]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/combine.c
Remove trailing white spaces.
[thirdparty/gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "real.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
254
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257
258 static VEC(reg_stat_type,heap) *reg_stat;
259
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
262
263 static int mem_last_set;
264
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
267
268 static int last_call_luid;
269
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
275
276 static rtx subst_insn;
277
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
284
285 static int subst_low_luid;
286
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
289
290 static HARD_REG_SET newpat_used_regs;
291
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
295
296 static rtx added_links_insn;
297
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
301
302 \f
303 /* Length of the currently allocated uid_insn_cost array. */
304
305 static int max_uid_known;
306
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
309
310 static int *uid_insn_cost;
311
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
314
315 static rtx *uid_log_links;
316
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
319
320 /* Incremented for each basic block. */
321
322 static int label_tick;
323
324 /* Reset to label_tick for each extended basic block in scanning order. */
325
326 static int label_tick_ebb_start;
327
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
330
331 static enum machine_mode nonzero_bits_mode;
332
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
338
339 static int nonzero_sign_valid;
340
341 \f
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
344
345 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
346
347 struct undo
348 {
349 struct undo *next;
350 enum undo_kind kind;
351 union { rtx r; int i; enum machine_mode m; } old_contents;
352 union { rtx *r; int *i; } where;
353 };
354
355 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
356 num_undo says how many are currently recorded.
357
358 other_insn is nonzero if we have modified some other insn in the process
359 of working on subst_insn. It must be verified too. */
360
361 struct undobuf
362 {
363 struct undo *undos;
364 struct undo *frees;
365 rtx other_insn;
366 };
367
368 static struct undobuf undobuf;
369
370 /* Number of times the pseudo being substituted for
371 was found and replaced. */
372
373 static int n_occurrences;
374
375 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
376 enum machine_mode,
377 unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
380 enum machine_mode,
381 unsigned int, unsigned int *);
382 static void do_SUBST (rtx *, rtx);
383 static void do_SUBST_INT (int *, int);
384 static void init_reg_last (void);
385 static void setup_incoming_promotions (rtx);
386 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
387 static int cant_combine_insn_p (rtx);
388 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
389 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
390 static int contains_muldiv (rtx);
391 static rtx try_combine (rtx, rtx, rtx, int *);
392 static void undo_all (void);
393 static void undo_commit (void);
394 static rtx *find_split_point (rtx *, rtx);
395 static rtx subst (rtx, rtx, rtx, int, int);
396 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
397 static rtx simplify_if_then_else (rtx);
398 static rtx simplify_set (rtx);
399 static rtx simplify_logical (rtx);
400 static rtx expand_compound_operation (rtx);
401 static const_rtx expand_field_assignment (const_rtx);
402 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
403 rtx, unsigned HOST_WIDE_INT, int, int, int);
404 static rtx extract_left_shift (rtx, int);
405 static rtx make_compound_operation (rtx, enum rtx_code);
406 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
407 unsigned HOST_WIDE_INT *);
408 static rtx canon_reg_for_combine (rtx, rtx);
409 static rtx force_to_mode (rtx, enum machine_mode,
410 unsigned HOST_WIDE_INT, int);
411 static rtx if_then_else_cond (rtx, rtx *, rtx *);
412 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
413 static int rtx_equal_for_field_assignment_p (rtx, rtx);
414 static rtx make_field_assignment (rtx);
415 static rtx apply_distributive_law (rtx);
416 static rtx distribute_and_simplify_rtx (rtx, int);
417 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
420 unsigned HOST_WIDE_INT);
421 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
422 HOST_WIDE_INT, enum machine_mode, int *);
423 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
424 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
425 int);
426 static int recog_for_combine (rtx *, rtx, rtx *);
427 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
428 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
429 static void update_table_tick (rtx);
430 static void record_value_for_reg (rtx, rtx, rtx);
431 static void check_promoted_subreg (rtx, rtx);
432 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
433 static void record_dead_and_set_regs (rtx);
434 static int get_last_value_validate (rtx *, rtx, int, int);
435 static rtx get_last_value (const_rtx);
436 static int use_crosses_set_p (const_rtx, int);
437 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
438 static int reg_dead_at_p (rtx, rtx);
439 static void move_deaths (rtx, rtx, int, rtx, rtx *);
440 static int reg_bitfield_target_p (rtx, rtx);
441 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
442 static void distribute_links (rtx);
443 static void mark_used_regs_combine (rtx);
444 static void record_promoted_value (rtx, rtx);
445 static int unmentioned_reg_p_1 (rtx *, void *);
446 static bool unmentioned_reg_p (rtx, rtx);
447 static int record_truncated_value (rtx *, void *);
448 static void record_truncated_values (rtx *, void *);
449 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
450 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
451 \f
452
453 /* It is not safe to use ordinary gen_lowpart in combine.
454 See comments in gen_lowpart_for_combine. */
455 #undef RTL_HOOKS_GEN_LOWPART
456 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
457
458 /* Our implementation of gen_lowpart never emits a new pseudo. */
459 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
460 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
461
462 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
463 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
464
465 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
466 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
467
468 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
469 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
470
471 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
472
473 \f
474 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
475 PATTERN can not be split. Otherwise, it returns an insn sequence.
476 This is a wrapper around split_insns which ensures that the
477 reg_stat vector is made larger if the splitter creates a new
478 register. */
479
480 static rtx
481 combine_split_insns (rtx pattern, rtx insn)
482 {
483 rtx ret;
484 unsigned int nregs;
485
486 ret = split_insns (pattern, insn);
487 nregs = max_reg_num ();
488 if (nregs > VEC_length (reg_stat_type, reg_stat))
489 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
490 return ret;
491 }
492
493 /* This is used by find_single_use to locate an rtx in LOC that
494 contains exactly one use of DEST, which is typically either a REG
495 or CC0. It returns a pointer to the innermost rtx expression
496 containing DEST. Appearances of DEST that are being used to
497 totally replace it are not counted. */
498
499 static rtx *
500 find_single_use_1 (rtx dest, rtx *loc)
501 {
502 rtx x = *loc;
503 enum rtx_code code = GET_CODE (x);
504 rtx *result = NULL;
505 rtx *this_result;
506 int i;
507 const char *fmt;
508
509 switch (code)
510 {
511 case CONST_INT:
512 case CONST:
513 case LABEL_REF:
514 case SYMBOL_REF:
515 case CONST_DOUBLE:
516 case CONST_VECTOR:
517 case CLOBBER:
518 return 0;
519
520 case SET:
521 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
522 of a REG that occupies all of the REG, the insn uses DEST if
523 it is mentioned in the destination or the source. Otherwise, we
524 need just check the source. */
525 if (GET_CODE (SET_DEST (x)) != CC0
526 && GET_CODE (SET_DEST (x)) != PC
527 && !REG_P (SET_DEST (x))
528 && ! (GET_CODE (SET_DEST (x)) == SUBREG
529 && REG_P (SUBREG_REG (SET_DEST (x)))
530 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
532 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
533 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
534 break;
535
536 return find_single_use_1 (dest, &SET_SRC (x));
537
538 case MEM:
539 case SUBREG:
540 return find_single_use_1 (dest, &XEXP (x, 0));
541
542 default:
543 break;
544 }
545
546 /* If it wasn't one of the common cases above, check each expression and
547 vector of this code. Look for a unique usage of DEST. */
548
549 fmt = GET_RTX_FORMAT (code);
550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
551 {
552 if (fmt[i] == 'e')
553 {
554 if (dest == XEXP (x, i)
555 || (REG_P (dest) && REG_P (XEXP (x, i))
556 && REGNO (dest) == REGNO (XEXP (x, i))))
557 this_result = loc;
558 else
559 this_result = find_single_use_1 (dest, &XEXP (x, i));
560
561 if (result == NULL)
562 result = this_result;
563 else if (this_result)
564 /* Duplicate usage. */
565 return NULL;
566 }
567 else if (fmt[i] == 'E')
568 {
569 int j;
570
571 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
572 {
573 if (XVECEXP (x, i, j) == dest
574 || (REG_P (dest)
575 && REG_P (XVECEXP (x, i, j))
576 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
577 this_result = loc;
578 else
579 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
580
581 if (result == NULL)
582 result = this_result;
583 else if (this_result)
584 return NULL;
585 }
586 }
587 }
588
589 return result;
590 }
591
592
593 /* See if DEST, produced in INSN, is used only a single time in the
594 sequel. If so, return a pointer to the innermost rtx expression in which
595 it is used.
596
597 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
598
599 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
600 care about REG_DEAD notes or LOG_LINKS.
601
602 Otherwise, we find the single use by finding an insn that has a
603 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
604 only referenced once in that insn, we know that it must be the first
605 and last insn referencing DEST. */
606
607 static rtx *
608 find_single_use (rtx dest, rtx insn, rtx *ploc)
609 {
610 basic_block bb;
611 rtx next;
612 rtx *result;
613 rtx link;
614
615 #ifdef HAVE_cc0
616 if (dest == cc0_rtx)
617 {
618 next = NEXT_INSN (insn);
619 if (next == 0
620 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
621 return 0;
622
623 result = find_single_use_1 (dest, &PATTERN (next));
624 if (result && ploc)
625 *ploc = next;
626 return result;
627 }
628 #endif
629
630 if (!REG_P (dest))
631 return 0;
632
633 bb = BLOCK_FOR_INSN (insn);
634 for (next = NEXT_INSN (insn);
635 next && BLOCK_FOR_INSN (next) == bb;
636 next = NEXT_INSN (next))
637 if (INSN_P (next) && dead_or_set_p (next, dest))
638 {
639 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
640 if (XEXP (link, 0) == insn)
641 break;
642
643 if (link)
644 {
645 result = find_single_use_1 (dest, &PATTERN (next));
646 if (ploc)
647 *ploc = next;
648 return result;
649 }
650 }
651
652 return 0;
653 }
654 \f
655 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
656 insn. The substitution can be undone by undo_all. If INTO is already
657 set to NEWVAL, do not record this change. Because computing NEWVAL might
658 also call SUBST, we have to compute it before we put anything into
659 the undo table. */
660
661 static void
662 do_SUBST (rtx *into, rtx newval)
663 {
664 struct undo *buf;
665 rtx oldval = *into;
666
667 if (oldval == newval)
668 return;
669
670 /* We'd like to catch as many invalid transformations here as
671 possible. Unfortunately, there are way too many mode changes
672 that are perfectly valid, so we'd waste too much effort for
673 little gain doing the checks here. Focus on catching invalid
674 transformations involving integer constants. */
675 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
676 && CONST_INT_P (newval))
677 {
678 /* Sanity check that we're replacing oldval with a CONST_INT
679 that is a valid sign-extension for the original mode. */
680 gcc_assert (INTVAL (newval)
681 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
682
683 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
684 CONST_INT is not valid, because after the replacement, the
685 original mode would be gone. Unfortunately, we can't tell
686 when do_SUBST is called to replace the operand thereof, so we
687 perform this test on oldval instead, checking whether an
688 invalid replacement took place before we got here. */
689 gcc_assert (!(GET_CODE (oldval) == SUBREG
690 && CONST_INT_P (SUBREG_REG (oldval))));
691 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
692 && CONST_INT_P (XEXP (oldval, 0))));
693 }
694
695 if (undobuf.frees)
696 buf = undobuf.frees, undobuf.frees = buf->next;
697 else
698 buf = XNEW (struct undo);
699
700 buf->kind = UNDO_RTX;
701 buf->where.r = into;
702 buf->old_contents.r = oldval;
703 *into = newval;
704
705 buf->next = undobuf.undos, undobuf.undos = buf;
706 }
707
708 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
709
710 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
711 for the value of a HOST_WIDE_INT value (including CONST_INT) is
712 not safe. */
713
714 static void
715 do_SUBST_INT (int *into, int newval)
716 {
717 struct undo *buf;
718 int oldval = *into;
719
720 if (oldval == newval)
721 return;
722
723 if (undobuf.frees)
724 buf = undobuf.frees, undobuf.frees = buf->next;
725 else
726 buf = XNEW (struct undo);
727
728 buf->kind = UNDO_INT;
729 buf->where.i = into;
730 buf->old_contents.i = oldval;
731 *into = newval;
732
733 buf->next = undobuf.undos, undobuf.undos = buf;
734 }
735
736 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
737
738 /* Similar to SUBST, but just substitute the mode. This is used when
739 changing the mode of a pseudo-register, so that any other
740 references to the entry in the regno_reg_rtx array will change as
741 well. */
742
743 static void
744 do_SUBST_MODE (rtx *into, enum machine_mode newval)
745 {
746 struct undo *buf;
747 enum machine_mode oldval = GET_MODE (*into);
748
749 if (oldval == newval)
750 return;
751
752 if (undobuf.frees)
753 buf = undobuf.frees, undobuf.frees = buf->next;
754 else
755 buf = XNEW (struct undo);
756
757 buf->kind = UNDO_MODE;
758 buf->where.r = into;
759 buf->old_contents.m = oldval;
760 adjust_reg_mode (*into, newval);
761
762 buf->next = undobuf.undos, undobuf.undos = buf;
763 }
764
765 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
766 \f
767 /* Subroutine of try_combine. Determine whether the combine replacement
768 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
769 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
770 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
771 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
772 function returns false, if the costs of all instructions can be
773 estimated, and the replacements are more expensive than the original
774 sequence. */
775
776 static bool
777 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
778 rtx newotherpat)
779 {
780 int i1_cost, i2_cost, i3_cost;
781 int new_i2_cost, new_i3_cost;
782 int old_cost, new_cost;
783
784 /* Lookup the original insn_rtx_costs. */
785 i2_cost = INSN_COST (i2);
786 i3_cost = INSN_COST (i3);
787
788 if (i1)
789 {
790 i1_cost = INSN_COST (i1);
791 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
792 ? i1_cost + i2_cost + i3_cost : 0;
793 }
794 else
795 {
796 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
797 i1_cost = 0;
798 }
799
800 /* Calculate the replacement insn_rtx_costs. */
801 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
802 if (newi2pat)
803 {
804 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
805 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
806 ? new_i2_cost + new_i3_cost : 0;
807 }
808 else
809 {
810 new_cost = new_i3_cost;
811 new_i2_cost = 0;
812 }
813
814 if (undobuf.other_insn)
815 {
816 int old_other_cost, new_other_cost;
817
818 old_other_cost = INSN_COST (undobuf.other_insn);
819 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
820 if (old_other_cost > 0 && new_other_cost > 0)
821 {
822 old_cost += old_other_cost;
823 new_cost += new_other_cost;
824 }
825 else
826 old_cost = 0;
827 }
828
829 /* Disallow this recombination if both new_cost and old_cost are
830 greater than zero, and new_cost is greater than old cost. */
831 if (old_cost > 0
832 && new_cost > old_cost)
833 {
834 if (dump_file)
835 {
836 if (i1)
837 {
838 fprintf (dump_file,
839 "rejecting combination of insns %d, %d and %d\n",
840 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
841 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
842 i1_cost, i2_cost, i3_cost, old_cost);
843 }
844 else
845 {
846 fprintf (dump_file,
847 "rejecting combination of insns %d and %d\n",
848 INSN_UID (i2), INSN_UID (i3));
849 fprintf (dump_file, "original costs %d + %d = %d\n",
850 i2_cost, i3_cost, old_cost);
851 }
852
853 if (newi2pat)
854 {
855 fprintf (dump_file, "replacement costs %d + %d = %d\n",
856 new_i2_cost, new_i3_cost, new_cost);
857 }
858 else
859 fprintf (dump_file, "replacement cost %d\n", new_cost);
860 }
861
862 return false;
863 }
864
865 /* Update the uid_insn_cost array with the replacement costs. */
866 INSN_COST (i2) = new_i2_cost;
867 INSN_COST (i3) = new_i3_cost;
868 if (i1)
869 INSN_COST (i1) = 0;
870
871 return true;
872 }
873
874
875 /* Delete any insns that copy a register to itself. */
876
877 static void
878 delete_noop_moves (void)
879 {
880 rtx insn, next;
881 basic_block bb;
882
883 FOR_EACH_BB (bb)
884 {
885 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
886 {
887 next = NEXT_INSN (insn);
888 if (INSN_P (insn) && noop_move_p (insn))
889 {
890 if (dump_file)
891 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
892
893 delete_insn_and_edges (insn);
894 }
895 }
896 }
897 }
898
899 \f
900 /* Fill in log links field for all insns. */
901
902 static void
903 create_log_links (void)
904 {
905 basic_block bb;
906 rtx *next_use, insn;
907 df_ref *def_vec, *use_vec;
908
909 next_use = XCNEWVEC (rtx, max_reg_num ());
910
911 /* Pass through each block from the end, recording the uses of each
912 register and establishing log links when def is encountered.
913 Note that we do not clear next_use array in order to save time,
914 so we have to test whether the use is in the same basic block as def.
915
916 There are a few cases below when we do not consider the definition or
917 usage -- these are taken from original flow.c did. Don't ask me why it is
918 done this way; I don't know and if it works, I don't want to know. */
919
920 FOR_EACH_BB (bb)
921 {
922 FOR_BB_INSNS_REVERSE (bb, insn)
923 {
924 if (!NONDEBUG_INSN_P (insn))
925 continue;
926
927 /* Log links are created only once. */
928 gcc_assert (!LOG_LINKS (insn));
929
930 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
931 {
932 df_ref def = *def_vec;
933 int regno = DF_REF_REGNO (def);
934 rtx use_insn;
935
936 if (!next_use[regno])
937 continue;
938
939 /* Do not consider if it is pre/post modification in MEM. */
940 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
941 continue;
942
943 /* Do not make the log link for frame pointer. */
944 if ((regno == FRAME_POINTER_REGNUM
945 && (! reload_completed || frame_pointer_needed))
946 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
947 || (regno == HARD_FRAME_POINTER_REGNUM
948 && (! reload_completed || frame_pointer_needed))
949 #endif
950 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
951 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
952 #endif
953 )
954 continue;
955
956 use_insn = next_use[regno];
957 if (BLOCK_FOR_INSN (use_insn) == bb)
958 {
959 /* flow.c claimed:
960
961 We don't build a LOG_LINK for hard registers contained
962 in ASM_OPERANDs. If these registers get replaced,
963 we might wind up changing the semantics of the insn,
964 even if reload can make what appear to be valid
965 assignments later. */
966 if (regno >= FIRST_PSEUDO_REGISTER
967 || asm_noperands (PATTERN (use_insn)) < 0)
968 {
969 /* Don't add duplicate links between instructions. */
970 rtx links;
971 for (links = LOG_LINKS (use_insn); links;
972 links = XEXP (links, 1))
973 if (insn == XEXP (links, 0))
974 break;
975
976 if (!links)
977 LOG_LINKS (use_insn) =
978 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
979 }
980 }
981 next_use[regno] = NULL_RTX;
982 }
983
984 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
985 {
986 df_ref use = *use_vec;
987 int regno = DF_REF_REGNO (use);
988
989 /* Do not consider the usage of the stack pointer
990 by function call. */
991 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
992 continue;
993
994 next_use[regno] = insn;
995 }
996 }
997 }
998
999 free (next_use);
1000 }
1001
1002 /* Clear LOG_LINKS fields of insns. */
1003
1004 static void
1005 clear_log_links (void)
1006 {
1007 rtx insn;
1008
1009 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1010 if (INSN_P (insn))
1011 free_INSN_LIST_list (&LOG_LINKS (insn));
1012 }
1013 \f
1014 /* Main entry point for combiner. F is the first insn of the function.
1015 NREGS is the first unused pseudo-reg number.
1016
1017 Return nonzero if the combiner has turned an indirect jump
1018 instruction into a direct jump. */
1019 static int
1020 combine_instructions (rtx f, unsigned int nregs)
1021 {
1022 rtx insn, next;
1023 #ifdef HAVE_cc0
1024 rtx prev;
1025 #endif
1026 rtx links, nextlinks;
1027 rtx first;
1028 basic_block last_bb;
1029
1030 int new_direct_jump_p = 0;
1031
1032 for (first = f; first && !INSN_P (first); )
1033 first = NEXT_INSN (first);
1034 if (!first)
1035 return 0;
1036
1037 combine_attempts = 0;
1038 combine_merges = 0;
1039 combine_extras = 0;
1040 combine_successes = 0;
1041
1042 rtl_hooks = combine_rtl_hooks;
1043
1044 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1045
1046 init_recog_no_volatile ();
1047
1048 /* Allocate array for insn info. */
1049 max_uid_known = get_max_uid ();
1050 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1051 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1052
1053 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1054
1055 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1056 problems when, for example, we have j <<= 1 in a loop. */
1057
1058 nonzero_sign_valid = 0;
1059 label_tick = label_tick_ebb_start = 1;
1060
1061 /* Scan all SETs and see if we can deduce anything about what
1062 bits are known to be zero for some registers and how many copies
1063 of the sign bit are known to exist for those registers.
1064
1065 Also set any known values so that we can use it while searching
1066 for what bits are known to be set. */
1067
1068 setup_incoming_promotions (first);
1069 /* Allow the entry block and the first block to fall into the same EBB.
1070 Conceptually the incoming promotions are assigned to the entry block. */
1071 last_bb = ENTRY_BLOCK_PTR;
1072
1073 create_log_links ();
1074 FOR_EACH_BB (this_basic_block)
1075 {
1076 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1077 last_call_luid = 0;
1078 mem_last_set = -1;
1079
1080 label_tick++;
1081 if (!single_pred_p (this_basic_block)
1082 || single_pred (this_basic_block) != last_bb)
1083 label_tick_ebb_start = label_tick;
1084 last_bb = this_basic_block;
1085
1086 FOR_BB_INSNS (this_basic_block, insn)
1087 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1088 {
1089 subst_low_luid = DF_INSN_LUID (insn);
1090 subst_insn = insn;
1091
1092 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1093 insn);
1094 record_dead_and_set_regs (insn);
1095
1096 #ifdef AUTO_INC_DEC
1097 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1098 if (REG_NOTE_KIND (links) == REG_INC)
1099 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1100 insn);
1101 #endif
1102
1103 /* Record the current insn_rtx_cost of this instruction. */
1104 if (NONJUMP_INSN_P (insn))
1105 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1106 optimize_this_for_speed_p);
1107 if (dump_file)
1108 fprintf(dump_file, "insn_cost %d: %d\n",
1109 INSN_UID (insn), INSN_COST (insn));
1110 }
1111 }
1112
1113 nonzero_sign_valid = 1;
1114
1115 /* Now scan all the insns in forward order. */
1116 label_tick = label_tick_ebb_start = 1;
1117 init_reg_last ();
1118 setup_incoming_promotions (first);
1119 last_bb = ENTRY_BLOCK_PTR;
1120
1121 FOR_EACH_BB (this_basic_block)
1122 {
1123 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1124 last_call_luid = 0;
1125 mem_last_set = -1;
1126
1127 label_tick++;
1128 if (!single_pred_p (this_basic_block)
1129 || single_pred (this_basic_block) != last_bb)
1130 label_tick_ebb_start = label_tick;
1131 last_bb = this_basic_block;
1132
1133 rtl_profile_for_bb (this_basic_block);
1134 for (insn = BB_HEAD (this_basic_block);
1135 insn != NEXT_INSN (BB_END (this_basic_block));
1136 insn = next ? next : NEXT_INSN (insn))
1137 {
1138 next = 0;
1139 if (NONDEBUG_INSN_P (insn))
1140 {
1141 /* See if we know about function return values before this
1142 insn based upon SUBREG flags. */
1143 check_promoted_subreg (insn, PATTERN (insn));
1144
1145 /* See if we can find hardregs and subreg of pseudos in
1146 narrower modes. This could help turning TRUNCATEs
1147 into SUBREGs. */
1148 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1149
1150 /* Try this insn with each insn it links back to. */
1151
1152 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1153 if ((next = try_combine (insn, XEXP (links, 0),
1154 NULL_RTX, &new_direct_jump_p)) != 0)
1155 goto retry;
1156
1157 /* Try each sequence of three linked insns ending with this one. */
1158
1159 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1160 {
1161 rtx link = XEXP (links, 0);
1162
1163 /* If the linked insn has been replaced by a note, then there
1164 is no point in pursuing this chain any further. */
1165 if (NOTE_P (link))
1166 continue;
1167
1168 for (nextlinks = LOG_LINKS (link);
1169 nextlinks;
1170 nextlinks = XEXP (nextlinks, 1))
1171 if ((next = try_combine (insn, link,
1172 XEXP (nextlinks, 0),
1173 &new_direct_jump_p)) != 0)
1174 goto retry;
1175 }
1176
1177 #ifdef HAVE_cc0
1178 /* Try to combine a jump insn that uses CC0
1179 with a preceding insn that sets CC0, and maybe with its
1180 logical predecessor as well.
1181 This is how we make decrement-and-branch insns.
1182 We need this special code because data flow connections
1183 via CC0 do not get entered in LOG_LINKS. */
1184
1185 if (JUMP_P (insn)
1186 && (prev = prev_nonnote_insn (insn)) != 0
1187 && NONJUMP_INSN_P (prev)
1188 && sets_cc0_p (PATTERN (prev)))
1189 {
1190 if ((next = try_combine (insn, prev,
1191 NULL_RTX, &new_direct_jump_p)) != 0)
1192 goto retry;
1193
1194 for (nextlinks = LOG_LINKS (prev); nextlinks;
1195 nextlinks = XEXP (nextlinks, 1))
1196 if ((next = try_combine (insn, prev,
1197 XEXP (nextlinks, 0),
1198 &new_direct_jump_p)) != 0)
1199 goto retry;
1200 }
1201
1202 /* Do the same for an insn that explicitly references CC0. */
1203 if (NONJUMP_INSN_P (insn)
1204 && (prev = prev_nonnote_insn (insn)) != 0
1205 && NONJUMP_INSN_P (prev)
1206 && sets_cc0_p (PATTERN (prev))
1207 && GET_CODE (PATTERN (insn)) == SET
1208 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1209 {
1210 if ((next = try_combine (insn, prev,
1211 NULL_RTX, &new_direct_jump_p)) != 0)
1212 goto retry;
1213
1214 for (nextlinks = LOG_LINKS (prev); nextlinks;
1215 nextlinks = XEXP (nextlinks, 1))
1216 if ((next = try_combine (insn, prev,
1217 XEXP (nextlinks, 0),
1218 &new_direct_jump_p)) != 0)
1219 goto retry;
1220 }
1221
1222 /* Finally, see if any of the insns that this insn links to
1223 explicitly references CC0. If so, try this insn, that insn,
1224 and its predecessor if it sets CC0. */
1225 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1226 if (NONJUMP_INSN_P (XEXP (links, 0))
1227 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1228 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1229 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1230 && NONJUMP_INSN_P (prev)
1231 && sets_cc0_p (PATTERN (prev))
1232 && (next = try_combine (insn, XEXP (links, 0),
1233 prev, &new_direct_jump_p)) != 0)
1234 goto retry;
1235 #endif
1236
1237 /* Try combining an insn with two different insns whose results it
1238 uses. */
1239 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1240 for (nextlinks = XEXP (links, 1); nextlinks;
1241 nextlinks = XEXP (nextlinks, 1))
1242 if ((next = try_combine (insn, XEXP (links, 0),
1243 XEXP (nextlinks, 0),
1244 &new_direct_jump_p)) != 0)
1245 goto retry;
1246
1247 /* Try this insn with each REG_EQUAL note it links back to. */
1248 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1249 {
1250 rtx set, note;
1251 rtx temp = XEXP (links, 0);
1252 if ((set = single_set (temp)) != 0
1253 && (note = find_reg_equal_equiv_note (temp)) != 0
1254 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1255 /* Avoid using a register that may already been marked
1256 dead by an earlier instruction. */
1257 && ! unmentioned_reg_p (note, SET_SRC (set))
1258 && (GET_MODE (note) == VOIDmode
1259 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1260 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1261 {
1262 /* Temporarily replace the set's source with the
1263 contents of the REG_EQUAL note. The insn will
1264 be deleted or recognized by try_combine. */
1265 rtx orig = SET_SRC (set);
1266 SET_SRC (set) = note;
1267 i2mod = temp;
1268 i2mod_old_rhs = copy_rtx (orig);
1269 i2mod_new_rhs = copy_rtx (note);
1270 next = try_combine (insn, i2mod, NULL_RTX,
1271 &new_direct_jump_p);
1272 i2mod = NULL_RTX;
1273 if (next)
1274 goto retry;
1275 SET_SRC (set) = orig;
1276 }
1277 }
1278
1279 if (!NOTE_P (insn))
1280 record_dead_and_set_regs (insn);
1281
1282 retry:
1283 ;
1284 }
1285 }
1286 }
1287
1288 default_rtl_profile ();
1289 clear_log_links ();
1290 clear_bb_flags ();
1291 new_direct_jump_p |= purge_all_dead_edges ();
1292 delete_noop_moves ();
1293
1294 /* Clean up. */
1295 free (uid_log_links);
1296 free (uid_insn_cost);
1297 VEC_free (reg_stat_type, heap, reg_stat);
1298
1299 {
1300 struct undo *undo, *next;
1301 for (undo = undobuf.frees; undo; undo = next)
1302 {
1303 next = undo->next;
1304 free (undo);
1305 }
1306 undobuf.frees = 0;
1307 }
1308
1309 total_attempts += combine_attempts;
1310 total_merges += combine_merges;
1311 total_extras += combine_extras;
1312 total_successes += combine_successes;
1313
1314 nonzero_sign_valid = 0;
1315 rtl_hooks = general_rtl_hooks;
1316
1317 /* Make recognizer allow volatile MEMs again. */
1318 init_recog ();
1319
1320 return new_direct_jump_p;
1321 }
1322
1323 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1324
1325 static void
1326 init_reg_last (void)
1327 {
1328 unsigned int i;
1329 reg_stat_type *p;
1330
1331 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1332 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1333 }
1334 \f
1335 /* Set up any promoted values for incoming argument registers. */
1336
1337 static void
1338 setup_incoming_promotions (rtx first)
1339 {
1340 tree arg;
1341 bool strictly_local = false;
1342
1343 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1344 arg = TREE_CHAIN (arg))
1345 {
1346 rtx reg = DECL_INCOMING_RTL (arg);
1347 int uns1, uns3;
1348 enum machine_mode mode1, mode2, mode3, mode4;
1349
1350 /* Only continue if the incoming argument is in a register. */
1351 if (!REG_P (reg))
1352 continue;
1353
1354 /* Determine, if possible, whether all call sites of the current
1355 function lie within the current compilation unit. (This does
1356 take into account the exporting of a function via taking its
1357 address, and so forth.) */
1358 strictly_local = cgraph_local_info (current_function_decl)->local;
1359
1360 /* The mode and signedness of the argument before any promotions happen
1361 (equal to the mode of the pseudo holding it at that stage). */
1362 mode1 = TYPE_MODE (TREE_TYPE (arg));
1363 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1364
1365 /* The mode and signedness of the argument after any source language and
1366 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1367 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1368 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1369
1370 /* The mode and signedness of the argument as it is actually passed,
1371 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1372 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1373 TREE_TYPE (cfun->decl), 0);
1374
1375 /* The mode of the register in which the argument is being passed. */
1376 mode4 = GET_MODE (reg);
1377
1378 /* Eliminate sign extensions in the callee when possible. Only
1379 do this when:
1380 (a) a mode promotion has occurred;
1381 (b) the mode of the register is the same as the mode of
1382 the argument as it is passed; and
1383 (c) the signedness does not change across any of the promotions; and
1384 (d) when no language-level promotions (which we cannot guarantee
1385 will have been done by an external caller) are necessary,
1386 unless we know that this function is only ever called from
1387 the current compilation unit -- all of whose call sites will
1388 do the mode1 --> mode2 promotion. */
1389 if (mode1 != mode3
1390 && mode3 == mode4
1391 && uns1 == uns3
1392 && (mode1 == mode2 || strictly_local))
1393 {
1394 /* Record that the value was promoted from mode1 to mode3,
1395 so that any sign extension at the head of the current
1396 function may be eliminated. */
1397 rtx x;
1398 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1399 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1400 record_value_for_reg (reg, first, x);
1401 }
1402 }
1403 }
1404
1405 /* Called via note_stores. If X is a pseudo that is narrower than
1406 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1407
1408 If we are setting only a portion of X and we can't figure out what
1409 portion, assume all bits will be used since we don't know what will
1410 be happening.
1411
1412 Similarly, set how many bits of X are known to be copies of the sign bit
1413 at all locations in the function. This is the smallest number implied
1414 by any set of X. */
1415
1416 static void
1417 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1418 {
1419 rtx insn = (rtx) data;
1420 unsigned int num;
1421
1422 if (REG_P (x)
1423 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1424 /* If this register is undefined at the start of the file, we can't
1425 say what its contents were. */
1426 && ! REGNO_REG_SET_P
1427 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1428 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1429 {
1430 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1431
1432 if (set == 0 || GET_CODE (set) == CLOBBER)
1433 {
1434 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1435 rsp->sign_bit_copies = 1;
1436 return;
1437 }
1438
1439 /* If this register is being initialized using itself, and the
1440 register is uninitialized in this basic block, and there are
1441 no LOG_LINKS which set the register, then part of the
1442 register is uninitialized. In that case we can't assume
1443 anything about the number of nonzero bits.
1444
1445 ??? We could do better if we checked this in
1446 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1447 could avoid making assumptions about the insn which initially
1448 sets the register, while still using the information in other
1449 insns. We would have to be careful to check every insn
1450 involved in the combination. */
1451
1452 if (insn
1453 && reg_referenced_p (x, PATTERN (insn))
1454 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1455 REGNO (x)))
1456 {
1457 rtx link;
1458
1459 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1460 {
1461 if (dead_or_set_p (XEXP (link, 0), x))
1462 break;
1463 }
1464 if (!link)
1465 {
1466 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1467 rsp->sign_bit_copies = 1;
1468 return;
1469 }
1470 }
1471
1472 /* If this is a complex assignment, see if we can convert it into a
1473 simple assignment. */
1474 set = expand_field_assignment (set);
1475
1476 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1477 set what we know about X. */
1478
1479 if (SET_DEST (set) == x
1480 || (GET_CODE (SET_DEST (set)) == SUBREG
1481 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1482 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1483 && SUBREG_REG (SET_DEST (set)) == x))
1484 {
1485 rtx src = SET_SRC (set);
1486
1487 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1488 /* If X is narrower than a word and SRC is a non-negative
1489 constant that would appear negative in the mode of X,
1490 sign-extend it for use in reg_stat[].nonzero_bits because some
1491 machines (maybe most) will actually do the sign-extension
1492 and this is the conservative approach.
1493
1494 ??? For 2.5, try to tighten up the MD files in this regard
1495 instead of this kludge. */
1496
1497 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1498 && CONST_INT_P (src)
1499 && INTVAL (src) > 0
1500 && 0 != (INTVAL (src)
1501 & ((HOST_WIDE_INT) 1
1502 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1503 src = GEN_INT (INTVAL (src)
1504 | ((HOST_WIDE_INT) (-1)
1505 << GET_MODE_BITSIZE (GET_MODE (x))));
1506 #endif
1507
1508 /* Don't call nonzero_bits if it cannot change anything. */
1509 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1510 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1511 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1512 if (rsp->sign_bit_copies == 0
1513 || rsp->sign_bit_copies > num)
1514 rsp->sign_bit_copies = num;
1515 }
1516 else
1517 {
1518 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1519 rsp->sign_bit_copies = 1;
1520 }
1521 }
1522 }
1523 \f
1524 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1525 insns that were previously combined into I3 or that will be combined
1526 into the merger of INSN and I3.
1527
1528 Return 0 if the combination is not allowed for any reason.
1529
1530 If the combination is allowed, *PDEST will be set to the single
1531 destination of INSN and *PSRC to the single source, and this function
1532 will return 1. */
1533
1534 static int
1535 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1536 rtx *pdest, rtx *psrc)
1537 {
1538 int i;
1539 const_rtx set = 0;
1540 rtx src, dest;
1541 rtx p;
1542 #ifdef AUTO_INC_DEC
1543 rtx link;
1544 #endif
1545 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1546 && next_active_insn (succ) == i3)
1547 : next_active_insn (insn) == i3);
1548
1549 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1550 or a PARALLEL consisting of such a SET and CLOBBERs.
1551
1552 If INSN has CLOBBER parallel parts, ignore them for our processing.
1553 By definition, these happen during the execution of the insn. When it
1554 is merged with another insn, all bets are off. If they are, in fact,
1555 needed and aren't also supplied in I3, they may be added by
1556 recog_for_combine. Otherwise, it won't match.
1557
1558 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1559 note.
1560
1561 Get the source and destination of INSN. If more than one, can't
1562 combine. */
1563
1564 if (GET_CODE (PATTERN (insn)) == SET)
1565 set = PATTERN (insn);
1566 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1567 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1568 {
1569 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1570 {
1571 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1572
1573 switch (GET_CODE (elt))
1574 {
1575 /* This is important to combine floating point insns
1576 for the SH4 port. */
1577 case USE:
1578 /* Combining an isolated USE doesn't make sense.
1579 We depend here on combinable_i3pat to reject them. */
1580 /* The code below this loop only verifies that the inputs of
1581 the SET in INSN do not change. We call reg_set_between_p
1582 to verify that the REG in the USE does not change between
1583 I3 and INSN.
1584 If the USE in INSN was for a pseudo register, the matching
1585 insn pattern will likely match any register; combining this
1586 with any other USE would only be safe if we knew that the
1587 used registers have identical values, or if there was
1588 something to tell them apart, e.g. different modes. For
1589 now, we forgo such complicated tests and simply disallow
1590 combining of USES of pseudo registers with any other USE. */
1591 if (REG_P (XEXP (elt, 0))
1592 && GET_CODE (PATTERN (i3)) == PARALLEL)
1593 {
1594 rtx i3pat = PATTERN (i3);
1595 int i = XVECLEN (i3pat, 0) - 1;
1596 unsigned int regno = REGNO (XEXP (elt, 0));
1597
1598 do
1599 {
1600 rtx i3elt = XVECEXP (i3pat, 0, i);
1601
1602 if (GET_CODE (i3elt) == USE
1603 && REG_P (XEXP (i3elt, 0))
1604 && (REGNO (XEXP (i3elt, 0)) == regno
1605 ? reg_set_between_p (XEXP (elt, 0),
1606 PREV_INSN (insn), i3)
1607 : regno >= FIRST_PSEUDO_REGISTER))
1608 return 0;
1609 }
1610 while (--i >= 0);
1611 }
1612 break;
1613
1614 /* We can ignore CLOBBERs. */
1615 case CLOBBER:
1616 break;
1617
1618 case SET:
1619 /* Ignore SETs whose result isn't used but not those that
1620 have side-effects. */
1621 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1622 && insn_nothrow_p (insn)
1623 && !side_effects_p (elt))
1624 break;
1625
1626 /* If we have already found a SET, this is a second one and
1627 so we cannot combine with this insn. */
1628 if (set)
1629 return 0;
1630
1631 set = elt;
1632 break;
1633
1634 default:
1635 /* Anything else means we can't combine. */
1636 return 0;
1637 }
1638 }
1639
1640 if (set == 0
1641 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1642 so don't do anything with it. */
1643 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1644 return 0;
1645 }
1646 else
1647 return 0;
1648
1649 if (set == 0)
1650 return 0;
1651
1652 set = expand_field_assignment (set);
1653 src = SET_SRC (set), dest = SET_DEST (set);
1654
1655 /* Don't eliminate a store in the stack pointer. */
1656 if (dest == stack_pointer_rtx
1657 /* Don't combine with an insn that sets a register to itself if it has
1658 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1659 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1660 /* Can't merge an ASM_OPERANDS. */
1661 || GET_CODE (src) == ASM_OPERANDS
1662 /* Can't merge a function call. */
1663 || GET_CODE (src) == CALL
1664 /* Don't eliminate a function call argument. */
1665 || (CALL_P (i3)
1666 && (find_reg_fusage (i3, USE, dest)
1667 || (REG_P (dest)
1668 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1669 && global_regs[REGNO (dest)])))
1670 /* Don't substitute into an incremented register. */
1671 || FIND_REG_INC_NOTE (i3, dest)
1672 || (succ && FIND_REG_INC_NOTE (succ, dest))
1673 /* Don't substitute into a non-local goto, this confuses CFG. */
1674 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1675 /* Make sure that DEST is not used after SUCC but before I3. */
1676 || (succ && ! all_adjacent
1677 && reg_used_between_p (dest, succ, i3))
1678 /* Make sure that the value that is to be substituted for the register
1679 does not use any registers whose values alter in between. However,
1680 If the insns are adjacent, a use can't cross a set even though we
1681 think it might (this can happen for a sequence of insns each setting
1682 the same destination; last_set of that register might point to
1683 a NOTE). If INSN has a REG_EQUIV note, the register is always
1684 equivalent to the memory so the substitution is valid even if there
1685 are intervening stores. Also, don't move a volatile asm or
1686 UNSPEC_VOLATILE across any other insns. */
1687 || (! all_adjacent
1688 && (((!MEM_P (src)
1689 || ! find_reg_note (insn, REG_EQUIV, src))
1690 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1691 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1692 || GET_CODE (src) == UNSPEC_VOLATILE))
1693 /* Don't combine across a CALL_INSN, because that would possibly
1694 change whether the life span of some REGs crosses calls or not,
1695 and it is a pain to update that information.
1696 Exception: if source is a constant, moving it later can't hurt.
1697 Accept that as a special case. */
1698 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1699 return 0;
1700
1701 /* DEST must either be a REG or CC0. */
1702 if (REG_P (dest))
1703 {
1704 /* If register alignment is being enforced for multi-word items in all
1705 cases except for parameters, it is possible to have a register copy
1706 insn referencing a hard register that is not allowed to contain the
1707 mode being copied and which would not be valid as an operand of most
1708 insns. Eliminate this problem by not combining with such an insn.
1709
1710 Also, on some machines we don't want to extend the life of a hard
1711 register. */
1712
1713 if (REG_P (src)
1714 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1715 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1716 /* Don't extend the life of a hard register unless it is
1717 user variable (if we have few registers) or it can't
1718 fit into the desired register (meaning something special
1719 is going on).
1720 Also avoid substituting a return register into I3, because
1721 reload can't handle a conflict with constraints of other
1722 inputs. */
1723 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1724 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1725 return 0;
1726 }
1727 else if (GET_CODE (dest) != CC0)
1728 return 0;
1729
1730
1731 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1732 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1733 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1734 {
1735 /* Don't substitute for a register intended as a clobberable
1736 operand. */
1737 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1738 if (rtx_equal_p (reg, dest))
1739 return 0;
1740
1741 /* If the clobber represents an earlyclobber operand, we must not
1742 substitute an expression containing the clobbered register.
1743 As we do not analyze the constraint strings here, we have to
1744 make the conservative assumption. However, if the register is
1745 a fixed hard reg, the clobber cannot represent any operand;
1746 we leave it up to the machine description to either accept or
1747 reject use-and-clobber patterns. */
1748 if (!REG_P (reg)
1749 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1750 || !fixed_regs[REGNO (reg)])
1751 if (reg_overlap_mentioned_p (reg, src))
1752 return 0;
1753 }
1754
1755 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1756 or not), reject, unless nothing volatile comes between it and I3 */
1757
1758 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1759 {
1760 /* Make sure succ doesn't contain a volatile reference. */
1761 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1762 return 0;
1763
1764 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1765 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1766 return 0;
1767 }
1768
1769 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1770 to be an explicit register variable, and was chosen for a reason. */
1771
1772 if (GET_CODE (src) == ASM_OPERANDS
1773 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1774 return 0;
1775
1776 /* If there are any volatile insns between INSN and I3, reject, because
1777 they might affect machine state. */
1778
1779 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1780 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1781 return 0;
1782
1783 /* If INSN contains an autoincrement or autodecrement, make sure that
1784 register is not used between there and I3, and not already used in
1785 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1786 Also insist that I3 not be a jump; if it were one
1787 and the incremented register were spilled, we would lose. */
1788
1789 #ifdef AUTO_INC_DEC
1790 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1791 if (REG_NOTE_KIND (link) == REG_INC
1792 && (JUMP_P (i3)
1793 || reg_used_between_p (XEXP (link, 0), insn, i3)
1794 || (pred != NULL_RTX
1795 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1796 || (succ != NULL_RTX
1797 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1798 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1799 return 0;
1800 #endif
1801
1802 #ifdef HAVE_cc0
1803 /* Don't combine an insn that follows a CC0-setting insn.
1804 An insn that uses CC0 must not be separated from the one that sets it.
1805 We do, however, allow I2 to follow a CC0-setting insn if that insn
1806 is passed as I1; in that case it will be deleted also.
1807 We also allow combining in this case if all the insns are adjacent
1808 because that would leave the two CC0 insns adjacent as well.
1809 It would be more logical to test whether CC0 occurs inside I1 or I2,
1810 but that would be much slower, and this ought to be equivalent. */
1811
1812 p = prev_nonnote_insn (insn);
1813 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1814 && ! all_adjacent)
1815 return 0;
1816 #endif
1817
1818 /* If we get here, we have passed all the tests and the combination is
1819 to be allowed. */
1820
1821 *pdest = dest;
1822 *psrc = src;
1823
1824 return 1;
1825 }
1826 \f
1827 /* LOC is the location within I3 that contains its pattern or the component
1828 of a PARALLEL of the pattern. We validate that it is valid for combining.
1829
1830 One problem is if I3 modifies its output, as opposed to replacing it
1831 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1832 so would produce an insn that is not equivalent to the original insns.
1833
1834 Consider:
1835
1836 (set (reg:DI 101) (reg:DI 100))
1837 (set (subreg:SI (reg:DI 101) 0) <foo>)
1838
1839 This is NOT equivalent to:
1840
1841 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1842 (set (reg:DI 101) (reg:DI 100))])
1843
1844 Not only does this modify 100 (in which case it might still be valid
1845 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1846
1847 We can also run into a problem if I2 sets a register that I1
1848 uses and I1 gets directly substituted into I3 (not via I2). In that
1849 case, we would be getting the wrong value of I2DEST into I3, so we
1850 must reject the combination. This case occurs when I2 and I1 both
1851 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1852 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1853 of a SET must prevent combination from occurring.
1854
1855 Before doing the above check, we first try to expand a field assignment
1856 into a set of logical operations.
1857
1858 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1859 we place a register that is both set and used within I3. If more than one
1860 such register is detected, we fail.
1861
1862 Return 1 if the combination is valid, zero otherwise. */
1863
1864 static int
1865 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1866 int i1_not_in_src, rtx *pi3dest_killed)
1867 {
1868 rtx x = *loc;
1869
1870 if (GET_CODE (x) == SET)
1871 {
1872 rtx set = x ;
1873 rtx dest = SET_DEST (set);
1874 rtx src = SET_SRC (set);
1875 rtx inner_dest = dest;
1876 rtx subdest;
1877
1878 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1879 || GET_CODE (inner_dest) == SUBREG
1880 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1881 inner_dest = XEXP (inner_dest, 0);
1882
1883 /* Check for the case where I3 modifies its output, as discussed
1884 above. We don't want to prevent pseudos from being combined
1885 into the address of a MEM, so only prevent the combination if
1886 i1 or i2 set the same MEM. */
1887 if ((inner_dest != dest &&
1888 (!MEM_P (inner_dest)
1889 || rtx_equal_p (i2dest, inner_dest)
1890 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1891 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1892 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1893
1894 /* This is the same test done in can_combine_p except we can't test
1895 all_adjacent; we don't have to, since this instruction will stay
1896 in place, thus we are not considering increasing the lifetime of
1897 INNER_DEST.
1898
1899 Also, if this insn sets a function argument, combining it with
1900 something that might need a spill could clobber a previous
1901 function argument; the all_adjacent test in can_combine_p also
1902 checks this; here, we do a more specific test for this case. */
1903
1904 || (REG_P (inner_dest)
1905 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1906 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1907 GET_MODE (inner_dest))))
1908 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1909 return 0;
1910
1911 /* If DEST is used in I3, it is being killed in this insn, so
1912 record that for later. We have to consider paradoxical
1913 subregs here, since they kill the whole register, but we
1914 ignore partial subregs, STRICT_LOW_PART, etc.
1915 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1916 STACK_POINTER_REGNUM, since these are always considered to be
1917 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1918 subdest = dest;
1919 if (GET_CODE (subdest) == SUBREG
1920 && (GET_MODE_SIZE (GET_MODE (subdest))
1921 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1922 subdest = SUBREG_REG (subdest);
1923 if (pi3dest_killed
1924 && REG_P (subdest)
1925 && reg_referenced_p (subdest, PATTERN (i3))
1926 && REGNO (subdest) != FRAME_POINTER_REGNUM
1927 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1928 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1929 #endif
1930 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1931 && (REGNO (subdest) != ARG_POINTER_REGNUM
1932 || ! fixed_regs [REGNO (subdest)])
1933 #endif
1934 && REGNO (subdest) != STACK_POINTER_REGNUM)
1935 {
1936 if (*pi3dest_killed)
1937 return 0;
1938
1939 *pi3dest_killed = subdest;
1940 }
1941 }
1942
1943 else if (GET_CODE (x) == PARALLEL)
1944 {
1945 int i;
1946
1947 for (i = 0; i < XVECLEN (x, 0); i++)
1948 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1949 i1_not_in_src, pi3dest_killed))
1950 return 0;
1951 }
1952
1953 return 1;
1954 }
1955 \f
1956 /* Return 1 if X is an arithmetic expression that contains a multiplication
1957 and division. We don't count multiplications by powers of two here. */
1958
1959 static int
1960 contains_muldiv (rtx x)
1961 {
1962 switch (GET_CODE (x))
1963 {
1964 case MOD: case DIV: case UMOD: case UDIV:
1965 return 1;
1966
1967 case MULT:
1968 return ! (CONST_INT_P (XEXP (x, 1))
1969 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1970 default:
1971 if (BINARY_P (x))
1972 return contains_muldiv (XEXP (x, 0))
1973 || contains_muldiv (XEXP (x, 1));
1974
1975 if (UNARY_P (x))
1976 return contains_muldiv (XEXP (x, 0));
1977
1978 return 0;
1979 }
1980 }
1981 \f
1982 /* Determine whether INSN can be used in a combination. Return nonzero if
1983 not. This is used in try_combine to detect early some cases where we
1984 can't perform combinations. */
1985
1986 static int
1987 cant_combine_insn_p (rtx insn)
1988 {
1989 rtx set;
1990 rtx src, dest;
1991
1992 /* If this isn't really an insn, we can't do anything.
1993 This can occur when flow deletes an insn that it has merged into an
1994 auto-increment address. */
1995 if (! INSN_P (insn))
1996 return 1;
1997
1998 /* Never combine loads and stores involving hard regs that are likely
1999 to be spilled. The register allocator can usually handle such
2000 reg-reg moves by tying. If we allow the combiner to make
2001 substitutions of likely-spilled regs, reload might die.
2002 As an exception, we allow combinations involving fixed regs; these are
2003 not available to the register allocator so there's no risk involved. */
2004
2005 set = single_set (insn);
2006 if (! set)
2007 return 0;
2008 src = SET_SRC (set);
2009 dest = SET_DEST (set);
2010 if (GET_CODE (src) == SUBREG)
2011 src = SUBREG_REG (src);
2012 if (GET_CODE (dest) == SUBREG)
2013 dest = SUBREG_REG (dest);
2014 if (REG_P (src) && REG_P (dest)
2015 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2016 && ! fixed_regs[REGNO (src)]
2017 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2018 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2019 && ! fixed_regs[REGNO (dest)]
2020 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2021 return 1;
2022
2023 return 0;
2024 }
2025
2026 struct likely_spilled_retval_info
2027 {
2028 unsigned regno, nregs;
2029 unsigned mask;
2030 };
2031
2032 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2033 hard registers that are known to be written to / clobbered in full. */
2034 static void
2035 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2036 {
2037 struct likely_spilled_retval_info *const info =
2038 (struct likely_spilled_retval_info *) data;
2039 unsigned regno, nregs;
2040 unsigned new_mask;
2041
2042 if (!REG_P (XEXP (set, 0)))
2043 return;
2044 regno = REGNO (x);
2045 if (regno >= info->regno + info->nregs)
2046 return;
2047 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2048 if (regno + nregs <= info->regno)
2049 return;
2050 new_mask = (2U << (nregs - 1)) - 1;
2051 if (regno < info->regno)
2052 new_mask >>= info->regno - regno;
2053 else
2054 new_mask <<= regno - info->regno;
2055 info->mask &= ~new_mask;
2056 }
2057
2058 /* Return nonzero iff part of the return value is live during INSN, and
2059 it is likely spilled. This can happen when more than one insn is needed
2060 to copy the return value, e.g. when we consider to combine into the
2061 second copy insn for a complex value. */
2062
2063 static int
2064 likely_spilled_retval_p (rtx insn)
2065 {
2066 rtx use = BB_END (this_basic_block);
2067 rtx reg, p;
2068 unsigned regno, nregs;
2069 /* We assume here that no machine mode needs more than
2070 32 hard registers when the value overlaps with a register
2071 for which FUNCTION_VALUE_REGNO_P is true. */
2072 unsigned mask;
2073 struct likely_spilled_retval_info info;
2074
2075 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2076 return 0;
2077 reg = XEXP (PATTERN (use), 0);
2078 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2079 return 0;
2080 regno = REGNO (reg);
2081 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2082 if (nregs == 1)
2083 return 0;
2084 mask = (2U << (nregs - 1)) - 1;
2085
2086 /* Disregard parts of the return value that are set later. */
2087 info.regno = regno;
2088 info.nregs = nregs;
2089 info.mask = mask;
2090 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2091 if (INSN_P (p))
2092 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2093 mask = info.mask;
2094
2095 /* Check if any of the (probably) live return value registers is
2096 likely spilled. */
2097 nregs --;
2098 do
2099 {
2100 if ((mask & 1 << nregs)
2101 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2102 return 1;
2103 } while (nregs--);
2104 return 0;
2105 }
2106
2107 /* Adjust INSN after we made a change to its destination.
2108
2109 Changing the destination can invalidate notes that say something about
2110 the results of the insn and a LOG_LINK pointing to the insn. */
2111
2112 static void
2113 adjust_for_new_dest (rtx insn)
2114 {
2115 /* For notes, be conservative and simply remove them. */
2116 remove_reg_equal_equiv_notes (insn);
2117
2118 /* The new insn will have a destination that was previously the destination
2119 of an insn just above it. Call distribute_links to make a LOG_LINK from
2120 the next use of that destination. */
2121 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2122
2123 df_insn_rescan (insn);
2124 }
2125
2126 /* Return TRUE if combine can reuse reg X in mode MODE.
2127 ADDED_SETS is nonzero if the original set is still required. */
2128 static bool
2129 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2130 {
2131 unsigned int regno;
2132
2133 if (!REG_P(x))
2134 return false;
2135
2136 regno = REGNO (x);
2137 /* Allow hard registers if the new mode is legal, and occupies no more
2138 registers than the old mode. */
2139 if (regno < FIRST_PSEUDO_REGISTER)
2140 return (HARD_REGNO_MODE_OK (regno, mode)
2141 && (hard_regno_nregs[regno][GET_MODE (x)]
2142 >= hard_regno_nregs[regno][mode]));
2143
2144 /* Or a pseudo that is only used once. */
2145 return (REG_N_SETS (regno) == 1 && !added_sets
2146 && !REG_USERVAR_P (x));
2147 }
2148
2149
2150 /* Check whether X, the destination of a set, refers to part of
2151 the register specified by REG. */
2152
2153 static bool
2154 reg_subword_p (rtx x, rtx reg)
2155 {
2156 /* Check that reg is an integer mode register. */
2157 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2158 return false;
2159
2160 if (GET_CODE (x) == STRICT_LOW_PART
2161 || GET_CODE (x) == ZERO_EXTRACT)
2162 x = XEXP (x, 0);
2163
2164 return GET_CODE (x) == SUBREG
2165 && SUBREG_REG (x) == reg
2166 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2167 }
2168
2169 #ifdef AUTO_INC_DEC
2170 /* Replace auto-increment addressing modes with explicit operations to
2171 access the same addresses without modifying the corresponding
2172 registers. If AFTER holds, SRC is meant to be reused after the
2173 side effect, otherwise it is to be reused before that. */
2174
2175 static rtx
2176 cleanup_auto_inc_dec (rtx src, bool after, enum machine_mode mem_mode)
2177 {
2178 rtx x = src;
2179 const RTX_CODE code = GET_CODE (x);
2180 int i;
2181 const char *fmt;
2182
2183 switch (code)
2184 {
2185 case REG:
2186 case CONST_INT:
2187 case CONST_DOUBLE:
2188 case CONST_FIXED:
2189 case CONST_VECTOR:
2190 case SYMBOL_REF:
2191 case CODE_LABEL:
2192 case PC:
2193 case CC0:
2194 case SCRATCH:
2195 /* SCRATCH must be shared because they represent distinct values. */
2196 return x;
2197 case CLOBBER:
2198 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2199 return x;
2200 break;
2201
2202 case CONST:
2203 if (shared_const_p (x))
2204 return x;
2205 break;
2206
2207 case MEM:
2208 mem_mode = GET_MODE (x);
2209 break;
2210
2211 case PRE_INC:
2212 case PRE_DEC:
2213 case POST_INC:
2214 case POST_DEC:
2215 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2216 if (after == (code == PRE_INC || code == PRE_DEC))
2217 x = cleanup_auto_inc_dec (XEXP (x, 0), after, mem_mode);
2218 else
2219 x = gen_rtx_PLUS (GET_MODE (x),
2220 cleanup_auto_inc_dec (XEXP (x, 0), after, mem_mode),
2221 GEN_INT ((code == PRE_INC || code == POST_INC)
2222 ? GET_MODE_SIZE (mem_mode)
2223 : -GET_MODE_SIZE (mem_mode)));
2224 return x;
2225
2226 case PRE_MODIFY:
2227 case POST_MODIFY:
2228 if (after == (code == PRE_MODIFY))
2229 x = XEXP (x, 0);
2230 else
2231 x = XEXP (x, 1);
2232 return cleanup_auto_inc_dec (x, after, mem_mode);
2233
2234 default:
2235 break;
2236 }
2237
2238 /* Copy the various flags, fields, and other information. We assume
2239 that all fields need copying, and then clear the fields that should
2240 not be copied. That is the sensible default behavior, and forces
2241 us to explicitly document why we are *not* copying a flag. */
2242 x = shallow_copy_rtx (x);
2243
2244 /* We do not copy the USED flag, which is used as a mark bit during
2245 walks over the RTL. */
2246 RTX_FLAG (x, used) = 0;
2247
2248 /* We do not copy FRAME_RELATED for INSNs. */
2249 if (INSN_P (x))
2250 RTX_FLAG (x, frame_related) = 0;
2251
2252 fmt = GET_RTX_FORMAT (code);
2253 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2254 if (fmt[i] == 'e')
2255 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), after, mem_mode);
2256 else if (fmt[i] == 'E' || fmt[i] == 'V')
2257 {
2258 int j;
2259 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2260 for (j = 0; j < XVECLEN (x, i); j++)
2261 XVECEXP (x, i, j)
2262 = cleanup_auto_inc_dec (XVECEXP (src, i, j), after, mem_mode);
2263 }
2264
2265 return x;
2266 }
2267
2268 /* Auxiliary data structure for propagate_for_debug_stmt. */
2269
2270 struct rtx_subst_pair
2271 {
2272 rtx to;
2273 bool adjusted;
2274 bool after;
2275 };
2276
2277 /* DATA points to an rtx_subst_pair. Return the value that should be
2278 substituted. */
2279
2280 static rtx
2281 propagate_for_debug_subst (rtx from ATTRIBUTE_UNUSED, void *data)
2282 {
2283 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2284
2285 if (!pair->adjusted)
2286 {
2287 pair->adjusted = true;
2288 pair->to = cleanup_auto_inc_dec (pair->to, pair->after, VOIDmode);
2289 return pair->to;
2290 }
2291 return copy_rtx (pair->to);
2292 }
2293 #endif
2294
2295 /* Replace occurrences of DEST with SRC in DEBUG_INSNs between INSN
2296 and LAST. If MOVE holds, debug insns must also be moved past
2297 LAST. */
2298
2299 static void
2300 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src, bool move)
2301 {
2302 rtx next, move_pos = move ? last : NULL_RTX, loc;
2303
2304 #ifdef AUTO_INC_DEC
2305 struct rtx_subst_pair p;
2306 p.to = src;
2307 p.adjusted = false;
2308 p.after = move;
2309 #endif
2310
2311 next = NEXT_INSN (insn);
2312 while (next != last)
2313 {
2314 insn = next;
2315 next = NEXT_INSN (insn);
2316 if (DEBUG_INSN_P (insn))
2317 {
2318 #ifdef AUTO_INC_DEC
2319 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2320 dest, propagate_for_debug_subst, &p);
2321 #else
2322 loc = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn), dest, src);
2323 #endif
2324 if (loc == INSN_VAR_LOCATION_LOC (insn))
2325 continue;
2326 INSN_VAR_LOCATION_LOC (insn) = loc;
2327 if (move_pos)
2328 {
2329 remove_insn (insn);
2330 PREV_INSN (insn) = NEXT_INSN (insn) = NULL_RTX;
2331 move_pos = emit_debug_insn_after (insn, move_pos);
2332 }
2333 else
2334 df_insn_rescan (insn);
2335 }
2336 }
2337 }
2338
2339 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2340 Note that the INSN should be deleted *after* removing dead edges, so
2341 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2342 but not for a (set (pc) (label_ref FOO)). */
2343
2344 static void
2345 update_cfg_for_uncondjump (rtx insn)
2346 {
2347 basic_block bb = BLOCK_FOR_INSN (insn);
2348 bool at_end = (BB_END (bb) == insn);
2349
2350 if (at_end)
2351 purge_dead_edges (bb);
2352
2353 delete_insn (insn);
2354 if (at_end && EDGE_COUNT (bb->succs) == 1)
2355 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2356 }
2357
2358
2359 /* Try to combine the insns I1 and I2 into I3.
2360 Here I1 and I2 appear earlier than I3.
2361 I1 can be zero; then we combine just I2 into I3.
2362
2363 If we are combining three insns and the resulting insn is not recognized,
2364 try splitting it into two insns. If that happens, I2 and I3 are retained
2365 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2366 are pseudo-deleted.
2367
2368 Return 0 if the combination does not work. Then nothing is changed.
2369 If we did the combination, return the insn at which combine should
2370 resume scanning.
2371
2372 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2373 new direct jump instruction. */
2374
2375 static rtx
2376 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2377 {
2378 /* New patterns for I3 and I2, respectively. */
2379 rtx newpat, newi2pat = 0;
2380 rtvec newpat_vec_with_clobbers = 0;
2381 int substed_i2 = 0, substed_i1 = 0;
2382 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2383 int added_sets_1, added_sets_2;
2384 /* Total number of SETs to put into I3. */
2385 int total_sets;
2386 /* Nonzero if I2's body now appears in I3. */
2387 int i2_is_used;
2388 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2389 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2390 /* Contains I3 if the destination of I3 is used in its source, which means
2391 that the old life of I3 is being killed. If that usage is placed into
2392 I2 and not in I3, a REG_DEAD note must be made. */
2393 rtx i3dest_killed = 0;
2394 /* SET_DEST and SET_SRC of I2 and I1. */
2395 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0;
2396 /* Set if I2DEST was reused as a scratch register. */
2397 bool i2scratch = false;
2398 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2399 rtx i1pat = 0, i2pat = 0;
2400 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2401 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2402 int i2dest_killed = 0, i1dest_killed = 0;
2403 int i1_feeds_i3 = 0;
2404 /* Notes that must be added to REG_NOTES in I3 and I2. */
2405 rtx new_i3_notes, new_i2_notes;
2406 /* Notes that we substituted I3 into I2 instead of the normal case. */
2407 int i3_subst_into_i2 = 0;
2408 /* Notes that I1, I2 or I3 is a MULT operation. */
2409 int have_mult = 0;
2410 int swap_i2i3 = 0;
2411 int changed_i3_dest = 0;
2412
2413 int maxreg;
2414 rtx temp;
2415 rtx link;
2416 rtx other_pat = 0;
2417 rtx new_other_notes;
2418 int i;
2419
2420 /* Exit early if one of the insns involved can't be used for
2421 combinations. */
2422 if (cant_combine_insn_p (i3)
2423 || cant_combine_insn_p (i2)
2424 || (i1 && cant_combine_insn_p (i1))
2425 || likely_spilled_retval_p (i3))
2426 return 0;
2427
2428 combine_attempts++;
2429 undobuf.other_insn = 0;
2430
2431 /* Reset the hard register usage information. */
2432 CLEAR_HARD_REG_SET (newpat_used_regs);
2433
2434 if (dump_file && (dump_flags & TDF_DETAILS))
2435 {
2436 if (i1)
2437 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2438 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2439 else
2440 fprintf (dump_file, "\nTrying %d -> %d:\n",
2441 INSN_UID (i2), INSN_UID (i3));
2442 }
2443
2444 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2445 code below, set I1 to be the earlier of the two insns. */
2446 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2447 temp = i1, i1 = i2, i2 = temp;
2448
2449 added_links_insn = 0;
2450
2451 /* First check for one important special-case that the code below will
2452 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2453 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2454 we may be able to replace that destination with the destination of I3.
2455 This occurs in the common code where we compute both a quotient and
2456 remainder into a structure, in which case we want to do the computation
2457 directly into the structure to avoid register-register copies.
2458
2459 Note that this case handles both multiple sets in I2 and also
2460 cases where I2 has a number of CLOBBER or PARALLELs.
2461
2462 We make very conservative checks below and only try to handle the
2463 most common cases of this. For example, we only handle the case
2464 where I2 and I3 are adjacent to avoid making difficult register
2465 usage tests. */
2466
2467 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2468 && REG_P (SET_SRC (PATTERN (i3)))
2469 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2470 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2471 && GET_CODE (PATTERN (i2)) == PARALLEL
2472 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2473 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2474 below would need to check what is inside (and reg_overlap_mentioned_p
2475 doesn't support those codes anyway). Don't allow those destinations;
2476 the resulting insn isn't likely to be recognized anyway. */
2477 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2478 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2479 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2480 SET_DEST (PATTERN (i3)))
2481 && next_active_insn (i2) == i3)
2482 {
2483 rtx p2 = PATTERN (i2);
2484
2485 /* Make sure that the destination of I3,
2486 which we are going to substitute into one output of I2,
2487 is not used within another output of I2. We must avoid making this:
2488 (parallel [(set (mem (reg 69)) ...)
2489 (set (reg 69) ...)])
2490 which is not well-defined as to order of actions.
2491 (Besides, reload can't handle output reloads for this.)
2492
2493 The problem can also happen if the dest of I3 is a memory ref,
2494 if another dest in I2 is an indirect memory ref. */
2495 for (i = 0; i < XVECLEN (p2, 0); i++)
2496 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2497 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2498 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2499 SET_DEST (XVECEXP (p2, 0, i))))
2500 break;
2501
2502 if (i == XVECLEN (p2, 0))
2503 for (i = 0; i < XVECLEN (p2, 0); i++)
2504 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2505 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2506 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2507 {
2508 combine_merges++;
2509
2510 subst_insn = i3;
2511 subst_low_luid = DF_INSN_LUID (i2);
2512
2513 added_sets_2 = added_sets_1 = 0;
2514 i2src = SET_DEST (PATTERN (i3));
2515 i2dest = SET_SRC (PATTERN (i3));
2516 i2dest_killed = dead_or_set_p (i2, i2dest);
2517
2518 /* Replace the dest in I2 with our dest and make the resulting
2519 insn the new pattern for I3. Then skip to where we
2520 validate the pattern. Everything was set up above. */
2521 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2522 SET_DEST (PATTERN (i3)));
2523
2524 newpat = p2;
2525 i3_subst_into_i2 = 1;
2526 goto validate_replacement;
2527 }
2528 }
2529
2530 /* If I2 is setting a pseudo to a constant and I3 is setting some
2531 sub-part of it to another constant, merge them by making a new
2532 constant. */
2533 if (i1 == 0
2534 && (temp = single_set (i2)) != 0
2535 && (CONST_INT_P (SET_SRC (temp))
2536 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2537 && GET_CODE (PATTERN (i3)) == SET
2538 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2539 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2540 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2541 {
2542 rtx dest = SET_DEST (PATTERN (i3));
2543 int offset = -1;
2544 int width = 0;
2545
2546 if (GET_CODE (dest) == ZERO_EXTRACT)
2547 {
2548 if (CONST_INT_P (XEXP (dest, 1))
2549 && CONST_INT_P (XEXP (dest, 2)))
2550 {
2551 width = INTVAL (XEXP (dest, 1));
2552 offset = INTVAL (XEXP (dest, 2));
2553 dest = XEXP (dest, 0);
2554 if (BITS_BIG_ENDIAN)
2555 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2556 }
2557 }
2558 else
2559 {
2560 if (GET_CODE (dest) == STRICT_LOW_PART)
2561 dest = XEXP (dest, 0);
2562 width = GET_MODE_BITSIZE (GET_MODE (dest));
2563 offset = 0;
2564 }
2565
2566 if (offset >= 0)
2567 {
2568 /* If this is the low part, we're done. */
2569 if (subreg_lowpart_p (dest))
2570 ;
2571 /* Handle the case where inner is twice the size of outer. */
2572 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2573 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2574 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2575 /* Otherwise give up for now. */
2576 else
2577 offset = -1;
2578 }
2579
2580 if (offset >= 0
2581 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2582 <= HOST_BITS_PER_WIDE_INT * 2))
2583 {
2584 HOST_WIDE_INT mhi, ohi, ihi;
2585 HOST_WIDE_INT mlo, olo, ilo;
2586 rtx inner = SET_SRC (PATTERN (i3));
2587 rtx outer = SET_SRC (temp);
2588
2589 if (CONST_INT_P (outer))
2590 {
2591 olo = INTVAL (outer);
2592 ohi = olo < 0 ? -1 : 0;
2593 }
2594 else
2595 {
2596 olo = CONST_DOUBLE_LOW (outer);
2597 ohi = CONST_DOUBLE_HIGH (outer);
2598 }
2599
2600 if (CONST_INT_P (inner))
2601 {
2602 ilo = INTVAL (inner);
2603 ihi = ilo < 0 ? -1 : 0;
2604 }
2605 else
2606 {
2607 ilo = CONST_DOUBLE_LOW (inner);
2608 ihi = CONST_DOUBLE_HIGH (inner);
2609 }
2610
2611 if (width < HOST_BITS_PER_WIDE_INT)
2612 {
2613 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2614 mhi = 0;
2615 }
2616 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2617 {
2618 mhi = ((unsigned HOST_WIDE_INT) 1
2619 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2620 mlo = -1;
2621 }
2622 else
2623 {
2624 mlo = -1;
2625 mhi = -1;
2626 }
2627
2628 ilo &= mlo;
2629 ihi &= mhi;
2630
2631 if (offset >= HOST_BITS_PER_WIDE_INT)
2632 {
2633 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2634 mlo = 0;
2635 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2636 ilo = 0;
2637 }
2638 else if (offset > 0)
2639 {
2640 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2641 >> (HOST_BITS_PER_WIDE_INT - offset));
2642 mlo = mlo << offset;
2643 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2644 >> (HOST_BITS_PER_WIDE_INT - offset));
2645 ilo = ilo << offset;
2646 }
2647
2648 olo = (olo & ~mlo) | ilo;
2649 ohi = (ohi & ~mhi) | ihi;
2650
2651 combine_merges++;
2652 subst_insn = i3;
2653 subst_low_luid = DF_INSN_LUID (i2);
2654 added_sets_2 = added_sets_1 = 0;
2655 i2dest = SET_DEST (temp);
2656 i2dest_killed = dead_or_set_p (i2, i2dest);
2657
2658 SUBST (SET_SRC (temp),
2659 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2660
2661 newpat = PATTERN (i2);
2662 goto validate_replacement;
2663 }
2664 }
2665
2666 #ifndef HAVE_cc0
2667 /* If we have no I1 and I2 looks like:
2668 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2669 (set Y OP)])
2670 make up a dummy I1 that is
2671 (set Y OP)
2672 and change I2 to be
2673 (set (reg:CC X) (compare:CC Y (const_int 0)))
2674
2675 (We can ignore any trailing CLOBBERs.)
2676
2677 This undoes a previous combination and allows us to match a branch-and-
2678 decrement insn. */
2679
2680 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2681 && XVECLEN (PATTERN (i2), 0) >= 2
2682 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2683 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2684 == MODE_CC)
2685 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2686 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2687 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2688 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2689 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2690 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2691 {
2692 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2693 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2694 break;
2695
2696 if (i == 1)
2697 {
2698 /* We make I1 with the same INSN_UID as I2. This gives it
2699 the same DF_INSN_LUID for value tracking. Our fake I1 will
2700 never appear in the insn stream so giving it the same INSN_UID
2701 as I2 will not cause a problem. */
2702
2703 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2704 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2705 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2706
2707 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2708 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2709 SET_DEST (PATTERN (i1)));
2710 }
2711 }
2712 #endif
2713
2714 /* Verify that I2 and I1 are valid for combining. */
2715 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2716 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2717 {
2718 undo_all ();
2719 return 0;
2720 }
2721
2722 /* Record whether I2DEST is used in I2SRC and similarly for the other
2723 cases. Knowing this will help in register status updating below. */
2724 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2725 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2726 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2727 i2dest_killed = dead_or_set_p (i2, i2dest);
2728 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2729
2730 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2731 in I2SRC. */
2732 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2733
2734 /* Ensure that I3's pattern can be the destination of combines. */
2735 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2736 i1 && i2dest_in_i1src && i1_feeds_i3,
2737 &i3dest_killed))
2738 {
2739 undo_all ();
2740 return 0;
2741 }
2742
2743 /* See if any of the insns is a MULT operation. Unless one is, we will
2744 reject a combination that is, since it must be slower. Be conservative
2745 here. */
2746 if (GET_CODE (i2src) == MULT
2747 || (i1 != 0 && GET_CODE (i1src) == MULT)
2748 || (GET_CODE (PATTERN (i3)) == SET
2749 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2750 have_mult = 1;
2751
2752 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2753 We used to do this EXCEPT in one case: I3 has a post-inc in an
2754 output operand. However, that exception can give rise to insns like
2755 mov r3,(r3)+
2756 which is a famous insn on the PDP-11 where the value of r3 used as the
2757 source was model-dependent. Avoid this sort of thing. */
2758
2759 #if 0
2760 if (!(GET_CODE (PATTERN (i3)) == SET
2761 && REG_P (SET_SRC (PATTERN (i3)))
2762 && MEM_P (SET_DEST (PATTERN (i3)))
2763 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2764 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2765 /* It's not the exception. */
2766 #endif
2767 #ifdef AUTO_INC_DEC
2768 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2769 if (REG_NOTE_KIND (link) == REG_INC
2770 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2771 || (i1 != 0
2772 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2773 {
2774 undo_all ();
2775 return 0;
2776 }
2777 #endif
2778
2779 /* See if the SETs in I1 or I2 need to be kept around in the merged
2780 instruction: whenever the value set there is still needed past I3.
2781 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2782
2783 For the SET in I1, we have two cases: If I1 and I2 independently
2784 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2785 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2786 in I1 needs to be kept around unless I1DEST dies or is set in either
2787 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2788 I1DEST. If so, we know I1 feeds into I2. */
2789
2790 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2791
2792 added_sets_1
2793 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2794 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2795
2796 /* If the set in I2 needs to be kept around, we must make a copy of
2797 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2798 PATTERN (I2), we are only substituting for the original I1DEST, not into
2799 an already-substituted copy. This also prevents making self-referential
2800 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2801 I2DEST. */
2802
2803 if (added_sets_2)
2804 {
2805 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2806 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2807 else
2808 i2pat = copy_rtx (PATTERN (i2));
2809 }
2810
2811 if (added_sets_1)
2812 {
2813 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2814 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2815 else
2816 i1pat = copy_rtx (PATTERN (i1));
2817 }
2818
2819 combine_merges++;
2820
2821 /* Substitute in the latest insn for the regs set by the earlier ones. */
2822
2823 maxreg = max_reg_num ();
2824
2825 subst_insn = i3;
2826
2827 #ifndef HAVE_cc0
2828 /* Many machines that don't use CC0 have insns that can both perform an
2829 arithmetic operation and set the condition code. These operations will
2830 be represented as a PARALLEL with the first element of the vector
2831 being a COMPARE of an arithmetic operation with the constant zero.
2832 The second element of the vector will set some pseudo to the result
2833 of the same arithmetic operation. If we simplify the COMPARE, we won't
2834 match such a pattern and so will generate an extra insn. Here we test
2835 for this case, where both the comparison and the operation result are
2836 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2837 I2SRC. Later we will make the PARALLEL that contains I2. */
2838
2839 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2840 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2841 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2842 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2843 {
2844 #ifdef SELECT_CC_MODE
2845 rtx *cc_use;
2846 enum machine_mode compare_mode;
2847 #endif
2848
2849 newpat = PATTERN (i3);
2850 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2851
2852 i2_is_used = 1;
2853
2854 #ifdef SELECT_CC_MODE
2855 /* See if a COMPARE with the operand we substituted in should be done
2856 with the mode that is currently being used. If not, do the same
2857 processing we do in `subst' for a SET; namely, if the destination
2858 is used only once, try to replace it with a register of the proper
2859 mode and also replace the COMPARE. */
2860 if (undobuf.other_insn == 0
2861 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2862 &undobuf.other_insn))
2863 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2864 i2src, const0_rtx))
2865 != GET_MODE (SET_DEST (newpat))))
2866 {
2867 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2868 compare_mode))
2869 {
2870 unsigned int regno = REGNO (SET_DEST (newpat));
2871 rtx new_dest;
2872
2873 if (regno < FIRST_PSEUDO_REGISTER)
2874 new_dest = gen_rtx_REG (compare_mode, regno);
2875 else
2876 {
2877 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2878 new_dest = regno_reg_rtx[regno];
2879 }
2880
2881 SUBST (SET_DEST (newpat), new_dest);
2882 SUBST (XEXP (*cc_use, 0), new_dest);
2883 SUBST (SET_SRC (newpat),
2884 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2885 }
2886 else
2887 undobuf.other_insn = 0;
2888 }
2889 #endif
2890 }
2891 else
2892 #endif
2893 {
2894 /* It is possible that the source of I2 or I1 may be performing
2895 an unneeded operation, such as a ZERO_EXTEND of something
2896 that is known to have the high part zero. Handle that case
2897 by letting subst look at the innermost one of them.
2898
2899 Another way to do this would be to have a function that tries
2900 to simplify a single insn instead of merging two or more
2901 insns. We don't do this because of the potential of infinite
2902 loops and because of the potential extra memory required.
2903 However, doing it the way we are is a bit of a kludge and
2904 doesn't catch all cases.
2905
2906 But only do this if -fexpensive-optimizations since it slows
2907 things down and doesn't usually win.
2908
2909 This is not done in the COMPARE case above because the
2910 unmodified I2PAT is used in the PARALLEL and so a pattern
2911 with a modified I2SRC would not match. */
2912
2913 if (flag_expensive_optimizations)
2914 {
2915 /* Pass pc_rtx so no substitutions are done, just
2916 simplifications. */
2917 if (i1)
2918 {
2919 subst_low_luid = DF_INSN_LUID (i1);
2920 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2921 }
2922 else
2923 {
2924 subst_low_luid = DF_INSN_LUID (i2);
2925 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2926 }
2927 }
2928
2929 n_occurrences = 0; /* `subst' counts here */
2930
2931 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2932 need to make a unique copy of I2SRC each time we substitute it
2933 to avoid self-referential rtl. */
2934
2935 subst_low_luid = DF_INSN_LUID (i2);
2936 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2937 ! i1_feeds_i3 && i1dest_in_i1src);
2938 substed_i2 = 1;
2939
2940 /* Record whether i2's body now appears within i3's body. */
2941 i2_is_used = n_occurrences;
2942 }
2943
2944 /* If we already got a failure, don't try to do more. Otherwise,
2945 try to substitute in I1 if we have it. */
2946
2947 if (i1 && GET_CODE (newpat) != CLOBBER)
2948 {
2949 /* Check that an autoincrement side-effect on I1 has not been lost.
2950 This happens if I1DEST is mentioned in I2 and dies there, and
2951 has disappeared from the new pattern. */
2952 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2953 && !i1_feeds_i3
2954 && dead_or_set_p (i2, i1dest)
2955 && !reg_overlap_mentioned_p (i1dest, newpat))
2956 /* Before we can do this substitution, we must redo the test done
2957 above (see detailed comments there) that ensures that I1DEST
2958 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2959 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, 0, 0))
2960 {
2961 undo_all ();
2962 return 0;
2963 }
2964
2965 n_occurrences = 0;
2966 subst_low_luid = DF_INSN_LUID (i1);
2967 newpat = subst (newpat, i1dest, i1src, 0, 0);
2968 substed_i1 = 1;
2969 }
2970
2971 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2972 to count all the ways that I2SRC and I1SRC can be used. */
2973 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2974 && i2_is_used + added_sets_2 > 1)
2975 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2976 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2977 > 1))
2978 /* Fail if we tried to make a new register. */
2979 || max_reg_num () != maxreg
2980 /* Fail if we couldn't do something and have a CLOBBER. */
2981 || GET_CODE (newpat) == CLOBBER
2982 /* Fail if this new pattern is a MULT and we didn't have one before
2983 at the outer level. */
2984 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2985 && ! have_mult))
2986 {
2987 undo_all ();
2988 return 0;
2989 }
2990
2991 /* If the actions of the earlier insns must be kept
2992 in addition to substituting them into the latest one,
2993 we must make a new PARALLEL for the latest insn
2994 to hold additional the SETs. */
2995
2996 if (added_sets_1 || added_sets_2)
2997 {
2998 combine_extras++;
2999
3000 if (GET_CODE (newpat) == PARALLEL)
3001 {
3002 rtvec old = XVEC (newpat, 0);
3003 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
3004 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3005 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3006 sizeof (old->elem[0]) * old->num_elem);
3007 }
3008 else
3009 {
3010 rtx old = newpat;
3011 total_sets = 1 + added_sets_1 + added_sets_2;
3012 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3013 XVECEXP (newpat, 0, 0) = old;
3014 }
3015
3016 if (added_sets_1)
3017 XVECEXP (newpat, 0, --total_sets) = i1pat;
3018
3019 if (added_sets_2)
3020 {
3021 /* If there is no I1, use I2's body as is. We used to also not do
3022 the subst call below if I2 was substituted into I3,
3023 but that could lose a simplification. */
3024 if (i1 == 0)
3025 XVECEXP (newpat, 0, --total_sets) = i2pat;
3026 else
3027 /* See comment where i2pat is assigned. */
3028 XVECEXP (newpat, 0, --total_sets)
3029 = subst (i2pat, i1dest, i1src, 0, 0);
3030 }
3031 }
3032
3033 /* We come here when we are replacing a destination in I2 with the
3034 destination of I3. */
3035 validate_replacement:
3036
3037 /* Note which hard regs this insn has as inputs. */
3038 mark_used_regs_combine (newpat);
3039
3040 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3041 consider splitting this pattern, we might need these clobbers. */
3042 if (i1 && GET_CODE (newpat) == PARALLEL
3043 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3044 {
3045 int len = XVECLEN (newpat, 0);
3046
3047 newpat_vec_with_clobbers = rtvec_alloc (len);
3048 for (i = 0; i < len; i++)
3049 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3050 }
3051
3052 /* Is the result of combination a valid instruction? */
3053 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3054
3055 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3056 the second SET's destination is a register that is unused and isn't
3057 marked as an instruction that might trap in an EH region. In that case,
3058 we just need the first SET. This can occur when simplifying a divmod
3059 insn. We *must* test for this case here because the code below that
3060 splits two independent SETs doesn't handle this case correctly when it
3061 updates the register status.
3062
3063 It's pointless doing this if we originally had two sets, one from
3064 i3, and one from i2. Combining then splitting the parallel results
3065 in the original i2 again plus an invalid insn (which we delete).
3066 The net effect is only to move instructions around, which makes
3067 debug info less accurate.
3068
3069 Also check the case where the first SET's destination is unused.
3070 That would not cause incorrect code, but does cause an unneeded
3071 insn to remain. */
3072
3073 if (insn_code_number < 0
3074 && !(added_sets_2 && i1 == 0)
3075 && GET_CODE (newpat) == PARALLEL
3076 && XVECLEN (newpat, 0) == 2
3077 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3078 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3079 && asm_noperands (newpat) < 0)
3080 {
3081 rtx set0 = XVECEXP (newpat, 0, 0);
3082 rtx set1 = XVECEXP (newpat, 0, 1);
3083
3084 if (((REG_P (SET_DEST (set1))
3085 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3086 || (GET_CODE (SET_DEST (set1)) == SUBREG
3087 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3088 && insn_nothrow_p (i3)
3089 && !side_effects_p (SET_SRC (set1)))
3090 {
3091 newpat = set0;
3092 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3093 }
3094
3095 else if (((REG_P (SET_DEST (set0))
3096 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3097 || (GET_CODE (SET_DEST (set0)) == SUBREG
3098 && find_reg_note (i3, REG_UNUSED,
3099 SUBREG_REG (SET_DEST (set0)))))
3100 && insn_nothrow_p (i3)
3101 && !side_effects_p (SET_SRC (set0)))
3102 {
3103 newpat = set1;
3104 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3105
3106 if (insn_code_number >= 0)
3107 changed_i3_dest = 1;
3108 }
3109 }
3110
3111 /* If we were combining three insns and the result is a simple SET
3112 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3113 insns. There are two ways to do this. It can be split using a
3114 machine-specific method (like when you have an addition of a large
3115 constant) or by combine in the function find_split_point. */
3116
3117 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3118 && asm_noperands (newpat) < 0)
3119 {
3120 rtx parallel, m_split, *split;
3121
3122 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3123 use I2DEST as a scratch register will help. In the latter case,
3124 convert I2DEST to the mode of the source of NEWPAT if we can. */
3125
3126 m_split = combine_split_insns (newpat, i3);
3127
3128 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3129 inputs of NEWPAT. */
3130
3131 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3132 possible to try that as a scratch reg. This would require adding
3133 more code to make it work though. */
3134
3135 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3136 {
3137 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3138
3139 /* First try to split using the original register as a
3140 scratch register. */
3141 parallel = gen_rtx_PARALLEL (VOIDmode,
3142 gen_rtvec (2, newpat,
3143 gen_rtx_CLOBBER (VOIDmode,
3144 i2dest)));
3145 m_split = combine_split_insns (parallel, i3);
3146
3147 /* If that didn't work, try changing the mode of I2DEST if
3148 we can. */
3149 if (m_split == 0
3150 && new_mode != GET_MODE (i2dest)
3151 && new_mode != VOIDmode
3152 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3153 {
3154 enum machine_mode old_mode = GET_MODE (i2dest);
3155 rtx ni2dest;
3156
3157 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3158 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3159 else
3160 {
3161 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3162 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3163 }
3164
3165 parallel = (gen_rtx_PARALLEL
3166 (VOIDmode,
3167 gen_rtvec (2, newpat,
3168 gen_rtx_CLOBBER (VOIDmode,
3169 ni2dest))));
3170 m_split = combine_split_insns (parallel, i3);
3171
3172 if (m_split == 0
3173 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3174 {
3175 struct undo *buf;
3176
3177 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3178 buf = undobuf.undos;
3179 undobuf.undos = buf->next;
3180 buf->next = undobuf.frees;
3181 undobuf.frees = buf;
3182 }
3183 }
3184
3185 i2scratch = m_split != 0;
3186 }
3187
3188 /* If recog_for_combine has discarded clobbers, try to use them
3189 again for the split. */
3190 if (m_split == 0 && newpat_vec_with_clobbers)
3191 {
3192 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3193 m_split = combine_split_insns (parallel, i3);
3194 }
3195
3196 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3197 {
3198 m_split = PATTERN (m_split);
3199 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3200 if (insn_code_number >= 0)
3201 newpat = m_split;
3202 }
3203 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3204 && (next_real_insn (i2) == i3
3205 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3206 {
3207 rtx i2set, i3set;
3208 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3209 newi2pat = PATTERN (m_split);
3210
3211 i3set = single_set (NEXT_INSN (m_split));
3212 i2set = single_set (m_split);
3213
3214 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3215
3216 /* If I2 or I3 has multiple SETs, we won't know how to track
3217 register status, so don't use these insns. If I2's destination
3218 is used between I2 and I3, we also can't use these insns. */
3219
3220 if (i2_code_number >= 0 && i2set && i3set
3221 && (next_real_insn (i2) == i3
3222 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3223 insn_code_number = recog_for_combine (&newi3pat, i3,
3224 &new_i3_notes);
3225 if (insn_code_number >= 0)
3226 newpat = newi3pat;
3227
3228 /* It is possible that both insns now set the destination of I3.
3229 If so, we must show an extra use of it. */
3230
3231 if (insn_code_number >= 0)
3232 {
3233 rtx new_i3_dest = SET_DEST (i3set);
3234 rtx new_i2_dest = SET_DEST (i2set);
3235
3236 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3237 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3238 || GET_CODE (new_i3_dest) == SUBREG)
3239 new_i3_dest = XEXP (new_i3_dest, 0);
3240
3241 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3242 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3243 || GET_CODE (new_i2_dest) == SUBREG)
3244 new_i2_dest = XEXP (new_i2_dest, 0);
3245
3246 if (REG_P (new_i3_dest)
3247 && REG_P (new_i2_dest)
3248 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3249 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3250 }
3251 }
3252
3253 /* If we can split it and use I2DEST, go ahead and see if that
3254 helps things be recognized. Verify that none of the registers
3255 are set between I2 and I3. */
3256 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3257 #ifdef HAVE_cc0
3258 && REG_P (i2dest)
3259 #endif
3260 /* We need I2DEST in the proper mode. If it is a hard register
3261 or the only use of a pseudo, we can change its mode.
3262 Make sure we don't change a hard register to have a mode that
3263 isn't valid for it, or change the number of registers. */
3264 && (GET_MODE (*split) == GET_MODE (i2dest)
3265 || GET_MODE (*split) == VOIDmode
3266 || can_change_dest_mode (i2dest, added_sets_2,
3267 GET_MODE (*split)))
3268 && (next_real_insn (i2) == i3
3269 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3270 /* We can't overwrite I2DEST if its value is still used by
3271 NEWPAT. */
3272 && ! reg_referenced_p (i2dest, newpat))
3273 {
3274 rtx newdest = i2dest;
3275 enum rtx_code split_code = GET_CODE (*split);
3276 enum machine_mode split_mode = GET_MODE (*split);
3277 bool subst_done = false;
3278 newi2pat = NULL_RTX;
3279
3280 i2scratch = true;
3281
3282 /* Get NEWDEST as a register in the proper mode. We have already
3283 validated that we can do this. */
3284 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3285 {
3286 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3287 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3288 else
3289 {
3290 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3291 newdest = regno_reg_rtx[REGNO (i2dest)];
3292 }
3293 }
3294
3295 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3296 an ASHIFT. This can occur if it was inside a PLUS and hence
3297 appeared to be a memory address. This is a kludge. */
3298 if (split_code == MULT
3299 && CONST_INT_P (XEXP (*split, 1))
3300 && INTVAL (XEXP (*split, 1)) > 0
3301 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3302 {
3303 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3304 XEXP (*split, 0), GEN_INT (i)));
3305 /* Update split_code because we may not have a multiply
3306 anymore. */
3307 split_code = GET_CODE (*split);
3308 }
3309
3310 #ifdef INSN_SCHEDULING
3311 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3312 be written as a ZERO_EXTEND. */
3313 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3314 {
3315 #ifdef LOAD_EXTEND_OP
3316 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3317 what it really is. */
3318 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3319 == SIGN_EXTEND)
3320 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3321 SUBREG_REG (*split)));
3322 else
3323 #endif
3324 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3325 SUBREG_REG (*split)));
3326 }
3327 #endif
3328
3329 /* Attempt to split binary operators using arithmetic identities. */
3330 if (BINARY_P (SET_SRC (newpat))
3331 && split_mode == GET_MODE (SET_SRC (newpat))
3332 && ! side_effects_p (SET_SRC (newpat)))
3333 {
3334 rtx setsrc = SET_SRC (newpat);
3335 enum machine_mode mode = GET_MODE (setsrc);
3336 enum rtx_code code = GET_CODE (setsrc);
3337 rtx src_op0 = XEXP (setsrc, 0);
3338 rtx src_op1 = XEXP (setsrc, 1);
3339
3340 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3341 if (rtx_equal_p (src_op0, src_op1))
3342 {
3343 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3344 SUBST (XEXP (setsrc, 0), newdest);
3345 SUBST (XEXP (setsrc, 1), newdest);
3346 subst_done = true;
3347 }
3348 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3349 else if ((code == PLUS || code == MULT)
3350 && GET_CODE (src_op0) == code
3351 && GET_CODE (XEXP (src_op0, 0)) == code
3352 && (INTEGRAL_MODE_P (mode)
3353 || (FLOAT_MODE_P (mode)
3354 && flag_unsafe_math_optimizations)))
3355 {
3356 rtx p = XEXP (XEXP (src_op0, 0), 0);
3357 rtx q = XEXP (XEXP (src_op0, 0), 1);
3358 rtx r = XEXP (src_op0, 1);
3359 rtx s = src_op1;
3360
3361 /* Split both "((X op Y) op X) op Y" and
3362 "((X op Y) op Y) op X" as "T op T" where T is
3363 "X op Y". */
3364 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3365 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3366 {
3367 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3368 XEXP (src_op0, 0));
3369 SUBST (XEXP (setsrc, 0), newdest);
3370 SUBST (XEXP (setsrc, 1), newdest);
3371 subst_done = true;
3372 }
3373 /* Split "((X op X) op Y) op Y)" as "T op T" where
3374 T is "X op Y". */
3375 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3376 {
3377 rtx tmp = simplify_gen_binary (code, mode, p, r);
3378 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3379 SUBST (XEXP (setsrc, 0), newdest);
3380 SUBST (XEXP (setsrc, 1), newdest);
3381 subst_done = true;
3382 }
3383 }
3384 }
3385
3386 if (!subst_done)
3387 {
3388 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3389 SUBST (*split, newdest);
3390 }
3391
3392 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3393
3394 /* recog_for_combine might have added CLOBBERs to newi2pat.
3395 Make sure NEWPAT does not depend on the clobbered regs. */
3396 if (GET_CODE (newi2pat) == PARALLEL)
3397 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3398 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3399 {
3400 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3401 if (reg_overlap_mentioned_p (reg, newpat))
3402 {
3403 undo_all ();
3404 return 0;
3405 }
3406 }
3407
3408 /* If the split point was a MULT and we didn't have one before,
3409 don't use one now. */
3410 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3411 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3412 }
3413 }
3414
3415 /* Check for a case where we loaded from memory in a narrow mode and
3416 then sign extended it, but we need both registers. In that case,
3417 we have a PARALLEL with both loads from the same memory location.
3418 We can split this into a load from memory followed by a register-register
3419 copy. This saves at least one insn, more if register allocation can
3420 eliminate the copy.
3421
3422 We cannot do this if the destination of the first assignment is a
3423 condition code register or cc0. We eliminate this case by making sure
3424 the SET_DEST and SET_SRC have the same mode.
3425
3426 We cannot do this if the destination of the second assignment is
3427 a register that we have already assumed is zero-extended. Similarly
3428 for a SUBREG of such a register. */
3429
3430 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3431 && GET_CODE (newpat) == PARALLEL
3432 && XVECLEN (newpat, 0) == 2
3433 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3434 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3435 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3436 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3437 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3438 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3439 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3440 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3441 DF_INSN_LUID (i2))
3442 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3443 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3444 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3445 (REG_P (temp)
3446 && VEC_index (reg_stat_type, reg_stat,
3447 REGNO (temp))->nonzero_bits != 0
3448 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3449 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3450 && (VEC_index (reg_stat_type, reg_stat,
3451 REGNO (temp))->nonzero_bits
3452 != GET_MODE_MASK (word_mode))))
3453 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3454 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3455 (REG_P (temp)
3456 && VEC_index (reg_stat_type, reg_stat,
3457 REGNO (temp))->nonzero_bits != 0
3458 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3459 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3460 && (VEC_index (reg_stat_type, reg_stat,
3461 REGNO (temp))->nonzero_bits
3462 != GET_MODE_MASK (word_mode)))))
3463 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3464 SET_SRC (XVECEXP (newpat, 0, 1)))
3465 && ! find_reg_note (i3, REG_UNUSED,
3466 SET_DEST (XVECEXP (newpat, 0, 0))))
3467 {
3468 rtx ni2dest;
3469
3470 newi2pat = XVECEXP (newpat, 0, 0);
3471 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3472 newpat = XVECEXP (newpat, 0, 1);
3473 SUBST (SET_SRC (newpat),
3474 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3475 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3476
3477 if (i2_code_number >= 0)
3478 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3479
3480 if (insn_code_number >= 0)
3481 swap_i2i3 = 1;
3482 }
3483
3484 /* Similarly, check for a case where we have a PARALLEL of two independent
3485 SETs but we started with three insns. In this case, we can do the sets
3486 as two separate insns. This case occurs when some SET allows two
3487 other insns to combine, but the destination of that SET is still live. */
3488
3489 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3490 && GET_CODE (newpat) == PARALLEL
3491 && XVECLEN (newpat, 0) == 2
3492 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3493 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3494 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3495 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3496 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3497 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3498 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3499 DF_INSN_LUID (i2))
3500 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3501 XVECEXP (newpat, 0, 0))
3502 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3503 XVECEXP (newpat, 0, 1))
3504 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3505 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3506 #ifdef HAVE_cc0
3507 /* We cannot split the parallel into two sets if both sets
3508 reference cc0. */
3509 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3510 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3511 #endif
3512 )
3513 {
3514 /* Normally, it doesn't matter which of the two is done first,
3515 but it does if one references cc0. In that case, it has to
3516 be first. */
3517 #ifdef HAVE_cc0
3518 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3519 {
3520 newi2pat = XVECEXP (newpat, 0, 0);
3521 newpat = XVECEXP (newpat, 0, 1);
3522 }
3523 else
3524 #endif
3525 {
3526 newi2pat = XVECEXP (newpat, 0, 1);
3527 newpat = XVECEXP (newpat, 0, 0);
3528 }
3529
3530 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3531
3532 if (i2_code_number >= 0)
3533 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3534 }
3535
3536 /* If it still isn't recognized, fail and change things back the way they
3537 were. */
3538 if ((insn_code_number < 0
3539 /* Is the result a reasonable ASM_OPERANDS? */
3540 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3541 {
3542 undo_all ();
3543 return 0;
3544 }
3545
3546 /* If we had to change another insn, make sure it is valid also. */
3547 if (undobuf.other_insn)
3548 {
3549 CLEAR_HARD_REG_SET (newpat_used_regs);
3550
3551 other_pat = PATTERN (undobuf.other_insn);
3552 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3553 &new_other_notes);
3554
3555 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3556 {
3557 undo_all ();
3558 return 0;
3559 }
3560 }
3561
3562 #ifdef HAVE_cc0
3563 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3564 they are adjacent to each other or not. */
3565 {
3566 rtx p = prev_nonnote_insn (i3);
3567 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3568 && sets_cc0_p (newi2pat))
3569 {
3570 undo_all ();
3571 return 0;
3572 }
3573 }
3574 #endif
3575
3576 /* Only allow this combination if insn_rtx_costs reports that the
3577 replacement instructions are cheaper than the originals. */
3578 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3579 {
3580 undo_all ();
3581 return 0;
3582 }
3583
3584 if (MAY_HAVE_DEBUG_INSNS)
3585 {
3586 struct undo *undo;
3587
3588 for (undo = undobuf.undos; undo; undo = undo->next)
3589 if (undo->kind == UNDO_MODE)
3590 {
3591 rtx reg = *undo->where.r;
3592 enum machine_mode new_mode = GET_MODE (reg);
3593 enum machine_mode old_mode = undo->old_contents.m;
3594
3595 /* Temporarily revert mode back. */
3596 adjust_reg_mode (reg, old_mode);
3597
3598 if (reg == i2dest && i2scratch)
3599 {
3600 /* If we used i2dest as a scratch register with a
3601 different mode, substitute it for the original
3602 i2src while its original mode is temporarily
3603 restored, and then clear i2scratch so that we don't
3604 do it again later. */
3605 propagate_for_debug (i2, i3, reg, i2src, false);
3606 i2scratch = false;
3607 /* Put back the new mode. */
3608 adjust_reg_mode (reg, new_mode);
3609 }
3610 else
3611 {
3612 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3613 rtx first, last;
3614
3615 if (reg == i2dest)
3616 {
3617 first = i2;
3618 last = i3;
3619 }
3620 else
3621 {
3622 first = i3;
3623 last = undobuf.other_insn;
3624 gcc_assert (last);
3625 }
3626
3627 /* We're dealing with a reg that changed mode but not
3628 meaning, so we want to turn it into a subreg for
3629 the new mode. However, because of REG sharing and
3630 because its mode had already changed, we have to do
3631 it in two steps. First, replace any debug uses of
3632 reg, with its original mode temporarily restored,
3633 with this copy we have created; then, replace the
3634 copy with the SUBREG of the original shared reg,
3635 once again changed to the new mode. */
3636 propagate_for_debug (first, last, reg, tempreg, false);
3637 adjust_reg_mode (reg, new_mode);
3638 propagate_for_debug (first, last, tempreg,
3639 lowpart_subreg (old_mode, reg, new_mode),
3640 false);
3641 }
3642 }
3643 }
3644
3645 /* If we will be able to accept this, we have made a
3646 change to the destination of I3. This requires us to
3647 do a few adjustments. */
3648
3649 if (changed_i3_dest)
3650 {
3651 PATTERN (i3) = newpat;
3652 adjust_for_new_dest (i3);
3653 }
3654
3655 /* We now know that we can do this combination. Merge the insns and
3656 update the status of registers and LOG_LINKS. */
3657
3658 if (undobuf.other_insn)
3659 {
3660 rtx note, next;
3661
3662 PATTERN (undobuf.other_insn) = other_pat;
3663
3664 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3665 are still valid. Then add any non-duplicate notes added by
3666 recog_for_combine. */
3667 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3668 {
3669 next = XEXP (note, 1);
3670
3671 if (REG_NOTE_KIND (note) == REG_UNUSED
3672 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3673 remove_note (undobuf.other_insn, note);
3674 }
3675
3676 distribute_notes (new_other_notes, undobuf.other_insn,
3677 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3678 }
3679
3680 if (swap_i2i3)
3681 {
3682 rtx insn;
3683 rtx link;
3684 rtx ni2dest;
3685
3686 /* I3 now uses what used to be its destination and which is now
3687 I2's destination. This requires us to do a few adjustments. */
3688 PATTERN (i3) = newpat;
3689 adjust_for_new_dest (i3);
3690
3691 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3692 so we still will.
3693
3694 However, some later insn might be using I2's dest and have
3695 a LOG_LINK pointing at I3. We must remove this link.
3696 The simplest way to remove the link is to point it at I1,
3697 which we know will be a NOTE. */
3698
3699 /* newi2pat is usually a SET here; however, recog_for_combine might
3700 have added some clobbers. */
3701 if (GET_CODE (newi2pat) == PARALLEL)
3702 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3703 else
3704 ni2dest = SET_DEST (newi2pat);
3705
3706 for (insn = NEXT_INSN (i3);
3707 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3708 || insn != BB_HEAD (this_basic_block->next_bb));
3709 insn = NEXT_INSN (insn))
3710 {
3711 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3712 {
3713 for (link = LOG_LINKS (insn); link;
3714 link = XEXP (link, 1))
3715 if (XEXP (link, 0) == i3)
3716 XEXP (link, 0) = i1;
3717
3718 break;
3719 }
3720 }
3721 }
3722
3723 {
3724 rtx i3notes, i2notes, i1notes = 0;
3725 rtx i3links, i2links, i1links = 0;
3726 rtx midnotes = 0;
3727 unsigned int regno;
3728 /* Compute which registers we expect to eliminate. newi2pat may be setting
3729 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3730 same as i3dest, in which case newi2pat may be setting i1dest. */
3731 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3732 || i2dest_in_i2src || i2dest_in_i1src
3733 || !i2dest_killed
3734 ? 0 : i2dest);
3735 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3736 || (newi2pat && reg_set_p (i1dest, newi2pat))
3737 || !i1dest_killed
3738 ? 0 : i1dest);
3739
3740 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3741 clear them. */
3742 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3743 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3744 if (i1)
3745 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3746
3747 /* Ensure that we do not have something that should not be shared but
3748 occurs multiple times in the new insns. Check this by first
3749 resetting all the `used' flags and then copying anything is shared. */
3750
3751 reset_used_flags (i3notes);
3752 reset_used_flags (i2notes);
3753 reset_used_flags (i1notes);
3754 reset_used_flags (newpat);
3755 reset_used_flags (newi2pat);
3756 if (undobuf.other_insn)
3757 reset_used_flags (PATTERN (undobuf.other_insn));
3758
3759 i3notes = copy_rtx_if_shared (i3notes);
3760 i2notes = copy_rtx_if_shared (i2notes);
3761 i1notes = copy_rtx_if_shared (i1notes);
3762 newpat = copy_rtx_if_shared (newpat);
3763 newi2pat = copy_rtx_if_shared (newi2pat);
3764 if (undobuf.other_insn)
3765 reset_used_flags (PATTERN (undobuf.other_insn));
3766
3767 INSN_CODE (i3) = insn_code_number;
3768 PATTERN (i3) = newpat;
3769
3770 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3771 {
3772 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3773
3774 reset_used_flags (call_usage);
3775 call_usage = copy_rtx (call_usage);
3776
3777 if (substed_i2)
3778 replace_rtx (call_usage, i2dest, i2src);
3779
3780 if (substed_i1)
3781 replace_rtx (call_usage, i1dest, i1src);
3782
3783 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3784 }
3785
3786 if (undobuf.other_insn)
3787 INSN_CODE (undobuf.other_insn) = other_code_number;
3788
3789 /* We had one special case above where I2 had more than one set and
3790 we replaced a destination of one of those sets with the destination
3791 of I3. In that case, we have to update LOG_LINKS of insns later
3792 in this basic block. Note that this (expensive) case is rare.
3793
3794 Also, in this case, we must pretend that all REG_NOTEs for I2
3795 actually came from I3, so that REG_UNUSED notes from I2 will be
3796 properly handled. */
3797
3798 if (i3_subst_into_i2)
3799 {
3800 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3801 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3802 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3803 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3804 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3805 && ! find_reg_note (i2, REG_UNUSED,
3806 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3807 for (temp = NEXT_INSN (i2);
3808 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3809 || BB_HEAD (this_basic_block) != temp);
3810 temp = NEXT_INSN (temp))
3811 if (temp != i3 && INSN_P (temp))
3812 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3813 if (XEXP (link, 0) == i2)
3814 XEXP (link, 0) = i3;
3815
3816 if (i3notes)
3817 {
3818 rtx link = i3notes;
3819 while (XEXP (link, 1))
3820 link = XEXP (link, 1);
3821 XEXP (link, 1) = i2notes;
3822 }
3823 else
3824 i3notes = i2notes;
3825 i2notes = 0;
3826 }
3827
3828 LOG_LINKS (i3) = 0;
3829 REG_NOTES (i3) = 0;
3830 LOG_LINKS (i2) = 0;
3831 REG_NOTES (i2) = 0;
3832
3833 if (newi2pat)
3834 {
3835 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
3836 propagate_for_debug (i2, i3, i2dest, i2src, false);
3837 INSN_CODE (i2) = i2_code_number;
3838 PATTERN (i2) = newi2pat;
3839 }
3840 else
3841 {
3842 if (MAY_HAVE_DEBUG_INSNS && i2src)
3843 propagate_for_debug (i2, i3, i2dest, i2src, i3_subst_into_i2);
3844 SET_INSN_DELETED (i2);
3845 }
3846
3847 if (i1)
3848 {
3849 LOG_LINKS (i1) = 0;
3850 REG_NOTES (i1) = 0;
3851 if (MAY_HAVE_DEBUG_INSNS)
3852 propagate_for_debug (i1, i3, i1dest, i1src, false);
3853 SET_INSN_DELETED (i1);
3854 }
3855
3856 /* Get death notes for everything that is now used in either I3 or
3857 I2 and used to die in a previous insn. If we built two new
3858 patterns, move from I1 to I2 then I2 to I3 so that we get the
3859 proper movement on registers that I2 modifies. */
3860
3861 if (newi2pat)
3862 {
3863 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3864 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3865 }
3866 else
3867 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3868 i3, &midnotes);
3869
3870 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3871 if (i3notes)
3872 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3873 elim_i2, elim_i1);
3874 if (i2notes)
3875 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3876 elim_i2, elim_i1);
3877 if (i1notes)
3878 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3879 elim_i2, elim_i1);
3880 if (midnotes)
3881 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3882 elim_i2, elim_i1);
3883
3884 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3885 know these are REG_UNUSED and want them to go to the desired insn,
3886 so we always pass it as i3. */
3887
3888 if (newi2pat && new_i2_notes)
3889 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3890
3891 if (new_i3_notes)
3892 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3893
3894 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3895 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3896 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3897 in that case, it might delete I2. Similarly for I2 and I1.
3898 Show an additional death due to the REG_DEAD note we make here. If
3899 we discard it in distribute_notes, we will decrement it again. */
3900
3901 if (i3dest_killed)
3902 {
3903 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3904 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3905 NULL_RTX),
3906 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3907 else
3908 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
3909 NULL_RTX),
3910 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3911 elim_i2, elim_i1);
3912 }
3913
3914 if (i2dest_in_i2src)
3915 {
3916 if (newi2pat && reg_set_p (i2dest, newi2pat))
3917 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3918 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3919 else
3920 distribute_notes (alloc_reg_note (REG_DEAD, i2dest, NULL_RTX),
3921 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3922 NULL_RTX, NULL_RTX);
3923 }
3924
3925 if (i1dest_in_i1src)
3926 {
3927 if (newi2pat && reg_set_p (i1dest, newi2pat))
3928 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3929 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3930 else
3931 distribute_notes (alloc_reg_note (REG_DEAD, i1dest, NULL_RTX),
3932 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3933 NULL_RTX, NULL_RTX);
3934 }
3935
3936 distribute_links (i3links);
3937 distribute_links (i2links);
3938 distribute_links (i1links);
3939
3940 if (REG_P (i2dest))
3941 {
3942 rtx link;
3943 rtx i2_insn = 0, i2_val = 0, set;
3944
3945 /* The insn that used to set this register doesn't exist, and
3946 this life of the register may not exist either. See if one of
3947 I3's links points to an insn that sets I2DEST. If it does,
3948 that is now the last known value for I2DEST. If we don't update
3949 this and I2 set the register to a value that depended on its old
3950 contents, we will get confused. If this insn is used, thing
3951 will be set correctly in combine_instructions. */
3952
3953 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3954 if ((set = single_set (XEXP (link, 0))) != 0
3955 && rtx_equal_p (i2dest, SET_DEST (set)))
3956 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3957
3958 record_value_for_reg (i2dest, i2_insn, i2_val);
3959
3960 /* If the reg formerly set in I2 died only once and that was in I3,
3961 zero its use count so it won't make `reload' do any work. */
3962 if (! added_sets_2
3963 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3964 && ! i2dest_in_i2src)
3965 {
3966 regno = REGNO (i2dest);
3967 INC_REG_N_SETS (regno, -1);
3968 }
3969 }
3970
3971 if (i1 && REG_P (i1dest))
3972 {
3973 rtx link;
3974 rtx i1_insn = 0, i1_val = 0, set;
3975
3976 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3977 if ((set = single_set (XEXP (link, 0))) != 0
3978 && rtx_equal_p (i1dest, SET_DEST (set)))
3979 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3980
3981 record_value_for_reg (i1dest, i1_insn, i1_val);
3982
3983 regno = REGNO (i1dest);
3984 if (! added_sets_1 && ! i1dest_in_i1src)
3985 INC_REG_N_SETS (regno, -1);
3986 }
3987
3988 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3989 been made to this insn. The order of
3990 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3991 can affect nonzero_bits of newpat */
3992 if (newi2pat)
3993 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3994 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3995 }
3996
3997 if (undobuf.other_insn != NULL_RTX)
3998 {
3999 if (dump_file)
4000 {
4001 fprintf (dump_file, "modifying other_insn ");
4002 dump_insn_slim (dump_file, undobuf.other_insn);
4003 }
4004 df_insn_rescan (undobuf.other_insn);
4005 }
4006
4007 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4008 {
4009 if (dump_file)
4010 {
4011 fprintf (dump_file, "modifying insn i1 ");
4012 dump_insn_slim (dump_file, i1);
4013 }
4014 df_insn_rescan (i1);
4015 }
4016
4017 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4018 {
4019 if (dump_file)
4020 {
4021 fprintf (dump_file, "modifying insn i2 ");
4022 dump_insn_slim (dump_file, i2);
4023 }
4024 df_insn_rescan (i2);
4025 }
4026
4027 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4028 {
4029 if (dump_file)
4030 {
4031 fprintf (dump_file, "modifying insn i3 ");
4032 dump_insn_slim (dump_file, i3);
4033 }
4034 df_insn_rescan (i3);
4035 }
4036
4037 /* Set new_direct_jump_p if a new return or simple jump instruction
4038 has been created. Adjust the CFG accordingly. */
4039
4040 if (returnjump_p (i3) || any_uncondjump_p (i3))
4041 {
4042 *new_direct_jump_p = 1;
4043 mark_jump_label (PATTERN (i3), i3, 0);
4044 update_cfg_for_uncondjump (i3);
4045 }
4046
4047 if (undobuf.other_insn != NULL_RTX
4048 && (returnjump_p (undobuf.other_insn)
4049 || any_uncondjump_p (undobuf.other_insn)))
4050 {
4051 *new_direct_jump_p = 1;
4052 update_cfg_for_uncondjump (undobuf.other_insn);
4053 }
4054
4055 /* A noop might also need cleaning up of CFG, if it comes from the
4056 simplification of a jump. */
4057 if (GET_CODE (newpat) == SET
4058 && SET_SRC (newpat) == pc_rtx
4059 && SET_DEST (newpat) == pc_rtx)
4060 {
4061 *new_direct_jump_p = 1;
4062 update_cfg_for_uncondjump (i3);
4063 }
4064
4065 combine_successes++;
4066 undo_commit ();
4067
4068 if (added_links_insn
4069 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4070 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4071 return added_links_insn;
4072 else
4073 return newi2pat ? i2 : i3;
4074 }
4075 \f
4076 /* Undo all the modifications recorded in undobuf. */
4077
4078 static void
4079 undo_all (void)
4080 {
4081 struct undo *undo, *next;
4082
4083 for (undo = undobuf.undos; undo; undo = next)
4084 {
4085 next = undo->next;
4086 switch (undo->kind)
4087 {
4088 case UNDO_RTX:
4089 *undo->where.r = undo->old_contents.r;
4090 break;
4091 case UNDO_INT:
4092 *undo->where.i = undo->old_contents.i;
4093 break;
4094 case UNDO_MODE:
4095 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4096 break;
4097 default:
4098 gcc_unreachable ();
4099 }
4100
4101 undo->next = undobuf.frees;
4102 undobuf.frees = undo;
4103 }
4104
4105 undobuf.undos = 0;
4106 }
4107
4108 /* We've committed to accepting the changes we made. Move all
4109 of the undos to the free list. */
4110
4111 static void
4112 undo_commit (void)
4113 {
4114 struct undo *undo, *next;
4115
4116 for (undo = undobuf.undos; undo; undo = next)
4117 {
4118 next = undo->next;
4119 undo->next = undobuf.frees;
4120 undobuf.frees = undo;
4121 }
4122 undobuf.undos = 0;
4123 }
4124 \f
4125 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4126 where we have an arithmetic expression and return that point. LOC will
4127 be inside INSN.
4128
4129 try_combine will call this function to see if an insn can be split into
4130 two insns. */
4131
4132 static rtx *
4133 find_split_point (rtx *loc, rtx insn)
4134 {
4135 rtx x = *loc;
4136 enum rtx_code code = GET_CODE (x);
4137 rtx *split;
4138 unsigned HOST_WIDE_INT len = 0;
4139 HOST_WIDE_INT pos = 0;
4140 int unsignedp = 0;
4141 rtx inner = NULL_RTX;
4142
4143 /* First special-case some codes. */
4144 switch (code)
4145 {
4146 case SUBREG:
4147 #ifdef INSN_SCHEDULING
4148 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4149 point. */
4150 if (MEM_P (SUBREG_REG (x)))
4151 return loc;
4152 #endif
4153 return find_split_point (&SUBREG_REG (x), insn);
4154
4155 case MEM:
4156 #ifdef HAVE_lo_sum
4157 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4158 using LO_SUM and HIGH. */
4159 if (GET_CODE (XEXP (x, 0)) == CONST
4160 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4161 {
4162 enum machine_mode address_mode
4163 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4164
4165 SUBST (XEXP (x, 0),
4166 gen_rtx_LO_SUM (address_mode,
4167 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4168 XEXP (x, 0)));
4169 return &XEXP (XEXP (x, 0), 0);
4170 }
4171 #endif
4172
4173 /* If we have a PLUS whose second operand is a constant and the
4174 address is not valid, perhaps will can split it up using
4175 the machine-specific way to split large constants. We use
4176 the first pseudo-reg (one of the virtual regs) as a placeholder;
4177 it will not remain in the result. */
4178 if (GET_CODE (XEXP (x, 0)) == PLUS
4179 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4180 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4181 MEM_ADDR_SPACE (x)))
4182 {
4183 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4184 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4185 XEXP (x, 0)),
4186 subst_insn);
4187
4188 /* This should have produced two insns, each of which sets our
4189 placeholder. If the source of the second is a valid address,
4190 we can make put both sources together and make a split point
4191 in the middle. */
4192
4193 if (seq
4194 && NEXT_INSN (seq) != NULL_RTX
4195 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4196 && NONJUMP_INSN_P (seq)
4197 && GET_CODE (PATTERN (seq)) == SET
4198 && SET_DEST (PATTERN (seq)) == reg
4199 && ! reg_mentioned_p (reg,
4200 SET_SRC (PATTERN (seq)))
4201 && NONJUMP_INSN_P (NEXT_INSN (seq))
4202 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4203 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4204 && memory_address_addr_space_p
4205 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4206 MEM_ADDR_SPACE (x)))
4207 {
4208 rtx src1 = SET_SRC (PATTERN (seq));
4209 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4210
4211 /* Replace the placeholder in SRC2 with SRC1. If we can
4212 find where in SRC2 it was placed, that can become our
4213 split point and we can replace this address with SRC2.
4214 Just try two obvious places. */
4215
4216 src2 = replace_rtx (src2, reg, src1);
4217 split = 0;
4218 if (XEXP (src2, 0) == src1)
4219 split = &XEXP (src2, 0);
4220 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4221 && XEXP (XEXP (src2, 0), 0) == src1)
4222 split = &XEXP (XEXP (src2, 0), 0);
4223
4224 if (split)
4225 {
4226 SUBST (XEXP (x, 0), src2);
4227 return split;
4228 }
4229 }
4230
4231 /* If that didn't work, perhaps the first operand is complex and
4232 needs to be computed separately, so make a split point there.
4233 This will occur on machines that just support REG + CONST
4234 and have a constant moved through some previous computation. */
4235
4236 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4237 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4238 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4239 return &XEXP (XEXP (x, 0), 0);
4240 }
4241
4242 /* If we have a PLUS whose first operand is complex, try computing it
4243 separately by making a split there. */
4244 if (GET_CODE (XEXP (x, 0)) == PLUS
4245 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4246 MEM_ADDR_SPACE (x))
4247 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4248 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4249 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4250 return &XEXP (XEXP (x, 0), 0);
4251 break;
4252
4253 case SET:
4254 #ifdef HAVE_cc0
4255 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4256 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4257 we need to put the operand into a register. So split at that
4258 point. */
4259
4260 if (SET_DEST (x) == cc0_rtx
4261 && GET_CODE (SET_SRC (x)) != COMPARE
4262 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4263 && !OBJECT_P (SET_SRC (x))
4264 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4265 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4266 return &SET_SRC (x);
4267 #endif
4268
4269 /* See if we can split SET_SRC as it stands. */
4270 split = find_split_point (&SET_SRC (x), insn);
4271 if (split && split != &SET_SRC (x))
4272 return split;
4273
4274 /* See if we can split SET_DEST as it stands. */
4275 split = find_split_point (&SET_DEST (x), insn);
4276 if (split && split != &SET_DEST (x))
4277 return split;
4278
4279 /* See if this is a bitfield assignment with everything constant. If
4280 so, this is an IOR of an AND, so split it into that. */
4281 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4282 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4283 <= HOST_BITS_PER_WIDE_INT)
4284 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4285 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4286 && CONST_INT_P (SET_SRC (x))
4287 && ((INTVAL (XEXP (SET_DEST (x), 1))
4288 + INTVAL (XEXP (SET_DEST (x), 2)))
4289 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4290 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4291 {
4292 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4293 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4294 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4295 rtx dest = XEXP (SET_DEST (x), 0);
4296 enum machine_mode mode = GET_MODE (dest);
4297 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4298 rtx or_mask;
4299
4300 if (BITS_BIG_ENDIAN)
4301 pos = GET_MODE_BITSIZE (mode) - len - pos;
4302
4303 or_mask = gen_int_mode (src << pos, mode);
4304 if (src == mask)
4305 SUBST (SET_SRC (x),
4306 simplify_gen_binary (IOR, mode, dest, or_mask));
4307 else
4308 {
4309 rtx negmask = gen_int_mode (~(mask << pos), mode);
4310 SUBST (SET_SRC (x),
4311 simplify_gen_binary (IOR, mode,
4312 simplify_gen_binary (AND, mode,
4313 dest, negmask),
4314 or_mask));
4315 }
4316
4317 SUBST (SET_DEST (x), dest);
4318
4319 split = find_split_point (&SET_SRC (x), insn);
4320 if (split && split != &SET_SRC (x))
4321 return split;
4322 }
4323
4324 /* Otherwise, see if this is an operation that we can split into two.
4325 If so, try to split that. */
4326 code = GET_CODE (SET_SRC (x));
4327
4328 switch (code)
4329 {
4330 case AND:
4331 /* If we are AND'ing with a large constant that is only a single
4332 bit and the result is only being used in a context where we
4333 need to know if it is zero or nonzero, replace it with a bit
4334 extraction. This will avoid the large constant, which might
4335 have taken more than one insn to make. If the constant were
4336 not a valid argument to the AND but took only one insn to make,
4337 this is no worse, but if it took more than one insn, it will
4338 be better. */
4339
4340 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4341 && REG_P (XEXP (SET_SRC (x), 0))
4342 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4343 && REG_P (SET_DEST (x))
4344 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4345 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4346 && XEXP (*split, 0) == SET_DEST (x)
4347 && XEXP (*split, 1) == const0_rtx)
4348 {
4349 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4350 XEXP (SET_SRC (x), 0),
4351 pos, NULL_RTX, 1, 1, 0, 0);
4352 if (extraction != 0)
4353 {
4354 SUBST (SET_SRC (x), extraction);
4355 return find_split_point (loc, insn);
4356 }
4357 }
4358 break;
4359
4360 case NE:
4361 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4362 is known to be on, this can be converted into a NEG of a shift. */
4363 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4364 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4365 && 1 <= (pos = exact_log2
4366 (nonzero_bits (XEXP (SET_SRC (x), 0),
4367 GET_MODE (XEXP (SET_SRC (x), 0))))))
4368 {
4369 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4370
4371 SUBST (SET_SRC (x),
4372 gen_rtx_NEG (mode,
4373 gen_rtx_LSHIFTRT (mode,
4374 XEXP (SET_SRC (x), 0),
4375 GEN_INT (pos))));
4376
4377 split = find_split_point (&SET_SRC (x), insn);
4378 if (split && split != &SET_SRC (x))
4379 return split;
4380 }
4381 break;
4382
4383 case SIGN_EXTEND:
4384 inner = XEXP (SET_SRC (x), 0);
4385
4386 /* We can't optimize if either mode is a partial integer
4387 mode as we don't know how many bits are significant
4388 in those modes. */
4389 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4390 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4391 break;
4392
4393 pos = 0;
4394 len = GET_MODE_BITSIZE (GET_MODE (inner));
4395 unsignedp = 0;
4396 break;
4397
4398 case SIGN_EXTRACT:
4399 case ZERO_EXTRACT:
4400 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4401 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4402 {
4403 inner = XEXP (SET_SRC (x), 0);
4404 len = INTVAL (XEXP (SET_SRC (x), 1));
4405 pos = INTVAL (XEXP (SET_SRC (x), 2));
4406
4407 if (BITS_BIG_ENDIAN)
4408 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4409 unsignedp = (code == ZERO_EXTRACT);
4410 }
4411 break;
4412
4413 default:
4414 break;
4415 }
4416
4417 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4418 {
4419 enum machine_mode mode = GET_MODE (SET_SRC (x));
4420
4421 /* For unsigned, we have a choice of a shift followed by an
4422 AND or two shifts. Use two shifts for field sizes where the
4423 constant might be too large. We assume here that we can
4424 always at least get 8-bit constants in an AND insn, which is
4425 true for every current RISC. */
4426
4427 if (unsignedp && len <= 8)
4428 {
4429 SUBST (SET_SRC (x),
4430 gen_rtx_AND (mode,
4431 gen_rtx_LSHIFTRT
4432 (mode, gen_lowpart (mode, inner),
4433 GEN_INT (pos)),
4434 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4435
4436 split = find_split_point (&SET_SRC (x), insn);
4437 if (split && split != &SET_SRC (x))
4438 return split;
4439 }
4440 else
4441 {
4442 SUBST (SET_SRC (x),
4443 gen_rtx_fmt_ee
4444 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4445 gen_rtx_ASHIFT (mode,
4446 gen_lowpart (mode, inner),
4447 GEN_INT (GET_MODE_BITSIZE (mode)
4448 - len - pos)),
4449 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4450
4451 split = find_split_point (&SET_SRC (x), insn);
4452 if (split && split != &SET_SRC (x))
4453 return split;
4454 }
4455 }
4456
4457 /* See if this is a simple operation with a constant as the second
4458 operand. It might be that this constant is out of range and hence
4459 could be used as a split point. */
4460 if (BINARY_P (SET_SRC (x))
4461 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4462 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4463 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4464 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4465 return &XEXP (SET_SRC (x), 1);
4466
4467 /* Finally, see if this is a simple operation with its first operand
4468 not in a register. The operation might require this operand in a
4469 register, so return it as a split point. We can always do this
4470 because if the first operand were another operation, we would have
4471 already found it as a split point. */
4472 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4473 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4474 return &XEXP (SET_SRC (x), 0);
4475
4476 return 0;
4477
4478 case AND:
4479 case IOR:
4480 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4481 it is better to write this as (not (ior A B)) so we can split it.
4482 Similarly for IOR. */
4483 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4484 {
4485 SUBST (*loc,
4486 gen_rtx_NOT (GET_MODE (x),
4487 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4488 GET_MODE (x),
4489 XEXP (XEXP (x, 0), 0),
4490 XEXP (XEXP (x, 1), 0))));
4491 return find_split_point (loc, insn);
4492 }
4493
4494 /* Many RISC machines have a large set of logical insns. If the
4495 second operand is a NOT, put it first so we will try to split the
4496 other operand first. */
4497 if (GET_CODE (XEXP (x, 1)) == NOT)
4498 {
4499 rtx tem = XEXP (x, 0);
4500 SUBST (XEXP (x, 0), XEXP (x, 1));
4501 SUBST (XEXP (x, 1), tem);
4502 }
4503 break;
4504
4505 default:
4506 break;
4507 }
4508
4509 /* Otherwise, select our actions depending on our rtx class. */
4510 switch (GET_RTX_CLASS (code))
4511 {
4512 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4513 case RTX_TERNARY:
4514 split = find_split_point (&XEXP (x, 2), insn);
4515 if (split)
4516 return split;
4517 /* ... fall through ... */
4518 case RTX_BIN_ARITH:
4519 case RTX_COMM_ARITH:
4520 case RTX_COMPARE:
4521 case RTX_COMM_COMPARE:
4522 split = find_split_point (&XEXP (x, 1), insn);
4523 if (split)
4524 return split;
4525 /* ... fall through ... */
4526 case RTX_UNARY:
4527 /* Some machines have (and (shift ...) ...) insns. If X is not
4528 an AND, but XEXP (X, 0) is, use it as our split point. */
4529 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4530 return &XEXP (x, 0);
4531
4532 split = find_split_point (&XEXP (x, 0), insn);
4533 if (split)
4534 return split;
4535 return loc;
4536
4537 default:
4538 /* Otherwise, we don't have a split point. */
4539 return 0;
4540 }
4541 }
4542 \f
4543 /* Throughout X, replace FROM with TO, and return the result.
4544 The result is TO if X is FROM;
4545 otherwise the result is X, but its contents may have been modified.
4546 If they were modified, a record was made in undobuf so that
4547 undo_all will (among other things) return X to its original state.
4548
4549 If the number of changes necessary is too much to record to undo,
4550 the excess changes are not made, so the result is invalid.
4551 The changes already made can still be undone.
4552 undobuf.num_undo is incremented for such changes, so by testing that
4553 the caller can tell whether the result is valid.
4554
4555 `n_occurrences' is incremented each time FROM is replaced.
4556
4557 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4558
4559 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4560 by copying if `n_occurrences' is nonzero. */
4561
4562 static rtx
4563 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4564 {
4565 enum rtx_code code = GET_CODE (x);
4566 enum machine_mode op0_mode = VOIDmode;
4567 const char *fmt;
4568 int len, i;
4569 rtx new_rtx;
4570
4571 /* Two expressions are equal if they are identical copies of a shared
4572 RTX or if they are both registers with the same register number
4573 and mode. */
4574
4575 #define COMBINE_RTX_EQUAL_P(X,Y) \
4576 ((X) == (Y) \
4577 || (REG_P (X) && REG_P (Y) \
4578 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4579
4580 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4581 {
4582 n_occurrences++;
4583 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4584 }
4585
4586 /* If X and FROM are the same register but different modes, they
4587 will not have been seen as equal above. However, the log links code
4588 will make a LOG_LINKS entry for that case. If we do nothing, we
4589 will try to rerecognize our original insn and, when it succeeds,
4590 we will delete the feeding insn, which is incorrect.
4591
4592 So force this insn not to match in this (rare) case. */
4593 if (! in_dest && code == REG && REG_P (from)
4594 && reg_overlap_mentioned_p (x, from))
4595 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4596
4597 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4598 of which may contain things that can be combined. */
4599 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4600 return x;
4601
4602 /* It is possible to have a subexpression appear twice in the insn.
4603 Suppose that FROM is a register that appears within TO.
4604 Then, after that subexpression has been scanned once by `subst',
4605 the second time it is scanned, TO may be found. If we were
4606 to scan TO here, we would find FROM within it and create a
4607 self-referent rtl structure which is completely wrong. */
4608 if (COMBINE_RTX_EQUAL_P (x, to))
4609 return to;
4610
4611 /* Parallel asm_operands need special attention because all of the
4612 inputs are shared across the arms. Furthermore, unsharing the
4613 rtl results in recognition failures. Failure to handle this case
4614 specially can result in circular rtl.
4615
4616 Solve this by doing a normal pass across the first entry of the
4617 parallel, and only processing the SET_DESTs of the subsequent
4618 entries. Ug. */
4619
4620 if (code == PARALLEL
4621 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4622 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4623 {
4624 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4625
4626 /* If this substitution failed, this whole thing fails. */
4627 if (GET_CODE (new_rtx) == CLOBBER
4628 && XEXP (new_rtx, 0) == const0_rtx)
4629 return new_rtx;
4630
4631 SUBST (XVECEXP (x, 0, 0), new_rtx);
4632
4633 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4634 {
4635 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4636
4637 if (!REG_P (dest)
4638 && GET_CODE (dest) != CC0
4639 && GET_CODE (dest) != PC)
4640 {
4641 new_rtx = subst (dest, from, to, 0, unique_copy);
4642
4643 /* If this substitution failed, this whole thing fails. */
4644 if (GET_CODE (new_rtx) == CLOBBER
4645 && XEXP (new_rtx, 0) == const0_rtx)
4646 return new_rtx;
4647
4648 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4649 }
4650 }
4651 }
4652 else
4653 {
4654 len = GET_RTX_LENGTH (code);
4655 fmt = GET_RTX_FORMAT (code);
4656
4657 /* We don't need to process a SET_DEST that is a register, CC0,
4658 or PC, so set up to skip this common case. All other cases
4659 where we want to suppress replacing something inside a
4660 SET_SRC are handled via the IN_DEST operand. */
4661 if (code == SET
4662 && (REG_P (SET_DEST (x))
4663 || GET_CODE (SET_DEST (x)) == CC0
4664 || GET_CODE (SET_DEST (x)) == PC))
4665 fmt = "ie";
4666
4667 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4668 constant. */
4669 if (fmt[0] == 'e')
4670 op0_mode = GET_MODE (XEXP (x, 0));
4671
4672 for (i = 0; i < len; i++)
4673 {
4674 if (fmt[i] == 'E')
4675 {
4676 int j;
4677 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4678 {
4679 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4680 {
4681 new_rtx = (unique_copy && n_occurrences
4682 ? copy_rtx (to) : to);
4683 n_occurrences++;
4684 }
4685 else
4686 {
4687 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
4688 unique_copy);
4689
4690 /* If this substitution failed, this whole thing
4691 fails. */
4692 if (GET_CODE (new_rtx) == CLOBBER
4693 && XEXP (new_rtx, 0) == const0_rtx)
4694 return new_rtx;
4695 }
4696
4697 SUBST (XVECEXP (x, i, j), new_rtx);
4698 }
4699 }
4700 else if (fmt[i] == 'e')
4701 {
4702 /* If this is a register being set, ignore it. */
4703 new_rtx = XEXP (x, i);
4704 if (in_dest
4705 && i == 0
4706 && (((code == SUBREG || code == ZERO_EXTRACT)
4707 && REG_P (new_rtx))
4708 || code == STRICT_LOW_PART))
4709 ;
4710
4711 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4712 {
4713 /* In general, don't install a subreg involving two
4714 modes not tieable. It can worsen register
4715 allocation, and can even make invalid reload
4716 insns, since the reg inside may need to be copied
4717 from in the outside mode, and that may be invalid
4718 if it is an fp reg copied in integer mode.
4719
4720 We allow two exceptions to this: It is valid if
4721 it is inside another SUBREG and the mode of that
4722 SUBREG and the mode of the inside of TO is
4723 tieable and it is valid if X is a SET that copies
4724 FROM to CC0. */
4725
4726 if (GET_CODE (to) == SUBREG
4727 && ! MODES_TIEABLE_P (GET_MODE (to),
4728 GET_MODE (SUBREG_REG (to)))
4729 && ! (code == SUBREG
4730 && MODES_TIEABLE_P (GET_MODE (x),
4731 GET_MODE (SUBREG_REG (to))))
4732 #ifdef HAVE_cc0
4733 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4734 #endif
4735 )
4736 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4737
4738 #ifdef CANNOT_CHANGE_MODE_CLASS
4739 if (code == SUBREG
4740 && REG_P (to)
4741 && REGNO (to) < FIRST_PSEUDO_REGISTER
4742 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4743 GET_MODE (to),
4744 GET_MODE (x)))
4745 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4746 #endif
4747
4748 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4749 n_occurrences++;
4750 }
4751 else
4752 /* If we are in a SET_DEST, suppress most cases unless we
4753 have gone inside a MEM, in which case we want to
4754 simplify the address. We assume here that things that
4755 are actually part of the destination have their inner
4756 parts in the first expression. This is true for SUBREG,
4757 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4758 things aside from REG and MEM that should appear in a
4759 SET_DEST. */
4760 new_rtx = subst (XEXP (x, i), from, to,
4761 (((in_dest
4762 && (code == SUBREG || code == STRICT_LOW_PART
4763 || code == ZERO_EXTRACT))
4764 || code == SET)
4765 && i == 0), unique_copy);
4766
4767 /* If we found that we will have to reject this combination,
4768 indicate that by returning the CLOBBER ourselves, rather than
4769 an expression containing it. This will speed things up as
4770 well as prevent accidents where two CLOBBERs are considered
4771 to be equal, thus producing an incorrect simplification. */
4772
4773 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
4774 return new_rtx;
4775
4776 if (GET_CODE (x) == SUBREG
4777 && (CONST_INT_P (new_rtx)
4778 || GET_CODE (new_rtx) == CONST_DOUBLE))
4779 {
4780 enum machine_mode mode = GET_MODE (x);
4781
4782 x = simplify_subreg (GET_MODE (x), new_rtx,
4783 GET_MODE (SUBREG_REG (x)),
4784 SUBREG_BYTE (x));
4785 if (! x)
4786 x = gen_rtx_CLOBBER (mode, const0_rtx);
4787 }
4788 else if (CONST_INT_P (new_rtx)
4789 && GET_CODE (x) == ZERO_EXTEND)
4790 {
4791 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4792 new_rtx, GET_MODE (XEXP (x, 0)));
4793 gcc_assert (x);
4794 }
4795 else
4796 SUBST (XEXP (x, i), new_rtx);
4797 }
4798 }
4799 }
4800
4801 /* Check if we are loading something from the constant pool via float
4802 extension; in this case we would undo compress_float_constant
4803 optimization and degenerate constant load to an immediate value. */
4804 if (GET_CODE (x) == FLOAT_EXTEND
4805 && MEM_P (XEXP (x, 0))
4806 && MEM_READONLY_P (XEXP (x, 0)))
4807 {
4808 rtx tmp = avoid_constant_pool_reference (x);
4809 if (x != tmp)
4810 return x;
4811 }
4812
4813 /* Try to simplify X. If the simplification changed the code, it is likely
4814 that further simplification will help, so loop, but limit the number
4815 of repetitions that will be performed. */
4816
4817 for (i = 0; i < 4; i++)
4818 {
4819 /* If X is sufficiently simple, don't bother trying to do anything
4820 with it. */
4821 if (code != CONST_INT && code != REG && code != CLOBBER)
4822 x = combine_simplify_rtx (x, op0_mode, in_dest);
4823
4824 if (GET_CODE (x) == code)
4825 break;
4826
4827 code = GET_CODE (x);
4828
4829 /* We no longer know the original mode of operand 0 since we
4830 have changed the form of X) */
4831 op0_mode = VOIDmode;
4832 }
4833
4834 return x;
4835 }
4836 \f
4837 /* Simplify X, a piece of RTL. We just operate on the expression at the
4838 outer level; call `subst' to simplify recursively. Return the new
4839 expression.
4840
4841 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4842 if we are inside a SET_DEST. */
4843
4844 static rtx
4845 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4846 {
4847 enum rtx_code code = GET_CODE (x);
4848 enum machine_mode mode = GET_MODE (x);
4849 rtx temp;
4850 int i;
4851
4852 /* If this is a commutative operation, put a constant last and a complex
4853 expression first. We don't need to do this for comparisons here. */
4854 if (COMMUTATIVE_ARITH_P (x)
4855 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4856 {
4857 temp = XEXP (x, 0);
4858 SUBST (XEXP (x, 0), XEXP (x, 1));
4859 SUBST (XEXP (x, 1), temp);
4860 }
4861
4862 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4863 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4864 things. Check for cases where both arms are testing the same
4865 condition.
4866
4867 Don't do anything if all operands are very simple. */
4868
4869 if ((BINARY_P (x)
4870 && ((!OBJECT_P (XEXP (x, 0))
4871 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4872 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4873 || (!OBJECT_P (XEXP (x, 1))
4874 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4875 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4876 || (UNARY_P (x)
4877 && (!OBJECT_P (XEXP (x, 0))
4878 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4879 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4880 {
4881 rtx cond, true_rtx, false_rtx;
4882
4883 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4884 if (cond != 0
4885 /* If everything is a comparison, what we have is highly unlikely
4886 to be simpler, so don't use it. */
4887 && ! (COMPARISON_P (x)
4888 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4889 {
4890 rtx cop1 = const0_rtx;
4891 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4892
4893 if (cond_code == NE && COMPARISON_P (cond))
4894 return x;
4895
4896 /* Simplify the alternative arms; this may collapse the true and
4897 false arms to store-flag values. Be careful to use copy_rtx
4898 here since true_rtx or false_rtx might share RTL with x as a
4899 result of the if_then_else_cond call above. */
4900 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4901 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4902
4903 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4904 is unlikely to be simpler. */
4905 if (general_operand (true_rtx, VOIDmode)
4906 && general_operand (false_rtx, VOIDmode))
4907 {
4908 enum rtx_code reversed;
4909
4910 /* Restarting if we generate a store-flag expression will cause
4911 us to loop. Just drop through in this case. */
4912
4913 /* If the result values are STORE_FLAG_VALUE and zero, we can
4914 just make the comparison operation. */
4915 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4916 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4917 cond, cop1);
4918 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4919 && ((reversed = reversed_comparison_code_parts
4920 (cond_code, cond, cop1, NULL))
4921 != UNKNOWN))
4922 x = simplify_gen_relational (reversed, mode, VOIDmode,
4923 cond, cop1);
4924
4925 /* Likewise, we can make the negate of a comparison operation
4926 if the result values are - STORE_FLAG_VALUE and zero. */
4927 else if (CONST_INT_P (true_rtx)
4928 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4929 && false_rtx == const0_rtx)
4930 x = simplify_gen_unary (NEG, mode,
4931 simplify_gen_relational (cond_code,
4932 mode, VOIDmode,
4933 cond, cop1),
4934 mode);
4935 else if (CONST_INT_P (false_rtx)
4936 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4937 && true_rtx == const0_rtx
4938 && ((reversed = reversed_comparison_code_parts
4939 (cond_code, cond, cop1, NULL))
4940 != UNKNOWN))
4941 x = simplify_gen_unary (NEG, mode,
4942 simplify_gen_relational (reversed,
4943 mode, VOIDmode,
4944 cond, cop1),
4945 mode);
4946 else
4947 return gen_rtx_IF_THEN_ELSE (mode,
4948 simplify_gen_relational (cond_code,
4949 mode,
4950 VOIDmode,
4951 cond,
4952 cop1),
4953 true_rtx, false_rtx);
4954
4955 code = GET_CODE (x);
4956 op0_mode = VOIDmode;
4957 }
4958 }
4959 }
4960
4961 /* Try to fold this expression in case we have constants that weren't
4962 present before. */
4963 temp = 0;
4964 switch (GET_RTX_CLASS (code))
4965 {
4966 case RTX_UNARY:
4967 if (op0_mode == VOIDmode)
4968 op0_mode = GET_MODE (XEXP (x, 0));
4969 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4970 break;
4971 case RTX_COMPARE:
4972 case RTX_COMM_COMPARE:
4973 {
4974 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4975 if (cmp_mode == VOIDmode)
4976 {
4977 cmp_mode = GET_MODE (XEXP (x, 1));
4978 if (cmp_mode == VOIDmode)
4979 cmp_mode = op0_mode;
4980 }
4981 temp = simplify_relational_operation (code, mode, cmp_mode,
4982 XEXP (x, 0), XEXP (x, 1));
4983 }
4984 break;
4985 case RTX_COMM_ARITH:
4986 case RTX_BIN_ARITH:
4987 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4988 break;
4989 case RTX_BITFIELD_OPS:
4990 case RTX_TERNARY:
4991 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4992 XEXP (x, 1), XEXP (x, 2));
4993 break;
4994 default:
4995 break;
4996 }
4997
4998 if (temp)
4999 {
5000 x = temp;
5001 code = GET_CODE (temp);
5002 op0_mode = VOIDmode;
5003 mode = GET_MODE (temp);
5004 }
5005
5006 /* First see if we can apply the inverse distributive law. */
5007 if (code == PLUS || code == MINUS
5008 || code == AND || code == IOR || code == XOR)
5009 {
5010 x = apply_distributive_law (x);
5011 code = GET_CODE (x);
5012 op0_mode = VOIDmode;
5013 }
5014
5015 /* If CODE is an associative operation not otherwise handled, see if we
5016 can associate some operands. This can win if they are constants or
5017 if they are logically related (i.e. (a & b) & a). */
5018 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5019 || code == AND || code == IOR || code == XOR
5020 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5021 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5022 || (flag_associative_math && FLOAT_MODE_P (mode))))
5023 {
5024 if (GET_CODE (XEXP (x, 0)) == code)
5025 {
5026 rtx other = XEXP (XEXP (x, 0), 0);
5027 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5028 rtx inner_op1 = XEXP (x, 1);
5029 rtx inner;
5030
5031 /* Make sure we pass the constant operand if any as the second
5032 one if this is a commutative operation. */
5033 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5034 {
5035 rtx tem = inner_op0;
5036 inner_op0 = inner_op1;
5037 inner_op1 = tem;
5038 }
5039 inner = simplify_binary_operation (code == MINUS ? PLUS
5040 : code == DIV ? MULT
5041 : code,
5042 mode, inner_op0, inner_op1);
5043
5044 /* For commutative operations, try the other pair if that one
5045 didn't simplify. */
5046 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5047 {
5048 other = XEXP (XEXP (x, 0), 1);
5049 inner = simplify_binary_operation (code, mode,
5050 XEXP (XEXP (x, 0), 0),
5051 XEXP (x, 1));
5052 }
5053
5054 if (inner)
5055 return simplify_gen_binary (code, mode, other, inner);
5056 }
5057 }
5058
5059 /* A little bit of algebraic simplification here. */
5060 switch (code)
5061 {
5062 case MEM:
5063 /* Ensure that our address has any ASHIFTs converted to MULT in case
5064 address-recognizing predicates are called later. */
5065 temp = make_compound_operation (XEXP (x, 0), MEM);
5066 SUBST (XEXP (x, 0), temp);
5067 break;
5068
5069 case SUBREG:
5070 if (op0_mode == VOIDmode)
5071 op0_mode = GET_MODE (SUBREG_REG (x));
5072
5073 /* See if this can be moved to simplify_subreg. */
5074 if (CONSTANT_P (SUBREG_REG (x))
5075 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5076 /* Don't call gen_lowpart if the inner mode
5077 is VOIDmode and we cannot simplify it, as SUBREG without
5078 inner mode is invalid. */
5079 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5080 || gen_lowpart_common (mode, SUBREG_REG (x))))
5081 return gen_lowpart (mode, SUBREG_REG (x));
5082
5083 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5084 break;
5085 {
5086 rtx temp;
5087 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5088 SUBREG_BYTE (x));
5089 if (temp)
5090 return temp;
5091 }
5092
5093 /* Don't change the mode of the MEM if that would change the meaning
5094 of the address. */
5095 if (MEM_P (SUBREG_REG (x))
5096 && (MEM_VOLATILE_P (SUBREG_REG (x))
5097 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5098 return gen_rtx_CLOBBER (mode, const0_rtx);
5099
5100 /* Note that we cannot do any narrowing for non-constants since
5101 we might have been counting on using the fact that some bits were
5102 zero. We now do this in the SET. */
5103
5104 break;
5105
5106 case NEG:
5107 temp = expand_compound_operation (XEXP (x, 0));
5108
5109 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5110 replaced by (lshiftrt X C). This will convert
5111 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5112
5113 if (GET_CODE (temp) == ASHIFTRT
5114 && CONST_INT_P (XEXP (temp, 1))
5115 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
5116 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5117 INTVAL (XEXP (temp, 1)));
5118
5119 /* If X has only a single bit that might be nonzero, say, bit I, convert
5120 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5121 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5122 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5123 or a SUBREG of one since we'd be making the expression more
5124 complex if it was just a register. */
5125
5126 if (!REG_P (temp)
5127 && ! (GET_CODE (temp) == SUBREG
5128 && REG_P (SUBREG_REG (temp)))
5129 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5130 {
5131 rtx temp1 = simplify_shift_const
5132 (NULL_RTX, ASHIFTRT, mode,
5133 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5134 GET_MODE_BITSIZE (mode) - 1 - i),
5135 GET_MODE_BITSIZE (mode) - 1 - i);
5136
5137 /* If all we did was surround TEMP with the two shifts, we
5138 haven't improved anything, so don't use it. Otherwise,
5139 we are better off with TEMP1. */
5140 if (GET_CODE (temp1) != ASHIFTRT
5141 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5142 || XEXP (XEXP (temp1, 0), 0) != temp)
5143 return temp1;
5144 }
5145 break;
5146
5147 case TRUNCATE:
5148 /* We can't handle truncation to a partial integer mode here
5149 because we don't know the real bitsize of the partial
5150 integer mode. */
5151 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5152 break;
5153
5154 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5155 SUBST (XEXP (x, 0),
5156 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5157 GET_MODE_MASK (mode), 0));
5158
5159 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5160 whose value is a comparison can be replaced with a subreg if
5161 STORE_FLAG_VALUE permits. */
5162 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5163 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5164 && (temp = get_last_value (XEXP (x, 0)))
5165 && COMPARISON_P (temp))
5166 return gen_lowpart (mode, XEXP (x, 0));
5167 break;
5168
5169 case CONST:
5170 /* (const (const X)) can become (const X). Do it this way rather than
5171 returning the inner CONST since CONST can be shared with a
5172 REG_EQUAL note. */
5173 if (GET_CODE (XEXP (x, 0)) == CONST)
5174 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5175 break;
5176
5177 #ifdef HAVE_lo_sum
5178 case LO_SUM:
5179 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5180 can add in an offset. find_split_point will split this address up
5181 again if it doesn't match. */
5182 if (GET_CODE (XEXP (x, 0)) == HIGH
5183 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5184 return XEXP (x, 1);
5185 break;
5186 #endif
5187
5188 case PLUS:
5189 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5190 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5191 bit-field and can be replaced by either a sign_extend or a
5192 sign_extract. The `and' may be a zero_extend and the two
5193 <c>, -<c> constants may be reversed. */
5194 if (GET_CODE (XEXP (x, 0)) == XOR
5195 && CONST_INT_P (XEXP (x, 1))
5196 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5197 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5198 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5199 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
5200 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5201 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5202 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5203 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5204 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
5205 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5206 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5207 == (unsigned int) i + 1))))
5208 return simplify_shift_const
5209 (NULL_RTX, ASHIFTRT, mode,
5210 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5211 XEXP (XEXP (XEXP (x, 0), 0), 0),
5212 GET_MODE_BITSIZE (mode) - (i + 1)),
5213 GET_MODE_BITSIZE (mode) - (i + 1));
5214
5215 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5216 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5217 the bitsize of the mode - 1. This allows simplification of
5218 "a = (b & 8) == 0;" */
5219 if (XEXP (x, 1) == constm1_rtx
5220 && !REG_P (XEXP (x, 0))
5221 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5222 && REG_P (SUBREG_REG (XEXP (x, 0))))
5223 && nonzero_bits (XEXP (x, 0), mode) == 1)
5224 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5225 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5226 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5227 GET_MODE_BITSIZE (mode) - 1),
5228 GET_MODE_BITSIZE (mode) - 1);
5229
5230 /* If we are adding two things that have no bits in common, convert
5231 the addition into an IOR. This will often be further simplified,
5232 for example in cases like ((a & 1) + (a & 2)), which can
5233 become a & 3. */
5234
5235 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5236 && (nonzero_bits (XEXP (x, 0), mode)
5237 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5238 {
5239 /* Try to simplify the expression further. */
5240 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5241 temp = combine_simplify_rtx (tor, mode, in_dest);
5242
5243 /* If we could, great. If not, do not go ahead with the IOR
5244 replacement, since PLUS appears in many special purpose
5245 address arithmetic instructions. */
5246 if (GET_CODE (temp) != CLOBBER && temp != tor)
5247 return temp;
5248 }
5249 break;
5250
5251 case MINUS:
5252 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5253 (and <foo> (const_int pow2-1)) */
5254 if (GET_CODE (XEXP (x, 1)) == AND
5255 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5256 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5257 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5258 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5259 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5260 break;
5261
5262 case MULT:
5263 /* If we have (mult (plus A B) C), apply the distributive law and then
5264 the inverse distributive law to see if things simplify. This
5265 occurs mostly in addresses, often when unrolling loops. */
5266
5267 if (GET_CODE (XEXP (x, 0)) == PLUS)
5268 {
5269 rtx result = distribute_and_simplify_rtx (x, 0);
5270 if (result)
5271 return result;
5272 }
5273
5274 /* Try simplify a*(b/c) as (a*b)/c. */
5275 if (FLOAT_MODE_P (mode) && flag_associative_math
5276 && GET_CODE (XEXP (x, 0)) == DIV)
5277 {
5278 rtx tem = simplify_binary_operation (MULT, mode,
5279 XEXP (XEXP (x, 0), 0),
5280 XEXP (x, 1));
5281 if (tem)
5282 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5283 }
5284 break;
5285
5286 case UDIV:
5287 /* If this is a divide by a power of two, treat it as a shift if
5288 its first operand is a shift. */
5289 if (CONST_INT_P (XEXP (x, 1))
5290 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5291 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5292 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5293 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5294 || GET_CODE (XEXP (x, 0)) == ROTATE
5295 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5296 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5297 break;
5298
5299 case EQ: case NE:
5300 case GT: case GTU: case GE: case GEU:
5301 case LT: case LTU: case LE: case LEU:
5302 case UNEQ: case LTGT:
5303 case UNGT: case UNGE:
5304 case UNLT: case UNLE:
5305 case UNORDERED: case ORDERED:
5306 /* If the first operand is a condition code, we can't do anything
5307 with it. */
5308 if (GET_CODE (XEXP (x, 0)) == COMPARE
5309 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5310 && ! CC0_P (XEXP (x, 0))))
5311 {
5312 rtx op0 = XEXP (x, 0);
5313 rtx op1 = XEXP (x, 1);
5314 enum rtx_code new_code;
5315
5316 if (GET_CODE (op0) == COMPARE)
5317 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5318
5319 /* Simplify our comparison, if possible. */
5320 new_code = simplify_comparison (code, &op0, &op1);
5321
5322 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5323 if only the low-order bit is possibly nonzero in X (such as when
5324 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5325 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5326 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5327 (plus X 1).
5328
5329 Remove any ZERO_EXTRACT we made when thinking this was a
5330 comparison. It may now be simpler to use, e.g., an AND. If a
5331 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5332 the call to make_compound_operation in the SET case. */
5333
5334 if (STORE_FLAG_VALUE == 1
5335 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5336 && op1 == const0_rtx
5337 && mode == GET_MODE (op0)
5338 && nonzero_bits (op0, mode) == 1)
5339 return gen_lowpart (mode,
5340 expand_compound_operation (op0));
5341
5342 else if (STORE_FLAG_VALUE == 1
5343 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5344 && op1 == const0_rtx
5345 && mode == GET_MODE (op0)
5346 && (num_sign_bit_copies (op0, mode)
5347 == GET_MODE_BITSIZE (mode)))
5348 {
5349 op0 = expand_compound_operation (op0);
5350 return simplify_gen_unary (NEG, mode,
5351 gen_lowpart (mode, op0),
5352 mode);
5353 }
5354
5355 else if (STORE_FLAG_VALUE == 1
5356 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5357 && op1 == const0_rtx
5358 && mode == GET_MODE (op0)
5359 && nonzero_bits (op0, mode) == 1)
5360 {
5361 op0 = expand_compound_operation (op0);
5362 return simplify_gen_binary (XOR, mode,
5363 gen_lowpart (mode, op0),
5364 const1_rtx);
5365 }
5366
5367 else if (STORE_FLAG_VALUE == 1
5368 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5369 && op1 == const0_rtx
5370 && mode == GET_MODE (op0)
5371 && (num_sign_bit_copies (op0, mode)
5372 == GET_MODE_BITSIZE (mode)))
5373 {
5374 op0 = expand_compound_operation (op0);
5375 return plus_constant (gen_lowpart (mode, op0), 1);
5376 }
5377
5378 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5379 those above. */
5380 if (STORE_FLAG_VALUE == -1
5381 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5382 && op1 == const0_rtx
5383 && (num_sign_bit_copies (op0, mode)
5384 == GET_MODE_BITSIZE (mode)))
5385 return gen_lowpart (mode,
5386 expand_compound_operation (op0));
5387
5388 else if (STORE_FLAG_VALUE == -1
5389 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5390 && op1 == const0_rtx
5391 && mode == GET_MODE (op0)
5392 && nonzero_bits (op0, mode) == 1)
5393 {
5394 op0 = expand_compound_operation (op0);
5395 return simplify_gen_unary (NEG, mode,
5396 gen_lowpart (mode, op0),
5397 mode);
5398 }
5399
5400 else if (STORE_FLAG_VALUE == -1
5401 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5402 && op1 == const0_rtx
5403 && mode == GET_MODE (op0)
5404 && (num_sign_bit_copies (op0, mode)
5405 == GET_MODE_BITSIZE (mode)))
5406 {
5407 op0 = expand_compound_operation (op0);
5408 return simplify_gen_unary (NOT, mode,
5409 gen_lowpart (mode, op0),
5410 mode);
5411 }
5412
5413 /* If X is 0/1, (eq X 0) is X-1. */
5414 else if (STORE_FLAG_VALUE == -1
5415 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5416 && op1 == const0_rtx
5417 && mode == GET_MODE (op0)
5418 && nonzero_bits (op0, mode) == 1)
5419 {
5420 op0 = expand_compound_operation (op0);
5421 return plus_constant (gen_lowpart (mode, op0), -1);
5422 }
5423
5424 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5425 one bit that might be nonzero, we can convert (ne x 0) to
5426 (ashift x c) where C puts the bit in the sign bit. Remove any
5427 AND with STORE_FLAG_VALUE when we are done, since we are only
5428 going to test the sign bit. */
5429 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5430 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5431 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5432 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5433 && op1 == const0_rtx
5434 && mode == GET_MODE (op0)
5435 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5436 {
5437 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5438 expand_compound_operation (op0),
5439 GET_MODE_BITSIZE (mode) - 1 - i);
5440 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5441 return XEXP (x, 0);
5442 else
5443 return x;
5444 }
5445
5446 /* If the code changed, return a whole new comparison. */
5447 if (new_code != code)
5448 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5449
5450 /* Otherwise, keep this operation, but maybe change its operands.
5451 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5452 SUBST (XEXP (x, 0), op0);
5453 SUBST (XEXP (x, 1), op1);
5454 }
5455 break;
5456
5457 case IF_THEN_ELSE:
5458 return simplify_if_then_else (x);
5459
5460 case ZERO_EXTRACT:
5461 case SIGN_EXTRACT:
5462 case ZERO_EXTEND:
5463 case SIGN_EXTEND:
5464 /* If we are processing SET_DEST, we are done. */
5465 if (in_dest)
5466 return x;
5467
5468 return expand_compound_operation (x);
5469
5470 case SET:
5471 return simplify_set (x);
5472
5473 case AND:
5474 case IOR:
5475 return simplify_logical (x);
5476
5477 case ASHIFT:
5478 case LSHIFTRT:
5479 case ASHIFTRT:
5480 case ROTATE:
5481 case ROTATERT:
5482 /* If this is a shift by a constant amount, simplify it. */
5483 if (CONST_INT_P (XEXP (x, 1)))
5484 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5485 INTVAL (XEXP (x, 1)));
5486
5487 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5488 SUBST (XEXP (x, 1),
5489 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5490 ((HOST_WIDE_INT) 1
5491 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5492 - 1,
5493 0));
5494 break;
5495
5496 default:
5497 break;
5498 }
5499
5500 return x;
5501 }
5502 \f
5503 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5504
5505 static rtx
5506 simplify_if_then_else (rtx x)
5507 {
5508 enum machine_mode mode = GET_MODE (x);
5509 rtx cond = XEXP (x, 0);
5510 rtx true_rtx = XEXP (x, 1);
5511 rtx false_rtx = XEXP (x, 2);
5512 enum rtx_code true_code = GET_CODE (cond);
5513 int comparison_p = COMPARISON_P (cond);
5514 rtx temp;
5515 int i;
5516 enum rtx_code false_code;
5517 rtx reversed;
5518
5519 /* Simplify storing of the truth value. */
5520 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5521 return simplify_gen_relational (true_code, mode, VOIDmode,
5522 XEXP (cond, 0), XEXP (cond, 1));
5523
5524 /* Also when the truth value has to be reversed. */
5525 if (comparison_p
5526 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5527 && (reversed = reversed_comparison (cond, mode)))
5528 return reversed;
5529
5530 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5531 in it is being compared against certain values. Get the true and false
5532 comparisons and see if that says anything about the value of each arm. */
5533
5534 if (comparison_p
5535 && ((false_code = reversed_comparison_code (cond, NULL))
5536 != UNKNOWN)
5537 && REG_P (XEXP (cond, 0)))
5538 {
5539 HOST_WIDE_INT nzb;
5540 rtx from = XEXP (cond, 0);
5541 rtx true_val = XEXP (cond, 1);
5542 rtx false_val = true_val;
5543 int swapped = 0;
5544
5545 /* If FALSE_CODE is EQ, swap the codes and arms. */
5546
5547 if (false_code == EQ)
5548 {
5549 swapped = 1, true_code = EQ, false_code = NE;
5550 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5551 }
5552
5553 /* If we are comparing against zero and the expression being tested has
5554 only a single bit that might be nonzero, that is its value when it is
5555 not equal to zero. Similarly if it is known to be -1 or 0. */
5556
5557 if (true_code == EQ && true_val == const0_rtx
5558 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5559 {
5560 false_code = EQ;
5561 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5562 }
5563 else if (true_code == EQ && true_val == const0_rtx
5564 && (num_sign_bit_copies (from, GET_MODE (from))
5565 == GET_MODE_BITSIZE (GET_MODE (from))))
5566 {
5567 false_code = EQ;
5568 false_val = constm1_rtx;
5569 }
5570
5571 /* Now simplify an arm if we know the value of the register in the
5572 branch and it is used in the arm. Be careful due to the potential
5573 of locally-shared RTL. */
5574
5575 if (reg_mentioned_p (from, true_rtx))
5576 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5577 from, true_val),
5578 pc_rtx, pc_rtx, 0, 0);
5579 if (reg_mentioned_p (from, false_rtx))
5580 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5581 from, false_val),
5582 pc_rtx, pc_rtx, 0, 0);
5583
5584 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5585 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5586
5587 true_rtx = XEXP (x, 1);
5588 false_rtx = XEXP (x, 2);
5589 true_code = GET_CODE (cond);
5590 }
5591
5592 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5593 reversed, do so to avoid needing two sets of patterns for
5594 subtract-and-branch insns. Similarly if we have a constant in the true
5595 arm, the false arm is the same as the first operand of the comparison, or
5596 the false arm is more complicated than the true arm. */
5597
5598 if (comparison_p
5599 && reversed_comparison_code (cond, NULL) != UNKNOWN
5600 && (true_rtx == pc_rtx
5601 || (CONSTANT_P (true_rtx)
5602 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5603 || true_rtx == const0_rtx
5604 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5605 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5606 && !OBJECT_P (false_rtx))
5607 || reg_mentioned_p (true_rtx, false_rtx)
5608 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5609 {
5610 true_code = reversed_comparison_code (cond, NULL);
5611 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5612 SUBST (XEXP (x, 1), false_rtx);
5613 SUBST (XEXP (x, 2), true_rtx);
5614
5615 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5616 cond = XEXP (x, 0);
5617
5618 /* It is possible that the conditional has been simplified out. */
5619 true_code = GET_CODE (cond);
5620 comparison_p = COMPARISON_P (cond);
5621 }
5622
5623 /* If the two arms are identical, we don't need the comparison. */
5624
5625 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5626 return true_rtx;
5627
5628 /* Convert a == b ? b : a to "a". */
5629 if (true_code == EQ && ! side_effects_p (cond)
5630 && !HONOR_NANS (mode)
5631 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5632 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5633 return false_rtx;
5634 else if (true_code == NE && ! side_effects_p (cond)
5635 && !HONOR_NANS (mode)
5636 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5637 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5638 return true_rtx;
5639
5640 /* Look for cases where we have (abs x) or (neg (abs X)). */
5641
5642 if (GET_MODE_CLASS (mode) == MODE_INT
5643 && comparison_p
5644 && XEXP (cond, 1) == const0_rtx
5645 && GET_CODE (false_rtx) == NEG
5646 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5647 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5648 && ! side_effects_p (true_rtx))
5649 switch (true_code)
5650 {
5651 case GT:
5652 case GE:
5653 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5654 case LT:
5655 case LE:
5656 return
5657 simplify_gen_unary (NEG, mode,
5658 simplify_gen_unary (ABS, mode, true_rtx, mode),
5659 mode);
5660 default:
5661 break;
5662 }
5663
5664 /* Look for MIN or MAX. */
5665
5666 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5667 && comparison_p
5668 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5669 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5670 && ! side_effects_p (cond))
5671 switch (true_code)
5672 {
5673 case GE:
5674 case GT:
5675 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5676 case LE:
5677 case LT:
5678 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5679 case GEU:
5680 case GTU:
5681 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5682 case LEU:
5683 case LTU:
5684 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5685 default:
5686 break;
5687 }
5688
5689 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5690 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5691 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5692 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5693 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5694 neither 1 or -1, but it isn't worth checking for. */
5695
5696 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5697 && comparison_p
5698 && GET_MODE_CLASS (mode) == MODE_INT
5699 && ! side_effects_p (x))
5700 {
5701 rtx t = make_compound_operation (true_rtx, SET);
5702 rtx f = make_compound_operation (false_rtx, SET);
5703 rtx cond_op0 = XEXP (cond, 0);
5704 rtx cond_op1 = XEXP (cond, 1);
5705 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5706 enum machine_mode m = mode;
5707 rtx z = 0, c1 = NULL_RTX;
5708
5709 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5710 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5711 || GET_CODE (t) == ASHIFT
5712 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5713 && rtx_equal_p (XEXP (t, 0), f))
5714 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5715
5716 /* If an identity-zero op is commutative, check whether there
5717 would be a match if we swapped the operands. */
5718 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5719 || GET_CODE (t) == XOR)
5720 && rtx_equal_p (XEXP (t, 1), f))
5721 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5722 else if (GET_CODE (t) == SIGN_EXTEND
5723 && (GET_CODE (XEXP (t, 0)) == PLUS
5724 || GET_CODE (XEXP (t, 0)) == MINUS
5725 || GET_CODE (XEXP (t, 0)) == IOR
5726 || GET_CODE (XEXP (t, 0)) == XOR
5727 || GET_CODE (XEXP (t, 0)) == ASHIFT
5728 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5729 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5730 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5731 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5732 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5733 && (num_sign_bit_copies (f, GET_MODE (f))
5734 > (unsigned int)
5735 (GET_MODE_BITSIZE (mode)
5736 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5737 {
5738 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5739 extend_op = SIGN_EXTEND;
5740 m = GET_MODE (XEXP (t, 0));
5741 }
5742 else if (GET_CODE (t) == SIGN_EXTEND
5743 && (GET_CODE (XEXP (t, 0)) == PLUS
5744 || GET_CODE (XEXP (t, 0)) == IOR
5745 || GET_CODE (XEXP (t, 0)) == XOR)
5746 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5747 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5748 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5749 && (num_sign_bit_copies (f, GET_MODE (f))
5750 > (unsigned int)
5751 (GET_MODE_BITSIZE (mode)
5752 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5753 {
5754 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5755 extend_op = SIGN_EXTEND;
5756 m = GET_MODE (XEXP (t, 0));
5757 }
5758 else if (GET_CODE (t) == ZERO_EXTEND
5759 && (GET_CODE (XEXP (t, 0)) == PLUS
5760 || GET_CODE (XEXP (t, 0)) == MINUS
5761 || GET_CODE (XEXP (t, 0)) == IOR
5762 || GET_CODE (XEXP (t, 0)) == XOR
5763 || GET_CODE (XEXP (t, 0)) == ASHIFT
5764 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5765 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5766 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5767 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5768 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5769 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5770 && ((nonzero_bits (f, GET_MODE (f))
5771 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5772 == 0))
5773 {
5774 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5775 extend_op = ZERO_EXTEND;
5776 m = GET_MODE (XEXP (t, 0));
5777 }
5778 else if (GET_CODE (t) == ZERO_EXTEND
5779 && (GET_CODE (XEXP (t, 0)) == PLUS
5780 || GET_CODE (XEXP (t, 0)) == IOR
5781 || GET_CODE (XEXP (t, 0)) == XOR)
5782 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5783 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5784 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5785 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5786 && ((nonzero_bits (f, GET_MODE (f))
5787 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5788 == 0))
5789 {
5790 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5791 extend_op = ZERO_EXTEND;
5792 m = GET_MODE (XEXP (t, 0));
5793 }
5794
5795 if (z)
5796 {
5797 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5798 cond_op0, cond_op1),
5799 pc_rtx, pc_rtx, 0, 0);
5800 temp = simplify_gen_binary (MULT, m, temp,
5801 simplify_gen_binary (MULT, m, c1,
5802 const_true_rtx));
5803 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5804 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5805
5806 if (extend_op != UNKNOWN)
5807 temp = simplify_gen_unary (extend_op, mode, temp, m);
5808
5809 return temp;
5810 }
5811 }
5812
5813 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5814 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5815 negation of a single bit, we can convert this operation to a shift. We
5816 can actually do this more generally, but it doesn't seem worth it. */
5817
5818 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5819 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5820 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5821 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5822 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5823 == GET_MODE_BITSIZE (mode))
5824 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5825 return
5826 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5827 gen_lowpart (mode, XEXP (cond, 0)), i);
5828
5829 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5830 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5831 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
5832 && GET_MODE (XEXP (cond, 0)) == mode
5833 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5834 == nonzero_bits (XEXP (cond, 0), mode)
5835 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5836 return XEXP (cond, 0);
5837
5838 return x;
5839 }
5840 \f
5841 /* Simplify X, a SET expression. Return the new expression. */
5842
5843 static rtx
5844 simplify_set (rtx x)
5845 {
5846 rtx src = SET_SRC (x);
5847 rtx dest = SET_DEST (x);
5848 enum machine_mode mode
5849 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5850 rtx other_insn;
5851 rtx *cc_use;
5852
5853 /* (set (pc) (return)) gets written as (return). */
5854 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5855 return src;
5856
5857 /* Now that we know for sure which bits of SRC we are using, see if we can
5858 simplify the expression for the object knowing that we only need the
5859 low-order bits. */
5860
5861 if (GET_MODE_CLASS (mode) == MODE_INT
5862 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5863 {
5864 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5865 SUBST (SET_SRC (x), src);
5866 }
5867
5868 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5869 the comparison result and try to simplify it unless we already have used
5870 undobuf.other_insn. */
5871 if ((GET_MODE_CLASS (mode) == MODE_CC
5872 || GET_CODE (src) == COMPARE
5873 || CC0_P (dest))
5874 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5875 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5876 && COMPARISON_P (*cc_use)
5877 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5878 {
5879 enum rtx_code old_code = GET_CODE (*cc_use);
5880 enum rtx_code new_code;
5881 rtx op0, op1, tmp;
5882 int other_changed = 0;
5883 enum machine_mode compare_mode = GET_MODE (dest);
5884
5885 if (GET_CODE (src) == COMPARE)
5886 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5887 else
5888 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5889
5890 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5891 op0, op1);
5892 if (!tmp)
5893 new_code = old_code;
5894 else if (!CONSTANT_P (tmp))
5895 {
5896 new_code = GET_CODE (tmp);
5897 op0 = XEXP (tmp, 0);
5898 op1 = XEXP (tmp, 1);
5899 }
5900 else
5901 {
5902 rtx pat = PATTERN (other_insn);
5903 undobuf.other_insn = other_insn;
5904 SUBST (*cc_use, tmp);
5905
5906 /* Attempt to simplify CC user. */
5907 if (GET_CODE (pat) == SET)
5908 {
5909 rtx new_rtx = simplify_rtx (SET_SRC (pat));
5910 if (new_rtx != NULL_RTX)
5911 SUBST (SET_SRC (pat), new_rtx);
5912 }
5913
5914 /* Convert X into a no-op move. */
5915 SUBST (SET_DEST (x), pc_rtx);
5916 SUBST (SET_SRC (x), pc_rtx);
5917 return x;
5918 }
5919
5920 /* Simplify our comparison, if possible. */
5921 new_code = simplify_comparison (new_code, &op0, &op1);
5922
5923 #ifdef SELECT_CC_MODE
5924 /* If this machine has CC modes other than CCmode, check to see if we
5925 need to use a different CC mode here. */
5926 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5927 compare_mode = GET_MODE (op0);
5928 else
5929 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5930
5931 #ifndef HAVE_cc0
5932 /* If the mode changed, we have to change SET_DEST, the mode in the
5933 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5934 a hard register, just build new versions with the proper mode. If it
5935 is a pseudo, we lose unless it is only time we set the pseudo, in
5936 which case we can safely change its mode. */
5937 if (compare_mode != GET_MODE (dest))
5938 {
5939 if (can_change_dest_mode (dest, 0, compare_mode))
5940 {
5941 unsigned int regno = REGNO (dest);
5942 rtx new_dest;
5943
5944 if (regno < FIRST_PSEUDO_REGISTER)
5945 new_dest = gen_rtx_REG (compare_mode, regno);
5946 else
5947 {
5948 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5949 new_dest = regno_reg_rtx[regno];
5950 }
5951
5952 SUBST (SET_DEST (x), new_dest);
5953 SUBST (XEXP (*cc_use, 0), new_dest);
5954 other_changed = 1;
5955
5956 dest = new_dest;
5957 }
5958 }
5959 #endif /* cc0 */
5960 #endif /* SELECT_CC_MODE */
5961
5962 /* If the code changed, we have to build a new comparison in
5963 undobuf.other_insn. */
5964 if (new_code != old_code)
5965 {
5966 int other_changed_previously = other_changed;
5967 unsigned HOST_WIDE_INT mask;
5968 rtx old_cc_use = *cc_use;
5969
5970 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5971 dest, const0_rtx));
5972 other_changed = 1;
5973
5974 /* If the only change we made was to change an EQ into an NE or
5975 vice versa, OP0 has only one bit that might be nonzero, and OP1
5976 is zero, check if changing the user of the condition code will
5977 produce a valid insn. If it won't, we can keep the original code
5978 in that insn by surrounding our operation with an XOR. */
5979
5980 if (((old_code == NE && new_code == EQ)
5981 || (old_code == EQ && new_code == NE))
5982 && ! other_changed_previously && op1 == const0_rtx
5983 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5984 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5985 {
5986 rtx pat = PATTERN (other_insn), note = 0;
5987
5988 if ((recog_for_combine (&pat, other_insn, &note) < 0
5989 && ! check_asm_operands (pat)))
5990 {
5991 *cc_use = old_cc_use;
5992 other_changed = 0;
5993
5994 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5995 op0, GEN_INT (mask));
5996 }
5997 }
5998 }
5999
6000 if (other_changed)
6001 undobuf.other_insn = other_insn;
6002
6003 /* Otherwise, if we didn't previously have a COMPARE in the
6004 correct mode, we need one. */
6005 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6006 {
6007 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6008 src = SET_SRC (x);
6009 }
6010 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6011 {
6012 SUBST (SET_SRC (x), op0);
6013 src = SET_SRC (x);
6014 }
6015 /* Otherwise, update the COMPARE if needed. */
6016 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6017 {
6018 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6019 src = SET_SRC (x);
6020 }
6021 }
6022 else
6023 {
6024 /* Get SET_SRC in a form where we have placed back any
6025 compound expressions. Then do the checks below. */
6026 src = make_compound_operation (src, SET);
6027 SUBST (SET_SRC (x), src);
6028 }
6029
6030 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6031 and X being a REG or (subreg (reg)), we may be able to convert this to
6032 (set (subreg:m2 x) (op)).
6033
6034 We can always do this if M1 is narrower than M2 because that means that
6035 we only care about the low bits of the result.
6036
6037 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6038 perform a narrower operation than requested since the high-order bits will
6039 be undefined. On machine where it is defined, this transformation is safe
6040 as long as M1 and M2 have the same number of words. */
6041
6042 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6043 && !OBJECT_P (SUBREG_REG (src))
6044 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6045 / UNITS_PER_WORD)
6046 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6047 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6048 #ifndef WORD_REGISTER_OPERATIONS
6049 && (GET_MODE_SIZE (GET_MODE (src))
6050 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6051 #endif
6052 #ifdef CANNOT_CHANGE_MODE_CLASS
6053 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6054 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6055 GET_MODE (SUBREG_REG (src)),
6056 GET_MODE (src)))
6057 #endif
6058 && (REG_P (dest)
6059 || (GET_CODE (dest) == SUBREG
6060 && REG_P (SUBREG_REG (dest)))))
6061 {
6062 SUBST (SET_DEST (x),
6063 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6064 dest));
6065 SUBST (SET_SRC (x), SUBREG_REG (src));
6066
6067 src = SET_SRC (x), dest = SET_DEST (x);
6068 }
6069
6070 #ifdef HAVE_cc0
6071 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6072 in SRC. */
6073 if (dest == cc0_rtx
6074 && GET_CODE (src) == SUBREG
6075 && subreg_lowpart_p (src)
6076 && (GET_MODE_BITSIZE (GET_MODE (src))
6077 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
6078 {
6079 rtx inner = SUBREG_REG (src);
6080 enum machine_mode inner_mode = GET_MODE (inner);
6081
6082 /* Here we make sure that we don't have a sign bit on. */
6083 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
6084 && (nonzero_bits (inner, inner_mode)
6085 < ((unsigned HOST_WIDE_INT) 1
6086 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
6087 {
6088 SUBST (SET_SRC (x), inner);
6089 src = SET_SRC (x);
6090 }
6091 }
6092 #endif
6093
6094 #ifdef LOAD_EXTEND_OP
6095 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6096 would require a paradoxical subreg. Replace the subreg with a
6097 zero_extend to avoid the reload that would otherwise be required. */
6098
6099 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6100 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6101 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6102 && SUBREG_BYTE (src) == 0
6103 && (GET_MODE_SIZE (GET_MODE (src))
6104 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6105 && MEM_P (SUBREG_REG (src)))
6106 {
6107 SUBST (SET_SRC (x),
6108 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6109 GET_MODE (src), SUBREG_REG (src)));
6110
6111 src = SET_SRC (x);
6112 }
6113 #endif
6114
6115 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6116 are comparing an item known to be 0 or -1 against 0, use a logical
6117 operation instead. Check for one of the arms being an IOR of the other
6118 arm with some value. We compute three terms to be IOR'ed together. In
6119 practice, at most two will be nonzero. Then we do the IOR's. */
6120
6121 if (GET_CODE (dest) != PC
6122 && GET_CODE (src) == IF_THEN_ELSE
6123 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6124 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6125 && XEXP (XEXP (src, 0), 1) == const0_rtx
6126 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6127 #ifdef HAVE_conditional_move
6128 && ! can_conditionally_move_p (GET_MODE (src))
6129 #endif
6130 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6131 GET_MODE (XEXP (XEXP (src, 0), 0)))
6132 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
6133 && ! side_effects_p (src))
6134 {
6135 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6136 ? XEXP (src, 1) : XEXP (src, 2));
6137 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6138 ? XEXP (src, 2) : XEXP (src, 1));
6139 rtx term1 = const0_rtx, term2, term3;
6140
6141 if (GET_CODE (true_rtx) == IOR
6142 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6143 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6144 else if (GET_CODE (true_rtx) == IOR
6145 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6146 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6147 else if (GET_CODE (false_rtx) == IOR
6148 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6149 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6150 else if (GET_CODE (false_rtx) == IOR
6151 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6152 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6153
6154 term2 = simplify_gen_binary (AND, GET_MODE (src),
6155 XEXP (XEXP (src, 0), 0), true_rtx);
6156 term3 = simplify_gen_binary (AND, GET_MODE (src),
6157 simplify_gen_unary (NOT, GET_MODE (src),
6158 XEXP (XEXP (src, 0), 0),
6159 GET_MODE (src)),
6160 false_rtx);
6161
6162 SUBST (SET_SRC (x),
6163 simplify_gen_binary (IOR, GET_MODE (src),
6164 simplify_gen_binary (IOR, GET_MODE (src),
6165 term1, term2),
6166 term3));
6167
6168 src = SET_SRC (x);
6169 }
6170
6171 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6172 whole thing fail. */
6173 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6174 return src;
6175 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6176 return dest;
6177 else
6178 /* Convert this into a field assignment operation, if possible. */
6179 return make_field_assignment (x);
6180 }
6181 \f
6182 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6183 result. */
6184
6185 static rtx
6186 simplify_logical (rtx x)
6187 {
6188 enum machine_mode mode = GET_MODE (x);
6189 rtx op0 = XEXP (x, 0);
6190 rtx op1 = XEXP (x, 1);
6191
6192 switch (GET_CODE (x))
6193 {
6194 case AND:
6195 /* We can call simplify_and_const_int only if we don't lose
6196 any (sign) bits when converting INTVAL (op1) to
6197 "unsigned HOST_WIDE_INT". */
6198 if (CONST_INT_P (op1)
6199 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6200 || INTVAL (op1) > 0))
6201 {
6202 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6203 if (GET_CODE (x) != AND)
6204 return x;
6205
6206 op0 = XEXP (x, 0);
6207 op1 = XEXP (x, 1);
6208 }
6209
6210 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6211 apply the distributive law and then the inverse distributive
6212 law to see if things simplify. */
6213 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6214 {
6215 rtx result = distribute_and_simplify_rtx (x, 0);
6216 if (result)
6217 return result;
6218 }
6219 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6220 {
6221 rtx result = distribute_and_simplify_rtx (x, 1);
6222 if (result)
6223 return result;
6224 }
6225 break;
6226
6227 case IOR:
6228 /* If we have (ior (and A B) C), apply the distributive law and then
6229 the inverse distributive law to see if things simplify. */
6230
6231 if (GET_CODE (op0) == AND)
6232 {
6233 rtx result = distribute_and_simplify_rtx (x, 0);
6234 if (result)
6235 return result;
6236 }
6237
6238 if (GET_CODE (op1) == AND)
6239 {
6240 rtx result = distribute_and_simplify_rtx (x, 1);
6241 if (result)
6242 return result;
6243 }
6244 break;
6245
6246 default:
6247 gcc_unreachable ();
6248 }
6249
6250 return x;
6251 }
6252 \f
6253 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6254 operations" because they can be replaced with two more basic operations.
6255 ZERO_EXTEND is also considered "compound" because it can be replaced with
6256 an AND operation, which is simpler, though only one operation.
6257
6258 The function expand_compound_operation is called with an rtx expression
6259 and will convert it to the appropriate shifts and AND operations,
6260 simplifying at each stage.
6261
6262 The function make_compound_operation is called to convert an expression
6263 consisting of shifts and ANDs into the equivalent compound expression.
6264 It is the inverse of this function, loosely speaking. */
6265
6266 static rtx
6267 expand_compound_operation (rtx x)
6268 {
6269 unsigned HOST_WIDE_INT pos = 0, len;
6270 int unsignedp = 0;
6271 unsigned int modewidth;
6272 rtx tem;
6273
6274 switch (GET_CODE (x))
6275 {
6276 case ZERO_EXTEND:
6277 unsignedp = 1;
6278 case SIGN_EXTEND:
6279 /* We can't necessarily use a const_int for a multiword mode;
6280 it depends on implicitly extending the value.
6281 Since we don't know the right way to extend it,
6282 we can't tell whether the implicit way is right.
6283
6284 Even for a mode that is no wider than a const_int,
6285 we can't win, because we need to sign extend one of its bits through
6286 the rest of it, and we don't know which bit. */
6287 if (CONST_INT_P (XEXP (x, 0)))
6288 return x;
6289
6290 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6291 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6292 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6293 reloaded. If not for that, MEM's would very rarely be safe.
6294
6295 Reject MODEs bigger than a word, because we might not be able
6296 to reference a two-register group starting with an arbitrary register
6297 (and currently gen_lowpart might crash for a SUBREG). */
6298
6299 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6300 return x;
6301
6302 /* Reject MODEs that aren't scalar integers because turning vector
6303 or complex modes into shifts causes problems. */
6304
6305 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6306 return x;
6307
6308 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6309 /* If the inner object has VOIDmode (the only way this can happen
6310 is if it is an ASM_OPERANDS), we can't do anything since we don't
6311 know how much masking to do. */
6312 if (len == 0)
6313 return x;
6314
6315 break;
6316
6317 case ZERO_EXTRACT:
6318 unsignedp = 1;
6319
6320 /* ... fall through ... */
6321
6322 case SIGN_EXTRACT:
6323 /* If the operand is a CLOBBER, just return it. */
6324 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6325 return XEXP (x, 0);
6326
6327 if (!CONST_INT_P (XEXP (x, 1))
6328 || !CONST_INT_P (XEXP (x, 2))
6329 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6330 return x;
6331
6332 /* Reject MODEs that aren't scalar integers because turning vector
6333 or complex modes into shifts causes problems. */
6334
6335 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6336 return x;
6337
6338 len = INTVAL (XEXP (x, 1));
6339 pos = INTVAL (XEXP (x, 2));
6340
6341 /* This should stay within the object being extracted, fail otherwise. */
6342 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6343 return x;
6344
6345 if (BITS_BIG_ENDIAN)
6346 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6347
6348 break;
6349
6350 default:
6351 return x;
6352 }
6353 /* Convert sign extension to zero extension, if we know that the high
6354 bit is not set, as this is easier to optimize. It will be converted
6355 back to cheaper alternative in make_extraction. */
6356 if (GET_CODE (x) == SIGN_EXTEND
6357 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6358 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6359 & ~(((unsigned HOST_WIDE_INT)
6360 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6361 >> 1))
6362 == 0)))
6363 {
6364 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6365 rtx temp2 = expand_compound_operation (temp);
6366
6367 /* Make sure this is a profitable operation. */
6368 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6369 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6370 return temp2;
6371 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6372 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6373 return temp;
6374 else
6375 return x;
6376 }
6377
6378 /* We can optimize some special cases of ZERO_EXTEND. */
6379 if (GET_CODE (x) == ZERO_EXTEND)
6380 {
6381 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6382 know that the last value didn't have any inappropriate bits
6383 set. */
6384 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6385 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6386 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6387 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6388 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6389 return XEXP (XEXP (x, 0), 0);
6390
6391 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6392 if (GET_CODE (XEXP (x, 0)) == SUBREG
6393 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6394 && subreg_lowpart_p (XEXP (x, 0))
6395 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6396 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6397 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6398 return SUBREG_REG (XEXP (x, 0));
6399
6400 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6401 is a comparison and STORE_FLAG_VALUE permits. This is like
6402 the first case, but it works even when GET_MODE (x) is larger
6403 than HOST_WIDE_INT. */
6404 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6405 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6406 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6407 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6408 <= HOST_BITS_PER_WIDE_INT)
6409 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6410 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6411 return XEXP (XEXP (x, 0), 0);
6412
6413 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6414 if (GET_CODE (XEXP (x, 0)) == SUBREG
6415 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6416 && subreg_lowpart_p (XEXP (x, 0))
6417 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6418 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6419 <= HOST_BITS_PER_WIDE_INT)
6420 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6421 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6422 return SUBREG_REG (XEXP (x, 0));
6423
6424 }
6425
6426 /* If we reach here, we want to return a pair of shifts. The inner
6427 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6428 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6429 logical depending on the value of UNSIGNEDP.
6430
6431 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6432 converted into an AND of a shift.
6433
6434 We must check for the case where the left shift would have a negative
6435 count. This can happen in a case like (x >> 31) & 255 on machines
6436 that can't shift by a constant. On those machines, we would first
6437 combine the shift with the AND to produce a variable-position
6438 extraction. Then the constant of 31 would be substituted in to produce
6439 a such a position. */
6440
6441 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6442 if (modewidth + len >= pos)
6443 {
6444 enum machine_mode mode = GET_MODE (x);
6445 tem = gen_lowpart (mode, XEXP (x, 0));
6446 if (!tem || GET_CODE (tem) == CLOBBER)
6447 return x;
6448 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6449 tem, modewidth - pos - len);
6450 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6451 mode, tem, modewidth - len);
6452 }
6453 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6454 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6455 simplify_shift_const (NULL_RTX, LSHIFTRT,
6456 GET_MODE (x),
6457 XEXP (x, 0), pos),
6458 ((HOST_WIDE_INT) 1 << len) - 1);
6459 else
6460 /* Any other cases we can't handle. */
6461 return x;
6462
6463 /* If we couldn't do this for some reason, return the original
6464 expression. */
6465 if (GET_CODE (tem) == CLOBBER)
6466 return x;
6467
6468 return tem;
6469 }
6470 \f
6471 /* X is a SET which contains an assignment of one object into
6472 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6473 or certain SUBREGS). If possible, convert it into a series of
6474 logical operations.
6475
6476 We half-heartedly support variable positions, but do not at all
6477 support variable lengths. */
6478
6479 static const_rtx
6480 expand_field_assignment (const_rtx x)
6481 {
6482 rtx inner;
6483 rtx pos; /* Always counts from low bit. */
6484 int len;
6485 rtx mask, cleared, masked;
6486 enum machine_mode compute_mode;
6487
6488 /* Loop until we find something we can't simplify. */
6489 while (1)
6490 {
6491 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6492 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6493 {
6494 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6495 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6496 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6497 }
6498 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6499 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6500 {
6501 inner = XEXP (SET_DEST (x), 0);
6502 len = INTVAL (XEXP (SET_DEST (x), 1));
6503 pos = XEXP (SET_DEST (x), 2);
6504
6505 /* A constant position should stay within the width of INNER. */
6506 if (CONST_INT_P (pos)
6507 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6508 break;
6509
6510 if (BITS_BIG_ENDIAN)
6511 {
6512 if (CONST_INT_P (pos))
6513 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6514 - INTVAL (pos));
6515 else if (GET_CODE (pos) == MINUS
6516 && CONST_INT_P (XEXP (pos, 1))
6517 && (INTVAL (XEXP (pos, 1))
6518 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6519 /* If position is ADJUST - X, new position is X. */
6520 pos = XEXP (pos, 0);
6521 else
6522 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6523 GEN_INT (GET_MODE_BITSIZE (
6524 GET_MODE (inner))
6525 - len),
6526 pos);
6527 }
6528 }
6529
6530 /* A SUBREG between two modes that occupy the same numbers of words
6531 can be done by moving the SUBREG to the source. */
6532 else if (GET_CODE (SET_DEST (x)) == SUBREG
6533 /* We need SUBREGs to compute nonzero_bits properly. */
6534 && nonzero_sign_valid
6535 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6536 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6537 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6538 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6539 {
6540 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6541 gen_lowpart
6542 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6543 SET_SRC (x)));
6544 continue;
6545 }
6546 else
6547 break;
6548
6549 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6550 inner = SUBREG_REG (inner);
6551
6552 compute_mode = GET_MODE (inner);
6553
6554 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6555 if (! SCALAR_INT_MODE_P (compute_mode))
6556 {
6557 enum machine_mode imode;
6558
6559 /* Don't do anything for vector or complex integral types. */
6560 if (! FLOAT_MODE_P (compute_mode))
6561 break;
6562
6563 /* Try to find an integral mode to pun with. */
6564 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6565 if (imode == BLKmode)
6566 break;
6567
6568 compute_mode = imode;
6569 inner = gen_lowpart (imode, inner);
6570 }
6571
6572 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6573 if (len >= HOST_BITS_PER_WIDE_INT)
6574 break;
6575
6576 /* Now compute the equivalent expression. Make a copy of INNER
6577 for the SET_DEST in case it is a MEM into which we will substitute;
6578 we don't want shared RTL in that case. */
6579 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6580 cleared = simplify_gen_binary (AND, compute_mode,
6581 simplify_gen_unary (NOT, compute_mode,
6582 simplify_gen_binary (ASHIFT,
6583 compute_mode,
6584 mask, pos),
6585 compute_mode),
6586 inner);
6587 masked = simplify_gen_binary (ASHIFT, compute_mode,
6588 simplify_gen_binary (
6589 AND, compute_mode,
6590 gen_lowpart (compute_mode, SET_SRC (x)),
6591 mask),
6592 pos);
6593
6594 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6595 simplify_gen_binary (IOR, compute_mode,
6596 cleared, masked));
6597 }
6598
6599 return x;
6600 }
6601 \f
6602 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6603 it is an RTX that represents a variable starting position; otherwise,
6604 POS is the (constant) starting bit position (counted from the LSB).
6605
6606 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6607 signed reference.
6608
6609 IN_DEST is nonzero if this is a reference in the destination of a
6610 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6611 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6612 be used.
6613
6614 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6615 ZERO_EXTRACT should be built even for bits starting at bit 0.
6616
6617 MODE is the desired mode of the result (if IN_DEST == 0).
6618
6619 The result is an RTX for the extraction or NULL_RTX if the target
6620 can't handle it. */
6621
6622 static rtx
6623 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6624 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6625 int in_dest, int in_compare)
6626 {
6627 /* This mode describes the size of the storage area
6628 to fetch the overall value from. Within that, we
6629 ignore the POS lowest bits, etc. */
6630 enum machine_mode is_mode = GET_MODE (inner);
6631 enum machine_mode inner_mode;
6632 enum machine_mode wanted_inner_mode;
6633 enum machine_mode wanted_inner_reg_mode = word_mode;
6634 enum machine_mode pos_mode = word_mode;
6635 enum machine_mode extraction_mode = word_mode;
6636 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6637 rtx new_rtx = 0;
6638 rtx orig_pos_rtx = pos_rtx;
6639 HOST_WIDE_INT orig_pos;
6640
6641 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6642 {
6643 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6644 consider just the QI as the memory to extract from.
6645 The subreg adds or removes high bits; its mode is
6646 irrelevant to the meaning of this extraction,
6647 since POS and LEN count from the lsb. */
6648 if (MEM_P (SUBREG_REG (inner)))
6649 is_mode = GET_MODE (SUBREG_REG (inner));
6650 inner = SUBREG_REG (inner);
6651 }
6652 else if (GET_CODE (inner) == ASHIFT
6653 && CONST_INT_P (XEXP (inner, 1))
6654 && pos_rtx == 0 && pos == 0
6655 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6656 {
6657 /* We're extracting the least significant bits of an rtx
6658 (ashift X (const_int C)), where LEN > C. Extract the
6659 least significant (LEN - C) bits of X, giving an rtx
6660 whose mode is MODE, then shift it left C times. */
6661 new_rtx = make_extraction (mode, XEXP (inner, 0),
6662 0, 0, len - INTVAL (XEXP (inner, 1)),
6663 unsignedp, in_dest, in_compare);
6664 if (new_rtx != 0)
6665 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6666 }
6667
6668 inner_mode = GET_MODE (inner);
6669
6670 if (pos_rtx && CONST_INT_P (pos_rtx))
6671 pos = INTVAL (pos_rtx), pos_rtx = 0;
6672
6673 /* See if this can be done without an extraction. We never can if the
6674 width of the field is not the same as that of some integer mode. For
6675 registers, we can only avoid the extraction if the position is at the
6676 low-order bit and this is either not in the destination or we have the
6677 appropriate STRICT_LOW_PART operation available.
6678
6679 For MEM, we can avoid an extract if the field starts on an appropriate
6680 boundary and we can change the mode of the memory reference. */
6681
6682 if (tmode != BLKmode
6683 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6684 && !MEM_P (inner)
6685 && (inner_mode == tmode
6686 || !REG_P (inner)
6687 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6688 GET_MODE_BITSIZE (inner_mode))
6689 || reg_truncated_to_mode (tmode, inner))
6690 && (! in_dest
6691 || (REG_P (inner)
6692 && have_insn_for (STRICT_LOW_PART, tmode))))
6693 || (MEM_P (inner) && pos_rtx == 0
6694 && (pos
6695 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6696 : BITS_PER_UNIT)) == 0
6697 /* We can't do this if we are widening INNER_MODE (it
6698 may not be aligned, for one thing). */
6699 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6700 && (inner_mode == tmode
6701 || (! mode_dependent_address_p (XEXP (inner, 0))
6702 && ! MEM_VOLATILE_P (inner))))))
6703 {
6704 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6705 field. If the original and current mode are the same, we need not
6706 adjust the offset. Otherwise, we do if bytes big endian.
6707
6708 If INNER is not a MEM, get a piece consisting of just the field
6709 of interest (in this case POS % BITS_PER_WORD must be 0). */
6710
6711 if (MEM_P (inner))
6712 {
6713 HOST_WIDE_INT offset;
6714
6715 /* POS counts from lsb, but make OFFSET count in memory order. */
6716 if (BYTES_BIG_ENDIAN)
6717 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6718 else
6719 offset = pos / BITS_PER_UNIT;
6720
6721 new_rtx = adjust_address_nv (inner, tmode, offset);
6722 }
6723 else if (REG_P (inner))
6724 {
6725 if (tmode != inner_mode)
6726 {
6727 /* We can't call gen_lowpart in a DEST since we
6728 always want a SUBREG (see below) and it would sometimes
6729 return a new hard register. */
6730 if (pos || in_dest)
6731 {
6732 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6733
6734 if (WORDS_BIG_ENDIAN
6735 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6736 final_word = ((GET_MODE_SIZE (inner_mode)
6737 - GET_MODE_SIZE (tmode))
6738 / UNITS_PER_WORD) - final_word;
6739
6740 final_word *= UNITS_PER_WORD;
6741 if (BYTES_BIG_ENDIAN &&
6742 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6743 final_word += (GET_MODE_SIZE (inner_mode)
6744 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6745
6746 /* Avoid creating invalid subregs, for example when
6747 simplifying (x>>32)&255. */
6748 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6749 return NULL_RTX;
6750
6751 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
6752 }
6753 else
6754 new_rtx = gen_lowpart (tmode, inner);
6755 }
6756 else
6757 new_rtx = inner;
6758 }
6759 else
6760 new_rtx = force_to_mode (inner, tmode,
6761 len >= HOST_BITS_PER_WIDE_INT
6762 ? ~(unsigned HOST_WIDE_INT) 0
6763 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6764 0);
6765
6766 /* If this extraction is going into the destination of a SET,
6767 make a STRICT_LOW_PART unless we made a MEM. */
6768
6769 if (in_dest)
6770 return (MEM_P (new_rtx) ? new_rtx
6771 : (GET_CODE (new_rtx) != SUBREG
6772 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6773 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
6774
6775 if (mode == tmode)
6776 return new_rtx;
6777
6778 if (CONST_INT_P (new_rtx))
6779 return gen_int_mode (INTVAL (new_rtx), mode);
6780
6781 /* If we know that no extraneous bits are set, and that the high
6782 bit is not set, convert the extraction to the cheaper of
6783 sign and zero extension, that are equivalent in these cases. */
6784 if (flag_expensive_optimizations
6785 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6786 && ((nonzero_bits (new_rtx, tmode)
6787 & ~(((unsigned HOST_WIDE_INT)
6788 GET_MODE_MASK (tmode))
6789 >> 1))
6790 == 0)))
6791 {
6792 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
6793 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
6794
6795 /* Prefer ZERO_EXTENSION, since it gives more information to
6796 backends. */
6797 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
6798 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
6799 return temp;
6800 return temp1;
6801 }
6802
6803 /* Otherwise, sign- or zero-extend unless we already are in the
6804 proper mode. */
6805
6806 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6807 mode, new_rtx));
6808 }
6809
6810 /* Unless this is a COMPARE or we have a funny memory reference,
6811 don't do anything with zero-extending field extracts starting at
6812 the low-order bit since they are simple AND operations. */
6813 if (pos_rtx == 0 && pos == 0 && ! in_dest
6814 && ! in_compare && unsignedp)
6815 return 0;
6816
6817 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6818 if the position is not a constant and the length is not 1. In all
6819 other cases, we would only be going outside our object in cases when
6820 an original shift would have been undefined. */
6821 if (MEM_P (inner)
6822 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6823 || (pos_rtx != 0 && len != 1)))
6824 return 0;
6825
6826 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6827 and the mode for the result. */
6828 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6829 {
6830 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6831 pos_mode = mode_for_extraction (EP_insv, 2);
6832 extraction_mode = mode_for_extraction (EP_insv, 3);
6833 }
6834
6835 if (! in_dest && unsignedp
6836 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6837 {
6838 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6839 pos_mode = mode_for_extraction (EP_extzv, 3);
6840 extraction_mode = mode_for_extraction (EP_extzv, 0);
6841 }
6842
6843 if (! in_dest && ! unsignedp
6844 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6845 {
6846 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6847 pos_mode = mode_for_extraction (EP_extv, 3);
6848 extraction_mode = mode_for_extraction (EP_extv, 0);
6849 }
6850
6851 /* Never narrow an object, since that might not be safe. */
6852
6853 if (mode != VOIDmode
6854 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6855 extraction_mode = mode;
6856
6857 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6858 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6859 pos_mode = GET_MODE (pos_rtx);
6860
6861 /* If this is not from memory, the desired mode is the preferred mode
6862 for an extraction pattern's first input operand, or word_mode if there
6863 is none. */
6864 if (!MEM_P (inner))
6865 wanted_inner_mode = wanted_inner_reg_mode;
6866 else
6867 {
6868 /* Be careful not to go beyond the extracted object and maintain the
6869 natural alignment of the memory. */
6870 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6871 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6872 > GET_MODE_BITSIZE (wanted_inner_mode))
6873 {
6874 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6875 gcc_assert (wanted_inner_mode != VOIDmode);
6876 }
6877
6878 /* If we have to change the mode of memory and cannot, the desired mode
6879 is EXTRACTION_MODE. */
6880 if (inner_mode != wanted_inner_mode
6881 && (mode_dependent_address_p (XEXP (inner, 0))
6882 || MEM_VOLATILE_P (inner)
6883 || pos_rtx))
6884 wanted_inner_mode = extraction_mode;
6885 }
6886
6887 orig_pos = pos;
6888
6889 if (BITS_BIG_ENDIAN)
6890 {
6891 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6892 BITS_BIG_ENDIAN style. If position is constant, compute new
6893 position. Otherwise, build subtraction.
6894 Note that POS is relative to the mode of the original argument.
6895 If it's a MEM we need to recompute POS relative to that.
6896 However, if we're extracting from (or inserting into) a register,
6897 we want to recompute POS relative to wanted_inner_mode. */
6898 int width = (MEM_P (inner)
6899 ? GET_MODE_BITSIZE (is_mode)
6900 : GET_MODE_BITSIZE (wanted_inner_mode));
6901
6902 if (pos_rtx == 0)
6903 pos = width - len - pos;
6904 else
6905 pos_rtx
6906 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6907 /* POS may be less than 0 now, but we check for that below.
6908 Note that it can only be less than 0 if !MEM_P (inner). */
6909 }
6910
6911 /* If INNER has a wider mode, and this is a constant extraction, try to
6912 make it smaller and adjust the byte to point to the byte containing
6913 the value. */
6914 if (wanted_inner_mode != VOIDmode
6915 && inner_mode != wanted_inner_mode
6916 && ! pos_rtx
6917 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6918 && MEM_P (inner)
6919 && ! mode_dependent_address_p (XEXP (inner, 0))
6920 && ! MEM_VOLATILE_P (inner))
6921 {
6922 int offset = 0;
6923
6924 /* The computations below will be correct if the machine is big
6925 endian in both bits and bytes or little endian in bits and bytes.
6926 If it is mixed, we must adjust. */
6927
6928 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6929 adjust OFFSET to compensate. */
6930 if (BYTES_BIG_ENDIAN
6931 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6932 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6933
6934 /* We can now move to the desired byte. */
6935 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6936 * GET_MODE_SIZE (wanted_inner_mode);
6937 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6938
6939 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6940 && is_mode != wanted_inner_mode)
6941 offset = (GET_MODE_SIZE (is_mode)
6942 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6943
6944 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6945 }
6946
6947 /* If INNER is not memory, get it into the proper mode. If we are changing
6948 its mode, POS must be a constant and smaller than the size of the new
6949 mode. */
6950 else if (!MEM_P (inner))
6951 {
6952 /* On the LHS, don't create paradoxical subregs implicitely truncating
6953 the register unless TRULY_NOOP_TRUNCATION. */
6954 if (in_dest
6955 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (inner)),
6956 GET_MODE_BITSIZE (wanted_inner_mode)))
6957 return NULL_RTX;
6958
6959 if (GET_MODE (inner) != wanted_inner_mode
6960 && (pos_rtx != 0
6961 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6962 return NULL_RTX;
6963
6964 if (orig_pos < 0)
6965 return NULL_RTX;
6966
6967 inner = force_to_mode (inner, wanted_inner_mode,
6968 pos_rtx
6969 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6970 ? ~(unsigned HOST_WIDE_INT) 0
6971 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6972 << orig_pos),
6973 0);
6974 }
6975
6976 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6977 have to zero extend. Otherwise, we can just use a SUBREG. */
6978 if (pos_rtx != 0
6979 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6980 {
6981 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6982
6983 /* If we know that no extraneous bits are set, and that the high
6984 bit is not set, convert extraction to cheaper one - either
6985 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6986 cases. */
6987 if (flag_expensive_optimizations
6988 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6989 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6990 & ~(((unsigned HOST_WIDE_INT)
6991 GET_MODE_MASK (GET_MODE (pos_rtx)))
6992 >> 1))
6993 == 0)))
6994 {
6995 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6996
6997 /* Prefer ZERO_EXTENSION, since it gives more information to
6998 backends. */
6999 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
7000 < rtx_cost (temp, SET, optimize_this_for_speed_p))
7001 temp = temp1;
7002 }
7003 pos_rtx = temp;
7004 }
7005 else if (pos_rtx != 0
7006 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7007 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7008
7009 /* Make POS_RTX unless we already have it and it is correct. If we don't
7010 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7011 be a CONST_INT. */
7012 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7013 pos_rtx = orig_pos_rtx;
7014
7015 else if (pos_rtx == 0)
7016 pos_rtx = GEN_INT (pos);
7017
7018 /* Make the required operation. See if we can use existing rtx. */
7019 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7020 extraction_mode, inner, GEN_INT (len), pos_rtx);
7021 if (! in_dest)
7022 new_rtx = gen_lowpart (mode, new_rtx);
7023
7024 return new_rtx;
7025 }
7026 \f
7027 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7028 with any other operations in X. Return X without that shift if so. */
7029
7030 static rtx
7031 extract_left_shift (rtx x, int count)
7032 {
7033 enum rtx_code code = GET_CODE (x);
7034 enum machine_mode mode = GET_MODE (x);
7035 rtx tem;
7036
7037 switch (code)
7038 {
7039 case ASHIFT:
7040 /* This is the shift itself. If it is wide enough, we will return
7041 either the value being shifted if the shift count is equal to
7042 COUNT or a shift for the difference. */
7043 if (CONST_INT_P (XEXP (x, 1))
7044 && INTVAL (XEXP (x, 1)) >= count)
7045 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7046 INTVAL (XEXP (x, 1)) - count);
7047 break;
7048
7049 case NEG: case NOT:
7050 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7051 return simplify_gen_unary (code, mode, tem, mode);
7052
7053 break;
7054
7055 case PLUS: case IOR: case XOR: case AND:
7056 /* If we can safely shift this constant and we find the inner shift,
7057 make a new operation. */
7058 if (CONST_INT_P (XEXP (x, 1))
7059 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
7060 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7061 return simplify_gen_binary (code, mode, tem,
7062 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7063
7064 break;
7065
7066 default:
7067 break;
7068 }
7069
7070 return 0;
7071 }
7072 \f
7073 /* Look at the expression rooted at X. Look for expressions
7074 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7075 Form these expressions.
7076
7077 Return the new rtx, usually just X.
7078
7079 Also, for machines like the VAX that don't have logical shift insns,
7080 try to convert logical to arithmetic shift operations in cases where
7081 they are equivalent. This undoes the canonicalizations to logical
7082 shifts done elsewhere.
7083
7084 We try, as much as possible, to re-use rtl expressions to save memory.
7085
7086 IN_CODE says what kind of expression we are processing. Normally, it is
7087 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7088 being kludges), it is MEM. When processing the arguments of a comparison
7089 or a COMPARE against zero, it is COMPARE. */
7090
7091 static rtx
7092 make_compound_operation (rtx x, enum rtx_code in_code)
7093 {
7094 enum rtx_code code = GET_CODE (x);
7095 enum machine_mode mode = GET_MODE (x);
7096 int mode_width = GET_MODE_BITSIZE (mode);
7097 rtx rhs, lhs;
7098 enum rtx_code next_code;
7099 int i, j;
7100 rtx new_rtx = 0;
7101 rtx tem;
7102 const char *fmt;
7103
7104 /* Select the code to be used in recursive calls. Once we are inside an
7105 address, we stay there. If we have a comparison, set to COMPARE,
7106 but once inside, go back to our default of SET. */
7107
7108 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
7109 : ((code == COMPARE || COMPARISON_P (x))
7110 && XEXP (x, 1) == const0_rtx) ? COMPARE
7111 : in_code == COMPARE ? SET : in_code);
7112
7113 /* Process depending on the code of this operation. If NEW is set
7114 nonzero, it will be returned. */
7115
7116 switch (code)
7117 {
7118 case ASHIFT:
7119 /* Convert shifts by constants into multiplications if inside
7120 an address. */
7121 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7122 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7123 && INTVAL (XEXP (x, 1)) >= 0)
7124 {
7125 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7126 new_rtx = gen_rtx_MULT (mode, new_rtx,
7127 GEN_INT ((HOST_WIDE_INT) 1
7128 << INTVAL (XEXP (x, 1))));
7129 }
7130 break;
7131
7132 case AND:
7133 /* If the second operand is not a constant, we can't do anything
7134 with it. */
7135 if (!CONST_INT_P (XEXP (x, 1)))
7136 break;
7137
7138 /* If the constant is a power of two minus one and the first operand
7139 is a logical right shift, make an extraction. */
7140 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7141 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7142 {
7143 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7144 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7145 0, in_code == COMPARE);
7146 }
7147
7148 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7149 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7150 && subreg_lowpart_p (XEXP (x, 0))
7151 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7152 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7153 {
7154 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7155 next_code);
7156 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7157 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7158 0, in_code == COMPARE);
7159 }
7160 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7161 else if ((GET_CODE (XEXP (x, 0)) == XOR
7162 || GET_CODE (XEXP (x, 0)) == IOR)
7163 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7164 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7165 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7166 {
7167 /* Apply the distributive law, and then try to make extractions. */
7168 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7169 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7170 XEXP (x, 1)),
7171 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7172 XEXP (x, 1)));
7173 new_rtx = make_compound_operation (new_rtx, in_code);
7174 }
7175
7176 /* If we are have (and (rotate X C) M) and C is larger than the number
7177 of bits in M, this is an extraction. */
7178
7179 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7180 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7181 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
7182 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7183 {
7184 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7185 new_rtx = make_extraction (mode, new_rtx,
7186 (GET_MODE_BITSIZE (mode)
7187 - INTVAL (XEXP (XEXP (x, 0), 1))),
7188 NULL_RTX, i, 1, 0, in_code == COMPARE);
7189 }
7190
7191 /* On machines without logical shifts, if the operand of the AND is
7192 a logical shift and our mask turns off all the propagated sign
7193 bits, we can replace the logical shift with an arithmetic shift. */
7194 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7195 && !have_insn_for (LSHIFTRT, mode)
7196 && have_insn_for (ASHIFTRT, mode)
7197 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7198 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7199 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7200 && mode_width <= HOST_BITS_PER_WIDE_INT)
7201 {
7202 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7203
7204 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7205 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7206 SUBST (XEXP (x, 0),
7207 gen_rtx_ASHIFTRT (mode,
7208 make_compound_operation
7209 (XEXP (XEXP (x, 0), 0), next_code),
7210 XEXP (XEXP (x, 0), 1)));
7211 }
7212
7213 /* If the constant is one less than a power of two, this might be
7214 representable by an extraction even if no shift is present.
7215 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7216 we are in a COMPARE. */
7217 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
7218 new_rtx = make_extraction (mode,
7219 make_compound_operation (XEXP (x, 0),
7220 next_code),
7221 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7222
7223 /* If we are in a comparison and this is an AND with a power of two,
7224 convert this into the appropriate bit extract. */
7225 else if (in_code == COMPARE
7226 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
7227 new_rtx = make_extraction (mode,
7228 make_compound_operation (XEXP (x, 0),
7229 next_code),
7230 i, NULL_RTX, 1, 1, 0, 1);
7231
7232 break;
7233
7234 case LSHIFTRT:
7235 /* If the sign bit is known to be zero, replace this with an
7236 arithmetic shift. */
7237 if (have_insn_for (ASHIFTRT, mode)
7238 && ! have_insn_for (LSHIFTRT, mode)
7239 && mode_width <= HOST_BITS_PER_WIDE_INT
7240 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7241 {
7242 new_rtx = gen_rtx_ASHIFTRT (mode,
7243 make_compound_operation (XEXP (x, 0),
7244 next_code),
7245 XEXP (x, 1));
7246 break;
7247 }
7248
7249 /* ... fall through ... */
7250
7251 case ASHIFTRT:
7252 lhs = XEXP (x, 0);
7253 rhs = XEXP (x, 1);
7254
7255 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7256 this is a SIGN_EXTRACT. */
7257 if (CONST_INT_P (rhs)
7258 && GET_CODE (lhs) == ASHIFT
7259 && CONST_INT_P (XEXP (lhs, 1))
7260 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7261 && INTVAL (rhs) < mode_width)
7262 {
7263 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7264 new_rtx = make_extraction (mode, new_rtx,
7265 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7266 NULL_RTX, mode_width - INTVAL (rhs),
7267 code == LSHIFTRT, 0, in_code == COMPARE);
7268 break;
7269 }
7270
7271 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7272 If so, try to merge the shifts into a SIGN_EXTEND. We could
7273 also do this for some cases of SIGN_EXTRACT, but it doesn't
7274 seem worth the effort; the case checked for occurs on Alpha. */
7275
7276 if (!OBJECT_P (lhs)
7277 && ! (GET_CODE (lhs) == SUBREG
7278 && (OBJECT_P (SUBREG_REG (lhs))))
7279 && CONST_INT_P (rhs)
7280 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7281 && INTVAL (rhs) < mode_width
7282 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7283 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7284 0, NULL_RTX, mode_width - INTVAL (rhs),
7285 code == LSHIFTRT, 0, in_code == COMPARE);
7286
7287 break;
7288
7289 case SUBREG:
7290 /* Call ourselves recursively on the inner expression. If we are
7291 narrowing the object and it has a different RTL code from
7292 what it originally did, do this SUBREG as a force_to_mode. */
7293
7294 tem = make_compound_operation (SUBREG_REG (x), in_code);
7295
7296 {
7297 rtx simplified;
7298 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
7299 SUBREG_BYTE (x));
7300
7301 if (simplified)
7302 tem = simplified;
7303
7304 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7305 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
7306 && subreg_lowpart_p (x))
7307 {
7308 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7309 0);
7310
7311 /* If we have something other than a SUBREG, we might have
7312 done an expansion, so rerun ourselves. */
7313 if (GET_CODE (newer) != SUBREG)
7314 newer = make_compound_operation (newer, in_code);
7315
7316 /* force_to_mode can expand compounds. If it just re-expanded the
7317 compound use gen_lowpart instead to convert to the desired
7318 mode. */
7319 if (rtx_equal_p (newer, x))
7320 return gen_lowpart (GET_MODE (x), tem);
7321
7322 return newer;
7323 }
7324
7325 if (simplified)
7326 return tem;
7327 }
7328 break;
7329
7330 default:
7331 break;
7332 }
7333
7334 if (new_rtx)
7335 {
7336 x = gen_lowpart (mode, new_rtx);
7337 code = GET_CODE (x);
7338 }
7339
7340 /* Now recursively process each operand of this operation. */
7341 fmt = GET_RTX_FORMAT (code);
7342 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7343 if (fmt[i] == 'e')
7344 {
7345 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7346 SUBST (XEXP (x, i), new_rtx);
7347 }
7348 else if (fmt[i] == 'E')
7349 for (j = 0; j < XVECLEN (x, i); j++)
7350 {
7351 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7352 SUBST (XVECEXP (x, i, j), new_rtx);
7353 }
7354
7355 /* If this is a commutative operation, the changes to the operands
7356 may have made it noncanonical. */
7357 if (COMMUTATIVE_ARITH_P (x)
7358 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7359 {
7360 tem = XEXP (x, 0);
7361 SUBST (XEXP (x, 0), XEXP (x, 1));
7362 SUBST (XEXP (x, 1), tem);
7363 }
7364
7365 return x;
7366 }
7367 \f
7368 /* Given M see if it is a value that would select a field of bits
7369 within an item, but not the entire word. Return -1 if not.
7370 Otherwise, return the starting position of the field, where 0 is the
7371 low-order bit.
7372
7373 *PLEN is set to the length of the field. */
7374
7375 static int
7376 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7377 {
7378 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7379 int pos = exact_log2 (m & -m);
7380 int len = 0;
7381
7382 if (pos >= 0)
7383 /* Now shift off the low-order zero bits and see if we have a
7384 power of two minus 1. */
7385 len = exact_log2 ((m >> pos) + 1);
7386
7387 if (len <= 0)
7388 pos = -1;
7389
7390 *plen = len;
7391 return pos;
7392 }
7393 \f
7394 /* If X refers to a register that equals REG in value, replace these
7395 references with REG. */
7396 static rtx
7397 canon_reg_for_combine (rtx x, rtx reg)
7398 {
7399 rtx op0, op1, op2;
7400 const char *fmt;
7401 int i;
7402 bool copied;
7403
7404 enum rtx_code code = GET_CODE (x);
7405 switch (GET_RTX_CLASS (code))
7406 {
7407 case RTX_UNARY:
7408 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7409 if (op0 != XEXP (x, 0))
7410 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7411 GET_MODE (reg));
7412 break;
7413
7414 case RTX_BIN_ARITH:
7415 case RTX_COMM_ARITH:
7416 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7417 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7418 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7419 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7420 break;
7421
7422 case RTX_COMPARE:
7423 case RTX_COMM_COMPARE:
7424 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7425 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7426 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7427 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7428 GET_MODE (op0), op0, op1);
7429 break;
7430
7431 case RTX_TERNARY:
7432 case RTX_BITFIELD_OPS:
7433 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7434 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7435 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7436 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7437 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7438 GET_MODE (op0), op0, op1, op2);
7439
7440 case RTX_OBJ:
7441 if (REG_P (x))
7442 {
7443 if (rtx_equal_p (get_last_value (reg), x)
7444 || rtx_equal_p (reg, get_last_value (x)))
7445 return reg;
7446 else
7447 break;
7448 }
7449
7450 /* fall through */
7451
7452 default:
7453 fmt = GET_RTX_FORMAT (code);
7454 copied = false;
7455 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7456 if (fmt[i] == 'e')
7457 {
7458 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7459 if (op != XEXP (x, i))
7460 {
7461 if (!copied)
7462 {
7463 copied = true;
7464 x = copy_rtx (x);
7465 }
7466 XEXP (x, i) = op;
7467 }
7468 }
7469 else if (fmt[i] == 'E')
7470 {
7471 int j;
7472 for (j = 0; j < XVECLEN (x, i); j++)
7473 {
7474 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7475 if (op != XVECEXP (x, i, j))
7476 {
7477 if (!copied)
7478 {
7479 copied = true;
7480 x = copy_rtx (x);
7481 }
7482 XVECEXP (x, i, j) = op;
7483 }
7484 }
7485 }
7486
7487 break;
7488 }
7489
7490 return x;
7491 }
7492
7493 /* Return X converted to MODE. If the value is already truncated to
7494 MODE we can just return a subreg even though in the general case we
7495 would need an explicit truncation. */
7496
7497 static rtx
7498 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7499 {
7500 if (!CONST_INT_P (x)
7501 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7502 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7503 GET_MODE_BITSIZE (GET_MODE (x)))
7504 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7505 {
7506 /* Bit-cast X into an integer mode. */
7507 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7508 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7509 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7510 x, GET_MODE (x));
7511 }
7512
7513 return gen_lowpart (mode, x);
7514 }
7515
7516 /* See if X can be simplified knowing that we will only refer to it in
7517 MODE and will only refer to those bits that are nonzero in MASK.
7518 If other bits are being computed or if masking operations are done
7519 that select a superset of the bits in MASK, they can sometimes be
7520 ignored.
7521
7522 Return a possibly simplified expression, but always convert X to
7523 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7524
7525 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7526 are all off in X. This is used when X will be complemented, by either
7527 NOT, NEG, or XOR. */
7528
7529 static rtx
7530 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7531 int just_select)
7532 {
7533 enum rtx_code code = GET_CODE (x);
7534 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7535 enum machine_mode op_mode;
7536 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7537 rtx op0, op1, temp;
7538
7539 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7540 code below will do the wrong thing since the mode of such an
7541 expression is VOIDmode.
7542
7543 Also do nothing if X is a CLOBBER; this can happen if X was
7544 the return value from a call to gen_lowpart. */
7545 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7546 return x;
7547
7548 /* We want to perform the operation is its present mode unless we know
7549 that the operation is valid in MODE, in which case we do the operation
7550 in MODE. */
7551 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7552 && have_insn_for (code, mode))
7553 ? mode : GET_MODE (x));
7554
7555 /* It is not valid to do a right-shift in a narrower mode
7556 than the one it came in with. */
7557 if ((code == LSHIFTRT || code == ASHIFTRT)
7558 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7559 op_mode = GET_MODE (x);
7560
7561 /* Truncate MASK to fit OP_MODE. */
7562 if (op_mode)
7563 mask &= GET_MODE_MASK (op_mode);
7564
7565 /* When we have an arithmetic operation, or a shift whose count we
7566 do not know, we need to assume that all bits up to the highest-order
7567 bit in MASK will be needed. This is how we form such a mask. */
7568 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7569 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7570 else
7571 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7572 - 1);
7573
7574 /* Determine what bits of X are guaranteed to be (non)zero. */
7575 nonzero = nonzero_bits (x, mode);
7576
7577 /* If none of the bits in X are needed, return a zero. */
7578 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7579 x = const0_rtx;
7580
7581 /* If X is a CONST_INT, return a new one. Do this here since the
7582 test below will fail. */
7583 if (CONST_INT_P (x))
7584 {
7585 if (SCALAR_INT_MODE_P (mode))
7586 return gen_int_mode (INTVAL (x) & mask, mode);
7587 else
7588 {
7589 x = GEN_INT (INTVAL (x) & mask);
7590 return gen_lowpart_common (mode, x);
7591 }
7592 }
7593
7594 /* If X is narrower than MODE and we want all the bits in X's mode, just
7595 get X in the proper mode. */
7596 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7597 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7598 return gen_lowpart (mode, x);
7599
7600 /* We can ignore the effect of a SUBREG if it narrows the mode or
7601 if the constant masks to zero all the bits the mode doesn't have. */
7602 if (GET_CODE (x) == SUBREG
7603 && subreg_lowpart_p (x)
7604 && ((GET_MODE_SIZE (GET_MODE (x))
7605 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7606 || (0 == (mask
7607 & GET_MODE_MASK (GET_MODE (x))
7608 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7609 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7610
7611 /* The arithmetic simplifications here only work for scalar integer modes. */
7612 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
7613 return gen_lowpart_or_truncate (mode, x);
7614
7615 switch (code)
7616 {
7617 case CLOBBER:
7618 /* If X is a (clobber (const_int)), return it since we know we are
7619 generating something that won't match. */
7620 return x;
7621
7622 case SIGN_EXTEND:
7623 case ZERO_EXTEND:
7624 case ZERO_EXTRACT:
7625 case SIGN_EXTRACT:
7626 x = expand_compound_operation (x);
7627 if (GET_CODE (x) != code)
7628 return force_to_mode (x, mode, mask, next_select);
7629 break;
7630
7631 case TRUNCATE:
7632 /* Similarly for a truncate. */
7633 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7634
7635 case AND:
7636 /* If this is an AND with a constant, convert it into an AND
7637 whose constant is the AND of that constant with MASK. If it
7638 remains an AND of MASK, delete it since it is redundant. */
7639
7640 if (CONST_INT_P (XEXP (x, 1)))
7641 {
7642 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7643 mask & INTVAL (XEXP (x, 1)));
7644
7645 /* If X is still an AND, see if it is an AND with a mask that
7646 is just some low-order bits. If so, and it is MASK, we don't
7647 need it. */
7648
7649 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7650 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7651 == mask))
7652 x = XEXP (x, 0);
7653
7654 /* If it remains an AND, try making another AND with the bits
7655 in the mode mask that aren't in MASK turned on. If the
7656 constant in the AND is wide enough, this might make a
7657 cheaper constant. */
7658
7659 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
7660 && GET_MODE_MASK (GET_MODE (x)) != mask
7661 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7662 {
7663 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7664 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7665 int width = GET_MODE_BITSIZE (GET_MODE (x));
7666 rtx y;
7667
7668 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7669 number, sign extend it. */
7670 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7671 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7672 cval |= (HOST_WIDE_INT) -1 << width;
7673
7674 y = simplify_gen_binary (AND, GET_MODE (x),
7675 XEXP (x, 0), GEN_INT (cval));
7676 if (rtx_cost (y, SET, optimize_this_for_speed_p)
7677 < rtx_cost (x, SET, optimize_this_for_speed_p))
7678 x = y;
7679 }
7680
7681 break;
7682 }
7683
7684 goto binop;
7685
7686 case PLUS:
7687 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7688 low-order bits (as in an alignment operation) and FOO is already
7689 aligned to that boundary, mask C1 to that boundary as well.
7690 This may eliminate that PLUS and, later, the AND. */
7691
7692 {
7693 unsigned int width = GET_MODE_BITSIZE (mode);
7694 unsigned HOST_WIDE_INT smask = mask;
7695
7696 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7697 number, sign extend it. */
7698
7699 if (width < HOST_BITS_PER_WIDE_INT
7700 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7701 smask |= (HOST_WIDE_INT) -1 << width;
7702
7703 if (CONST_INT_P (XEXP (x, 1))
7704 && exact_log2 (- smask) >= 0
7705 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7706 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7707 return force_to_mode (plus_constant (XEXP (x, 0),
7708 (INTVAL (XEXP (x, 1)) & smask)),
7709 mode, smask, next_select);
7710 }
7711
7712 /* ... fall through ... */
7713
7714 case MULT:
7715 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7716 most significant bit in MASK since carries from those bits will
7717 affect the bits we are interested in. */
7718 mask = fuller_mask;
7719 goto binop;
7720
7721 case MINUS:
7722 /* If X is (minus C Y) where C's least set bit is larger than any bit
7723 in the mask, then we may replace with (neg Y). */
7724 if (CONST_INT_P (XEXP (x, 0))
7725 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7726 & -INTVAL (XEXP (x, 0))))
7727 > mask))
7728 {
7729 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7730 GET_MODE (x));
7731 return force_to_mode (x, mode, mask, next_select);
7732 }
7733
7734 /* Similarly, if C contains every bit in the fuller_mask, then we may
7735 replace with (not Y). */
7736 if (CONST_INT_P (XEXP (x, 0))
7737 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7738 == INTVAL (XEXP (x, 0))))
7739 {
7740 x = simplify_gen_unary (NOT, GET_MODE (x),
7741 XEXP (x, 1), GET_MODE (x));
7742 return force_to_mode (x, mode, mask, next_select);
7743 }
7744
7745 mask = fuller_mask;
7746 goto binop;
7747
7748 case IOR:
7749 case XOR:
7750 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7751 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7752 operation which may be a bitfield extraction. Ensure that the
7753 constant we form is not wider than the mode of X. */
7754
7755 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7756 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7757 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7758 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7759 && CONST_INT_P (XEXP (x, 1))
7760 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7761 + floor_log2 (INTVAL (XEXP (x, 1))))
7762 < GET_MODE_BITSIZE (GET_MODE (x)))
7763 && (INTVAL (XEXP (x, 1))
7764 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7765 {
7766 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7767 << INTVAL (XEXP (XEXP (x, 0), 1)));
7768 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7769 XEXP (XEXP (x, 0), 0), temp);
7770 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7771 XEXP (XEXP (x, 0), 1));
7772 return force_to_mode (x, mode, mask, next_select);
7773 }
7774
7775 binop:
7776 /* For most binary operations, just propagate into the operation and
7777 change the mode if we have an operation of that mode. */
7778
7779 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
7780 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
7781
7782 /* If we ended up truncating both operands, truncate the result of the
7783 operation instead. */
7784 if (GET_CODE (op0) == TRUNCATE
7785 && GET_CODE (op1) == TRUNCATE)
7786 {
7787 op0 = XEXP (op0, 0);
7788 op1 = XEXP (op1, 0);
7789 }
7790
7791 op0 = gen_lowpart_or_truncate (op_mode, op0);
7792 op1 = gen_lowpart_or_truncate (op_mode, op1);
7793
7794 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7795 x = simplify_gen_binary (code, op_mode, op0, op1);
7796 break;
7797
7798 case ASHIFT:
7799 /* For left shifts, do the same, but just for the first operand.
7800 However, we cannot do anything with shifts where we cannot
7801 guarantee that the counts are smaller than the size of the mode
7802 because such a count will have a different meaning in a
7803 wider mode. */
7804
7805 if (! (CONST_INT_P (XEXP (x, 1))
7806 && INTVAL (XEXP (x, 1)) >= 0
7807 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7808 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7809 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7810 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7811 break;
7812
7813 /* If the shift count is a constant and we can do arithmetic in
7814 the mode of the shift, refine which bits we need. Otherwise, use the
7815 conservative form of the mask. */
7816 if (CONST_INT_P (XEXP (x, 1))
7817 && INTVAL (XEXP (x, 1)) >= 0
7818 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7819 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7820 mask >>= INTVAL (XEXP (x, 1));
7821 else
7822 mask = fuller_mask;
7823
7824 op0 = gen_lowpart_or_truncate (op_mode,
7825 force_to_mode (XEXP (x, 0), op_mode,
7826 mask, next_select));
7827
7828 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7829 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7830 break;
7831
7832 case LSHIFTRT:
7833 /* Here we can only do something if the shift count is a constant,
7834 this shift constant is valid for the host, and we can do arithmetic
7835 in OP_MODE. */
7836
7837 if (CONST_INT_P (XEXP (x, 1))
7838 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7839 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7840 {
7841 rtx inner = XEXP (x, 0);
7842 unsigned HOST_WIDE_INT inner_mask;
7843
7844 /* Select the mask of the bits we need for the shift operand. */
7845 inner_mask = mask << INTVAL (XEXP (x, 1));
7846
7847 /* We can only change the mode of the shift if we can do arithmetic
7848 in the mode of the shift and INNER_MASK is no wider than the
7849 width of X's mode. */
7850 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7851 op_mode = GET_MODE (x);
7852
7853 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7854
7855 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7856 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7857 }
7858
7859 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7860 shift and AND produces only copies of the sign bit (C2 is one less
7861 than a power of two), we can do this with just a shift. */
7862
7863 if (GET_CODE (x) == LSHIFTRT
7864 && CONST_INT_P (XEXP (x, 1))
7865 /* The shift puts one of the sign bit copies in the least significant
7866 bit. */
7867 && ((INTVAL (XEXP (x, 1))
7868 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7869 >= GET_MODE_BITSIZE (GET_MODE (x)))
7870 && exact_log2 (mask + 1) >= 0
7871 /* Number of bits left after the shift must be more than the mask
7872 needs. */
7873 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7874 <= GET_MODE_BITSIZE (GET_MODE (x)))
7875 /* Must be more sign bit copies than the mask needs. */
7876 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7877 >= exact_log2 (mask + 1)))
7878 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7879 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7880 - exact_log2 (mask + 1)));
7881
7882 goto shiftrt;
7883
7884 case ASHIFTRT:
7885 /* If we are just looking for the sign bit, we don't need this shift at
7886 all, even if it has a variable count. */
7887 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7888 && (mask == ((unsigned HOST_WIDE_INT) 1
7889 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7890 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7891
7892 /* If this is a shift by a constant, get a mask that contains those bits
7893 that are not copies of the sign bit. We then have two cases: If
7894 MASK only includes those bits, this can be a logical shift, which may
7895 allow simplifications. If MASK is a single-bit field not within
7896 those bits, we are requesting a copy of the sign bit and hence can
7897 shift the sign bit to the appropriate location. */
7898
7899 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
7900 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7901 {
7902 int i;
7903
7904 /* If the considered data is wider than HOST_WIDE_INT, we can't
7905 represent a mask for all its bits in a single scalar.
7906 But we only care about the lower bits, so calculate these. */
7907
7908 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7909 {
7910 nonzero = ~(HOST_WIDE_INT) 0;
7911
7912 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7913 is the number of bits a full-width mask would have set.
7914 We need only shift if these are fewer than nonzero can
7915 hold. If not, we must keep all bits set in nonzero. */
7916
7917 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7918 < HOST_BITS_PER_WIDE_INT)
7919 nonzero >>= INTVAL (XEXP (x, 1))
7920 + HOST_BITS_PER_WIDE_INT
7921 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7922 }
7923 else
7924 {
7925 nonzero = GET_MODE_MASK (GET_MODE (x));
7926 nonzero >>= INTVAL (XEXP (x, 1));
7927 }
7928
7929 if ((mask & ~nonzero) == 0)
7930 {
7931 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7932 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7933 if (GET_CODE (x) != ASHIFTRT)
7934 return force_to_mode (x, mode, mask, next_select);
7935 }
7936
7937 else if ((i = exact_log2 (mask)) >= 0)
7938 {
7939 x = simplify_shift_const
7940 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7941 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7942
7943 if (GET_CODE (x) != ASHIFTRT)
7944 return force_to_mode (x, mode, mask, next_select);
7945 }
7946 }
7947
7948 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7949 even if the shift count isn't a constant. */
7950 if (mask == 1)
7951 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7952 XEXP (x, 0), XEXP (x, 1));
7953
7954 shiftrt:
7955
7956 /* If this is a zero- or sign-extension operation that just affects bits
7957 we don't care about, remove it. Be sure the call above returned
7958 something that is still a shift. */
7959
7960 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7961 && CONST_INT_P (XEXP (x, 1))
7962 && INTVAL (XEXP (x, 1)) >= 0
7963 && (INTVAL (XEXP (x, 1))
7964 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7965 && GET_CODE (XEXP (x, 0)) == ASHIFT
7966 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7967 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7968 next_select);
7969
7970 break;
7971
7972 case ROTATE:
7973 case ROTATERT:
7974 /* If the shift count is constant and we can do computations
7975 in the mode of X, compute where the bits we care about are.
7976 Otherwise, we can't do anything. Don't change the mode of
7977 the shift or propagate MODE into the shift, though. */
7978 if (CONST_INT_P (XEXP (x, 1))
7979 && INTVAL (XEXP (x, 1)) >= 0)
7980 {
7981 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7982 GET_MODE (x), GEN_INT (mask),
7983 XEXP (x, 1));
7984 if (temp && CONST_INT_P (temp))
7985 SUBST (XEXP (x, 0),
7986 force_to_mode (XEXP (x, 0), GET_MODE (x),
7987 INTVAL (temp), next_select));
7988 }
7989 break;
7990
7991 case NEG:
7992 /* If we just want the low-order bit, the NEG isn't needed since it
7993 won't change the low-order bit. */
7994 if (mask == 1)
7995 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7996
7997 /* We need any bits less significant than the most significant bit in
7998 MASK since carries from those bits will affect the bits we are
7999 interested in. */
8000 mask = fuller_mask;
8001 goto unop;
8002
8003 case NOT:
8004 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8005 same as the XOR case above. Ensure that the constant we form is not
8006 wider than the mode of X. */
8007
8008 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8009 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8010 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8011 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8012 < GET_MODE_BITSIZE (GET_MODE (x)))
8013 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8014 {
8015 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8016 GET_MODE (x));
8017 temp = simplify_gen_binary (XOR, GET_MODE (x),
8018 XEXP (XEXP (x, 0), 0), temp);
8019 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8020 temp, XEXP (XEXP (x, 0), 1));
8021
8022 return force_to_mode (x, mode, mask, next_select);
8023 }
8024
8025 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8026 use the full mask inside the NOT. */
8027 mask = fuller_mask;
8028
8029 unop:
8030 op0 = gen_lowpart_or_truncate (op_mode,
8031 force_to_mode (XEXP (x, 0), mode, mask,
8032 next_select));
8033 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8034 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8035 break;
8036
8037 case NE:
8038 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8039 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8040 which is equal to STORE_FLAG_VALUE. */
8041 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
8042 && GET_MODE (XEXP (x, 0)) == mode
8043 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8044 && (nonzero_bits (XEXP (x, 0), mode)
8045 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8046 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8047
8048 break;
8049
8050 case IF_THEN_ELSE:
8051 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8052 written in a narrower mode. We play it safe and do not do so. */
8053
8054 SUBST (XEXP (x, 1),
8055 gen_lowpart_or_truncate (GET_MODE (x),
8056 force_to_mode (XEXP (x, 1), mode,
8057 mask, next_select)));
8058 SUBST (XEXP (x, 2),
8059 gen_lowpart_or_truncate (GET_MODE (x),
8060 force_to_mode (XEXP (x, 2), mode,
8061 mask, next_select)));
8062 break;
8063
8064 default:
8065 break;
8066 }
8067
8068 /* Ensure we return a value of the proper mode. */
8069 return gen_lowpart_or_truncate (mode, x);
8070 }
8071 \f
8072 /* Return nonzero if X is an expression that has one of two values depending on
8073 whether some other value is zero or nonzero. In that case, we return the
8074 value that is being tested, *PTRUE is set to the value if the rtx being
8075 returned has a nonzero value, and *PFALSE is set to the other alternative.
8076
8077 If we return zero, we set *PTRUE and *PFALSE to X. */
8078
8079 static rtx
8080 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8081 {
8082 enum machine_mode mode = GET_MODE (x);
8083 enum rtx_code code = GET_CODE (x);
8084 rtx cond0, cond1, true0, true1, false0, false1;
8085 unsigned HOST_WIDE_INT nz;
8086
8087 /* If we are comparing a value against zero, we are done. */
8088 if ((code == NE || code == EQ)
8089 && XEXP (x, 1) == const0_rtx)
8090 {
8091 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8092 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8093 return XEXP (x, 0);
8094 }
8095
8096 /* If this is a unary operation whose operand has one of two values, apply
8097 our opcode to compute those values. */
8098 else if (UNARY_P (x)
8099 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8100 {
8101 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8102 *pfalse = simplify_gen_unary (code, mode, false0,
8103 GET_MODE (XEXP (x, 0)));
8104 return cond0;
8105 }
8106
8107 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8108 make can't possibly match and would suppress other optimizations. */
8109 else if (code == COMPARE)
8110 ;
8111
8112 /* If this is a binary operation, see if either side has only one of two
8113 values. If either one does or if both do and they are conditional on
8114 the same value, compute the new true and false values. */
8115 else if (BINARY_P (x))
8116 {
8117 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8118 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8119
8120 if ((cond0 != 0 || cond1 != 0)
8121 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8122 {
8123 /* If if_then_else_cond returned zero, then true/false are the
8124 same rtl. We must copy one of them to prevent invalid rtl
8125 sharing. */
8126 if (cond0 == 0)
8127 true0 = copy_rtx (true0);
8128 else if (cond1 == 0)
8129 true1 = copy_rtx (true1);
8130
8131 if (COMPARISON_P (x))
8132 {
8133 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8134 true0, true1);
8135 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8136 false0, false1);
8137 }
8138 else
8139 {
8140 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8141 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8142 }
8143
8144 return cond0 ? cond0 : cond1;
8145 }
8146
8147 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8148 operands is zero when the other is nonzero, and vice-versa,
8149 and STORE_FLAG_VALUE is 1 or -1. */
8150
8151 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8152 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8153 || code == UMAX)
8154 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8155 {
8156 rtx op0 = XEXP (XEXP (x, 0), 1);
8157 rtx op1 = XEXP (XEXP (x, 1), 1);
8158
8159 cond0 = XEXP (XEXP (x, 0), 0);
8160 cond1 = XEXP (XEXP (x, 1), 0);
8161
8162 if (COMPARISON_P (cond0)
8163 && COMPARISON_P (cond1)
8164 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8165 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8166 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8167 || ((swap_condition (GET_CODE (cond0))
8168 == reversed_comparison_code (cond1, NULL))
8169 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8170 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8171 && ! side_effects_p (x))
8172 {
8173 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8174 *pfalse = simplify_gen_binary (MULT, mode,
8175 (code == MINUS
8176 ? simplify_gen_unary (NEG, mode,
8177 op1, mode)
8178 : op1),
8179 const_true_rtx);
8180 return cond0;
8181 }
8182 }
8183
8184 /* Similarly for MULT, AND and UMIN, except that for these the result
8185 is always zero. */
8186 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8187 && (code == MULT || code == AND || code == UMIN)
8188 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8189 {
8190 cond0 = XEXP (XEXP (x, 0), 0);
8191 cond1 = XEXP (XEXP (x, 1), 0);
8192
8193 if (COMPARISON_P (cond0)
8194 && COMPARISON_P (cond1)
8195 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8196 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8197 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8198 || ((swap_condition (GET_CODE (cond0))
8199 == reversed_comparison_code (cond1, NULL))
8200 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8201 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8202 && ! side_effects_p (x))
8203 {
8204 *ptrue = *pfalse = const0_rtx;
8205 return cond0;
8206 }
8207 }
8208 }
8209
8210 else if (code == IF_THEN_ELSE)
8211 {
8212 /* If we have IF_THEN_ELSE already, extract the condition and
8213 canonicalize it if it is NE or EQ. */
8214 cond0 = XEXP (x, 0);
8215 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8216 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8217 return XEXP (cond0, 0);
8218 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8219 {
8220 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8221 return XEXP (cond0, 0);
8222 }
8223 else
8224 return cond0;
8225 }
8226
8227 /* If X is a SUBREG, we can narrow both the true and false values
8228 if the inner expression, if there is a condition. */
8229 else if (code == SUBREG
8230 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8231 &true0, &false0)))
8232 {
8233 true0 = simplify_gen_subreg (mode, true0,
8234 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8235 false0 = simplify_gen_subreg (mode, false0,
8236 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8237 if (true0 && false0)
8238 {
8239 *ptrue = true0;
8240 *pfalse = false0;
8241 return cond0;
8242 }
8243 }
8244
8245 /* If X is a constant, this isn't special and will cause confusions
8246 if we treat it as such. Likewise if it is equivalent to a constant. */
8247 else if (CONSTANT_P (x)
8248 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8249 ;
8250
8251 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8252 will be least confusing to the rest of the compiler. */
8253 else if (mode == BImode)
8254 {
8255 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8256 return x;
8257 }
8258
8259 /* If X is known to be either 0 or -1, those are the true and
8260 false values when testing X. */
8261 else if (x == constm1_rtx || x == const0_rtx
8262 || (mode != VOIDmode
8263 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
8264 {
8265 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8266 return x;
8267 }
8268
8269 /* Likewise for 0 or a single bit. */
8270 else if (SCALAR_INT_MODE_P (mode)
8271 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8272 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8273 {
8274 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8275 return x;
8276 }
8277
8278 /* Otherwise fail; show no condition with true and false values the same. */
8279 *ptrue = *pfalse = x;
8280 return 0;
8281 }
8282 \f
8283 /* Return the value of expression X given the fact that condition COND
8284 is known to be true when applied to REG as its first operand and VAL
8285 as its second. X is known to not be shared and so can be modified in
8286 place.
8287
8288 We only handle the simplest cases, and specifically those cases that
8289 arise with IF_THEN_ELSE expressions. */
8290
8291 static rtx
8292 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8293 {
8294 enum rtx_code code = GET_CODE (x);
8295 rtx temp;
8296 const char *fmt;
8297 int i, j;
8298
8299 if (side_effects_p (x))
8300 return x;
8301
8302 /* If either operand of the condition is a floating point value,
8303 then we have to avoid collapsing an EQ comparison. */
8304 if (cond == EQ
8305 && rtx_equal_p (x, reg)
8306 && ! FLOAT_MODE_P (GET_MODE (x))
8307 && ! FLOAT_MODE_P (GET_MODE (val)))
8308 return val;
8309
8310 if (cond == UNEQ && rtx_equal_p (x, reg))
8311 return val;
8312
8313 /* If X is (abs REG) and we know something about REG's relationship
8314 with zero, we may be able to simplify this. */
8315
8316 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8317 switch (cond)
8318 {
8319 case GE: case GT: case EQ:
8320 return XEXP (x, 0);
8321 case LT: case LE:
8322 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8323 XEXP (x, 0),
8324 GET_MODE (XEXP (x, 0)));
8325 default:
8326 break;
8327 }
8328
8329 /* The only other cases we handle are MIN, MAX, and comparisons if the
8330 operands are the same as REG and VAL. */
8331
8332 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8333 {
8334 if (rtx_equal_p (XEXP (x, 0), val))
8335 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8336
8337 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8338 {
8339 if (COMPARISON_P (x))
8340 {
8341 if (comparison_dominates_p (cond, code))
8342 return const_true_rtx;
8343
8344 code = reversed_comparison_code (x, NULL);
8345 if (code != UNKNOWN
8346 && comparison_dominates_p (cond, code))
8347 return const0_rtx;
8348 else
8349 return x;
8350 }
8351 else if (code == SMAX || code == SMIN
8352 || code == UMIN || code == UMAX)
8353 {
8354 int unsignedp = (code == UMIN || code == UMAX);
8355
8356 /* Do not reverse the condition when it is NE or EQ.
8357 This is because we cannot conclude anything about
8358 the value of 'SMAX (x, y)' when x is not equal to y,
8359 but we can when x equals y. */
8360 if ((code == SMAX || code == UMAX)
8361 && ! (cond == EQ || cond == NE))
8362 cond = reverse_condition (cond);
8363
8364 switch (cond)
8365 {
8366 case GE: case GT:
8367 return unsignedp ? x : XEXP (x, 1);
8368 case LE: case LT:
8369 return unsignedp ? x : XEXP (x, 0);
8370 case GEU: case GTU:
8371 return unsignedp ? XEXP (x, 1) : x;
8372 case LEU: case LTU:
8373 return unsignedp ? XEXP (x, 0) : x;
8374 default:
8375 break;
8376 }
8377 }
8378 }
8379 }
8380 else if (code == SUBREG)
8381 {
8382 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8383 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8384
8385 if (SUBREG_REG (x) != r)
8386 {
8387 /* We must simplify subreg here, before we lose track of the
8388 original inner_mode. */
8389 new_rtx = simplify_subreg (GET_MODE (x), r,
8390 inner_mode, SUBREG_BYTE (x));
8391 if (new_rtx)
8392 return new_rtx;
8393 else
8394 SUBST (SUBREG_REG (x), r);
8395 }
8396
8397 return x;
8398 }
8399 /* We don't have to handle SIGN_EXTEND here, because even in the
8400 case of replacing something with a modeless CONST_INT, a
8401 CONST_INT is already (supposed to be) a valid sign extension for
8402 its narrower mode, which implies it's already properly
8403 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8404 story is different. */
8405 else if (code == ZERO_EXTEND)
8406 {
8407 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8408 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8409
8410 if (XEXP (x, 0) != r)
8411 {
8412 /* We must simplify the zero_extend here, before we lose
8413 track of the original inner_mode. */
8414 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8415 r, inner_mode);
8416 if (new_rtx)
8417 return new_rtx;
8418 else
8419 SUBST (XEXP (x, 0), r);
8420 }
8421
8422 return x;
8423 }
8424
8425 fmt = GET_RTX_FORMAT (code);
8426 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8427 {
8428 if (fmt[i] == 'e')
8429 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8430 else if (fmt[i] == 'E')
8431 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8432 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8433 cond, reg, val));
8434 }
8435
8436 return x;
8437 }
8438 \f
8439 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8440 assignment as a field assignment. */
8441
8442 static int
8443 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8444 {
8445 if (x == y || rtx_equal_p (x, y))
8446 return 1;
8447
8448 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8449 return 0;
8450
8451 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8452 Note that all SUBREGs of MEM are paradoxical; otherwise they
8453 would have been rewritten. */
8454 if (MEM_P (x) && GET_CODE (y) == SUBREG
8455 && MEM_P (SUBREG_REG (y))
8456 && rtx_equal_p (SUBREG_REG (y),
8457 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8458 return 1;
8459
8460 if (MEM_P (y) && GET_CODE (x) == SUBREG
8461 && MEM_P (SUBREG_REG (x))
8462 && rtx_equal_p (SUBREG_REG (x),
8463 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8464 return 1;
8465
8466 /* We used to see if get_last_value of X and Y were the same but that's
8467 not correct. In one direction, we'll cause the assignment to have
8468 the wrong destination and in the case, we'll import a register into this
8469 insn that might have already have been dead. So fail if none of the
8470 above cases are true. */
8471 return 0;
8472 }
8473 \f
8474 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8475 Return that assignment if so.
8476
8477 We only handle the most common cases. */
8478
8479 static rtx
8480 make_field_assignment (rtx x)
8481 {
8482 rtx dest = SET_DEST (x);
8483 rtx src = SET_SRC (x);
8484 rtx assign;
8485 rtx rhs, lhs;
8486 HOST_WIDE_INT c1;
8487 HOST_WIDE_INT pos;
8488 unsigned HOST_WIDE_INT len;
8489 rtx other;
8490 enum machine_mode mode;
8491
8492 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8493 a clear of a one-bit field. We will have changed it to
8494 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8495 for a SUBREG. */
8496
8497 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8498 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8499 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8500 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8501 {
8502 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8503 1, 1, 1, 0);
8504 if (assign != 0)
8505 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8506 return x;
8507 }
8508
8509 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8510 && subreg_lowpart_p (XEXP (src, 0))
8511 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8512 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8513 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8514 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8515 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8516 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8517 {
8518 assign = make_extraction (VOIDmode, dest, 0,
8519 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8520 1, 1, 1, 0);
8521 if (assign != 0)
8522 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8523 return x;
8524 }
8525
8526 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8527 one-bit field. */
8528 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8529 && XEXP (XEXP (src, 0), 0) == const1_rtx
8530 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8531 {
8532 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8533 1, 1, 1, 0);
8534 if (assign != 0)
8535 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8536 return x;
8537 }
8538
8539 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8540 SRC is an AND with all bits of that field set, then we can discard
8541 the AND. */
8542 if (GET_CODE (dest) == ZERO_EXTRACT
8543 && CONST_INT_P (XEXP (dest, 1))
8544 && GET_CODE (src) == AND
8545 && CONST_INT_P (XEXP (src, 1)))
8546 {
8547 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8548 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8549 unsigned HOST_WIDE_INT ze_mask;
8550
8551 if (width >= HOST_BITS_PER_WIDE_INT)
8552 ze_mask = -1;
8553 else
8554 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8555
8556 /* Complete overlap. We can remove the source AND. */
8557 if ((and_mask & ze_mask) == ze_mask)
8558 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8559
8560 /* Partial overlap. We can reduce the source AND. */
8561 if ((and_mask & ze_mask) != and_mask)
8562 {
8563 mode = GET_MODE (src);
8564 src = gen_rtx_AND (mode, XEXP (src, 0),
8565 gen_int_mode (and_mask & ze_mask, mode));
8566 return gen_rtx_SET (VOIDmode, dest, src);
8567 }
8568 }
8569
8570 /* The other case we handle is assignments into a constant-position
8571 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8572 a mask that has all one bits except for a group of zero bits and
8573 OTHER is known to have zeros where C1 has ones, this is such an
8574 assignment. Compute the position and length from C1. Shift OTHER
8575 to the appropriate position, force it to the required mode, and
8576 make the extraction. Check for the AND in both operands. */
8577
8578 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8579 return x;
8580
8581 rhs = expand_compound_operation (XEXP (src, 0));
8582 lhs = expand_compound_operation (XEXP (src, 1));
8583
8584 if (GET_CODE (rhs) == AND
8585 && CONST_INT_P (XEXP (rhs, 1))
8586 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8587 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8588 else if (GET_CODE (lhs) == AND
8589 && CONST_INT_P (XEXP (lhs, 1))
8590 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8591 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8592 else
8593 return x;
8594
8595 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8596 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8597 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8598 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8599 return x;
8600
8601 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8602 if (assign == 0)
8603 return x;
8604
8605 /* The mode to use for the source is the mode of the assignment, or of
8606 what is inside a possible STRICT_LOW_PART. */
8607 mode = (GET_CODE (assign) == STRICT_LOW_PART
8608 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8609
8610 /* Shift OTHER right POS places and make it the source, restricting it
8611 to the proper length and mode. */
8612
8613 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8614 GET_MODE (src),
8615 other, pos),
8616 dest);
8617 src = force_to_mode (src, mode,
8618 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8619 ? ~(unsigned HOST_WIDE_INT) 0
8620 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8621 0);
8622
8623 /* If SRC is masked by an AND that does not make a difference in
8624 the value being stored, strip it. */
8625 if (GET_CODE (assign) == ZERO_EXTRACT
8626 && CONST_INT_P (XEXP (assign, 1))
8627 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8628 && GET_CODE (src) == AND
8629 && CONST_INT_P (XEXP (src, 1))
8630 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8631 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8632 src = XEXP (src, 0);
8633
8634 return gen_rtx_SET (VOIDmode, assign, src);
8635 }
8636 \f
8637 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8638 if so. */
8639
8640 static rtx
8641 apply_distributive_law (rtx x)
8642 {
8643 enum rtx_code code = GET_CODE (x);
8644 enum rtx_code inner_code;
8645 rtx lhs, rhs, other;
8646 rtx tem;
8647
8648 /* Distributivity is not true for floating point as it can change the
8649 value. So we don't do it unless -funsafe-math-optimizations. */
8650 if (FLOAT_MODE_P (GET_MODE (x))
8651 && ! flag_unsafe_math_optimizations)
8652 return x;
8653
8654 /* The outer operation can only be one of the following: */
8655 if (code != IOR && code != AND && code != XOR
8656 && code != PLUS && code != MINUS)
8657 return x;
8658
8659 lhs = XEXP (x, 0);
8660 rhs = XEXP (x, 1);
8661
8662 /* If either operand is a primitive we can't do anything, so get out
8663 fast. */
8664 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8665 return x;
8666
8667 lhs = expand_compound_operation (lhs);
8668 rhs = expand_compound_operation (rhs);
8669 inner_code = GET_CODE (lhs);
8670 if (inner_code != GET_CODE (rhs))
8671 return x;
8672
8673 /* See if the inner and outer operations distribute. */
8674 switch (inner_code)
8675 {
8676 case LSHIFTRT:
8677 case ASHIFTRT:
8678 case AND:
8679 case IOR:
8680 /* These all distribute except over PLUS. */
8681 if (code == PLUS || code == MINUS)
8682 return x;
8683 break;
8684
8685 case MULT:
8686 if (code != PLUS && code != MINUS)
8687 return x;
8688 break;
8689
8690 case ASHIFT:
8691 /* This is also a multiply, so it distributes over everything. */
8692 break;
8693
8694 case SUBREG:
8695 /* Non-paradoxical SUBREGs distributes over all operations,
8696 provided the inner modes and byte offsets are the same, this
8697 is an extraction of a low-order part, we don't convert an fp
8698 operation to int or vice versa, this is not a vector mode,
8699 and we would not be converting a single-word operation into a
8700 multi-word operation. The latter test is not required, but
8701 it prevents generating unneeded multi-word operations. Some
8702 of the previous tests are redundant given the latter test,
8703 but are retained because they are required for correctness.
8704
8705 We produce the result slightly differently in this case. */
8706
8707 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8708 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8709 || ! subreg_lowpart_p (lhs)
8710 || (GET_MODE_CLASS (GET_MODE (lhs))
8711 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8712 || (GET_MODE_SIZE (GET_MODE (lhs))
8713 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8714 || VECTOR_MODE_P (GET_MODE (lhs))
8715 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8716 /* Result might need to be truncated. Don't change mode if
8717 explicit truncation is needed. */
8718 || !TRULY_NOOP_TRUNCATION
8719 (GET_MODE_BITSIZE (GET_MODE (x)),
8720 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8721 return x;
8722
8723 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8724 SUBREG_REG (lhs), SUBREG_REG (rhs));
8725 return gen_lowpart (GET_MODE (x), tem);
8726
8727 default:
8728 return x;
8729 }
8730
8731 /* Set LHS and RHS to the inner operands (A and B in the example
8732 above) and set OTHER to the common operand (C in the example).
8733 There is only one way to do this unless the inner operation is
8734 commutative. */
8735 if (COMMUTATIVE_ARITH_P (lhs)
8736 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8737 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8738 else if (COMMUTATIVE_ARITH_P (lhs)
8739 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8740 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8741 else if (COMMUTATIVE_ARITH_P (lhs)
8742 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8743 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8744 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8745 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8746 else
8747 return x;
8748
8749 /* Form the new inner operation, seeing if it simplifies first. */
8750 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8751
8752 /* There is one exception to the general way of distributing:
8753 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8754 if (code == XOR && inner_code == IOR)
8755 {
8756 inner_code = AND;
8757 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8758 }
8759
8760 /* We may be able to continuing distributing the result, so call
8761 ourselves recursively on the inner operation before forming the
8762 outer operation, which we return. */
8763 return simplify_gen_binary (inner_code, GET_MODE (x),
8764 apply_distributive_law (tem), other);
8765 }
8766
8767 /* See if X is of the form (* (+ A B) C), and if so convert to
8768 (+ (* A C) (* B C)) and try to simplify.
8769
8770 Most of the time, this results in no change. However, if some of
8771 the operands are the same or inverses of each other, simplifications
8772 will result.
8773
8774 For example, (and (ior A B) (not B)) can occur as the result of
8775 expanding a bit field assignment. When we apply the distributive
8776 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8777 which then simplifies to (and (A (not B))).
8778
8779 Note that no checks happen on the validity of applying the inverse
8780 distributive law. This is pointless since we can do it in the
8781 few places where this routine is called.
8782
8783 N is the index of the term that is decomposed (the arithmetic operation,
8784 i.e. (+ A B) in the first example above). !N is the index of the term that
8785 is distributed, i.e. of C in the first example above. */
8786 static rtx
8787 distribute_and_simplify_rtx (rtx x, int n)
8788 {
8789 enum machine_mode mode;
8790 enum rtx_code outer_code, inner_code;
8791 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8792
8793 /* Distributivity is not true for floating point as it can change the
8794 value. So we don't do it unless -funsafe-math-optimizations. */
8795 if (FLOAT_MODE_P (GET_MODE (x))
8796 && ! flag_unsafe_math_optimizations)
8797 return NULL_RTX;
8798
8799 decomposed = XEXP (x, n);
8800 if (!ARITHMETIC_P (decomposed))
8801 return NULL_RTX;
8802
8803 mode = GET_MODE (x);
8804 outer_code = GET_CODE (x);
8805 distributed = XEXP (x, !n);
8806
8807 inner_code = GET_CODE (decomposed);
8808 inner_op0 = XEXP (decomposed, 0);
8809 inner_op1 = XEXP (decomposed, 1);
8810
8811 /* Special case (and (xor B C) (not A)), which is equivalent to
8812 (xor (ior A B) (ior A C)) */
8813 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8814 {
8815 distributed = XEXP (distributed, 0);
8816 outer_code = IOR;
8817 }
8818
8819 if (n == 0)
8820 {
8821 /* Distribute the second term. */
8822 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8823 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8824 }
8825 else
8826 {
8827 /* Distribute the first term. */
8828 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8829 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8830 }
8831
8832 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8833 new_op0, new_op1));
8834 if (GET_CODE (tmp) != outer_code
8835 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
8836 < rtx_cost (x, SET, optimize_this_for_speed_p))
8837 return tmp;
8838
8839 return NULL_RTX;
8840 }
8841 \f
8842 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8843 in MODE. Return an equivalent form, if different from (and VAROP
8844 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8845
8846 static rtx
8847 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8848 unsigned HOST_WIDE_INT constop)
8849 {
8850 unsigned HOST_WIDE_INT nonzero;
8851 unsigned HOST_WIDE_INT orig_constop;
8852 rtx orig_varop;
8853 int i;
8854
8855 orig_varop = varop;
8856 orig_constop = constop;
8857 if (GET_CODE (varop) == CLOBBER)
8858 return NULL_RTX;
8859
8860 /* Simplify VAROP knowing that we will be only looking at some of the
8861 bits in it.
8862
8863 Note by passing in CONSTOP, we guarantee that the bits not set in
8864 CONSTOP are not significant and will never be examined. We must
8865 ensure that is the case by explicitly masking out those bits
8866 before returning. */
8867 varop = force_to_mode (varop, mode, constop, 0);
8868
8869 /* If VAROP is a CLOBBER, we will fail so return it. */
8870 if (GET_CODE (varop) == CLOBBER)
8871 return varop;
8872
8873 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8874 to VAROP and return the new constant. */
8875 if (CONST_INT_P (varop))
8876 return gen_int_mode (INTVAL (varop) & constop, mode);
8877
8878 /* See what bits may be nonzero in VAROP. Unlike the general case of
8879 a call to nonzero_bits, here we don't care about bits outside
8880 MODE. */
8881
8882 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8883
8884 /* Turn off all bits in the constant that are known to already be zero.
8885 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8886 which is tested below. */
8887
8888 constop &= nonzero;
8889
8890 /* If we don't have any bits left, return zero. */
8891 if (constop == 0)
8892 return const0_rtx;
8893
8894 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8895 a power of two, we can replace this with an ASHIFT. */
8896 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8897 && (i = exact_log2 (constop)) >= 0)
8898 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8899
8900 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8901 or XOR, then try to apply the distributive law. This may eliminate
8902 operations if either branch can be simplified because of the AND.
8903 It may also make some cases more complex, but those cases probably
8904 won't match a pattern either with or without this. */
8905
8906 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8907 return
8908 gen_lowpart
8909 (mode,
8910 apply_distributive_law
8911 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8912 simplify_and_const_int (NULL_RTX,
8913 GET_MODE (varop),
8914 XEXP (varop, 0),
8915 constop),
8916 simplify_and_const_int (NULL_RTX,
8917 GET_MODE (varop),
8918 XEXP (varop, 1),
8919 constop))));
8920
8921 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8922 the AND and see if one of the operands simplifies to zero. If so, we
8923 may eliminate it. */
8924
8925 if (GET_CODE (varop) == PLUS
8926 && exact_log2 (constop + 1) >= 0)
8927 {
8928 rtx o0, o1;
8929
8930 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8931 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8932 if (o0 == const0_rtx)
8933 return o1;
8934 if (o1 == const0_rtx)
8935 return o0;
8936 }
8937
8938 /* Make a SUBREG if necessary. If we can't make it, fail. */
8939 varop = gen_lowpart (mode, varop);
8940 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8941 return NULL_RTX;
8942
8943 /* If we are only masking insignificant bits, return VAROP. */
8944 if (constop == nonzero)
8945 return varop;
8946
8947 if (varop == orig_varop && constop == orig_constop)
8948 return NULL_RTX;
8949
8950 /* Otherwise, return an AND. */
8951 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8952 }
8953
8954
8955 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8956 in MODE.
8957
8958 Return an equivalent form, if different from X. Otherwise, return X. If
8959 X is zero, we are to always construct the equivalent form. */
8960
8961 static rtx
8962 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8963 unsigned HOST_WIDE_INT constop)
8964 {
8965 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8966 if (tem)
8967 return tem;
8968
8969 if (!x)
8970 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8971 gen_int_mode (constop, mode));
8972 if (GET_MODE (x) != mode)
8973 x = gen_lowpart (mode, x);
8974 return x;
8975 }
8976 \f
8977 /* Given a REG, X, compute which bits in X can be nonzero.
8978 We don't care about bits outside of those defined in MODE.
8979
8980 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8981 a shift, AND, or zero_extract, we can do better. */
8982
8983 static rtx
8984 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
8985 const_rtx known_x ATTRIBUTE_UNUSED,
8986 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8987 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8988 unsigned HOST_WIDE_INT *nonzero)
8989 {
8990 rtx tem;
8991 reg_stat_type *rsp;
8992
8993 /* If X is a register whose nonzero bits value is current, use it.
8994 Otherwise, if X is a register whose value we can find, use that
8995 value. Otherwise, use the previously-computed global nonzero bits
8996 for this register. */
8997
8998 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8999 if (rsp->last_set_value != 0
9000 && (rsp->last_set_mode == mode
9001 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9002 && GET_MODE_CLASS (mode) == MODE_INT))
9003 && ((rsp->last_set_label >= label_tick_ebb_start
9004 && rsp->last_set_label < label_tick)
9005 || (rsp->last_set_label == label_tick
9006 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9007 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9008 && REG_N_SETS (REGNO (x)) == 1
9009 && !REGNO_REG_SET_P
9010 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9011 {
9012 *nonzero &= rsp->last_set_nonzero_bits;
9013 return NULL;
9014 }
9015
9016 tem = get_last_value (x);
9017
9018 if (tem)
9019 {
9020 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9021 /* If X is narrower than MODE and TEM is a non-negative
9022 constant that would appear negative in the mode of X,
9023 sign-extend it for use in reg_nonzero_bits because some
9024 machines (maybe most) will actually do the sign-extension
9025 and this is the conservative approach.
9026
9027 ??? For 2.5, try to tighten up the MD files in this regard
9028 instead of this kludge. */
9029
9030 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
9031 && CONST_INT_P (tem)
9032 && INTVAL (tem) > 0
9033 && 0 != (INTVAL (tem)
9034 & ((HOST_WIDE_INT) 1
9035 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
9036 tem = GEN_INT (INTVAL (tem)
9037 | ((HOST_WIDE_INT) (-1)
9038 << GET_MODE_BITSIZE (GET_MODE (x))));
9039 #endif
9040 return tem;
9041 }
9042 else if (nonzero_sign_valid && rsp->nonzero_bits)
9043 {
9044 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9045
9046 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
9047 /* We don't know anything about the upper bits. */
9048 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9049 *nonzero &= mask;
9050 }
9051
9052 return NULL;
9053 }
9054
9055 /* Return the number of bits at the high-order end of X that are known to
9056 be equal to the sign bit. X will be used in mode MODE; if MODE is
9057 VOIDmode, X will be used in its own mode. The returned value will always
9058 be between 1 and the number of bits in MODE. */
9059
9060 static rtx
9061 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9062 const_rtx known_x ATTRIBUTE_UNUSED,
9063 enum machine_mode known_mode
9064 ATTRIBUTE_UNUSED,
9065 unsigned int known_ret ATTRIBUTE_UNUSED,
9066 unsigned int *result)
9067 {
9068 rtx tem;
9069 reg_stat_type *rsp;
9070
9071 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9072 if (rsp->last_set_value != 0
9073 && rsp->last_set_mode == mode
9074 && ((rsp->last_set_label >= label_tick_ebb_start
9075 && rsp->last_set_label < label_tick)
9076 || (rsp->last_set_label == label_tick
9077 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9078 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9079 && REG_N_SETS (REGNO (x)) == 1
9080 && !REGNO_REG_SET_P
9081 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9082 {
9083 *result = rsp->last_set_sign_bit_copies;
9084 return NULL;
9085 }
9086
9087 tem = get_last_value (x);
9088 if (tem != 0)
9089 return tem;
9090
9091 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9092 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
9093 *result = rsp->sign_bit_copies;
9094
9095 return NULL;
9096 }
9097 \f
9098 /* Return the number of "extended" bits there are in X, when interpreted
9099 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9100 unsigned quantities, this is the number of high-order zero bits.
9101 For signed quantities, this is the number of copies of the sign bit
9102 minus 1. In both case, this function returns the number of "spare"
9103 bits. For example, if two quantities for which this function returns
9104 at least 1 are added, the addition is known not to overflow.
9105
9106 This function will always return 0 unless called during combine, which
9107 implies that it must be called from a define_split. */
9108
9109 unsigned int
9110 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9111 {
9112 if (nonzero_sign_valid == 0)
9113 return 0;
9114
9115 return (unsignedp
9116 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9117 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9118 - floor_log2 (nonzero_bits (x, mode)))
9119 : 0)
9120 : num_sign_bit_copies (x, mode) - 1);
9121 }
9122 \f
9123 /* This function is called from `simplify_shift_const' to merge two
9124 outer operations. Specifically, we have already found that we need
9125 to perform operation *POP0 with constant *PCONST0 at the outermost
9126 position. We would now like to also perform OP1 with constant CONST1
9127 (with *POP0 being done last).
9128
9129 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9130 the resulting operation. *PCOMP_P is set to 1 if we would need to
9131 complement the innermost operand, otherwise it is unchanged.
9132
9133 MODE is the mode in which the operation will be done. No bits outside
9134 the width of this mode matter. It is assumed that the width of this mode
9135 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9136
9137 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9138 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9139 result is simply *PCONST0.
9140
9141 If the resulting operation cannot be expressed as one operation, we
9142 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9143
9144 static int
9145 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9146 {
9147 enum rtx_code op0 = *pop0;
9148 HOST_WIDE_INT const0 = *pconst0;
9149
9150 const0 &= GET_MODE_MASK (mode);
9151 const1 &= GET_MODE_MASK (mode);
9152
9153 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9154 if (op0 == AND)
9155 const1 &= const0;
9156
9157 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9158 if OP0 is SET. */
9159
9160 if (op1 == UNKNOWN || op0 == SET)
9161 return 1;
9162
9163 else if (op0 == UNKNOWN)
9164 op0 = op1, const0 = const1;
9165
9166 else if (op0 == op1)
9167 {
9168 switch (op0)
9169 {
9170 case AND:
9171 const0 &= const1;
9172 break;
9173 case IOR:
9174 const0 |= const1;
9175 break;
9176 case XOR:
9177 const0 ^= const1;
9178 break;
9179 case PLUS:
9180 const0 += const1;
9181 break;
9182 case NEG:
9183 op0 = UNKNOWN;
9184 break;
9185 default:
9186 break;
9187 }
9188 }
9189
9190 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9191 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9192 return 0;
9193
9194 /* If the two constants aren't the same, we can't do anything. The
9195 remaining six cases can all be done. */
9196 else if (const0 != const1)
9197 return 0;
9198
9199 else
9200 switch (op0)
9201 {
9202 case IOR:
9203 if (op1 == AND)
9204 /* (a & b) | b == b */
9205 op0 = SET;
9206 else /* op1 == XOR */
9207 /* (a ^ b) | b == a | b */
9208 {;}
9209 break;
9210
9211 case XOR:
9212 if (op1 == AND)
9213 /* (a & b) ^ b == (~a) & b */
9214 op0 = AND, *pcomp_p = 1;
9215 else /* op1 == IOR */
9216 /* (a | b) ^ b == a & ~b */
9217 op0 = AND, const0 = ~const0;
9218 break;
9219
9220 case AND:
9221 if (op1 == IOR)
9222 /* (a | b) & b == b */
9223 op0 = SET;
9224 else /* op1 == XOR */
9225 /* (a ^ b) & b) == (~a) & b */
9226 *pcomp_p = 1;
9227 break;
9228 default:
9229 break;
9230 }
9231
9232 /* Check for NO-OP cases. */
9233 const0 &= GET_MODE_MASK (mode);
9234 if (const0 == 0
9235 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9236 op0 = UNKNOWN;
9237 else if (const0 == 0 && op0 == AND)
9238 op0 = SET;
9239 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9240 && op0 == AND)
9241 op0 = UNKNOWN;
9242
9243 *pop0 = op0;
9244
9245 /* ??? Slightly redundant with the above mask, but not entirely.
9246 Moving this above means we'd have to sign-extend the mode mask
9247 for the final test. */
9248 if (op0 != UNKNOWN && op0 != NEG)
9249 *pconst0 = trunc_int_for_mode (const0, mode);
9250
9251 return 1;
9252 }
9253 \f
9254 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9255 the shift in. The original shift operation CODE is performed on OP in
9256 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9257 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9258 result of the shift is subject to operation OUTER_CODE with operand
9259 OUTER_CONST. */
9260
9261 static enum machine_mode
9262 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9263 enum machine_mode orig_mode, enum machine_mode mode,
9264 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9265 {
9266 if (orig_mode == mode)
9267 return mode;
9268 gcc_assert (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (orig_mode));
9269
9270 /* In general we can't perform in wider mode for right shift and rotate. */
9271 switch (code)
9272 {
9273 case ASHIFTRT:
9274 /* We can still widen if the bits brought in from the left are identical
9275 to the sign bit of ORIG_MODE. */
9276 if (num_sign_bit_copies (op, mode)
9277 > (unsigned) (GET_MODE_BITSIZE (mode)
9278 - GET_MODE_BITSIZE (orig_mode)))
9279 return mode;
9280 return orig_mode;
9281
9282 case LSHIFTRT:
9283 /* Similarly here but with zero bits. */
9284 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9285 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9286 return mode;
9287
9288 /* We can also widen if the bits brought in will be masked off. This
9289 operation is performed in ORIG_MODE. */
9290 if (outer_code == AND)
9291 {
9292 int care_bits = low_bitmask_len (orig_mode, outer_const);
9293
9294 if (care_bits >= 0
9295 && GET_MODE_BITSIZE (orig_mode) - care_bits >= count)
9296 return mode;
9297 }
9298 /* fall through */
9299
9300 case ROTATE:
9301 return orig_mode;
9302
9303 case ROTATERT:
9304 gcc_unreachable ();
9305
9306 default:
9307 return mode;
9308 }
9309 }
9310
9311 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9312 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
9313 simplify it. Otherwise, return a simplified value.
9314
9315 The shift is normally computed in the widest mode we find in VAROP, as
9316 long as it isn't a different number of words than RESULT_MODE. Exceptions
9317 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9318
9319 static rtx
9320 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9321 rtx varop, int orig_count)
9322 {
9323 enum rtx_code orig_code = code;
9324 rtx orig_varop = varop;
9325 int count;
9326 enum machine_mode mode = result_mode;
9327 enum machine_mode shift_mode, tmode;
9328 unsigned int mode_words
9329 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9330 /* We form (outer_op (code varop count) (outer_const)). */
9331 enum rtx_code outer_op = UNKNOWN;
9332 HOST_WIDE_INT outer_const = 0;
9333 int complement_p = 0;
9334 rtx new_rtx, x;
9335
9336 /* Make sure and truncate the "natural" shift on the way in. We don't
9337 want to do this inside the loop as it makes it more difficult to
9338 combine shifts. */
9339 if (SHIFT_COUNT_TRUNCATED)
9340 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9341
9342 /* If we were given an invalid count, don't do anything except exactly
9343 what was requested. */
9344
9345 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9346 return NULL_RTX;
9347
9348 count = orig_count;
9349
9350 /* Unless one of the branches of the `if' in this loop does a `continue',
9351 we will `break' the loop after the `if'. */
9352
9353 while (count != 0)
9354 {
9355 /* If we have an operand of (clobber (const_int 0)), fail. */
9356 if (GET_CODE (varop) == CLOBBER)
9357 return NULL_RTX;
9358
9359 /* Convert ROTATERT to ROTATE. */
9360 if (code == ROTATERT)
9361 {
9362 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9363 code = ROTATE;
9364 if (VECTOR_MODE_P (result_mode))
9365 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9366 else
9367 count = bitsize - count;
9368 }
9369
9370 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9371 mode, outer_op, outer_const);
9372
9373 /* Handle cases where the count is greater than the size of the mode
9374 minus 1. For ASHIFT, use the size minus one as the count (this can
9375 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9376 take the count modulo the size. For other shifts, the result is
9377 zero.
9378
9379 Since these shifts are being produced by the compiler by combining
9380 multiple operations, each of which are defined, we know what the
9381 result is supposed to be. */
9382
9383 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9384 {
9385 if (code == ASHIFTRT)
9386 count = GET_MODE_BITSIZE (shift_mode) - 1;
9387 else if (code == ROTATE || code == ROTATERT)
9388 count %= GET_MODE_BITSIZE (shift_mode);
9389 else
9390 {
9391 /* We can't simply return zero because there may be an
9392 outer op. */
9393 varop = const0_rtx;
9394 count = 0;
9395 break;
9396 }
9397 }
9398
9399 /* If we discovered we had to complement VAROP, leave. Making a NOT
9400 here would cause an infinite loop. */
9401 if (complement_p)
9402 break;
9403
9404 /* An arithmetic right shift of a quantity known to be -1 or 0
9405 is a no-op. */
9406 if (code == ASHIFTRT
9407 && (num_sign_bit_copies (varop, shift_mode)
9408 == GET_MODE_BITSIZE (shift_mode)))
9409 {
9410 count = 0;
9411 break;
9412 }
9413
9414 /* If we are doing an arithmetic right shift and discarding all but
9415 the sign bit copies, this is equivalent to doing a shift by the
9416 bitsize minus one. Convert it into that shift because it will often
9417 allow other simplifications. */
9418
9419 if (code == ASHIFTRT
9420 && (count + num_sign_bit_copies (varop, shift_mode)
9421 >= GET_MODE_BITSIZE (shift_mode)))
9422 count = GET_MODE_BITSIZE (shift_mode) - 1;
9423
9424 /* We simplify the tests below and elsewhere by converting
9425 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9426 `make_compound_operation' will convert it to an ASHIFTRT for
9427 those machines (such as VAX) that don't have an LSHIFTRT. */
9428 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9429 && code == ASHIFTRT
9430 && ((nonzero_bits (varop, shift_mode)
9431 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9432 == 0))
9433 code = LSHIFTRT;
9434
9435 if (((code == LSHIFTRT
9436 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9437 && !(nonzero_bits (varop, shift_mode) >> count))
9438 || (code == ASHIFT
9439 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9440 && !((nonzero_bits (varop, shift_mode) << count)
9441 & GET_MODE_MASK (shift_mode))))
9442 && !side_effects_p (varop))
9443 varop = const0_rtx;
9444
9445 switch (GET_CODE (varop))
9446 {
9447 case SIGN_EXTEND:
9448 case ZERO_EXTEND:
9449 case SIGN_EXTRACT:
9450 case ZERO_EXTRACT:
9451 new_rtx = expand_compound_operation (varop);
9452 if (new_rtx != varop)
9453 {
9454 varop = new_rtx;
9455 continue;
9456 }
9457 break;
9458
9459 case MEM:
9460 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9461 minus the width of a smaller mode, we can do this with a
9462 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9463 if ((code == ASHIFTRT || code == LSHIFTRT)
9464 && ! mode_dependent_address_p (XEXP (varop, 0))
9465 && ! MEM_VOLATILE_P (varop)
9466 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9467 MODE_INT, 1)) != BLKmode)
9468 {
9469 new_rtx = adjust_address_nv (varop, tmode,
9470 BYTES_BIG_ENDIAN ? 0
9471 : count / BITS_PER_UNIT);
9472
9473 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9474 : ZERO_EXTEND, mode, new_rtx);
9475 count = 0;
9476 continue;
9477 }
9478 break;
9479
9480 case SUBREG:
9481 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9482 the same number of words as what we've seen so far. Then store
9483 the widest mode in MODE. */
9484 if (subreg_lowpart_p (varop)
9485 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9486 > GET_MODE_SIZE (GET_MODE (varop)))
9487 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9488 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9489 == mode_words)
9490 {
9491 varop = SUBREG_REG (varop);
9492 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9493 mode = GET_MODE (varop);
9494 continue;
9495 }
9496 break;
9497
9498 case MULT:
9499 /* Some machines use MULT instead of ASHIFT because MULT
9500 is cheaper. But it is still better on those machines to
9501 merge two shifts into one. */
9502 if (CONST_INT_P (XEXP (varop, 1))
9503 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9504 {
9505 varop
9506 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9507 XEXP (varop, 0),
9508 GEN_INT (exact_log2 (
9509 INTVAL (XEXP (varop, 1)))));
9510 continue;
9511 }
9512 break;
9513
9514 case UDIV:
9515 /* Similar, for when divides are cheaper. */
9516 if (CONST_INT_P (XEXP (varop, 1))
9517 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9518 {
9519 varop
9520 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9521 XEXP (varop, 0),
9522 GEN_INT (exact_log2 (
9523 INTVAL (XEXP (varop, 1)))));
9524 continue;
9525 }
9526 break;
9527
9528 case ASHIFTRT:
9529 /* If we are extracting just the sign bit of an arithmetic
9530 right shift, that shift is not needed. However, the sign
9531 bit of a wider mode may be different from what would be
9532 interpreted as the sign bit in a narrower mode, so, if
9533 the result is narrower, don't discard the shift. */
9534 if (code == LSHIFTRT
9535 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9536 && (GET_MODE_BITSIZE (result_mode)
9537 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9538 {
9539 varop = XEXP (varop, 0);
9540 continue;
9541 }
9542
9543 /* ... fall through ... */
9544
9545 case LSHIFTRT:
9546 case ASHIFT:
9547 case ROTATE:
9548 /* Here we have two nested shifts. The result is usually the
9549 AND of a new shift with a mask. We compute the result below. */
9550 if (CONST_INT_P (XEXP (varop, 1))
9551 && INTVAL (XEXP (varop, 1)) >= 0
9552 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9553 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9554 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9555 && !VECTOR_MODE_P (result_mode))
9556 {
9557 enum rtx_code first_code = GET_CODE (varop);
9558 unsigned int first_count = INTVAL (XEXP (varop, 1));
9559 unsigned HOST_WIDE_INT mask;
9560 rtx mask_rtx;
9561
9562 /* We have one common special case. We can't do any merging if
9563 the inner code is an ASHIFTRT of a smaller mode. However, if
9564 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9565 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9566 we can convert it to
9567 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9568 This simplifies certain SIGN_EXTEND operations. */
9569 if (code == ASHIFT && first_code == ASHIFTRT
9570 && count == (GET_MODE_BITSIZE (result_mode)
9571 - GET_MODE_BITSIZE (GET_MODE (varop))))
9572 {
9573 /* C3 has the low-order C1 bits zero. */
9574
9575 mask = (GET_MODE_MASK (mode)
9576 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9577
9578 varop = simplify_and_const_int (NULL_RTX, result_mode,
9579 XEXP (varop, 0), mask);
9580 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9581 varop, count);
9582 count = first_count;
9583 code = ASHIFTRT;
9584 continue;
9585 }
9586
9587 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9588 than C1 high-order bits equal to the sign bit, we can convert
9589 this to either an ASHIFT or an ASHIFTRT depending on the
9590 two counts.
9591
9592 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9593
9594 if (code == ASHIFTRT && first_code == ASHIFT
9595 && GET_MODE (varop) == shift_mode
9596 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9597 > first_count))
9598 {
9599 varop = XEXP (varop, 0);
9600 count -= first_count;
9601 if (count < 0)
9602 {
9603 count = -count;
9604 code = ASHIFT;
9605 }
9606
9607 continue;
9608 }
9609
9610 /* There are some cases we can't do. If CODE is ASHIFTRT,
9611 we can only do this if FIRST_CODE is also ASHIFTRT.
9612
9613 We can't do the case when CODE is ROTATE and FIRST_CODE is
9614 ASHIFTRT.
9615
9616 If the mode of this shift is not the mode of the outer shift,
9617 we can't do this if either shift is a right shift or ROTATE.
9618
9619 Finally, we can't do any of these if the mode is too wide
9620 unless the codes are the same.
9621
9622 Handle the case where the shift codes are the same
9623 first. */
9624
9625 if (code == first_code)
9626 {
9627 if (GET_MODE (varop) != result_mode
9628 && (code == ASHIFTRT || code == LSHIFTRT
9629 || code == ROTATE))
9630 break;
9631
9632 count += first_count;
9633 varop = XEXP (varop, 0);
9634 continue;
9635 }
9636
9637 if (code == ASHIFTRT
9638 || (code == ROTATE && first_code == ASHIFTRT)
9639 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9640 || (GET_MODE (varop) != result_mode
9641 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9642 || first_code == ROTATE
9643 || code == ROTATE)))
9644 break;
9645
9646 /* To compute the mask to apply after the shift, shift the
9647 nonzero bits of the inner shift the same way the
9648 outer shift will. */
9649
9650 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9651
9652 mask_rtx
9653 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9654 GEN_INT (count));
9655
9656 /* Give up if we can't compute an outer operation to use. */
9657 if (mask_rtx == 0
9658 || !CONST_INT_P (mask_rtx)
9659 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9660 INTVAL (mask_rtx),
9661 result_mode, &complement_p))
9662 break;
9663
9664 /* If the shifts are in the same direction, we add the
9665 counts. Otherwise, we subtract them. */
9666 if ((code == ASHIFTRT || code == LSHIFTRT)
9667 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9668 count += first_count;
9669 else
9670 count -= first_count;
9671
9672 /* If COUNT is positive, the new shift is usually CODE,
9673 except for the two exceptions below, in which case it is
9674 FIRST_CODE. If the count is negative, FIRST_CODE should
9675 always be used */
9676 if (count > 0
9677 && ((first_code == ROTATE && code == ASHIFT)
9678 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9679 code = first_code;
9680 else if (count < 0)
9681 code = first_code, count = -count;
9682
9683 varop = XEXP (varop, 0);
9684 continue;
9685 }
9686
9687 /* If we have (A << B << C) for any shift, we can convert this to
9688 (A << C << B). This wins if A is a constant. Only try this if
9689 B is not a constant. */
9690
9691 else if (GET_CODE (varop) == code
9692 && CONST_INT_P (XEXP (varop, 0))
9693 && !CONST_INT_P (XEXP (varop, 1)))
9694 {
9695 rtx new_rtx = simplify_const_binary_operation (code, mode,
9696 XEXP (varop, 0),
9697 GEN_INT (count));
9698 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
9699 count = 0;
9700 continue;
9701 }
9702 break;
9703
9704 case NOT:
9705 if (VECTOR_MODE_P (mode))
9706 break;
9707
9708 /* Make this fit the case below. */
9709 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9710 GEN_INT (GET_MODE_MASK (mode)));
9711 continue;
9712
9713 case IOR:
9714 case AND:
9715 case XOR:
9716 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9717 with C the size of VAROP - 1 and the shift is logical if
9718 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9719 we have an (le X 0) operation. If we have an arithmetic shift
9720 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9721 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9722
9723 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9724 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9725 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9726 && (code == LSHIFTRT || code == ASHIFTRT)
9727 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9728 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9729 {
9730 count = 0;
9731 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9732 const0_rtx);
9733
9734 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9735 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9736
9737 continue;
9738 }
9739
9740 /* If we have (shift (logical)), move the logical to the outside
9741 to allow it to possibly combine with another logical and the
9742 shift to combine with another shift. This also canonicalizes to
9743 what a ZERO_EXTRACT looks like. Also, some machines have
9744 (and (shift)) insns. */
9745
9746 if (CONST_INT_P (XEXP (varop, 1))
9747 /* We can't do this if we have (ashiftrt (xor)) and the
9748 constant has its sign bit set in shift_mode. */
9749 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9750 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9751 shift_mode))
9752 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9753 XEXP (varop, 1),
9754 GEN_INT (count))) != 0
9755 && CONST_INT_P (new_rtx)
9756 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9757 INTVAL (new_rtx), result_mode, &complement_p))
9758 {
9759 varop = XEXP (varop, 0);
9760 continue;
9761 }
9762
9763 /* If we can't do that, try to simplify the shift in each arm of the
9764 logical expression, make a new logical expression, and apply
9765 the inverse distributive law. This also can't be done
9766 for some (ashiftrt (xor)). */
9767 if (CONST_INT_P (XEXP (varop, 1))
9768 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9769 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9770 shift_mode)))
9771 {
9772 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9773 XEXP (varop, 0), count);
9774 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9775 XEXP (varop, 1), count);
9776
9777 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9778 lhs, rhs);
9779 varop = apply_distributive_law (varop);
9780
9781 count = 0;
9782 continue;
9783 }
9784 break;
9785
9786 case EQ:
9787 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9788 says that the sign bit can be tested, FOO has mode MODE, C is
9789 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9790 that may be nonzero. */
9791 if (code == LSHIFTRT
9792 && XEXP (varop, 1) == const0_rtx
9793 && GET_MODE (XEXP (varop, 0)) == result_mode
9794 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9795 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9796 && STORE_FLAG_VALUE == -1
9797 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9798 && merge_outer_ops (&outer_op, &outer_const, XOR,
9799 (HOST_WIDE_INT) 1, result_mode,
9800 &complement_p))
9801 {
9802 varop = XEXP (varop, 0);
9803 count = 0;
9804 continue;
9805 }
9806 break;
9807
9808 case NEG:
9809 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9810 than the number of bits in the mode is equivalent to A. */
9811 if (code == LSHIFTRT
9812 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9813 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9814 {
9815 varop = XEXP (varop, 0);
9816 count = 0;
9817 continue;
9818 }
9819
9820 /* NEG commutes with ASHIFT since it is multiplication. Move the
9821 NEG outside to allow shifts to combine. */
9822 if (code == ASHIFT
9823 && merge_outer_ops (&outer_op, &outer_const, NEG,
9824 (HOST_WIDE_INT) 0, result_mode,
9825 &complement_p))
9826 {
9827 varop = XEXP (varop, 0);
9828 continue;
9829 }
9830 break;
9831
9832 case PLUS:
9833 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9834 is one less than the number of bits in the mode is
9835 equivalent to (xor A 1). */
9836 if (code == LSHIFTRT
9837 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9838 && XEXP (varop, 1) == constm1_rtx
9839 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9840 && merge_outer_ops (&outer_op, &outer_const, XOR,
9841 (HOST_WIDE_INT) 1, result_mode,
9842 &complement_p))
9843 {
9844 count = 0;
9845 varop = XEXP (varop, 0);
9846 continue;
9847 }
9848
9849 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9850 that might be nonzero in BAR are those being shifted out and those
9851 bits are known zero in FOO, we can replace the PLUS with FOO.
9852 Similarly in the other operand order. This code occurs when
9853 we are computing the size of a variable-size array. */
9854
9855 if ((code == ASHIFTRT || code == LSHIFTRT)
9856 && count < HOST_BITS_PER_WIDE_INT
9857 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9858 && (nonzero_bits (XEXP (varop, 1), result_mode)
9859 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9860 {
9861 varop = XEXP (varop, 0);
9862 continue;
9863 }
9864 else if ((code == ASHIFTRT || code == LSHIFTRT)
9865 && count < HOST_BITS_PER_WIDE_INT
9866 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9867 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9868 >> count)
9869 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9870 & nonzero_bits (XEXP (varop, 1),
9871 result_mode)))
9872 {
9873 varop = XEXP (varop, 1);
9874 continue;
9875 }
9876
9877 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9878 if (code == ASHIFT
9879 && CONST_INT_P (XEXP (varop, 1))
9880 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
9881 XEXP (varop, 1),
9882 GEN_INT (count))) != 0
9883 && CONST_INT_P (new_rtx)
9884 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9885 INTVAL (new_rtx), result_mode, &complement_p))
9886 {
9887 varop = XEXP (varop, 0);
9888 continue;
9889 }
9890
9891 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9892 signbit', and attempt to change the PLUS to an XOR and move it to
9893 the outer operation as is done above in the AND/IOR/XOR case
9894 leg for shift(logical). See details in logical handling above
9895 for reasoning in doing so. */
9896 if (code == LSHIFTRT
9897 && CONST_INT_P (XEXP (varop, 1))
9898 && mode_signbit_p (result_mode, XEXP (varop, 1))
9899 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9900 XEXP (varop, 1),
9901 GEN_INT (count))) != 0
9902 && CONST_INT_P (new_rtx)
9903 && merge_outer_ops (&outer_op, &outer_const, XOR,
9904 INTVAL (new_rtx), result_mode, &complement_p))
9905 {
9906 varop = XEXP (varop, 0);
9907 continue;
9908 }
9909
9910 break;
9911
9912 case MINUS:
9913 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9914 with C the size of VAROP - 1 and the shift is logical if
9915 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9916 we have a (gt X 0) operation. If the shift is arithmetic with
9917 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9918 we have a (neg (gt X 0)) operation. */
9919
9920 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9921 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9922 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9923 && (code == LSHIFTRT || code == ASHIFTRT)
9924 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9925 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9926 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9927 {
9928 count = 0;
9929 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9930 const0_rtx);
9931
9932 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9933 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9934
9935 continue;
9936 }
9937 break;
9938
9939 case TRUNCATE:
9940 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9941 if the truncate does not affect the value. */
9942 if (code == LSHIFTRT
9943 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9944 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
9945 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9946 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9947 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9948 {
9949 rtx varop_inner = XEXP (varop, 0);
9950
9951 varop_inner
9952 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9953 XEXP (varop_inner, 0),
9954 GEN_INT
9955 (count + INTVAL (XEXP (varop_inner, 1))));
9956 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9957 count = 0;
9958 continue;
9959 }
9960 break;
9961
9962 default:
9963 break;
9964 }
9965
9966 break;
9967 }
9968
9969 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
9970 outer_op, outer_const);
9971
9972 /* We have now finished analyzing the shift. The result should be
9973 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9974 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9975 to the result of the shift. OUTER_CONST is the relevant constant,
9976 but we must turn off all bits turned off in the shift. */
9977
9978 if (outer_op == UNKNOWN
9979 && orig_code == code && orig_count == count
9980 && varop == orig_varop
9981 && shift_mode == GET_MODE (varop))
9982 return NULL_RTX;
9983
9984 /* Make a SUBREG if necessary. If we can't make it, fail. */
9985 varop = gen_lowpart (shift_mode, varop);
9986 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9987 return NULL_RTX;
9988
9989 /* If we have an outer operation and we just made a shift, it is
9990 possible that we could have simplified the shift were it not
9991 for the outer operation. So try to do the simplification
9992 recursively. */
9993
9994 if (outer_op != UNKNOWN)
9995 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9996 else
9997 x = NULL_RTX;
9998
9999 if (x == NULL_RTX)
10000 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10001
10002 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10003 turn off all the bits that the shift would have turned off. */
10004 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10005 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10006 GET_MODE_MASK (result_mode) >> orig_count);
10007
10008 /* Do the remainder of the processing in RESULT_MODE. */
10009 x = gen_lowpart_or_truncate (result_mode, x);
10010
10011 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10012 operation. */
10013 if (complement_p)
10014 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10015
10016 if (outer_op != UNKNOWN)
10017 {
10018 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10019 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
10020 outer_const = trunc_int_for_mode (outer_const, result_mode);
10021
10022 if (outer_op == AND)
10023 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10024 else if (outer_op == SET)
10025 {
10026 /* This means that we have determined that the result is
10027 equivalent to a constant. This should be rare. */
10028 if (!side_effects_p (x))
10029 x = GEN_INT (outer_const);
10030 }
10031 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10032 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10033 else
10034 x = simplify_gen_binary (outer_op, result_mode, x,
10035 GEN_INT (outer_const));
10036 }
10037
10038 return x;
10039 }
10040
10041 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10042 The result of the shift is RESULT_MODE. If we cannot simplify it,
10043 return X or, if it is NULL, synthesize the expression with
10044 simplify_gen_binary. Otherwise, return a simplified value.
10045
10046 The shift is normally computed in the widest mode we find in VAROP, as
10047 long as it isn't a different number of words than RESULT_MODE. Exceptions
10048 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10049
10050 static rtx
10051 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10052 rtx varop, int count)
10053 {
10054 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10055 if (tem)
10056 return tem;
10057
10058 if (!x)
10059 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10060 if (GET_MODE (x) != result_mode)
10061 x = gen_lowpart (result_mode, x);
10062 return x;
10063 }
10064
10065 \f
10066 /* Like recog, but we receive the address of a pointer to a new pattern.
10067 We try to match the rtx that the pointer points to.
10068 If that fails, we may try to modify or replace the pattern,
10069 storing the replacement into the same pointer object.
10070
10071 Modifications include deletion or addition of CLOBBERs.
10072
10073 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10074 the CLOBBERs are placed.
10075
10076 The value is the final insn code from the pattern ultimately matched,
10077 or -1. */
10078
10079 static int
10080 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10081 {
10082 rtx pat = *pnewpat;
10083 int insn_code_number;
10084 int num_clobbers_to_add = 0;
10085 int i;
10086 rtx notes = 0;
10087 rtx old_notes, old_pat;
10088
10089 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10090 we use to indicate that something didn't match. If we find such a
10091 thing, force rejection. */
10092 if (GET_CODE (pat) == PARALLEL)
10093 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10094 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10095 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10096 return -1;
10097
10098 old_pat = PATTERN (insn);
10099 old_notes = REG_NOTES (insn);
10100 PATTERN (insn) = pat;
10101 REG_NOTES (insn) = 0;
10102
10103 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10104 if (dump_file && (dump_flags & TDF_DETAILS))
10105 {
10106 if (insn_code_number < 0)
10107 fputs ("Failed to match this instruction:\n", dump_file);
10108 else
10109 fputs ("Successfully matched this instruction:\n", dump_file);
10110 print_rtl_single (dump_file, pat);
10111 }
10112
10113 /* If it isn't, there is the possibility that we previously had an insn
10114 that clobbered some register as a side effect, but the combined
10115 insn doesn't need to do that. So try once more without the clobbers
10116 unless this represents an ASM insn. */
10117
10118 if (insn_code_number < 0 && ! check_asm_operands (pat)
10119 && GET_CODE (pat) == PARALLEL)
10120 {
10121 int pos;
10122
10123 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10124 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10125 {
10126 if (i != pos)
10127 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10128 pos++;
10129 }
10130
10131 SUBST_INT (XVECLEN (pat, 0), pos);
10132
10133 if (pos == 1)
10134 pat = XVECEXP (pat, 0, 0);
10135
10136 PATTERN (insn) = pat;
10137 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10138 if (dump_file && (dump_flags & TDF_DETAILS))
10139 {
10140 if (insn_code_number < 0)
10141 fputs ("Failed to match this instruction:\n", dump_file);
10142 else
10143 fputs ("Successfully matched this instruction:\n", dump_file);
10144 print_rtl_single (dump_file, pat);
10145 }
10146 }
10147 PATTERN (insn) = old_pat;
10148 REG_NOTES (insn) = old_notes;
10149
10150 /* Recognize all noop sets, these will be killed by followup pass. */
10151 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10152 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10153
10154 /* If we had any clobbers to add, make a new pattern than contains
10155 them. Then check to make sure that all of them are dead. */
10156 if (num_clobbers_to_add)
10157 {
10158 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10159 rtvec_alloc (GET_CODE (pat) == PARALLEL
10160 ? (XVECLEN (pat, 0)
10161 + num_clobbers_to_add)
10162 : num_clobbers_to_add + 1));
10163
10164 if (GET_CODE (pat) == PARALLEL)
10165 for (i = 0; i < XVECLEN (pat, 0); i++)
10166 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10167 else
10168 XVECEXP (newpat, 0, 0) = pat;
10169
10170 add_clobbers (newpat, insn_code_number);
10171
10172 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10173 i < XVECLEN (newpat, 0); i++)
10174 {
10175 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10176 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10177 return -1;
10178 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10179 {
10180 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10181 notes = alloc_reg_note (REG_UNUSED,
10182 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10183 }
10184 }
10185 pat = newpat;
10186 }
10187
10188 *pnewpat = pat;
10189 *pnotes = notes;
10190
10191 return insn_code_number;
10192 }
10193 \f
10194 /* Like gen_lowpart_general but for use by combine. In combine it
10195 is not possible to create any new pseudoregs. However, it is
10196 safe to create invalid memory addresses, because combine will
10197 try to recognize them and all they will do is make the combine
10198 attempt fail.
10199
10200 If for some reason this cannot do its job, an rtx
10201 (clobber (const_int 0)) is returned.
10202 An insn containing that will not be recognized. */
10203
10204 static rtx
10205 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10206 {
10207 enum machine_mode imode = GET_MODE (x);
10208 unsigned int osize = GET_MODE_SIZE (omode);
10209 unsigned int isize = GET_MODE_SIZE (imode);
10210 rtx result;
10211
10212 if (omode == imode)
10213 return x;
10214
10215 /* Return identity if this is a CONST or symbolic reference. */
10216 if (omode == Pmode
10217 && (GET_CODE (x) == CONST
10218 || GET_CODE (x) == SYMBOL_REF
10219 || GET_CODE (x) == LABEL_REF))
10220 return x;
10221
10222 /* We can only support MODE being wider than a word if X is a
10223 constant integer or has a mode the same size. */
10224 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10225 && ! ((imode == VOIDmode
10226 && (CONST_INT_P (x)
10227 || GET_CODE (x) == CONST_DOUBLE))
10228 || isize == osize))
10229 goto fail;
10230
10231 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10232 won't know what to do. So we will strip off the SUBREG here and
10233 process normally. */
10234 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10235 {
10236 x = SUBREG_REG (x);
10237
10238 /* For use in case we fall down into the address adjustments
10239 further below, we need to adjust the known mode and size of
10240 x; imode and isize, since we just adjusted x. */
10241 imode = GET_MODE (x);
10242
10243 if (imode == omode)
10244 return x;
10245
10246 isize = GET_MODE_SIZE (imode);
10247 }
10248
10249 result = gen_lowpart_common (omode, x);
10250
10251 if (result)
10252 return result;
10253
10254 if (MEM_P (x))
10255 {
10256 int offset = 0;
10257
10258 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10259 address. */
10260 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10261 goto fail;
10262
10263 /* If we want to refer to something bigger than the original memref,
10264 generate a paradoxical subreg instead. That will force a reload
10265 of the original memref X. */
10266 if (isize < osize)
10267 return gen_rtx_SUBREG (omode, x, 0);
10268
10269 if (WORDS_BIG_ENDIAN)
10270 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10271
10272 /* Adjust the address so that the address-after-the-data is
10273 unchanged. */
10274 if (BYTES_BIG_ENDIAN)
10275 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10276
10277 return adjust_address_nv (x, omode, offset);
10278 }
10279
10280 /* If X is a comparison operator, rewrite it in a new mode. This
10281 probably won't match, but may allow further simplifications. */
10282 else if (COMPARISON_P (x))
10283 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10284
10285 /* If we couldn't simplify X any other way, just enclose it in a
10286 SUBREG. Normally, this SUBREG won't match, but some patterns may
10287 include an explicit SUBREG or we may simplify it further in combine. */
10288 else
10289 {
10290 int offset = 0;
10291 rtx res;
10292
10293 offset = subreg_lowpart_offset (omode, imode);
10294 if (imode == VOIDmode)
10295 {
10296 imode = int_mode_for_mode (omode);
10297 x = gen_lowpart_common (imode, x);
10298 if (x == NULL)
10299 goto fail;
10300 }
10301 res = simplify_gen_subreg (omode, x, imode, offset);
10302 if (res)
10303 return res;
10304 }
10305
10306 fail:
10307 return gen_rtx_CLOBBER (omode, const0_rtx);
10308 }
10309 \f
10310 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10311 comparison code that will be tested.
10312
10313 The result is a possibly different comparison code to use. *POP0 and
10314 *POP1 may be updated.
10315
10316 It is possible that we might detect that a comparison is either always
10317 true or always false. However, we do not perform general constant
10318 folding in combine, so this knowledge isn't useful. Such tautologies
10319 should have been detected earlier. Hence we ignore all such cases. */
10320
10321 static enum rtx_code
10322 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10323 {
10324 rtx op0 = *pop0;
10325 rtx op1 = *pop1;
10326 rtx tem, tem1;
10327 int i;
10328 enum machine_mode mode, tmode;
10329
10330 /* Try a few ways of applying the same transformation to both operands. */
10331 while (1)
10332 {
10333 #ifndef WORD_REGISTER_OPERATIONS
10334 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10335 so check specially. */
10336 if (code != GTU && code != GEU && code != LTU && code != LEU
10337 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10338 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10339 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10340 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10341 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10342 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10343 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10344 && CONST_INT_P (XEXP (op0, 1))
10345 && XEXP (op0, 1) == XEXP (op1, 1)
10346 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10347 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10348 && (INTVAL (XEXP (op0, 1))
10349 == (GET_MODE_BITSIZE (GET_MODE (op0))
10350 - (GET_MODE_BITSIZE
10351 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10352 {
10353 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10354 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10355 }
10356 #endif
10357
10358 /* If both operands are the same constant shift, see if we can ignore the
10359 shift. We can if the shift is a rotate or if the bits shifted out of
10360 this shift are known to be zero for both inputs and if the type of
10361 comparison is compatible with the shift. */
10362 if (GET_CODE (op0) == GET_CODE (op1)
10363 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10364 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10365 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10366 && (code != GT && code != LT && code != GE && code != LE))
10367 || (GET_CODE (op0) == ASHIFTRT
10368 && (code != GTU && code != LTU
10369 && code != GEU && code != LEU)))
10370 && CONST_INT_P (XEXP (op0, 1))
10371 && INTVAL (XEXP (op0, 1)) >= 0
10372 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10373 && XEXP (op0, 1) == XEXP (op1, 1))
10374 {
10375 enum machine_mode mode = GET_MODE (op0);
10376 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10377 int shift_count = INTVAL (XEXP (op0, 1));
10378
10379 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10380 mask &= (mask >> shift_count) << shift_count;
10381 else if (GET_CODE (op0) == ASHIFT)
10382 mask = (mask & (mask << shift_count)) >> shift_count;
10383
10384 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10385 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10386 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10387 else
10388 break;
10389 }
10390
10391 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10392 SUBREGs are of the same mode, and, in both cases, the AND would
10393 be redundant if the comparison was done in the narrower mode,
10394 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10395 and the operand's possibly nonzero bits are 0xffffff01; in that case
10396 if we only care about QImode, we don't need the AND). This case
10397 occurs if the output mode of an scc insn is not SImode and
10398 STORE_FLAG_VALUE == 1 (e.g., the 386).
10399
10400 Similarly, check for a case where the AND's are ZERO_EXTEND
10401 operations from some narrower mode even though a SUBREG is not
10402 present. */
10403
10404 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10405 && CONST_INT_P (XEXP (op0, 1))
10406 && CONST_INT_P (XEXP (op1, 1)))
10407 {
10408 rtx inner_op0 = XEXP (op0, 0);
10409 rtx inner_op1 = XEXP (op1, 0);
10410 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10411 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10412 int changed = 0;
10413
10414 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10415 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10416 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10417 && (GET_MODE (SUBREG_REG (inner_op0))
10418 == GET_MODE (SUBREG_REG (inner_op1)))
10419 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10420 <= HOST_BITS_PER_WIDE_INT)
10421 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10422 GET_MODE (SUBREG_REG (inner_op0)))))
10423 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10424 GET_MODE (SUBREG_REG (inner_op1))))))
10425 {
10426 op0 = SUBREG_REG (inner_op0);
10427 op1 = SUBREG_REG (inner_op1);
10428
10429 /* The resulting comparison is always unsigned since we masked
10430 off the original sign bit. */
10431 code = unsigned_condition (code);
10432
10433 changed = 1;
10434 }
10435
10436 else if (c0 == c1)
10437 for (tmode = GET_CLASS_NARROWEST_MODE
10438 (GET_MODE_CLASS (GET_MODE (op0)));
10439 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10440 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10441 {
10442 op0 = gen_lowpart (tmode, inner_op0);
10443 op1 = gen_lowpart (tmode, inner_op1);
10444 code = unsigned_condition (code);
10445 changed = 1;
10446 break;
10447 }
10448
10449 if (! changed)
10450 break;
10451 }
10452
10453 /* If both operands are NOT, we can strip off the outer operation
10454 and adjust the comparison code for swapped operands; similarly for
10455 NEG, except that this must be an equality comparison. */
10456 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10457 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10458 && (code == EQ || code == NE)))
10459 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10460
10461 else
10462 break;
10463 }
10464
10465 /* If the first operand is a constant, swap the operands and adjust the
10466 comparison code appropriately, but don't do this if the second operand
10467 is already a constant integer. */
10468 if (swap_commutative_operands_p (op0, op1))
10469 {
10470 tem = op0, op0 = op1, op1 = tem;
10471 code = swap_condition (code);
10472 }
10473
10474 /* We now enter a loop during which we will try to simplify the comparison.
10475 For the most part, we only are concerned with comparisons with zero,
10476 but some things may really be comparisons with zero but not start
10477 out looking that way. */
10478
10479 while (CONST_INT_P (op1))
10480 {
10481 enum machine_mode mode = GET_MODE (op0);
10482 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10483 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10484 int equality_comparison_p;
10485 int sign_bit_comparison_p;
10486 int unsigned_comparison_p;
10487 HOST_WIDE_INT const_op;
10488
10489 /* We only want to handle integral modes. This catches VOIDmode,
10490 CCmode, and the floating-point modes. An exception is that we
10491 can handle VOIDmode if OP0 is a COMPARE or a comparison
10492 operation. */
10493
10494 if (GET_MODE_CLASS (mode) != MODE_INT
10495 && ! (mode == VOIDmode
10496 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10497 break;
10498
10499 /* Get the constant we are comparing against and turn off all bits
10500 not on in our mode. */
10501 const_op = INTVAL (op1);
10502 if (mode != VOIDmode)
10503 const_op = trunc_int_for_mode (const_op, mode);
10504 op1 = GEN_INT (const_op);
10505
10506 /* If we are comparing against a constant power of two and the value
10507 being compared can only have that single bit nonzero (e.g., it was
10508 `and'ed with that bit), we can replace this with a comparison
10509 with zero. */
10510 if (const_op
10511 && (code == EQ || code == NE || code == GE || code == GEU
10512 || code == LT || code == LTU)
10513 && mode_width <= HOST_BITS_PER_WIDE_INT
10514 && exact_log2 (const_op) >= 0
10515 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10516 {
10517 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10518 op1 = const0_rtx, const_op = 0;
10519 }
10520
10521 /* Similarly, if we are comparing a value known to be either -1 or
10522 0 with -1, change it to the opposite comparison against zero. */
10523
10524 if (const_op == -1
10525 && (code == EQ || code == NE || code == GT || code == LE
10526 || code == GEU || code == LTU)
10527 && num_sign_bit_copies (op0, mode) == mode_width)
10528 {
10529 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10530 op1 = const0_rtx, const_op = 0;
10531 }
10532
10533 /* Do some canonicalizations based on the comparison code. We prefer
10534 comparisons against zero and then prefer equality comparisons.
10535 If we can reduce the size of a constant, we will do that too. */
10536
10537 switch (code)
10538 {
10539 case LT:
10540 /* < C is equivalent to <= (C - 1) */
10541 if (const_op > 0)
10542 {
10543 const_op -= 1;
10544 op1 = GEN_INT (const_op);
10545 code = LE;
10546 /* ... fall through to LE case below. */
10547 }
10548 else
10549 break;
10550
10551 case LE:
10552 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10553 if (const_op < 0)
10554 {
10555 const_op += 1;
10556 op1 = GEN_INT (const_op);
10557 code = LT;
10558 }
10559
10560 /* If we are doing a <= 0 comparison on a value known to have
10561 a zero sign bit, we can replace this with == 0. */
10562 else if (const_op == 0
10563 && mode_width <= HOST_BITS_PER_WIDE_INT
10564 && (nonzero_bits (op0, mode)
10565 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10566 code = EQ;
10567 break;
10568
10569 case GE:
10570 /* >= C is equivalent to > (C - 1). */
10571 if (const_op > 0)
10572 {
10573 const_op -= 1;
10574 op1 = GEN_INT (const_op);
10575 code = GT;
10576 /* ... fall through to GT below. */
10577 }
10578 else
10579 break;
10580
10581 case GT:
10582 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10583 if (const_op < 0)
10584 {
10585 const_op += 1;
10586 op1 = GEN_INT (const_op);
10587 code = GE;
10588 }
10589
10590 /* If we are doing a > 0 comparison on a value known to have
10591 a zero sign bit, we can replace this with != 0. */
10592 else if (const_op == 0
10593 && mode_width <= HOST_BITS_PER_WIDE_INT
10594 && (nonzero_bits (op0, mode)
10595 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10596 code = NE;
10597 break;
10598
10599 case LTU:
10600 /* < C is equivalent to <= (C - 1). */
10601 if (const_op > 0)
10602 {
10603 const_op -= 1;
10604 op1 = GEN_INT (const_op);
10605 code = LEU;
10606 /* ... fall through ... */
10607 }
10608
10609 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10610 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10611 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10612 {
10613 const_op = 0, op1 = const0_rtx;
10614 code = GE;
10615 break;
10616 }
10617 else
10618 break;
10619
10620 case LEU:
10621 /* unsigned <= 0 is equivalent to == 0 */
10622 if (const_op == 0)
10623 code = EQ;
10624
10625 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10626 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10627 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10628 {
10629 const_op = 0, op1 = const0_rtx;
10630 code = GE;
10631 }
10632 break;
10633
10634 case GEU:
10635 /* >= C is equivalent to > (C - 1). */
10636 if (const_op > 1)
10637 {
10638 const_op -= 1;
10639 op1 = GEN_INT (const_op);
10640 code = GTU;
10641 /* ... fall through ... */
10642 }
10643
10644 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10645 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10646 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10647 {
10648 const_op = 0, op1 = const0_rtx;
10649 code = LT;
10650 break;
10651 }
10652 else
10653 break;
10654
10655 case GTU:
10656 /* unsigned > 0 is equivalent to != 0 */
10657 if (const_op == 0)
10658 code = NE;
10659
10660 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10661 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10662 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10663 {
10664 const_op = 0, op1 = const0_rtx;
10665 code = LT;
10666 }
10667 break;
10668
10669 default:
10670 break;
10671 }
10672
10673 /* Compute some predicates to simplify code below. */
10674
10675 equality_comparison_p = (code == EQ || code == NE);
10676 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10677 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10678 || code == GEU);
10679
10680 /* If this is a sign bit comparison and we can do arithmetic in
10681 MODE, say that we will only be needing the sign bit of OP0. */
10682 if (sign_bit_comparison_p
10683 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10684 op0 = force_to_mode (op0, mode,
10685 ((HOST_WIDE_INT) 1
10686 << (GET_MODE_BITSIZE (mode) - 1)),
10687 0);
10688
10689 /* Now try cases based on the opcode of OP0. If none of the cases
10690 does a "continue", we exit this loop immediately after the
10691 switch. */
10692
10693 switch (GET_CODE (op0))
10694 {
10695 case ZERO_EXTRACT:
10696 /* If we are extracting a single bit from a variable position in
10697 a constant that has only a single bit set and are comparing it
10698 with zero, we can convert this into an equality comparison
10699 between the position and the location of the single bit. */
10700 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10701 have already reduced the shift count modulo the word size. */
10702 if (!SHIFT_COUNT_TRUNCATED
10703 && CONST_INT_P (XEXP (op0, 0))
10704 && XEXP (op0, 1) == const1_rtx
10705 && equality_comparison_p && const_op == 0
10706 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10707 {
10708 if (BITS_BIG_ENDIAN)
10709 {
10710 enum machine_mode new_mode
10711 = mode_for_extraction (EP_extzv, 1);
10712 if (new_mode == MAX_MACHINE_MODE)
10713 i = BITS_PER_WORD - 1 - i;
10714 else
10715 {
10716 mode = new_mode;
10717 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10718 }
10719 }
10720
10721 op0 = XEXP (op0, 2);
10722 op1 = GEN_INT (i);
10723 const_op = i;
10724
10725 /* Result is nonzero iff shift count is equal to I. */
10726 code = reverse_condition (code);
10727 continue;
10728 }
10729
10730 /* ... fall through ... */
10731
10732 case SIGN_EXTRACT:
10733 tem = expand_compound_operation (op0);
10734 if (tem != op0)
10735 {
10736 op0 = tem;
10737 continue;
10738 }
10739 break;
10740
10741 case NOT:
10742 /* If testing for equality, we can take the NOT of the constant. */
10743 if (equality_comparison_p
10744 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10745 {
10746 op0 = XEXP (op0, 0);
10747 op1 = tem;
10748 continue;
10749 }
10750
10751 /* If just looking at the sign bit, reverse the sense of the
10752 comparison. */
10753 if (sign_bit_comparison_p)
10754 {
10755 op0 = XEXP (op0, 0);
10756 code = (code == GE ? LT : GE);
10757 continue;
10758 }
10759 break;
10760
10761 case NEG:
10762 /* If testing for equality, we can take the NEG of the constant. */
10763 if (equality_comparison_p
10764 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10765 {
10766 op0 = XEXP (op0, 0);
10767 op1 = tem;
10768 continue;
10769 }
10770
10771 /* The remaining cases only apply to comparisons with zero. */
10772 if (const_op != 0)
10773 break;
10774
10775 /* When X is ABS or is known positive,
10776 (neg X) is < 0 if and only if X != 0. */
10777
10778 if (sign_bit_comparison_p
10779 && (GET_CODE (XEXP (op0, 0)) == ABS
10780 || (mode_width <= HOST_BITS_PER_WIDE_INT
10781 && (nonzero_bits (XEXP (op0, 0), mode)
10782 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10783 {
10784 op0 = XEXP (op0, 0);
10785 code = (code == LT ? NE : EQ);
10786 continue;
10787 }
10788
10789 /* If we have NEG of something whose two high-order bits are the
10790 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10791 if (num_sign_bit_copies (op0, mode) >= 2)
10792 {
10793 op0 = XEXP (op0, 0);
10794 code = swap_condition (code);
10795 continue;
10796 }
10797 break;
10798
10799 case ROTATE:
10800 /* If we are testing equality and our count is a constant, we
10801 can perform the inverse operation on our RHS. */
10802 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
10803 && (tem = simplify_binary_operation (ROTATERT, mode,
10804 op1, XEXP (op0, 1))) != 0)
10805 {
10806 op0 = XEXP (op0, 0);
10807 op1 = tem;
10808 continue;
10809 }
10810
10811 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10812 a particular bit. Convert it to an AND of a constant of that
10813 bit. This will be converted into a ZERO_EXTRACT. */
10814 if (const_op == 0 && sign_bit_comparison_p
10815 && CONST_INT_P (XEXP (op0, 1))
10816 && mode_width <= HOST_BITS_PER_WIDE_INT)
10817 {
10818 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10819 ((HOST_WIDE_INT) 1
10820 << (mode_width - 1
10821 - INTVAL (XEXP (op0, 1)))));
10822 code = (code == LT ? NE : EQ);
10823 continue;
10824 }
10825
10826 /* Fall through. */
10827
10828 case ABS:
10829 /* ABS is ignorable inside an equality comparison with zero. */
10830 if (const_op == 0 && equality_comparison_p)
10831 {
10832 op0 = XEXP (op0, 0);
10833 continue;
10834 }
10835 break;
10836
10837 case SIGN_EXTEND:
10838 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10839 (compare FOO CONST) if CONST fits in FOO's mode and we
10840 are either testing inequality or have an unsigned
10841 comparison with ZERO_EXTEND or a signed comparison with
10842 SIGN_EXTEND. But don't do it if we don't have a compare
10843 insn of the given mode, since we'd have to revert it
10844 later on, and then we wouldn't know whether to sign- or
10845 zero-extend. */
10846 mode = GET_MODE (XEXP (op0, 0));
10847 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10848 && ! unsigned_comparison_p
10849 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10850 && ((unsigned HOST_WIDE_INT) const_op
10851 < (((unsigned HOST_WIDE_INT) 1
10852 << (GET_MODE_BITSIZE (mode) - 1))))
10853 && have_insn_for (COMPARE, mode))
10854 {
10855 op0 = XEXP (op0, 0);
10856 continue;
10857 }
10858 break;
10859
10860 case SUBREG:
10861 /* Check for the case where we are comparing A - C1 with C2, that is
10862
10863 (subreg:MODE (plus (A) (-C1))) op (C2)
10864
10865 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10866 comparison in the wider mode. One of the following two conditions
10867 must be true in order for this to be valid:
10868
10869 1. The mode extension results in the same bit pattern being added
10870 on both sides and the comparison is equality or unsigned. As
10871 C2 has been truncated to fit in MODE, the pattern can only be
10872 all 0s or all 1s.
10873
10874 2. The mode extension results in the sign bit being copied on
10875 each side.
10876
10877 The difficulty here is that we have predicates for A but not for
10878 (A - C1) so we need to check that C1 is within proper bounds so
10879 as to perturbate A as little as possible. */
10880
10881 if (mode_width <= HOST_BITS_PER_WIDE_INT
10882 && subreg_lowpart_p (op0)
10883 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10884 && GET_CODE (SUBREG_REG (op0)) == PLUS
10885 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
10886 {
10887 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10888 rtx a = XEXP (SUBREG_REG (op0), 0);
10889 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10890
10891 if ((c1 > 0
10892 && (unsigned HOST_WIDE_INT) c1
10893 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10894 && (equality_comparison_p || unsigned_comparison_p)
10895 /* (A - C1) zero-extends if it is positive and sign-extends
10896 if it is negative, C2 both zero- and sign-extends. */
10897 && ((0 == (nonzero_bits (a, inner_mode)
10898 & ~GET_MODE_MASK (mode))
10899 && const_op >= 0)
10900 /* (A - C1) sign-extends if it is positive and 1-extends
10901 if it is negative, C2 both sign- and 1-extends. */
10902 || (num_sign_bit_copies (a, inner_mode)
10903 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10904 - mode_width)
10905 && const_op < 0)))
10906 || ((unsigned HOST_WIDE_INT) c1
10907 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10908 /* (A - C1) always sign-extends, like C2. */
10909 && num_sign_bit_copies (a, inner_mode)
10910 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10911 - (mode_width - 1))))
10912 {
10913 op0 = SUBREG_REG (op0);
10914 continue;
10915 }
10916 }
10917
10918 /* If the inner mode is narrower and we are extracting the low part,
10919 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10920 if (subreg_lowpart_p (op0)
10921 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10922 /* Fall through */ ;
10923 else
10924 break;
10925
10926 /* ... fall through ... */
10927
10928 case ZERO_EXTEND:
10929 mode = GET_MODE (XEXP (op0, 0));
10930 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10931 && (unsigned_comparison_p || equality_comparison_p)
10932 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10933 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10934 && have_insn_for (COMPARE, mode))
10935 {
10936 op0 = XEXP (op0, 0);
10937 continue;
10938 }
10939 break;
10940
10941 case PLUS:
10942 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10943 this for equality comparisons due to pathological cases involving
10944 overflows. */
10945 if (equality_comparison_p
10946 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10947 op1, XEXP (op0, 1))))
10948 {
10949 op0 = XEXP (op0, 0);
10950 op1 = tem;
10951 continue;
10952 }
10953
10954 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10955 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10956 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10957 {
10958 op0 = XEXP (XEXP (op0, 0), 0);
10959 code = (code == LT ? EQ : NE);
10960 continue;
10961 }
10962 break;
10963
10964 case MINUS:
10965 /* We used to optimize signed comparisons against zero, but that
10966 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10967 arrive here as equality comparisons, or (GEU, LTU) are
10968 optimized away. No need to special-case them. */
10969
10970 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10971 (eq B (minus A C)), whichever simplifies. We can only do
10972 this for equality comparisons due to pathological cases involving
10973 overflows. */
10974 if (equality_comparison_p
10975 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10976 XEXP (op0, 1), op1)))
10977 {
10978 op0 = XEXP (op0, 0);
10979 op1 = tem;
10980 continue;
10981 }
10982
10983 if (equality_comparison_p
10984 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10985 XEXP (op0, 0), op1)))
10986 {
10987 op0 = XEXP (op0, 1);
10988 op1 = tem;
10989 continue;
10990 }
10991
10992 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10993 of bits in X minus 1, is one iff X > 0. */
10994 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10995 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
10996 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10997 == mode_width - 1
10998 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10999 {
11000 op0 = XEXP (op0, 1);
11001 code = (code == GE ? LE : GT);
11002 continue;
11003 }
11004 break;
11005
11006 case XOR:
11007 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11008 if C is zero or B is a constant. */
11009 if (equality_comparison_p
11010 && 0 != (tem = simplify_binary_operation (XOR, mode,
11011 XEXP (op0, 1), op1)))
11012 {
11013 op0 = XEXP (op0, 0);
11014 op1 = tem;
11015 continue;
11016 }
11017 break;
11018
11019 case EQ: case NE:
11020 case UNEQ: case LTGT:
11021 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11022 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11023 case UNORDERED: case ORDERED:
11024 /* We can't do anything if OP0 is a condition code value, rather
11025 than an actual data value. */
11026 if (const_op != 0
11027 || CC0_P (XEXP (op0, 0))
11028 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11029 break;
11030
11031 /* Get the two operands being compared. */
11032 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11033 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11034 else
11035 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11036
11037 /* Check for the cases where we simply want the result of the
11038 earlier test or the opposite of that result. */
11039 if (code == NE || code == EQ
11040 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
11041 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11042 && (STORE_FLAG_VALUE
11043 & (((HOST_WIDE_INT) 1
11044 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
11045 && (code == LT || code == GE)))
11046 {
11047 enum rtx_code new_code;
11048 if (code == LT || code == NE)
11049 new_code = GET_CODE (op0);
11050 else
11051 new_code = reversed_comparison_code (op0, NULL);
11052
11053 if (new_code != UNKNOWN)
11054 {
11055 code = new_code;
11056 op0 = tem;
11057 op1 = tem1;
11058 continue;
11059 }
11060 }
11061 break;
11062
11063 case IOR:
11064 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11065 iff X <= 0. */
11066 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11067 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11068 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11069 {
11070 op0 = XEXP (op0, 1);
11071 code = (code == GE ? GT : LE);
11072 continue;
11073 }
11074 break;
11075
11076 case AND:
11077 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11078 will be converted to a ZERO_EXTRACT later. */
11079 if (const_op == 0 && equality_comparison_p
11080 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11081 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11082 {
11083 op0 = simplify_and_const_int
11084 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
11085 XEXP (op0, 1),
11086 XEXP (XEXP (op0, 0), 1)),
11087 (HOST_WIDE_INT) 1);
11088 continue;
11089 }
11090
11091 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11092 zero and X is a comparison and C1 and C2 describe only bits set
11093 in STORE_FLAG_VALUE, we can compare with X. */
11094 if (const_op == 0 && equality_comparison_p
11095 && mode_width <= HOST_BITS_PER_WIDE_INT
11096 && CONST_INT_P (XEXP (op0, 1))
11097 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11098 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11099 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11100 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11101 {
11102 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11103 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11104 if ((~STORE_FLAG_VALUE & mask) == 0
11105 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11106 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11107 && COMPARISON_P (tem))))
11108 {
11109 op0 = XEXP (XEXP (op0, 0), 0);
11110 continue;
11111 }
11112 }
11113
11114 /* If we are doing an equality comparison of an AND of a bit equal
11115 to the sign bit, replace this with a LT or GE comparison of
11116 the underlying value. */
11117 if (equality_comparison_p
11118 && const_op == 0
11119 && CONST_INT_P (XEXP (op0, 1))
11120 && mode_width <= HOST_BITS_PER_WIDE_INT
11121 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11122 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11123 {
11124 op0 = XEXP (op0, 0);
11125 code = (code == EQ ? GE : LT);
11126 continue;
11127 }
11128
11129 /* If this AND operation is really a ZERO_EXTEND from a narrower
11130 mode, the constant fits within that mode, and this is either an
11131 equality or unsigned comparison, try to do this comparison in
11132 the narrower mode.
11133
11134 Note that in:
11135
11136 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11137 -> (ne:DI (reg:SI 4) (const_int 0))
11138
11139 unless TRULY_NOOP_TRUNCATION allows it or the register is
11140 known to hold a value of the required mode the
11141 transformation is invalid. */
11142 if ((equality_comparison_p || unsigned_comparison_p)
11143 && CONST_INT_P (XEXP (op0, 1))
11144 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
11145 & GET_MODE_MASK (mode))
11146 + 1)) >= 0
11147 && const_op >> i == 0
11148 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11149 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
11150 GET_MODE_BITSIZE (GET_MODE (op0)))
11151 || (REG_P (XEXP (op0, 0))
11152 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11153 {
11154 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11155 continue;
11156 }
11157
11158 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11159 fits in both M1 and M2 and the SUBREG is either paradoxical
11160 or represents the low part, permute the SUBREG and the AND
11161 and try again. */
11162 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11163 {
11164 unsigned HOST_WIDE_INT c1;
11165 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11166 /* Require an integral mode, to avoid creating something like
11167 (AND:SF ...). */
11168 if (SCALAR_INT_MODE_P (tmode)
11169 /* It is unsafe to commute the AND into the SUBREG if the
11170 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11171 not defined. As originally written the upper bits
11172 have a defined value due to the AND operation.
11173 However, if we commute the AND inside the SUBREG then
11174 they no longer have defined values and the meaning of
11175 the code has been changed. */
11176 && (0
11177 #ifdef WORD_REGISTER_OPERATIONS
11178 || (mode_width > GET_MODE_BITSIZE (tmode)
11179 && mode_width <= BITS_PER_WORD)
11180 #endif
11181 || (mode_width <= GET_MODE_BITSIZE (tmode)
11182 && subreg_lowpart_p (XEXP (op0, 0))))
11183 && CONST_INT_P (XEXP (op0, 1))
11184 && mode_width <= HOST_BITS_PER_WIDE_INT
11185 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
11186 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11187 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11188 && c1 != mask
11189 && c1 != GET_MODE_MASK (tmode))
11190 {
11191 op0 = simplify_gen_binary (AND, tmode,
11192 SUBREG_REG (XEXP (op0, 0)),
11193 gen_int_mode (c1, tmode));
11194 op0 = gen_lowpart (mode, op0);
11195 continue;
11196 }
11197 }
11198
11199 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11200 if (const_op == 0 && equality_comparison_p
11201 && XEXP (op0, 1) == const1_rtx
11202 && GET_CODE (XEXP (op0, 0)) == NOT)
11203 {
11204 op0 = simplify_and_const_int
11205 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
11206 code = (code == NE ? EQ : NE);
11207 continue;
11208 }
11209
11210 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11211 (eq (and (lshiftrt X) 1) 0).
11212 Also handle the case where (not X) is expressed using xor. */
11213 if (const_op == 0 && equality_comparison_p
11214 && XEXP (op0, 1) == const1_rtx
11215 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11216 {
11217 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11218 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11219
11220 if (GET_CODE (shift_op) == NOT
11221 || (GET_CODE (shift_op) == XOR
11222 && CONST_INT_P (XEXP (shift_op, 1))
11223 && CONST_INT_P (shift_count)
11224 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
11225 && (INTVAL (XEXP (shift_op, 1))
11226 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
11227 {
11228 op0 = simplify_and_const_int
11229 (NULL_RTX, mode,
11230 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
11231 (HOST_WIDE_INT) 1);
11232 code = (code == NE ? EQ : NE);
11233 continue;
11234 }
11235 }
11236 break;
11237
11238 case ASHIFT:
11239 /* If we have (compare (ashift FOO N) (const_int C)) and
11240 the high order N bits of FOO (N+1 if an inequality comparison)
11241 are known to be zero, we can do this by comparing FOO with C
11242 shifted right N bits so long as the low-order N bits of C are
11243 zero. */
11244 if (CONST_INT_P (XEXP (op0, 1))
11245 && INTVAL (XEXP (op0, 1)) >= 0
11246 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11247 < HOST_BITS_PER_WIDE_INT)
11248 && ((const_op
11249 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11250 && mode_width <= HOST_BITS_PER_WIDE_INT
11251 && (nonzero_bits (XEXP (op0, 0), mode)
11252 & ~(mask >> (INTVAL (XEXP (op0, 1))
11253 + ! equality_comparison_p))) == 0)
11254 {
11255 /* We must perform a logical shift, not an arithmetic one,
11256 as we want the top N bits of C to be zero. */
11257 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11258
11259 temp >>= INTVAL (XEXP (op0, 1));
11260 op1 = gen_int_mode (temp, mode);
11261 op0 = XEXP (op0, 0);
11262 continue;
11263 }
11264
11265 /* If we are doing a sign bit comparison, it means we are testing
11266 a particular bit. Convert it to the appropriate AND. */
11267 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11268 && mode_width <= HOST_BITS_PER_WIDE_INT)
11269 {
11270 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11271 ((HOST_WIDE_INT) 1
11272 << (mode_width - 1
11273 - INTVAL (XEXP (op0, 1)))));
11274 code = (code == LT ? NE : EQ);
11275 continue;
11276 }
11277
11278 /* If this an equality comparison with zero and we are shifting
11279 the low bit to the sign bit, we can convert this to an AND of the
11280 low-order bit. */
11281 if (const_op == 0 && equality_comparison_p
11282 && CONST_INT_P (XEXP (op0, 1))
11283 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11284 == mode_width - 1)
11285 {
11286 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11287 (HOST_WIDE_INT) 1);
11288 continue;
11289 }
11290 break;
11291
11292 case ASHIFTRT:
11293 /* If this is an equality comparison with zero, we can do this
11294 as a logical shift, which might be much simpler. */
11295 if (equality_comparison_p && const_op == 0
11296 && CONST_INT_P (XEXP (op0, 1)))
11297 {
11298 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11299 XEXP (op0, 0),
11300 INTVAL (XEXP (op0, 1)));
11301 continue;
11302 }
11303
11304 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11305 do the comparison in a narrower mode. */
11306 if (! unsigned_comparison_p
11307 && CONST_INT_P (XEXP (op0, 1))
11308 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11309 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11310 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11311 MODE_INT, 1)) != BLKmode
11312 && (((unsigned HOST_WIDE_INT) const_op
11313 + (GET_MODE_MASK (tmode) >> 1) + 1)
11314 <= GET_MODE_MASK (tmode)))
11315 {
11316 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11317 continue;
11318 }
11319
11320 /* Likewise if OP0 is a PLUS of a sign extension with a
11321 constant, which is usually represented with the PLUS
11322 between the shifts. */
11323 if (! unsigned_comparison_p
11324 && CONST_INT_P (XEXP (op0, 1))
11325 && GET_CODE (XEXP (op0, 0)) == PLUS
11326 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11327 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11328 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11329 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11330 MODE_INT, 1)) != BLKmode
11331 && (((unsigned HOST_WIDE_INT) const_op
11332 + (GET_MODE_MASK (tmode) >> 1) + 1)
11333 <= GET_MODE_MASK (tmode)))
11334 {
11335 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11336 rtx add_const = XEXP (XEXP (op0, 0), 1);
11337 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11338 add_const, XEXP (op0, 1));
11339
11340 op0 = simplify_gen_binary (PLUS, tmode,
11341 gen_lowpart (tmode, inner),
11342 new_const);
11343 continue;
11344 }
11345
11346 /* ... fall through ... */
11347 case LSHIFTRT:
11348 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11349 the low order N bits of FOO are known to be zero, we can do this
11350 by comparing FOO with C shifted left N bits so long as no
11351 overflow occurs. */
11352 if (CONST_INT_P (XEXP (op0, 1))
11353 && INTVAL (XEXP (op0, 1)) >= 0
11354 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11355 && mode_width <= HOST_BITS_PER_WIDE_INT
11356 && (nonzero_bits (XEXP (op0, 0), mode)
11357 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11358 && (((unsigned HOST_WIDE_INT) const_op
11359 + (GET_CODE (op0) != LSHIFTRT
11360 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11361 + 1)
11362 : 0))
11363 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11364 {
11365 /* If the shift was logical, then we must make the condition
11366 unsigned. */
11367 if (GET_CODE (op0) == LSHIFTRT)
11368 code = unsigned_condition (code);
11369
11370 const_op <<= INTVAL (XEXP (op0, 1));
11371 op1 = GEN_INT (const_op);
11372 op0 = XEXP (op0, 0);
11373 continue;
11374 }
11375
11376 /* If we are using this shift to extract just the sign bit, we
11377 can replace this with an LT or GE comparison. */
11378 if (const_op == 0
11379 && (equality_comparison_p || sign_bit_comparison_p)
11380 && CONST_INT_P (XEXP (op0, 1))
11381 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11382 == mode_width - 1)
11383 {
11384 op0 = XEXP (op0, 0);
11385 code = (code == NE || code == GT ? LT : GE);
11386 continue;
11387 }
11388 break;
11389
11390 default:
11391 break;
11392 }
11393
11394 break;
11395 }
11396
11397 /* Now make any compound operations involved in this comparison. Then,
11398 check for an outmost SUBREG on OP0 that is not doing anything or is
11399 paradoxical. The latter transformation must only be performed when
11400 it is known that the "extra" bits will be the same in op0 and op1 or
11401 that they don't matter. There are three cases to consider:
11402
11403 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11404 care bits and we can assume they have any convenient value. So
11405 making the transformation is safe.
11406
11407 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11408 In this case the upper bits of op0 are undefined. We should not make
11409 the simplification in that case as we do not know the contents of
11410 those bits.
11411
11412 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11413 UNKNOWN. In that case we know those bits are zeros or ones. We must
11414 also be sure that they are the same as the upper bits of op1.
11415
11416 We can never remove a SUBREG for a non-equality comparison because
11417 the sign bit is in a different place in the underlying object. */
11418
11419 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11420 op1 = make_compound_operation (op1, SET);
11421
11422 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11423 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11424 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11425 && (code == NE || code == EQ))
11426 {
11427 if (GET_MODE_SIZE (GET_MODE (op0))
11428 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11429 {
11430 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11431 implemented. */
11432 if (REG_P (SUBREG_REG (op0)))
11433 {
11434 op0 = SUBREG_REG (op0);
11435 op1 = gen_lowpart (GET_MODE (op0), op1);
11436 }
11437 }
11438 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11439 <= HOST_BITS_PER_WIDE_INT)
11440 && (nonzero_bits (SUBREG_REG (op0),
11441 GET_MODE (SUBREG_REG (op0)))
11442 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11443 {
11444 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11445
11446 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11447 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11448 op0 = SUBREG_REG (op0), op1 = tem;
11449 }
11450 }
11451
11452 /* We now do the opposite procedure: Some machines don't have compare
11453 insns in all modes. If OP0's mode is an integer mode smaller than a
11454 word and we can't do a compare in that mode, see if there is a larger
11455 mode for which we can do the compare. There are a number of cases in
11456 which we can use the wider mode. */
11457
11458 mode = GET_MODE (op0);
11459 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11460 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11461 && ! have_insn_for (COMPARE, mode))
11462 for (tmode = GET_MODE_WIDER_MODE (mode);
11463 (tmode != VOIDmode
11464 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11465 tmode = GET_MODE_WIDER_MODE (tmode))
11466 if (have_insn_for (COMPARE, tmode))
11467 {
11468 int zero_extended;
11469
11470 /* If this is a test for negative, we can make an explicit
11471 test of the sign bit. Test this first so we can use
11472 a paradoxical subreg to extend OP0. */
11473
11474 if (op1 == const0_rtx && (code == LT || code == GE)
11475 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11476 {
11477 op0 = simplify_gen_binary (AND, tmode,
11478 gen_lowpart (tmode, op0),
11479 GEN_INT ((HOST_WIDE_INT) 1
11480 << (GET_MODE_BITSIZE (mode)
11481 - 1)));
11482 code = (code == LT) ? NE : EQ;
11483 break;
11484 }
11485
11486 /* If the only nonzero bits in OP0 and OP1 are those in the
11487 narrower mode and this is an equality or unsigned comparison,
11488 we can use the wider mode. Similarly for sign-extended
11489 values, in which case it is true for all comparisons. */
11490 zero_extended = ((code == EQ || code == NE
11491 || code == GEU || code == GTU
11492 || code == LEU || code == LTU)
11493 && (nonzero_bits (op0, tmode)
11494 & ~GET_MODE_MASK (mode)) == 0
11495 && ((CONST_INT_P (op1)
11496 || (nonzero_bits (op1, tmode)
11497 & ~GET_MODE_MASK (mode)) == 0)));
11498
11499 if (zero_extended
11500 || ((num_sign_bit_copies (op0, tmode)
11501 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11502 - GET_MODE_BITSIZE (mode)))
11503 && (num_sign_bit_copies (op1, tmode)
11504 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11505 - GET_MODE_BITSIZE (mode)))))
11506 {
11507 /* If OP0 is an AND and we don't have an AND in MODE either,
11508 make a new AND in the proper mode. */
11509 if (GET_CODE (op0) == AND
11510 && !have_insn_for (AND, mode))
11511 op0 = simplify_gen_binary (AND, tmode,
11512 gen_lowpart (tmode,
11513 XEXP (op0, 0)),
11514 gen_lowpart (tmode,
11515 XEXP (op0, 1)));
11516 else
11517 {
11518 if (zero_extended)
11519 {
11520 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11521 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11522 }
11523 else
11524 {
11525 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11526 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11527 }
11528 break;
11529 }
11530 }
11531 }
11532
11533 #ifdef CANONICALIZE_COMPARISON
11534 /* If this machine only supports a subset of valid comparisons, see if we
11535 can convert an unsupported one into a supported one. */
11536 CANONICALIZE_COMPARISON (code, op0, op1);
11537 #endif
11538
11539 *pop0 = op0;
11540 *pop1 = op1;
11541
11542 return code;
11543 }
11544 \f
11545 /* Utility function for record_value_for_reg. Count number of
11546 rtxs in X. */
11547 static int
11548 count_rtxs (rtx x)
11549 {
11550 enum rtx_code code = GET_CODE (x);
11551 const char *fmt;
11552 int i, j, ret = 1;
11553
11554 if (GET_RTX_CLASS (code) == '2'
11555 || GET_RTX_CLASS (code) == 'c')
11556 {
11557 rtx x0 = XEXP (x, 0);
11558 rtx x1 = XEXP (x, 1);
11559
11560 if (x0 == x1)
11561 return 1 + 2 * count_rtxs (x0);
11562
11563 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11564 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11565 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11566 return 2 + 2 * count_rtxs (x0)
11567 + count_rtxs (x == XEXP (x1, 0)
11568 ? XEXP (x1, 1) : XEXP (x1, 0));
11569
11570 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11571 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11572 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11573 return 2 + 2 * count_rtxs (x1)
11574 + count_rtxs (x == XEXP (x0, 0)
11575 ? XEXP (x0, 1) : XEXP (x0, 0));
11576 }
11577
11578 fmt = GET_RTX_FORMAT (code);
11579 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11580 if (fmt[i] == 'e')
11581 ret += count_rtxs (XEXP (x, i));
11582 else if (fmt[i] == 'E')
11583 for (j = 0; j < XVECLEN (x, i); j++)
11584 ret += count_rtxs (XVECEXP (x, i, j));
11585
11586 return ret;
11587 }
11588 \f
11589 /* Utility function for following routine. Called when X is part of a value
11590 being stored into last_set_value. Sets last_set_table_tick
11591 for each register mentioned. Similar to mention_regs in cse.c */
11592
11593 static void
11594 update_table_tick (rtx x)
11595 {
11596 enum rtx_code code = GET_CODE (x);
11597 const char *fmt = GET_RTX_FORMAT (code);
11598 int i, j;
11599
11600 if (code == REG)
11601 {
11602 unsigned int regno = REGNO (x);
11603 unsigned int endregno = END_REGNO (x);
11604 unsigned int r;
11605
11606 for (r = regno; r < endregno; r++)
11607 {
11608 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11609 rsp->last_set_table_tick = label_tick;
11610 }
11611
11612 return;
11613 }
11614
11615 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11616 if (fmt[i] == 'e')
11617 {
11618 /* Check for identical subexpressions. If x contains
11619 identical subexpression we only have to traverse one of
11620 them. */
11621 if (i == 0 && ARITHMETIC_P (x))
11622 {
11623 /* Note that at this point x1 has already been
11624 processed. */
11625 rtx x0 = XEXP (x, 0);
11626 rtx x1 = XEXP (x, 1);
11627
11628 /* If x0 and x1 are identical then there is no need to
11629 process x0. */
11630 if (x0 == x1)
11631 break;
11632
11633 /* If x0 is identical to a subexpression of x1 then while
11634 processing x1, x0 has already been processed. Thus we
11635 are done with x. */
11636 if (ARITHMETIC_P (x1)
11637 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11638 break;
11639
11640 /* If x1 is identical to a subexpression of x0 then we
11641 still have to process the rest of x0. */
11642 if (ARITHMETIC_P (x0)
11643 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11644 {
11645 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11646 break;
11647 }
11648 }
11649
11650 update_table_tick (XEXP (x, i));
11651 }
11652 else if (fmt[i] == 'E')
11653 for (j = 0; j < XVECLEN (x, i); j++)
11654 update_table_tick (XVECEXP (x, i, j));
11655 }
11656
11657 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11658 are saying that the register is clobbered and we no longer know its
11659 value. If INSN is zero, don't update reg_stat[].last_set; this is
11660 only permitted with VALUE also zero and is used to invalidate the
11661 register. */
11662
11663 static void
11664 record_value_for_reg (rtx reg, rtx insn, rtx value)
11665 {
11666 unsigned int regno = REGNO (reg);
11667 unsigned int endregno = END_REGNO (reg);
11668 unsigned int i;
11669 reg_stat_type *rsp;
11670
11671 /* If VALUE contains REG and we have a previous value for REG, substitute
11672 the previous value. */
11673 if (value && insn && reg_overlap_mentioned_p (reg, value))
11674 {
11675 rtx tem;
11676
11677 /* Set things up so get_last_value is allowed to see anything set up to
11678 our insn. */
11679 subst_low_luid = DF_INSN_LUID (insn);
11680 tem = get_last_value (reg);
11681
11682 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11683 it isn't going to be useful and will take a lot of time to process,
11684 so just use the CLOBBER. */
11685
11686 if (tem)
11687 {
11688 if (ARITHMETIC_P (tem)
11689 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11690 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11691 tem = XEXP (tem, 0);
11692 else if (count_occurrences (value, reg, 1) >= 2)
11693 {
11694 /* If there are two or more occurrences of REG in VALUE,
11695 prevent the value from growing too much. */
11696 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11697 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11698 }
11699
11700 value = replace_rtx (copy_rtx (value), reg, tem);
11701 }
11702 }
11703
11704 /* For each register modified, show we don't know its value, that
11705 we don't know about its bitwise content, that its value has been
11706 updated, and that we don't know the location of the death of the
11707 register. */
11708 for (i = regno; i < endregno; i++)
11709 {
11710 rsp = VEC_index (reg_stat_type, reg_stat, i);
11711
11712 if (insn)
11713 rsp->last_set = insn;
11714
11715 rsp->last_set_value = 0;
11716 rsp->last_set_mode = VOIDmode;
11717 rsp->last_set_nonzero_bits = 0;
11718 rsp->last_set_sign_bit_copies = 0;
11719 rsp->last_death = 0;
11720 rsp->truncated_to_mode = VOIDmode;
11721 }
11722
11723 /* Mark registers that are being referenced in this value. */
11724 if (value)
11725 update_table_tick (value);
11726
11727 /* Now update the status of each register being set.
11728 If someone is using this register in this block, set this register
11729 to invalid since we will get confused between the two lives in this
11730 basic block. This makes using this register always invalid. In cse, we
11731 scan the table to invalidate all entries using this register, but this
11732 is too much work for us. */
11733
11734 for (i = regno; i < endregno; i++)
11735 {
11736 rsp = VEC_index (reg_stat_type, reg_stat, i);
11737 rsp->last_set_label = label_tick;
11738 if (!insn
11739 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11740 rsp->last_set_invalid = 1;
11741 else
11742 rsp->last_set_invalid = 0;
11743 }
11744
11745 /* The value being assigned might refer to X (like in "x++;"). In that
11746 case, we must replace it with (clobber (const_int 0)) to prevent
11747 infinite loops. */
11748 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11749 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
11750 {
11751 value = copy_rtx (value);
11752 if (!get_last_value_validate (&value, insn, label_tick, 1))
11753 value = 0;
11754 }
11755
11756 /* For the main register being modified, update the value, the mode, the
11757 nonzero bits, and the number of sign bit copies. */
11758
11759 rsp->last_set_value = value;
11760
11761 if (value)
11762 {
11763 enum machine_mode mode = GET_MODE (reg);
11764 subst_low_luid = DF_INSN_LUID (insn);
11765 rsp->last_set_mode = mode;
11766 if (GET_MODE_CLASS (mode) == MODE_INT
11767 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11768 mode = nonzero_bits_mode;
11769 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11770 rsp->last_set_sign_bit_copies
11771 = num_sign_bit_copies (value, GET_MODE (reg));
11772 }
11773 }
11774
11775 /* Called via note_stores from record_dead_and_set_regs to handle one
11776 SET or CLOBBER in an insn. DATA is the instruction in which the
11777 set is occurring. */
11778
11779 static void
11780 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11781 {
11782 rtx record_dead_insn = (rtx) data;
11783
11784 if (GET_CODE (dest) == SUBREG)
11785 dest = SUBREG_REG (dest);
11786
11787 if (!record_dead_insn)
11788 {
11789 if (REG_P (dest))
11790 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11791 return;
11792 }
11793
11794 if (REG_P (dest))
11795 {
11796 /* If we are setting the whole register, we know its value. Otherwise
11797 show that we don't know the value. We can handle SUBREG in
11798 some cases. */
11799 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11800 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11801 else if (GET_CODE (setter) == SET
11802 && GET_CODE (SET_DEST (setter)) == SUBREG
11803 && SUBREG_REG (SET_DEST (setter)) == dest
11804 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11805 && subreg_lowpart_p (SET_DEST (setter)))
11806 record_value_for_reg (dest, record_dead_insn,
11807 gen_lowpart (GET_MODE (dest),
11808 SET_SRC (setter)));
11809 else
11810 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11811 }
11812 else if (MEM_P (dest)
11813 /* Ignore pushes, they clobber nothing. */
11814 && ! push_operand (dest, GET_MODE (dest)))
11815 mem_last_set = DF_INSN_LUID (record_dead_insn);
11816 }
11817
11818 /* Update the records of when each REG was most recently set or killed
11819 for the things done by INSN. This is the last thing done in processing
11820 INSN in the combiner loop.
11821
11822 We update reg_stat[], in particular fields last_set, last_set_value,
11823 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11824 last_death, and also the similar information mem_last_set (which insn
11825 most recently modified memory) and last_call_luid (which insn was the
11826 most recent subroutine call). */
11827
11828 static void
11829 record_dead_and_set_regs (rtx insn)
11830 {
11831 rtx link;
11832 unsigned int i;
11833
11834 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11835 {
11836 if (REG_NOTE_KIND (link) == REG_DEAD
11837 && REG_P (XEXP (link, 0)))
11838 {
11839 unsigned int regno = REGNO (XEXP (link, 0));
11840 unsigned int endregno = END_REGNO (XEXP (link, 0));
11841
11842 for (i = regno; i < endregno; i++)
11843 {
11844 reg_stat_type *rsp;
11845
11846 rsp = VEC_index (reg_stat_type, reg_stat, i);
11847 rsp->last_death = insn;
11848 }
11849 }
11850 else if (REG_NOTE_KIND (link) == REG_INC)
11851 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11852 }
11853
11854 if (CALL_P (insn))
11855 {
11856 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11857 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11858 {
11859 reg_stat_type *rsp;
11860
11861 rsp = VEC_index (reg_stat_type, reg_stat, i);
11862 rsp->last_set_invalid = 1;
11863 rsp->last_set = insn;
11864 rsp->last_set_value = 0;
11865 rsp->last_set_mode = VOIDmode;
11866 rsp->last_set_nonzero_bits = 0;
11867 rsp->last_set_sign_bit_copies = 0;
11868 rsp->last_death = 0;
11869 rsp->truncated_to_mode = VOIDmode;
11870 }
11871
11872 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11873
11874 /* We can't combine into a call pattern. Remember, though, that
11875 the return value register is set at this LUID. We could
11876 still replace a register with the return value from the
11877 wrong subroutine call! */
11878 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11879 }
11880 else
11881 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11882 }
11883
11884 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11885 register present in the SUBREG, so for each such SUBREG go back and
11886 adjust nonzero and sign bit information of the registers that are
11887 known to have some zero/sign bits set.
11888
11889 This is needed because when combine blows the SUBREGs away, the
11890 information on zero/sign bits is lost and further combines can be
11891 missed because of that. */
11892
11893 static void
11894 record_promoted_value (rtx insn, rtx subreg)
11895 {
11896 rtx links, set;
11897 unsigned int regno = REGNO (SUBREG_REG (subreg));
11898 enum machine_mode mode = GET_MODE (subreg);
11899
11900 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11901 return;
11902
11903 for (links = LOG_LINKS (insn); links;)
11904 {
11905 reg_stat_type *rsp;
11906
11907 insn = XEXP (links, 0);
11908 set = single_set (insn);
11909
11910 if (! set || !REG_P (SET_DEST (set))
11911 || REGNO (SET_DEST (set)) != regno
11912 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11913 {
11914 links = XEXP (links, 1);
11915 continue;
11916 }
11917
11918 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11919 if (rsp->last_set == insn)
11920 {
11921 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11922 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11923 }
11924
11925 if (REG_P (SET_SRC (set)))
11926 {
11927 regno = REGNO (SET_SRC (set));
11928 links = LOG_LINKS (insn);
11929 }
11930 else
11931 break;
11932 }
11933 }
11934
11935 /* Check if X, a register, is known to contain a value already
11936 truncated to MODE. In this case we can use a subreg to refer to
11937 the truncated value even though in the generic case we would need
11938 an explicit truncation. */
11939
11940 static bool
11941 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11942 {
11943 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11944 enum machine_mode truncated = rsp->truncated_to_mode;
11945
11946 if (truncated == 0
11947 || rsp->truncation_label < label_tick_ebb_start)
11948 return false;
11949 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11950 return true;
11951 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11952 GET_MODE_BITSIZE (truncated)))
11953 return true;
11954 return false;
11955 }
11956
11957 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
11958 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
11959 might be able to turn a truncate into a subreg using this information.
11960 Return -1 if traversing *P is complete or 0 otherwise. */
11961
11962 static int
11963 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
11964 {
11965 rtx x = *p;
11966 enum machine_mode truncated_mode;
11967 reg_stat_type *rsp;
11968
11969 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11970 {
11971 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11972 truncated_mode = GET_MODE (x);
11973
11974 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11975 return -1;
11976
11977 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11978 GET_MODE_BITSIZE (original_mode)))
11979 return -1;
11980
11981 x = SUBREG_REG (x);
11982 }
11983 /* ??? For hard-regs we now record everything. We might be able to
11984 optimize this using last_set_mode. */
11985 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11986 truncated_mode = GET_MODE (x);
11987 else
11988 return 0;
11989
11990 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11991 if (rsp->truncated_to_mode == 0
11992 || rsp->truncation_label < label_tick_ebb_start
11993 || (GET_MODE_SIZE (truncated_mode)
11994 < GET_MODE_SIZE (rsp->truncated_to_mode)))
11995 {
11996 rsp->truncated_to_mode = truncated_mode;
11997 rsp->truncation_label = label_tick;
11998 }
11999
12000 return -1;
12001 }
12002
12003 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12004 the modes they are used in. This can help truning TRUNCATEs into
12005 SUBREGs. */
12006
12007 static void
12008 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12009 {
12010 for_each_rtx (x, record_truncated_value, NULL);
12011 }
12012
12013 /* Scan X for promoted SUBREGs. For each one found,
12014 note what it implies to the registers used in it. */
12015
12016 static void
12017 check_promoted_subreg (rtx insn, rtx x)
12018 {
12019 if (GET_CODE (x) == SUBREG
12020 && SUBREG_PROMOTED_VAR_P (x)
12021 && REG_P (SUBREG_REG (x)))
12022 record_promoted_value (insn, x);
12023 else
12024 {
12025 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12026 int i, j;
12027
12028 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12029 switch (format[i])
12030 {
12031 case 'e':
12032 check_promoted_subreg (insn, XEXP (x, i));
12033 break;
12034 case 'V':
12035 case 'E':
12036 if (XVEC (x, i) != 0)
12037 for (j = 0; j < XVECLEN (x, i); j++)
12038 check_promoted_subreg (insn, XVECEXP (x, i, j));
12039 break;
12040 }
12041 }
12042 }
12043 \f
12044 /* Verify that all the registers and memory references mentioned in *LOC are
12045 still valid. *LOC was part of a value set in INSN when label_tick was
12046 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12047 the invalid references with (clobber (const_int 0)) and return 1. This
12048 replacement is useful because we often can get useful information about
12049 the form of a value (e.g., if it was produced by a shift that always
12050 produces -1 or 0) even though we don't know exactly what registers it
12051 was produced from. */
12052
12053 static int
12054 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12055 {
12056 rtx x = *loc;
12057 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12058 int len = GET_RTX_LENGTH (GET_CODE (x));
12059 int i, j;
12060
12061 if (REG_P (x))
12062 {
12063 unsigned int regno = REGNO (x);
12064 unsigned int endregno = END_REGNO (x);
12065 unsigned int j;
12066
12067 for (j = regno; j < endregno; j++)
12068 {
12069 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12070 if (rsp->last_set_invalid
12071 /* If this is a pseudo-register that was only set once and not
12072 live at the beginning of the function, it is always valid. */
12073 || (! (regno >= FIRST_PSEUDO_REGISTER
12074 && REG_N_SETS (regno) == 1
12075 && (!REGNO_REG_SET_P
12076 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12077 && rsp->last_set_label > tick))
12078 {
12079 if (replace)
12080 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12081 return replace;
12082 }
12083 }
12084
12085 return 1;
12086 }
12087 /* If this is a memory reference, make sure that there were no stores after
12088 it that might have clobbered the value. We don't have alias info, so we
12089 assume any store invalidates it. Moreover, we only have local UIDs, so
12090 we also assume that there were stores in the intervening basic blocks. */
12091 else if (MEM_P (x) && !MEM_READONLY_P (x)
12092 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12093 {
12094 if (replace)
12095 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12096 return replace;
12097 }
12098
12099 for (i = 0; i < len; i++)
12100 {
12101 if (fmt[i] == 'e')
12102 {
12103 /* Check for identical subexpressions. If x contains
12104 identical subexpression we only have to traverse one of
12105 them. */
12106 if (i == 1 && ARITHMETIC_P (x))
12107 {
12108 /* Note that at this point x0 has already been checked
12109 and found valid. */
12110 rtx x0 = XEXP (x, 0);
12111 rtx x1 = XEXP (x, 1);
12112
12113 /* If x0 and x1 are identical then x is also valid. */
12114 if (x0 == x1)
12115 return 1;
12116
12117 /* If x1 is identical to a subexpression of x0 then
12118 while checking x0, x1 has already been checked. Thus
12119 it is valid and so as x. */
12120 if (ARITHMETIC_P (x0)
12121 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12122 return 1;
12123
12124 /* If x0 is identical to a subexpression of x1 then x is
12125 valid iff the rest of x1 is valid. */
12126 if (ARITHMETIC_P (x1)
12127 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12128 return
12129 get_last_value_validate (&XEXP (x1,
12130 x0 == XEXP (x1, 0) ? 1 : 0),
12131 insn, tick, replace);
12132 }
12133
12134 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12135 replace) == 0)
12136 return 0;
12137 }
12138 else if (fmt[i] == 'E')
12139 for (j = 0; j < XVECLEN (x, i); j++)
12140 if (get_last_value_validate (&XVECEXP (x, i, j),
12141 insn, tick, replace) == 0)
12142 return 0;
12143 }
12144
12145 /* If we haven't found a reason for it to be invalid, it is valid. */
12146 return 1;
12147 }
12148
12149 /* Get the last value assigned to X, if known. Some registers
12150 in the value may be replaced with (clobber (const_int 0)) if their value
12151 is known longer known reliably. */
12152
12153 static rtx
12154 get_last_value (const_rtx x)
12155 {
12156 unsigned int regno;
12157 rtx value;
12158 reg_stat_type *rsp;
12159
12160 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12161 then convert it to the desired mode. If this is a paradoxical SUBREG,
12162 we cannot predict what values the "extra" bits might have. */
12163 if (GET_CODE (x) == SUBREG
12164 && subreg_lowpart_p (x)
12165 && (GET_MODE_SIZE (GET_MODE (x))
12166 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
12167 && (value = get_last_value (SUBREG_REG (x))) != 0)
12168 return gen_lowpart (GET_MODE (x), value);
12169
12170 if (!REG_P (x))
12171 return 0;
12172
12173 regno = REGNO (x);
12174 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12175 value = rsp->last_set_value;
12176
12177 /* If we don't have a value, or if it isn't for this basic block and
12178 it's either a hard register, set more than once, or it's a live
12179 at the beginning of the function, return 0.
12180
12181 Because if it's not live at the beginning of the function then the reg
12182 is always set before being used (is never used without being set).
12183 And, if it's set only once, and it's always set before use, then all
12184 uses must have the same last value, even if it's not from this basic
12185 block. */
12186
12187 if (value == 0
12188 || (rsp->last_set_label < label_tick_ebb_start
12189 && (regno < FIRST_PSEUDO_REGISTER
12190 || REG_N_SETS (regno) != 1
12191 || REGNO_REG_SET_P
12192 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12193 return 0;
12194
12195 /* If the value was set in a later insn than the ones we are processing,
12196 we can't use it even if the register was only set once. */
12197 if (rsp->last_set_label == label_tick
12198 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12199 return 0;
12200
12201 /* If the value has all its registers valid, return it. */
12202 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12203 return value;
12204
12205 /* Otherwise, make a copy and replace any invalid register with
12206 (clobber (const_int 0)). If that fails for some reason, return 0. */
12207
12208 value = copy_rtx (value);
12209 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12210 return value;
12211
12212 return 0;
12213 }
12214 \f
12215 /* Return nonzero if expression X refers to a REG or to memory
12216 that is set in an instruction more recent than FROM_LUID. */
12217
12218 static int
12219 use_crosses_set_p (const_rtx x, int from_luid)
12220 {
12221 const char *fmt;
12222 int i;
12223 enum rtx_code code = GET_CODE (x);
12224
12225 if (code == REG)
12226 {
12227 unsigned int regno = REGNO (x);
12228 unsigned endreg = END_REGNO (x);
12229
12230 #ifdef PUSH_ROUNDING
12231 /* Don't allow uses of the stack pointer to be moved,
12232 because we don't know whether the move crosses a push insn. */
12233 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12234 return 1;
12235 #endif
12236 for (; regno < endreg; regno++)
12237 {
12238 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12239 if (rsp->last_set
12240 && rsp->last_set_label == label_tick
12241 && DF_INSN_LUID (rsp->last_set) > from_luid)
12242 return 1;
12243 }
12244 return 0;
12245 }
12246
12247 if (code == MEM && mem_last_set > from_luid)
12248 return 1;
12249
12250 fmt = GET_RTX_FORMAT (code);
12251
12252 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12253 {
12254 if (fmt[i] == 'E')
12255 {
12256 int j;
12257 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12258 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12259 return 1;
12260 }
12261 else if (fmt[i] == 'e'
12262 && use_crosses_set_p (XEXP (x, i), from_luid))
12263 return 1;
12264 }
12265 return 0;
12266 }
12267 \f
12268 /* Define three variables used for communication between the following
12269 routines. */
12270
12271 static unsigned int reg_dead_regno, reg_dead_endregno;
12272 static int reg_dead_flag;
12273
12274 /* Function called via note_stores from reg_dead_at_p.
12275
12276 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12277 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12278
12279 static void
12280 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12281 {
12282 unsigned int regno, endregno;
12283
12284 if (!REG_P (dest))
12285 return;
12286
12287 regno = REGNO (dest);
12288 endregno = END_REGNO (dest);
12289 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12290 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12291 }
12292
12293 /* Return nonzero if REG is known to be dead at INSN.
12294
12295 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12296 referencing REG, it is dead. If we hit a SET referencing REG, it is
12297 live. Otherwise, see if it is live or dead at the start of the basic
12298 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12299 must be assumed to be always live. */
12300
12301 static int
12302 reg_dead_at_p (rtx reg, rtx insn)
12303 {
12304 basic_block block;
12305 unsigned int i;
12306
12307 /* Set variables for reg_dead_at_p_1. */
12308 reg_dead_regno = REGNO (reg);
12309 reg_dead_endregno = END_REGNO (reg);
12310
12311 reg_dead_flag = 0;
12312
12313 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12314 we allow the machine description to decide whether use-and-clobber
12315 patterns are OK. */
12316 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12317 {
12318 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12319 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12320 return 0;
12321 }
12322
12323 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12324 beginning of basic block. */
12325 block = BLOCK_FOR_INSN (insn);
12326 for (;;)
12327 {
12328 if (INSN_P (insn))
12329 {
12330 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12331 if (reg_dead_flag)
12332 return reg_dead_flag == 1 ? 1 : 0;
12333
12334 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12335 return 1;
12336 }
12337
12338 if (insn == BB_HEAD (block))
12339 break;
12340
12341 insn = PREV_INSN (insn);
12342 }
12343
12344 /* Look at live-in sets for the basic block that we were in. */
12345 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12346 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12347 return 0;
12348
12349 return 1;
12350 }
12351 \f
12352 /* Note hard registers in X that are used. */
12353
12354 static void
12355 mark_used_regs_combine (rtx x)
12356 {
12357 RTX_CODE code = GET_CODE (x);
12358 unsigned int regno;
12359 int i;
12360
12361 switch (code)
12362 {
12363 case LABEL_REF:
12364 case SYMBOL_REF:
12365 case CONST_INT:
12366 case CONST:
12367 case CONST_DOUBLE:
12368 case CONST_VECTOR:
12369 case PC:
12370 case ADDR_VEC:
12371 case ADDR_DIFF_VEC:
12372 case ASM_INPUT:
12373 #ifdef HAVE_cc0
12374 /* CC0 must die in the insn after it is set, so we don't need to take
12375 special note of it here. */
12376 case CC0:
12377 #endif
12378 return;
12379
12380 case CLOBBER:
12381 /* If we are clobbering a MEM, mark any hard registers inside the
12382 address as used. */
12383 if (MEM_P (XEXP (x, 0)))
12384 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12385 return;
12386
12387 case REG:
12388 regno = REGNO (x);
12389 /* A hard reg in a wide mode may really be multiple registers.
12390 If so, mark all of them just like the first. */
12391 if (regno < FIRST_PSEUDO_REGISTER)
12392 {
12393 /* None of this applies to the stack, frame or arg pointers. */
12394 if (regno == STACK_POINTER_REGNUM
12395 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12396 || regno == HARD_FRAME_POINTER_REGNUM
12397 #endif
12398 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12399 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12400 #endif
12401 || regno == FRAME_POINTER_REGNUM)
12402 return;
12403
12404 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12405 }
12406 return;
12407
12408 case SET:
12409 {
12410 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12411 the address. */
12412 rtx testreg = SET_DEST (x);
12413
12414 while (GET_CODE (testreg) == SUBREG
12415 || GET_CODE (testreg) == ZERO_EXTRACT
12416 || GET_CODE (testreg) == STRICT_LOW_PART)
12417 testreg = XEXP (testreg, 0);
12418
12419 if (MEM_P (testreg))
12420 mark_used_regs_combine (XEXP (testreg, 0));
12421
12422 mark_used_regs_combine (SET_SRC (x));
12423 }
12424 return;
12425
12426 default:
12427 break;
12428 }
12429
12430 /* Recursively scan the operands of this expression. */
12431
12432 {
12433 const char *fmt = GET_RTX_FORMAT (code);
12434
12435 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12436 {
12437 if (fmt[i] == 'e')
12438 mark_used_regs_combine (XEXP (x, i));
12439 else if (fmt[i] == 'E')
12440 {
12441 int j;
12442
12443 for (j = 0; j < XVECLEN (x, i); j++)
12444 mark_used_regs_combine (XVECEXP (x, i, j));
12445 }
12446 }
12447 }
12448 }
12449 \f
12450 /* Remove register number REGNO from the dead registers list of INSN.
12451
12452 Return the note used to record the death, if there was one. */
12453
12454 rtx
12455 remove_death (unsigned int regno, rtx insn)
12456 {
12457 rtx note = find_regno_note (insn, REG_DEAD, regno);
12458
12459 if (note)
12460 remove_note (insn, note);
12461
12462 return note;
12463 }
12464
12465 /* For each register (hardware or pseudo) used within expression X, if its
12466 death is in an instruction with luid between FROM_LUID (inclusive) and
12467 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12468 list headed by PNOTES.
12469
12470 That said, don't move registers killed by maybe_kill_insn.
12471
12472 This is done when X is being merged by combination into TO_INSN. These
12473 notes will then be distributed as needed. */
12474
12475 static void
12476 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12477 rtx *pnotes)
12478 {
12479 const char *fmt;
12480 int len, i;
12481 enum rtx_code code = GET_CODE (x);
12482
12483 if (code == REG)
12484 {
12485 unsigned int regno = REGNO (x);
12486 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12487
12488 /* Don't move the register if it gets killed in between from and to. */
12489 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12490 && ! reg_referenced_p (x, maybe_kill_insn))
12491 return;
12492
12493 if (where_dead
12494 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12495 && DF_INSN_LUID (where_dead) >= from_luid
12496 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12497 {
12498 rtx note = remove_death (regno, where_dead);
12499
12500 /* It is possible for the call above to return 0. This can occur
12501 when last_death points to I2 or I1 that we combined with.
12502 In that case make a new note.
12503
12504 We must also check for the case where X is a hard register
12505 and NOTE is a death note for a range of hard registers
12506 including X. In that case, we must put REG_DEAD notes for
12507 the remaining registers in place of NOTE. */
12508
12509 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12510 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12511 > GET_MODE_SIZE (GET_MODE (x))))
12512 {
12513 unsigned int deadregno = REGNO (XEXP (note, 0));
12514 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12515 unsigned int ourend = END_HARD_REGNO (x);
12516 unsigned int i;
12517
12518 for (i = deadregno; i < deadend; i++)
12519 if (i < regno || i >= ourend)
12520 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12521 }
12522
12523 /* If we didn't find any note, or if we found a REG_DEAD note that
12524 covers only part of the given reg, and we have a multi-reg hard
12525 register, then to be safe we must check for REG_DEAD notes
12526 for each register other than the first. They could have
12527 their own REG_DEAD notes lying around. */
12528 else if ((note == 0
12529 || (note != 0
12530 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12531 < GET_MODE_SIZE (GET_MODE (x)))))
12532 && regno < FIRST_PSEUDO_REGISTER
12533 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12534 {
12535 unsigned int ourend = END_HARD_REGNO (x);
12536 unsigned int i, offset;
12537 rtx oldnotes = 0;
12538
12539 if (note)
12540 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12541 else
12542 offset = 1;
12543
12544 for (i = regno + offset; i < ourend; i++)
12545 move_deaths (regno_reg_rtx[i],
12546 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12547 }
12548
12549 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12550 {
12551 XEXP (note, 1) = *pnotes;
12552 *pnotes = note;
12553 }
12554 else
12555 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
12556 }
12557
12558 return;
12559 }
12560
12561 else if (GET_CODE (x) == SET)
12562 {
12563 rtx dest = SET_DEST (x);
12564
12565 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12566
12567 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12568 that accesses one word of a multi-word item, some
12569 piece of everything register in the expression is used by
12570 this insn, so remove any old death. */
12571 /* ??? So why do we test for equality of the sizes? */
12572
12573 if (GET_CODE (dest) == ZERO_EXTRACT
12574 || GET_CODE (dest) == STRICT_LOW_PART
12575 || (GET_CODE (dest) == SUBREG
12576 && (((GET_MODE_SIZE (GET_MODE (dest))
12577 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12578 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12579 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12580 {
12581 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12582 return;
12583 }
12584
12585 /* If this is some other SUBREG, we know it replaces the entire
12586 value, so use that as the destination. */
12587 if (GET_CODE (dest) == SUBREG)
12588 dest = SUBREG_REG (dest);
12589
12590 /* If this is a MEM, adjust deaths of anything used in the address.
12591 For a REG (the only other possibility), the entire value is
12592 being replaced so the old value is not used in this insn. */
12593
12594 if (MEM_P (dest))
12595 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12596 to_insn, pnotes);
12597 return;
12598 }
12599
12600 else if (GET_CODE (x) == CLOBBER)
12601 return;
12602
12603 len = GET_RTX_LENGTH (code);
12604 fmt = GET_RTX_FORMAT (code);
12605
12606 for (i = 0; i < len; i++)
12607 {
12608 if (fmt[i] == 'E')
12609 {
12610 int j;
12611 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12612 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12613 to_insn, pnotes);
12614 }
12615 else if (fmt[i] == 'e')
12616 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12617 }
12618 }
12619 \f
12620 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12621 pattern of an insn. X must be a REG. */
12622
12623 static int
12624 reg_bitfield_target_p (rtx x, rtx body)
12625 {
12626 int i;
12627
12628 if (GET_CODE (body) == SET)
12629 {
12630 rtx dest = SET_DEST (body);
12631 rtx target;
12632 unsigned int regno, tregno, endregno, endtregno;
12633
12634 if (GET_CODE (dest) == ZERO_EXTRACT)
12635 target = XEXP (dest, 0);
12636 else if (GET_CODE (dest) == STRICT_LOW_PART)
12637 target = SUBREG_REG (XEXP (dest, 0));
12638 else
12639 return 0;
12640
12641 if (GET_CODE (target) == SUBREG)
12642 target = SUBREG_REG (target);
12643
12644 if (!REG_P (target))
12645 return 0;
12646
12647 tregno = REGNO (target), regno = REGNO (x);
12648 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12649 return target == x;
12650
12651 endtregno = end_hard_regno (GET_MODE (target), tregno);
12652 endregno = end_hard_regno (GET_MODE (x), regno);
12653
12654 return endregno > tregno && regno < endtregno;
12655 }
12656
12657 else if (GET_CODE (body) == PARALLEL)
12658 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12659 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12660 return 1;
12661
12662 return 0;
12663 }
12664
12665 /* Return the next insn after INSN that is neither a NOTE nor a
12666 DEBUG_INSN. This routine does not look inside SEQUENCEs. */
12667
12668 static rtx
12669 next_nonnote_nondebug_insn (rtx insn)
12670 {
12671 while (insn)
12672 {
12673 insn = NEXT_INSN (insn);
12674 if (insn == 0)
12675 break;
12676 if (NOTE_P (insn))
12677 continue;
12678 if (DEBUG_INSN_P (insn))
12679 continue;
12680 break;
12681 }
12682
12683 return insn;
12684 }
12685
12686
12687 \f
12688 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12689 as appropriate. I3 and I2 are the insns resulting from the combination
12690 insns including FROM (I2 may be zero).
12691
12692 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12693 not need REG_DEAD notes because they are being substituted for. This
12694 saves searching in the most common cases.
12695
12696 Each note in the list is either ignored or placed on some insns, depending
12697 on the type of note. */
12698
12699 static void
12700 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12701 rtx elim_i1)
12702 {
12703 rtx note, next_note;
12704 rtx tem;
12705
12706 for (note = notes; note; note = next_note)
12707 {
12708 rtx place = 0, place2 = 0;
12709
12710 next_note = XEXP (note, 1);
12711 switch (REG_NOTE_KIND (note))
12712 {
12713 case REG_BR_PROB:
12714 case REG_BR_PRED:
12715 /* Doesn't matter much where we put this, as long as it's somewhere.
12716 It is preferable to keep these notes on branches, which is most
12717 likely to be i3. */
12718 place = i3;
12719 break;
12720
12721 case REG_VALUE_PROFILE:
12722 /* Just get rid of this note, as it is unused later anyway. */
12723 break;
12724
12725 case REG_NON_LOCAL_GOTO:
12726 if (JUMP_P (i3))
12727 place = i3;
12728 else
12729 {
12730 gcc_assert (i2 && JUMP_P (i2));
12731 place = i2;
12732 }
12733 break;
12734
12735 case REG_EH_REGION:
12736 /* These notes must remain with the call or trapping instruction. */
12737 if (CALL_P (i3))
12738 place = i3;
12739 else if (i2 && CALL_P (i2))
12740 place = i2;
12741 else
12742 {
12743 gcc_assert (flag_non_call_exceptions);
12744 if (may_trap_p (i3))
12745 place = i3;
12746 else if (i2 && may_trap_p (i2))
12747 place = i2;
12748 /* ??? Otherwise assume we've combined things such that we
12749 can now prove that the instructions can't trap. Drop the
12750 note in this case. */
12751 }
12752 break;
12753
12754 case REG_NORETURN:
12755 case REG_SETJMP:
12756 /* These notes must remain with the call. It should not be
12757 possible for both I2 and I3 to be a call. */
12758 if (CALL_P (i3))
12759 place = i3;
12760 else
12761 {
12762 gcc_assert (i2 && CALL_P (i2));
12763 place = i2;
12764 }
12765 break;
12766
12767 case REG_UNUSED:
12768 /* Any clobbers for i3 may still exist, and so we must process
12769 REG_UNUSED notes from that insn.
12770
12771 Any clobbers from i2 or i1 can only exist if they were added by
12772 recog_for_combine. In that case, recog_for_combine created the
12773 necessary REG_UNUSED notes. Trying to keep any original
12774 REG_UNUSED notes from these insns can cause incorrect output
12775 if it is for the same register as the original i3 dest.
12776 In that case, we will notice that the register is set in i3,
12777 and then add a REG_UNUSED note for the destination of i3, which
12778 is wrong. However, it is possible to have REG_UNUSED notes from
12779 i2 or i1 for register which were both used and clobbered, so
12780 we keep notes from i2 or i1 if they will turn into REG_DEAD
12781 notes. */
12782
12783 /* If this register is set or clobbered in I3, put the note there
12784 unless there is one already. */
12785 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12786 {
12787 if (from_insn != i3)
12788 break;
12789
12790 if (! (REG_P (XEXP (note, 0))
12791 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12792 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12793 place = i3;
12794 }
12795 /* Otherwise, if this register is used by I3, then this register
12796 now dies here, so we must put a REG_DEAD note here unless there
12797 is one already. */
12798 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12799 && ! (REG_P (XEXP (note, 0))
12800 ? find_regno_note (i3, REG_DEAD,
12801 REGNO (XEXP (note, 0)))
12802 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12803 {
12804 PUT_REG_NOTE_KIND (note, REG_DEAD);
12805 place = i3;
12806 }
12807 break;
12808
12809 case REG_EQUAL:
12810 case REG_EQUIV:
12811 case REG_NOALIAS:
12812 /* These notes say something about results of an insn. We can
12813 only support them if they used to be on I3 in which case they
12814 remain on I3. Otherwise they are ignored.
12815
12816 If the note refers to an expression that is not a constant, we
12817 must also ignore the note since we cannot tell whether the
12818 equivalence is still true. It might be possible to do
12819 slightly better than this (we only have a problem if I2DEST
12820 or I1DEST is present in the expression), but it doesn't
12821 seem worth the trouble. */
12822
12823 if (from_insn == i3
12824 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12825 place = i3;
12826 break;
12827
12828 case REG_INC:
12829 /* These notes say something about how a register is used. They must
12830 be present on any use of the register in I2 or I3. */
12831 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12832 place = i3;
12833
12834 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12835 {
12836 if (place)
12837 place2 = i2;
12838 else
12839 place = i2;
12840 }
12841 break;
12842
12843 case REG_LABEL_TARGET:
12844 case REG_LABEL_OPERAND:
12845 /* This can show up in several ways -- either directly in the
12846 pattern, or hidden off in the constant pool with (or without?)
12847 a REG_EQUAL note. */
12848 /* ??? Ignore the without-reg_equal-note problem for now. */
12849 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12850 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12851 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12852 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12853 place = i3;
12854
12855 if (i2
12856 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12857 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12858 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12859 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12860 {
12861 if (place)
12862 place2 = i2;
12863 else
12864 place = i2;
12865 }
12866
12867 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12868 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12869 there. */
12870 if (place && JUMP_P (place)
12871 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12872 && (JUMP_LABEL (place) == NULL
12873 || JUMP_LABEL (place) == XEXP (note, 0)))
12874 {
12875 rtx label = JUMP_LABEL (place);
12876
12877 if (!label)
12878 JUMP_LABEL (place) = XEXP (note, 0);
12879 else if (LABEL_P (label))
12880 LABEL_NUSES (label)--;
12881 }
12882
12883 if (place2 && JUMP_P (place2)
12884 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12885 && (JUMP_LABEL (place2) == NULL
12886 || JUMP_LABEL (place2) == XEXP (note, 0)))
12887 {
12888 rtx label = JUMP_LABEL (place2);
12889
12890 if (!label)
12891 JUMP_LABEL (place2) = XEXP (note, 0);
12892 else if (LABEL_P (label))
12893 LABEL_NUSES (label)--;
12894 place2 = 0;
12895 }
12896 break;
12897
12898 case REG_NONNEG:
12899 /* This note says something about the value of a register prior
12900 to the execution of an insn. It is too much trouble to see
12901 if the note is still correct in all situations. It is better
12902 to simply delete it. */
12903 break;
12904
12905 case REG_DEAD:
12906 /* If we replaced the right hand side of FROM_INSN with a
12907 REG_EQUAL note, the original use of the dying register
12908 will not have been combined into I3 and I2. In such cases,
12909 FROM_INSN is guaranteed to be the first of the combined
12910 instructions, so we simply need to search back before
12911 FROM_INSN for the previous use or set of this register,
12912 then alter the notes there appropriately.
12913
12914 If the register is used as an input in I3, it dies there.
12915 Similarly for I2, if it is nonzero and adjacent to I3.
12916
12917 If the register is not used as an input in either I3 or I2
12918 and it is not one of the registers we were supposed to eliminate,
12919 there are two possibilities. We might have a non-adjacent I2
12920 or we might have somehow eliminated an additional register
12921 from a computation. For example, we might have had A & B where
12922 we discover that B will always be zero. In this case we will
12923 eliminate the reference to A.
12924
12925 In both cases, we must search to see if we can find a previous
12926 use of A and put the death note there. */
12927
12928 if (from_insn
12929 && from_insn == i2mod
12930 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12931 tem = from_insn;
12932 else
12933 {
12934 if (from_insn
12935 && CALL_P (from_insn)
12936 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12937 place = from_insn;
12938 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12939 place = i3;
12940 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
12941 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12942 place = i2;
12943 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12944 && !(i2mod
12945 && reg_overlap_mentioned_p (XEXP (note, 0),
12946 i2mod_old_rhs)))
12947 || rtx_equal_p (XEXP (note, 0), elim_i1))
12948 break;
12949 tem = i3;
12950 }
12951
12952 if (place == 0)
12953 {
12954 basic_block bb = this_basic_block;
12955
12956 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12957 {
12958 if (!NONDEBUG_INSN_P (tem))
12959 {
12960 if (tem == BB_HEAD (bb))
12961 break;
12962 continue;
12963 }
12964
12965 /* If the register is being set at TEM, see if that is all
12966 TEM is doing. If so, delete TEM. Otherwise, make this
12967 into a REG_UNUSED note instead. Don't delete sets to
12968 global register vars. */
12969 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12970 || !global_regs[REGNO (XEXP (note, 0))])
12971 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12972 {
12973 rtx set = single_set (tem);
12974 rtx inner_dest = 0;
12975 #ifdef HAVE_cc0
12976 rtx cc0_setter = NULL_RTX;
12977 #endif
12978
12979 if (set != 0)
12980 for (inner_dest = SET_DEST (set);
12981 (GET_CODE (inner_dest) == STRICT_LOW_PART
12982 || GET_CODE (inner_dest) == SUBREG
12983 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12984 inner_dest = XEXP (inner_dest, 0))
12985 ;
12986
12987 /* Verify that it was the set, and not a clobber that
12988 modified the register.
12989
12990 CC0 targets must be careful to maintain setter/user
12991 pairs. If we cannot delete the setter due to side
12992 effects, mark the user with an UNUSED note instead
12993 of deleting it. */
12994
12995 if (set != 0 && ! side_effects_p (SET_SRC (set))
12996 && rtx_equal_p (XEXP (note, 0), inner_dest)
12997 #ifdef HAVE_cc0
12998 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12999 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13000 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13001 #endif
13002 )
13003 {
13004 /* Move the notes and links of TEM elsewhere.
13005 This might delete other dead insns recursively.
13006 First set the pattern to something that won't use
13007 any register. */
13008 rtx old_notes = REG_NOTES (tem);
13009
13010 PATTERN (tem) = pc_rtx;
13011 REG_NOTES (tem) = NULL;
13012
13013 distribute_notes (old_notes, tem, tem, NULL_RTX,
13014 NULL_RTX, NULL_RTX);
13015 distribute_links (LOG_LINKS (tem));
13016
13017 SET_INSN_DELETED (tem);
13018 if (tem == i2)
13019 i2 = NULL_RTX;
13020
13021 #ifdef HAVE_cc0
13022 /* Delete the setter too. */
13023 if (cc0_setter)
13024 {
13025 PATTERN (cc0_setter) = pc_rtx;
13026 old_notes = REG_NOTES (cc0_setter);
13027 REG_NOTES (cc0_setter) = NULL;
13028
13029 distribute_notes (old_notes, cc0_setter,
13030 cc0_setter, NULL_RTX,
13031 NULL_RTX, NULL_RTX);
13032 distribute_links (LOG_LINKS (cc0_setter));
13033
13034 SET_INSN_DELETED (cc0_setter);
13035 if (cc0_setter == i2)
13036 i2 = NULL_RTX;
13037 }
13038 #endif
13039 }
13040 else
13041 {
13042 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13043
13044 /* If there isn't already a REG_UNUSED note, put one
13045 here. Do not place a REG_DEAD note, even if
13046 the register is also used here; that would not
13047 match the algorithm used in lifetime analysis
13048 and can cause the consistency check in the
13049 scheduler to fail. */
13050 if (! find_regno_note (tem, REG_UNUSED,
13051 REGNO (XEXP (note, 0))))
13052 place = tem;
13053 break;
13054 }
13055 }
13056 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13057 || (CALL_P (tem)
13058 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13059 {
13060 place = tem;
13061
13062 /* If we are doing a 3->2 combination, and we have a
13063 register which formerly died in i3 and was not used
13064 by i2, which now no longer dies in i3 and is used in
13065 i2 but does not die in i2, and place is between i2
13066 and i3, then we may need to move a link from place to
13067 i2. */
13068 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13069 && from_insn
13070 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13071 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13072 {
13073 rtx links = LOG_LINKS (place);
13074 LOG_LINKS (place) = 0;
13075 distribute_links (links);
13076 }
13077 break;
13078 }
13079
13080 if (tem == BB_HEAD (bb))
13081 break;
13082 }
13083
13084 }
13085
13086 /* If the register is set or already dead at PLACE, we needn't do
13087 anything with this note if it is still a REG_DEAD note.
13088 We check here if it is set at all, not if is it totally replaced,
13089 which is what `dead_or_set_p' checks, so also check for it being
13090 set partially. */
13091
13092 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13093 {
13094 unsigned int regno = REGNO (XEXP (note, 0));
13095 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13096
13097 if (dead_or_set_p (place, XEXP (note, 0))
13098 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13099 {
13100 /* Unless the register previously died in PLACE, clear
13101 last_death. [I no longer understand why this is
13102 being done.] */
13103 if (rsp->last_death != place)
13104 rsp->last_death = 0;
13105 place = 0;
13106 }
13107 else
13108 rsp->last_death = place;
13109
13110 /* If this is a death note for a hard reg that is occupying
13111 multiple registers, ensure that we are still using all
13112 parts of the object. If we find a piece of the object
13113 that is unused, we must arrange for an appropriate REG_DEAD
13114 note to be added for it. However, we can't just emit a USE
13115 and tag the note to it, since the register might actually
13116 be dead; so we recourse, and the recursive call then finds
13117 the previous insn that used this register. */
13118
13119 if (place && regno < FIRST_PSEUDO_REGISTER
13120 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13121 {
13122 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13123 int all_used = 1;
13124 unsigned int i;
13125
13126 for (i = regno; i < endregno; i++)
13127 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13128 && ! find_regno_fusage (place, USE, i))
13129 || dead_or_set_regno_p (place, i))
13130 all_used = 0;
13131
13132 if (! all_used)
13133 {
13134 /* Put only REG_DEAD notes for pieces that are
13135 not already dead or set. */
13136
13137 for (i = regno; i < endregno;
13138 i += hard_regno_nregs[i][reg_raw_mode[i]])
13139 {
13140 rtx piece = regno_reg_rtx[i];
13141 basic_block bb = this_basic_block;
13142
13143 if (! dead_or_set_p (place, piece)
13144 && ! reg_bitfield_target_p (piece,
13145 PATTERN (place)))
13146 {
13147 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13148 NULL_RTX);
13149
13150 distribute_notes (new_note, place, place,
13151 NULL_RTX, NULL_RTX, NULL_RTX);
13152 }
13153 else if (! refers_to_regno_p (i, i + 1,
13154 PATTERN (place), 0)
13155 && ! find_regno_fusage (place, USE, i))
13156 for (tem = PREV_INSN (place); ;
13157 tem = PREV_INSN (tem))
13158 {
13159 if (!NONDEBUG_INSN_P (tem))
13160 {
13161 if (tem == BB_HEAD (bb))
13162 break;
13163 continue;
13164 }
13165 if (dead_or_set_p (tem, piece)
13166 || reg_bitfield_target_p (piece,
13167 PATTERN (tem)))
13168 {
13169 add_reg_note (tem, REG_UNUSED, piece);
13170 break;
13171 }
13172 }
13173
13174 }
13175
13176 place = 0;
13177 }
13178 }
13179 }
13180 break;
13181
13182 default:
13183 /* Any other notes should not be present at this point in the
13184 compilation. */
13185 gcc_unreachable ();
13186 }
13187
13188 if (place)
13189 {
13190 XEXP (note, 1) = REG_NOTES (place);
13191 REG_NOTES (place) = note;
13192 }
13193
13194 if (place2)
13195 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13196 }
13197 }
13198 \f
13199 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13200 I3, I2, and I1 to new locations. This is also called to add a link
13201 pointing at I3 when I3's destination is changed. */
13202
13203 static void
13204 distribute_links (rtx links)
13205 {
13206 rtx link, next_link;
13207
13208 for (link = links; link; link = next_link)
13209 {
13210 rtx place = 0;
13211 rtx insn;
13212 rtx set, reg;
13213
13214 next_link = XEXP (link, 1);
13215
13216 /* If the insn that this link points to is a NOTE or isn't a single
13217 set, ignore it. In the latter case, it isn't clear what we
13218 can do other than ignore the link, since we can't tell which
13219 register it was for. Such links wouldn't be used by combine
13220 anyway.
13221
13222 It is not possible for the destination of the target of the link to
13223 have been changed by combine. The only potential of this is if we
13224 replace I3, I2, and I1 by I3 and I2. But in that case the
13225 destination of I2 also remains unchanged. */
13226
13227 if (NOTE_P (XEXP (link, 0))
13228 || (set = single_set (XEXP (link, 0))) == 0)
13229 continue;
13230
13231 reg = SET_DEST (set);
13232 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13233 || GET_CODE (reg) == STRICT_LOW_PART)
13234 reg = XEXP (reg, 0);
13235
13236 /* A LOG_LINK is defined as being placed on the first insn that uses
13237 a register and points to the insn that sets the register. Start
13238 searching at the next insn after the target of the link and stop
13239 when we reach a set of the register or the end of the basic block.
13240
13241 Note that this correctly handles the link that used to point from
13242 I3 to I2. Also note that not much searching is typically done here
13243 since most links don't point very far away. */
13244
13245 for (insn = NEXT_INSN (XEXP (link, 0));
13246 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13247 || BB_HEAD (this_basic_block->next_bb) != insn));
13248 insn = NEXT_INSN (insn))
13249 if (DEBUG_INSN_P (insn))
13250 continue;
13251 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13252 {
13253 if (reg_referenced_p (reg, PATTERN (insn)))
13254 place = insn;
13255 break;
13256 }
13257 else if (CALL_P (insn)
13258 && find_reg_fusage (insn, USE, reg))
13259 {
13260 place = insn;
13261 break;
13262 }
13263 else if (INSN_P (insn) && reg_set_p (reg, insn))
13264 break;
13265
13266 /* If we found a place to put the link, place it there unless there
13267 is already a link to the same insn as LINK at that point. */
13268
13269 if (place)
13270 {
13271 rtx link2;
13272
13273 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13274 if (XEXP (link2, 0) == XEXP (link, 0))
13275 break;
13276
13277 if (link2 == 0)
13278 {
13279 XEXP (link, 1) = LOG_LINKS (place);
13280 LOG_LINKS (place) = link;
13281
13282 /* Set added_links_insn to the earliest insn we added a
13283 link to. */
13284 if (added_links_insn == 0
13285 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13286 added_links_insn = place;
13287 }
13288 }
13289 }
13290 }
13291 \f
13292 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13293 Check whether the expression pointer to by LOC is a register or
13294 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13295 Otherwise return zero. */
13296
13297 static int
13298 unmentioned_reg_p_1 (rtx *loc, void *expr)
13299 {
13300 rtx x = *loc;
13301
13302 if (x != NULL_RTX
13303 && (REG_P (x) || MEM_P (x))
13304 && ! reg_mentioned_p (x, (rtx) expr))
13305 return 1;
13306 return 0;
13307 }
13308
13309 /* Check for any register or memory mentioned in EQUIV that is not
13310 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13311 of EXPR where some registers may have been replaced by constants. */
13312
13313 static bool
13314 unmentioned_reg_p (rtx equiv, rtx expr)
13315 {
13316 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13317 }
13318 \f
13319 void
13320 dump_combine_stats (FILE *file)
13321 {
13322 fprintf
13323 (file,
13324 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13325 combine_attempts, combine_merges, combine_extras, combine_successes);
13326 }
13327
13328 void
13329 dump_combine_total_stats (FILE *file)
13330 {
13331 fprintf
13332 (file,
13333 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13334 total_attempts, total_merges, total_extras, total_successes);
13335 }
13336 \f
13337 static bool
13338 gate_handle_combine (void)
13339 {
13340 return (optimize > 0);
13341 }
13342
13343 /* Try combining insns through substitution. */
13344 static unsigned int
13345 rest_of_handle_combine (void)
13346 {
13347 int rebuild_jump_labels_after_combine;
13348
13349 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13350 df_note_add_problem ();
13351 df_analyze ();
13352
13353 regstat_init_n_sets_and_refs ();
13354
13355 rebuild_jump_labels_after_combine
13356 = combine_instructions (get_insns (), max_reg_num ());
13357
13358 /* Combining insns may have turned an indirect jump into a
13359 direct jump. Rebuild the JUMP_LABEL fields of jumping
13360 instructions. */
13361 if (rebuild_jump_labels_after_combine)
13362 {
13363 timevar_push (TV_JUMP);
13364 rebuild_jump_labels (get_insns ());
13365 cleanup_cfg (0);
13366 timevar_pop (TV_JUMP);
13367 }
13368
13369 regstat_free_n_sets_and_refs ();
13370 return 0;
13371 }
13372
13373 struct rtl_opt_pass pass_combine =
13374 {
13375 {
13376 RTL_PASS,
13377 "combine", /* name */
13378 gate_handle_combine, /* gate */
13379 rest_of_handle_combine, /* execute */
13380 NULL, /* sub */
13381 NULL, /* next */
13382 0, /* static_pass_number */
13383 TV_COMBINE, /* tv_id */
13384 PROP_cfglayout, /* properties_required */
13385 0, /* properties_provided */
13386 0, /* properties_destroyed */
13387 0, /* todo_flags_start */
13388 TODO_dump_func |
13389 TODO_df_finish | TODO_verify_rtl_sharing |
13390 TODO_ggc_collect, /* todo_flags_finish */
13391 }
13392 };