UNLT: case UNLE:
5041 case UNORDERED: case ORDERED:
5042 /* If the first operand is a condition code, we can't do anything
5043 with it. */
5044 if (GET_CODE (XEXP (x, 0)) == COMPARE
5045 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5046 && ! CC0_P (XEXP (x, 0))))
5047 {
5048 rtx op0 = XEXP (x, 0);
5049 rtx op1 = XEXP (x, 1);
5050 enum rtx_code new_code;
5051
5052 if (GET_CODE (op0) == COMPARE)
5053 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5054
5055 /* Simplify our comparison, if possible. */
5056 new_code = simplify_comparison (code, &op0, &op1);
5057
5058 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5059 if only the low-order bit is possibly nonzero in X (such as when
5060 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5061 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5062 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5063 (plus X 1).
5064
5065 Remove any ZERO_EXTRACT we made when thinking this was a
5066 comparison. It may now be simpler to use, e.g., an AND. If a
5067 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5068 the call to make_compound_operation in the SET case. */
5069
5070 if (STORE_FLAG_VALUE == 1
5071 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5072 && op1 == const0_rtx
5073 && mode == GET_MODE (op0)
5074 && nonzero_bits (op0, mode) == 1)
5075 return gen_lowpart (mode,
5076 expand_compound_operation (op0));
5077
5078 else if (STORE_FLAG_VALUE == 1
5079 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5080 && op1 == const0_rtx
5081 && mode == GET_MODE (op0)
5082 && (num_sign_bit_copies (op0, mode)
5083 == GET_MODE_BITSIZE (mode)))
5084 {
5085 op0 = expand_compound_operation (op0);
5086 return simplify_gen_unary (NEG, mode,
5087 gen_lowpart (mode, op0),
5088 mode);
5089 }
5090
5091 else if (STORE_FLAG_VALUE == 1
5092 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5093 && op1 == const0_rtx
5094 && mode == GET_MODE (op0)
5095 && nonzero_bits (op0, mode) == 1)
5096 {
5097 op0 = expand_compound_operation (op0);
5098 return simplify_gen_binary (XOR, mode,
5099 gen_lowpart (mode, op0),
5100 const1_rtx);
5101 }
5102
5103 else if (STORE_FLAG_VALUE == 1
5104 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5105 && op1 == const0_rtx
5106 && mode == GET_MODE (op0)
5107 && (num_sign_bit_copies (op0, mode)
5108 == GET_MODE_BITSIZE (mode)))
5109 {
5110 op0 = expand_compound_operation (op0);
5111 return plus_constant (gen_lowpart (mode, op0), 1);
5112 }
5113
5114 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5115 those above. */
5116 if (STORE_FLAG_VALUE == -1
5117 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5118 && op1 == const0_rtx
5119 && (num_sign_bit_copies (op0, mode)
5120 == GET_MODE_BITSIZE (mode)))
5121 return gen_lowpart (mode,
5122 expand_compound_operation (op0));
5123
5124 else if (STORE_FLAG_VALUE == -1
5125 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5126 && op1 == const0_rtx
5127 && mode == GET_MODE (op0)
5128 && nonzero_bits (op0, mode) == 1)
5129 {
5130 op0 = expand_compound_operation (op0);
5131 return simplify_gen_unary (NEG, mode,
5132 gen_lowpart (mode, op0),
5133 mode);
5134 }
5135
5136 else if (STORE_FLAG_VALUE == -1
5137 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5138 && op1 == const0_rtx
5139 && mode == GET_MODE (op0)
5140 && (num_sign_bit_copies (op0, mode)
5141 == GET_MODE_BITSIZE (mode)))
5142 {
5143 op0 = expand_compound_operation (op0);
5144 return simplify_gen_unary (NOT, mode,
5145 gen_lowpart (mode, op0),
5146 mode);
5147 }
5148
5149 /* If X is 0/1, (eq X 0) is X-1. */
5150 else if (STORE_FLAG_VALUE == -1
5151 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5152 && op1 == const0_rtx
5153 && mode == GET_MODE (op0)
5154 && nonzero_bits (op0, mode) == 1)
5155 {
5156 op0 = expand_compound_operation (op0);
5157 return plus_constant (gen_lowpart (mode, op0), -1);
5158 }
5159
5160 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5161 one bit that might be nonzero, we can convert (ne x 0) to
5162 (ashift x c) where C puts the bit in the sign bit. Remove any
5163 AND with STORE_FLAG_VALUE when we are done, since we are only
5164 going to test the sign bit. */
5165 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5166 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5167 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5168 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5169 && op1 == const0_rtx
5170 && mode == GET_MODE (op0)
5171 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5172 {
5173 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5174 expand_compound_operation (op0),
5175 GET_MODE_BITSIZE (mode) - 1 - i);
5176 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5177 return XEXP (x, 0);
5178 else
5179 return x;
5180 }
5181
5182 /* If the code changed, return a whole new comparison. */
5183 if (new_code != code)
5184 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5185
5186 /* Otherwise, keep this operation, but maybe change its operands.
5187 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5188 SUBST (XEXP (x, 0), op0);
5189 SUBST (XEXP (x, 1), op1);
5190 }
5191 break;
5192
5193 case IF_THEN_ELSE:
5194 return simplify_if_then_else (x);
5195
5196 case ZERO_EXTRACT:
5197 case SIGN_EXTRACT:
5198 case ZERO_EXTEND:
5199 case SIGN_EXTEND:
5200 /* If we are processing SET_DEST, we are done. */
5201 if (in_dest)
5202 return x;
5203
5204 return expand_compound_operation (x);
5205
5206 case SET:
5207 return simplify_set (x);
5208
5209 case AND:
5210 case IOR:
5211 return simplify_logical (x);
5212
5213 case ASHIFT:
5214 case LSHIFTRT:
5215 case ASHIFTRT:
5216 case ROTATE:
5217 case ROTATERT:
5218 /* If this is a shift by a constant amount, simplify it. */
5219 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5220 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5221 INTVAL (XEXP (x, 1)));
5222
5223 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5224 SUBST (XEXP (x, 1),
5225 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5226 ((HOST_WIDE_INT) 1
5227 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5228 - 1,
5229 0));
5230 break;
5231
5232 default:
5233 break;
5234 }
5235
5236 return x;
5237 }
5238 \f
5239 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5240
5241 static rtx
5242 simplify_if_then_else (rtx x)
5243 {
5244 enum machine_mode mode = GET_MODE (x);
5245 rtx cond = XEXP (x, 0);
5246 rtx true_rtx = XEXP (x, 1);
5247 rtx false_rtx = XEXP (x, 2);
5248 enum rtx_code true_code = GET_CODE (cond);
5249 int comparison_p = COMPARISON_P (cond);
5250 rtx temp;
5251 int i;
5252 enum rtx_code false_code;
5253 rtx reversed;
5254
5255 /* Simplify storing of the truth value. */
5256 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5257 return simplify_gen_relational (true_code, mode, VOIDmode,
5258 XEXP (cond, 0), XEXP (cond, 1));
5259
5260 /* Also when the truth value has to be reversed. */
5261 if (comparison_p
5262 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5263 && (reversed = reversed_comparison (cond, mode)))
5264 return reversed;
5265
5266 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5267 in it is being compared against certain values. Get the true and false
5268 comparisons and see if that says anything about the value of each arm. */
5269
5270 if (comparison_p
5271 && ((false_code = reversed_comparison_code (cond, NULL))
5272 != UNKNOWN)
5273 && REG_P (XEXP (cond, 0)))
5274 {
5275 HOST_WIDE_INT nzb;
5276 rtx from = XEXP (cond, 0);
5277 rtx true_val = XEXP (cond, 1);
5278 rtx false_val = true_val;
5279 int swapped = 0;
5280
5281 /* If FALSE_CODE is EQ, swap the codes and arms. */
5282
5283 if (false_code == EQ)
5284 {
5285 swapped = 1, true_code = EQ, false_code = NE;
5286 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5287 }
5288
5289 /* If we are comparing against zero and the expression being tested has
5290 only a single bit that might be nonzero, that is its value when it is
5291 not equal to zero. Similarly if it is known to be -1 or 0. */
5292
5293 if (true_code == EQ && true_val == const0_rtx
5294 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5295 {
5296 false_code = EQ;
5297 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5298 }
5299 else if (true_code == EQ && true_val == const0_rtx
5300 && (num_sign_bit_copies (from, GET_MODE (from))
5301 == GET_MODE_BITSIZE (GET_MODE (from))))
5302 {
5303 false_code = EQ;
5304 false_val = constm1_rtx;
5305 }
5306
5307 /* Now simplify an arm if we know the value of the register in the
5308 branch and it is used in the arm. Be careful due to the potential
5309 of locally-shared RTL. */
5310
5311 if (reg_mentioned_p (from, true_rtx))
5312 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5313 from, true_val),
5314 pc_rtx, pc_rtx, 0, 0);
5315 if (reg_mentioned_p (from, false_rtx))
5316 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5317 from, false_val),
5318 pc_rtx, pc_rtx, 0, 0);
5319
5320 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5321 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5322
5323 true_rtx = XEXP (x, 1);
5324 false_rtx = XEXP (x, 2);
5325 true_code = GET_CODE (cond);
5326 }
5327
5328 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5329 reversed, do so to avoid needing two sets of patterns for
5330 subtract-and-branch insns. Similarly if we have a constant in the true
5331 arm, the false arm is the same as the first operand of the comparison, or
5332 the false arm is more complicated than the true arm. */
5333
5334 if (comparison_p
5335 && reversed_comparison_code (cond, NULL) != UNKNOWN
5336 && (true_rtx == pc_rtx
5337 || (CONSTANT_P (true_rtx)
5338 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
5339 || true_rtx == const0_rtx
5340 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5341 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5342 && !OBJECT_P (false_rtx))
5343 || reg_mentioned_p (true_rtx, false_rtx)
5344 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5345 {
5346 true_code = reversed_comparison_code (cond, NULL);
5347 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5348 SUBST (XEXP (x, 1), false_rtx);
5349 SUBST (XEXP (x, 2), true_rtx);
5350
5351 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5352 cond = XEXP (x, 0);
5353
5354 /* It is possible that the conditional has been simplified out. */
5355 true_code = GET_CODE (cond);
5356 comparison_p = COMPARISON_P (cond);
5357 }
5358
5359 /* If the two arms are identical, we don't need the comparison. */
5360
5361 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5362 return true_rtx;
5363
5364 /* Convert a == b ? b : a to "a". */
5365 if (true_code == EQ && ! side_effects_p (cond)
5366 && !HONOR_NANS (mode)
5367 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5368 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5369 return false_rtx;
5370 else if (true_code == NE && ! side_effects_p (cond)
5371 && !HONOR_NANS (mode)
5372 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5373 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5374 return true_rtx;
5375
5376 /* Look for cases where we have (abs x) or (neg (abs X)). */
5377
5378 if (GET_MODE_CLASS (mode) == MODE_INT
5379 && comparison_p
5380 && XEXP (cond, 1) == const0_rtx
5381 && GET_CODE (false_rtx) == NEG
5382 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5383 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5384 && ! side_effects_p (true_rtx))
5385 switch (true_code)
5386 {
5387 case GT:
5388 case GE:
5389 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5390 case LT:
5391 case LE:
5392 return
5393 simplify_gen_unary (NEG, mode,
5394 simplify_gen_unary (ABS, mode, true_rtx, mode),
5395 mode);
5396 default:
5397 break;
5398 }
5399
5400 /* Look for MIN or MAX. */
5401
5402 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5403 && comparison_p
5404 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5405 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5406 && ! side_effects_p (cond))
5407 switch (true_code)
5408 {
5409 case GE:
5410 case GT:
5411 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5412 case LE:
5413 case LT:
5414 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5415 case GEU:
5416 case GTU:
5417 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5418 case LEU:
5419 case LTU:
5420 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5421 default:
5422 break;
5423 }
5424
5425 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5426 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5427 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5428 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5429 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5430 neither 1 or -1, but it isn't worth checking for. */
5431
5432 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5433 && comparison_p
5434 && GET_MODE_CLASS (mode) == MODE_INT
5435 && ! side_effects_p (x))
5436 {
5437 rtx t = make_compound_operation (true_rtx, SET);
5438 rtx f = make_compound_operation (false_rtx, SET);
5439 rtx cond_op0 = XEXP (cond, 0);
5440 rtx cond_op1 = XEXP (cond, 1);
5441 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5442 enum machine_mode m = mode;
5443 rtx z = 0, c1 = NULL_RTX;
5444
5445 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5446 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5447 || GET_CODE (t) == ASHIFT
5448 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5449 && rtx_equal_p (XEXP (t, 0), f))
5450 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5451
5452 /* If an identity-zero op is commutative, check whether there
5453 would be a match if we swapped the operands. */
5454 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5455 || GET_CODE (t) == XOR)
5456 && rtx_equal_p (XEXP (t, 1), f))
5457 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5458 else if (GET_CODE (t) == SIGN_EXTEND
5459 && (GET_CODE (XEXP (t, 0)) == PLUS
5460 || GET_CODE (XEXP (t, 0)) == MINUS
5461 || GET_CODE (XEXP (t, 0)) == IOR
5462 || GET_CODE (XEXP (t, 0)) == XOR
5463 || GET_CODE (XEXP (t, 0)) == ASHIFT
5464 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5465 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5466 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5467 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5468 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5469 && (num_sign_bit_copies (f, GET_MODE (f))
5470 > (unsigned int)
5471 (GET_MODE_BITSIZE (mode)
5472 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5473 {
5474 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5475 extend_op = SIGN_EXTEND;
5476 m = GET_MODE (XEXP (t, 0));
5477 }
5478 else if (GET_CODE (t) == SIGN_EXTEND
5479 && (GET_CODE (XEXP (t, 0)) == PLUS
5480 || GET_CODE (XEXP (t, 0)) == IOR
5481 || GET_CODE (XEXP (t, 0)) == XOR)
5482 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5483 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5484 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5485 && (num_sign_bit_copies (f, GET_MODE (f))
5486 > (unsigned int)
5487 (GET_MODE_BITSIZE (mode)
5488 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5489 {
5490 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5491 extend_op = SIGN_EXTEND;
5492 m = GET_MODE (XEXP (t, 0));
5493 }
5494 else if (GET_CODE (t) == ZERO_EXTEND
5495 && (GET_CODE (XEXP (t, 0)) == PLUS
5496 || GET_CODE (XEXP (t, 0)) == MINUS
5497 || GET_CODE (XEXP (t, 0)) == IOR
5498 || GET_CODE (XEXP (t, 0)) == XOR
5499 || GET_CODE (XEXP (t, 0)) == ASHIFT
5500 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5501 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5502 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5503 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5504 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5505 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5506 && ((nonzero_bits (f, GET_MODE (f))
5507 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5508 == 0))
5509 {
5510 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5511 extend_op = ZERO_EXTEND;
5512 m = GET_MODE (XEXP (t, 0));
5513 }
5514 else if (GET_CODE (t) == ZERO_EXTEND
5515 && (GET_CODE (XEXP (t, 0)) == PLUS
5516 || GET_CODE (XEXP (t, 0)) == IOR
5517 || GET_CODE (XEXP (t, 0)) == XOR)
5518 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5519 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5520 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5521 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5522 && ((nonzero_bits (f, GET_MODE (f))
5523 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5524 == 0))
5525 {
5526 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5527 extend_op = ZERO_EXTEND;
5528 m = GET_MODE (XEXP (t, 0));
5529 }
5530
5531 if (z)
5532 {
5533 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5534 cond_op0, cond_op1),
5535 pc_rtx, pc_rtx, 0, 0);
5536 temp = simplify_gen_binary (MULT, m, temp,
5537 simplify_gen_binary (MULT, m, c1,
5538 const_true_rtx));
5539 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5540 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5541
5542 if (extend_op != UNKNOWN)
5543 temp = simplify_gen_unary (extend_op, mode, temp, m);
5544
5545 return temp;
5546 }
5547 }
5548
5549 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5550 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5551 negation of a single bit, we can convert this operation to a shift. We
5552 can actually do this more generally, but it doesn't seem worth it. */
5553
5554 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5555 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5556 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5557 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5558 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5559 == GET_MODE_BITSIZE (mode))
5560 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5561 return
5562 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5563 gen_lowpart (mode, XEXP (cond, 0)), i);
5564
5565 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5566 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5567 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5568 && GET_MODE (XEXP (cond, 0)) == mode
5569 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5570 == nonzero_bits (XEXP (cond, 0), mode)
5571 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5572 return XEXP (cond, 0);
5573
5574 return x;
5575 }
5576 \f
5577 /* Simplify X, a SET expression. Return the new expression. */
5578
5579 static rtx
5580 simplify_set (rtx x)
5581 {
5582 rtx src = SET_SRC (x);
5583 rtx dest = SET_DEST (x);
5584 enum machine_mode mode
5585 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5586 rtx other_insn;
5587 rtx *cc_use;
5588
5589 /* (set (pc) (return)) gets written as (return). */
5590 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5591 return src;
5592
5593 /* Now that we know for sure which bits of SRC we are using, see if we can
5594 simplify the expression for the object knowing that we only need the
5595 low-order bits. */
5596
5597 if (GET_MODE_CLASS (mode) == MODE_INT
5598 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5599 {
5600 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5601 SUBST (SET_SRC (x), src);
5602 }
5603
5604 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5605 the comparison result and try to simplify it unless we already have used
5606 undobuf.other_insn. */
5607 if ((GET_MODE_CLASS (mode) == MODE_CC
5608 || GET_CODE (src) == COMPARE
5609 || CC0_P (dest))
5610 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5611 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5612 && COMPARISON_P (*cc_use)
5613 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5614 {
5615 enum rtx_code old_code = GET_CODE (*cc_use);
5616 enum rtx_code new_code;
5617 rtx op0, op1, tmp;
5618 int other_changed = 0;
5619 enum machine_mode compare_mode = GET_MODE (dest);
5620
5621 if (GET_CODE (src) == COMPARE)
5622 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5623 else
5624 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5625
5626 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5627 op0, op1);
5628 if (!tmp)
5629 new_code = old_code;
5630 else if (!CONSTANT_P (tmp))
5631 {
5632 new_code = GET_CODE (tmp);
5633 op0 = XEXP (tmp, 0);
5634 op1 = XEXP (tmp, 1);
5635 }
5636 else
5637 {
5638 rtx pat = PATTERN (other_insn);
5639 undobuf.other_insn = other_insn;
5640 SUBST (*cc_use, tmp);
5641
5642 /* Attempt to simplify CC user. */
5643 if (GET_CODE (pat) == SET)
5644 {
5645 rtx new_rtx = simplify_rtx (SET_SRC (pat));
5646 if (new_rtx != NULL_RTX)
5647 SUBST (SET_SRC (pat), new_rtx);
5648 }
5649
5650 /* Convert X into a no-op move. */
5651 SUBST (SET_DEST (x), pc_rtx);
5652 SUBST (SET_SRC (x), pc_rtx);
5653 return x;
5654 }
5655
5656 /* Simplify our comparison, if possible. */
5657 new_code = simplify_comparison (new_code, &op0, &op1);
5658
5659 #ifdef SELECT_CC_MODE
5660 /* If this machine has CC modes other than CCmode, check to see if we
5661 need to use a different CC mode here. */
5662 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5663 compare_mode = GET_MODE (op0);
5664 else
5665 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5666
5667 #ifndef HAVE_cc0
5668 /* If the mode changed, we have to change SET_DEST, the mode in the
5669 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5670 a hard register, just build new versions with the proper mode. If it
5671 is a pseudo, we lose unless it is only time we set the pseudo, in
5672 which case we can safely change its mode. */
5673 if (compare_mode != GET_MODE (dest))
5674 {
5675 if (can_change_dest_mode (dest, 0, compare_mode))
5676 {
5677 unsigned int regno = REGNO (dest);
5678 rtx new_dest;
5679
5680 if (regno < FIRST_PSEUDO_REGISTER)
5681 new_dest = gen_rtx_REG (compare_mode, regno);
5682 else
5683 {
5684 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5685 new_dest = regno_reg_rtx[regno];
5686 }
5687
5688 SUBST (SET_DEST (x), new_dest);
5689 SUBST (XEXP (*cc_use, 0), new_dest);
5690 other_changed = 1;
5691
5692 dest = new_dest;
5693 }
5694 }
5695 #endif /* cc0 */
5696 #endif /* SELECT_CC_MODE */
5697
5698 /* If the code changed, we have to build a new comparison in
5699 undobuf.other_insn. */
5700 if (new_code != old_code)
5701 {
5702 int other_changed_previously = other_changed;
5703 unsigned HOST_WIDE_INT mask;
5704
5705 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5706 dest, const0_rtx));
5707 other_changed = 1;
5708
5709 /* If the only change we made was to change an EQ into an NE or
5710 vice versa, OP0 has only one bit that might be nonzero, and OP1
5711 is zero, check if changing the user of the condition code will
5712 produce a valid insn. If it won't, we can keep the original code
5713 in that insn by surrounding our operation with an XOR. */
5714
5715 if (((old_code == NE && new_code == EQ)
5716 || (old_code == EQ && new_code == NE))
5717 && ! other_changed_previously && op1 == const0_rtx
5718 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5719 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5720 {
5721 rtx pat = PATTERN (other_insn), note = 0;
5722
5723 if ((recog_for_combine (&pat, other_insn, &note) < 0
5724 && ! check_asm_operands (pat)))
5725 {
5726 PUT_CODE (*cc_use, old_code);
5727 other_changed = 0;
5728
5729 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5730 op0, GEN_INT (mask));
5731 }
5732 }
5733 }
5734
5735 if (other_changed)
5736 undobuf.other_insn = other_insn;
5737
5738 #ifdef HAVE_cc0
5739 /* If we are now comparing against zero, change our source if
5740 needed. If we do not use cc0, we always have a COMPARE. */
5741 if (op1 == const0_rtx && dest == cc0_rtx)
5742 {
5743 SUBST (SET_SRC (x), op0);
5744 src = op0;
5745 }
5746 else
5747 #endif
5748
5749 /* Otherwise, if we didn't previously have a COMPARE in the
5750 correct mode, we need one. */
5751 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5752 {
5753 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5754 src = SET_SRC (x);
5755 }
5756 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5757 {
5758 SUBST (SET_SRC (x), op0);
5759 src = SET_SRC (x);
5760 }
5761 /* Otherwise, update the COMPARE if needed. */
5762 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
5763 {
5764 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5765 src = SET_SRC (x);
5766 }
5767 }
5768 else
5769 {
5770 /* Get SET_SRC in a form where we have placed back any
5771 compound expressions. Then do the checks below. */
5772 src = make_compound_operation (src, SET);
5773 SUBST (SET_SRC (x), src);
5774 }
5775
5776 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5777 and X being a REG or (subreg (reg)), we may be able to convert this to
5778 (set (subreg:m2 x) (op)).
5779
5780 We can always do this if M1 is narrower than M2 because that means that
5781 we only care about the low bits of the result.
5782
5783 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5784 perform a narrower operation than requested since the high-order bits will
5785 be undefined. On machine where it is defined, this transformation is safe
5786 as long as M1 and M2 have the same number of words. */
5787
5788 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5789 && !OBJECT_P (SUBREG_REG (src))
5790 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5791 / UNITS_PER_WORD)
5792 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5793 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5794 #ifndef WORD_REGISTER_OPERATIONS
5795 && (GET_MODE_SIZE (GET_MODE (src))
5796 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5797 #endif
5798 #ifdef CANNOT_CHANGE_MODE_CLASS
5799 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5800 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5801 GET_MODE (SUBREG_REG (src)),
5802 GET_MODE (src)))
5803 #endif
5804 && (REG_P (dest)
5805 || (GET_CODE (dest) == SUBREG
5806 && REG_P (SUBREG_REG (dest)))))
5807 {
5808 SUBST (SET_DEST (x),
5809 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5810 dest));
5811 SUBST (SET_SRC (x), SUBREG_REG (src));
5812
5813 src = SET_SRC (x), dest = SET_DEST (x);
5814 }
5815
5816 #ifdef HAVE_cc0
5817 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5818 in SRC. */
5819 if (dest == cc0_rtx
5820 && GET_CODE (src) == SUBREG
5821 && subreg_lowpart_p (src)
5822 && (GET_MODE_BITSIZE (GET_MODE (src))
5823 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5824 {
5825 rtx inner = SUBREG_REG (src);
5826 enum machine_mode inner_mode = GET_MODE (inner);
5827
5828 /* Here we make sure that we don't have a sign bit on. */
5829 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5830 && (nonzero_bits (inner, inner_mode)
5831 < ((unsigned HOST_WIDE_INT) 1
5832 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5833 {
5834 SUBST (SET_SRC (x), inner);
5835 src = SET_SRC (x);
5836 }
5837 }
5838 #endif
5839
5840 #ifdef LOAD_EXTEND_OP
5841 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5842 would require a paradoxical subreg. Replace the subreg with a
5843 zero_extend to avoid the reload that would otherwise be required. */
5844
5845 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5846 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
5847 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5848 && SUBREG_BYTE (src) == 0
5849 && (GET_MODE_SIZE (GET_MODE (src))
5850 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5851 && MEM_P (SUBREG_REG (src)))
5852 {
5853 SUBST (SET_SRC (x),
5854 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5855 GET_MODE (src), SUBREG_REG (src)));
5856
5857 src = SET_SRC (x);
5858 }
5859 #endif
5860
5861 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5862 are comparing an item known to be 0 or -1 against 0, use a logical
5863 operation instead. Check for one of the arms being an IOR of the other
5864 arm with some value. We compute three terms to be IOR'ed together. In
5865 practice, at most two will be nonzero. Then we do the IOR's. */
5866
5867 if (GET_CODE (dest) != PC
5868 && GET_CODE (src) == IF_THEN_ELSE
5869 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5870 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5871 && XEXP (XEXP (src, 0), 1) == const0_rtx
5872 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5873 #ifdef HAVE_conditional_move
5874 && ! can_conditionally_move_p (GET_MODE (src))
5875 #endif
5876 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5877 GET_MODE (XEXP (XEXP (src, 0), 0)))
5878 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5879 && ! side_effects_p (src))
5880 {
5881 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5882 ? XEXP (src, 1) : XEXP (src, 2));
5883 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5884 ? XEXP (src, 2) : XEXP (src, 1));
5885 rtx term1 = const0_rtx, term2, term3;
5886
5887 if (GET_CODE (true_rtx) == IOR
5888 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5889 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5890 else if (GET_CODE (true_rtx) == IOR
5891 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5892 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5893 else if (GET_CODE (false_rtx) == IOR
5894 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5895 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5896 else if (GET_CODE (false_rtx) == IOR
5897 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5898 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5899
5900 term2 = simplify_gen_binary (AND, GET_MODE (src),
5901 XEXP (XEXP (src, 0), 0), true_rtx);
5902 term3 = simplify_gen_binary (AND, GET_MODE (src),
5903 simplify_gen_unary (NOT, GET_MODE (src),
5904 XEXP (XEXP (src, 0), 0),
5905 GET_MODE (src)),
5906 false_rtx);
5907
5908 SUBST (SET_SRC (x),
5909 simplify_gen_binary (IOR, GET_MODE (src),
5910 simplify_gen_binary (IOR, GET_MODE (src),
5911 term1, term2),
5912 term3));
5913
5914 src = SET_SRC (x);
5915 }
5916
5917 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5918 whole thing fail. */
5919 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5920 return src;
5921 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5922 return dest;
5923 else
5924 /* Convert this into a field assignment operation, if possible. */
5925 return make_field_assignment (x);
5926 }
5927 \f
5928 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5929 result. */
5930
5931 static rtx
5932 simplify_logical (rtx x)
5933 {
5934 enum machine_mode mode = GET_MODE (x);
5935 rtx op0 = XEXP (x, 0);
5936 rtx op1 = XEXP (x, 1);
5937
5938 switch (GET_CODE (x))
5939 {
5940 case AND:
5941 /* We can call simplify_and_const_int only if we don't lose
5942 any (sign) bits when converting INTVAL (op1) to
5943 "unsigned HOST_WIDE_INT". */
5944 if (GET_CODE (op1) == CONST_INT
5945 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5946 || INTVAL (op1) > 0))
5947 {
5948 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5949 if (GET_CODE (x) != AND)
5950 return x;
5951
5952 op0 = XEXP (x, 0);
5953 op1 = XEXP (x, 1);
5954 }
5955
5956 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5957 apply the distributive law and then the inverse distributive
5958 law to see if things simplify. */
5959 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5960 {
5961 rtx result = distribute_and_simplify_rtx (x, 0);
5962 if (result)
5963 return result;
5964 }
5965 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5966 {
5967 rtx result = distribute_and_simplify_rtx (x, 1);
5968 if (result)
5969 return result;
5970 }
5971 break;
5972
5973 case IOR:
5974 /* If we have (ior (and A B) C), apply the distributive law and then
5975 the inverse distributive law to see if things simplify. */
5976
5977 if (GET_CODE (op0) == AND)
5978 {
5979 rtx result = distribute_and_simplify_rtx (x, 0);
5980 if (result)
5981 return result;
5982 }
5983
5984 if (GET_CODE (op1) == AND)
5985 {
5986 rtx result = distribute_and_simplify_rtx (x, 1);
5987 if (result)
5988 return result;
5989 }
5990 break;
5991
5992 default:
5993 gcc_unreachable ();
5994 }
5995
5996 return x;
5997 }
5998 \f
5999 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6000 operations" because they can be replaced with two more basic operations.
6001 ZERO_EXTEND is also considered "compound" because it can be replaced with
6002 an AND operation, which is simpler, though only one operation.
6003
6004 The function expand_compound_operation is called with an rtx expression
6005 and will convert it to the appropriate shifts and AND operations,
6006 simplifying at each stage.
6007
6008 The function make_compound_operation is called to convert an expression
6009 consisting of shifts and ANDs into the equivalent compound expression.
6010 It is the inverse of this function, loosely speaking. */
6011
6012 static rtx
6013 expand_compound_operation (rtx x)
6014 {
6015 unsigned HOST_WIDE_INT pos = 0, len;
6016 int unsignedp = 0;
6017 unsigned int modewidth;
6018 rtx tem;
6019
6020 switch (GET_CODE (x))
6021 {
6022 case ZERO_EXTEND:
6023 unsignedp = 1;
6024 case SIGN_EXTEND:
6025 /* We can't necessarily use a const_int for a multiword mode;
6026 it depends on implicitly extending the value.
6027 Since we don't know the right way to extend it,
6028 we can't tell whether the implicit way is right.
6029
6030 Even for a mode that is no wider than a const_int,
6031 we can't win, because we need to sign extend one of its bits through
6032 the rest of it, and we don't know which bit. */
6033 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
6034 return x;
6035
6036 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6037 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6038 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6039 reloaded. If not for that, MEM's would very rarely be safe.
6040
6041 Reject MODEs bigger than a word, because we might not be able
6042 to reference a two-register group starting with an arbitrary register
6043 (and currently gen_lowpart might crash for a SUBREG). */
6044
6045 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6046 return x;
6047
6048 /* Reject MODEs that aren't scalar integers because turning vector
6049 or complex modes into shifts causes problems. */
6050
6051 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6052 return x;
6053
6054 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6055 /* If the inner object has VOIDmode (the only way this can happen
6056 is if it is an ASM_OPERANDS), we can't do anything since we don't
6057 know how much masking to do. */
6058 if (len == 0)
6059 return x;
6060
6061 break;
6062
6063 case ZERO_EXTRACT:
6064 unsignedp = 1;
6065
6066 /* ... fall through ... */
6067
6068 case SIGN_EXTRACT:
6069 /* If the operand is a CLOBBER, just return it. */
6070 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6071 return XEXP (x, 0);
6072
6073 if (GET_CODE (XEXP (x, 1)) != CONST_INT
6074 || GET_CODE (XEXP (x, 2)) != CONST_INT
6075 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6076 return x;
6077
6078 /* Reject MODEs that aren't scalar integers because turning vector
6079 or complex modes into shifts causes problems. */
6080
6081 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6082 return x;
6083
6084 len = INTVAL (XEXP (x, 1));
6085 pos = INTVAL (XEXP (x, 2));
6086
6087 /* This should stay within the object being extracted, fail otherwise. */
6088 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6089 return x;
6090
6091 if (BITS_BIG_ENDIAN)
6092 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6093
6094 break;
6095
6096 default:
6097 return x;
6098 }
6099 /* Convert sign extension to zero extension, if we know that the high
6100 bit is not set, as this is easier to optimize. It will be converted
6101 back to cheaper alternative in make_extraction. */
6102 if (GET_CODE (x) == SIGN_EXTEND
6103 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6104 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6105 & ~(((unsigned HOST_WIDE_INT)
6106 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6107 >> 1))
6108 == 0)))
6109 {
6110 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6111 rtx temp2 = expand_compound_operation (temp);
6112
6113 /* Make sure this is a profitable operation. */
6114 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6115 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6116 return temp2;
6117 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6118 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6119 return temp;
6120 else
6121 return x;
6122 }
6123
6124 /* We can optimize some special cases of ZERO_EXTEND. */
6125 if (GET_CODE (x) == ZERO_EXTEND)
6126 {
6127 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6128 know that the last value didn't have any inappropriate bits
6129 set. */
6130 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6131 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6132 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6133 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6134 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6135 return XEXP (XEXP (x, 0), 0);
6136
6137 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6138 if (GET_CODE (XEXP (x, 0)) == SUBREG
6139 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6140 && subreg_lowpart_p (XEXP (x, 0))
6141 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6142 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6143 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6144 return SUBREG_REG (XEXP (x, 0));
6145
6146 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6147 is a comparison and STORE_FLAG_VALUE permits. This is like
6148 the first case, but it works even when GET_MODE (x) is larger
6149 than HOST_WIDE_INT. */
6150 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6151 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6152 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6153 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6154 <= HOST_BITS_PER_WIDE_INT)
6155 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6156 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6157 return XEXP (XEXP (x, 0), 0);
6158
6159 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6160 if (GET_CODE (XEXP (x, 0)) == SUBREG
6161 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6162 && subreg_lowpart_p (XEXP (x, 0))
6163 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6164 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6165 <= HOST_BITS_PER_WIDE_INT)
6166 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6167 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6168 return SUBREG_REG (XEXP (x, 0));
6169
6170 }
6171
6172 /* If we reach here, we want to return a pair of shifts. The inner
6173 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6174 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6175 logical depending on the value of UNSIGNEDP.
6176
6177 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6178 converted into an AND of a shift.
6179
6180 We must check for the case where the left shift would have a negative
6181 count. This can happen in a case like (x >> 31) & 255 on machines
6182 that can't shift by a constant. On those machines, we would first
6183 combine the shift with the AND to produce a variable-position
6184 extraction. Then the constant of 31 would be substituted in to produce
6185 a such a position. */
6186
6187 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6188 if (modewidth + len >= pos)
6189 {
6190 enum machine_mode mode = GET_MODE (x);
6191 tem = gen_lowpart (mode, XEXP (x, 0));
6192 if (!tem || GET_CODE (tem) == CLOBBER)
6193 return x;
6194 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6195 tem, modewidth - pos - len);
6196 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6197 mode, tem, modewidth - len);
6198 }
6199 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6200 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6201 simplify_shift_const (NULL_RTX, LSHIFTRT,
6202 GET_MODE (x),
6203 XEXP (x, 0), pos),
6204 ((HOST_WIDE_INT) 1 << len) - 1);
6205 else
6206 /* Any other cases we can't handle. */
6207 return x;
6208
6209 /* If we couldn't do this for some reason, return the original
6210 expression. */
6211 if (GET_CODE (tem) == CLOBBER)
6212 return x;
6213
6214 return tem;
6215 }
6216 \f
6217 /* X is a SET which contains an assignment of one object into
6218 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6219 or certain SUBREGS). If possible, convert it into a series of
6220 logical operations.
6221
6222 We half-heartedly support variable positions, but do not at all
6223 support variable lengths. */
6224
6225 static const_rtx
6226 expand_field_assignment (const_rtx x)
6227 {
6228 rtx inner;
6229 rtx pos; /* Always counts from low bit. */
6230 int len;
6231 rtx mask, cleared, masked;
6232 enum machine_mode compute_mode;
6233
6234 /* Loop until we find something we can't simplify. */
6235 while (1)
6236 {
6237 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6238 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6239 {
6240 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6241 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6242 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6243 }
6244 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6245 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6246 {
6247 inner = XEXP (SET_DEST (x), 0);
6248 len = INTVAL (XEXP (SET_DEST (x), 1));
6249 pos = XEXP (SET_DEST (x), 2);
6250
6251 /* A constant position should stay within the width of INNER. */
6252 if (GET_CODE (pos) == CONST_INT
6253 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6254 break;
6255
6256 if (BITS_BIG_ENDIAN)
6257 {
6258 if (GET_CODE (pos) == CONST_INT)
6259 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6260 - INTVAL (pos));
6261 else if (GET_CODE (pos) == MINUS
6262 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6263 && (INTVAL (XEXP (pos, 1))
6264 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6265 /* If position is ADJUST - X, new position is X. */
6266 pos = XEXP (pos, 0);
6267 else
6268 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6269 GEN_INT (GET_MODE_BITSIZE (
6270 GET_MODE (inner))
6271 - len),
6272 pos);
6273 }
6274 }
6275
6276 /* A SUBREG between two modes that occupy the same numbers of words
6277 can be done by moving the SUBREG to the source. */
6278 else if (GET_CODE (SET_DEST (x)) == SUBREG
6279 /* We need SUBREGs to compute nonzero_bits properly. */
6280 && nonzero_sign_valid
6281 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6282 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6283 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6284 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6285 {
6286 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6287 gen_lowpart
6288 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6289 SET_SRC (x)));
6290 continue;
6291 }
6292 else
6293 break;
6294
6295 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6296 inner = SUBREG_REG (inner);
6297
6298 compute_mode = GET_MODE (inner);
6299
6300 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6301 if (! SCALAR_INT_MODE_P (compute_mode))
6302 {
6303 enum machine_mode imode;
6304
6305 /* Don't do anything for vector or complex integral types. */
6306 if (! FLOAT_MODE_P (compute_mode))
6307 break;
6308
6309 /* Try to find an integral mode to pun with. */
6310 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6311 if (imode == BLKmode)
6312 break;
6313
6314 compute_mode = imode;
6315 inner = gen_lowpart (imode, inner);
6316 }
6317
6318 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6319 if (len >= HOST_BITS_PER_WIDE_INT)
6320 break;
6321
6322 /* Now compute the equivalent expression. Make a copy of INNER
6323 for the SET_DEST in case it is a MEM into which we will substitute;
6324 we don't want shared RTL in that case. */
6325 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6326 cleared = simplify_gen_binary (AND, compute_mode,
6327 simplify_gen_unary (NOT, compute_mode,
6328 simplify_gen_binary (ASHIFT,
6329 compute_mode,
6330 mask, pos),
6331 compute_mode),
6332 inner);
6333 masked = simplify_gen_binary (ASHIFT, compute_mode,
6334 simplify_gen_binary (
6335 AND, compute_mode,
6336 gen_lowpart (compute_mode, SET_SRC (x)),
6337 mask),
6338 pos);
6339
6340 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6341 simplify_gen_binary (IOR, compute_mode,
6342 cleared, masked));
6343 }
6344
6345 return x;
6346 }
6347 \f
6348 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6349 it is an RTX that represents a variable starting position; otherwise,
6350 POS is the (constant) starting bit position (counted from the LSB).
6351
6352 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6353 signed reference.
6354
6355 IN_DEST is nonzero if this is a reference in the destination of a
6356 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6357 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6358 be used.
6359
6360 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6361 ZERO_EXTRACT should be built even for bits starting at bit 0.
6362
6363 MODE is the desired mode of the result (if IN_DEST == 0).
6364
6365 The result is an RTX for the extraction or NULL_RTX if the target
6366 can't handle it. */
6367
6368 static rtx
6369 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6370 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6371 int in_dest, int in_compare)
6372 {
6373 /* This mode describes the size of the storage area
6374 to fetch the overall value from. Within that, we
6375 ignore the POS lowest bits, etc. */
6376 enum machine_mode is_mode = GET_MODE (inner);
6377 enum machine_mode inner_mode;
6378 enum machine_mode wanted_inner_mode;
6379 enum machine_mode wanted_inner_reg_mode = word_mode;
6380 enum machine_mode pos_mode = word_mode;
6381 enum machine_mode extraction_mode = word_mode;
6382 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6383 rtx new_rtx = 0;
6384 rtx orig_pos_rtx = pos_rtx;
6385 HOST_WIDE_INT orig_pos;
6386
6387 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6388 {
6389 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6390 consider just the QI as the memory to extract from.
6391 The subreg adds or removes high bits; its mode is
6392 irrelevant to the meaning of this extraction,
6393 since POS and LEN count from the lsb. */
6394 if (MEM_P (SUBREG_REG (inner)))
6395 is_mode = GET_MODE (SUBREG_REG (inner));
6396 inner = SUBREG_REG (inner);
6397 }
6398 else if (GET_CODE (inner) == ASHIFT
6399 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6400 && pos_rtx == 0 && pos == 0
6401 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6402 {
6403 /* We're extracting the least significant bits of an rtx
6404 (ashift X (const_int C)), where LEN > C. Extract the
6405 least significant (LEN - C) bits of X, giving an rtx
6406 whose mode is MODE, then shift it left C times. */
6407 new_rtx = make_extraction (mode, XEXP (inner, 0),
6408 0, 0, len - INTVAL (XEXP (inner, 1)),
6409 unsignedp, in_dest, in_compare);
6410 if (new_rtx != 0)
6411 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6412 }
6413
6414 inner_mode = GET_MODE (inner);
6415
6416 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6417 pos = INTVAL (pos_rtx), pos_rtx = 0;
6418
6419 /* See if this can be done without an extraction. We never can if the
6420 width of the field is not the same as that of some integer mode. For
6421 registers, we can only avoid the extraction if the position is at the
6422 low-order bit and this is either not in the destination or we have the
6423 appropriate STRICT_LOW_PART operation available.
6424
6425 For MEM, we can avoid an extract if the field starts on an appropriate
6426 boundary and we can change the mode of the memory reference. */
6427
6428 if (tmode != BLKmode
6429 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6430 && !MEM_P (inner)
6431 && (inner_mode == tmode
6432 || !REG_P (inner)
6433 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6434 GET_MODE_BITSIZE (inner_mode))
6435 || reg_truncated_to_mode (tmode, inner))
6436 && (! in_dest
6437 || (REG_P (inner)
6438 && have_insn_for (STRICT_LOW_PART, tmode))))
6439 || (MEM_P (inner) && pos_rtx == 0
6440 && (pos
6441 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6442 : BITS_PER_UNIT)) == 0
6443 /* We can't do this if we are widening INNER_MODE (it
6444 may not be aligned, for one thing). */
6445 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6446 && (inner_mode == tmode
6447 || (! mode_dependent_address_p (XEXP (inner, 0))
6448 && ! MEM_VOLATILE_P (inner))))))
6449 {
6450 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6451 field. If the original and current mode are the same, we need not
6452 adjust the offset. Otherwise, we do if bytes big endian.
6453
6454 If INNER is not a MEM, get a piece consisting of just the field
6455 of interest (in this case POS % BITS_PER_WORD must be 0). */
6456
6457 if (MEM_P (inner))
6458 {
6459 HOST_WIDE_INT offset;
6460
6461 /* POS counts from lsb, but make OFFSET count in memory order. */
6462 if (BYTES_BIG_ENDIAN)
6463 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6464 else
6465 offset = pos / BITS_PER_UNIT;
6466
6467 new_rtx = adjust_address_nv (inner, tmode, offset);
6468 }
6469 else if (REG_P (inner))
6470 {
6471 if (tmode != inner_mode)
6472 {
6473 /* We can't call gen_lowpart in a DEST since we
6474 always want a SUBREG (see below) and it would sometimes
6475 return a new hard register. */
6476 if (pos || in_dest)
6477 {
6478 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6479
6480 if (WORDS_BIG_ENDIAN
6481 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6482 final_word = ((GET_MODE_SIZE (inner_mode)
6483 - GET_MODE_SIZE (tmode))
6484 / UNITS_PER_WORD) - final_word;
6485
6486 final_word *= UNITS_PER_WORD;
6487 if (BYTES_BIG_ENDIAN &&
6488 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6489 final_word += (GET_MODE_SIZE (inner_mode)
6490 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6491
6492 /* Avoid creating invalid subregs, for example when
6493 simplifying (x>>32)&255. */
6494 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6495 return NULL_RTX;
6496
6497 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
6498 }
6499 else
6500 new_rtx = gen_lowpart (tmode, inner);
6501 }
6502 else
6503 new_rtx = inner;
6504 }
6505 else
6506 new_rtx = force_to_mode (inner, tmode,
6507 len >= HOST_BITS_PER_WIDE_INT
6508 ? ~(unsigned HOST_WIDE_INT) 0
6509 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6510 0);
6511
6512 /* If this extraction is going into the destination of a SET,
6513 make a STRICT_LOW_PART unless we made a MEM. */
6514
6515 if (in_dest)
6516 return (MEM_P (new_rtx) ? new_rtx
6517 : (GET_CODE (new_rtx) != SUBREG
6518 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6519 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
6520
6521 if (mode == tmode)
6522 return new_rtx;
6523
6524 if (GET_CODE (new_rtx) == CONST_INT)
6525 return gen_int_mode (INTVAL (new_rtx), mode);
6526
6527 /* If we know that no extraneous bits are set, and that the high
6528 bit is not set, convert the extraction to the cheaper of
6529 sign and zero extension, that are equivalent in these cases. */
6530 if (flag_expensive_optimizations
6531 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6532 && ((nonzero_bits (new_rtx, tmode)
6533 & ~(((unsigned HOST_WIDE_INT)
6534 GET_MODE_MASK (tmode))
6535 >> 1))
6536 == 0)))
6537 {
6538 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
6539 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
6540
6541 /* Prefer ZERO_EXTENSION, since it gives more information to
6542 backends. */
6543 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
6544 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
6545 return temp;
6546 return temp1;
6547 }
6548
6549 /* Otherwise, sign- or zero-extend unless we already are in the
6550 proper mode. */
6551
6552 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6553 mode, new_rtx));
6554 }
6555
6556 /* Unless this is a COMPARE or we have a funny memory reference,
6557 don't do anything with zero-extending field extracts starting at
6558 the low-order bit since they are simple AND operations. */
6559 if (pos_rtx == 0 && pos == 0 && ! in_dest
6560 && ! in_compare && unsignedp)
6561 return 0;
6562
6563 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6564 if the position is not a constant and the length is not 1. In all
6565 other cases, we would only be going outside our object in cases when
6566 an original shift would have been undefined. */
6567 if (MEM_P (inner)
6568 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6569 || (pos_rtx != 0 && len != 1)))
6570 return 0;
6571
6572 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6573 and the mode for the result. */
6574 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6575 {
6576 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6577 pos_mode = mode_for_extraction (EP_insv, 2);
6578 extraction_mode = mode_for_extraction (EP_insv, 3);
6579 }
6580
6581 if (! in_dest && unsignedp
6582 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6583 {
6584 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6585 pos_mode = mode_for_extraction (EP_extzv, 3);
6586 extraction_mode = mode_for_extraction (EP_extzv, 0);
6587 }
6588
6589 if (! in_dest && ! unsignedp
6590 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6591 {
6592 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6593 pos_mode = mode_for_extraction (EP_extv, 3);
6594 extraction_mode = mode_for_extraction (EP_extv, 0);
6595 }
6596
6597 /* Never narrow an object, since that might not be safe. */
6598
6599 if (mode != VOIDmode
6600 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6601 extraction_mode = mode;
6602
6603 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6604 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6605 pos_mode = GET_MODE (pos_rtx);
6606
6607 /* If this is not from memory, the desired mode is the preferred mode
6608 for an extraction pattern's first input operand, or word_mode if there
6609 is none. */
6610 if (!MEM_P (inner))
6611 wanted_inner_mode = wanted_inner_reg_mode;
6612 else
6613 {
6614 /* Be careful not to go beyond the extracted object and maintain the
6615 natural alignment of the memory. */
6616 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6617 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6618 > GET_MODE_BITSIZE (wanted_inner_mode))
6619 {
6620 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6621 gcc_assert (wanted_inner_mode != VOIDmode);
6622 }
6623
6624 /* If we have to change the mode of memory and cannot, the desired mode
6625 is EXTRACTION_MODE. */
6626 if (inner_mode != wanted_inner_mode
6627 && (mode_dependent_address_p (XEXP (inner, 0))
6628 || MEM_VOLATILE_P (inner)
6629 || pos_rtx))
6630 wanted_inner_mode = extraction_mode;
6631 }
6632
6633 orig_pos = pos;
6634
6635 if (BITS_BIG_ENDIAN)
6636 {
6637 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6638 BITS_BIG_ENDIAN style. If position is constant, compute new
6639 position. Otherwise, build subtraction.
6640 Note that POS is relative to the mode of the original argument.
6641 If it's a MEM we need to recompute POS relative to that.
6642 However, if we're extracting from (or inserting into) a register,
6643 we want to recompute POS relative to wanted_inner_mode. */
6644 int width = (MEM_P (inner)
6645 ? GET_MODE_BITSIZE (is_mode)
6646 : GET_MODE_BITSIZE (wanted_inner_mode));
6647
6648 if (pos_rtx == 0)
6649 pos = width - len - pos;
6650 else
6651 pos_rtx
6652 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6653 /* POS may be less than 0 now, but we check for that below.
6654 Note that it can only be less than 0 if !MEM_P (inner). */
6655 }
6656
6657 /* If INNER has a wider mode, and this is a constant extraction, try to
6658 make it smaller and adjust the byte to point to the byte containing
6659 the value. */
6660 if (wanted_inner_mode != VOIDmode
6661 && inner_mode != wanted_inner_mode
6662 && ! pos_rtx
6663 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6664 && MEM_P (inner)
6665 && ! mode_dependent_address_p (XEXP (inner, 0))
6666 && ! MEM_VOLATILE_P (inner))
6667 {
6668 int offset = 0;
6669
6670 /* The computations below will be correct if the machine is big
6671 endian in both bits and bytes or little endian in bits and bytes.
6672 If it is mixed, we must adjust. */
6673
6674 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6675 adjust OFFSET to compensate. */
6676 if (BYTES_BIG_ENDIAN
6677 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6678 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6679
6680 /* We can now move to the desired byte. */
6681 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6682 * GET_MODE_SIZE (wanted_inner_mode);
6683 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6684
6685 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6686 && is_mode != wanted_inner_mode)
6687 offset = (GET_MODE_SIZE (is_mode)
6688 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6689
6690 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6691 }
6692
6693 /* If INNER is not memory, we can always get it into the proper mode. If we
6694 are changing its mode, POS must be a constant and smaller than the size
6695 of the new mode. */
6696 else if (!MEM_P (inner))
6697 {
6698 if (GET_MODE (inner) != wanted_inner_mode
6699 && (pos_rtx != 0
6700 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6701 return 0;
6702
6703 if (orig_pos < 0)
6704 return 0;
6705
6706 inner = force_to_mode (inner, wanted_inner_mode,
6707 pos_rtx
6708 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6709 ? ~(unsigned HOST_WIDE_INT) 0
6710 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6711 << orig_pos),
6712 0);
6713 }
6714
6715 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6716 have to zero extend. Otherwise, we can just use a SUBREG. */
6717 if (pos_rtx != 0
6718 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6719 {
6720 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6721
6722 /* If we know that no extraneous bits are set, and that the high
6723 bit is not set, convert extraction to cheaper one - either
6724 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6725 cases. */
6726 if (flag_expensive_optimizations
6727 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6728 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6729 & ~(((unsigned HOST_WIDE_INT)
6730 GET_MODE_MASK (GET_MODE (pos_rtx)))
6731 >> 1))
6732 == 0)))
6733 {
6734 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6735
6736 /* Prefer ZERO_EXTENSION, since it gives more information to
6737 backends. */
6738 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
6739 < rtx_cost (temp, SET, optimize_this_for_speed_p))
6740 temp = temp1;
6741 }
6742 pos_rtx = temp;
6743 }
6744 else if (pos_rtx != 0
6745 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6746 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6747
6748 /* Make POS_RTX unless we already have it and it is correct. If we don't
6749 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6750 be a CONST_INT. */
6751 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6752 pos_rtx = orig_pos_rtx;
6753
6754 else if (pos_rtx == 0)
6755 pos_rtx = GEN_INT (pos);
6756
6757 /* Make the required operation. See if we can use existing rtx. */
6758 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6759 extraction_mode, inner, GEN_INT (len), pos_rtx);
6760 if (! in_dest)
6761 new_rtx = gen_lowpart (mode, new_rtx);
6762
6763 return new_rtx;
6764 }
6765 \f
6766 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6767 with any other operations in X. Return X without that shift if so. */
6768
6769 static rtx
6770 extract_left_shift (rtx x, int count)
6771 {
6772 enum rtx_code code = GET_CODE (x);
6773 enum machine_mode mode = GET_MODE (x);
6774 rtx tem;
6775
6776 switch (code)
6777 {
6778 case ASHIFT:
6779 /* This is the shift itself. If it is wide enough, we will return
6780 either the value being shifted if the shift count is equal to
6781 COUNT or a shift for the difference. */
6782 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6783 && INTVAL (XEXP (x, 1)) >= count)
6784 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6785 INTVAL (XEXP (x, 1)) - count);
6786 break;
6787
6788 case NEG: case NOT:
6789 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6790 return simplify_gen_unary (code, mode, tem, mode);
6791
6792 break;
6793
6794 case PLUS: case IOR: case XOR: case AND:
6795 /* If we can safely shift this constant and we find the inner shift,
6796 make a new operation. */
6797 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6798 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6799 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6800 return simplify_gen_binary (code, mode, tem,
6801 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6802
6803 break;
6804
6805 default:
6806 break;
6807 }
6808
6809 return 0;
6810 }
6811 \f
6812 /* Look at the expression rooted at X. Look for expressions
6813 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6814 Form these expressions.
6815
6816 Return the new rtx, usually just X.
6817
6818 Also, for machines like the VAX that don't have logical shift insns,
6819 try to convert logical to arithmetic shift operations in cases where
6820 they are equivalent. This undoes the canonicalizations to logical
6821 shifts done elsewhere.
6822
6823 We try, as much as possible, to re-use rtl expressions to save memory.
6824
6825 IN_CODE says what kind of expression we are processing. Normally, it is
6826 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6827 being kludges), it is MEM. When processing the arguments of a comparison
6828 or a COMPARE against zero, it is COMPARE. */
6829
6830 static rtx
6831 make_compound_operation (rtx x, enum rtx_code in_code)
6832 {
6833 enum rtx_code code = GET_CODE (x);
6834 enum machine_mode mode = GET_MODE (x);
6835 int mode_width = GET_MODE_BITSIZE (mode);
6836 rtx rhs, lhs;
6837 enum rtx_code next_code;
6838 int i, j;
6839 rtx new_rtx = 0;
6840 rtx tem;
6841 const char *fmt;
6842
6843 /* Select the code to be used in recursive calls. Once we are inside an
6844 address, we stay there. If we have a comparison, set to COMPARE,
6845 but once inside, go back to our default of SET. */
6846
6847 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6848 : ((code == COMPARE || COMPARISON_P (x))
6849 && XEXP (x, 1) == const0_rtx) ? COMPARE
6850 : in_code == COMPARE ? SET : in_code);
6851
6852 /* Process depending on the code of this operation. If NEW is set
6853 nonzero, it will be returned. */
6854
6855 switch (code)
6856 {
6857 case ASHIFT:
6858 /* Convert shifts by constants into multiplications if inside
6859 an address. */
6860 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6861 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6862 && INTVAL (XEXP (x, 1)) >= 0)
6863 {
6864 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
6865 new_rtx = gen_rtx_MULT (mode, new_rtx,
6866 GEN_INT ((HOST_WIDE_INT) 1
6867 << INTVAL (XEXP (x, 1))));
6868 }
6869 break;
6870
6871 case AND:
6872 /* If the second operand is not a constant, we can't do anything
6873 with it. */
6874 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6875 break;
6876
6877 /* If the constant is a power of two minus one and the first operand
6878 is a logical right shift, make an extraction. */
6879 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6880 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6881 {
6882 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6883 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
6884 0, in_code == COMPARE);
6885 }
6886
6887 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6888 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6889 && subreg_lowpart_p (XEXP (x, 0))
6890 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6891 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6892 {
6893 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6894 next_code);
6895 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
6896 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6897 0, in_code == COMPARE);
6898 }
6899 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6900 else if ((GET_CODE (XEXP (x, 0)) == XOR
6901 || GET_CODE (XEXP (x, 0)) == IOR)
6902 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6903 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6904 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6905 {
6906 /* Apply the distributive law, and then try to make extractions. */
6907 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6908 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6909 XEXP (x, 1)),
6910 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6911 XEXP (x, 1)));
6912 new_rtx = make_compound_operation (new_rtx, in_code);
6913 }
6914
6915 /* If we are have (and (rotate X C) M) and C is larger than the number
6916 of bits in M, this is an extraction. */
6917
6918 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6919 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6920 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6921 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6922 {
6923 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6924 new_rtx = make_extraction (mode, new_rtx,
6925 (GET_MODE_BITSIZE (mode)
6926 - INTVAL (XEXP (XEXP (x, 0), 1))),
6927 NULL_RTX, i, 1, 0, in_code == COMPARE);
6928 }
6929
6930 /* On machines without logical shifts, if the operand of the AND is
6931 a logical shift and our mask turns off all the propagated sign
6932 bits, we can replace the logical shift with an arithmetic shift. */
6933 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6934 && !have_insn_for (LSHIFTRT, mode)
6935 && have_insn_for (ASHIFTRT, mode)
6936 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6937 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6938 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6939 && mode_width <= HOST_BITS_PER_WIDE_INT)
6940 {
6941 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6942
6943 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6944 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6945 SUBST (XEXP (x, 0),
6946 gen_rtx_ASHIFTRT (mode,
6947 make_compound_operation
6948 (XEXP (XEXP (x, 0), 0), next_code),
6949 XEXP (XEXP (x, 0), 1)));
6950 }
6951
6952 /* If the constant is one less than a power of two, this might be
6953 representable by an extraction even if no shift is present.
6954 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6955 we are in a COMPARE. */
6956 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6957 new_rtx = make_extraction (mode,
6958 make_compound_operation (XEXP (x, 0),
6959 next_code),
6960 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6961
6962 /* If we are in a comparison and this is an AND with a power of two,
6963 convert this into the appropriate bit extract. */
6964 else if (in_code == COMPARE
6965 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6966 new_rtx = make_extraction (mode,
6967 make_compound_operation (XEXP (x, 0),
6968 next_code),
6969 i, NULL_RTX, 1, 1, 0, 1);
6970
6971 break;
6972
6973 case LSHIFTRT:
6974 /* If the sign bit is known to be zero, replace this with an
6975 arithmetic shift. */
6976 if (have_insn_for (ASHIFTRT, mode)
6977 && ! have_insn_for (LSHIFTRT, mode)
6978 && mode_width <= HOST_BITS_PER_WIDE_INT
6979 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6980 {
6981 new_rtx = gen_rtx_ASHIFTRT (mode,
6982 make_compound_operation (XEXP (x, 0),
6983 next_code),
6984 XEXP (x, 1));
6985 break;
6986 }
6987
6988 /* ... fall through ... */
6989
6990 case ASHIFTRT:
6991 lhs = XEXP (x, 0);
6992 rhs = XEXP (x, 1);
6993
6994 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6995 this is a SIGN_EXTRACT. */
6996 if (GET_CODE (rhs) == CONST_INT
6997 && GET_CODE (lhs) == ASHIFT
6998 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6999 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7000 && INTVAL (rhs) < mode_width)
7001 {
7002 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7003 new_rtx = make_extraction (mode, new_rtx,
7004 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7005 NULL_RTX, mode_width - INTVAL (rhs),
7006 code == LSHIFTRT, 0, in_code == COMPARE);
7007 break;
7008 }
7009
7010 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7011 If so, try to merge the shifts into a SIGN_EXTEND. We could
7012 also do this for some cases of SIGN_EXTRACT, but it doesn't
7013 seem worth the effort; the case checked for occurs on Alpha. */
7014
7015 if (!OBJECT_P (lhs)
7016 && ! (GET_CODE (lhs) == SUBREG
7017 && (OBJECT_P (SUBREG_REG (lhs))))
7018 && GET_CODE (rhs) == CONST_INT
7019 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7020 && INTVAL (rhs) < mode_width
7021 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7022 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7023 0, NULL_RTX, mode_width - INTVAL (rhs),
7024 code == LSHIFTRT, 0, in_code == COMPARE);
7025
7026 break;
7027
7028 case SUBREG:
7029 /* Call ourselves recursively on the inner expression. If we are
7030 narrowing the object and it has a different RTL code from
7031 what it originally did, do this SUBREG as a force_to_mode. */
7032
7033 tem = make_compound_operation (SUBREG_REG (x), in_code);
7034
7035 {
7036 rtx simplified;
7037 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
7038 SUBREG_BYTE (x));
7039
7040 if (simplified)
7041 tem = simplified;
7042
7043 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7044 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
7045 && subreg_lowpart_p (x))
7046 {
7047 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7048 0);
7049
7050 /* If we have something other than a SUBREG, we might have
7051 done an expansion, so rerun ourselves. */
7052 if (GET_CODE (newer) != SUBREG)
7053 newer = make_compound_operation (newer, in_code);
7054
7055 return newer;
7056 }
7057
7058 if (simplified)
7059 return tem;
7060 }
7061 break;
7062
7063 default:
7064 break;
7065 }
7066
7067 if (new_rtx)
7068 {
7069 x = gen_lowpart (mode, new_rtx);
7070 code = GET_CODE (x);
7071 }
7072
7073 /* Now recursively process each operand of this operation. */
7074 fmt = GET_RTX_FORMAT (code);
7075 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7076 if (fmt[i] == 'e')
7077 {
7078 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7079 SUBST (XEXP (x, i), new_rtx);
7080 }
7081 else if (fmt[i] == 'E')
7082 for (j = 0; j < XVECLEN (x, i); j++)
7083 {
7084 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7085 SUBST (XVECEXP (x, i, j), new_rtx);
7086 }
7087
7088 /* If this is a commutative operation, the changes to the operands
7089 may have made it noncanonical. */
7090 if (COMMUTATIVE_ARITH_P (x)
7091 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7092 {
7093 tem = XEXP (x, 0);
7094 SUBST (XEXP (x, 0), XEXP (x, 1));
7095 SUBST (XEXP (x, 1), tem);
7096 }
7097
7098 return x;
7099 }
7100 \f
7101 /* Given M see if it is a value that would select a field of bits
7102 within an item, but not the entire word. Return -1 if not.
7103 Otherwise, return the starting position of the field, where 0 is the
7104 low-order bit.
7105
7106 *PLEN is set to the length of the field. */
7107
7108 static int
7109 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7110 {
7111 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7112 int pos = exact_log2 (m & -m);
7113 int len = 0;
7114
7115 if (pos >= 0)
7116 /* Now shift off the low-order zero bits and see if we have a
7117 power of two minus 1. */
7118 len = exact_log2 ((m >> pos) + 1);
7119
7120 if (len <= 0)
7121 pos = -1;
7122
7123 *plen = len;
7124 return pos;
7125 }
7126 \f
7127 /* If X refers to a register that equals REG in value, replace these
7128 references with REG. */
7129 static rtx
7130 canon_reg_for_combine (rtx x, rtx reg)
7131 {
7132 rtx op0, op1, op2;
7133 const char *fmt;
7134 int i;
7135 bool copied;
7136
7137 enum rtx_code code = GET_CODE (x);
7138 switch (GET_RTX_CLASS (code))
7139 {
7140 case RTX_UNARY:
7141 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7142 if (op0 != XEXP (x, 0))
7143 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7144 GET_MODE (reg));
7145 break;
7146
7147 case RTX_BIN_ARITH:
7148 case RTX_COMM_ARITH:
7149 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7150 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7151 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7152 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7153 break;
7154
7155 case RTX_COMPARE:
7156 case RTX_COMM_COMPARE:
7157 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7158 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7159 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7160 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7161 GET_MODE (op0), op0, op1);
7162 break;
7163
7164 case RTX_TERNARY:
7165 case RTX_BITFIELD_OPS:
7166 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7167 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7168 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7169 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7170 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7171 GET_MODE (op0), op0, op1, op2);
7172
7173 case RTX_OBJ:
7174 if (REG_P (x))
7175 {
7176 if (rtx_equal_p (get_last_value (reg), x)
7177 || rtx_equal_p (reg, get_last_value (x)))
7178 return reg;
7179 else
7180 break;
7181 }
7182
7183 /* fall through */
7184
7185 default:
7186 fmt = GET_RTX_FORMAT (code);
7187 copied = false;
7188 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7189 if (fmt[i] == 'e')
7190 {
7191 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7192 if (op != XEXP (x, i))
7193 {
7194 if (!copied)
7195 {
7196 copied = true;
7197 x = copy_rtx (x);
7198 }
7199 XEXP (x, i) = op;
7200 }
7201 }
7202 else if (fmt[i] == 'E')
7203 {
7204 int j;
7205 for (j = 0; j < XVECLEN (x, i); j++)
7206 {
7207 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7208 if (op != XVECEXP (x, i, j))
7209 {
7210 if (!copied)
7211 {
7212 copied = true;
7213 x = copy_rtx (x);
7214 }
7215 XVECEXP (x, i, j) = op;
7216 }
7217 }
7218 }
7219
7220 break;
7221 }
7222
7223 return x;
7224 }
7225
7226 /* Return X converted to MODE. If the value is already truncated to
7227 MODE we can just return a subreg even though in the general case we
7228 would need an explicit truncation. */
7229
7230 static rtx
7231 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7232 {
7233 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
7234 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7235 GET_MODE_BITSIZE (GET_MODE (x)))
7236 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
7237 return gen_lowpart (mode, x);
7238 else
7239 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
7240 }
7241
7242 /* See if X can be simplified knowing that we will only refer to it in
7243 MODE and will only refer to those bits that are nonzero in MASK.
7244 If other bits are being computed or if masking operations are done
7245 that select a superset of the bits in MASK, they can sometimes be
7246 ignored.
7247
7248 Return a possibly simplified expression, but always convert X to
7249 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7250
7251 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7252 are all off in X. This is used when X will be complemented, by either
7253 NOT, NEG, or XOR. */
7254
7255 static rtx
7256 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7257 int just_select)
7258 {
7259 enum rtx_code code = GET_CODE (x);
7260 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7261 enum machine_mode op_mode;
7262 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7263 rtx op0, op1, temp;
7264
7265 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7266 code below will do the wrong thing since the mode of such an
7267 expression is VOIDmode.
7268
7269 Also do nothing if X is a CLOBBER; this can happen if X was
7270 the return value from a call to gen_lowpart. */
7271 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7272 return x;
7273
7274 /* We want to perform the operation is its present mode unless we know
7275 that the operation is valid in MODE, in which case we do the operation
7276 in MODE. */
7277 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7278 && have_insn_for (code, mode))
7279 ? mode : GET_MODE (x));
7280
7281 /* It is not valid to do a right-shift in a narrower mode
7282 than the one it came in with. */
7283 if ((code == LSHIFTRT || code == ASHIFTRT)
7284 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7285 op_mode = GET_MODE (x);
7286
7287 /* Truncate MASK to fit OP_MODE. */
7288 if (op_mode)
7289 mask &= GET_MODE_MASK (op_mode);
7290
7291 /* When we have an arithmetic operation, or a shift whose count we
7292 do not know, we need to assume that all bits up to the highest-order
7293 bit in MASK will be needed. This is how we form such a mask. */
7294 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7295 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7296 else
7297 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7298 - 1);
7299
7300 /* Determine what bits of X are guaranteed to be (non)zero. */
7301 nonzero = nonzero_bits (x, mode);
7302
7303 /* If none of the bits in X are needed, return a zero. */
7304 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7305 x = const0_rtx;
7306
7307 /* If X is a CONST_INT, return a new one. Do this here since the
7308 test below will fail. */
7309 if (GET_CODE (x) == CONST_INT)
7310 {
7311 if (SCALAR_INT_MODE_P (mode))
7312 return gen_int_mode (INTVAL (x) & mask, mode);
7313 else
7314 {
7315 x = GEN_INT (INTVAL (x) & mask);
7316 return gen_lowpart_common (mode, x);
7317 }
7318 }
7319
7320 /* If X is narrower than MODE and we want all the bits in X's mode, just
7321 get X in the proper mode. */
7322 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7323 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7324 return gen_lowpart (mode, x);
7325
7326 /* The arithmetic simplifications here do the wrong thing on vector modes. */
7327 if (VECTOR_MODE_P (mode) || VECTOR_MODE_P (GET_MODE (x)))
7328 return gen_lowpart (mode, x);
7329
7330 switch (code)
7331 {
7332 case CLOBBER:
7333 /* If X is a (clobber (const_int)), return it since we know we are
7334 generating something that won't match. */
7335 return x;
7336
7337 case SIGN_EXTEND:
7338 case ZERO_EXTEND:
7339 case ZERO_EXTRACT:
7340 case SIGN_EXTRACT:
7341 x = expand_compound_operation (x);
7342 if (GET_CODE (x) != code)
7343 return force_to_mode (x, mode, mask, next_select);
7344 break;
7345
7346 case SUBREG:
7347 if (subreg_lowpart_p (x)
7348 /* We can ignore the effect of this SUBREG if it narrows the mode or
7349 if the constant masks to zero all the bits the mode doesn't
7350 have. */
7351 && ((GET_MODE_SIZE (GET_MODE (x))
7352 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7353 || (0 == (mask
7354 & GET_MODE_MASK (GET_MODE (x))
7355 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7356 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7357 break;
7358
7359 case AND:
7360 /* If this is an AND with a constant, convert it into an AND
7361 whose constant is the AND of that constant with MASK. If it
7362 remains an AND of MASK, delete it since it is redundant. */
7363
7364 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7365 {
7366 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7367 mask & INTVAL (XEXP (x, 1)));
7368
7369 /* If X is still an AND, see if it is an AND with a mask that
7370 is just some low-order bits. If so, and it is MASK, we don't
7371 need it. */
7372
7373 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7374 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7375 == mask))
7376 x = XEXP (x, 0);
7377
7378 /* If it remains an AND, try making another AND with the bits
7379 in the mode mask that aren't in MASK turned on. If the
7380 constant in the AND is wide enough, this might make a
7381 cheaper constant. */
7382
7383 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7384 && GET_MODE_MASK (GET_MODE (x)) != mask
7385 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7386 {
7387 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7388 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7389 int width = GET_MODE_BITSIZE (GET_MODE (x));
7390 rtx y;
7391
7392 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7393 number, sign extend it. */
7394 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7395 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7396 cval |= (HOST_WIDE_INT) -1 << width;
7397
7398 y = simplify_gen_binary (AND, GET_MODE (x),
7399 XEXP (x, 0), GEN_INT (cval));
7400 if (rtx_cost (y, SET, optimize_this_for_speed_p)
7401 < rtx_cost (x, SET, optimize_this_for_speed_p))
7402 x = y;
7403 }
7404
7405 break;
7406 }
7407
7408 goto binop;
7409
7410 case PLUS:
7411 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7412 low-order bits (as in an alignment operation) and FOO is already
7413 aligned to that boundary, mask C1 to that boundary as well.
7414 This may eliminate that PLUS and, later, the AND. */
7415
7416 {
7417 unsigned int width = GET_MODE_BITSIZE (mode);
7418 unsigned HOST_WIDE_INT smask = mask;
7419
7420 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7421 number, sign extend it. */
7422
7423 if (width < HOST_BITS_PER_WIDE_INT
7424 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7425 smask |= (HOST_WIDE_INT) -1 << width;
7426
7427 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7428 && exact_log2 (- smask) >= 0
7429 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7430 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7431 return force_to_mode (plus_constant (XEXP (x, 0),
7432 (INTVAL (XEXP (x, 1)) & smask)),
7433 mode, smask, next_select);
7434 }
7435
7436 /* ... fall through ... */
7437
7438 case MULT:
7439 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7440 most significant bit in MASK since carries from those bits will
7441 affect the bits we are interested in. */
7442 mask = fuller_mask;
7443 goto binop;
7444
7445 case MINUS:
7446 /* If X is (minus C Y) where C's least set bit is larger than any bit
7447 in the mask, then we may replace with (neg Y). */
7448 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7449 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7450 & -INTVAL (XEXP (x, 0))))
7451 > mask))
7452 {
7453 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7454 GET_MODE (x));
7455 return force_to_mode (x, mode, mask, next_select);
7456 }
7457
7458 /* Similarly, if C contains every bit in the fuller_mask, then we may
7459 replace with (not Y). */
7460 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7461 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7462 == INTVAL (XEXP (x, 0))))
7463 {
7464 x = simplify_gen_unary (NOT, GET_MODE (x),
7465 XEXP (x, 1), GET_MODE (x));
7466 return force_to_mode (x, mode, mask, next_select);
7467 }
7468
7469 mask = fuller_mask;
7470 goto binop;
7471
7472 case IOR:
7473 case XOR:
7474 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7475 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7476 operation which may be a bitfield extraction. Ensure that the
7477 constant we form is not wider than the mode of X. */
7478
7479 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7480 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7481 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7482 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7483 && GET_CODE (XEXP (x, 1)) == CONST_INT
7484 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7485 + floor_log2 (INTVAL (XEXP (x, 1))))
7486 < GET_MODE_BITSIZE (GET_MODE (x)))
7487 && (INTVAL (XEXP (x, 1))
7488 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7489 {
7490 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7491 << INTVAL (XEXP (XEXP (x, 0), 1)));
7492 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7493 XEXP (XEXP (x, 0), 0), temp);
7494 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7495 XEXP (XEXP (x, 0), 1));
7496 return force_to_mode (x, mode, mask, next_select);
7497 }
7498
7499 binop:
7500 /* For most binary operations, just propagate into the operation and
7501 change the mode if we have an operation of that mode. */
7502
7503 op0 = gen_lowpart_or_truncate (op_mode,
7504 force_to_mode (XEXP (x, 0), mode, mask,
7505 next_select));
7506 op1 = gen_lowpart_or_truncate (op_mode,
7507 force_to_mode (XEXP (x, 1), mode, mask,
7508 next_select));
7509
7510 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7511 x = simplify_gen_binary (code, op_mode, op0, op1);
7512 break;
7513
7514 case ASHIFT:
7515 /* For left shifts, do the same, but just for the first operand.
7516 However, we cannot do anything with shifts where we cannot
7517 guarantee that the counts are smaller than the size of the mode
7518 because such a count will have a different meaning in a
7519 wider mode. */
7520
7521 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7522 && INTVAL (XEXP (x, 1)) >= 0
7523 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7524 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7525 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7526 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7527 break;
7528
7529 /* If the shift count is a constant and we can do arithmetic in
7530 the mode of the shift, refine which bits we need. Otherwise, use the
7531 conservative form of the mask. */
7532 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7533 && INTVAL (XEXP (x, 1)) >= 0
7534 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7535 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7536 mask >>= INTVAL (XEXP (x, 1));
7537 else
7538 mask = fuller_mask;
7539
7540 op0 = gen_lowpart_or_truncate (op_mode,
7541 force_to_mode (XEXP (x, 0), op_mode,
7542 mask, next_select));
7543
7544 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7545 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7546 break;
7547
7548 case LSHIFTRT:
7549 /* Here we can only do something if the shift count is a constant,
7550 this shift constant is valid for the host, and we can do arithmetic
7551 in OP_MODE. */
7552
7553 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7554 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7555 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7556 {
7557 rtx inner = XEXP (x, 0);
7558 unsigned HOST_WIDE_INT inner_mask;
7559
7560 /* Select the mask of the bits we need for the shift operand. */
7561 inner_mask = mask << INTVAL (XEXP (x, 1));
7562
7563 /* We can only change the mode of the shift if we can do arithmetic
7564 in the mode of the shift and INNER_MASK is no wider than the
7565 width of X's mode. */
7566 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7567 op_mode = GET_MODE (x);
7568
7569 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7570
7571 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7572 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7573 }
7574
7575 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7576 shift and AND produces only copies of the sign bit (C2 is one less
7577 than a power of two), we can do this with just a shift. */
7578
7579 if (GET_CODE (x) == LSHIFTRT
7580 && GET_CODE (XEXP (x, 1)) == CONST_INT
7581 /* The shift puts one of the sign bit copies in the least significant
7582 bit. */
7583 && ((INTVAL (XEXP (x, 1))
7584 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7585 >= GET_MODE_BITSIZE (GET_MODE (x)))
7586 && exact_log2 (mask + 1) >= 0
7587 /* Number of bits left after the shift must be more than the mask
7588 needs. */
7589 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7590 <= GET_MODE_BITSIZE (GET_MODE (x)))
7591 /* Must be more sign bit copies than the mask needs. */
7592 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7593 >= exact_log2 (mask + 1)))
7594 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7595 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7596 - exact_log2 (mask + 1)));
7597
7598 goto shiftrt;
7599
7600 case ASHIFTRT:
7601 /* If we are just looking for the sign bit, we don't need this shift at
7602 all, even if it has a variable count. */
7603 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7604 && (mask == ((unsigned HOST_WIDE_INT) 1
7605 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7606 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7607
7608 /* If this is a shift by a constant, get a mask that contains those bits
7609 that are not copies of the sign bit. We then have two cases: If
7610 MASK only includes those bits, this can be a logical shift, which may
7611 allow simplifications. If MASK is a single-bit field not within
7612 those bits, we are requesting a copy of the sign bit and hence can
7613 shift the sign bit to the appropriate location. */
7614
7615 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7616 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7617 {
7618 int i;
7619
7620 /* If the considered data is wider than HOST_WIDE_INT, we can't
7621 represent a mask for all its bits in a single scalar.
7622 But we only care about the lower bits, so calculate these. */
7623
7624 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7625 {
7626 nonzero = ~(HOST_WIDE_INT) 0;
7627
7628 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7629 is the number of bits a full-width mask would have set.
7630 We need only shift if these are fewer than nonzero can
7631 hold. If not, we must keep all bits set in nonzero. */
7632
7633 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7634 < HOST_BITS_PER_WIDE_INT)
7635 nonzero >>= INTVAL (XEXP (x, 1))
7636 + HOST_BITS_PER_WIDE_INT
7637 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7638 }
7639 else
7640 {
7641 nonzero = GET_MODE_MASK (GET_MODE (x));
7642 nonzero >>= INTVAL (XEXP (x, 1));
7643 }
7644
7645 if ((mask & ~nonzero) == 0)
7646 {
7647 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7648 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7649 if (GET_CODE (x) != ASHIFTRT)
7650 return force_to_mode (x, mode, mask, next_select);
7651 }
7652
7653 else if ((i = exact_log2 (mask)) >= 0)
7654 {
7655 x = simplify_shift_const
7656 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7657 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7658
7659 if (GET_CODE (x) != ASHIFTRT)
7660 return force_to_mode (x, mode, mask, next_select);
7661 }
7662 }
7663
7664 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7665 even if the shift count isn't a constant. */
7666 if (mask == 1)
7667 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7668 XEXP (x, 0), XEXP (x, 1));
7669
7670 shiftrt:
7671
7672 /* If this is a zero- or sign-extension operation that just affects bits
7673 we don't care about, remove it. Be sure the call above returned
7674 something that is still a shift. */
7675
7676 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7677 && GET_CODE (XEXP (x, 1)) == CONST_INT
7678 && INTVAL (XEXP (x, 1)) >= 0
7679 && (INTVAL (XEXP (x, 1))
7680 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7681 && GET_CODE (XEXP (x, 0)) == ASHIFT
7682 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7683 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7684 next_select);
7685
7686 break;
7687
7688 case ROTATE:
7689 case ROTATERT:
7690 /* If the shift count is constant and we can do computations
7691 in the mode of X, compute where the bits we care about are.
7692 Otherwise, we can't do anything. Don't change the mode of
7693 the shift or propagate MODE into the shift, though. */
7694 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7695 && INTVAL (XEXP (x, 1)) >= 0)
7696 {
7697 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7698 GET_MODE (x), GEN_INT (mask),
7699 XEXP (x, 1));
7700 if (temp && GET_CODE (temp) == CONST_INT)
7701 SUBST (XEXP (x, 0),
7702 force_to_mode (XEXP (x, 0), GET_MODE (x),
7703 INTVAL (temp), next_select));
7704 }
7705 break;
7706
7707 case NEG:
7708 /* If we just want the low-order bit, the NEG isn't needed since it
7709 won't change the low-order bit. */
7710 if (mask == 1)
7711 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7712
7713 /* We need any bits less significant than the most significant bit in
7714 MASK since carries from those bits will affect the bits we are
7715 interested in. */
7716 mask = fuller_mask;
7717 goto unop;
7718
7719 case NOT:
7720 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7721 same as the XOR case above. Ensure that the constant we form is not
7722 wider than the mode of X. */
7723
7724 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7725 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7726 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7727 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7728 < GET_MODE_BITSIZE (GET_MODE (x)))
7729 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7730 {
7731 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7732 GET_MODE (x));
7733 temp = simplify_gen_binary (XOR, GET_MODE (x),
7734 XEXP (XEXP (x, 0), 0), temp);
7735 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7736 temp, XEXP (XEXP (x, 0), 1));
7737
7738 return force_to_mode (x, mode, mask, next_select);
7739 }
7740
7741 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7742 use the full mask inside the NOT. */
7743 mask = fuller_mask;
7744
7745 unop:
7746 op0 = gen_lowpart_or_truncate (op_mode,
7747 force_to_mode (XEXP (x, 0), mode, mask,
7748 next_select));
7749 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7750 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7751 break;
7752
7753 case NE:
7754 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7755 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7756 which is equal to STORE_FLAG_VALUE. */
7757 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7758 && GET_MODE (XEXP (x, 0)) == mode
7759 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7760 && (nonzero_bits (XEXP (x, 0), mode)
7761 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7762 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7763
7764 break;
7765
7766 case IF_THEN_ELSE:
7767 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7768 written in a narrower mode. We play it safe and do not do so. */
7769
7770 SUBST (XEXP (x, 1),
7771 gen_lowpart_or_truncate (GET_MODE (x),
7772 force_to_mode (XEXP (x, 1), mode,
7773 mask, next_select)));
7774 SUBST (XEXP (x, 2),
7775 gen_lowpart_or_truncate (GET_MODE (x),
7776 force_to_mode (XEXP (x, 2), mode,
7777 mask, next_select)));
7778 break;
7779
7780 default:
7781 break;
7782 }
7783
7784 /* Ensure we return a value of the proper mode. */
7785 return gen_lowpart_or_truncate (mode, x);
7786 }
7787 \f
7788 /* Return nonzero if X is an expression that has one of two values depending on
7789 whether some other value is zero or nonzero. In that case, we return the
7790 value that is being tested, *PTRUE is set to the value if the rtx being
7791 returned has a nonzero value, and *PFALSE is set to the other alternative.
7792
7793 If we return zero, we set *PTRUE and *PFALSE to X. */
7794
7795 static rtx
7796 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7797 {
7798 enum machine_mode mode = GET_MODE (x);
7799 enum rtx_code code = GET_CODE (x);
7800 rtx cond0, cond1, true0, true1, false0, false1;
7801 unsigned HOST_WIDE_INT nz;
7802
7803 /* If we are comparing a value against zero, we are done. */
7804 if ((code == NE || code == EQ)
7805 && XEXP (x, 1) == const0_rtx)
7806 {
7807 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7808 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7809 return XEXP (x, 0);
7810 }
7811
7812 /* If this is a unary operation whose operand has one of two values, apply
7813 our opcode to compute those values. */
7814 else if (UNARY_P (x)
7815 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7816 {
7817 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7818 *pfalse = simplify_gen_unary (code, mode, false0,
7819 GET_MODE (XEXP (x, 0)));
7820 return cond0;
7821 }
7822
7823 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7824 make can't possibly match and would suppress other optimizations. */
7825 else if (code == COMPARE)
7826 ;
7827
7828 /* If this is a binary operation, see if either side has only one of two
7829 values. If either one does or if both do and they are conditional on
7830 the same value, compute the new true and false values. */
7831 else if (BINARY_P (x))
7832 {
7833 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7834 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7835
7836 if ((cond0 != 0 || cond1 != 0)
7837 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7838 {
7839 /* If if_then_else_cond returned zero, then true/false are the
7840 same rtl. We must copy one of them to prevent invalid rtl
7841 sharing. */
7842 if (cond0 == 0)
7843 true0 = copy_rtx (true0);
7844 else if (cond1 == 0)
7845 true1 = copy_rtx (true1);
7846
7847 if (COMPARISON_P (x))
7848 {
7849 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7850 true0, true1);
7851 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7852 false0, false1);
7853 }
7854 else
7855 {
7856 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7857 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7858 }
7859
7860 return cond0 ? cond0 : cond1;
7861 }
7862
7863 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7864 operands is zero when the other is nonzero, and vice-versa,
7865 and STORE_FLAG_VALUE is 1 or -1. */
7866
7867 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7868 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7869 || code == UMAX)
7870 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7871 {
7872 rtx op0 = XEXP (XEXP (x, 0), 1);
7873 rtx op1 = XEXP (XEXP (x, 1), 1);
7874
7875 cond0 = XEXP (XEXP (x, 0), 0);
7876 cond1 = XEXP (XEXP (x, 1), 0);
7877
7878 if (COMPARISON_P (cond0)
7879 && COMPARISON_P (cond1)
7880 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7881 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7882 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7883 || ((swap_condition (GET_CODE (cond0))
7884 == reversed_comparison_code (cond1, NULL))
7885 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7886 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7887 && ! side_effects_p (x))
7888 {
7889 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7890 *pfalse = simplify_gen_binary (MULT, mode,
7891 (code == MINUS
7892 ? simplify_gen_unary (NEG, mode,
7893 op1, mode)
7894 : op1),
7895 const_true_rtx);
7896 return cond0;
7897 }
7898 }
7899
7900 /* Similarly for MULT, AND and UMIN, except that for these the result
7901 is always zero. */
7902 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7903 && (code == MULT || code == AND || code == UMIN)
7904 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7905 {
7906 cond0 = XEXP (XEXP (x, 0), 0);
7907 cond1 = XEXP (XEXP (x, 1), 0);
7908
7909 if (COMPARISON_P (cond0)
7910 && COMPARISON_P (cond1)
7911 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7912 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7913 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7914 || ((swap_condition (GET_CODE (cond0))
7915 == reversed_comparison_code (cond1, NULL))
7916 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7917 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7918 && ! side_effects_p (x))
7919 {
7920 *ptrue = *pfalse = const0_rtx;
7921 return cond0;
7922 }
7923 }
7924 }
7925
7926 else if (code == IF_THEN_ELSE)
7927 {
7928 /* If we have IF_THEN_ELSE already, extract the condition and
7929 canonicalize it if it is NE or EQ. */
7930 cond0 = XEXP (x, 0);
7931 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7932 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7933 return XEXP (cond0, 0);
7934 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7935 {
7936 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7937 return XEXP (cond0, 0);
7938 }
7939 else
7940 return cond0;
7941 }
7942
7943 /* If X is a SUBREG, we can narrow both the true and false values
7944 if the inner expression, if there is a condition. */
7945 else if (code == SUBREG
7946 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7947 &true0, &false0)))
7948 {
7949 true0 = simplify_gen_subreg (mode, true0,
7950 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7951 false0 = simplify_gen_subreg (mode, false0,
7952 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7953 if (true0 && false0)
7954 {
7955 *ptrue = true0;
7956 *pfalse = false0;
7957 return cond0;
7958 }
7959 }
7960
7961 /* If X is a constant, this isn't special and will cause confusions
7962 if we treat it as such. Likewise if it is equivalent to a constant. */
7963 else if (CONSTANT_P (x)
7964 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7965 ;
7966
7967 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7968 will be least confusing to the rest of the compiler. */
7969 else if (mode == BImode)
7970 {
7971 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7972 return x;
7973 }
7974
7975 /* If X is known to be either 0 or -1, those are the true and
7976 false values when testing X. */
7977 else if (x == constm1_rtx || x == const0_rtx
7978 || (mode != VOIDmode
7979 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7980 {
7981 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7982 return x;
7983 }
7984
7985 /* Likewise for 0 or a single bit. */
7986 else if (SCALAR_INT_MODE_P (mode)
7987 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7988 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7989 {
7990 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7991 return x;
7992 }
7993
7994 /* Otherwise fail; show no condition with true and false values the same. */
7995 *ptrue = *pfalse = x;
7996 return 0;
7997 }
7998 \f
7999 /* Return the value of expression X given the fact that condition COND
8000 is known to be true when applied to REG as its first operand and VAL
8001 as its second. X is known to not be shared and so can be modified in
8002 place.
8003
8004 We only handle the simplest cases, and specifically those cases that
8005 arise with IF_THEN_ELSE expressions. */
8006
8007 static rtx
8008 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8009 {
8010 enum rtx_code code = GET_CODE (x);
8011 rtx temp;
8012 const char *fmt;
8013 int i, j;
8014
8015 if (side_effects_p (x))
8016 return x;
8017
8018 /* If either operand of the condition is a floating point value,
8019 then we have to avoid collapsing an EQ comparison. */
8020 if (cond == EQ
8021 && rtx_equal_p (x, reg)
8022 && ! FLOAT_MODE_P (GET_MODE (x))
8023 && ! FLOAT_MODE_P (GET_MODE (val)))
8024 return val;
8025
8026 if (cond == UNEQ && rtx_equal_p (x, reg))
8027 return val;
8028
8029 /* If X is (abs REG) and we know something about REG's relationship
8030 with zero, we may be able to simplify this. */
8031
8032 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8033 switch (cond)
8034 {
8035 case GE: case GT: case EQ:
8036 return XEXP (x, 0);
8037 case LT: case LE:
8038 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8039 XEXP (x, 0),
8040 GET_MODE (XEXP (x, 0)));
8041 default:
8042 break;
8043 }
8044
8045 /* The only other cases we handle are MIN, MAX, and comparisons if the
8046 operands are the same as REG and VAL. */
8047
8048 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8049 {
8050 if (rtx_equal_p (XEXP (x, 0), val))
8051 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8052
8053 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8054 {
8055 if (COMPARISON_P (x))
8056 {
8057 if (comparison_dominates_p (cond, code))
8058 return const_true_rtx;
8059
8060 code = reversed_comparison_code (x, NULL);
8061 if (code != UNKNOWN
8062 && comparison_dominates_p (cond, code))
8063 return const0_rtx;
8064 else
8065 return x;
8066 }
8067 else if (code == SMAX || code == SMIN
8068 || code == UMIN || code == UMAX)
8069 {
8070 int unsignedp = (code == UMIN || code == UMAX);
8071
8072 /* Do not reverse the condition when it is NE or EQ.
8073 This is because we cannot conclude anything about
8074 the value of 'SMAX (x, y)' when x is not equal to y,
8075 but we can when x equals y. */
8076 if ((code == SMAX || code == UMAX)
8077 && ! (cond == EQ || cond == NE))
8078 cond = reverse_condition (cond);
8079
8080 switch (cond)
8081 {
8082 case GE: case GT:
8083 return unsignedp ? x : XEXP (x, 1);
8084 case LE: case LT:
8085 return unsignedp ? x : XEXP (x, 0);
8086 case GEU: case GTU:
8087 return unsignedp ? XEXP (x, 1) : x;
8088 case LEU: case LTU:
8089 return unsignedp ? XEXP (x, 0) : x;
8090 default:
8091 break;
8092 }
8093 }
8094 }
8095 }
8096 else if (code == SUBREG)
8097 {
8098 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8099 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8100
8101 if (SUBREG_REG (x) != r)
8102 {
8103 /* We must simplify subreg here, before we lose track of the
8104 original inner_mode. */
8105 new_rtx = simplify_subreg (GET_MODE (x), r,
8106 inner_mode, SUBREG_BYTE (x));
8107 if (new_rtx)
8108 return new_rtx;
8109 else
8110 SUBST (SUBREG_REG (x), r);
8111 }
8112
8113 return x;
8114 }
8115 /* We don't have to handle SIGN_EXTEND here, because even in the
8116 case of replacing something with a modeless CONST_INT, a
8117 CONST_INT is already (supposed to be) a valid sign extension for
8118 its narrower mode, which implies it's already properly
8119 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8120 story is different. */
8121 else if (code == ZERO_EXTEND)
8122 {
8123 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8124 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8125
8126 if (XEXP (x, 0) != r)
8127 {
8128 /* We must simplify the zero_extend here, before we lose
8129 track of the original inner_mode. */
8130 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8131 r, inner_mode);
8132 if (new_rtx)
8133 return new_rtx;
8134 else
8135 SUBST (XEXP (x, 0), r);
8136 }
8137
8138 return x;
8139 }
8140
8141 fmt = GET_RTX_FORMAT (code);
8142 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8143 {
8144 if (fmt[i] == 'e')
8145 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8146 else if (fmt[i] == 'E')
8147 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8148 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8149 cond, reg, val));
8150 }
8151
8152 return x;
8153 }
8154 \f
8155 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8156 assignment as a field assignment. */
8157
8158 static int
8159 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8160 {
8161 if (x == y || rtx_equal_p (x, y))
8162 return 1;
8163
8164 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8165 return 0;
8166
8167 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8168 Note that all SUBREGs of MEM are paradoxical; otherwise they
8169 would have been rewritten. */
8170 if (MEM_P (x) && GET_CODE (y) == SUBREG
8171 && MEM_P (SUBREG_REG (y))
8172 && rtx_equal_p (SUBREG_REG (y),
8173 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8174 return 1;
8175
8176 if (MEM_P (y) && GET_CODE (x) == SUBREG
8177 && MEM_P (SUBREG_REG (x))
8178 && rtx_equal_p (SUBREG_REG (x),
8179 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8180 return 1;
8181
8182 /* We used to see if get_last_value of X and Y were the same but that's
8183 not correct. In one direction, we'll cause the assignment to have
8184 the wrong destination and in the case, we'll import a register into this
8185 insn that might have already have been dead. So fail if none of the
8186 above cases are true. */
8187 return 0;
8188 }
8189 \f
8190 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8191 Return that assignment if so.
8192
8193 We only handle the most common cases. */
8194
8195 static rtx
8196 make_field_assignment (rtx x)
8197 {
8198 rtx dest = SET_DEST (x);
8199 rtx src = SET_SRC (x);
8200 rtx assign;
8201 rtx rhs, lhs;
8202 HOST_WIDE_INT c1;
8203 HOST_WIDE_INT pos;
8204 unsigned HOST_WIDE_INT len;
8205 rtx other;
8206 enum machine_mode mode;
8207
8208 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8209 a clear of a one-bit field. We will have changed it to
8210 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8211 for a SUBREG. */
8212
8213 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8214 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
8215 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8216 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8217 {
8218 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8219 1, 1, 1, 0);
8220 if (assign != 0)
8221 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8222 return x;
8223 }
8224
8225 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8226 && subreg_lowpart_p (XEXP (src, 0))
8227 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8228 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8229 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8230 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
8231 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8232 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8233 {
8234 assign = make_extraction (VOIDmode, dest, 0,
8235 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8236 1, 1, 1, 0);
8237 if (assign != 0)
8238 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8239 return x;
8240 }
8241
8242 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8243 one-bit field. */
8244 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8245 && XEXP (XEXP (src, 0), 0) == const1_rtx
8246 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8247 {
8248 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8249 1, 1, 1, 0);
8250 if (assign != 0)
8251 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8252 return x;
8253 }
8254
8255 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8256 SRC is an AND with all bits of that field set, then we can discard
8257 the AND. */
8258 if (GET_CODE (dest) == ZERO_EXTRACT
8259 && GET_CODE (XEXP (dest, 1)) == CONST_INT
8260 && GET_CODE (src) == AND
8261 && GET_CODE (XEXP (src, 1)) == CONST_INT)
8262 {
8263 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8264 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8265 unsigned HOST_WIDE_INT ze_mask;
8266
8267 if (width >= HOST_BITS_PER_WIDE_INT)
8268 ze_mask = -1;
8269 else
8270 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8271
8272 /* Complete overlap. We can remove the source AND. */
8273 if ((and_mask & ze_mask) == ze_mask)
8274 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8275
8276 /* Partial overlap. We can reduce the source AND. */
8277 if ((and_mask & ze_mask) != and_mask)
8278 {
8279 mode = GET_MODE (src);
8280 src = gen_rtx_AND (mode, XEXP (src, 0),
8281 gen_int_mode (and_mask & ze_mask, mode));
8282 return gen_rtx_SET (VOIDmode, dest, src);
8283 }
8284 }
8285
8286 /* The other case we handle is assignments into a constant-position
8287 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8288 a mask that has all one bits except for a group of zero bits and
8289 OTHER is known to have zeros where C1 has ones, this is such an
8290 assignment. Compute the position and length from C1. Shift OTHER
8291 to the appropriate position, force it to the required mode, and
8292 make the extraction. Check for the AND in both operands. */
8293
8294 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8295 return x;
8296
8297 rhs = expand_compound_operation (XEXP (src, 0));
8298 lhs = expand_compound_operation (XEXP (src, 1));
8299
8300 if (GET_CODE (rhs) == AND
8301 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
8302 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8303 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8304 else if (GET_CODE (lhs) == AND
8305 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
8306 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8307 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8308 else
8309 return x;
8310
8311 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8312 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8313 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8314 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8315 return x;
8316
8317 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8318 if (assign == 0)
8319 return x;
8320
8321 /* The mode to use for the source is the mode of the assignment, or of
8322 what is inside a possible STRICT_LOW_PART. */
8323 mode = (GET_CODE (assign) == STRICT_LOW_PART
8324 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8325
8326 /* Shift OTHER right POS places and make it the source, restricting it
8327 to the proper length and mode. */
8328
8329 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8330 GET_MODE (src),
8331 other, pos),
8332 dest);
8333 src = force_to_mode (src, mode,
8334 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8335 ? ~(unsigned HOST_WIDE_INT) 0
8336 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8337 0);
8338
8339 /* If SRC is masked by an AND that does not make a difference in
8340 the value being stored, strip it. */
8341 if (GET_CODE (assign) == ZERO_EXTRACT
8342 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8343 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8344 && GET_CODE (src) == AND
8345 && GET_CODE (XEXP (src, 1)) == CONST_INT
8346 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8347 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8348 src = XEXP (src, 0);
8349
8350 return gen_rtx_SET (VOIDmode, assign, src);
8351 }
8352 \f
8353 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8354 if so. */
8355
8356 static rtx
8357 apply_distributive_law (rtx x)
8358 {
8359 enum rtx_code code = GET_CODE (x);
8360 enum rtx_code inner_code;
8361 rtx lhs, rhs, other;
8362 rtx tem;
8363
8364 /* Distributivity is not true for floating point as it can change the
8365 value. So we don't do it unless -funsafe-math-optimizations. */
8366 if (FLOAT_MODE_P (GET_MODE (x))
8367 && ! flag_unsafe_math_optimizations)
8368 return x;
8369
8370 /* The outer operation can only be one of the following: */
8371 if (code != IOR && code != AND && code != XOR
8372 && code != PLUS && code != MINUS)
8373 return x;
8374
8375 lhs = XEXP (x, 0);
8376 rhs = XEXP (x, 1);
8377
8378 /* If either operand is a primitive we can't do anything, so get out
8379 fast. */
8380 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8381 return x;
8382
8383 lhs = expand_compound_operation (lhs);
8384 rhs = expand_compound_operation (rhs);
8385 inner_code = GET_CODE (lhs);
8386 if (inner_code != GET_CODE (rhs))
8387 return x;
8388
8389 /* See if the inner and outer operations distribute. */
8390 switch (inner_code)
8391 {
8392 case LSHIFTRT:
8393 case ASHIFTRT:
8394 case AND:
8395 case IOR:
8396 /* These all distribute except over PLUS. */
8397 if (code == PLUS || code == MINUS)
8398 return x;
8399 break;
8400
8401 case MULT:
8402 if (code != PLUS && code != MINUS)
8403 return x;
8404 break;
8405
8406 case ASHIFT:
8407 /* This is also a multiply, so it distributes over everything. */
8408 break;
8409
8410 case SUBREG:
8411 /* Non-paradoxical SUBREGs distributes over all operations,
8412 provided the inner modes and byte offsets are the same, this
8413 is an extraction of a low-order part, we don't convert an fp
8414 operation to int or vice versa, this is not a vector mode,
8415 and we would not be converting a single-word operation into a
8416 multi-word operation. The latter test is not required, but
8417 it prevents generating unneeded multi-word operations. Some
8418 of the previous tests are redundant given the latter test,
8419 but are retained because they are required for correctness.
8420
8421 We produce the result slightly differently in this case. */
8422
8423 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8424 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8425 || ! subreg_lowpart_p (lhs)
8426 || (GET_MODE_CLASS (GET_MODE (lhs))
8427 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8428 || (GET_MODE_SIZE (GET_MODE (lhs))
8429 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8430 || VECTOR_MODE_P (GET_MODE (lhs))
8431 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8432 /* Result might need to be truncated. Don't change mode if
8433 explicit truncation is needed. */
8434 || !TRULY_NOOP_TRUNCATION
8435 (GET_MODE_BITSIZE (GET_MODE (x)),
8436 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8437 return x;
8438
8439 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8440 SUBREG_REG (lhs), SUBREG_REG (rhs));
8441 return gen_lowpart (GET_MODE (x), tem);
8442
8443 default:
8444 return x;
8445 }
8446
8447 /* Set LHS and RHS to the inner operands (A and B in the example
8448 above) and set OTHER to the common operand (C in the example).
8449 There is only one way to do this unless the inner operation is
8450 commutative. */
8451 if (COMMUTATIVE_ARITH_P (lhs)
8452 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8453 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8454 else if (COMMUTATIVE_ARITH_P (lhs)
8455 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8456 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8457 else if (COMMUTATIVE_ARITH_P (lhs)
8458 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8459 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8460 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8461 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8462 else
8463 return x;
8464
8465 /* Form the new inner operation, seeing if it simplifies first. */
8466 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8467
8468 /* There is one exception to the general way of distributing:
8469 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8470 if (code == XOR && inner_code == IOR)
8471 {
8472 inner_code = AND;
8473 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8474 }
8475
8476 /* We may be able to continuing distributing the result, so call
8477 ourselves recursively on the inner operation before forming the
8478 outer operation, which we return. */
8479 return simplify_gen_binary (inner_code, GET_MODE (x),
8480 apply_distributive_law (tem), other);
8481 }
8482
8483 /* See if X is of the form (* (+ A B) C), and if so convert to
8484 (+ (* A C) (* B C)) and try to simplify.
8485
8486 Most of the time, this results in no change. However, if some of
8487 the operands are the same or inverses of each other, simplifications
8488 will result.
8489
8490 For example, (and (ior A B) (not B)) can occur as the result of
8491 expanding a bit field assignment. When we apply the distributive
8492 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8493 which then simplifies to (and (A (not B))).
8494
8495 Note that no checks happen on the validity of applying the inverse
8496 distributive law. This is pointless since we can do it in the
8497 few places where this routine is called.
8498
8499 N is the index of the term that is decomposed (the arithmetic operation,
8500 i.e. (+ A B) in the first example above). !N is the index of the term that
8501 is distributed, i.e. of C in the first example above. */
8502 static rtx
8503 distribute_and_simplify_rtx (rtx x, int n)
8504 {
8505 enum machine_mode mode;
8506 enum rtx_code outer_code, inner_code;
8507 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8508
8509 decomposed = XEXP (x, n);
8510 if (!ARITHMETIC_P (decomposed))
8511 return NULL_RTX;
8512
8513 mode = GET_MODE (x);
8514 outer_code = GET_CODE (x);
8515 distributed = XEXP (x, !n);
8516
8517 inner_code = GET_CODE (decomposed);
8518 inner_op0 = XEXP (decomposed, 0);
8519 inner_op1 = XEXP (decomposed, 1);
8520
8521 /* Special case (and (xor B C) (not A)), which is equivalent to
8522 (xor (ior A B) (ior A C)) */
8523 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8524 {
8525 distributed = XEXP (distributed, 0);
8526 outer_code = IOR;
8527 }
8528
8529 if (n == 0)
8530 {
8531 /* Distribute the second term. */
8532 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8533 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8534 }
8535 else
8536 {
8537 /* Distribute the first term. */
8538 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8539 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8540 }
8541
8542 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8543 new_op0, new_op1));
8544 if (GET_CODE (tmp) != outer_code
8545 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
8546 < rtx_cost (x, SET, optimize_this_for_speed_p))
8547 return tmp;
8548
8549 return NULL_RTX;
8550 }
8551 \f
8552 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8553 in MODE. Return an equivalent form, if different from (and VAROP
8554 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8555
8556 static rtx
8557 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8558 unsigned HOST_WIDE_INT constop)
8559 {
8560 unsigned HOST_WIDE_INT nonzero;
8561 unsigned HOST_WIDE_INT orig_constop;
8562 rtx orig_varop;
8563 int i;
8564
8565 orig_varop = varop;
8566 orig_constop = constop;
8567 if (GET_CODE (varop) == CLOBBER)
8568 return NULL_RTX;
8569
8570 /* Simplify VAROP knowing that we will be only looking at some of the
8571 bits in it.
8572
8573 Note by passing in CONSTOP, we guarantee that the bits not set in
8574 CONSTOP are not significant and will never be examined. We must
8575 ensure that is the case by explicitly masking out those bits
8576 before returning. */
8577 varop = force_to_mode (varop, mode, constop, 0);
8578
8579 /* If VAROP is a CLOBBER, we will fail so return it. */
8580 if (GET_CODE (varop) == CLOBBER)
8581 return varop;
8582
8583 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8584 to VAROP and return the new constant. */
8585 if (GET_CODE (varop) == CONST_INT)
8586 return gen_int_mode (INTVAL (varop) & constop, mode);
8587
8588 /* See what bits may be nonzero in VAROP. Unlike the general case of
8589 a call to nonzero_bits, here we don't care about bits outside
8590 MODE. */
8591
8592 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8593
8594 /* Turn off all bits in the constant that are known to already be zero.
8595 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8596 which is tested below. */
8597
8598 constop &= nonzero;
8599
8600 /* If we don't have any bits left, return zero. */
8601 if (constop == 0)
8602 return const0_rtx;
8603
8604 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8605 a power of two, we can replace this with an ASHIFT. */
8606 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8607 && (i = exact_log2 (constop)) >= 0)
8608 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8609
8610 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8611 or XOR, then try to apply the distributive law. This may eliminate
8612 operations if either branch can be simplified because of the AND.
8613 It may also make some cases more complex, but those cases probably
8614 won't match a pattern either with or without this. */
8615
8616 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8617 return
8618 gen_lowpart
8619 (mode,
8620 apply_distributive_law
8621 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8622 simplify_and_const_int (NULL_RTX,
8623 GET_MODE (varop),
8624 XEXP (varop, 0),
8625 constop),
8626 simplify_and_const_int (NULL_RTX,
8627 GET_MODE (varop),
8628 XEXP (varop, 1),
8629 constop))));
8630
8631 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8632 the AND and see if one of the operands simplifies to zero. If so, we
8633 may eliminate it. */
8634
8635 if (GET_CODE (varop) == PLUS
8636 && exact_log2 (constop + 1) >= 0)
8637 {
8638 rtx o0, o1;
8639
8640 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8641 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8642 if (o0 == const0_rtx)
8643 return o1;
8644 if (o1 == const0_rtx)
8645 return o0;
8646 }
8647
8648 /* Make a SUBREG if necessary. If we can't make it, fail. */
8649 varop = gen_lowpart (mode, varop);
8650 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8651 return NULL_RTX;
8652
8653 /* If we are only masking insignificant bits, return VAROP. */
8654 if (constop == nonzero)
8655 return varop;
8656
8657 if (varop == orig_varop && constop == orig_constop)
8658 return NULL_RTX;
8659
8660 /* Otherwise, return an AND. */
8661 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8662 }
8663
8664
8665 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8666 in MODE.
8667
8668 Return an equivalent form, if different from X. Otherwise, return X. If
8669 X is zero, we are to always construct the equivalent form. */
8670
8671 static rtx
8672 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8673 unsigned HOST_WIDE_INT constop)
8674 {
8675 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8676 if (tem)
8677 return tem;
8678
8679 if (!x)
8680 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8681 gen_int_mode (constop, mode));
8682 if (GET_MODE (x) != mode)
8683 x = gen_lowpart (mode, x);
8684 return x;
8685 }
8686 \f
8687 /* Given a REG, X, compute which bits in X can be nonzero.
8688 We don't care about bits outside of those defined in MODE.
8689
8690 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8691 a shift, AND, or zero_extract, we can do better. */
8692
8693 static rtx
8694 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
8695 const_rtx known_x ATTRIBUTE_UNUSED,
8696 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8697 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8698 unsigned HOST_WIDE_INT *nonzero)
8699 {
8700 rtx tem;
8701 reg_stat_type *rsp;
8702
8703 /* If X is a register whose nonzero bits value is current, use it.
8704 Otherwise, if X is a register whose value we can find, use that
8705 value. Otherwise, use the previously-computed global nonzero bits
8706 for this register. */
8707
8708 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8709 if (rsp->last_set_value != 0
8710 && (rsp->last_set_mode == mode
8711 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
8712 && GET_MODE_CLASS (mode) == MODE_INT))
8713 && ((rsp->last_set_label >= label_tick_ebb_start
8714 && rsp->last_set_label < label_tick)
8715 || (rsp->last_set_label == label_tick
8716 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8717 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8718 && REG_N_SETS (REGNO (x)) == 1
8719 && !REGNO_REG_SET_P
8720 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8721 {
8722 *nonzero &= rsp->last_set_nonzero_bits;
8723 return NULL;
8724 }
8725
8726 tem = get_last_value (x);
8727
8728 if (tem)
8729 {
8730 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8731 /* If X is narrower than MODE and TEM is a non-negative
8732 constant that would appear negative in the mode of X,
8733 sign-extend it for use in reg_nonzero_bits because some
8734 machines (maybe most) will actually do the sign-extension
8735 and this is the conservative approach.
8736
8737 ??? For 2.5, try to tighten up the MD files in this regard
8738 instead of this kludge. */
8739
8740 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8741 && GET_CODE (tem) == CONST_INT
8742 && INTVAL (tem) > 0
8743 && 0 != (INTVAL (tem)
8744 & ((HOST_WIDE_INT) 1
8745 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8746 tem = GEN_INT (INTVAL (tem)
8747 | ((HOST_WIDE_INT) (-1)
8748 << GET_MODE_BITSIZE (GET_MODE (x))));
8749 #endif
8750 return tem;
8751 }
8752 else if (nonzero_sign_valid && rsp->nonzero_bits)
8753 {
8754 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
8755
8756 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8757 /* We don't know anything about the upper bits. */
8758 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8759 *nonzero &= mask;
8760 }
8761
8762 return NULL;
8763 }
8764
8765 /* Return the number of bits at the high-order end of X that are known to
8766 be equal to the sign bit. X will be used in mode MODE; if MODE is
8767 VOIDmode, X will be used in its own mode. The returned value will always
8768 be between 1 and the number of bits in MODE. */
8769
8770 static rtx
8771 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
8772 const_rtx known_x ATTRIBUTE_UNUSED,
8773 enum machine_mode known_mode
8774 ATTRIBUTE_UNUSED,
8775 unsigned int known_ret ATTRIBUTE_UNUSED,
8776 unsigned int *result)
8777 {
8778 rtx tem;
8779 reg_stat_type *rsp;
8780
8781 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8782 if (rsp->last_set_value != 0
8783 && rsp->last_set_mode == mode
8784 && ((rsp->last_set_label >= label_tick_ebb_start
8785 && rsp->last_set_label < label_tick)
8786 || (rsp->last_set_label == label_tick
8787 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8788 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8789 && REG_N_SETS (REGNO (x)) == 1
8790 && !REGNO_REG_SET_P
8791 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8792 {
8793 *result = rsp->last_set_sign_bit_copies;
8794 return NULL;
8795 }
8796
8797 tem = get_last_value (x);
8798 if (tem != 0)
8799 return tem;
8800
8801 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
8802 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8803 *result = rsp->sign_bit_copies;
8804
8805 return NULL;
8806 }
8807 \f
8808 /* Return the number of "extended" bits there are in X, when interpreted
8809 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8810 unsigned quantities, this is the number of high-order zero bits.
8811 For signed quantities, this is the number of copies of the sign bit
8812 minus 1. In both case, this function returns the number of "spare"
8813 bits. For example, if two quantities for which this function returns
8814 at least 1 are added, the addition is known not to overflow.
8815
8816 This function will always return 0 unless called during combine, which
8817 implies that it must be called from a define_split. */
8818
8819 unsigned int
8820 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
8821 {
8822 if (nonzero_sign_valid == 0)
8823 return 0;
8824
8825 return (unsignedp
8826 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8827 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8828 - floor_log2 (nonzero_bits (x, mode)))
8829 : 0)
8830 : num_sign_bit_copies (x, mode) - 1);
8831 }
8832 \f
8833 /* This function is called from `simplify_shift_const' to merge two
8834 outer operations. Specifically, we have already found that we need
8835 to perform operation *POP0 with constant *PCONST0 at the outermost
8836 position. We would now like to also perform OP1 with constant CONST1
8837 (with *POP0 being done last).
8838
8839 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8840 the resulting operation. *PCOMP_P is set to 1 if we would need to
8841 complement the innermost operand, otherwise it is unchanged.
8842
8843 MODE is the mode in which the operation will be done. No bits outside
8844 the width of this mode matter. It is assumed that the width of this mode
8845 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8846
8847 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8848 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8849 result is simply *PCONST0.
8850
8851 If the resulting operation cannot be expressed as one operation, we
8852 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8853
8854 static int
8855 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8856 {
8857 enum rtx_code op0 = *pop0;
8858 HOST_WIDE_INT const0 = *pconst0;
8859
8860 const0 &= GET_MODE_MASK (mode);
8861 const1 &= GET_MODE_MASK (mode);
8862
8863 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8864 if (op0 == AND)
8865 const1 &= const0;
8866
8867 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8868 if OP0 is SET. */
8869
8870 if (op1 == UNKNOWN || op0 == SET)
8871 return 1;
8872
8873 else if (op0 == UNKNOWN)
8874 op0 = op1, const0 = const1;
8875
8876 else if (op0 == op1)
8877 {
8878 switch (op0)
8879 {
8880 case AND:
8881 const0 &= const1;
8882 break;
8883 case IOR:
8884 const0 |= const1;
8885 break;
8886 case XOR:
8887 const0 ^= const1;
8888 break;
8889 case PLUS:
8890 const0 += const1;
8891 break;
8892 case NEG:
8893 op0 = UNKNOWN;
8894 break;
8895 default:
8896 break;
8897 }
8898 }
8899
8900 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8901 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8902 return 0;
8903
8904 /* If the two constants aren't the same, we can't do anything. The
8905 remaining six cases can all be done. */
8906 else if (const0 != const1)
8907 return 0;
8908
8909 else
8910 switch (op0)
8911 {
8912 case IOR:
8913 if (op1 == AND)
8914 /* (a & b) | b == b */
8915 op0 = SET;
8916 else /* op1 == XOR */
8917 /* (a ^ b) | b == a | b */
8918 {;}
8919 break;
8920
8921 case XOR:
8922 if (op1 == AND)
8923 /* (a & b) ^ b == (~a) & b */
8924 op0 = AND, *pcomp_p = 1;
8925 else /* op1 == IOR */
8926 /* (a | b) ^ b == a & ~b */
8927 op0 = AND, const0 = ~const0;
8928 break;
8929
8930 case AND:
8931 if (op1 == IOR)
8932 /* (a | b) & b == b */
8933 op0 = SET;
8934 else /* op1 == XOR */
8935 /* (a ^ b) & b) == (~a) & b */
8936 *pcomp_p = 1;
8937 break;
8938 default:
8939 break;
8940 }
8941
8942 /* Check for NO-OP cases. */
8943 const0 &= GET_MODE_MASK (mode);
8944 if (const0 == 0
8945 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8946 op0 = UNKNOWN;
8947 else if (const0 == 0 && op0 == AND)
8948 op0 = SET;
8949 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8950 && op0 == AND)
8951 op0 = UNKNOWN;
8952
8953 /* ??? Slightly redundant with the above mask, but not entirely.
8954 Moving this above means we'd have to sign-extend the mode mask
8955 for the final test. */
8956 const0 = trunc_int_for_mode (const0, mode);
8957
8958 *pop0 = op0;
8959 *pconst0 = const0;
8960
8961 return 1;
8962 }
8963 \f
8964 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8965 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8966 simplify it. Otherwise, return a simplified value.
8967
8968 The shift is normally computed in the widest mode we find in VAROP, as
8969 long as it isn't a different number of words than RESULT_MODE. Exceptions
8970 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8971
8972 static rtx
8973 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8974 rtx varop, int orig_count)
8975 {
8976 enum rtx_code orig_code = code;
8977 rtx orig_varop = varop;
8978 int count;
8979 enum machine_mode mode = result_mode;
8980 enum machine_mode shift_mode, tmode;
8981 unsigned int mode_words
8982 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8983 /* We form (outer_op (code varop count) (outer_const)). */
8984 enum rtx_code outer_op = UNKNOWN;
8985 HOST_WIDE_INT outer_const = 0;
8986 int complement_p = 0;
8987 rtx new_rtx, x;
8988
8989 /* Make sure and truncate the "natural" shift on the way in. We don't
8990 want to do this inside the loop as it makes it more difficult to
8991 combine shifts. */
8992 if (SHIFT_COUNT_TRUNCATED)
8993 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8994
8995 /* If we were given an invalid count, don't do anything except exactly
8996 what was requested. */
8997
8998 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8999 return NULL_RTX;
9000
9001 count = orig_count;
9002
9003 /* Unless one of the branches of the `if' in this loop does a `continue',
9004 we will `break' the loop after the `if'. */
9005
9006 while (count != 0)
9007 {
9008 /* If we have an operand of (clobber (const_int 0)), fail. */
9009 if (GET_CODE (varop) == CLOBBER)
9010 return NULL_RTX;
9011
9012 /* Convert ROTATERT to ROTATE. */
9013 if (code == ROTATERT)
9014 {
9015 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9016 code = ROTATE;
9017 if (VECTOR_MODE_P (result_mode))
9018 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9019 else
9020 count = bitsize - count;
9021 }
9022
9023 /* We need to determine what mode we will do the shift in. If the
9024 shift is a right shift or a ROTATE, we must always do it in the mode
9025 it was originally done in. Otherwise, we can do it in MODE, the
9026 widest mode encountered. */
9027 shift_mode
9028 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9029 ? result_mode : mode);
9030
9031 /* Handle cases where the count is greater than the size of the mode
9032 minus 1. For ASHIFT, use the size minus one as the count (this can
9033 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9034 take the count modulo the size. For other shifts, the result is
9035 zero.
9036
9037 Since these shifts are being produced by the compiler by combining
9038 multiple operations, each of which are defined, we know what the
9039 result is supposed to be. */
9040
9041 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9042 {
9043 if (code == ASHIFTRT)
9044 count = GET_MODE_BITSIZE (shift_mode) - 1;
9045 else if (code == ROTATE || code == ROTATERT)
9046 count %= GET_MODE_BITSIZE (shift_mode);
9047 else
9048 {
9049 /* We can't simply return zero because there may be an
9050 outer op. */
9051 varop = const0_rtx;
9052 count = 0;
9053 break;
9054 }
9055 }
9056
9057 /* If we discovered we had to complement VAROP, leave. Making a NOT
9058 here would cause an infinite loop. */
9059 if (complement_p)
9060 break;
9061
9062 /* An arithmetic right shift of a quantity known to be -1 or 0
9063 is a no-op. */
9064 if (code == ASHIFTRT
9065 && (num_sign_bit_copies (varop, shift_mode)
9066 == GET_MODE_BITSIZE (shift_mode)))
9067 {
9068 count = 0;
9069 break;
9070 }
9071
9072 /* If we are doing an arithmetic right shift and discarding all but
9073 the sign bit copies, this is equivalent to doing a shift by the
9074 bitsize minus one. Convert it into that shift because it will often
9075 allow other simplifications. */
9076
9077 if (code == ASHIFTRT
9078 && (count + num_sign_bit_copies (varop, shift_mode)
9079 >= GET_MODE_BITSIZE (shift_mode)))
9080 count = GET_MODE_BITSIZE (shift_mode) - 1;
9081
9082 /* We simplify the tests below and elsewhere by converting
9083 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9084 `make_compound_operation' will convert it to an ASHIFTRT for
9085 those machines (such as VAX) that don't have an LSHIFTRT. */
9086 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9087 && code == ASHIFTRT
9088 && ((nonzero_bits (varop, shift_mode)
9089 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9090 == 0))
9091 code = LSHIFTRT;
9092
9093 if (((code == LSHIFTRT
9094 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9095 && !(nonzero_bits (varop, shift_mode) >> count))
9096 || (code == ASHIFT
9097 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9098 && !((nonzero_bits (varop, shift_mode) << count)
9099 & GET_MODE_MASK (shift_mode))))
9100 && !side_effects_p (varop))
9101 varop = const0_rtx;
9102
9103 switch (GET_CODE (varop))
9104 {
9105 case SIGN_EXTEND:
9106 case ZERO_EXTEND:
9107 case SIGN_EXTRACT:
9108 case ZERO_EXTRACT:
9109 new_rtx = expand_compound_operation (varop);
9110 if (new_rtx != varop)
9111 {
9112 varop = new_rtx;
9113 continue;
9114 }
9115 break;
9116
9117 case MEM:
9118 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9119 minus the width of a smaller mode, we can do this with a
9120 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9121 if ((code == ASHIFTRT || code == LSHIFTRT)
9122 && ! mode_dependent_address_p (XEXP (varop, 0))
9123 && ! MEM_VOLATILE_P (varop)
9124 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9125 MODE_INT, 1)) != BLKmode)
9126 {
9127 new_rtx = adjust_address_nv (varop, tmode,
9128 BYTES_BIG_ENDIAN ? 0
9129 : count / BITS_PER_UNIT);
9130
9131 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9132 : ZERO_EXTEND, mode, new_rtx);
9133 count = 0;
9134 continue;
9135 }
9136 break;
9137
9138 case SUBREG:
9139 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9140 the same number of words as what we've seen so far. Then store
9141 the widest mode in MODE. */
9142 if (subreg_lowpart_p (varop)
9143 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9144 > GET_MODE_SIZE (GET_MODE (varop)))
9145 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9146 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9147 == mode_words)
9148 {
9149 varop = SUBREG_REG (varop);
9150 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9151 mode = GET_MODE (varop);
9152 continue;
9153 }
9154 break;
9155
9156 case MULT:
9157 /* Some machines use MULT instead of ASHIFT because MULT
9158 is cheaper. But it is still better on those machines to
9159 merge two shifts into one. */
9160 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9161 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9162 {
9163 varop
9164 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9165 XEXP (varop, 0),
9166 GEN_INT (exact_log2 (
9167 INTVAL (XEXP (varop, 1)))));
9168 continue;
9169 }
9170 break;
9171
9172 case UDIV:
9173 /* Similar, for when divides are cheaper. */
9174 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9175 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9176 {
9177 varop
9178 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9179 XEXP (varop, 0),
9180 GEN_INT (exact_log2 (
9181 INTVAL (XEXP (varop, 1)))));
9182 continue;
9183 }
9184 break;
9185
9186 case ASHIFTRT:
9187 /* If we are extracting just the sign bit of an arithmetic
9188 right shift, that shift is not needed. However, the sign
9189 bit of a wider mode may be different from what would be
9190 interpreted as the sign bit in a narrower mode, so, if
9191 the result is narrower, don't discard the shift. */
9192 if (code == LSHIFTRT
9193 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9194 && (GET_MODE_BITSIZE (result_mode)
9195 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9196 {
9197 varop = XEXP (varop, 0);
9198 continue;
9199 }
9200
9201 /* ... fall through ... */
9202
9203 case LSHIFTRT:
9204 case ASHIFT:
9205 case ROTATE:
9206 /* Here we have two nested shifts. The result is usually the
9207 AND of a new shift with a mask. We compute the result below. */
9208 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9209 && INTVAL (XEXP (varop, 1)) >= 0
9210 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9211 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9212 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9213 && !VECTOR_MODE_P (result_mode))
9214 {
9215 enum rtx_code first_code = GET_CODE (varop);
9216 unsigned int first_count = INTVAL (XEXP (varop, 1));
9217 unsigned HOST_WIDE_INT mask;
9218 rtx mask_rtx;
9219
9220 /* We have one common special case. We can't do any merging if
9221 the inner code is an ASHIFTRT of a smaller mode. However, if
9222 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9223 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9224 we can convert it to
9225 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9226 This simplifies certain SIGN_EXTEND operations. */
9227 if (code == ASHIFT && first_code == ASHIFTRT
9228 && count == (GET_MODE_BITSIZE (result_mode)
9229 - GET_MODE_BITSIZE (GET_MODE (varop))))
9230 {
9231 /* C3 has the low-order C1 bits zero. */
9232
9233 mask = (GET_MODE_MASK (mode)
9234 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9235
9236 varop = simplify_and_const_int (NULL_RTX, result_mode,
9237 XEXP (varop, 0), mask);
9238 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9239 varop, count);
9240 count = first_count;
9241 code = ASHIFTRT;
9242 continue;
9243 }
9244
9245 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9246 than C1 high-order bits equal to the sign bit, we can convert
9247 this to either an ASHIFT or an ASHIFTRT depending on the
9248 two counts.
9249
9250 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9251
9252 if (code == ASHIFTRT && first_code == ASHIFT
9253 && GET_MODE (varop) == shift_mode
9254 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9255 > first_count))
9256 {
9257 varop = XEXP (varop, 0);
9258 count -= first_count;
9259 if (count < 0)
9260 {
9261 count = -count;
9262 code = ASHIFT;
9263 }
9264
9265 continue;
9266 }
9267
9268 /* There are some cases we can't do. If CODE is ASHIFTRT,
9269 we can only do this if FIRST_CODE is also ASHIFTRT.
9270
9271 We can't do the case when CODE is ROTATE and FIRST_CODE is
9272 ASHIFTRT.
9273
9274 If the mode of this shift is not the mode of the outer shift,
9275 we can't do this if either shift is a right shift or ROTATE.
9276
9277 Finally, we can't do any of these if the mode is too wide
9278 unless the codes are the same.
9279
9280 Handle the case where the shift codes are the same
9281 first. */
9282
9283 if (code == first_code)
9284 {
9285 if (GET_MODE (varop) != result_mode
9286 && (code == ASHIFTRT || code == LSHIFTRT
9287 || code == ROTATE))
9288 break;
9289
9290 count += first_count;
9291 varop = XEXP (varop, 0);
9292 continue;
9293 }
9294
9295 if (code == ASHIFTRT
9296 || (code == ROTATE && first_code == ASHIFTRT)
9297 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9298 || (GET_MODE (varop) != result_mode
9299 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9300 || first_code == ROTATE
9301 || code == ROTATE)))
9302 break;
9303
9304 /* To compute the mask to apply after the shift, shift the
9305 nonzero bits of the inner shift the same way the
9306 outer shift will. */
9307
9308 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9309
9310 mask_rtx
9311 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9312 GEN_INT (count));
9313
9314 /* Give up if we can't compute an outer operation to use. */
9315 if (mask_rtx == 0
9316 || GET_CODE (mask_rtx) != CONST_INT
9317 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9318 INTVAL (mask_rtx),
9319 result_mode, &complement_p))
9320 break;
9321
9322 /* If the shifts are in the same direction, we add the
9323 counts. Otherwise, we subtract them. */
9324 if ((code == ASHIFTRT || code == LSHIFTRT)
9325 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9326 count += first_count;
9327 else
9328 count -= first_count;
9329
9330 /* If COUNT is positive, the new shift is usually CODE,
9331 except for the two exceptions below, in which case it is
9332 FIRST_CODE. If the count is negative, FIRST_CODE should
9333 always be used */
9334 if (count > 0
9335 && ((first_code == ROTATE && code == ASHIFT)
9336 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9337 code = first_code;
9338 else if (count < 0)
9339 code = first_code, count = -count;
9340
9341 varop = XEXP (varop, 0);
9342 continue;
9343 }
9344
9345 /* If we have (A << B << C) for any shift, we can convert this to
9346 (A << C << B). This wins if A is a constant. Only try this if
9347 B is not a constant. */
9348
9349 else if (GET_CODE (varop) == code
9350 && GET_CODE (XEXP (varop, 0)) == CONST_INT
9351 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
9352 {
9353 rtx new_rtx = simplify_const_binary_operation (code, mode,
9354 XEXP (varop, 0),
9355 GEN_INT (count));
9356 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
9357 count = 0;
9358 continue;
9359 }
9360 break;
9361
9362 case NOT:
9363 if (VECTOR_MODE_P (mode))
9364 break;
9365
9366 /* Make this fit the case below. */
9367 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9368 GEN_INT (GET_MODE_MASK (mode)));
9369 continue;
9370
9371 case IOR:
9372 case AND:
9373 case XOR:
9374 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9375 with C the size of VAROP - 1 and the shift is logical if
9376 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9377 we have an (le X 0) operation. If we have an arithmetic shift
9378 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9379 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9380
9381 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9382 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9383 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9384 && (code == LSHIFTRT || code == ASHIFTRT)
9385 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9386 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9387 {
9388 count = 0;
9389 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9390 const0_rtx);
9391
9392 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9393 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9394
9395 continue;
9396 }
9397
9398 /* If we have (shift (logical)), move the logical to the outside
9399 to allow it to possibly combine with another logical and the
9400 shift to combine with another shift. This also canonicalizes to
9401 what a ZERO_EXTRACT looks like. Also, some machines have
9402 (and (shift)) insns. */
9403
9404 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9405 /* We can't do this if we have (ashiftrt (xor)) and the
9406 constant has its sign bit set in shift_mode. */
9407 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9408 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9409 shift_mode))
9410 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9411 XEXP (varop, 1),
9412 GEN_INT (count))) != 0
9413 && GET_CODE (new_rtx) == CONST_INT
9414 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9415 INTVAL (new_rtx), result_mode, &complement_p))
9416 {
9417 varop = XEXP (varop, 0);
9418 continue;
9419 }
9420
9421 /* If we can't do that, try to simplify the shift in each arm of the
9422 logical expression, make a new logical expression, and apply
9423 the inverse distributive law. This also can't be done
9424 for some (ashiftrt (xor)). */
9425 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9426 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9427 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9428 shift_mode)))
9429 {
9430 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9431 XEXP (varop, 0), count);
9432 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9433 XEXP (varop, 1), count);
9434
9435 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9436 lhs, rhs);
9437 varop = apply_distributive_law (varop);
9438
9439 count = 0;
9440 continue;
9441 }
9442 break;
9443
9444 case EQ:
9445 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9446 says that the sign bit can be tested, FOO has mode MODE, C is
9447 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9448 that may be nonzero. */
9449 if (code == LSHIFTRT
9450 && XEXP (varop, 1) == const0_rtx
9451 && GET_MODE (XEXP (varop, 0)) == result_mode
9452 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9453 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9454 && STORE_FLAG_VALUE == -1
9455 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9456 && merge_outer_ops (&outer_op, &outer_const, XOR,
9457 (HOST_WIDE_INT) 1, result_mode,
9458 &complement_p))
9459 {
9460 varop = XEXP (varop, 0);
9461 count = 0;
9462 continue;
9463 }
9464 break;
9465
9466 case NEG:
9467 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9468 than the number of bits in the mode is equivalent to A. */
9469 if (code == LSHIFTRT
9470 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9471 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9472 {
9473 varop = XEXP (varop, 0);
9474 count = 0;
9475 continue;
9476 }
9477
9478 /* NEG commutes with ASHIFT since it is multiplication. Move the
9479 NEG outside to allow shifts to combine. */
9480 if (code == ASHIFT
9481 && merge_outer_ops (&outer_op, &outer_const, NEG,
9482 (HOST_WIDE_INT) 0, result_mode,
9483 &complement_p))
9484 {
9485 varop = XEXP (varop, 0);
9486 continue;
9487 }
9488 break;
9489
9490 case PLUS:
9491 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9492 is one less than the number of bits in the mode is
9493 equivalent to (xor A 1). */
9494 if (code == LSHIFTRT
9495 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9496 && XEXP (varop, 1) == constm1_rtx
9497 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9498 && merge_outer_ops (&outer_op, &outer_const, XOR,
9499 (HOST_WIDE_INT) 1, result_mode,
9500 &complement_p))
9501 {
9502 count = 0;
9503 varop = XEXP (varop, 0);
9504 continue;
9505 }
9506
9507 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9508 that might be nonzero in BAR are those being shifted out and those
9509 bits are known zero in FOO, we can replace the PLUS with FOO.
9510 Similarly in the other operand order. This code occurs when
9511 we are computing the size of a variable-size array. */
9512
9513 if ((code == ASHIFTRT || code == LSHIFTRT)
9514 && count < HOST_BITS_PER_WIDE_INT
9515 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9516 && (nonzero_bits (XEXP (varop, 1), result_mode)
9517 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9518 {
9519 varop = XEXP (varop, 0);
9520 continue;
9521 }
9522 else if ((code == ASHIFTRT || code == LSHIFTRT)
9523 && count < HOST_BITS_PER_WIDE_INT
9524 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9525 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9526 >> count)
9527 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9528 & nonzero_bits (XEXP (varop, 1),
9529 result_mode)))
9530 {
9531 varop = XEXP (varop, 1);
9532 continue;
9533 }
9534
9535 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9536 if (code == ASHIFT
9537 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9538 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
9539 XEXP (varop, 1),
9540 GEN_INT (count))) != 0
9541 && GET_CODE (new_rtx) == CONST_INT
9542 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9543 INTVAL (new_rtx), result_mode, &complement_p))
9544 {
9545 varop = XEXP (varop, 0);
9546 continue;
9547 }
9548
9549 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9550 signbit', and attempt to change the PLUS to an XOR and move it to
9551 the outer operation as is done above in the AND/IOR/XOR case
9552 leg for shift(logical). See details in logical handling above
9553 for reasoning in doing so. */
9554 if (code == LSHIFTRT
9555 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9556 && mode_signbit_p (result_mode, XEXP (varop, 1))
9557 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9558 XEXP (varop, 1),
9559 GEN_INT (count))) != 0
9560 && GET_CODE (new_rtx) == CONST_INT
9561 && merge_outer_ops (&outer_op, &outer_const, XOR,
9562 INTVAL (new_rtx), result_mode, &complement_p))
9563 {
9564 varop = XEXP (varop, 0);
9565 continue;
9566 }
9567
9568 break;
9569
9570 case MINUS:
9571 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9572 with C the size of VAROP - 1 and the shift is logical if
9573 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9574 we have a (gt X 0) operation. If the shift is arithmetic with
9575 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9576 we have a (neg (gt X 0)) operation. */
9577
9578 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9579 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9580 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9581 && (code == LSHIFTRT || code == ASHIFTRT)
9582 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9583 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9584 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9585 {
9586 count = 0;
9587 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9588 const0_rtx);
9589
9590 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9591 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9592
9593 continue;
9594 }
9595 break;
9596
9597 case TRUNCATE:
9598 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9599 if the truncate does not affect the value. */
9600 if (code == LSHIFTRT
9601 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9602 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9603 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9604 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9605 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9606 {
9607 rtx varop_inner = XEXP (varop, 0);
9608
9609 varop_inner
9610 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9611 XEXP (varop_inner, 0),
9612 GEN_INT
9613 (count + INTVAL (XEXP (varop_inner, 1))));
9614 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9615 count = 0;
9616 continue;
9617 }
9618 break;
9619
9620 default:
9621 break;
9622 }
9623
9624 break;
9625 }
9626
9627 /* We need to determine what mode to do the shift in. If the shift is
9628 a right shift or ROTATE, we must always do it in the mode it was
9629 originally done in. Otherwise, we can do it in MODE, the widest mode
9630 encountered. The code we care about is that of the shift that will
9631 actually be done, not the shift that was originally requested. */
9632 shift_mode
9633 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9634 ? result_mode : mode);
9635
9636 /* We have now finished analyzing the shift. The result should be
9637 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9638 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9639 to the result of the shift. OUTER_CONST is the relevant constant,
9640 but we must turn off all bits turned off in the shift. */
9641
9642 if (outer_op == UNKNOWN
9643 && orig_code == code && orig_count == count
9644 && varop == orig_varop
9645 && shift_mode == GET_MODE (varop))
9646 return NULL_RTX;
9647
9648 /* Make a SUBREG if necessary. If we can't make it, fail. */
9649 varop = gen_lowpart (shift_mode, varop);
9650 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9651 return NULL_RTX;
9652
9653 /* If we have an outer operation and we just made a shift, it is
9654 possible that we could have simplified the shift were it not
9655 for the outer operation. So try to do the simplification
9656 recursively. */
9657
9658 if (outer_op != UNKNOWN)
9659 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9660 else
9661 x = NULL_RTX;
9662
9663 if (x == NULL_RTX)
9664 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9665
9666 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9667 turn off all the bits that the shift would have turned off. */
9668 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9669 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9670 GET_MODE_MASK (result_mode) >> orig_count);
9671
9672 /* Do the remainder of the processing in RESULT_MODE. */
9673 x = gen_lowpart_or_truncate (result_mode, x);
9674
9675 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9676 operation. */
9677 if (complement_p)
9678 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9679
9680 if (outer_op != UNKNOWN)
9681 {
9682 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9683 outer_const = trunc_int_for_mode (outer_const, result_mode);
9684
9685 if (outer_op == AND)
9686 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9687 else if (outer_op == SET)
9688 {
9689 /* This means that we have determined that the result is
9690 equivalent to a constant. This should be rare. */
9691 if (!side_effects_p (x))
9692 x = GEN_INT (outer_const);
9693 }
9694 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9695 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9696 else
9697 x = simplify_gen_binary (outer_op, result_mode, x,
9698 GEN_INT (outer_const));
9699 }
9700
9701 return x;
9702 }
9703
9704 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9705 The result of the shift is RESULT_MODE. If we cannot simplify it,
9706 return X or, if it is NULL, synthesize the expression with
9707 simplify_gen_binary. Otherwise, return a simplified value.
9708
9709 The shift is normally computed in the widest mode we find in VAROP, as
9710 long as it isn't a different number of words than RESULT_MODE. Exceptions
9711 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9712
9713 static rtx
9714 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9715 rtx varop, int count)
9716 {
9717 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9718 if (tem)
9719 return tem;
9720
9721 if (!x)
9722 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9723 if (GET_MODE (x) != result_mode)
9724 x = gen_lowpart (result_mode, x);
9725 return x;
9726 }
9727
9728 \f
9729 /* Like recog, but we receive the address of a pointer to a new pattern.
9730 We try to match the rtx that the pointer points to.
9731 If that fails, we may try to modify or replace the pattern,
9732 storing the replacement into the same pointer object.
9733
9734 Modifications include deletion or addition of CLOBBERs.
9735
9736 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9737 the CLOBBERs are placed.
9738
9739 The value is the final insn code from the pattern ultimately matched,
9740 or -1. */
9741
9742 static int
9743 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9744 {
9745 rtx pat = *pnewpat;
9746 int insn_code_number;
9747 int num_clobbers_to_add = 0;
9748 int i;
9749 rtx notes = 0;
9750 rtx old_notes, old_pat;
9751
9752 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9753 we use to indicate that something didn't match. If we find such a
9754 thing, force rejection. */
9755 if (GET_CODE (pat) == PARALLEL)
9756 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9757 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9758 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9759 return -1;
9760
9761 old_pat = PATTERN (insn);
9762 old_notes = REG_NOTES (insn);
9763 PATTERN (insn) = pat;
9764 REG_NOTES (insn) = 0;
9765
9766 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9767 if (dump_file && (dump_flags & TDF_DETAILS))
9768 {
9769 if (insn_code_number < 0)
9770 fputs ("Failed to match this instruction:\n", dump_file);
9771 else
9772 fputs ("Successfully matched this instruction:\n", dump_file);
9773 print_rtl_single (dump_file, pat);
9774 }
9775
9776 /* If it isn't, there is the possibility that we previously had an insn
9777 that clobbered some register as a side effect, but the combined
9778 insn doesn't need to do that. So try once more without the clobbers
9779 unless this represents an ASM insn. */
9780
9781 if (insn_code_number < 0 && ! check_asm_operands (pat)
9782 && GET_CODE (pat) == PARALLEL)
9783 {
9784 int pos;
9785
9786 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9787 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9788 {
9789 if (i != pos)
9790 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9791 pos++;
9792 }
9793
9794 SUBST_INT (XVECLEN (pat, 0), pos);
9795
9796 if (pos == 1)
9797 pat = XVECEXP (pat, 0, 0);
9798
9799 PATTERN (insn) = pat;
9800 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9801 if (dump_file && (dump_flags & TDF_DETAILS))
9802 {
9803 if (insn_code_number < 0)
9804 fputs ("Failed to match this instruction:\n", dump_file);
9805 else
9806 fputs ("Successfully matched this instruction:\n", dump_file);
9807 print_rtl_single (dump_file, pat);
9808 }
9809 }
9810 PATTERN (insn) = old_pat;
9811 REG_NOTES (insn) = old_notes;
9812
9813 /* Recognize all noop sets, these will be killed by followup pass. */
9814 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9815 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9816
9817 /* If we had any clobbers to add, make a new pattern than contains
9818 them. Then check to make sure that all of them are dead. */
9819 if (num_clobbers_to_add)
9820 {
9821 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9822 rtvec_alloc (GET_CODE (pat) == PARALLEL
9823 ? (XVECLEN (pat, 0)
9824 + num_clobbers_to_add)
9825 : num_clobbers_to_add + 1));
9826
9827 if (GET_CODE (pat) == PARALLEL)
9828 for (i = 0; i < XVECLEN (pat, 0); i++)
9829 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9830 else
9831 XVECEXP (newpat, 0, 0) = pat;
9832
9833 add_clobbers (newpat, insn_code_number);
9834
9835 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9836 i < XVECLEN (newpat, 0); i++)
9837 {
9838 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9839 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9840 return -1;
9841 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
9842 {
9843 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
9844 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9845 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9846 }
9847 }
9848 pat = newpat;
9849 }
9850
9851 *pnewpat = pat;
9852 *pnotes = notes;
9853
9854 return insn_code_number;
9855 }
9856 \f
9857 /* Like gen_lowpart_general but for use by combine. In combine it
9858 is not possible to create any new pseudoregs. However, it is
9859 safe to create invalid memory addresses, because combine will
9860 try to recognize them and all they will do is make the combine
9861 attempt fail.
9862
9863 If for some reason this cannot do its job, an rtx
9864 (clobber (const_int 0)) is returned.
9865 An insn containing that will not be recognized. */
9866
9867 static rtx
9868 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9869 {
9870 enum machine_mode imode = GET_MODE (x);
9871 unsigned int osize = GET_MODE_SIZE (omode);
9872 unsigned int isize = GET_MODE_SIZE (imode);
9873 rtx result;
9874
9875 if (omode == imode)
9876 return x;
9877
9878 /* Return identity if this is a CONST or symbolic reference. */
9879 if (omode == Pmode
9880 && (GET_CODE (x) == CONST
9881 || GET_CODE (x) == SYMBOL_REF
9882 || GET_CODE (x) == LABEL_REF))
9883 return x;
9884
9885 /* We can only support MODE being wider than a word if X is a
9886 constant integer or has a mode the same size. */
9887 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9888 && ! ((imode == VOIDmode
9889 && (GET_CODE (x) == CONST_INT
9890 || GET_CODE (x) == CONST_DOUBLE))
9891 || isize == osize))
9892 goto fail;
9893
9894 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9895 won't know what to do. So we will strip off the SUBREG here and
9896 process normally. */
9897 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9898 {
9899 x = SUBREG_REG (x);
9900
9901 /* For use in case we fall down into the address adjustments
9902 further below, we need to adjust the known mode and size of
9903 x; imode and isize, since we just adjusted x. */
9904 imode = GET_MODE (x);
9905
9906 if (imode == omode)
9907 return x;
9908
9909 isize = GET_MODE_SIZE (imode);
9910 }
9911
9912 result = gen_lowpart_common (omode, x);
9913
9914 if (result)
9915 return result;
9916
9917 if (MEM_P (x))
9918 {
9919 int offset = 0;
9920
9921 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9922 address. */
9923 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9924 goto fail;
9925
9926 /* If we want to refer to something bigger than the original memref,
9927 generate a paradoxical subreg instead. That will force a reload
9928 of the original memref X. */
9929 if (isize < osize)
9930 return gen_rtx_SUBREG (omode, x, 0);
9931
9932 if (WORDS_BIG_ENDIAN)
9933 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9934
9935 /* Adjust the address so that the address-after-the-data is
9936 unchanged. */
9937 if (BYTES_BIG_ENDIAN)
9938 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9939
9940 return adjust_address_nv (x, omode, offset);
9941 }
9942
9943 /* If X is a comparison operator, rewrite it in a new mode. This
9944 probably won't match, but may allow further simplifications. */
9945 else if (COMPARISON_P (x))
9946 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9947
9948 /* If we couldn't simplify X any other way, just enclose it in a
9949 SUBREG. Normally, this SUBREG won't match, but some patterns may
9950 include an explicit SUBREG or we may simplify it further in combine. */
9951 else
9952 {
9953 int offset = 0;
9954 rtx res;
9955
9956 offset = subreg_lowpart_offset (omode, imode);
9957 if (imode == VOIDmode)
9958 {
9959 imode = int_mode_for_mode (omode);
9960 x = gen_lowpart_common (imode, x);
9961 if (x == NULL)
9962 goto fail;
9963 }
9964 res = simplify_gen_subreg (omode, x, imode, offset);
9965 if (res)
9966 return res;
9967 }
9968
9969 fail:
9970 return gen_rtx_CLOBBER (imode, const0_rtx);
9971 }
9972 \f
9973 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9974 comparison code that will be tested.
9975
9976 The result is a possibly different comparison code to use. *POP0 and
9977 *POP1 may be updated.
9978
9979 It is possible that we might detect that a comparison is either always
9980 true or always false. However, we do not perform general constant
9981 folding in combine, so this knowledge isn't useful. Such tautologies
9982 should have been detected earlier. Hence we ignore all such cases. */
9983
9984 static enum rtx_code
9985 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9986 {
9987 rtx op0 = *pop0;
9988 rtx op1 = *pop1;
9989 rtx tem, tem1;
9990 int i;
9991 enum machine_mode mode, tmode;
9992
9993 /* Try a few ways of applying the same transformation to both operands. */
9994 while (1)
9995 {
9996 #ifndef WORD_REGISTER_OPERATIONS
9997 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9998 so check specially. */
9999 if (code != GTU && code != GEU && code != LTU && code != LEU
10000 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10001 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10002 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10003 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10004 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10005 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10006 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10007 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10008 && XEXP (op0, 1) == XEXP (op1, 1)
10009 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10010 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10011 && (INTVAL (XEXP (op0, 1))
10012 == (GET_MODE_BITSIZE (GET_MODE (op0))
10013 - (GET_MODE_BITSIZE
10014 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10015 {
10016 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10017 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10018 }
10019 #endif
10020
10021 /* If both operands are the same constant shift, see if we can ignore the
10022 shift. We can if the shift is a rotate or if the bits shifted out of
10023 this shift are known to be zero for both inputs and if the type of
10024 comparison is compatible with the shift. */
10025 if (GET_CODE (op0) == GET_CODE (op1)
10026 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10027 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10028 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10029 && (code != GT && code != LT && code != GE && code != LE))
10030 || (GET_CODE (op0) == ASHIFTRT
10031 && (code != GTU && code != LTU
10032 && code != GEU && code != LEU)))
10033 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10034 && INTVAL (XEXP (op0, 1)) >= 0
10035 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10036 && XEXP (op0, 1) == XEXP (op1, 1))
10037 {
10038 enum machine_mode mode = GET_MODE (op0);
10039 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10040 int shift_count = INTVAL (XEXP (op0, 1));
10041
10042 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10043 mask &= (mask >> shift_count) << shift_count;
10044 else if (GET_CODE (op0) == ASHIFT)
10045 mask = (mask & (mask << shift_count)) >> shift_count;
10046
10047 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10048 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10049 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10050 else
10051 break;
10052 }
10053
10054 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10055 SUBREGs are of the same mode, and, in both cases, the AND would
10056 be redundant if the comparison was done in the narrower mode,
10057 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10058 and the operand's possibly nonzero bits are 0xffffff01; in that case
10059 if we only care about QImode, we don't need the AND). This case
10060 occurs if the output mode of an scc insn is not SImode and
10061 STORE_FLAG_VALUE == 1 (e.g., the 386).
10062
10063 Similarly, check for a case where the AND's are ZERO_EXTEND
10064 operations from some narrower mode even though a SUBREG is not
10065 present. */
10066
10067 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10068 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10069 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10070 {
10071 rtx inner_op0 = XEXP (op0, 0);
10072 rtx inner_op1 = XEXP (op1, 0);
10073 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10074 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10075 int changed = 0;
10076
10077 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10078 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10079 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10080 && (GET_MODE (SUBREG_REG (inner_op0))
10081 == GET_MODE (SUBREG_REG (inner_op1)))
10082 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10083 <= HOST_BITS_PER_WIDE_INT)
10084 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10085 GET_MODE (SUBREG_REG (inner_op0)))))
10086 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10087 GET_MODE (SUBREG_REG (inner_op1))))))
10088 {
10089 op0 = SUBREG_REG (inner_op0);
10090 op1 = SUBREG_REG (inner_op1);
10091
10092 /* The resulting comparison is always unsigned since we masked
10093 off the original sign bit. */
10094 code = unsigned_condition (code);
10095
10096 changed = 1;
10097 }
10098
10099 else if (c0 == c1)
10100 for (tmode = GET_CLASS_NARROWEST_MODE
10101 (GET_MODE_CLASS (GET_MODE (op0)));
10102 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10103 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10104 {
10105 op0 = gen_lowpart (tmode, inner_op0);
10106 op1 = gen_lowpart (tmode, inner_op1);
10107 code = unsigned_condition (code);
10108 changed = 1;
10109 break;
10110 }
10111
10112 if (! changed)
10113 break;
10114 }
10115
10116 /* If both operands are NOT, we can strip off the outer operation
10117 and adjust the comparison code for swapped operands; similarly for
10118 NEG, except that this must be an equality comparison. */
10119 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10120 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10121 && (code == EQ || code == NE)))
10122 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10123
10124 else
10125 break;
10126 }
10127
10128 /* If the first operand is a constant, swap the operands and adjust the
10129 comparison code appropriately, but don't do this if the second operand
10130 is already a constant integer. */
10131 if (swap_commutative_operands_p (op0, op1))
10132 {
10133 tem = op0, op0 = op1, op1 = tem;
10134 code = swap_condition (code);
10135 }
10136
10137 /* We now enter a loop during which we will try to simplify the comparison.
10138 For the most part, we only are concerned with comparisons with zero,
10139 but some things may really be comparisons with zero but not start
10140 out looking that way. */
10141
10142 while (GET_CODE (op1) == CONST_INT)
10143 {
10144 enum machine_mode mode = GET_MODE (op0);
10145 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10146 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10147 int equality_comparison_p;
10148 int sign_bit_comparison_p;
10149 int unsigned_comparison_p;
10150 HOST_WIDE_INT const_op;
10151
10152 /* We only want to handle integral modes. This catches VOIDmode,
10153 CCmode, and the floating-point modes. An exception is that we
10154 can handle VOIDmode if OP0 is a COMPARE or a comparison
10155 operation. */
10156
10157 if (GET_MODE_CLASS (mode) != MODE_INT
10158 && ! (mode == VOIDmode
10159 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10160 break;
10161
10162 /* Get the constant we are comparing against and turn off all bits
10163 not on in our mode. */
10164 const_op = INTVAL (op1);
10165 if (mode != VOIDmode)
10166 const_op = trunc_int_for_mode (const_op, mode);
10167 op1 = GEN_INT (const_op);
10168
10169 /* If we are comparing against a constant power of two and the value
10170 being compared can only have that single bit nonzero (e.g., it was
10171 `and'ed with that bit), we can replace this with a comparison
10172 with zero. */
10173 if (const_op
10174 && (code == EQ || code == NE || code == GE || code == GEU
10175 || code == LT || code == LTU)
10176 && mode_width <= HOST_BITS_PER_WIDE_INT
10177 && exact_log2 (const_op) >= 0
10178 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10179 {
10180 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10181 op1 = const0_rtx, const_op = 0;
10182 }
10183
10184 /* Similarly, if we are comparing a value known to be either -1 or
10185 0 with -1, change it to the opposite comparison against zero. */
10186
10187 if (const_op == -1
10188 && (code == EQ || code == NE || code == GT || code == LE
10189 || code == GEU || code == LTU)
10190 && num_sign_bit_copies (op0, mode) == mode_width)
10191 {
10192 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10193 op1 = const0_rtx, const_op = 0;
10194 }
10195
10196 /* Do some canonicalizations based on the comparison code. We prefer
10197 comparisons against zero and then prefer equality comparisons.
10198 If we can reduce the size of a constant, we will do that too. */
10199
10200 switch (code)
10201 {
10202 case LT:
10203 /* < C is equivalent to <= (C - 1) */
10204 if (const_op > 0)
10205 {
10206 const_op -= 1;
10207 op1 = GEN_INT (const_op);
10208 code = LE;
10209 /* ... fall through to LE case below. */
10210 }
10211 else
10212 break;
10213
10214 case LE:
10215 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10216 if (const_op < 0)
10217 {
10218 const_op += 1;
10219 op1 = GEN_INT (const_op);
10220 code = LT;
10221 }
10222
10223 /* If we are doing a <= 0 comparison on a value known to have
10224 a zero sign bit, we can replace this with == 0. */
10225 else if (const_op == 0
10226 && mode_width <= HOST_BITS_PER_WIDE_INT
10227 && (nonzero_bits (op0, mode)
10228 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10229 code = EQ;
10230 break;
10231
10232 case GE:
10233 /* >= C is equivalent to > (C - 1). */
10234 if (const_op > 0)
10235 {
10236 const_op -= 1;
10237 op1 = GEN_INT (const_op);
10238 code = GT;
10239 /* ... fall through to GT below. */
10240 }
10241 else
10242 break;
10243
10244 case GT:
10245 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10246 if (const_op < 0)
10247 {
10248 const_op += 1;
10249 op1 = GEN_INT (const_op);
10250 code = GE;
10251 }
10252
10253 /* If we are doing a > 0 comparison on a value known to have
10254 a zero sign bit, we can replace this with != 0. */
10255 else if (const_op == 0
10256 && mode_width <= HOST_BITS_PER_WIDE_INT
10257 && (nonzero_bits (op0, mode)
10258 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10259 code = NE;
10260 break;
10261
10262 case LTU:
10263 /* < C is equivalent to <= (C - 1). */
10264 if (const_op > 0)
10265 {
10266 const_op -= 1;
10267 op1 = GEN_INT (const_op);
10268 code = LEU;
10269 /* ... fall through ... */
10270 }
10271
10272 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10273 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10274 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10275 {
10276 const_op = 0, op1 = const0_rtx;
10277 code = GE;
10278 break;
10279 }
10280 else
10281 break;
10282
10283 case LEU:
10284 /* unsigned <= 0 is equivalent to == 0 */
10285 if (const_op == 0)
10286 code = EQ;
10287
10288 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10289 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10290 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10291 {
10292 const_op = 0, op1 = const0_rtx;
10293 code = GE;
10294 }
10295 break;
10296
10297 case GEU:
10298 /* >= C is equivalent to > (C - 1). */
10299 if (const_op > 1)
10300 {
10301 const_op -= 1;
10302 op1 = GEN_INT (const_op);
10303 code = GTU;
10304 /* ... fall through ... */
10305 }
10306
10307 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10308 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10309 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10310 {
10311 const_op = 0, op1 = const0_rtx;
10312 code = LT;
10313 break;
10314 }
10315 else
10316 break;
10317
10318 case GTU:
10319 /* unsigned > 0 is equivalent to != 0 */
10320 if (const_op == 0)
10321 code = NE;
10322
10323 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10324 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10325 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10326 {
10327 const_op = 0, op1 = const0_rtx;
10328 code = LT;
10329 }
10330 break;
10331
10332 default:
10333 break;
10334 }
10335
10336 /* Compute some predicates to simplify code below. */
10337
10338 equality_comparison_p = (code == EQ || code == NE);
10339 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10340 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10341 || code == GEU);
10342
10343 /* If this is a sign bit comparison and we can do arithmetic in
10344 MODE, say that we will only be needing the sign bit of OP0. */
10345 if (sign_bit_comparison_p
10346 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10347 op0 = force_to_mode (op0, mode,
10348 ((HOST_WIDE_INT) 1
10349 << (GET_MODE_BITSIZE (mode) - 1)),
10350 0);
10351
10352 /* Now try cases based on the opcode of OP0. If none of the cases
10353 does a "continue", we exit this loop immediately after the
10354 switch. */
10355
10356 switch (GET_CODE (op0))
10357 {
10358 case ZERO_EXTRACT:
10359 /* If we are extracting a single bit from a variable position in
10360 a constant that has only a single bit set and are comparing it
10361 with zero, we can convert this into an equality comparison
10362 between the position and the location of the single bit. */
10363 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10364 have already reduced the shift count modulo the word size. */
10365 if (!SHIFT_COUNT_TRUNCATED
10366 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10367 && XEXP (op0, 1) == const1_rtx
10368 && equality_comparison_p && const_op == 0
10369 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10370 {
10371 if (BITS_BIG_ENDIAN)
10372 {
10373 enum machine_mode new_mode
10374 = mode_for_extraction (EP_extzv, 1);
10375 if (new_mode == MAX_MACHINE_MODE)
10376 i = BITS_PER_WORD - 1 - i;
10377 else
10378 {
10379 mode = new_mode;
10380 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10381 }
10382 }
10383
10384 op0 = XEXP (op0, 2);
10385 op1 = GEN_INT (i);
10386 const_op = i;
10387
10388 /* Result is nonzero iff shift count is equal to I. */
10389 code = reverse_condition (code);
10390 continue;
10391 }
10392
10393 /* ... fall through ... */
10394
10395 case SIGN_EXTRACT:
10396 tem = expand_compound_operation (op0);
10397 if (tem != op0)
10398 {
10399 op0 = tem;
10400 continue;
10401 }
10402 break;
10403
10404 case NOT:
10405 /* If testing for equality, we can take the NOT of the constant. */
10406 if (equality_comparison_p
10407 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10408 {
10409 op0 = XEXP (op0, 0);
10410 op1 = tem;
10411 continue;
10412 }
10413
10414 /* If just looking at the sign bit, reverse the sense of the
10415 comparison. */
10416 if (sign_bit_comparison_p)
10417 {
10418 op0 = XEXP (op0, 0);
10419 code = (code == GE ? LT : GE);
10420 continue;
10421 }
10422 break;
10423
10424 case NEG:
10425 /* If testing for equality, we can take the NEG of the constant. */
10426 if (equality_comparison_p
10427 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10428 {
10429 op0 = XEXP (op0, 0);
10430 op1 = tem;
10431 continue;
10432 }
10433
10434 /* The remaining cases only apply to comparisons with zero. */
10435 if (const_op != 0)
10436 break;
10437
10438 /* When X is ABS or is known positive,
10439 (neg X) is < 0 if and only if X != 0. */
10440
10441 if (sign_bit_comparison_p
10442 && (GET_CODE (XEXP (op0, 0)) == ABS
10443 || (mode_width <= HOST_BITS_PER_WIDE_INT
10444 && (nonzero_bits (XEXP (op0, 0), mode)
10445 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10446 {
10447 op0 = XEXP (op0, 0);
10448 code = (code == LT ? NE : EQ);
10449 continue;
10450 }
10451
10452 /* If we have NEG of something whose two high-order bits are the
10453 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10454 if (num_sign_bit_copies (op0, mode) >= 2)
10455 {
10456 op0 = XEXP (op0, 0);
10457 code = swap_condition (code);
10458 continue;
10459 }
10460 break;
10461
10462 case ROTATE:
10463 /* If we are testing equality and our count is a constant, we
10464 can perform the inverse operation on our RHS. */
10465 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10466 && (tem = simplify_binary_operation (ROTATERT, mode,
10467 op1, XEXP (op0, 1))) != 0)
10468 {
10469 op0 = XEXP (op0, 0);
10470 op1 = tem;
10471 continue;
10472 }
10473
10474 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10475 a particular bit. Convert it to an AND of a constant of that
10476 bit. This will be converted into a ZERO_EXTRACT. */
10477 if (const_op == 0 && sign_bit_comparison_p
10478 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10479 && mode_width <= HOST_BITS_PER_WIDE_INT)
10480 {
10481 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10482 ((HOST_WIDE_INT) 1
10483 << (mode_width - 1
10484 - INTVAL (XEXP (op0, 1)))));
10485 code = (code == LT ? NE : EQ);
10486 continue;
10487 }
10488
10489 /* Fall through. */
10490
10491 case ABS:
10492 /* ABS is ignorable inside an equality comparison with zero. */
10493 if (const_op == 0 && equality_comparison_p)
10494 {
10495 op0 = XEXP (op0, 0);
10496 continue;
10497 }
10498 break;
10499
10500 case SIGN_EXTEND:
10501 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10502 (compare FOO CONST) if CONST fits in FOO's mode and we
10503 are either testing inequality or have an unsigned
10504 comparison with ZERO_EXTEND or a signed comparison with
10505 SIGN_EXTEND. But don't do it if we don't have a compare
10506 insn of the given mode, since we'd have to revert it
10507 later on, and then we wouldn't know whether to sign- or
10508 zero-extend. */
10509 mode = GET_MODE (XEXP (op0, 0));
10510 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10511 && ! unsigned_comparison_p
10512 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10513 && ((unsigned HOST_WIDE_INT) const_op
10514 < (((unsigned HOST_WIDE_INT) 1
10515 << (GET_MODE_BITSIZE (mode) - 1))))
10516 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10517 {
10518 op0 = XEXP (op0, 0);
10519 continue;
10520 }
10521 break;
10522
10523 case SUBREG:
10524 /* Check for the case where we are comparing A - C1 with C2, that is
10525
10526 (subreg:MODE (plus (A) (-C1))) op (C2)
10527
10528 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10529 comparison in the wider mode. One of the following two conditions
10530 must be true in order for this to be valid:
10531
10532 1. The mode extension results in the same bit pattern being added
10533 on both sides and the comparison is equality or unsigned. As
10534 C2 has been truncated to fit in MODE, the pattern can only be
10535 all 0s or all 1s.
10536
10537 2. The mode extension results in the sign bit being copied on
10538 each side.
10539
10540 The difficulty here is that we have predicates for A but not for
10541 (A - C1) so we need to check that C1 is within proper bounds so
10542 as to perturbate A as little as possible. */
10543
10544 if (mode_width <= HOST_BITS_PER_WIDE_INT
10545 && subreg_lowpart_p (op0)
10546 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10547 && GET_CODE (SUBREG_REG (op0)) == PLUS
10548 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10549 {
10550 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10551 rtx a = XEXP (SUBREG_REG (op0), 0);
10552 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10553
10554 if ((c1 > 0
10555 && (unsigned HOST_WIDE_INT) c1
10556 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10557 && (equality_comparison_p || unsigned_comparison_p)
10558 /* (A - C1) zero-extends if it is positive and sign-extends
10559 if it is negative, C2 both zero- and sign-extends. */
10560 && ((0 == (nonzero_bits (a, inner_mode)
10561 & ~GET_MODE_MASK (mode))
10562 && const_op >= 0)
10563 /* (A - C1) sign-extends if it is positive and 1-extends
10564 if it is negative, C2 both sign- and 1-extends. */
10565 || (num_sign_bit_copies (a, inner_mode)
10566 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10567 - mode_width)
10568 && const_op < 0)))
10569 || ((unsigned HOST_WIDE_INT) c1
10570 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10571 /* (A - C1) always sign-extends, like C2. */
10572 && num_sign_bit_copies (a, inner_mode)
10573 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10574 - (mode_width - 1))))
10575 {
10576 op0 = SUBREG_REG (op0);
10577 continue;
10578 }
10579 }
10580
10581 /* If the inner mode is narrower and we are extracting the low part,
10582 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10583 if (subreg_lowpart_p (op0)
10584 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10585 /* Fall through */ ;
10586 else
10587 break;
10588
10589 /* ... fall through ... */
10590
10591 case ZERO_EXTEND:
10592 mode = GET_MODE (XEXP (op0, 0));
10593 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10594 && (unsigned_comparison_p || equality_comparison_p)
10595 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10596 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10597 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10598 {
10599 op0 = XEXP (op0, 0);
10600 continue;
10601 }
10602 break;
10603
10604 case PLUS:
10605 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10606 this for equality comparisons due to pathological cases involving
10607 overflows. */
10608 if (equality_comparison_p
10609 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10610 op1, XEXP (op0, 1))))
10611 {
10612 op0 = XEXP (op0, 0);
10613 op1 = tem;
10614 continue;
10615 }
10616
10617 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10618 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10619 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10620 {
10621 op0 = XEXP (XEXP (op0, 0), 0);
10622 code = (code == LT ? EQ : NE);
10623 continue;
10624 }
10625 break;
10626
10627 case MINUS:
10628 /* We used to optimize signed comparisons against zero, but that
10629 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10630 arrive here as equality comparisons, or (GEU, LTU) are
10631 optimized away. No need to special-case them. */
10632
10633 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10634 (eq B (minus A C)), whichever simplifies. We can only do
10635 this for equality comparisons due to pathological cases involving
10636 overflows. */
10637 if (equality_comparison_p
10638 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10639 XEXP (op0, 1), op1)))
10640 {
10641 op0 = XEXP (op0, 0);
10642 op1 = tem;
10643 continue;
10644 }
10645
10646 if (equality_comparison_p
10647 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10648 XEXP (op0, 0), op1)))
10649 {
10650 op0 = XEXP (op0, 1);
10651 op1 = tem;
10652 continue;
10653 }
10654
10655 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10656 of bits in X minus 1, is one iff X > 0. */
10657 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10658 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10659 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10660 == mode_width - 1
10661 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10662 {
10663 op0 = XEXP (op0, 1);
10664 code = (code == GE ? LE : GT);
10665 continue;
10666 }
10667 break;
10668
10669 case XOR:
10670 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10671 if C is zero or B is a constant. */
10672 if (equality_comparison_p
10673 && 0 != (tem = simplify_binary_operation (XOR, mode,
10674 XEXP (op0, 1), op1)))
10675 {
10676 op0 = XEXP (op0, 0);
10677 op1 = tem;
10678 continue;
10679 }
10680 break;
10681
10682 case EQ: case NE:
10683 case UNEQ: case LTGT:
10684 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10685 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10686 case UNORDERED: case ORDERED:
10687 /* We can't do anything if OP0 is a condition code value, rather
10688 than an actual data value. */
10689 if (const_op != 0
10690 || CC0_P (XEXP (op0, 0))
10691 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10692 break;
10693
10694 /* Get the two operands being compared. */
10695 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10696 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10697 else
10698 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10699
10700 /* Check for the cases where we simply want the result of the
10701 earlier test or the opposite of that result. */
10702 if (code == NE || code == EQ
10703 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10704 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10705 && (STORE_FLAG_VALUE
10706 & (((HOST_WIDE_INT) 1
10707 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10708 && (code == LT || code == GE)))
10709 {
10710 enum rtx_code new_code;
10711 if (code == LT || code == NE)
10712 new_code = GET_CODE (op0);
10713 else
10714 new_code = reversed_comparison_code (op0, NULL);
10715
10716 if (new_code != UNKNOWN)
10717 {
10718 code = new_code;
10719 op0 = tem;
10720 op1 = tem1;
10721 continue;
10722 }
10723 }
10724 break;
10725
10726 case IOR:
10727 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10728 iff X <= 0. */
10729 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10730 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10731 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10732 {
10733 op0 = XEXP (op0, 1);
10734 code = (code == GE ? GT : LE);
10735 continue;
10736 }
10737 break;
10738
10739 case AND:
10740 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10741 will be converted to a ZERO_EXTRACT later. */
10742 if (const_op == 0 && equality_comparison_p
10743 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10744 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10745 {
10746 op0 = simplify_and_const_int
10747 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10748 XEXP (op0, 1),
10749 XEXP (XEXP (op0, 0), 1)),
10750 (HOST_WIDE_INT) 1);
10751 continue;
10752 }
10753
10754 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10755 zero and X is a comparison and C1 and C2 describe only bits set
10756 in STORE_FLAG_VALUE, we can compare with X. */
10757 if (const_op == 0 && equality_comparison_p
10758 && mode_width <= HOST_BITS_PER_WIDE_INT
10759 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10760 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10761 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10762 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10763 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10764 {
10765 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10766 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10767 if ((~STORE_FLAG_VALUE & mask) == 0
10768 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10769 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10770 && COMPARISON_P (tem))))
10771 {
10772 op0 = XEXP (XEXP (op0, 0), 0);
10773 continue;
10774 }
10775 }
10776
10777 /* If we are doing an equality comparison of an AND of a bit equal
10778 to the sign bit, replace this with a LT or GE comparison of
10779 the underlying value. */
10780 if (equality_comparison_p
10781 && const_op == 0
10782 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10783 && mode_width <= HOST_BITS_PER_WIDE_INT
10784 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10785 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10786 {
10787 op0 = XEXP (op0, 0);
10788 code = (code == EQ ? GE : LT);
10789 continue;
10790 }
10791
10792 /* If this AND operation is really a ZERO_EXTEND from a narrower
10793 mode, the constant fits within that mode, and this is either an
10794 equality or unsigned comparison, try to do this comparison in
10795 the narrower mode.
10796
10797 Note that in:
10798
10799 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10800 -> (ne:DI (reg:SI 4) (const_int 0))
10801
10802 unless TRULY_NOOP_TRUNCATION allows it or the register is
10803 known to hold a value of the required mode the
10804 transformation is invalid. */
10805 if ((equality_comparison_p || unsigned_comparison_p)
10806 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10807 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10808 & GET_MODE_MASK (mode))
10809 + 1)) >= 0
10810 && const_op >> i == 0
10811 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10812 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10813 GET_MODE_BITSIZE (GET_MODE (op0)))
10814 || (REG_P (XEXP (op0, 0))
10815 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10816 {
10817 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10818 continue;
10819 }
10820
10821 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10822 fits in both M1 and M2 and the SUBREG is either paradoxical
10823 or represents the low part, permute the SUBREG and the AND
10824 and try again. */
10825 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10826 {
10827 unsigned HOST_WIDE_INT c1;
10828 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10829 /* Require an integral mode, to avoid creating something like
10830 (AND:SF ...). */
10831 if (SCALAR_INT_MODE_P (tmode)
10832 /* It is unsafe to commute the AND into the SUBREG if the
10833 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10834 not defined. As originally written the upper bits
10835 have a defined value due to the AND operation.
10836 However, if we commute the AND inside the SUBREG then
10837 they no longer have defined values and the meaning of
10838 the code has been changed. */
10839 && (0
10840 #ifdef WORD_REGISTER_OPERATIONS
10841 || (mode_width > GET_MODE_BITSIZE (tmode)
10842 && mode_width <= BITS_PER_WORD)
10843 #endif
10844 || (mode_width <= GET_MODE_BITSIZE (tmode)
10845 && subreg_lowpart_p (XEXP (op0, 0))))
10846 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10847 && mode_width <= HOST_BITS_PER_WIDE_INT
10848 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10849 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10850 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10851 && c1 != mask
10852 && c1 != GET_MODE_MASK (tmode))
10853 {
10854 op0 = simplify_gen_binary (AND, tmode,
10855 SUBREG_REG (XEXP (op0, 0)),
10856 gen_int_mode (c1, tmode));
10857 op0 = gen_lowpart (mode, op0);
10858 continue;
10859 }
10860 }
10861
10862 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10863 if (const_op == 0 && equality_comparison_p
10864 && XEXP (op0, 1) == const1_rtx
10865 && GET_CODE (XEXP (op0, 0)) == NOT)
10866 {
10867 op0 = simplify_and_const_int
10868 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10869 code = (code == NE ? EQ : NE);
10870 continue;
10871 }
10872
10873 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10874 (eq (and (lshiftrt X) 1) 0).
10875 Also handle the case where (not X) is expressed using xor. */
10876 if (const_op == 0 && equality_comparison_p
10877 && XEXP (op0, 1) == const1_rtx
10878 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10879 {
10880 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10881 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10882
10883 if (GET_CODE (shift_op) == NOT
10884 || (GET_CODE (shift_op) == XOR
10885 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10886 && GET_CODE (shift_count) == CONST_INT
10887 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10888 && (INTVAL (XEXP (shift_op, 1))
10889 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10890 {
10891 op0 = simplify_and_const_int
10892 (NULL_RTX, mode,
10893 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10894 (HOST_WIDE_INT) 1);
10895 code = (code == NE ? EQ : NE);
10896 continue;
10897 }
10898 }
10899 break;
10900
10901 case ASHIFT:
10902 /* If we have (compare (ashift FOO N) (const_int C)) and
10903 the high order N bits of FOO (N+1 if an inequality comparison)
10904 are known to be zero, we can do this by comparing FOO with C
10905 shifted right N bits so long as the low-order N bits of C are
10906 zero. */
10907 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10908 && INTVAL (XEXP (op0, 1)) >= 0
10909 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10910 < HOST_BITS_PER_WIDE_INT)
10911 && ((const_op
10912 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10913 && mode_width <= HOST_BITS_PER_WIDE_INT
10914 && (nonzero_bits (XEXP (op0, 0), mode)
10915 & ~(mask >> (INTVAL (XEXP (op0, 1))
10916 + ! equality_comparison_p))) == 0)
10917 {
10918 /* We must perform a logical shift, not an arithmetic one,
10919 as we want the top N bits of C to be zero. */
10920 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10921
10922 temp >>= INTVAL (XEXP (op0, 1));
10923 op1 = gen_int_mode (temp, mode);
10924 op0 = XEXP (op0, 0);
10925 continue;
10926 }
10927
10928 /* If we are doing a sign bit comparison, it means we are testing
10929 a particular bit. Convert it to the appropriate AND. */
10930 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10931 && mode_width <= HOST_BITS_PER_WIDE_INT)
10932 {
10933 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10934 ((HOST_WIDE_INT) 1
10935 << (mode_width - 1
10936 - INTVAL (XEXP (op0, 1)))));
10937 code = (code == LT ? NE : EQ);
10938 continue;
10939 }
10940
10941 /* If this an equality comparison with zero and we are shifting
10942 the low bit to the sign bit, we can convert this to an AND of the
10943 low-order bit. */
10944 if (const_op == 0 && equality_comparison_p
10945 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10946 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10947 == mode_width - 1)
10948 {
10949 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10950 (HOST_WIDE_INT) 1);
10951 continue;
10952 }
10953 break;
10954
10955 case ASHIFTRT:
10956 /* If this is an equality comparison with zero, we can do this
10957 as a logical shift, which might be much simpler. */
10958 if (equality_comparison_p && const_op == 0
10959 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10960 {
10961 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10962 XEXP (op0, 0),
10963 INTVAL (XEXP (op0, 1)));
10964 continue;
10965 }
10966
10967 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10968 do the comparison in a narrower mode. */
10969 if (! unsigned_comparison_p
10970 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10971 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10972 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10973 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10974 MODE_INT, 1)) != BLKmode
10975 && (((unsigned HOST_WIDE_INT) const_op
10976 + (GET_MODE_MASK (tmode) >> 1) + 1)
10977 <= GET_MODE_MASK (tmode)))
10978 {
10979 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10980 continue;
10981 }
10982
10983 /* Likewise if OP0 is a PLUS of a sign extension with a
10984 constant, which is usually represented with the PLUS
10985 between the shifts. */
10986 if (! unsigned_comparison_p
10987 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10988 && GET_CODE (XEXP (op0, 0)) == PLUS
10989 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10990 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10991 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10992 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10993 MODE_INT, 1)) != BLKmode
10994 && (((unsigned HOST_WIDE_INT) const_op
10995 + (GET_MODE_MASK (tmode) >> 1) + 1)
10996 <= GET_MODE_MASK (tmode)))
10997 {
10998 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10999 rtx add_const = XEXP (XEXP (op0, 0), 1);
11000 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11001 add_const, XEXP (op0, 1));
11002
11003 op0 = simplify_gen_binary (PLUS, tmode,
11004 gen_lowpart (tmode, inner),
11005 new_const);
11006 continue;
11007 }
11008
11009 /* ... fall through ... */
11010 case LSHIFTRT:
11011 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11012 the low order N bits of FOO are known to be zero, we can do this
11013 by comparing FOO with C shifted left N bits so long as no
11014 overflow occurs. */
11015 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11016 && INTVAL (XEXP (op0, 1)) >= 0
11017 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11018 && mode_width <= HOST_BITS_PER_WIDE_INT
11019 && (nonzero_bits (XEXP (op0, 0), mode)
11020 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11021 && (((unsigned HOST_WIDE_INT) const_op
11022 + (GET_CODE (op0) != LSHIFTRT
11023 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11024 + 1)
11025 : 0))
11026 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11027 {
11028 /* If the shift was logical, then we must make the condition
11029 unsigned. */
11030 if (GET_CODE (op0) == LSHIFTRT)
11031 code = unsigned_condition (code);
11032
11033 const_op <<= INTVAL (XEXP (op0, 1));
11034 op1 = GEN_INT (const_op);
11035 op0 = XEXP (op0, 0);
11036 continue;
11037 }
11038
11039 /* If we are using this shift to extract just the sign bit, we
11040 can replace this with an LT or GE comparison. */
11041 if (const_op == 0
11042 && (equality_comparison_p || sign_bit_comparison_p)
11043 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11044 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11045 == mode_width - 1)
11046 {
11047 op0 = XEXP (op0, 0);
11048 code = (code == NE || code == GT ? LT : GE);
11049 continue;
11050 }
11051 break;
11052
11053 default:
11054 break;
11055 }
11056
11057 break;
11058 }
11059
11060 /* Now make any compound operations involved in this comparison. Then,
11061 check for an outmost SUBREG on OP0 that is not doing anything or is
11062 paradoxical. The latter transformation must only be performed when
11063 it is known that the "extra" bits will be the same in op0 and op1 or
11064 that they don't matter. There are three cases to consider:
11065
11066 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11067 care bits and we can assume they have any convenient value. So
11068 making the transformation is safe.
11069
11070 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11071 In this case the upper bits of op0 are undefined. We should not make
11072 the simplification in that case as we do not know the contents of
11073 those bits.
11074
11075 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11076 UNKNOWN. In that case we know those bits are zeros or ones. We must
11077 also be sure that they are the same as the upper bits of op1.
11078
11079 We can never remove a SUBREG for a non-equality comparison because
11080 the sign bit is in a different place in the underlying object. */
11081
11082 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11083 op1 = make_compound_operation (op1, SET);
11084
11085 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11086 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11087 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11088 && (code == NE || code == EQ))
11089 {
11090 if (GET_MODE_SIZE (GET_MODE (op0))
11091 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11092 {
11093 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11094 implemented. */
11095 if (REG_P (SUBREG_REG (op0)))
11096 {
11097 op0 = SUBREG_REG (op0);
11098 op1 = gen_lowpart (GET_MODE (op0), op1);
11099 }
11100 }
11101 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11102 <= HOST_BITS_PER_WIDE_INT)
11103 && (nonzero_bits (SUBREG_REG (op0),
11104 GET_MODE (SUBREG_REG (op0)))
11105 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11106 {
11107 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11108
11109 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11110 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11111 op0 = SUBREG_REG (op0), op1 = tem;
11112 }
11113 }
11114
11115 /* We now do the opposite procedure: Some machines don't have compare
11116 insns in all modes. If OP0's mode is an integer mode smaller than a
11117 word and we can't do a compare in that mode, see if there is a larger
11118 mode for which we can do the compare. There are a number of cases in
11119 which we can use the wider mode. */
11120
11121 mode = GET_MODE (op0);
11122 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11123 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11124 && ! have_insn_for (COMPARE, mode))
11125 for (tmode = GET_MODE_WIDER_MODE (mode);
11126 (tmode != VOIDmode
11127 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11128 tmode = GET_MODE_WIDER_MODE (tmode))
11129 if (have_insn_for (COMPARE, tmode))
11130 {
11131 int zero_extended;
11132
11133 /* If the only nonzero bits in OP0 and OP1 are those in the
11134 narrower mode and this is an equality or unsigned comparison,
11135 we can use the wider mode. Similarly for sign-extended
11136 values, in which case it is true for all comparisons. */
11137 zero_extended = ((code == EQ || code == NE
11138 || code == GEU || code == GTU
11139 || code == LEU || code == LTU)
11140 && (nonzero_bits (op0, tmode)
11141 & ~GET_MODE_MASK (mode)) == 0
11142 && ((GET_CODE (op1) == CONST_INT
11143 || (nonzero_bits (op1, tmode)
11144 & ~GET_MODE_MASK (mode)) == 0)));
11145
11146 if (zero_extended
11147 || ((num_sign_bit_copies (op0, tmode)
11148 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11149 - GET_MODE_BITSIZE (mode)))
11150 && (num_sign_bit_copies (op1, tmode)
11151 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11152 - GET_MODE_BITSIZE (mode)))))
11153 {
11154 /* If OP0 is an AND and we don't have an AND in MODE either,
11155 make a new AND in the proper mode. */
11156 if (GET_CODE (op0) == AND
11157 && !have_insn_for (AND, mode))
11158 op0 = simplify_gen_binary (AND, tmode,
11159 gen_lowpart (tmode,
11160 XEXP (op0, 0)),
11161 gen_lowpart (tmode,
11162 XEXP (op0, 1)));
11163
11164 op0 = gen_lowpart (tmode, op0);
11165 if (zero_extended && GET_CODE (op1) == CONST_INT)
11166 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11167 op1 = gen_lowpart (tmode, op1);
11168 break;
11169 }
11170
11171 /* If this is a test for negative, we can make an explicit
11172 test of the sign bit. */
11173
11174 if (op1 == const0_rtx && (code == LT || code == GE)
11175 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11176 {
11177 op0 = simplify_gen_binary (AND, tmode,
11178 gen_lowpart (tmode, op0),
11179 GEN_INT ((HOST_WIDE_INT) 1
11180 << (GET_MODE_BITSIZE (mode)
11181 - 1)));
11182 code = (code == LT) ? NE : EQ;
11183 break;
11184 }
11185 }
11186
11187 #ifdef CANONICALIZE_COMPARISON
11188 /* If this machine only supports a subset of valid comparisons, see if we
11189 can convert an unsupported one into a supported one. */
11190 CANONICALIZE_COMPARISON (code, op0, op1);
11191 #endif
11192
11193 *pop0 = op0;
11194 *pop1 = op1;
11195
11196 return code;
11197 }
11198 \f
11199 /* Utility function for record_value_for_reg. Count number of
11200 rtxs in X. */
11201 static int
11202 count_rtxs (rtx x)
11203 {
11204 enum rtx_code code = GET_CODE (x);
11205 const char *fmt;
11206 int i, j, ret = 1;
11207
11208 if (GET_RTX_CLASS (code) == '2'
11209 || GET_RTX_CLASS (code) == 'c')
11210 {
11211 rtx x0 = XEXP (x, 0);
11212 rtx x1 = XEXP (x, 1);
11213
11214 if (x0 == x1)
11215 return 1 + 2 * count_rtxs (x0);
11216
11217 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11218 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11219 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11220 return 2 + 2 * count_rtxs (x0)
11221 + count_rtxs (x == XEXP (x1, 0)
11222 ? XEXP (x1, 1) : XEXP (x1, 0));
11223
11224 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11225 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11226 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11227 return 2 + 2 * count_rtxs (x1)
11228 + count_rtxs (x == XEXP (x0, 0)
11229 ? XEXP (x0, 1) : XEXP (x0, 0));
11230 }
11231
11232 fmt = GET_RTX_FORMAT (code);
11233 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11234 if (fmt[i] == 'e')
11235 ret += count_rtxs (XEXP (x, i));
11236 else if (fmt[i] == 'E')
11237 for (j = 0; j < XVECLEN (x, i); j++)
11238 ret += count_rtxs (XVECEXP (x, i, j));
11239
11240 return ret;
11241 }
11242 \f
11243 /* Utility function for following routine. Called when X is part of a value
11244 being stored into last_set_value. Sets last_set_table_tick
11245 for each register mentioned. Similar to mention_regs in cse.c */
11246
11247 static void
11248 update_table_tick (rtx x)
11249 {
11250 enum rtx_code code = GET_CODE (x);
11251 const char *fmt = GET_RTX_FORMAT (code);
11252 int i, j;
11253
11254 if (code == REG)
11255 {
11256 unsigned int regno = REGNO (x);
11257 unsigned int endregno = END_REGNO (x);
11258 unsigned int r;
11259
11260 for (r = regno; r < endregno; r++)
11261 {
11262 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11263 rsp->last_set_table_tick = label_tick;
11264 }
11265
11266 return;
11267 }
11268
11269 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11270 if (fmt[i] == 'e')
11271 {
11272 /* Check for identical subexpressions. If x contains
11273 identical subexpression we only have to traverse one of
11274 them. */
11275 if (i == 0 && ARITHMETIC_P (x))
11276 {
11277 /* Note that at this point x1 has already been
11278 processed. */
11279 rtx x0 = XEXP (x, 0);
11280 rtx x1 = XEXP (x, 1);
11281
11282 /* If x0 and x1 are identical then there is no need to
11283 process x0. */
11284 if (x0 == x1)
11285 break;
11286
11287 /* If x0 is identical to a subexpression of x1 then while
11288 processing x1, x0 has already been processed. Thus we
11289 are done with x. */
11290 if (ARITHMETIC_P (x1)
11291 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11292 break;
11293
11294 /* If x1 is identical to a subexpression of x0 then we
11295 still have to process the rest of x0. */
11296 if (ARITHMETIC_P (x0)
11297 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11298 {
11299 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11300 break;
11301 }
11302 }
11303
11304 update_table_tick (XEXP (x, i));
11305 }
11306 else if (fmt[i] == 'E')
11307 for (j = 0; j < XVECLEN (x, i); j++)
11308 update_table_tick (XVECEXP (x, i, j));
11309 }
11310
11311 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11312 are saying that the register is clobbered and we no longer know its
11313 value. If INSN is zero, don't update reg_stat[].last_set; this is
11314 only permitted with VALUE also zero and is used to invalidate the
11315 register. */
11316
11317 static void
11318 record_value_for_reg (rtx reg, rtx insn, rtx value)
11319 {
11320 unsigned int regno = REGNO (reg);
11321 unsigned int endregno = END_REGNO (reg);
11322 unsigned int i;
11323 reg_stat_type *rsp;
11324
11325 /* If VALUE contains REG and we have a previous value for REG, substitute
11326 the previous value. */
11327 if (value && insn && reg_overlap_mentioned_p (reg, value))
11328 {
11329 rtx tem;
11330
11331 /* Set things up so get_last_value is allowed to see anything set up to
11332 our insn. */
11333 subst_low_luid = DF_INSN_LUID (insn);
11334 tem = get_last_value (reg);
11335
11336 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11337 it isn't going to be useful and will take a lot of time to process,
11338 so just use the CLOBBER. */
11339
11340 if (tem)
11341 {
11342 if (ARITHMETIC_P (tem)
11343 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11344 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11345 tem = XEXP (tem, 0);
11346 else if (count_occurrences (value, reg, 1) >= 2)
11347 {
11348 /* If there are two or more occurrences of REG in VALUE,
11349 prevent the value from growing too much. */
11350 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11351 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11352 }
11353
11354 value = replace_rtx (copy_rtx (value), reg, tem);
11355 }
11356 }
11357
11358 /* For each register modified, show we don't know its value, that
11359 we don't know about its bitwise content, that its value has been
11360 updated, and that we don't know the location of the death of the
11361 register. */
11362 for (i = regno; i < endregno; i++)
11363 {
11364 rsp = VEC_index (reg_stat_type, reg_stat, i);
11365
11366 if (insn)
11367 rsp->last_set = insn;
11368
11369 rsp->last_set_value = 0;
11370 rsp->last_set_mode = 0;
11371 rsp->last_set_nonzero_bits = 0;
11372 rsp->last_set_sign_bit_copies = 0;
11373 rsp->last_death = 0;
11374 rsp->truncated_to_mode = 0;
11375 }
11376
11377 /* Mark registers that are being referenced in this value. */
11378 if (value)
11379 update_table_tick (value);
11380
11381 /* Now update the status of each register being set.
11382 If someone is using this register in this block, set this register
11383 to invalid since we will get confused between the two lives in this
11384 basic block. This makes using this register always invalid. In cse, we
11385 scan the table to invalidate all entries using this register, but this
11386 is too much work for us. */
11387
11388 for (i = regno; i < endregno; i++)
11389 {
11390 rsp = VEC_index (reg_stat_type, reg_stat, i);
11391 rsp->last_set_label = label_tick;
11392 if (!insn
11393 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11394 rsp->last_set_invalid = 1;
11395 else
11396 rsp->last_set_invalid = 0;
11397 }
11398
11399 /* The value being assigned might refer to X (like in "x++;"). In that
11400 case, we must replace it with (clobber (const_int 0)) to prevent
11401 infinite loops. */
11402 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11403 if (value && ! get_last_value_validate (&value, insn,
11404 rsp->last_set_label, 0))
11405 {
11406 value = copy_rtx (value);
11407 if (! get_last_value_validate (&value, insn,
11408 rsp->last_set_label, 1))
11409 value = 0;
11410 }
11411
11412 /* For the main register being modified, update the value, the mode, the
11413 nonzero bits, and the number of sign bit copies. */
11414
11415 rsp->last_set_value = value;
11416
11417 if (value)
11418 {
11419 enum machine_mode mode = GET_MODE (reg);
11420 subst_low_luid = DF_INSN_LUID (insn);
11421 rsp->last_set_mode = mode;
11422 if (GET_MODE_CLASS (mode) == MODE_INT
11423 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11424 mode = nonzero_bits_mode;
11425 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11426 rsp->last_set_sign_bit_copies
11427 = num_sign_bit_copies (value, GET_MODE (reg));
11428 }
11429 }
11430
11431 /* Called via note_stores from record_dead_and_set_regs to handle one
11432 SET or CLOBBER in an insn. DATA is the instruction in which the
11433 set is occurring. */
11434
11435 static void
11436 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11437 {
11438 rtx record_dead_insn = (rtx) data;
11439
11440 if (GET_CODE (dest) == SUBREG)
11441 dest = SUBREG_REG (dest);
11442
11443 if (!record_dead_insn)
11444 {
11445 if (REG_P (dest))
11446 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11447 return;
11448 }
11449
11450 if (REG_P (dest))
11451 {
11452 /* If we are setting the whole register, we know its value. Otherwise
11453 show that we don't know the value. We can handle SUBREG in
11454 some cases. */
11455 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11456 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11457 else if (GET_CODE (setter) == SET
11458 && GET_CODE (SET_DEST (setter)) == SUBREG
11459 && SUBREG_REG (SET_DEST (setter)) == dest
11460 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11461 && subreg_lowpart_p (SET_DEST (setter)))
11462 record_value_for_reg (dest, record_dead_insn,
11463 gen_lowpart (GET_MODE (dest),
11464 SET_SRC (setter)));
11465 else
11466 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11467 }
11468 else if (MEM_P (dest)
11469 /* Ignore pushes, they clobber nothing. */
11470 && ! push_operand (dest, GET_MODE (dest)))
11471 mem_last_set = DF_INSN_LUID (record_dead_insn);
11472 }
11473
11474 /* Update the records of when each REG was most recently set or killed
11475 for the things done by INSN. This is the last thing done in processing
11476 INSN in the combiner loop.
11477
11478 We update reg_stat[], in particular fields last_set, last_set_value,
11479 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11480 last_death, and also the similar information mem_last_set (which insn
11481 most recently modified memory) and last_call_luid (which insn was the
11482 most recent subroutine call). */
11483
11484 static void
11485 record_dead_and_set_regs (rtx insn)
11486 {
11487 rtx link;
11488 unsigned int i;
11489
11490 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11491 {
11492 if (REG_NOTE_KIND (link) == REG_DEAD
11493 && REG_P (XEXP (link, 0)))
11494 {
11495 unsigned int regno = REGNO (XEXP (link, 0));
11496 unsigned int endregno = END_REGNO (XEXP (link, 0));
11497
11498 for (i = regno; i < endregno; i++)
11499 {
11500 reg_stat_type *rsp;
11501
11502 rsp = VEC_index (reg_stat_type, reg_stat, i);
11503 rsp->last_death = insn;
11504 }
11505 }
11506 else if (REG_NOTE_KIND (link) == REG_INC)
11507 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11508 }
11509
11510 if (CALL_P (insn))
11511 {
11512 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11513 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11514 {
11515 reg_stat_type *rsp;
11516
11517 rsp = VEC_index (reg_stat_type, reg_stat, i);
11518 rsp->last_set_invalid = 1;
11519 rsp->last_set = insn;
11520 rsp->last_set_value = 0;
11521 rsp->last_set_mode = 0;
11522 rsp->last_set_nonzero_bits = 0;
11523 rsp->last_set_sign_bit_copies = 0;
11524 rsp->last_death = 0;
11525 rsp->truncated_to_mode = 0;
11526 }
11527
11528 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11529
11530 /* We can't combine into a call pattern. Remember, though, that
11531 the return value register is set at this LUID. We could
11532 still replace a register with the return value from the
11533 wrong subroutine call! */
11534 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11535 }
11536 else
11537 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11538 }
11539
11540 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11541 register present in the SUBREG, so for each such SUBREG go back and
11542 adjust nonzero and sign bit information of the registers that are
11543 known to have some zero/sign bits set.
11544
11545 This is needed because when combine blows the SUBREGs away, the
11546 information on zero/sign bits is lost and further combines can be
11547 missed because of that. */
11548
11549 static void
11550 record_promoted_value (rtx insn, rtx subreg)
11551 {
11552 rtx links, set;
11553 unsigned int regno = REGNO (SUBREG_REG (subreg));
11554 enum machine_mode mode = GET_MODE (subreg);
11555
11556 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11557 return;
11558
11559 for (links = LOG_LINKS (insn); links;)
11560 {
11561 reg_stat_type *rsp;
11562
11563 insn = XEXP (links, 0);
11564 set = single_set (insn);
11565
11566 if (! set || !REG_P (SET_DEST (set))
11567 || REGNO (SET_DEST (set)) != regno
11568 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11569 {
11570 links = XEXP (links, 1);
11571 continue;
11572 }
11573
11574 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11575 if (rsp->last_set == insn)
11576 {
11577 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11578 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11579 }
11580
11581 if (REG_P (SET_SRC (set)))
11582 {
11583 regno = REGNO (SET_SRC (set));
11584 links = LOG_LINKS (insn);
11585 }
11586 else
11587 break;
11588 }
11589 }
11590
11591 /* Check if X, a register, is known to contain a value already
11592 truncated to MODE. In this case we can use a subreg to refer to
11593 the truncated value even though in the generic case we would need
11594 an explicit truncation. */
11595
11596 static bool
11597 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11598 {
11599 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11600 enum machine_mode truncated = rsp->truncated_to_mode;
11601
11602 if (truncated == 0
11603 || rsp->truncation_label < label_tick_ebb_start)
11604 return false;
11605 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11606 return true;
11607 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11608 GET_MODE_BITSIZE (truncated)))
11609 return true;
11610 return false;
11611 }
11612
11613 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
11614 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
11615 might be able to turn a truncate into a subreg using this information.
11616 Return -1 if traversing *P is complete or 0 otherwise. */
11617
11618 static int
11619 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
11620 {
11621 rtx x = *p;
11622 enum machine_mode truncated_mode;
11623 reg_stat_type *rsp;
11624
11625 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11626 {
11627 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11628 truncated_mode = GET_MODE (x);
11629
11630 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11631 return -1;
11632
11633 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11634 GET_MODE_BITSIZE (original_mode)))
11635 return -1;
11636
11637 x = SUBREG_REG (x);
11638 }
11639 /* ??? For hard-regs we now record everything. We might be able to
11640 optimize this using last_set_mode. */
11641 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11642 truncated_mode = GET_MODE (x);
11643 else
11644 return 0;
11645
11646 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11647 if (rsp->truncated_to_mode == 0
11648 || rsp->truncation_label < label_tick_ebb_start
11649 || (GET_MODE_SIZE (truncated_mode)
11650 < GET_MODE_SIZE (rsp->truncated_to_mode)))
11651 {
11652 rsp->truncated_to_mode = truncated_mode;
11653 rsp->truncation_label = label_tick;
11654 }
11655
11656 return -1;
11657 }
11658
11659 /* Callback for note_uses. Find hardregs and subregs of pseudos and
11660 the modes they are used in. This can help truning TRUNCATEs into
11661 SUBREGs. */
11662
11663 static void
11664 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
11665 {
11666 for_each_rtx (x, record_truncated_value, NULL);
11667 }
11668
11669 /* Scan X for promoted SUBREGs. For each one found,
11670 note what it implies to the registers used in it. */
11671
11672 static void
11673 check_promoted_subreg (rtx insn, rtx x)
11674 {
11675 if (GET_CODE (x) == SUBREG
11676 && SUBREG_PROMOTED_VAR_P (x)
11677 && REG_P (SUBREG_REG (x)))
11678 record_promoted_value (insn, x);
11679 else
11680 {
11681 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11682 int i, j;
11683
11684 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11685 switch (format[i])
11686 {
11687 case 'e':
11688 check_promoted_subreg (insn, XEXP (x, i));
11689 break;
11690 case 'V':
11691 case 'E':
11692 if (XVEC (x, i) != 0)
11693 for (j = 0; j < XVECLEN (x, i); j++)
11694 check_promoted_subreg (insn, XVECEXP (x, i, j));
11695 break;
11696 }
11697 }
11698 }
11699 \f
11700 /* Utility routine for the following function. Verify that all the registers
11701 mentioned in *LOC are valid when *LOC was part of a value set when
11702 label_tick == TICK. Return 0 if some are not.
11703
11704 If REPLACE is nonzero, replace the invalid reference with
11705 (clobber (const_int 0)) and return 1. This replacement is useful because
11706 we often can get useful information about the form of a value (e.g., if
11707 it was produced by a shift that always produces -1 or 0) even though
11708 we don't know exactly what registers it was produced from. */
11709
11710 static int
11711 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11712 {
11713 rtx x = *loc;
11714 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11715 int len = GET_RTX_LENGTH (GET_CODE (x));
11716 int i, j;
11717
11718 if (REG_P (x))
11719 {
11720 unsigned int regno = REGNO (x);
11721 unsigned int endregno = END_REGNO (x);
11722 unsigned int j;
11723
11724 for (j = regno; j < endregno; j++)
11725 {
11726 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
11727 if (rsp->last_set_invalid
11728 /* If this is a pseudo-register that was only set once and not
11729 live at the beginning of the function, it is always valid. */
11730 || (! (regno >= FIRST_PSEUDO_REGISTER
11731 && REG_N_SETS (regno) == 1
11732 && (!REGNO_REG_SET_P
11733 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
11734 && rsp->last_set_label > tick))
11735 {
11736 if (replace)
11737 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11738 return replace;
11739 }
11740 }
11741
11742 return 1;
11743 }
11744 /* If this is a memory reference, make sure that there were
11745 no stores after it that might have clobbered the value. We don't
11746 have alias info, so we assume any store invalidates it. */
11747 else if (MEM_P (x) && !MEM_READONLY_P (x)
11748 && DF_INSN_LUID (insn) <= mem_last_set)
11749 {
11750 if (replace)
11751 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11752 return replace;
11753 }
11754
11755 for (i = 0; i < len; i++)
11756 {
11757 if (fmt[i] == 'e')
11758 {
11759 /* Check for identical subexpressions. If x contains
11760 identical subexpression we only have to traverse one of
11761 them. */
11762 if (i == 1 && ARITHMETIC_P (x))
11763 {
11764 /* Note that at this point x0 has already been checked
11765 and found valid. */
11766 rtx x0 = XEXP (x, 0);
11767 rtx x1 = XEXP (x, 1);
11768
11769 /* If x0 and x1 are identical then x is also valid. */
11770 if (x0 == x1)
11771 return 1;
11772
11773 /* If x1 is identical to a subexpression of x0 then
11774 while checking x0, x1 has already been checked. Thus
11775 it is valid and so as x. */
11776 if (ARITHMETIC_P (x0)
11777 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11778 return 1;
11779
11780 /* If x0 is identical to a subexpression of x1 then x is
11781 valid iff the rest of x1 is valid. */
11782 if (ARITHMETIC_P (x1)
11783 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11784 return
11785 get_last_value_validate (&XEXP (x1,
11786 x0 == XEXP (x1, 0) ? 1 : 0),
11787 insn, tick, replace);
11788 }
11789
11790 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11791 replace) == 0)
11792 return 0;
11793 }
11794 else if (fmt[i] == 'E')
11795 for (j = 0; j < XVECLEN (x, i); j++)
11796 if (get_last_value_validate (&XVECEXP (x, i, j),
11797 insn, tick, replace) == 0)
11798 return 0;
11799 }
11800
11801 /* If we haven't found a reason for it to be invalid, it is valid. */
11802 return 1;
11803 }
11804
11805 /* Get the last value assigned to X, if known. Some registers
11806 in the value may be replaced with (clobber (const_int 0)) if their value
11807 is known longer known reliably. */
11808
11809 static rtx
11810 get_last_value (const_rtx x)
11811 {
11812 unsigned int regno;
11813 rtx value;
11814 reg_stat_type *rsp;
11815
11816 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11817 then convert it to the desired mode. If this is a paradoxical SUBREG,
11818 we cannot predict what values the "extra" bits might have. */
11819 if (GET_CODE (x) == SUBREG
11820 && subreg_lowpart_p (x)
11821 && (GET_MODE_SIZE (GET_MODE (x))
11822 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11823 && (value = get_last_value (SUBREG_REG (x))) != 0)
11824 return gen_lowpart (GET_MODE (x), value);
11825
11826 if (!REG_P (x))
11827 return 0;
11828
11829 regno = REGNO (x);
11830 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11831 value = rsp->last_set_value;
11832
11833 /* If we don't have a value, or if it isn't for this basic block and
11834 it's either a hard register, set more than once, or it's a live
11835 at the beginning of the function, return 0.
11836
11837 Because if it's not live at the beginning of the function then the reg
11838 is always set before being used (is never used without being set).
11839 And, if it's set only once, and it's always set before use, then all
11840 uses must have the same last value, even if it's not from this basic
11841 block. */
11842
11843 if (value == 0
11844 || (rsp->last_set_label < label_tick_ebb_start
11845 && (regno < FIRST_PSEUDO_REGISTER
11846 || REG_N_SETS (regno) != 1
11847 || REGNO_REG_SET_P
11848 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
11849 return 0;
11850
11851 /* If the value was set in a later insn than the ones we are processing,
11852 we can't use it even if the register was only set once. */
11853 if (rsp->last_set_label == label_tick
11854 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
11855 return 0;
11856
11857 /* If the value has all its registers valid, return it. */
11858 if (get_last_value_validate (&value, rsp->last_set,
11859 rsp->last_set_label, 0))
11860 return value;
11861
11862 /* Otherwise, make a copy and replace any invalid register with
11863 (clobber (const_int 0)). If that fails for some reason, return 0. */
11864
11865 value = copy_rtx (value);
11866 if (get_last_value_validate (&value, rsp->last_set,
11867 rsp->last_set_label, 1))
11868 return value;
11869
11870 return 0;
11871 }
11872 \f
11873 /* Return nonzero if expression X refers to a REG or to memory
11874 that is set in an instruction more recent than FROM_LUID. */
11875
11876 static int
11877 use_crosses_set_p (const_rtx x, int from_luid)
11878 {
11879 const char *fmt;
11880 int i;
11881 enum rtx_code code = GET_CODE (x);
11882
11883 if (code == REG)
11884 {
11885 unsigned int regno = REGNO (x);
11886 unsigned endreg = END_REGNO (x);
11887
11888 #ifdef PUSH_ROUNDING
11889 /* Don't allow uses of the stack pointer to be moved,
11890 because we don't know whether the move crosses a push insn. */
11891 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11892 return 1;
11893 #endif
11894 for (; regno < endreg; regno++)
11895 {
11896 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
11897 if (rsp->last_set
11898 && rsp->last_set_label == label_tick
11899 && DF_INSN_LUID (rsp->last_set) > from_luid)
11900 return 1;
11901 }
11902 return 0;
11903 }
11904
11905 if (code == MEM && mem_last_set > from_luid)
11906 return 1;
11907
11908 fmt = GET_RTX_FORMAT (code);
11909
11910 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11911 {
11912 if (fmt[i] == 'E')
11913 {
11914 int j;
11915 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11916 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
11917 return 1;
11918 }
11919 else if (fmt[i] == 'e'
11920 && use_crosses_set_p (XEXP (x, i), from_luid))
11921 return 1;
11922 }
11923 return 0;
11924 }
11925 \f
11926 /* Define three variables used for communication between the following
11927 routines. */
11928
11929 static unsigned int reg_dead_regno, reg_dead_endregno;
11930 static int reg_dead_flag;
11931
11932 /* Function called via note_stores from reg_dead_at_p.
11933
11934 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11935 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11936
11937 static void
11938 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
11939 {
11940 unsigned int regno, endregno;
11941
11942 if (!REG_P (dest))
11943 return;
11944
11945 regno = REGNO (dest);
11946 endregno = END_REGNO (dest);
11947 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11948 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11949 }
11950
11951 /* Return nonzero if REG is known to be dead at INSN.
11952
11953 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11954 referencing REG, it is dead. If we hit a SET referencing REG, it is
11955 live. Otherwise, see if it is live or dead at the start of the basic
11956 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11957 must be assumed to be always live. */
11958
11959 static int
11960 reg_dead_at_p (rtx reg, rtx insn)
11961 {
11962 basic_block block;
11963 unsigned int i;
11964
11965 /* Set variables for reg_dead_at_p_1. */
11966 reg_dead_regno = REGNO (reg);
11967 reg_dead_endregno = END_REGNO (reg);
11968
11969 reg_dead_flag = 0;
11970
11971 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11972 we allow the machine description to decide whether use-and-clobber
11973 patterns are OK. */
11974 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11975 {
11976 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11977 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11978 return 0;
11979 }
11980
11981 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11982 beginning of function. */
11983 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11984 insn = prev_nonnote_insn (insn))
11985 {
11986 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11987 if (reg_dead_flag)
11988 return reg_dead_flag == 1 ? 1 : 0;
11989
11990 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11991 return 1;
11992 }
11993
11994 /* Get the basic block that we were in. */
11995 if (insn == 0)
11996 block = ENTRY_BLOCK_PTR->next_bb;
11997 else
11998 {
11999 FOR_EACH_BB (block)
12000 if (insn == BB_HEAD (block))
12001 break;
12002
12003 if (block == EXIT_BLOCK_PTR)
12004 return 0;
12005 }
12006
12007 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12008 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12009 return 0;
12010
12011 return 1;
12012 }
12013 \f
12014 /* Note hard registers in X that are used. */
12015
12016 static void
12017 mark_used_regs_combine (rtx x)
12018 {
12019 RTX_CODE code = GET_CODE (x);
12020 unsigned int regno;
12021 int i;
12022
12023 switch (code)
12024 {
12025 case LABEL_REF:
12026 case SYMBOL_REF:
12027 case CONST_INT:
12028 case CONST:
12029 case CONST_DOUBLE:
12030 case CONST_VECTOR:
12031 case PC:
12032 case ADDR_VEC:
12033 case ADDR_DIFF_VEC:
12034 case ASM_INPUT:
12035 #ifdef HAVE_cc0
12036 /* CC0 must die in the insn after it is set, so we don't need to take
12037 special note of it here. */
12038 case CC0:
12039 #endif
12040 return;
12041
12042 case CLOBBER:
12043 /* If we are clobbering a MEM, mark any hard registers inside the
12044 address as used. */
12045 if (MEM_P (XEXP (x, 0)))
12046 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12047 return;
12048
12049 case REG:
12050 regno = REGNO (x);
12051 /* A hard reg in a wide mode may really be multiple registers.
12052 If so, mark all of them just like the first. */
12053 if (regno < FIRST_PSEUDO_REGISTER)
12054 {
12055 /* None of this applies to the stack, frame or arg pointers. */
12056 if (regno == STACK_POINTER_REGNUM
12057 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12058 || regno == HARD_FRAME_POINTER_REGNUM
12059 #endif
12060 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12061 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12062 #endif
12063 || regno == FRAME_POINTER_REGNUM)
12064 return;
12065
12066 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12067 }
12068 return;
12069
12070 case SET:
12071 {
12072 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12073 the address. */
12074 rtx testreg = SET_DEST (x);
12075
12076 while (GET_CODE (testreg) == SUBREG
12077 || GET_CODE (testreg) == ZERO_EXTRACT
12078 || GET_CODE (testreg) == STRICT_LOW_PART)
12079 testreg = XEXP (testreg, 0);
12080
12081 if (MEM_P (testreg))
12082 mark_used_regs_combine (XEXP (testreg, 0));
12083
12084 mark_used_regs_combine (SET_SRC (x));
12085 }
12086 return;
12087
12088 default:
12089 break;
12090 }
12091
12092 /* Recursively scan the operands of this expression. */
12093
12094 {
12095 const char *fmt = GET_RTX_FORMAT (code);
12096
12097 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12098 {
12099 if (fmt[i] == 'e')
12100 mark_used_regs_combine (XEXP (x, i));
12101 else if (fmt[i] == 'E')
12102 {
12103 int j;
12104
12105 for (j = 0; j < XVECLEN (x, i); j++)
12106 mark_used_regs_combine (XVECEXP (x, i, j));
12107 }
12108 }
12109 }
12110 }
12111 \f
12112 /* Remove register number REGNO from the dead registers list of INSN.
12113
12114 Return the note used to record the death, if there was one. */
12115
12116 rtx
12117 remove_death (unsigned int regno, rtx insn)
12118 {
12119 rtx note = find_regno_note (insn, REG_DEAD, regno);
12120
12121 if (note)
12122 remove_note (insn, note);
12123
12124 return note;
12125 }
12126
12127 /* For each register (hardware or pseudo) used within expression X, if its
12128 death is in an instruction with luid between FROM_LUID (inclusive) and
12129 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12130 list headed by PNOTES.
12131
12132 That said, don't move registers killed by maybe_kill_insn.
12133
12134 This is done when X is being merged by combination into TO_INSN. These
12135 notes will then be distributed as needed. */
12136
12137 static void
12138 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12139 rtx *pnotes)
12140 {
12141 const char *fmt;
12142 int len, i;
12143 enum rtx_code code = GET_CODE (x);
12144
12145 if (code == REG)
12146 {
12147 unsigned int regno = REGNO (x);
12148 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12149
12150 /* Don't move the register if it gets killed in between from and to. */
12151 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12152 && ! reg_referenced_p (x, maybe_kill_insn))
12153 return;
12154
12155 if (where_dead
12156 && DF_INSN_LUID (where_dead) >= from_luid
12157 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12158 {
12159 rtx note = remove_death (regno, where_dead);
12160
12161 /* It is possible for the call above to return 0. This can occur
12162 when last_death points to I2 or I1 that we combined with.
12163 In that case make a new note.
12164
12165 We must also check for the case where X is a hard register
12166 and NOTE is a death note for a range of hard registers
12167 including X. In that case, we must put REG_DEAD notes for
12168 the remaining registers in place of NOTE. */
12169
12170 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12171 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12172 > GET_MODE_SIZE (GET_MODE (x))))
12173 {
12174 unsigned int deadregno = REGNO (XEXP (note, 0));
12175 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12176 unsigned int ourend = END_HARD_REGNO (x);
12177 unsigned int i;
12178
12179 for (i = deadregno; i < deadend; i++)
12180 if (i < regno || i >= ourend)
12181 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12182 }
12183
12184 /* If we didn't find any note, or if we found a REG_DEAD note that
12185 covers only part of the given reg, and we have a multi-reg hard
12186 register, then to be safe we must check for REG_DEAD notes
12187 for each register other than the first. They could have
12188 their own REG_DEAD notes lying around. */
12189 else if ((note == 0
12190 || (note != 0
12191 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12192 < GET_MODE_SIZE (GET_MODE (x)))))
12193 && regno < FIRST_PSEUDO_REGISTER
12194 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12195 {
12196 unsigned int ourend = END_HARD_REGNO (x);
12197 unsigned int i, offset;
12198 rtx oldnotes = 0;
12199
12200 if (note)
12201 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12202 else
12203 offset = 1;
12204
12205 for (i = regno + offset; i < ourend; i++)
12206 move_deaths (regno_reg_rtx[i],
12207 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12208 }
12209
12210 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12211 {
12212 XEXP (note, 1) = *pnotes;
12213 *pnotes = note;
12214 }
12215 else
12216 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12217 }
12218
12219 return;
12220 }
12221
12222 else if (GET_CODE (x) == SET)
12223 {
12224 rtx dest = SET_DEST (x);
12225
12226 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12227
12228 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12229 that accesses one word of a multi-word item, some
12230 piece of everything register in the expression is used by
12231 this insn, so remove any old death. */
12232 /* ??? So why do we test for equality of the sizes? */
12233
12234 if (GET_CODE (dest) == ZERO_EXTRACT
12235 || GET_CODE (dest) == STRICT_LOW_PART
12236 || (GET_CODE (dest) == SUBREG
12237 && (((GET_MODE_SIZE (GET_MODE (dest))
12238 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12239 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12240 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12241 {
12242 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12243 return;
12244 }
12245
12246 /* If this is some other SUBREG, we know it replaces the entire
12247 value, so use that as the destination. */
12248 if (GET_CODE (dest) == SUBREG)
12249 dest = SUBREG_REG (dest);
12250
12251 /* If this is a MEM, adjust deaths of anything used in the address.
12252 For a REG (the only other possibility), the entire value is
12253 being replaced so the old value is not used in this insn. */
12254
12255 if (MEM_P (dest))
12256 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12257 to_insn, pnotes);
12258 return;
12259 }
12260
12261 else if (GET_CODE (x) == CLOBBER)
12262 return;
12263
12264 len = GET_RTX_LENGTH (code);
12265 fmt = GET_RTX_FORMAT (code);
12266
12267 for (i = 0; i < len; i++)
12268 {
12269 if (fmt[i] == 'E')
12270 {
12271 int j;
12272 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12273 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12274 to_insn, pnotes);
12275 }
12276 else if (fmt[i] == 'e')
12277 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12278 }
12279 }
12280 \f
12281 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12282 pattern of an insn. X must be a REG. */
12283
12284 static int
12285 reg_bitfield_target_p (rtx x, rtx body)
12286 {
12287 int i;
12288
12289 if (GET_CODE (body) == SET)
12290 {
12291 rtx dest = SET_DEST (body);
12292 rtx target;
12293 unsigned int regno, tregno, endregno, endtregno;
12294
12295 if (GET_CODE (dest) == ZERO_EXTRACT)
12296 target = XEXP (dest, 0);
12297 else if (GET_CODE (dest) == STRICT_LOW_PART)
12298 target = SUBREG_REG (XEXP (dest, 0));
12299 else
12300 return 0;
12301
12302 if (GET_CODE (target) == SUBREG)
12303 target = SUBREG_REG (target);
12304
12305 if (!REG_P (target))
12306 return 0;
12307
12308 tregno = REGNO (target), regno = REGNO (x);
12309 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12310 return target == x;
12311
12312 endtregno = end_hard_regno (GET_MODE (target), tregno);
12313 endregno = end_hard_regno (GET_MODE (x), regno);
12314
12315 return endregno > tregno && regno < endtregno;
12316 }
12317
12318 else if (GET_CODE (body) == PARALLEL)
12319 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12320 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12321 return 1;
12322
12323 return 0;
12324 }
12325 \f
12326 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12327 as appropriate. I3 and I2 are the insns resulting from the combination
12328 insns including FROM (I2 may be zero).
12329
12330 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12331 not need REG_DEAD notes because they are being substituted for. This
12332 saves searching in the most common cases.
12333
12334 Each note in the list is either ignored or placed on some insns, depending
12335 on the type of note. */
12336
12337 static void
12338 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12339 rtx elim_i1)
12340 {
12341 rtx note, next_note;
12342 rtx tem;
12343
12344 for (note = notes; note; note = next_note)
12345 {
12346 rtx place = 0, place2 = 0;
12347
12348 next_note = XEXP (note, 1);
12349 switch (REG_NOTE_KIND (note))
12350 {
12351 case REG_BR_PROB:
12352 case REG_BR_PRED:
12353 /* Doesn't matter much where we put this, as long as it's somewhere.
12354 It is preferable to keep these notes on branches, which is most
12355 likely to be i3. */
12356 place = i3;
12357 break;
12358
12359 case REG_VALUE_PROFILE:
12360 /* Just get rid of this note, as it is unused later anyway. */
12361 break;
12362
12363 case REG_NON_LOCAL_GOTO:
12364 if (JUMP_P (i3))
12365 place = i3;
12366 else
12367 {
12368 gcc_assert (i2 && JUMP_P (i2));
12369 place = i2;
12370 }
12371 break;
12372
12373 case REG_EH_REGION:
12374 /* These notes must remain with the call or trapping instruction. */
12375 if (CALL_P (i3))
12376 place = i3;
12377 else if (i2 && CALL_P (i2))
12378 place = i2;
12379 else
12380 {
12381 gcc_assert (flag_non_call_exceptions);
12382 if (may_trap_p (i3))
12383 place = i3;
12384 else if (i2 && may_trap_p (i2))
12385 place = i2;
12386 /* ??? Otherwise assume we've combined things such that we
12387 can now prove that the instructions can't trap. Drop the
12388 note in this case. */
12389 }
12390 break;
12391
12392 case REG_NORETURN:
12393 case REG_SETJMP:
12394 /* These notes must remain with the call. It should not be
12395 possible for both I2 and I3 to be a call. */
12396 if (CALL_P (i3))
12397 place = i3;
12398 else
12399 {
12400 gcc_assert (i2 && CALL_P (i2));
12401 place = i2;
12402 }
12403 break;
12404
12405 case REG_UNUSED:
12406 /* Any clobbers for i3 may still exist, and so we must process
12407 REG_UNUSED notes from that insn.
12408
12409 Any clobbers from i2 or i1 can only exist if they were added by
12410 recog_for_combine. In that case, recog_for_combine created the
12411 necessary REG_UNUSED notes. Trying to keep any original
12412 REG_UNUSED notes from these insns can cause incorrect output
12413 if it is for the same register as the original i3 dest.
12414 In that case, we will notice that the register is set in i3,
12415 and then add a REG_UNUSED note for the destination of i3, which
12416 is wrong. However, it is possible to have REG_UNUSED notes from
12417 i2 or i1 for register which were both used and clobbered, so
12418 we keep notes from i2 or i1 if they will turn into REG_DEAD
12419 notes. */
12420
12421 /* If this register is set or clobbered in I3, put the note there
12422 unless there is one already. */
12423 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12424 {
12425 if (from_insn != i3)
12426 break;
12427
12428 if (! (REG_P (XEXP (note, 0))
12429 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12430 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12431 place = i3;
12432 }
12433 /* Otherwise, if this register is used by I3, then this register
12434 now dies here, so we must put a REG_DEAD note here unless there
12435 is one already. */
12436 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12437 && ! (REG_P (XEXP (note, 0))
12438 ? find_regno_note (i3, REG_DEAD,
12439 REGNO (XEXP (note, 0)))
12440 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12441 {
12442 PUT_REG_NOTE_KIND (note, REG_DEAD);
12443 place = i3;
12444 }
12445 break;
12446
12447 case REG_EQUAL:
12448 case REG_EQUIV:
12449 case REG_NOALIAS:
12450 /* These notes say something about results of an insn. We can
12451 only support them if they used to be on I3 in which case they
12452 remain on I3. Otherwise they are ignored.
12453
12454 If the note refers to an expression that is not a constant, we
12455 must also ignore the note since we cannot tell whether the
12456 equivalence is still true. It might be possible to do
12457 slightly better than this (we only have a problem if I2DEST
12458 or I1DEST is present in the expression), but it doesn't
12459 seem worth the trouble. */
12460
12461 if (from_insn == i3
12462 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12463 place = i3;
12464 break;
12465
12466 case REG_INC:
12467 /* These notes say something about how a register is used. They must
12468 be present on any use of the register in I2 or I3. */
12469 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12470 place = i3;
12471
12472 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12473 {
12474 if (place)
12475 place2 = i2;
12476 else
12477 place = i2;
12478 }
12479 break;
12480
12481 case REG_LABEL_TARGET:
12482 case REG_LABEL_OPERAND:
12483 /* This can show up in several ways -- either directly in the
12484 pattern, or hidden off in the constant pool with (or without?)
12485 a REG_EQUAL note. */
12486 /* ??? Ignore the without-reg_equal-note problem for now. */
12487 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12488 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12489 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12490 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12491 place = i3;
12492
12493 if (i2
12494 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12495 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12496 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12497 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12498 {
12499 if (place)
12500 place2 = i2;
12501 else
12502 place = i2;
12503 }
12504
12505 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12506 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12507 there. */
12508 if (place && JUMP_P (place)
12509 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12510 && (JUMP_LABEL (place) == NULL
12511 || JUMP_LABEL (place) == XEXP (note, 0)))
12512 {
12513 rtx label = JUMP_LABEL (place);
12514
12515 if (!label)
12516 JUMP_LABEL (place) = XEXP (note, 0);
12517 else if (LABEL_P (label))
12518 LABEL_NUSES (label)--;
12519 }
12520
12521 if (place2 && JUMP_P (place2)
12522 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12523 && (JUMP_LABEL (place2) == NULL
12524 || JUMP_LABEL (place2) == XEXP (note, 0)))
12525 {
12526 rtx label = JUMP_LABEL (place2);
12527
12528 if (!label)
12529 JUMP_LABEL (place2) = XEXP (note, 0);
12530 else if (LABEL_P (label))
12531 LABEL_NUSES (label)--;
12532 place2 = 0;
12533 }
12534 break;
12535
12536 case REG_NONNEG:
12537 /* This note says something about the value of a register prior
12538 to the execution of an insn. It is too much trouble to see
12539 if the note is still correct in all situations. It is better
12540 to simply delete it. */
12541 break;
12542
12543 case REG_DEAD:
12544 /* If we replaced the right hand side of FROM_INSN with a
12545 REG_EQUAL note, the original use of the dying register
12546 will not have been combined into I3 and I2. In such cases,
12547 FROM_INSN is guaranteed to be the first of the combined
12548 instructions, so we simply need to search back before
12549 FROM_INSN for the previous use or set of this register,
12550 then alter the notes there appropriately.
12551
12552 If the register is used as an input in I3, it dies there.
12553 Similarly for I2, if it is nonzero and adjacent to I3.
12554
12555 If the register is not used as an input in either I3 or I2
12556 and it is not one of the registers we were supposed to eliminate,
12557 there are two possibilities. We might have a non-adjacent I2
12558 or we might have somehow eliminated an additional register
12559 from a computation. For example, we might have had A & B where
12560 we discover that B will always be zero. In this case we will
12561 eliminate the reference to A.
12562
12563 In both cases, we must search to see if we can find a previous
12564 use of A and put the death note there. */
12565
12566 if (from_insn
12567 && from_insn == i2mod
12568 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12569 tem = from_insn;
12570 else
12571 {
12572 if (from_insn
12573 && CALL_P (from_insn)
12574 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12575 place = from_insn;
12576 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12577 place = i3;
12578 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12579 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12580 place = i2;
12581 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12582 && !(i2mod
12583 && reg_overlap_mentioned_p (XEXP (note, 0),
12584 i2mod_old_rhs)))
12585 || rtx_equal_p (XEXP (note, 0), elim_i1))
12586 break;
12587 tem = i3;
12588 }
12589
12590 if (place == 0)
12591 {
12592 basic_block bb = this_basic_block;
12593
12594 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12595 {
12596 if (! INSN_P (tem))
12597 {
12598 if (tem == BB_HEAD (bb))
12599 break;
12600 continue;
12601 }
12602
12603 /* If the register is being set at TEM, see if that is all
12604 TEM is doing. If so, delete TEM. Otherwise, make this
12605 into a REG_UNUSED note instead. Don't delete sets to
12606 global register vars. */
12607 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12608 || !global_regs[REGNO (XEXP (note, 0))])
12609 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12610 {
12611 rtx set = single_set (tem);
12612 rtx inner_dest = 0;
12613 #ifdef HAVE_cc0
12614 rtx cc0_setter = NULL_RTX;
12615 #endif
12616
12617 if (set != 0)
12618 for (inner_dest = SET_DEST (set);
12619 (GET_CODE (inner_dest) == STRICT_LOW_PART
12620 || GET_CODE (inner_dest) == SUBREG
12621 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12622 inner_dest = XEXP (inner_dest, 0))
12623 ;
12624
12625 /* Verify that it was the set, and not a clobber that
12626 modified the register.
12627
12628 CC0 targets must be careful to maintain setter/user
12629 pairs. If we cannot delete the setter due to side
12630 effects, mark the user with an UNUSED note instead
12631 of deleting it. */
12632
12633 if (set != 0 && ! side_effects_p (SET_SRC (set))
12634 && rtx_equal_p (XEXP (note, 0), inner_dest)
12635 #ifdef HAVE_cc0
12636 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12637 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12638 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12639 #endif
12640 )
12641 {
12642 /* Move the notes and links of TEM elsewhere.
12643 This might delete other dead insns recursively.
12644 First set the pattern to something that won't use
12645 any register. */
12646 rtx old_notes = REG_NOTES (tem);
12647
12648 PATTERN (tem) = pc_rtx;
12649 REG_NOTES (tem) = NULL;
12650
12651 distribute_notes (old_notes, tem, tem, NULL_RTX,
12652 NULL_RTX, NULL_RTX);
12653 distribute_links (LOG_LINKS (tem));
12654
12655 SET_INSN_DELETED (tem);
12656
12657 #ifdef HAVE_cc0
12658 /* Delete the setter too. */
12659 if (cc0_setter)
12660 {
12661 PATTERN (cc0_setter) = pc_rtx;
12662 old_notes = REG_NOTES (cc0_setter);
12663 REG_NOTES (cc0_setter) = NULL;
12664
12665 distribute_notes (old_notes, cc0_setter,
12666 cc0_setter, NULL_RTX,
12667 NULL_RTX, NULL_RTX);
12668 distribute_links (LOG_LINKS (cc0_setter));
12669
12670 SET_INSN_DELETED (cc0_setter);
12671 }
12672 #endif
12673 }
12674 else
12675 {
12676 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12677
12678 /* If there isn't already a REG_UNUSED note, put one
12679 here. Do not place a REG_DEAD note, even if
12680 the register is also used here; that would not
12681 match the algorithm used in lifetime analysis
12682 and can cause the consistency check in the
12683 scheduler to fail. */
12684 if (! find_regno_note (tem, REG_UNUSED,
12685 REGNO (XEXP (note, 0))))
12686 place = tem;
12687 break;
12688 }
12689 }
12690 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12691 || (CALL_P (tem)
12692 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12693 {
12694 place = tem;
12695
12696 /* If we are doing a 3->2 combination, and we have a
12697 register which formerly died in i3 and was not used
12698 by i2, which now no longer dies in i3 and is used in
12699 i2 but does not die in i2, and place is between i2
12700 and i3, then we may need to move a link from place to
12701 i2. */
12702 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
12703 && from_insn
12704 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
12705 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12706 {
12707 rtx links = LOG_LINKS (place);
12708 LOG_LINKS (place) = 0;
12709 distribute_links (links);
12710 }
12711 break;
12712 }
12713
12714 if (tem == BB_HEAD (bb))
12715 break;
12716 }
12717
12718 }
12719
12720 /* If the register is set or already dead at PLACE, we needn't do
12721 anything with this note if it is still a REG_DEAD note.
12722 We check here if it is set at all, not if is it totally replaced,
12723 which is what `dead_or_set_p' checks, so also check for it being
12724 set partially. */
12725
12726 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12727 {
12728 unsigned int regno = REGNO (XEXP (note, 0));
12729 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12730
12731 if (dead_or_set_p (place, XEXP (note, 0))
12732 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12733 {
12734 /* Unless the register previously died in PLACE, clear
12735 last_death. [I no longer understand why this is
12736 being done.] */
12737 if (rsp->last_death != place)
12738 rsp->last_death = 0;
12739 place = 0;
12740 }
12741 else
12742 rsp->last_death = place;
12743
12744 /* If this is a death note for a hard reg that is occupying
12745 multiple registers, ensure that we are still using all
12746 parts of the object. If we find a piece of the object
12747 that is unused, we must arrange for an appropriate REG_DEAD
12748 note to be added for it. However, we can't just emit a USE
12749 and tag the note to it, since the register might actually
12750 be dead; so we recourse, and the recursive call then finds
12751 the previous insn that used this register. */
12752
12753 if (place && regno < FIRST_PSEUDO_REGISTER
12754 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12755 {
12756 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
12757 int all_used = 1;
12758 unsigned int i;
12759
12760 for (i = regno; i < endregno; i++)
12761 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12762 && ! find_regno_fusage (place, USE, i))
12763 || dead_or_set_regno_p (place, i))
12764 all_used = 0;
12765
12766 if (! all_used)
12767 {
12768 /* Put only REG_DEAD notes for pieces that are
12769 not already dead or set. */
12770
12771 for (i = regno; i < endregno;
12772 i += hard_regno_nregs[i][reg_raw_mode[i]])
12773 {
12774 rtx piece = regno_reg_rtx[i];
12775 basic_block bb = this_basic_block;
12776
12777 if (! dead_or_set_p (place, piece)
12778 && ! reg_bitfield_target_p (piece,
12779 PATTERN (place)))
12780 {
12781 rtx new_note
12782 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12783
12784 distribute_notes (new_note, place, place,
12785 NULL_RTX, NULL_RTX, NULL_RTX);
12786 }
12787 else if (! refers_to_regno_p (i, i + 1,
12788 PATTERN (place), 0)
12789 && ! find_regno_fusage (place, USE, i))
12790 for (tem = PREV_INSN (place); ;
12791 tem = PREV_INSN (tem))
12792 {
12793 if (! INSN_P (tem))
12794 {
12795 if (tem == BB_HEAD (bb))
12796 break;
12797 continue;
12798 }
12799 if (dead_or_set_p (tem, piece)
12800 || reg_bitfield_target_p (piece,
12801 PATTERN (tem)))
12802 {
12803 add_reg_note (tem, REG_UNUSED, piece);
12804 break;
12805 }
12806 }
12807
12808 }
12809
12810 place = 0;
12811 }
12812 }
12813 }
12814 break;
12815
12816 default:
12817 /* Any other notes should not be present at this point in the
12818 compilation. */
12819 gcc_unreachable ();
12820 }
12821
12822 if (place)
12823 {
12824 XEXP (note, 1) = REG_NOTES (place);
12825 REG_NOTES (place) = note;
12826 }
12827
12828 if (place2)
12829 REG_NOTES (place2)
12830 = gen_rtx_fmt_ee (GET_CODE (note), REG_NOTE_KIND (note),
12831 XEXP (note, 0), REG_NOTES (place2));
12832 }
12833 }
12834 \f
12835 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12836 I3, I2, and I1 to new locations. This is also called to add a link
12837 pointing at I3 when I3's destination is changed. */
12838
12839 static void
12840 distribute_links (rtx links)
12841 {
12842 rtx link, next_link;
12843
12844 for (link = links; link; link = next_link)
12845 {
12846 rtx place = 0;
12847 rtx insn;
12848 rtx set, reg;
12849
12850 next_link = XEXP (link, 1);
12851
12852 /* If the insn that this link points to is a NOTE or isn't a single
12853 set, ignore it. In the latter case, it isn't clear what we
12854 can do other than ignore the link, since we can't tell which
12855 register it was for. Such links wouldn't be used by combine
12856 anyway.
12857
12858 It is not possible for the destination of the target of the link to
12859 have been changed by combine. The only potential of this is if we
12860 replace I3, I2, and I1 by I3 and I2. But in that case the
12861 destination of I2 also remains unchanged. */
12862
12863 if (NOTE_P (XEXP (link, 0))
12864 || (set = single_set (XEXP (link, 0))) == 0)
12865 continue;
12866
12867 reg = SET_DEST (set);
12868 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12869 || GET_CODE (reg) == STRICT_LOW_PART)
12870 reg = XEXP (reg, 0);
12871
12872 /* A LOG_LINK is defined as being placed on the first insn that uses
12873 a register and points to the insn that sets the register. Start
12874 searching at the next insn after the target of the link and stop
12875 when we reach a set of the register or the end of the basic block.
12876
12877 Note that this correctly handles the link that used to point from
12878 I3 to I2. Also note that not much searching is typically done here
12879 since most links don't point very far away. */
12880
12881 for (insn = NEXT_INSN (XEXP (link, 0));
12882 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12883 || BB_HEAD (this_basic_block->next_bb) != insn));
12884 insn = NEXT_INSN (insn))
12885 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12886 {
12887 if (reg_referenced_p (reg, PATTERN (insn)))
12888 place = insn;
12889 break;
12890 }
12891 else if (CALL_P (insn)
12892 && find_reg_fusage (insn, USE, reg))
12893 {
12894 place = insn;
12895 break;
12896 }
12897 else if (INSN_P (insn) && reg_set_p (reg, insn))
12898 break;
12899
12900 /* If we found a place to put the link, place it there unless there
12901 is already a link to the same insn as LINK at that point. */
12902
12903 if (place)
12904 {
12905 rtx link2;
12906
12907 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12908 if (XEXP (link2, 0) == XEXP (link, 0))
12909 break;
12910
12911 if (link2 == 0)
12912 {
12913 XEXP (link, 1) = LOG_LINKS (place);
12914 LOG_LINKS (place) = link;
12915
12916 /* Set added_links_insn to the earliest insn we added a
12917 link to. */
12918 if (added_links_insn == 0
12919 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
12920 added_links_insn = place;
12921 }
12922 }
12923 }
12924 }
12925 \f
12926 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12927 Check whether the expression pointer to by LOC is a register or
12928 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12929 Otherwise return zero. */
12930
12931 static int
12932 unmentioned_reg_p_1 (rtx *loc, void *expr)
12933 {
12934 rtx x = *loc;
12935
12936 if (x != NULL_RTX
12937 && (REG_P (x) || MEM_P (x))
12938 && ! reg_mentioned_p (x, (rtx) expr))
12939 return 1;
12940 return 0;
12941 }
12942
12943 /* Check for any register or memory mentioned in EQUIV that is not
12944 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12945 of EXPR where some registers may have been replaced by constants. */
12946
12947 static bool
12948 unmentioned_reg_p (rtx equiv, rtx expr)
12949 {
12950 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12951 }
12952 \f
12953 void
12954 dump_combine_stats (FILE *file)
12955 {
12956 fprintf
12957 (file,
12958 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12959 combine_attempts, combine_merges, combine_extras, combine_successes);
12960 }
12961
12962 void
12963 dump_combine_total_stats (FILE *file)
12964 {
12965 fprintf
12966 (file,
12967 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12968 total_attempts, total_merges, total_extras, total_successes);
12969 }
12970 \f
12971 static bool
12972 gate_handle_combine (void)
12973 {
12974 return (optimize > 0);
12975 }
12976
12977 /* Try combining insns through substitution. */
12978 static unsigned int
12979 rest_of_handle_combine (void)
12980 {
12981 int rebuild_jump_labels_after_combine;
12982
12983 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
12984 df_note_add_problem ();
12985 df_analyze ();
12986
12987 regstat_init_n_sets_and_refs ();
12988
12989 rebuild_jump_labels_after_combine
12990 = combine_instructions (get_insns (), max_reg_num ());
12991
12992 /* Combining insns may have turned an indirect jump into a
12993 direct jump. Rebuild the JUMP_LABEL fields of jumping
12994 instructions. */
12995 if (rebuild_jump_labels_after_combine)
12996 {
12997 timevar_push (TV_JUMP);
12998 rebuild_jump_labels (get_insns ());
12999 cleanup_cfg (0);
13000 timevar_pop (TV_JUMP);
13001 }
13002
13003 regstat_free_n_sets_and_refs ();
13004 return 0;
13005 }
13006
13007 struct rtl_opt_pass pass_combine =
13008 {
13009 {
13010 RTL_PASS,
13011 "combine", /* name */
13012 gate_handle_combine, /* gate */
13013 rest_of_handle_combine, /* execute */
13014 NULL, /* sub */
13015 NULL, /* next */
13016 0, /* static_pass_number */
13017 TV_COMBINE, /* tv_id */
13018 0, /* properties_required */
13019 0, /* properties_provided */
13020 0, /* properties_destroyed */
13021 0, /* todo_flags_start */
13022 TODO_dump_func |
13023 TODO_df_finish | TODO_verify_rtl_sharing |
13024 TODO_ggc_collect, /* todo_flags_finish */
13025 }
13026 };
13027