]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/combine.c
Merge basic-improvements-branch to trunk
[thirdparty/gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
54
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
63
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
67
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
76
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tm_p.h"
83 #include "flags.h"
84 #include "regs.h"
85 #include "hard-reg-set.h"
86 #include "basic-block.h"
87 #include "insn-config.h"
88 #include "function.h"
89 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
90 #include "expr.h"
91 #include "insn-attr.h"
92 #include "recog.h"
93 #include "real.h"
94 #include "toplev.h"
95
96 /* It is not safe to use ordinary gen_lowpart in combine.
97 Use gen_lowpart_for_combine instead. See comments there. */
98 #define gen_lowpart dont_use_gen_lowpart_you_dummy
99
100 /* Number of attempts to combine instructions in this function. */
101
102 static int combine_attempts;
103
104 /* Number of attempts that got as far as substitution in this function. */
105
106 static int combine_merges;
107
108 /* Number of instructions combined with added SETs in this function. */
109
110 static int combine_extras;
111
112 /* Number of instructions combined in this function. */
113
114 static int combine_successes;
115
116 /* Totals over entire compilation. */
117
118 static int total_attempts, total_merges, total_extras, total_successes;
119
120 \f
121 /* Vector mapping INSN_UIDs to cuids.
122 The cuids are like uids but increase monotonically always.
123 Combine always uses cuids so that it can compare them.
124 But actually renumbering the uids, which we used to do,
125 proves to be a bad idea because it makes it hard to compare
126 the dumps produced by earlier passes with those from later passes. */
127
128 static int *uid_cuid;
129 static int max_uid_cuid;
130
131 /* Get the cuid of an insn. */
132
133 #define INSN_CUID(INSN) \
134 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
135
136 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
137 BITS_PER_WORD would invoke undefined behavior. Work around it. */
138
139 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
140 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
141
142 /* Maximum register number, which is the size of the tables below. */
143
144 static unsigned int combine_max_regno;
145
146 /* Record last point of death of (hard or pseudo) register n. */
147
148 static rtx *reg_last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151
152 static rtx *reg_last_set;
153
154 /* Record the cuid of the last insn that invalidated memory
155 (anything that writes memory, and subroutine calls, but not pushes). */
156
157 static int mem_last_set;
158
159 /* Record the cuid of the last CALL_INSN
160 so we can tell whether a potential combination crosses any calls. */
161
162 static int last_call_cuid;
163
164 /* When `subst' is called, this is the insn that is being modified
165 (by combining in a previous insn). The PATTERN of this insn
166 is still the old pattern partially modified and it should not be
167 looked at, but this may be used to examine the successors of the insn
168 to judge whether a simplification is valid. */
169
170 static rtx subst_insn;
171
172 /* This is the lowest CUID that `subst' is currently dealing with.
173 get_last_value will not return a value if the register was set at or
174 after this CUID. If not for this mechanism, we could get confused if
175 I2 or I1 in try_combine were an insn that used the old value of a register
176 to obtain a new value. In that case, we might erroneously get the
177 new value of the register when we wanted the old one. */
178
179 static int subst_low_cuid;
180
181 /* This contains any hard registers that are used in newpat; reg_dead_at_p
182 must consider all these registers to be always live. */
183
184 static HARD_REG_SET newpat_used_regs;
185
186 /* This is an insn to which a LOG_LINKS entry has been added. If this
187 insn is the earlier than I2 or I3, combine should rescan starting at
188 that location. */
189
190 static rtx added_links_insn;
191
192 /* Basic block in which we are performing combines. */
193 static basic_block this_basic_block;
194
195 /* A bitmap indicating which blocks had registers go dead at entry.
196 After combine, we'll need to re-do global life analysis with
197 those blocks as starting points. */
198 static sbitmap refresh_blocks;
199 \f
200 /* The next group of arrays allows the recording of the last value assigned
201 to (hard or pseudo) register n. We use this information to see if a
202 operation being processed is redundant given a prior operation performed
203 on the register. For example, an `and' with a constant is redundant if
204 all the zero bits are already known to be turned off.
205
206 We use an approach similar to that used by cse, but change it in the
207 following ways:
208
209 (1) We do not want to reinitialize at each label.
210 (2) It is useful, but not critical, to know the actual value assigned
211 to a register. Often just its form is helpful.
212
213 Therefore, we maintain the following arrays:
214
215 reg_last_set_value the last value assigned
216 reg_last_set_label records the value of label_tick when the
217 register was assigned
218 reg_last_set_table_tick records the value of label_tick when a
219 value using the register is assigned
220 reg_last_set_invalid set to nonzero when it is not valid
221 to use the value of this register in some
222 register's value
223
224 To understand the usage of these tables, it is important to understand
225 the distinction between the value in reg_last_set_value being valid
226 and the register being validly contained in some other expression in the
227 table.
228
229 Entry I in reg_last_set_value is valid if it is nonzero, and either
230 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
231
232 Register I may validly appear in any expression returned for the value
233 of another register if reg_n_sets[i] is 1. It may also appear in the
234 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
235 reg_last_set_invalid[j] is zero.
236
237 If an expression is found in the table containing a register which may
238 not validly appear in an expression, the register is replaced by
239 something that won't match, (clobber (const_int 0)).
240
241 reg_last_set_invalid[i] is set nonzero when register I is being assigned
242 to and reg_last_set_table_tick[i] == label_tick. */
243
244 /* Record last value assigned to (hard or pseudo) register n. */
245
246 static rtx *reg_last_set_value;
247
248 /* Record the value of label_tick when the value for register n is placed in
249 reg_last_set_value[n]. */
250
251 static int *reg_last_set_label;
252
253 /* Record the value of label_tick when an expression involving register n
254 is placed in reg_last_set_value. */
255
256 static int *reg_last_set_table_tick;
257
258 /* Set nonzero if references to register n in expressions should not be
259 used. */
260
261 static char *reg_last_set_invalid;
262
263 /* Incremented for each label. */
264
265 static int label_tick;
266
267 /* Some registers that are set more than once and used in more than one
268 basic block are nevertheless always set in similar ways. For example,
269 a QImode register may be loaded from memory in two places on a machine
270 where byte loads zero extend.
271
272 We record in the following array what we know about the nonzero
273 bits of a register, specifically which bits are known to be zero.
274
275 If an entry is zero, it means that we don't know anything special. */
276
277 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
278
279 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
280 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
281
282 static enum machine_mode nonzero_bits_mode;
283
284 /* Nonzero if we know that a register has some leading bits that are always
285 equal to the sign bit. */
286
287 static unsigned char *reg_sign_bit_copies;
288
289 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
290 It is zero while computing them and after combine has completed. This
291 former test prevents propagating values based on previously set values,
292 which can be incorrect if a variable is modified in a loop. */
293
294 static int nonzero_sign_valid;
295
296 /* These arrays are maintained in parallel with reg_last_set_value
297 and are used to store the mode in which the register was last set,
298 the bits that were known to be zero when it was last set, and the
299 number of sign bits copies it was known to have when it was last set. */
300
301 static enum machine_mode *reg_last_set_mode;
302 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
303 static char *reg_last_set_sign_bit_copies;
304 \f
305 /* Record one modification to rtl structure
306 to be undone by storing old_contents into *where.
307 is_int is 1 if the contents are an int. */
308
309 struct undo
310 {
311 struct undo *next;
312 int is_int;
313 union {rtx r; int i;} old_contents;
314 union {rtx *r; int *i;} where;
315 };
316
317 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
318 num_undo says how many are currently recorded.
319
320 other_insn is nonzero if we have modified some other insn in the process
321 of working on subst_insn. It must be verified too. */
322
323 struct undobuf
324 {
325 struct undo *undos;
326 struct undo *frees;
327 rtx other_insn;
328 };
329
330 static struct undobuf undobuf;
331
332 /* Number of times the pseudo being substituted for
333 was found and replaced. */
334
335 static int n_occurrences;
336
337 static void do_SUBST PARAMS ((rtx *, rtx));
338 static void do_SUBST_INT PARAMS ((int *, int));
339 static void init_reg_last_arrays PARAMS ((void));
340 static void setup_incoming_promotions PARAMS ((void));
341 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
342 static int cant_combine_insn_p PARAMS ((rtx));
343 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
344 static int sets_function_arg_p PARAMS ((rtx));
345 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
346 static int contains_muldiv PARAMS ((rtx));
347 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
348 static void undo_all PARAMS ((void));
349 static void undo_commit PARAMS ((void));
350 static rtx *find_split_point PARAMS ((rtx *, rtx));
351 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
352 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
353 static rtx simplify_if_then_else PARAMS ((rtx));
354 static rtx simplify_set PARAMS ((rtx));
355 static rtx simplify_logical PARAMS ((rtx, int));
356 static rtx expand_compound_operation PARAMS ((rtx));
357 static rtx expand_field_assignment PARAMS ((rtx));
358 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
359 rtx, unsigned HOST_WIDE_INT, int,
360 int, int));
361 static rtx extract_left_shift PARAMS ((rtx, int));
362 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
363 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
364 unsigned HOST_WIDE_INT *));
365 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
366 unsigned HOST_WIDE_INT, rtx, int));
367 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
368 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
369 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
370 static rtx make_field_assignment PARAMS ((rtx));
371 static rtx apply_distributive_law PARAMS ((rtx));
372 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
373 unsigned HOST_WIDE_INT));
374 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
375 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
376 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
377 enum rtx_code, HOST_WIDE_INT,
378 enum machine_mode, int *));
379 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
380 rtx, int));
381 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
382 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
383 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
384 rtx, rtx));
385 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
386 static void update_table_tick PARAMS ((rtx));
387 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
388 static void check_promoted_subreg PARAMS ((rtx, rtx));
389 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
390 static void record_dead_and_set_regs PARAMS ((rtx));
391 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
392 static rtx get_last_value PARAMS ((rtx));
393 static int use_crosses_set_p PARAMS ((rtx, int));
394 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
395 static int reg_dead_at_p PARAMS ((rtx, rtx));
396 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
397 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
398 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
399 static void distribute_links PARAMS ((rtx));
400 static void mark_used_regs_combine PARAMS ((rtx));
401 static int insn_cuid PARAMS ((rtx));
402 static void record_promoted_value PARAMS ((rtx, rtx));
403 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
404 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
405 \f
406 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
407 insn. The substitution can be undone by undo_all. If INTO is already
408 set to NEWVAL, do not record this change. Because computing NEWVAL might
409 also call SUBST, we have to compute it before we put anything into
410 the undo table. */
411
412 static void
413 do_SUBST (into, newval)
414 rtx *into, newval;
415 {
416 struct undo *buf;
417 rtx oldval = *into;
418
419 if (oldval == newval)
420 return;
421
422 /* We'd like to catch as many invalid transformations here as
423 possible. Unfortunately, there are way too many mode changes
424 that are perfectly valid, so we'd waste too much effort for
425 little gain doing the checks here. Focus on catching invalid
426 transformations involving integer constants. */
427 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
428 && GET_CODE (newval) == CONST_INT)
429 {
430 /* Sanity check that we're replacing oldval with a CONST_INT
431 that is a valid sign-extension for the original mode. */
432 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
433 GET_MODE (oldval)))
434 abort ();
435
436 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
437 CONST_INT is not valid, because after the replacement, the
438 original mode would be gone. Unfortunately, we can't tell
439 when do_SUBST is called to replace the operand thereof, so we
440 perform this test on oldval instead, checking whether an
441 invalid replacement took place before we got here. */
442 if ((GET_CODE (oldval) == SUBREG
443 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
444 || (GET_CODE (oldval) == ZERO_EXTEND
445 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
446 abort ();
447 }
448
449 if (undobuf.frees)
450 buf = undobuf.frees, undobuf.frees = buf->next;
451 else
452 buf = (struct undo *) xmalloc (sizeof (struct undo));
453
454 buf->is_int = 0;
455 buf->where.r = into;
456 buf->old_contents.r = oldval;
457 *into = newval;
458
459 buf->next = undobuf.undos, undobuf.undos = buf;
460 }
461
462 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
463
464 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
465 for the value of a HOST_WIDE_INT value (including CONST_INT) is
466 not safe. */
467
468 static void
469 do_SUBST_INT (into, newval)
470 int *into, newval;
471 {
472 struct undo *buf;
473 int oldval = *into;
474
475 if (oldval == newval)
476 return;
477
478 if (undobuf.frees)
479 buf = undobuf.frees, undobuf.frees = buf->next;
480 else
481 buf = (struct undo *) xmalloc (sizeof (struct undo));
482
483 buf->is_int = 1;
484 buf->where.i = into;
485 buf->old_contents.i = oldval;
486 *into = newval;
487
488 buf->next = undobuf.undos, undobuf.undos = buf;
489 }
490
491 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
492 \f
493 /* Main entry point for combiner. F is the first insn of the function.
494 NREGS is the first unused pseudo-reg number.
495
496 Return nonzero if the combiner has turned an indirect jump
497 instruction into a direct jump. */
498 int
499 combine_instructions (f, nregs)
500 rtx f;
501 unsigned int nregs;
502 {
503 rtx insn, next;
504 #ifdef HAVE_cc0
505 rtx prev;
506 #endif
507 int i;
508 rtx links, nextlinks;
509
510 int new_direct_jump_p = 0;
511
512 combine_attempts = 0;
513 combine_merges = 0;
514 combine_extras = 0;
515 combine_successes = 0;
516
517 combine_max_regno = nregs;
518
519 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
520 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
521 reg_sign_bit_copies
522 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
523
524 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
525 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
526 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
527 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
528 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
529 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
530 reg_last_set_mode
531 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
532 reg_last_set_nonzero_bits
533 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
534 reg_last_set_sign_bit_copies
535 = (char *) xmalloc (nregs * sizeof (char));
536
537 init_reg_last_arrays ();
538
539 init_recog_no_volatile ();
540
541 /* Compute maximum uid value so uid_cuid can be allocated. */
542
543 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
544 if (INSN_UID (insn) > i)
545 i = INSN_UID (insn);
546
547 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
548 max_uid_cuid = i;
549
550 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
551
552 /* Don't use reg_nonzero_bits when computing it. This can cause problems
553 when, for example, we have j <<= 1 in a loop. */
554
555 nonzero_sign_valid = 0;
556
557 /* Compute the mapping from uids to cuids.
558 Cuids are numbers assigned to insns, like uids,
559 except that cuids increase monotonically through the code.
560
561 Scan all SETs and see if we can deduce anything about what
562 bits are known to be zero for some registers and how many copies
563 of the sign bit are known to exist for those registers.
564
565 Also set any known values so that we can use it while searching
566 for what bits are known to be set. */
567
568 label_tick = 1;
569
570 setup_incoming_promotions ();
571
572 refresh_blocks = sbitmap_alloc (last_basic_block);
573 sbitmap_zero (refresh_blocks);
574
575 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
576 {
577 uid_cuid[INSN_UID (insn)] = ++i;
578 subst_low_cuid = i;
579 subst_insn = insn;
580
581 if (INSN_P (insn))
582 {
583 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
584 NULL);
585 record_dead_and_set_regs (insn);
586
587 #ifdef AUTO_INC_DEC
588 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
589 if (REG_NOTE_KIND (links) == REG_INC)
590 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
591 NULL);
592 #endif
593 }
594
595 if (GET_CODE (insn) == CODE_LABEL)
596 label_tick++;
597 }
598
599 nonzero_sign_valid = 1;
600
601 /* Now scan all the insns in forward order. */
602
603 label_tick = 1;
604 last_call_cuid = 0;
605 mem_last_set = 0;
606 init_reg_last_arrays ();
607 setup_incoming_promotions ();
608
609 FOR_EACH_BB (this_basic_block)
610 {
611 for (insn = this_basic_block->head;
612 insn != NEXT_INSN (this_basic_block->end);
613 insn = next ? next : NEXT_INSN (insn))
614 {
615 next = 0;
616
617 if (GET_CODE (insn) == CODE_LABEL)
618 label_tick++;
619
620 else if (INSN_P (insn))
621 {
622 /* See if we know about function return values before this
623 insn based upon SUBREG flags. */
624 check_promoted_subreg (insn, PATTERN (insn));
625
626 /* Try this insn with each insn it links back to. */
627
628 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
629 if ((next = try_combine (insn, XEXP (links, 0),
630 NULL_RTX, &new_direct_jump_p)) != 0)
631 goto retry;
632
633 /* Try each sequence of three linked insns ending with this one. */
634
635 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
636 {
637 rtx link = XEXP (links, 0);
638
639 /* If the linked insn has been replaced by a note, then there
640 is no point in pursuing this chain any further. */
641 if (GET_CODE (link) == NOTE)
642 continue;
643
644 for (nextlinks = LOG_LINKS (link);
645 nextlinks;
646 nextlinks = XEXP (nextlinks, 1))
647 if ((next = try_combine (insn, link,
648 XEXP (nextlinks, 0),
649 &new_direct_jump_p)) != 0)
650 goto retry;
651 }
652
653 #ifdef HAVE_cc0
654 /* Try to combine a jump insn that uses CC0
655 with a preceding insn that sets CC0, and maybe with its
656 logical predecessor as well.
657 This is how we make decrement-and-branch insns.
658 We need this special code because data flow connections
659 via CC0 do not get entered in LOG_LINKS. */
660
661 if (GET_CODE (insn) == JUMP_INSN
662 && (prev = prev_nonnote_insn (insn)) != 0
663 && GET_CODE (prev) == INSN
664 && sets_cc0_p (PATTERN (prev)))
665 {
666 if ((next = try_combine (insn, prev,
667 NULL_RTX, &new_direct_jump_p)) != 0)
668 goto retry;
669
670 for (nextlinks = LOG_LINKS (prev); nextlinks;
671 nextlinks = XEXP (nextlinks, 1))
672 if ((next = try_combine (insn, prev,
673 XEXP (nextlinks, 0),
674 &new_direct_jump_p)) != 0)
675 goto retry;
676 }
677
678 /* Do the same for an insn that explicitly references CC0. */
679 if (GET_CODE (insn) == INSN
680 && (prev = prev_nonnote_insn (insn)) != 0
681 && GET_CODE (prev) == INSN
682 && sets_cc0_p (PATTERN (prev))
683 && GET_CODE (PATTERN (insn)) == SET
684 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
685 {
686 if ((next = try_combine (insn, prev,
687 NULL_RTX, &new_direct_jump_p)) != 0)
688 goto retry;
689
690 for (nextlinks = LOG_LINKS (prev); nextlinks;
691 nextlinks = XEXP (nextlinks, 1))
692 if ((next = try_combine (insn, prev,
693 XEXP (nextlinks, 0),
694 &new_direct_jump_p)) != 0)
695 goto retry;
696 }
697
698 /* Finally, see if any of the insns that this insn links to
699 explicitly references CC0. If so, try this insn, that insn,
700 and its predecessor if it sets CC0. */
701 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
702 if (GET_CODE (XEXP (links, 0)) == INSN
703 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
704 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
705 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
706 && GET_CODE (prev) == INSN
707 && sets_cc0_p (PATTERN (prev))
708 && (next = try_combine (insn, XEXP (links, 0),
709 prev, &new_direct_jump_p)) != 0)
710 goto retry;
711 #endif
712
713 /* Try combining an insn with two different insns whose results it
714 uses. */
715 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
716 for (nextlinks = XEXP (links, 1); nextlinks;
717 nextlinks = XEXP (nextlinks, 1))
718 if ((next = try_combine (insn, XEXP (links, 0),
719 XEXP (nextlinks, 0),
720 &new_direct_jump_p)) != 0)
721 goto retry;
722
723 if (GET_CODE (insn) != NOTE)
724 record_dead_and_set_regs (insn);
725
726 retry:
727 ;
728 }
729 }
730 }
731 clear_bb_flags ();
732
733 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
734 BASIC_BLOCK (i)->flags |= BB_DIRTY);
735 new_direct_jump_p |= purge_all_dead_edges (0);
736 delete_noop_moves (f);
737
738 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
739 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
740 | PROP_KILL_DEAD_CODE);
741
742 /* Clean up. */
743 sbitmap_free (refresh_blocks);
744 free (reg_nonzero_bits);
745 free (reg_sign_bit_copies);
746 free (reg_last_death);
747 free (reg_last_set);
748 free (reg_last_set_value);
749 free (reg_last_set_table_tick);
750 free (reg_last_set_label);
751 free (reg_last_set_invalid);
752 free (reg_last_set_mode);
753 free (reg_last_set_nonzero_bits);
754 free (reg_last_set_sign_bit_copies);
755 free (uid_cuid);
756
757 {
758 struct undo *undo, *next;
759 for (undo = undobuf.frees; undo; undo = next)
760 {
761 next = undo->next;
762 free (undo);
763 }
764 undobuf.frees = 0;
765 }
766
767 total_attempts += combine_attempts;
768 total_merges += combine_merges;
769 total_extras += combine_extras;
770 total_successes += combine_successes;
771
772 nonzero_sign_valid = 0;
773
774 /* Make recognizer allow volatile MEMs again. */
775 init_recog ();
776
777 return new_direct_jump_p;
778 }
779
780 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
781
782 static void
783 init_reg_last_arrays ()
784 {
785 unsigned int nregs = combine_max_regno;
786
787 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
788 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
789 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
790 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
791 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
792 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
793 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
794 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
795 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
796 }
797 \f
798 /* Set up any promoted values for incoming argument registers. */
799
800 static void
801 setup_incoming_promotions ()
802 {
803 #ifdef PROMOTE_FUNCTION_ARGS
804 unsigned int regno;
805 rtx reg;
806 enum machine_mode mode;
807 int unsignedp;
808 rtx first = get_insns ();
809
810 #ifndef OUTGOING_REGNO
811 #define OUTGOING_REGNO(N) N
812 #endif
813 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
814 /* Check whether this register can hold an incoming pointer
815 argument. FUNCTION_ARG_REGNO_P tests outgoing register
816 numbers, so translate if necessary due to register windows. */
817 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
818 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
819 {
820 record_value_for_reg
821 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
822 : SIGN_EXTEND),
823 GET_MODE (reg),
824 gen_rtx_CLOBBER (mode, const0_rtx)));
825 }
826 #endif
827 }
828 \f
829 /* Called via note_stores. If X is a pseudo that is narrower than
830 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
831
832 If we are setting only a portion of X and we can't figure out what
833 portion, assume all bits will be used since we don't know what will
834 be happening.
835
836 Similarly, set how many bits of X are known to be copies of the sign bit
837 at all locations in the function. This is the smallest number implied
838 by any set of X. */
839
840 static void
841 set_nonzero_bits_and_sign_copies (x, set, data)
842 rtx x;
843 rtx set;
844 void *data ATTRIBUTE_UNUSED;
845 {
846 unsigned int num;
847
848 if (GET_CODE (x) == REG
849 && REGNO (x) >= FIRST_PSEUDO_REGISTER
850 /* If this register is undefined at the start of the file, we can't
851 say what its contents were. */
852 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
853 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
854 {
855 if (set == 0 || GET_CODE (set) == CLOBBER)
856 {
857 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
858 reg_sign_bit_copies[REGNO (x)] = 1;
859 return;
860 }
861
862 /* If this is a complex assignment, see if we can convert it into a
863 simple assignment. */
864 set = expand_field_assignment (set);
865
866 /* If this is a simple assignment, or we have a paradoxical SUBREG,
867 set what we know about X. */
868
869 if (SET_DEST (set) == x
870 || (GET_CODE (SET_DEST (set)) == SUBREG
871 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
872 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
873 && SUBREG_REG (SET_DEST (set)) == x))
874 {
875 rtx src = SET_SRC (set);
876
877 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
878 /* If X is narrower than a word and SRC is a non-negative
879 constant that would appear negative in the mode of X,
880 sign-extend it for use in reg_nonzero_bits because some
881 machines (maybe most) will actually do the sign-extension
882 and this is the conservative approach.
883
884 ??? For 2.5, try to tighten up the MD files in this regard
885 instead of this kludge. */
886
887 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
888 && GET_CODE (src) == CONST_INT
889 && INTVAL (src) > 0
890 && 0 != (INTVAL (src)
891 & ((HOST_WIDE_INT) 1
892 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
893 src = GEN_INT (INTVAL (src)
894 | ((HOST_WIDE_INT) (-1)
895 << GET_MODE_BITSIZE (GET_MODE (x))));
896 #endif
897
898 /* Don't call nonzero_bits if it cannot change anything. */
899 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
900 reg_nonzero_bits[REGNO (x)]
901 |= nonzero_bits (src, nonzero_bits_mode);
902 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
903 if (reg_sign_bit_copies[REGNO (x)] == 0
904 || reg_sign_bit_copies[REGNO (x)] > num)
905 reg_sign_bit_copies[REGNO (x)] = num;
906 }
907 else
908 {
909 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
910 reg_sign_bit_copies[REGNO (x)] = 1;
911 }
912 }
913 }
914 \f
915 /* See if INSN can be combined into I3. PRED and SUCC are optionally
916 insns that were previously combined into I3 or that will be combined
917 into the merger of INSN and I3.
918
919 Return 0 if the combination is not allowed for any reason.
920
921 If the combination is allowed, *PDEST will be set to the single
922 destination of INSN and *PSRC to the single source, and this function
923 will return 1. */
924
925 static int
926 can_combine_p (insn, i3, pred, succ, pdest, psrc)
927 rtx insn;
928 rtx i3;
929 rtx pred ATTRIBUTE_UNUSED;
930 rtx succ;
931 rtx *pdest, *psrc;
932 {
933 int i;
934 rtx set = 0, src, dest;
935 rtx p;
936 #ifdef AUTO_INC_DEC
937 rtx link;
938 #endif
939 int all_adjacent = (succ ? (next_active_insn (insn) == succ
940 && next_active_insn (succ) == i3)
941 : next_active_insn (insn) == i3);
942
943 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
944 or a PARALLEL consisting of such a SET and CLOBBERs.
945
946 If INSN has CLOBBER parallel parts, ignore them for our processing.
947 By definition, these happen during the execution of the insn. When it
948 is merged with another insn, all bets are off. If they are, in fact,
949 needed and aren't also supplied in I3, they may be added by
950 recog_for_combine. Otherwise, it won't match.
951
952 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
953 note.
954
955 Get the source and destination of INSN. If more than one, can't
956 combine. */
957
958 if (GET_CODE (PATTERN (insn)) == SET)
959 set = PATTERN (insn);
960 else if (GET_CODE (PATTERN (insn)) == PARALLEL
961 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
962 {
963 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
964 {
965 rtx elt = XVECEXP (PATTERN (insn), 0, i);
966
967 switch (GET_CODE (elt))
968 {
969 /* This is important to combine floating point insns
970 for the SH4 port. */
971 case USE:
972 /* Combining an isolated USE doesn't make sense.
973 We depend here on combinable_i3pat to reject them. */
974 /* The code below this loop only verifies that the inputs of
975 the SET in INSN do not change. We call reg_set_between_p
976 to verify that the REG in the USE does not change between
977 I3 and INSN.
978 If the USE in INSN was for a pseudo register, the matching
979 insn pattern will likely match any register; combining this
980 with any other USE would only be safe if we knew that the
981 used registers have identical values, or if there was
982 something to tell them apart, e.g. different modes. For
983 now, we forgo such complicated tests and simply disallow
984 combining of USES of pseudo registers with any other USE. */
985 if (GET_CODE (XEXP (elt, 0)) == REG
986 && GET_CODE (PATTERN (i3)) == PARALLEL)
987 {
988 rtx i3pat = PATTERN (i3);
989 int i = XVECLEN (i3pat, 0) - 1;
990 unsigned int regno = REGNO (XEXP (elt, 0));
991
992 do
993 {
994 rtx i3elt = XVECEXP (i3pat, 0, i);
995
996 if (GET_CODE (i3elt) == USE
997 && GET_CODE (XEXP (i3elt, 0)) == REG
998 && (REGNO (XEXP (i3elt, 0)) == regno
999 ? reg_set_between_p (XEXP (elt, 0),
1000 PREV_INSN (insn), i3)
1001 : regno >= FIRST_PSEUDO_REGISTER))
1002 return 0;
1003 }
1004 while (--i >= 0);
1005 }
1006 break;
1007
1008 /* We can ignore CLOBBERs. */
1009 case CLOBBER:
1010 break;
1011
1012 case SET:
1013 /* Ignore SETs whose result isn't used but not those that
1014 have side-effects. */
1015 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1016 && ! side_effects_p (elt))
1017 break;
1018
1019 /* If we have already found a SET, this is a second one and
1020 so we cannot combine with this insn. */
1021 if (set)
1022 return 0;
1023
1024 set = elt;
1025 break;
1026
1027 default:
1028 /* Anything else means we can't combine. */
1029 return 0;
1030 }
1031 }
1032
1033 if (set == 0
1034 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1035 so don't do anything with it. */
1036 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1037 return 0;
1038 }
1039 else
1040 return 0;
1041
1042 if (set == 0)
1043 return 0;
1044
1045 set = expand_field_assignment (set);
1046 src = SET_SRC (set), dest = SET_DEST (set);
1047
1048 /* Don't eliminate a store in the stack pointer. */
1049 if (dest == stack_pointer_rtx
1050 /* If we couldn't eliminate a field assignment, we can't combine. */
1051 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1052 /* Don't combine with an insn that sets a register to itself if it has
1053 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1054 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1055 /* Can't merge an ASM_OPERANDS. */
1056 || GET_CODE (src) == ASM_OPERANDS
1057 /* Can't merge a function call. */
1058 || GET_CODE (src) == CALL
1059 /* Don't eliminate a function call argument. */
1060 || (GET_CODE (i3) == CALL_INSN
1061 && (find_reg_fusage (i3, USE, dest)
1062 || (GET_CODE (dest) == REG
1063 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1064 && global_regs[REGNO (dest)])))
1065 /* Don't substitute into an incremented register. */
1066 || FIND_REG_INC_NOTE (i3, dest)
1067 || (succ && FIND_REG_INC_NOTE (succ, dest))
1068 #if 0
1069 /* Don't combine the end of a libcall into anything. */
1070 /* ??? This gives worse code, and appears to be unnecessary, since no
1071 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1072 use REG_RETVAL notes for noconflict blocks, but other code here
1073 makes sure that those insns don't disappear. */
1074 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1075 #endif
1076 /* Make sure that DEST is not used after SUCC but before I3. */
1077 || (succ && ! all_adjacent
1078 && reg_used_between_p (dest, succ, i3))
1079 /* Make sure that the value that is to be substituted for the register
1080 does not use any registers whose values alter in between. However,
1081 If the insns are adjacent, a use can't cross a set even though we
1082 think it might (this can happen for a sequence of insns each setting
1083 the same destination; reg_last_set of that register might point to
1084 a NOTE). If INSN has a REG_EQUIV note, the register is always
1085 equivalent to the memory so the substitution is valid even if there
1086 are intervening stores. Also, don't move a volatile asm or
1087 UNSPEC_VOLATILE across any other insns. */
1088 || (! all_adjacent
1089 && (((GET_CODE (src) != MEM
1090 || ! find_reg_note (insn, REG_EQUIV, src))
1091 && use_crosses_set_p (src, INSN_CUID (insn)))
1092 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1093 || GET_CODE (src) == UNSPEC_VOLATILE))
1094 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1095 better register allocation by not doing the combine. */
1096 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1097 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1098 /* Don't combine across a CALL_INSN, because that would possibly
1099 change whether the life span of some REGs crosses calls or not,
1100 and it is a pain to update that information.
1101 Exception: if source is a constant, moving it later can't hurt.
1102 Accept that special case, because it helps -fforce-addr a lot. */
1103 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1104 return 0;
1105
1106 /* DEST must either be a REG or CC0. */
1107 if (GET_CODE (dest) == REG)
1108 {
1109 /* If register alignment is being enforced for multi-word items in all
1110 cases except for parameters, it is possible to have a register copy
1111 insn referencing a hard register that is not allowed to contain the
1112 mode being copied and which would not be valid as an operand of most
1113 insns. Eliminate this problem by not combining with such an insn.
1114
1115 Also, on some machines we don't want to extend the life of a hard
1116 register. */
1117
1118 if (GET_CODE (src) == REG
1119 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1120 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1121 /* Don't extend the life of a hard register unless it is
1122 user variable (if we have few registers) or it can't
1123 fit into the desired register (meaning something special
1124 is going on).
1125 Also avoid substituting a return register into I3, because
1126 reload can't handle a conflict with constraints of other
1127 inputs. */
1128 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1129 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1130 return 0;
1131 }
1132 else if (GET_CODE (dest) != CC0)
1133 return 0;
1134
1135 /* Don't substitute for a register intended as a clobberable operand.
1136 Similarly, don't substitute an expression containing a register that
1137 will be clobbered in I3. */
1138 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1139 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1140 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1141 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1142 src)
1143 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1144 return 0;
1145
1146 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1147 or not), reject, unless nothing volatile comes between it and I3 */
1148
1149 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1150 {
1151 /* Make sure succ doesn't contain a volatile reference. */
1152 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1153 return 0;
1154
1155 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1156 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1157 return 0;
1158 }
1159
1160 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1161 to be an explicit register variable, and was chosen for a reason. */
1162
1163 if (GET_CODE (src) == ASM_OPERANDS
1164 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1165 return 0;
1166
1167 /* If there are any volatile insns between INSN and I3, reject, because
1168 they might affect machine state. */
1169
1170 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1171 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1172 return 0;
1173
1174 /* If INSN or I2 contains an autoincrement or autodecrement,
1175 make sure that register is not used between there and I3,
1176 and not already used in I3 either.
1177 Also insist that I3 not be a jump; if it were one
1178 and the incremented register were spilled, we would lose. */
1179
1180 #ifdef AUTO_INC_DEC
1181 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1182 if (REG_NOTE_KIND (link) == REG_INC
1183 && (GET_CODE (i3) == JUMP_INSN
1184 || reg_used_between_p (XEXP (link, 0), insn, i3)
1185 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1186 return 0;
1187 #endif
1188
1189 #ifdef HAVE_cc0
1190 /* Don't combine an insn that follows a CC0-setting insn.
1191 An insn that uses CC0 must not be separated from the one that sets it.
1192 We do, however, allow I2 to follow a CC0-setting insn if that insn
1193 is passed as I1; in that case it will be deleted also.
1194 We also allow combining in this case if all the insns are adjacent
1195 because that would leave the two CC0 insns adjacent as well.
1196 It would be more logical to test whether CC0 occurs inside I1 or I2,
1197 but that would be much slower, and this ought to be equivalent. */
1198
1199 p = prev_nonnote_insn (insn);
1200 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1201 && ! all_adjacent)
1202 return 0;
1203 #endif
1204
1205 /* If we get here, we have passed all the tests and the combination is
1206 to be allowed. */
1207
1208 *pdest = dest;
1209 *psrc = src;
1210
1211 return 1;
1212 }
1213 \f
1214 /* Check if PAT is an insn - or a part of it - used to set up an
1215 argument for a function in a hard register. */
1216
1217 static int
1218 sets_function_arg_p (pat)
1219 rtx pat;
1220 {
1221 int i;
1222 rtx inner_dest;
1223
1224 switch (GET_CODE (pat))
1225 {
1226 case INSN:
1227 return sets_function_arg_p (PATTERN (pat));
1228
1229 case PARALLEL:
1230 for (i = XVECLEN (pat, 0); --i >= 0;)
1231 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1232 return 1;
1233
1234 break;
1235
1236 case SET:
1237 inner_dest = SET_DEST (pat);
1238 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1239 || GET_CODE (inner_dest) == SUBREG
1240 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1241 inner_dest = XEXP (inner_dest, 0);
1242
1243 return (GET_CODE (inner_dest) == REG
1244 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1245 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1246
1247 default:
1248 break;
1249 }
1250
1251 return 0;
1252 }
1253
1254 /* LOC is the location within I3 that contains its pattern or the component
1255 of a PARALLEL of the pattern. We validate that it is valid for combining.
1256
1257 One problem is if I3 modifies its output, as opposed to replacing it
1258 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1259 so would produce an insn that is not equivalent to the original insns.
1260
1261 Consider:
1262
1263 (set (reg:DI 101) (reg:DI 100))
1264 (set (subreg:SI (reg:DI 101) 0) <foo>)
1265
1266 This is NOT equivalent to:
1267
1268 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1269 (set (reg:DI 101) (reg:DI 100))])
1270
1271 Not only does this modify 100 (in which case it might still be valid
1272 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1273
1274 We can also run into a problem if I2 sets a register that I1
1275 uses and I1 gets directly substituted into I3 (not via I2). In that
1276 case, we would be getting the wrong value of I2DEST into I3, so we
1277 must reject the combination. This case occurs when I2 and I1 both
1278 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1279 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1280 of a SET must prevent combination from occurring.
1281
1282 Before doing the above check, we first try to expand a field assignment
1283 into a set of logical operations.
1284
1285 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1286 we place a register that is both set and used within I3. If more than one
1287 such register is detected, we fail.
1288
1289 Return 1 if the combination is valid, zero otherwise. */
1290
1291 static int
1292 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1293 rtx i3;
1294 rtx *loc;
1295 rtx i2dest;
1296 rtx i1dest;
1297 int i1_not_in_src;
1298 rtx *pi3dest_killed;
1299 {
1300 rtx x = *loc;
1301
1302 if (GET_CODE (x) == SET)
1303 {
1304 rtx set = expand_field_assignment (x);
1305 rtx dest = SET_DEST (set);
1306 rtx src = SET_SRC (set);
1307 rtx inner_dest = dest;
1308
1309 #if 0
1310 rtx inner_src = src;
1311 #endif
1312
1313 SUBST (*loc, set);
1314
1315 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1316 || GET_CODE (inner_dest) == SUBREG
1317 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1318 inner_dest = XEXP (inner_dest, 0);
1319
1320 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1321 was added. */
1322 #if 0
1323 while (GET_CODE (inner_src) == STRICT_LOW_PART
1324 || GET_CODE (inner_src) == SUBREG
1325 || GET_CODE (inner_src) == ZERO_EXTRACT)
1326 inner_src = XEXP (inner_src, 0);
1327
1328 /* If it is better that two different modes keep two different pseudos,
1329 avoid combining them. This avoids producing the following pattern
1330 on a 386:
1331 (set (subreg:SI (reg/v:QI 21) 0)
1332 (lshiftrt:SI (reg/v:SI 20)
1333 (const_int 24)))
1334 If that were made, reload could not handle the pair of
1335 reg 20/21, since it would try to get any GENERAL_REGS
1336 but some of them don't handle QImode. */
1337
1338 if (rtx_equal_p (inner_src, i2dest)
1339 && GET_CODE (inner_dest) == REG
1340 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1341 return 0;
1342 #endif
1343
1344 /* Check for the case where I3 modifies its output, as
1345 discussed above. */
1346 if ((inner_dest != dest
1347 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1348 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1349
1350 /* This is the same test done in can_combine_p except we can't test
1351 all_adjacent; we don't have to, since this instruction will stay
1352 in place, thus we are not considering increasing the lifetime of
1353 INNER_DEST.
1354
1355 Also, if this insn sets a function argument, combining it with
1356 something that might need a spill could clobber a previous
1357 function argument; the all_adjacent test in can_combine_p also
1358 checks this; here, we do a more specific test for this case. */
1359
1360 || (GET_CODE (inner_dest) == REG
1361 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1362 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1363 GET_MODE (inner_dest))))
1364 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1365 return 0;
1366
1367 /* If DEST is used in I3, it is being killed in this insn,
1368 so record that for later.
1369 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1370 STACK_POINTER_REGNUM, since these are always considered to be
1371 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1372 if (pi3dest_killed && GET_CODE (dest) == REG
1373 && reg_referenced_p (dest, PATTERN (i3))
1374 && REGNO (dest) != FRAME_POINTER_REGNUM
1375 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1376 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1377 #endif
1378 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1379 && (REGNO (dest) != ARG_POINTER_REGNUM
1380 || ! fixed_regs [REGNO (dest)])
1381 #endif
1382 && REGNO (dest) != STACK_POINTER_REGNUM)
1383 {
1384 if (*pi3dest_killed)
1385 return 0;
1386
1387 *pi3dest_killed = dest;
1388 }
1389 }
1390
1391 else if (GET_CODE (x) == PARALLEL)
1392 {
1393 int i;
1394
1395 for (i = 0; i < XVECLEN (x, 0); i++)
1396 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1397 i1_not_in_src, pi3dest_killed))
1398 return 0;
1399 }
1400
1401 return 1;
1402 }
1403 \f
1404 /* Return 1 if X is an arithmetic expression that contains a multiplication
1405 and division. We don't count multiplications by powers of two here. */
1406
1407 static int
1408 contains_muldiv (x)
1409 rtx x;
1410 {
1411 switch (GET_CODE (x))
1412 {
1413 case MOD: case DIV: case UMOD: case UDIV:
1414 return 1;
1415
1416 case MULT:
1417 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1418 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1419 default:
1420 switch (GET_RTX_CLASS (GET_CODE (x)))
1421 {
1422 case 'c': case '<': case '2':
1423 return contains_muldiv (XEXP (x, 0))
1424 || contains_muldiv (XEXP (x, 1));
1425
1426 case '1':
1427 return contains_muldiv (XEXP (x, 0));
1428
1429 default:
1430 return 0;
1431 }
1432 }
1433 }
1434 \f
1435 /* Determine whether INSN can be used in a combination. Return nonzero if
1436 not. This is used in try_combine to detect early some cases where we
1437 can't perform combinations. */
1438
1439 static int
1440 cant_combine_insn_p (insn)
1441 rtx insn;
1442 {
1443 rtx set;
1444 rtx src, dest;
1445
1446 /* If this isn't really an insn, we can't do anything.
1447 This can occur when flow deletes an insn that it has merged into an
1448 auto-increment address. */
1449 if (! INSN_P (insn))
1450 return 1;
1451
1452 /* Never combine loads and stores involving hard regs. The register
1453 allocator can usually handle such reg-reg moves by tying. If we allow
1454 the combiner to make substitutions of hard regs, we risk aborting in
1455 reload on machines that have SMALL_REGISTER_CLASSES.
1456 As an exception, we allow combinations involving fixed regs; these are
1457 not available to the register allocator so there's no risk involved. */
1458
1459 set = single_set (insn);
1460 if (! set)
1461 return 0;
1462 src = SET_SRC (set);
1463 dest = SET_DEST (set);
1464 if (GET_CODE (src) == SUBREG)
1465 src = SUBREG_REG (src);
1466 if (GET_CODE (dest) == SUBREG)
1467 dest = SUBREG_REG (dest);
1468 if (REG_P (src) && REG_P (dest)
1469 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1470 && ! fixed_regs[REGNO (src)])
1471 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1472 && ! fixed_regs[REGNO (dest)])))
1473 return 1;
1474
1475 return 0;
1476 }
1477
1478 /* Try to combine the insns I1 and I2 into I3.
1479 Here I1 and I2 appear earlier than I3.
1480 I1 can be zero; then we combine just I2 into I3.
1481
1482 If we are combining three insns and the resulting insn is not recognized,
1483 try splitting it into two insns. If that happens, I2 and I3 are retained
1484 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1485 are pseudo-deleted.
1486
1487 Return 0 if the combination does not work. Then nothing is changed.
1488 If we did the combination, return the insn at which combine should
1489 resume scanning.
1490
1491 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1492 new direct jump instruction. */
1493
1494 static rtx
1495 try_combine (i3, i2, i1, new_direct_jump_p)
1496 rtx i3, i2, i1;
1497 int *new_direct_jump_p;
1498 {
1499 /* New patterns for I3 and I2, respectively. */
1500 rtx newpat, newi2pat = 0;
1501 int substed_i2 = 0, substed_i1 = 0;
1502 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1503 int added_sets_1, added_sets_2;
1504 /* Total number of SETs to put into I3. */
1505 int total_sets;
1506 /* Nonzero is I2's body now appears in I3. */
1507 int i2_is_used;
1508 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1509 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1510 /* Contains I3 if the destination of I3 is used in its source, which means
1511 that the old life of I3 is being killed. If that usage is placed into
1512 I2 and not in I3, a REG_DEAD note must be made. */
1513 rtx i3dest_killed = 0;
1514 /* SET_DEST and SET_SRC of I2 and I1. */
1515 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1516 /* PATTERN (I2), or a copy of it in certain cases. */
1517 rtx i2pat;
1518 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1519 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1520 int i1_feeds_i3 = 0;
1521 /* Notes that must be added to REG_NOTES in I3 and I2. */
1522 rtx new_i3_notes, new_i2_notes;
1523 /* Notes that we substituted I3 into I2 instead of the normal case. */
1524 int i3_subst_into_i2 = 0;
1525 /* Notes that I1, I2 or I3 is a MULT operation. */
1526 int have_mult = 0;
1527
1528 int maxreg;
1529 rtx temp;
1530 rtx link;
1531 int i;
1532
1533 /* Exit early if one of the insns involved can't be used for
1534 combinations. */
1535 if (cant_combine_insn_p (i3)
1536 || cant_combine_insn_p (i2)
1537 || (i1 && cant_combine_insn_p (i1))
1538 /* We also can't do anything if I3 has a
1539 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1540 libcall. */
1541 #if 0
1542 /* ??? This gives worse code, and appears to be unnecessary, since no
1543 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1544 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1545 #endif
1546 )
1547 return 0;
1548
1549 combine_attempts++;
1550 undobuf.other_insn = 0;
1551
1552 /* Reset the hard register usage information. */
1553 CLEAR_HARD_REG_SET (newpat_used_regs);
1554
1555 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1556 code below, set I1 to be the earlier of the two insns. */
1557 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1558 temp = i1, i1 = i2, i2 = temp;
1559
1560 added_links_insn = 0;
1561
1562 /* First check for one important special-case that the code below will
1563 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1564 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1565 we may be able to replace that destination with the destination of I3.
1566 This occurs in the common code where we compute both a quotient and
1567 remainder into a structure, in which case we want to do the computation
1568 directly into the structure to avoid register-register copies.
1569
1570 Note that this case handles both multiple sets in I2 and also
1571 cases where I2 has a number of CLOBBER or PARALLELs.
1572
1573 We make very conservative checks below and only try to handle the
1574 most common cases of this. For example, we only handle the case
1575 where I2 and I3 are adjacent to avoid making difficult register
1576 usage tests. */
1577
1578 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1579 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1580 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1581 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1582 && GET_CODE (PATTERN (i2)) == PARALLEL
1583 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1584 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1585 below would need to check what is inside (and reg_overlap_mentioned_p
1586 doesn't support those codes anyway). Don't allow those destinations;
1587 the resulting insn isn't likely to be recognized anyway. */
1588 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1589 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1590 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1591 SET_DEST (PATTERN (i3)))
1592 && next_real_insn (i2) == i3)
1593 {
1594 rtx p2 = PATTERN (i2);
1595
1596 /* Make sure that the destination of I3,
1597 which we are going to substitute into one output of I2,
1598 is not used within another output of I2. We must avoid making this:
1599 (parallel [(set (mem (reg 69)) ...)
1600 (set (reg 69) ...)])
1601 which is not well-defined as to order of actions.
1602 (Besides, reload can't handle output reloads for this.)
1603
1604 The problem can also happen if the dest of I3 is a memory ref,
1605 if another dest in I2 is an indirect memory ref. */
1606 for (i = 0; i < XVECLEN (p2, 0); i++)
1607 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1608 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1609 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1610 SET_DEST (XVECEXP (p2, 0, i))))
1611 break;
1612
1613 if (i == XVECLEN (p2, 0))
1614 for (i = 0; i < XVECLEN (p2, 0); i++)
1615 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1616 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1617 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1618 {
1619 combine_merges++;
1620
1621 subst_insn = i3;
1622 subst_low_cuid = INSN_CUID (i2);
1623
1624 added_sets_2 = added_sets_1 = 0;
1625 i2dest = SET_SRC (PATTERN (i3));
1626
1627 /* Replace the dest in I2 with our dest and make the resulting
1628 insn the new pattern for I3. Then skip to where we
1629 validate the pattern. Everything was set up above. */
1630 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1631 SET_DEST (PATTERN (i3)));
1632
1633 newpat = p2;
1634 i3_subst_into_i2 = 1;
1635 goto validate_replacement;
1636 }
1637 }
1638
1639 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1640 one of those words to another constant, merge them by making a new
1641 constant. */
1642 if (i1 == 0
1643 && (temp = single_set (i2)) != 0
1644 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1645 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1646 && GET_CODE (SET_DEST (temp)) == REG
1647 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1648 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1649 && GET_CODE (PATTERN (i3)) == SET
1650 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1651 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1652 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1653 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1654 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1655 {
1656 HOST_WIDE_INT lo, hi;
1657
1658 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1659 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1660 else
1661 {
1662 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1663 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1664 }
1665
1666 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1667 {
1668 /* We don't handle the case of the target word being wider
1669 than a host wide int. */
1670 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1671 abort ();
1672
1673 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1674 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1675 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1676 }
1677 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1678 hi = INTVAL (SET_SRC (PATTERN (i3)));
1679 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1680 {
1681 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1682 >> (HOST_BITS_PER_WIDE_INT - 1));
1683
1684 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1685 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1686 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1687 (INTVAL (SET_SRC (PATTERN (i3)))));
1688 if (hi == sign)
1689 hi = lo < 0 ? -1 : 0;
1690 }
1691 else
1692 /* We don't handle the case of the higher word not fitting
1693 entirely in either hi or lo. */
1694 abort ();
1695
1696 combine_merges++;
1697 subst_insn = i3;
1698 subst_low_cuid = INSN_CUID (i2);
1699 added_sets_2 = added_sets_1 = 0;
1700 i2dest = SET_DEST (temp);
1701
1702 SUBST (SET_SRC (temp),
1703 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1704
1705 newpat = PATTERN (i2);
1706 goto validate_replacement;
1707 }
1708
1709 #ifndef HAVE_cc0
1710 /* If we have no I1 and I2 looks like:
1711 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1712 (set Y OP)])
1713 make up a dummy I1 that is
1714 (set Y OP)
1715 and change I2 to be
1716 (set (reg:CC X) (compare:CC Y (const_int 0)))
1717
1718 (We can ignore any trailing CLOBBERs.)
1719
1720 This undoes a previous combination and allows us to match a branch-and-
1721 decrement insn. */
1722
1723 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1724 && XVECLEN (PATTERN (i2), 0) >= 2
1725 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1726 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1727 == MODE_CC)
1728 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1729 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1730 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1731 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1732 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1733 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1734 {
1735 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1736 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1737 break;
1738
1739 if (i == 1)
1740 {
1741 /* We make I1 with the same INSN_UID as I2. This gives it
1742 the same INSN_CUID for value tracking. Our fake I1 will
1743 never appear in the insn stream so giving it the same INSN_UID
1744 as I2 will not cause a problem. */
1745
1746 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1747 BLOCK_FOR_INSN (i2), INSN_SCOPE (i2),
1748 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1749 NULL_RTX);
1750
1751 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1752 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1753 SET_DEST (PATTERN (i1)));
1754 }
1755 }
1756 #endif
1757
1758 /* Verify that I2 and I1 are valid for combining. */
1759 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1760 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1761 {
1762 undo_all ();
1763 return 0;
1764 }
1765
1766 /* Record whether I2DEST is used in I2SRC and similarly for the other
1767 cases. Knowing this will help in register status updating below. */
1768 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1769 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1770 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1771
1772 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1773 in I2SRC. */
1774 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1775
1776 /* Ensure that I3's pattern can be the destination of combines. */
1777 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1778 i1 && i2dest_in_i1src && i1_feeds_i3,
1779 &i3dest_killed))
1780 {
1781 undo_all ();
1782 return 0;
1783 }
1784
1785 /* See if any of the insns is a MULT operation. Unless one is, we will
1786 reject a combination that is, since it must be slower. Be conservative
1787 here. */
1788 if (GET_CODE (i2src) == MULT
1789 || (i1 != 0 && GET_CODE (i1src) == MULT)
1790 || (GET_CODE (PATTERN (i3)) == SET
1791 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1792 have_mult = 1;
1793
1794 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1795 We used to do this EXCEPT in one case: I3 has a post-inc in an
1796 output operand. However, that exception can give rise to insns like
1797 mov r3,(r3)+
1798 which is a famous insn on the PDP-11 where the value of r3 used as the
1799 source was model-dependent. Avoid this sort of thing. */
1800
1801 #if 0
1802 if (!(GET_CODE (PATTERN (i3)) == SET
1803 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1804 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1805 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1806 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1807 /* It's not the exception. */
1808 #endif
1809 #ifdef AUTO_INC_DEC
1810 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1811 if (REG_NOTE_KIND (link) == REG_INC
1812 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1813 || (i1 != 0
1814 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1815 {
1816 undo_all ();
1817 return 0;
1818 }
1819 #endif
1820
1821 /* See if the SETs in I1 or I2 need to be kept around in the merged
1822 instruction: whenever the value set there is still needed past I3.
1823 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1824
1825 For the SET in I1, we have two cases: If I1 and I2 independently
1826 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1827 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1828 in I1 needs to be kept around unless I1DEST dies or is set in either
1829 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1830 I1DEST. If so, we know I1 feeds into I2. */
1831
1832 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1833
1834 added_sets_1
1835 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1836 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1837
1838 /* If the set in I2 needs to be kept around, we must make a copy of
1839 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1840 PATTERN (I2), we are only substituting for the original I1DEST, not into
1841 an already-substituted copy. This also prevents making self-referential
1842 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1843 I2DEST. */
1844
1845 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1846 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1847 : PATTERN (i2));
1848
1849 if (added_sets_2)
1850 i2pat = copy_rtx (i2pat);
1851
1852 combine_merges++;
1853
1854 /* Substitute in the latest insn for the regs set by the earlier ones. */
1855
1856 maxreg = max_reg_num ();
1857
1858 subst_insn = i3;
1859
1860 /* It is possible that the source of I2 or I1 may be performing an
1861 unneeded operation, such as a ZERO_EXTEND of something that is known
1862 to have the high part zero. Handle that case by letting subst look at
1863 the innermost one of them.
1864
1865 Another way to do this would be to have a function that tries to
1866 simplify a single insn instead of merging two or more insns. We don't
1867 do this because of the potential of infinite loops and because
1868 of the potential extra memory required. However, doing it the way
1869 we are is a bit of a kludge and doesn't catch all cases.
1870
1871 But only do this if -fexpensive-optimizations since it slows things down
1872 and doesn't usually win. */
1873
1874 if (flag_expensive_optimizations)
1875 {
1876 /* Pass pc_rtx so no substitutions are done, just simplifications.
1877 The cases that we are interested in here do not involve the few
1878 cases were is_replaced is checked. */
1879 if (i1)
1880 {
1881 subst_low_cuid = INSN_CUID (i1);
1882 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1883 }
1884 else
1885 {
1886 subst_low_cuid = INSN_CUID (i2);
1887 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1888 }
1889 }
1890
1891 #ifndef HAVE_cc0
1892 /* Many machines that don't use CC0 have insns that can both perform an
1893 arithmetic operation and set the condition code. These operations will
1894 be represented as a PARALLEL with the first element of the vector
1895 being a COMPARE of an arithmetic operation with the constant zero.
1896 The second element of the vector will set some pseudo to the result
1897 of the same arithmetic operation. If we simplify the COMPARE, we won't
1898 match such a pattern and so will generate an extra insn. Here we test
1899 for this case, where both the comparison and the operation result are
1900 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1901 I2SRC. Later we will make the PARALLEL that contains I2. */
1902
1903 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1904 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1905 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1906 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1907 {
1908 #ifdef EXTRA_CC_MODES
1909 rtx *cc_use;
1910 enum machine_mode compare_mode;
1911 #endif
1912
1913 newpat = PATTERN (i3);
1914 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1915
1916 i2_is_used = 1;
1917
1918 #ifdef EXTRA_CC_MODES
1919 /* See if a COMPARE with the operand we substituted in should be done
1920 with the mode that is currently being used. If not, do the same
1921 processing we do in `subst' for a SET; namely, if the destination
1922 is used only once, try to replace it with a register of the proper
1923 mode and also replace the COMPARE. */
1924 if (undobuf.other_insn == 0
1925 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1926 &undobuf.other_insn))
1927 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1928 i2src, const0_rtx))
1929 != GET_MODE (SET_DEST (newpat))))
1930 {
1931 unsigned int regno = REGNO (SET_DEST (newpat));
1932 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1933
1934 if (regno < FIRST_PSEUDO_REGISTER
1935 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1936 && ! REG_USERVAR_P (SET_DEST (newpat))))
1937 {
1938 if (regno >= FIRST_PSEUDO_REGISTER)
1939 SUBST (regno_reg_rtx[regno], new_dest);
1940
1941 SUBST (SET_DEST (newpat), new_dest);
1942 SUBST (XEXP (*cc_use, 0), new_dest);
1943 SUBST (SET_SRC (newpat),
1944 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1945 }
1946 else
1947 undobuf.other_insn = 0;
1948 }
1949 #endif
1950 }
1951 else
1952 #endif
1953 {
1954 n_occurrences = 0; /* `subst' counts here */
1955
1956 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1957 need to make a unique copy of I2SRC each time we substitute it
1958 to avoid self-referential rtl. */
1959
1960 subst_low_cuid = INSN_CUID (i2);
1961 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1962 ! i1_feeds_i3 && i1dest_in_i1src);
1963 substed_i2 = 1;
1964
1965 /* Record whether i2's body now appears within i3's body. */
1966 i2_is_used = n_occurrences;
1967 }
1968
1969 /* If we already got a failure, don't try to do more. Otherwise,
1970 try to substitute in I1 if we have it. */
1971
1972 if (i1 && GET_CODE (newpat) != CLOBBER)
1973 {
1974 /* Before we can do this substitution, we must redo the test done
1975 above (see detailed comments there) that ensures that I1DEST
1976 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1977
1978 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1979 0, (rtx*) 0))
1980 {
1981 undo_all ();
1982 return 0;
1983 }
1984
1985 n_occurrences = 0;
1986 subst_low_cuid = INSN_CUID (i1);
1987 newpat = subst (newpat, i1dest, i1src, 0, 0);
1988 substed_i1 = 1;
1989 }
1990
1991 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1992 to count all the ways that I2SRC and I1SRC can be used. */
1993 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1994 && i2_is_used + added_sets_2 > 1)
1995 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1996 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1997 > 1))
1998 /* Fail if we tried to make a new register (we used to abort, but there's
1999 really no reason to). */
2000 || max_reg_num () != maxreg
2001 /* Fail if we couldn't do something and have a CLOBBER. */
2002 || GET_CODE (newpat) == CLOBBER
2003 /* Fail if this new pattern is a MULT and we didn't have one before
2004 at the outer level. */
2005 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2006 && ! have_mult))
2007 {
2008 undo_all ();
2009 return 0;
2010 }
2011
2012 /* If the actions of the earlier insns must be kept
2013 in addition to substituting them into the latest one,
2014 we must make a new PARALLEL for the latest insn
2015 to hold additional the SETs. */
2016
2017 if (added_sets_1 || added_sets_2)
2018 {
2019 combine_extras++;
2020
2021 if (GET_CODE (newpat) == PARALLEL)
2022 {
2023 rtvec old = XVEC (newpat, 0);
2024 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2025 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2026 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2027 sizeof (old->elem[0]) * old->num_elem);
2028 }
2029 else
2030 {
2031 rtx old = newpat;
2032 total_sets = 1 + added_sets_1 + added_sets_2;
2033 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2034 XVECEXP (newpat, 0, 0) = old;
2035 }
2036
2037 if (added_sets_1)
2038 XVECEXP (newpat, 0, --total_sets)
2039 = (GET_CODE (PATTERN (i1)) == PARALLEL
2040 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2041
2042 if (added_sets_2)
2043 {
2044 /* If there is no I1, use I2's body as is. We used to also not do
2045 the subst call below if I2 was substituted into I3,
2046 but that could lose a simplification. */
2047 if (i1 == 0)
2048 XVECEXP (newpat, 0, --total_sets) = i2pat;
2049 else
2050 /* See comment where i2pat is assigned. */
2051 XVECEXP (newpat, 0, --total_sets)
2052 = subst (i2pat, i1dest, i1src, 0, 0);
2053 }
2054 }
2055
2056 /* We come here when we are replacing a destination in I2 with the
2057 destination of I3. */
2058 validate_replacement:
2059
2060 /* Note which hard regs this insn has as inputs. */
2061 mark_used_regs_combine (newpat);
2062
2063 /* Is the result of combination a valid instruction? */
2064 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2065
2066 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2067 the second SET's destination is a register that is unused. In that case,
2068 we just need the first SET. This can occur when simplifying a divmod
2069 insn. We *must* test for this case here because the code below that
2070 splits two independent SETs doesn't handle this case correctly when it
2071 updates the register status. Also check the case where the first
2072 SET's destination is unused. That would not cause incorrect code, but
2073 does cause an unneeded insn to remain. */
2074
2075 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2076 && XVECLEN (newpat, 0) == 2
2077 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2078 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2079 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2080 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2081 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2082 && asm_noperands (newpat) < 0)
2083 {
2084 newpat = XVECEXP (newpat, 0, 0);
2085 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2086 }
2087
2088 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2089 && XVECLEN (newpat, 0) == 2
2090 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2091 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2092 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2093 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2094 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2095 && asm_noperands (newpat) < 0)
2096 {
2097 newpat = XVECEXP (newpat, 0, 1);
2098 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2099 }
2100
2101 /* If we were combining three insns and the result is a simple SET
2102 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2103 insns. There are two ways to do this. It can be split using a
2104 machine-specific method (like when you have an addition of a large
2105 constant) or by combine in the function find_split_point. */
2106
2107 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2108 && asm_noperands (newpat) < 0)
2109 {
2110 rtx m_split, *split;
2111 rtx ni2dest = i2dest;
2112
2113 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2114 use I2DEST as a scratch register will help. In the latter case,
2115 convert I2DEST to the mode of the source of NEWPAT if we can. */
2116
2117 m_split = split_insns (newpat, i3);
2118
2119 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2120 inputs of NEWPAT. */
2121
2122 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2123 possible to try that as a scratch reg. This would require adding
2124 more code to make it work though. */
2125
2126 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2127 {
2128 /* If I2DEST is a hard register or the only use of a pseudo,
2129 we can change its mode. */
2130 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2131 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2132 && GET_CODE (i2dest) == REG
2133 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2134 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2135 && ! REG_USERVAR_P (i2dest))))
2136 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2137 REGNO (i2dest));
2138
2139 m_split = split_insns (gen_rtx_PARALLEL
2140 (VOIDmode,
2141 gen_rtvec (2, newpat,
2142 gen_rtx_CLOBBER (VOIDmode,
2143 ni2dest))),
2144 i3);
2145 /* If the split with the mode-changed register didn't work, try
2146 the original register. */
2147 if (! m_split && ni2dest != i2dest)
2148 {
2149 ni2dest = i2dest;
2150 m_split = split_insns (gen_rtx_PARALLEL
2151 (VOIDmode,
2152 gen_rtvec (2, newpat,
2153 gen_rtx_CLOBBER (VOIDmode,
2154 i2dest))),
2155 i3);
2156 }
2157 }
2158
2159 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2160 {
2161 m_split = PATTERN (m_split);
2162 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2163 if (insn_code_number >= 0)
2164 newpat = m_split;
2165 }
2166 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2167 && (next_real_insn (i2) == i3
2168 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2169 {
2170 rtx i2set, i3set;
2171 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2172 newi2pat = PATTERN (m_split);
2173
2174 i3set = single_set (NEXT_INSN (m_split));
2175 i2set = single_set (m_split);
2176
2177 /* In case we changed the mode of I2DEST, replace it in the
2178 pseudo-register table here. We can't do it above in case this
2179 code doesn't get executed and we do a split the other way. */
2180
2181 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2182 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2183
2184 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2185
2186 /* If I2 or I3 has multiple SETs, we won't know how to track
2187 register status, so don't use these insns. If I2's destination
2188 is used between I2 and I3, we also can't use these insns. */
2189
2190 if (i2_code_number >= 0 && i2set && i3set
2191 && (next_real_insn (i2) == i3
2192 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2193 insn_code_number = recog_for_combine (&newi3pat, i3,
2194 &new_i3_notes);
2195 if (insn_code_number >= 0)
2196 newpat = newi3pat;
2197
2198 /* It is possible that both insns now set the destination of I3.
2199 If so, we must show an extra use of it. */
2200
2201 if (insn_code_number >= 0)
2202 {
2203 rtx new_i3_dest = SET_DEST (i3set);
2204 rtx new_i2_dest = SET_DEST (i2set);
2205
2206 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2207 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2208 || GET_CODE (new_i3_dest) == SUBREG)
2209 new_i3_dest = XEXP (new_i3_dest, 0);
2210
2211 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2212 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2213 || GET_CODE (new_i2_dest) == SUBREG)
2214 new_i2_dest = XEXP (new_i2_dest, 0);
2215
2216 if (GET_CODE (new_i3_dest) == REG
2217 && GET_CODE (new_i2_dest) == REG
2218 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2219 REG_N_SETS (REGNO (new_i2_dest))++;
2220 }
2221 }
2222
2223 /* If we can split it and use I2DEST, go ahead and see if that
2224 helps things be recognized. Verify that none of the registers
2225 are set between I2 and I3. */
2226 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2227 #ifdef HAVE_cc0
2228 && GET_CODE (i2dest) == REG
2229 #endif
2230 /* We need I2DEST in the proper mode. If it is a hard register
2231 or the only use of a pseudo, we can change its mode. */
2232 && (GET_MODE (*split) == GET_MODE (i2dest)
2233 || GET_MODE (*split) == VOIDmode
2234 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2235 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2236 && ! REG_USERVAR_P (i2dest)))
2237 && (next_real_insn (i2) == i3
2238 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2239 /* We can't overwrite I2DEST if its value is still used by
2240 NEWPAT. */
2241 && ! reg_referenced_p (i2dest, newpat))
2242 {
2243 rtx newdest = i2dest;
2244 enum rtx_code split_code = GET_CODE (*split);
2245 enum machine_mode split_mode = GET_MODE (*split);
2246
2247 /* Get NEWDEST as a register in the proper mode. We have already
2248 validated that we can do this. */
2249 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2250 {
2251 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2252
2253 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2254 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2255 }
2256
2257 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2258 an ASHIFT. This can occur if it was inside a PLUS and hence
2259 appeared to be a memory address. This is a kludge. */
2260 if (split_code == MULT
2261 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2262 && INTVAL (XEXP (*split, 1)) > 0
2263 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2264 {
2265 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2266 XEXP (*split, 0), GEN_INT (i)));
2267 /* Update split_code because we may not have a multiply
2268 anymore. */
2269 split_code = GET_CODE (*split);
2270 }
2271
2272 #ifdef INSN_SCHEDULING
2273 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2274 be written as a ZERO_EXTEND. */
2275 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2276 {
2277 #ifdef LOAD_EXTEND_OP
2278 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2279 what it really is. */
2280 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2281 == SIGN_EXTEND)
2282 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2283 SUBREG_REG (*split)));
2284 else
2285 #endif
2286 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2287 SUBREG_REG (*split)));
2288 }
2289 #endif
2290
2291 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2292 SUBST (*split, newdest);
2293 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2294
2295 /* If the split point was a MULT and we didn't have one before,
2296 don't use one now. */
2297 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2298 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2299 }
2300 }
2301
2302 /* Check for a case where we loaded from memory in a narrow mode and
2303 then sign extended it, but we need both registers. In that case,
2304 we have a PARALLEL with both loads from the same memory location.
2305 We can split this into a load from memory followed by a register-register
2306 copy. This saves at least one insn, more if register allocation can
2307 eliminate the copy.
2308
2309 We cannot do this if the destination of the first assignment is a
2310 condition code register or cc0. We eliminate this case by making sure
2311 the SET_DEST and SET_SRC have the same mode.
2312
2313 We cannot do this if the destination of the second assignment is
2314 a register that we have already assumed is zero-extended. Similarly
2315 for a SUBREG of such a register. */
2316
2317 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2318 && GET_CODE (newpat) == PARALLEL
2319 && XVECLEN (newpat, 0) == 2
2320 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2321 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2322 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2323 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2324 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2325 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2326 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2327 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2328 INSN_CUID (i2))
2329 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2330 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2331 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2332 (GET_CODE (temp) == REG
2333 && reg_nonzero_bits[REGNO (temp)] != 0
2334 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2335 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2336 && (reg_nonzero_bits[REGNO (temp)]
2337 != GET_MODE_MASK (word_mode))))
2338 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2339 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2340 (GET_CODE (temp) == REG
2341 && reg_nonzero_bits[REGNO (temp)] != 0
2342 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2343 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2344 && (reg_nonzero_bits[REGNO (temp)]
2345 != GET_MODE_MASK (word_mode)))))
2346 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2347 SET_SRC (XVECEXP (newpat, 0, 1)))
2348 && ! find_reg_note (i3, REG_UNUSED,
2349 SET_DEST (XVECEXP (newpat, 0, 0))))
2350 {
2351 rtx ni2dest;
2352
2353 newi2pat = XVECEXP (newpat, 0, 0);
2354 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2355 newpat = XVECEXP (newpat, 0, 1);
2356 SUBST (SET_SRC (newpat),
2357 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2358 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2359
2360 if (i2_code_number >= 0)
2361 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2362
2363 if (insn_code_number >= 0)
2364 {
2365 rtx insn;
2366 rtx link;
2367
2368 /* If we will be able to accept this, we have made a change to the
2369 destination of I3. This can invalidate a LOG_LINKS pointing
2370 to I3. No other part of combine.c makes such a transformation.
2371
2372 The new I3 will have a destination that was previously the
2373 destination of I1 or I2 and which was used in i2 or I3. Call
2374 distribute_links to make a LOG_LINK from the next use of
2375 that destination. */
2376
2377 PATTERN (i3) = newpat;
2378 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2379
2380 /* I3 now uses what used to be its destination and which is
2381 now I2's destination. That means we need a LOG_LINK from
2382 I3 to I2. But we used to have one, so we still will.
2383
2384 However, some later insn might be using I2's dest and have
2385 a LOG_LINK pointing at I3. We must remove this link.
2386 The simplest way to remove the link is to point it at I1,
2387 which we know will be a NOTE. */
2388
2389 for (insn = NEXT_INSN (i3);
2390 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2391 || insn != this_basic_block->next_bb->head);
2392 insn = NEXT_INSN (insn))
2393 {
2394 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2395 {
2396 for (link = LOG_LINKS (insn); link;
2397 link = XEXP (link, 1))
2398 if (XEXP (link, 0) == i3)
2399 XEXP (link, 0) = i1;
2400
2401 break;
2402 }
2403 }
2404 }
2405 }
2406
2407 /* Similarly, check for a case where we have a PARALLEL of two independent
2408 SETs but we started with three insns. In this case, we can do the sets
2409 as two separate insns. This case occurs when some SET allows two
2410 other insns to combine, but the destination of that SET is still live. */
2411
2412 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2413 && GET_CODE (newpat) == PARALLEL
2414 && XVECLEN (newpat, 0) == 2
2415 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2416 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2417 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2418 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2419 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2420 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2421 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2422 INSN_CUID (i2))
2423 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2424 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2425 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2426 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2427 XVECEXP (newpat, 0, 0))
2428 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2429 XVECEXP (newpat, 0, 1))
2430 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2431 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2432 {
2433 /* Normally, it doesn't matter which of the two is done first,
2434 but it does if one references cc0. In that case, it has to
2435 be first. */
2436 #ifdef HAVE_cc0
2437 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2438 {
2439 newi2pat = XVECEXP (newpat, 0, 0);
2440 newpat = XVECEXP (newpat, 0, 1);
2441 }
2442 else
2443 #endif
2444 {
2445 newi2pat = XVECEXP (newpat, 0, 1);
2446 newpat = XVECEXP (newpat, 0, 0);
2447 }
2448
2449 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2450
2451 if (i2_code_number >= 0)
2452 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2453 }
2454
2455 /* If it still isn't recognized, fail and change things back the way they
2456 were. */
2457 if ((insn_code_number < 0
2458 /* Is the result a reasonable ASM_OPERANDS? */
2459 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2460 {
2461 undo_all ();
2462 return 0;
2463 }
2464
2465 /* If we had to change another insn, make sure it is valid also. */
2466 if (undobuf.other_insn)
2467 {
2468 rtx other_pat = PATTERN (undobuf.other_insn);
2469 rtx new_other_notes;
2470 rtx note, next;
2471
2472 CLEAR_HARD_REG_SET (newpat_used_regs);
2473
2474 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2475 &new_other_notes);
2476
2477 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2478 {
2479 undo_all ();
2480 return 0;
2481 }
2482
2483 PATTERN (undobuf.other_insn) = other_pat;
2484
2485 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2486 are still valid. Then add any non-duplicate notes added by
2487 recog_for_combine. */
2488 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2489 {
2490 next = XEXP (note, 1);
2491
2492 if (REG_NOTE_KIND (note) == REG_UNUSED
2493 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2494 {
2495 if (GET_CODE (XEXP (note, 0)) == REG)
2496 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2497
2498 remove_note (undobuf.other_insn, note);
2499 }
2500 }
2501
2502 for (note = new_other_notes; note; note = XEXP (note, 1))
2503 if (GET_CODE (XEXP (note, 0)) == REG)
2504 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2505
2506 distribute_notes (new_other_notes, undobuf.other_insn,
2507 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2508 }
2509 #ifdef HAVE_cc0
2510 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2511 they are adjacent to each other or not. */
2512 {
2513 rtx p = prev_nonnote_insn (i3);
2514 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2515 && sets_cc0_p (newi2pat))
2516 {
2517 undo_all ();
2518 return 0;
2519 }
2520 }
2521 #endif
2522
2523 /* We now know that we can do this combination. Merge the insns and
2524 update the status of registers and LOG_LINKS. */
2525
2526 {
2527 rtx i3notes, i2notes, i1notes = 0;
2528 rtx i3links, i2links, i1links = 0;
2529 rtx midnotes = 0;
2530 unsigned int regno;
2531 /* Compute which registers we expect to eliminate. newi2pat may be setting
2532 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2533 same as i3dest, in which case newi2pat may be setting i1dest. */
2534 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2535 || i2dest_in_i2src || i2dest_in_i1src
2536 ? 0 : i2dest);
2537 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2538 || (newi2pat && reg_set_p (i1dest, newi2pat))
2539 ? 0 : i1dest);
2540
2541 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2542 clear them. */
2543 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2544 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2545 if (i1)
2546 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2547
2548 /* Ensure that we do not have something that should not be shared but
2549 occurs multiple times in the new insns. Check this by first
2550 resetting all the `used' flags and then copying anything is shared. */
2551
2552 reset_used_flags (i3notes);
2553 reset_used_flags (i2notes);
2554 reset_used_flags (i1notes);
2555 reset_used_flags (newpat);
2556 reset_used_flags (newi2pat);
2557 if (undobuf.other_insn)
2558 reset_used_flags (PATTERN (undobuf.other_insn));
2559
2560 i3notes = copy_rtx_if_shared (i3notes);
2561 i2notes = copy_rtx_if_shared (i2notes);
2562 i1notes = copy_rtx_if_shared (i1notes);
2563 newpat = copy_rtx_if_shared (newpat);
2564 newi2pat = copy_rtx_if_shared (newi2pat);
2565 if (undobuf.other_insn)
2566 reset_used_flags (PATTERN (undobuf.other_insn));
2567
2568 INSN_CODE (i3) = insn_code_number;
2569 PATTERN (i3) = newpat;
2570
2571 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2572 {
2573 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2574
2575 reset_used_flags (call_usage);
2576 call_usage = copy_rtx (call_usage);
2577
2578 if (substed_i2)
2579 replace_rtx (call_usage, i2dest, i2src);
2580
2581 if (substed_i1)
2582 replace_rtx (call_usage, i1dest, i1src);
2583
2584 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2585 }
2586
2587 if (undobuf.other_insn)
2588 INSN_CODE (undobuf.other_insn) = other_code_number;
2589
2590 /* We had one special case above where I2 had more than one set and
2591 we replaced a destination of one of those sets with the destination
2592 of I3. In that case, we have to update LOG_LINKS of insns later
2593 in this basic block. Note that this (expensive) case is rare.
2594
2595 Also, in this case, we must pretend that all REG_NOTEs for I2
2596 actually came from I3, so that REG_UNUSED notes from I2 will be
2597 properly handled. */
2598
2599 if (i3_subst_into_i2)
2600 {
2601 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2602 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2603 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2604 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2605 && ! find_reg_note (i2, REG_UNUSED,
2606 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2607 for (temp = NEXT_INSN (i2);
2608 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2609 || this_basic_block->head != temp);
2610 temp = NEXT_INSN (temp))
2611 if (temp != i3 && INSN_P (temp))
2612 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2613 if (XEXP (link, 0) == i2)
2614 XEXP (link, 0) = i3;
2615
2616 if (i3notes)
2617 {
2618 rtx link = i3notes;
2619 while (XEXP (link, 1))
2620 link = XEXP (link, 1);
2621 XEXP (link, 1) = i2notes;
2622 }
2623 else
2624 i3notes = i2notes;
2625 i2notes = 0;
2626 }
2627
2628 LOG_LINKS (i3) = 0;
2629 REG_NOTES (i3) = 0;
2630 LOG_LINKS (i2) = 0;
2631 REG_NOTES (i2) = 0;
2632
2633 if (newi2pat)
2634 {
2635 INSN_CODE (i2) = i2_code_number;
2636 PATTERN (i2) = newi2pat;
2637 }
2638 else
2639 {
2640 PUT_CODE (i2, NOTE);
2641 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2642 NOTE_SOURCE_FILE (i2) = 0;
2643 }
2644
2645 if (i1)
2646 {
2647 LOG_LINKS (i1) = 0;
2648 REG_NOTES (i1) = 0;
2649 PUT_CODE (i1, NOTE);
2650 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2651 NOTE_SOURCE_FILE (i1) = 0;
2652 }
2653
2654 /* Get death notes for everything that is now used in either I3 or
2655 I2 and used to die in a previous insn. If we built two new
2656 patterns, move from I1 to I2 then I2 to I3 so that we get the
2657 proper movement on registers that I2 modifies. */
2658
2659 if (newi2pat)
2660 {
2661 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2662 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2663 }
2664 else
2665 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2666 i3, &midnotes);
2667
2668 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2669 if (i3notes)
2670 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2671 elim_i2, elim_i1);
2672 if (i2notes)
2673 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2674 elim_i2, elim_i1);
2675 if (i1notes)
2676 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2677 elim_i2, elim_i1);
2678 if (midnotes)
2679 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2680 elim_i2, elim_i1);
2681
2682 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2683 know these are REG_UNUSED and want them to go to the desired insn,
2684 so we always pass it as i3. We have not counted the notes in
2685 reg_n_deaths yet, so we need to do so now. */
2686
2687 if (newi2pat && new_i2_notes)
2688 {
2689 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2690 if (GET_CODE (XEXP (temp, 0)) == REG)
2691 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2692
2693 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2694 }
2695
2696 if (new_i3_notes)
2697 {
2698 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2699 if (GET_CODE (XEXP (temp, 0)) == REG)
2700 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2701
2702 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2703 }
2704
2705 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2706 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2707 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2708 in that case, it might delete I2. Similarly for I2 and I1.
2709 Show an additional death due to the REG_DEAD note we make here. If
2710 we discard it in distribute_notes, we will decrement it again. */
2711
2712 if (i3dest_killed)
2713 {
2714 if (GET_CODE (i3dest_killed) == REG)
2715 REG_N_DEATHS (REGNO (i3dest_killed))++;
2716
2717 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2718 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2719 NULL_RTX),
2720 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2721 else
2722 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2723 NULL_RTX),
2724 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2725 elim_i2, elim_i1);
2726 }
2727
2728 if (i2dest_in_i2src)
2729 {
2730 if (GET_CODE (i2dest) == REG)
2731 REG_N_DEATHS (REGNO (i2dest))++;
2732
2733 if (newi2pat && reg_set_p (i2dest, newi2pat))
2734 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2735 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2736 else
2737 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2738 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2739 NULL_RTX, NULL_RTX);
2740 }
2741
2742 if (i1dest_in_i1src)
2743 {
2744 if (GET_CODE (i1dest) == REG)
2745 REG_N_DEATHS (REGNO (i1dest))++;
2746
2747 if (newi2pat && reg_set_p (i1dest, newi2pat))
2748 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2749 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2750 else
2751 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2752 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2753 NULL_RTX, NULL_RTX);
2754 }
2755
2756 distribute_links (i3links);
2757 distribute_links (i2links);
2758 distribute_links (i1links);
2759
2760 if (GET_CODE (i2dest) == REG)
2761 {
2762 rtx link;
2763 rtx i2_insn = 0, i2_val = 0, set;
2764
2765 /* The insn that used to set this register doesn't exist, and
2766 this life of the register may not exist either. See if one of
2767 I3's links points to an insn that sets I2DEST. If it does,
2768 that is now the last known value for I2DEST. If we don't update
2769 this and I2 set the register to a value that depended on its old
2770 contents, we will get confused. If this insn is used, thing
2771 will be set correctly in combine_instructions. */
2772
2773 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2774 if ((set = single_set (XEXP (link, 0))) != 0
2775 && rtx_equal_p (i2dest, SET_DEST (set)))
2776 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2777
2778 record_value_for_reg (i2dest, i2_insn, i2_val);
2779
2780 /* If the reg formerly set in I2 died only once and that was in I3,
2781 zero its use count so it won't make `reload' do any work. */
2782 if (! added_sets_2
2783 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2784 && ! i2dest_in_i2src)
2785 {
2786 regno = REGNO (i2dest);
2787 REG_N_SETS (regno)--;
2788 }
2789 }
2790
2791 if (i1 && GET_CODE (i1dest) == REG)
2792 {
2793 rtx link;
2794 rtx i1_insn = 0, i1_val = 0, set;
2795
2796 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2797 if ((set = single_set (XEXP (link, 0))) != 0
2798 && rtx_equal_p (i1dest, SET_DEST (set)))
2799 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2800
2801 record_value_for_reg (i1dest, i1_insn, i1_val);
2802
2803 regno = REGNO (i1dest);
2804 if (! added_sets_1 && ! i1dest_in_i1src)
2805 REG_N_SETS (regno)--;
2806 }
2807
2808 /* Update reg_nonzero_bits et al for any changes that may have been made
2809 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2810 important. Because newi2pat can affect nonzero_bits of newpat */
2811 if (newi2pat)
2812 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2813 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2814
2815 /* Set new_direct_jump_p if a new return or simple jump instruction
2816 has been created.
2817
2818 If I3 is now an unconditional jump, ensure that it has a
2819 BARRIER following it since it may have initially been a
2820 conditional jump. It may also be the last nonnote insn. */
2821
2822 if (returnjump_p (i3) || any_uncondjump_p (i3))
2823 {
2824 *new_direct_jump_p = 1;
2825
2826 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2827 || GET_CODE (temp) != BARRIER)
2828 emit_barrier_after (i3);
2829 }
2830
2831 if (undobuf.other_insn != NULL_RTX
2832 && (returnjump_p (undobuf.other_insn)
2833 || any_uncondjump_p (undobuf.other_insn)))
2834 {
2835 *new_direct_jump_p = 1;
2836
2837 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2838 || GET_CODE (temp) != BARRIER)
2839 emit_barrier_after (undobuf.other_insn);
2840 }
2841
2842 /* An NOOP jump does not need barrier, but it does need cleaning up
2843 of CFG. */
2844 if (GET_CODE (newpat) == SET
2845 && SET_SRC (newpat) == pc_rtx
2846 && SET_DEST (newpat) == pc_rtx)
2847 *new_direct_jump_p = 1;
2848 }
2849
2850 combine_successes++;
2851 undo_commit ();
2852
2853 if (added_links_insn
2854 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2855 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2856 return added_links_insn;
2857 else
2858 return newi2pat ? i2 : i3;
2859 }
2860 \f
2861 /* Undo all the modifications recorded in undobuf. */
2862
2863 static void
2864 undo_all ()
2865 {
2866 struct undo *undo, *next;
2867
2868 for (undo = undobuf.undos; undo; undo = next)
2869 {
2870 next = undo->next;
2871 if (undo->is_int)
2872 *undo->where.i = undo->old_contents.i;
2873 else
2874 *undo->where.r = undo->old_contents.r;
2875
2876 undo->next = undobuf.frees;
2877 undobuf.frees = undo;
2878 }
2879
2880 undobuf.undos = 0;
2881 }
2882
2883 /* We've committed to accepting the changes we made. Move all
2884 of the undos to the free list. */
2885
2886 static void
2887 undo_commit ()
2888 {
2889 struct undo *undo, *next;
2890
2891 for (undo = undobuf.undos; undo; undo = next)
2892 {
2893 next = undo->next;
2894 undo->next = undobuf.frees;
2895 undobuf.frees = undo;
2896 }
2897 undobuf.undos = 0;
2898 }
2899
2900 \f
2901 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2902 where we have an arithmetic expression and return that point. LOC will
2903 be inside INSN.
2904
2905 try_combine will call this function to see if an insn can be split into
2906 two insns. */
2907
2908 static rtx *
2909 find_split_point (loc, insn)
2910 rtx *loc;
2911 rtx insn;
2912 {
2913 rtx x = *loc;
2914 enum rtx_code code = GET_CODE (x);
2915 rtx *split;
2916 unsigned HOST_WIDE_INT len = 0;
2917 HOST_WIDE_INT pos = 0;
2918 int unsignedp = 0;
2919 rtx inner = NULL_RTX;
2920
2921 /* First special-case some codes. */
2922 switch (code)
2923 {
2924 case SUBREG:
2925 #ifdef INSN_SCHEDULING
2926 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2927 point. */
2928 if (GET_CODE (SUBREG_REG (x)) == MEM)
2929 return loc;
2930 #endif
2931 return find_split_point (&SUBREG_REG (x), insn);
2932
2933 case MEM:
2934 #ifdef HAVE_lo_sum
2935 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2936 using LO_SUM and HIGH. */
2937 if (GET_CODE (XEXP (x, 0)) == CONST
2938 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2939 {
2940 SUBST (XEXP (x, 0),
2941 gen_rtx_LO_SUM (Pmode,
2942 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2943 XEXP (x, 0)));
2944 return &XEXP (XEXP (x, 0), 0);
2945 }
2946 #endif
2947
2948 /* If we have a PLUS whose second operand is a constant and the
2949 address is not valid, perhaps will can split it up using
2950 the machine-specific way to split large constants. We use
2951 the first pseudo-reg (one of the virtual regs) as a placeholder;
2952 it will not remain in the result. */
2953 if (GET_CODE (XEXP (x, 0)) == PLUS
2954 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2955 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2956 {
2957 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2958 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2959 subst_insn);
2960
2961 /* This should have produced two insns, each of which sets our
2962 placeholder. If the source of the second is a valid address,
2963 we can make put both sources together and make a split point
2964 in the middle. */
2965
2966 if (seq
2967 && NEXT_INSN (seq) != NULL_RTX
2968 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2969 && GET_CODE (seq) == INSN
2970 && GET_CODE (PATTERN (seq)) == SET
2971 && SET_DEST (PATTERN (seq)) == reg
2972 && ! reg_mentioned_p (reg,
2973 SET_SRC (PATTERN (seq)))
2974 && GET_CODE (NEXT_INSN (seq)) == INSN
2975 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2976 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2977 && memory_address_p (GET_MODE (x),
2978 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2979 {
2980 rtx src1 = SET_SRC (PATTERN (seq));
2981 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
2982
2983 /* Replace the placeholder in SRC2 with SRC1. If we can
2984 find where in SRC2 it was placed, that can become our
2985 split point and we can replace this address with SRC2.
2986 Just try two obvious places. */
2987
2988 src2 = replace_rtx (src2, reg, src1);
2989 split = 0;
2990 if (XEXP (src2, 0) == src1)
2991 split = &XEXP (src2, 0);
2992 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2993 && XEXP (XEXP (src2, 0), 0) == src1)
2994 split = &XEXP (XEXP (src2, 0), 0);
2995
2996 if (split)
2997 {
2998 SUBST (XEXP (x, 0), src2);
2999 return split;
3000 }
3001 }
3002
3003 /* If that didn't work, perhaps the first operand is complex and
3004 needs to be computed separately, so make a split point there.
3005 This will occur on machines that just support REG + CONST
3006 and have a constant moved through some previous computation. */
3007
3008 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
3009 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3010 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
3011 == 'o')))
3012 return &XEXP (XEXP (x, 0), 0);
3013 }
3014 break;
3015
3016 case SET:
3017 #ifdef HAVE_cc0
3018 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3019 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3020 we need to put the operand into a register. So split at that
3021 point. */
3022
3023 if (SET_DEST (x) == cc0_rtx
3024 && GET_CODE (SET_SRC (x)) != COMPARE
3025 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3026 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
3027 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3028 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
3029 return &SET_SRC (x);
3030 #endif
3031
3032 /* See if we can split SET_SRC as it stands. */
3033 split = find_split_point (&SET_SRC (x), insn);
3034 if (split && split != &SET_SRC (x))
3035 return split;
3036
3037 /* See if we can split SET_DEST as it stands. */
3038 split = find_split_point (&SET_DEST (x), insn);
3039 if (split && split != &SET_DEST (x))
3040 return split;
3041
3042 /* See if this is a bitfield assignment with everything constant. If
3043 so, this is an IOR of an AND, so split it into that. */
3044 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3045 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3046 <= HOST_BITS_PER_WIDE_INT)
3047 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3048 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3049 && GET_CODE (SET_SRC (x)) == CONST_INT
3050 && ((INTVAL (XEXP (SET_DEST (x), 1))
3051 + INTVAL (XEXP (SET_DEST (x), 2)))
3052 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3053 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3054 {
3055 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3056 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3057 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3058 rtx dest = XEXP (SET_DEST (x), 0);
3059 enum machine_mode mode = GET_MODE (dest);
3060 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3061
3062 if (BITS_BIG_ENDIAN)
3063 pos = GET_MODE_BITSIZE (mode) - len - pos;
3064
3065 if (src == mask)
3066 SUBST (SET_SRC (x),
3067 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3068 else
3069 SUBST (SET_SRC (x),
3070 gen_binary (IOR, mode,
3071 gen_binary (AND, mode, dest,
3072 gen_int_mode (~(mask << pos),
3073 mode)),
3074 GEN_INT (src << pos)));
3075
3076 SUBST (SET_DEST (x), dest);
3077
3078 split = find_split_point (&SET_SRC (x), insn);
3079 if (split && split != &SET_SRC (x))
3080 return split;
3081 }
3082
3083 /* Otherwise, see if this is an operation that we can split into two.
3084 If so, try to split that. */
3085 code = GET_CODE (SET_SRC (x));
3086
3087 switch (code)
3088 {
3089 case AND:
3090 /* If we are AND'ing with a large constant that is only a single
3091 bit and the result is only being used in a context where we
3092 need to know if it is zero or nonzero, replace it with a bit
3093 extraction. This will avoid the large constant, which might
3094 have taken more than one insn to make. If the constant were
3095 not a valid argument to the AND but took only one insn to make,
3096 this is no worse, but if it took more than one insn, it will
3097 be better. */
3098
3099 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3100 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3101 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3102 && GET_CODE (SET_DEST (x)) == REG
3103 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3104 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3105 && XEXP (*split, 0) == SET_DEST (x)
3106 && XEXP (*split, 1) == const0_rtx)
3107 {
3108 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3109 XEXP (SET_SRC (x), 0),
3110 pos, NULL_RTX, 1, 1, 0, 0);
3111 if (extraction != 0)
3112 {
3113 SUBST (SET_SRC (x), extraction);
3114 return find_split_point (loc, insn);
3115 }
3116 }
3117 break;
3118
3119 case NE:
3120 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3121 is known to be on, this can be converted into a NEG of a shift. */
3122 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3123 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3124 && 1 <= (pos = exact_log2
3125 (nonzero_bits (XEXP (SET_SRC (x), 0),
3126 GET_MODE (XEXP (SET_SRC (x), 0))))))
3127 {
3128 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3129
3130 SUBST (SET_SRC (x),
3131 gen_rtx_NEG (mode,
3132 gen_rtx_LSHIFTRT (mode,
3133 XEXP (SET_SRC (x), 0),
3134 GEN_INT (pos))));
3135
3136 split = find_split_point (&SET_SRC (x), insn);
3137 if (split && split != &SET_SRC (x))
3138 return split;
3139 }
3140 break;
3141
3142 case SIGN_EXTEND:
3143 inner = XEXP (SET_SRC (x), 0);
3144
3145 /* We can't optimize if either mode is a partial integer
3146 mode as we don't know how many bits are significant
3147 in those modes. */
3148 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3149 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3150 break;
3151
3152 pos = 0;
3153 len = GET_MODE_BITSIZE (GET_MODE (inner));
3154 unsignedp = 0;
3155 break;
3156
3157 case SIGN_EXTRACT:
3158 case ZERO_EXTRACT:
3159 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3160 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3161 {
3162 inner = XEXP (SET_SRC (x), 0);
3163 len = INTVAL (XEXP (SET_SRC (x), 1));
3164 pos = INTVAL (XEXP (SET_SRC (x), 2));
3165
3166 if (BITS_BIG_ENDIAN)
3167 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3168 unsignedp = (code == ZERO_EXTRACT);
3169 }
3170 break;
3171
3172 default:
3173 break;
3174 }
3175
3176 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3177 {
3178 enum machine_mode mode = GET_MODE (SET_SRC (x));
3179
3180 /* For unsigned, we have a choice of a shift followed by an
3181 AND or two shifts. Use two shifts for field sizes where the
3182 constant might be too large. We assume here that we can
3183 always at least get 8-bit constants in an AND insn, which is
3184 true for every current RISC. */
3185
3186 if (unsignedp && len <= 8)
3187 {
3188 SUBST (SET_SRC (x),
3189 gen_rtx_AND (mode,
3190 gen_rtx_LSHIFTRT
3191 (mode, gen_lowpart_for_combine (mode, inner),
3192 GEN_INT (pos)),
3193 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3194
3195 split = find_split_point (&SET_SRC (x), insn);
3196 if (split && split != &SET_SRC (x))
3197 return split;
3198 }
3199 else
3200 {
3201 SUBST (SET_SRC (x),
3202 gen_rtx_fmt_ee
3203 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3204 gen_rtx_ASHIFT (mode,
3205 gen_lowpart_for_combine (mode, inner),
3206 GEN_INT (GET_MODE_BITSIZE (mode)
3207 - len - pos)),
3208 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3209
3210 split = find_split_point (&SET_SRC (x), insn);
3211 if (split && split != &SET_SRC (x))
3212 return split;
3213 }
3214 }
3215
3216 /* See if this is a simple operation with a constant as the second
3217 operand. It might be that this constant is out of range and hence
3218 could be used as a split point. */
3219 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3220 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3221 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3222 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3223 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3224 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3225 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3226 == 'o'))))
3227 return &XEXP (SET_SRC (x), 1);
3228
3229 /* Finally, see if this is a simple operation with its first operand
3230 not in a register. The operation might require this operand in a
3231 register, so return it as a split point. We can always do this
3232 because if the first operand were another operation, we would have
3233 already found it as a split point. */
3234 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3235 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3236 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3237 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3238 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3239 return &XEXP (SET_SRC (x), 0);
3240
3241 return 0;
3242
3243 case AND:
3244 case IOR:
3245 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3246 it is better to write this as (not (ior A B)) so we can split it.
3247 Similarly for IOR. */
3248 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3249 {
3250 SUBST (*loc,
3251 gen_rtx_NOT (GET_MODE (x),
3252 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3253 GET_MODE (x),
3254 XEXP (XEXP (x, 0), 0),
3255 XEXP (XEXP (x, 1), 0))));
3256 return find_split_point (loc, insn);
3257 }
3258
3259 /* Many RISC machines have a large set of logical insns. If the
3260 second operand is a NOT, put it first so we will try to split the
3261 other operand first. */
3262 if (GET_CODE (XEXP (x, 1)) == NOT)
3263 {
3264 rtx tem = XEXP (x, 0);
3265 SUBST (XEXP (x, 0), XEXP (x, 1));
3266 SUBST (XEXP (x, 1), tem);
3267 }
3268 break;
3269
3270 default:
3271 break;
3272 }
3273
3274 /* Otherwise, select our actions depending on our rtx class. */
3275 switch (GET_RTX_CLASS (code))
3276 {
3277 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3278 case '3':
3279 split = find_split_point (&XEXP (x, 2), insn);
3280 if (split)
3281 return split;
3282 /* ... fall through ... */
3283 case '2':
3284 case 'c':
3285 case '<':
3286 split = find_split_point (&XEXP (x, 1), insn);
3287 if (split)
3288 return split;
3289 /* ... fall through ... */
3290 case '1':
3291 /* Some machines have (and (shift ...) ...) insns. If X is not
3292 an AND, but XEXP (X, 0) is, use it as our split point. */
3293 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3294 return &XEXP (x, 0);
3295
3296 split = find_split_point (&XEXP (x, 0), insn);
3297 if (split)
3298 return split;
3299 return loc;
3300 }
3301
3302 /* Otherwise, we don't have a split point. */
3303 return 0;
3304 }
3305 \f
3306 /* Throughout X, replace FROM with TO, and return the result.
3307 The result is TO if X is FROM;
3308 otherwise the result is X, but its contents may have been modified.
3309 If they were modified, a record was made in undobuf so that
3310 undo_all will (among other things) return X to its original state.
3311
3312 If the number of changes necessary is too much to record to undo,
3313 the excess changes are not made, so the result is invalid.
3314 The changes already made can still be undone.
3315 undobuf.num_undo is incremented for such changes, so by testing that
3316 the caller can tell whether the result is valid.
3317
3318 `n_occurrences' is incremented each time FROM is replaced.
3319
3320 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3321
3322 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3323 by copying if `n_occurrences' is nonzero. */
3324
3325 static rtx
3326 subst (x, from, to, in_dest, unique_copy)
3327 rtx x, from, to;
3328 int in_dest;
3329 int unique_copy;
3330 {
3331 enum rtx_code code = GET_CODE (x);
3332 enum machine_mode op0_mode = VOIDmode;
3333 const char *fmt;
3334 int len, i;
3335 rtx new;
3336
3337 /* Two expressions are equal if they are identical copies of a shared
3338 RTX or if they are both registers with the same register number
3339 and mode. */
3340
3341 #define COMBINE_RTX_EQUAL_P(X,Y) \
3342 ((X) == (Y) \
3343 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3344 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3345
3346 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3347 {
3348 n_occurrences++;
3349 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3350 }
3351
3352 /* If X and FROM are the same register but different modes, they will
3353 not have been seen as equal above. However, flow.c will make a
3354 LOG_LINKS entry for that case. If we do nothing, we will try to
3355 rerecognize our original insn and, when it succeeds, we will
3356 delete the feeding insn, which is incorrect.
3357
3358 So force this insn not to match in this (rare) case. */
3359 if (! in_dest && code == REG && GET_CODE (from) == REG
3360 && REGNO (x) == REGNO (from))
3361 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3362
3363 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3364 of which may contain things that can be combined. */
3365 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3366 return x;
3367
3368 /* It is possible to have a subexpression appear twice in the insn.
3369 Suppose that FROM is a register that appears within TO.
3370 Then, after that subexpression has been scanned once by `subst',
3371 the second time it is scanned, TO may be found. If we were
3372 to scan TO here, we would find FROM within it and create a
3373 self-referent rtl structure which is completely wrong. */
3374 if (COMBINE_RTX_EQUAL_P (x, to))
3375 return to;
3376
3377 /* Parallel asm_operands need special attention because all of the
3378 inputs are shared across the arms. Furthermore, unsharing the
3379 rtl results in recognition failures. Failure to handle this case
3380 specially can result in circular rtl.
3381
3382 Solve this by doing a normal pass across the first entry of the
3383 parallel, and only processing the SET_DESTs of the subsequent
3384 entries. Ug. */
3385
3386 if (code == PARALLEL
3387 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3388 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3389 {
3390 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3391
3392 /* If this substitution failed, this whole thing fails. */
3393 if (GET_CODE (new) == CLOBBER
3394 && XEXP (new, 0) == const0_rtx)
3395 return new;
3396
3397 SUBST (XVECEXP (x, 0, 0), new);
3398
3399 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3400 {
3401 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3402
3403 if (GET_CODE (dest) != REG
3404 && GET_CODE (dest) != CC0
3405 && GET_CODE (dest) != PC)
3406 {
3407 new = subst (dest, from, to, 0, unique_copy);
3408
3409 /* If this substitution failed, this whole thing fails. */
3410 if (GET_CODE (new) == CLOBBER
3411 && XEXP (new, 0) == const0_rtx)
3412 return new;
3413
3414 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3415 }
3416 }
3417 }
3418 else
3419 {
3420 len = GET_RTX_LENGTH (code);
3421 fmt = GET_RTX_FORMAT (code);
3422
3423 /* We don't need to process a SET_DEST that is a register, CC0,
3424 or PC, so set up to skip this common case. All other cases
3425 where we want to suppress replacing something inside a
3426 SET_SRC are handled via the IN_DEST operand. */
3427 if (code == SET
3428 && (GET_CODE (SET_DEST (x)) == REG
3429 || GET_CODE (SET_DEST (x)) == CC0
3430 || GET_CODE (SET_DEST (x)) == PC))
3431 fmt = "ie";
3432
3433 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3434 constant. */
3435 if (fmt[0] == 'e')
3436 op0_mode = GET_MODE (XEXP (x, 0));
3437
3438 for (i = 0; i < len; i++)
3439 {
3440 if (fmt[i] == 'E')
3441 {
3442 int j;
3443 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3444 {
3445 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3446 {
3447 new = (unique_copy && n_occurrences
3448 ? copy_rtx (to) : to);
3449 n_occurrences++;
3450 }
3451 else
3452 {
3453 new = subst (XVECEXP (x, i, j), from, to, 0,
3454 unique_copy);
3455
3456 /* If this substitution failed, this whole thing
3457 fails. */
3458 if (GET_CODE (new) == CLOBBER
3459 && XEXP (new, 0) == const0_rtx)
3460 return new;
3461 }
3462
3463 SUBST (XVECEXP (x, i, j), new);
3464 }
3465 }
3466 else if (fmt[i] == 'e')
3467 {
3468 /* If this is a register being set, ignore it. */
3469 new = XEXP (x, i);
3470 if (in_dest
3471 && (code == SUBREG || code == STRICT_LOW_PART
3472 || code == ZERO_EXTRACT)
3473 && i == 0
3474 && GET_CODE (new) == REG)
3475 ;
3476
3477 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3478 {
3479 /* In general, don't install a subreg involving two
3480 modes not tieable. It can worsen register
3481 allocation, and can even make invalid reload
3482 insns, since the reg inside may need to be copied
3483 from in the outside mode, and that may be invalid
3484 if it is an fp reg copied in integer mode.
3485
3486 We allow two exceptions to this: It is valid if
3487 it is inside another SUBREG and the mode of that
3488 SUBREG and the mode of the inside of TO is
3489 tieable and it is valid if X is a SET that copies
3490 FROM to CC0. */
3491
3492 if (GET_CODE (to) == SUBREG
3493 && ! MODES_TIEABLE_P (GET_MODE (to),
3494 GET_MODE (SUBREG_REG (to)))
3495 && ! (code == SUBREG
3496 && MODES_TIEABLE_P (GET_MODE (x),
3497 GET_MODE (SUBREG_REG (to))))
3498 #ifdef HAVE_cc0
3499 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3500 #endif
3501 )
3502 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3503
3504 #ifdef CANNOT_CHANGE_MODE_CLASS
3505 if (code == SUBREG
3506 && GET_CODE (to) == REG
3507 && REGNO (to) < FIRST_PSEUDO_REGISTER
3508 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3509 GET_MODE (to),
3510 GET_MODE (x)))
3511 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3512 #endif
3513
3514 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3515 n_occurrences++;
3516 }
3517 else
3518 /* If we are in a SET_DEST, suppress most cases unless we
3519 have gone inside a MEM, in which case we want to
3520 simplify the address. We assume here that things that
3521 are actually part of the destination have their inner
3522 parts in the first expression. This is true for SUBREG,
3523 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3524 things aside from REG and MEM that should appear in a
3525 SET_DEST. */
3526 new = subst (XEXP (x, i), from, to,
3527 (((in_dest
3528 && (code == SUBREG || code == STRICT_LOW_PART
3529 || code == ZERO_EXTRACT))
3530 || code == SET)
3531 && i == 0), unique_copy);
3532
3533 /* If we found that we will have to reject this combination,
3534 indicate that by returning the CLOBBER ourselves, rather than
3535 an expression containing it. This will speed things up as
3536 well as prevent accidents where two CLOBBERs are considered
3537 to be equal, thus producing an incorrect simplification. */
3538
3539 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3540 return new;
3541
3542 if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3543 {
3544 enum machine_mode mode = GET_MODE (x);
3545
3546 x = simplify_subreg (GET_MODE (x), new,
3547 GET_MODE (SUBREG_REG (x)),
3548 SUBREG_BYTE (x));
3549 if (! x)
3550 x = gen_rtx_CLOBBER (mode, const0_rtx);
3551 }
3552 else if (GET_CODE (new) == CONST_INT
3553 && GET_CODE (x) == ZERO_EXTEND)
3554 {
3555 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3556 new, GET_MODE (XEXP (x, 0)));
3557 if (! x)
3558 abort ();
3559 }
3560 else
3561 SUBST (XEXP (x, i), new);
3562 }
3563 }
3564 }
3565
3566 /* Try to simplify X. If the simplification changed the code, it is likely
3567 that further simplification will help, so loop, but limit the number
3568 of repetitions that will be performed. */
3569
3570 for (i = 0; i < 4; i++)
3571 {
3572 /* If X is sufficiently simple, don't bother trying to do anything
3573 with it. */
3574 if (code != CONST_INT && code != REG && code != CLOBBER)
3575 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3576
3577 if (GET_CODE (x) == code)
3578 break;
3579
3580 code = GET_CODE (x);
3581
3582 /* We no longer know the original mode of operand 0 since we
3583 have changed the form of X) */
3584 op0_mode = VOIDmode;
3585 }
3586
3587 return x;
3588 }
3589 \f
3590 /* Simplify X, a piece of RTL. We just operate on the expression at the
3591 outer level; call `subst' to simplify recursively. Return the new
3592 expression.
3593
3594 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3595 will be the iteration even if an expression with a code different from
3596 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3597
3598 static rtx
3599 combine_simplify_rtx (x, op0_mode, last, in_dest)
3600 rtx x;
3601 enum machine_mode op0_mode;
3602 int last;
3603 int in_dest;
3604 {
3605 enum rtx_code code = GET_CODE (x);
3606 enum machine_mode mode = GET_MODE (x);
3607 rtx temp;
3608 rtx reversed;
3609 int i;
3610
3611 /* If this is a commutative operation, put a constant last and a complex
3612 expression first. We don't need to do this for comparisons here. */
3613 if (GET_RTX_CLASS (code) == 'c'
3614 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3615 {
3616 temp = XEXP (x, 0);
3617 SUBST (XEXP (x, 0), XEXP (x, 1));
3618 SUBST (XEXP (x, 1), temp);
3619 }
3620
3621 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3622 sign extension of a PLUS with a constant, reverse the order of the sign
3623 extension and the addition. Note that this not the same as the original
3624 code, but overflow is undefined for signed values. Also note that the
3625 PLUS will have been partially moved "inside" the sign-extension, so that
3626 the first operand of X will really look like:
3627 (ashiftrt (plus (ashift A C4) C5) C4).
3628 We convert this to
3629 (plus (ashiftrt (ashift A C4) C2) C4)
3630 and replace the first operand of X with that expression. Later parts
3631 of this function may simplify the expression further.
3632
3633 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3634 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3635 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3636
3637 We do this to simplify address expressions. */
3638
3639 if ((code == PLUS || code == MINUS || code == MULT)
3640 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3641 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3642 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3643 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3644 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3645 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3646 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3647 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3648 XEXP (XEXP (XEXP (x, 0), 0), 1),
3649 XEXP (XEXP (x, 0), 1))) != 0)
3650 {
3651 rtx new
3652 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3653 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3654 INTVAL (XEXP (XEXP (x, 0), 1)));
3655
3656 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3657 INTVAL (XEXP (XEXP (x, 0), 1)));
3658
3659 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3660 }
3661
3662 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3663 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3664 things. Check for cases where both arms are testing the same
3665 condition.
3666
3667 Don't do anything if all operands are very simple. */
3668
3669 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3670 || GET_RTX_CLASS (code) == '<')
3671 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3672 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3673 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3674 == 'o')))
3675 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3676 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3677 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3678 == 'o')))))
3679 || (GET_RTX_CLASS (code) == '1'
3680 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3681 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3682 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3683 == 'o'))))))
3684 {
3685 rtx cond, true_rtx, false_rtx;
3686
3687 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3688 if (cond != 0
3689 /* If everything is a comparison, what we have is highly unlikely
3690 to be simpler, so don't use it. */
3691 && ! (GET_RTX_CLASS (code) == '<'
3692 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3693 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3694 {
3695 rtx cop1 = const0_rtx;
3696 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3697
3698 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3699 return x;
3700
3701 /* Simplify the alternative arms; this may collapse the true and
3702 false arms to store-flag values. */
3703 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3704 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3705
3706 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3707 is unlikely to be simpler. */
3708 if (general_operand (true_rtx, VOIDmode)
3709 && general_operand (false_rtx, VOIDmode))
3710 {
3711 /* Restarting if we generate a store-flag expression will cause
3712 us to loop. Just drop through in this case. */
3713
3714 /* If the result values are STORE_FLAG_VALUE and zero, we can
3715 just make the comparison operation. */
3716 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3717 x = gen_binary (cond_code, mode, cond, cop1);
3718 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3719 && reverse_condition (cond_code) != UNKNOWN)
3720 x = gen_binary (reverse_condition (cond_code),
3721 mode, cond, cop1);
3722
3723 /* Likewise, we can make the negate of a comparison operation
3724 if the result values are - STORE_FLAG_VALUE and zero. */
3725 else if (GET_CODE (true_rtx) == CONST_INT
3726 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3727 && false_rtx == const0_rtx)
3728 x = simplify_gen_unary (NEG, mode,
3729 gen_binary (cond_code, mode, cond,
3730 cop1),
3731 mode);
3732 else if (GET_CODE (false_rtx) == CONST_INT
3733 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3734 && true_rtx == const0_rtx)
3735 x = simplify_gen_unary (NEG, mode,
3736 gen_binary (reverse_condition
3737 (cond_code),
3738 mode, cond, cop1),
3739 mode);
3740 else
3741 return gen_rtx_IF_THEN_ELSE (mode,
3742 gen_binary (cond_code, VOIDmode,
3743 cond, cop1),
3744 true_rtx, false_rtx);
3745
3746 code = GET_CODE (x);
3747 op0_mode = VOIDmode;
3748 }
3749 }
3750 }
3751
3752 /* Try to fold this expression in case we have constants that weren't
3753 present before. */
3754 temp = 0;
3755 switch (GET_RTX_CLASS (code))
3756 {
3757 case '1':
3758 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3759 break;
3760 case '<':
3761 {
3762 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3763 if (cmp_mode == VOIDmode)
3764 {
3765 cmp_mode = GET_MODE (XEXP (x, 1));
3766 if (cmp_mode == VOIDmode)
3767 cmp_mode = op0_mode;
3768 }
3769 temp = simplify_relational_operation (code, cmp_mode,
3770 XEXP (x, 0), XEXP (x, 1));
3771 }
3772 #ifdef FLOAT_STORE_FLAG_VALUE
3773 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3774 {
3775 if (temp == const0_rtx)
3776 temp = CONST0_RTX (mode);
3777 else
3778 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3779 mode);
3780 }
3781 #endif
3782 break;
3783 case 'c':
3784 case '2':
3785 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3786 break;
3787 case 'b':
3788 case '3':
3789 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3790 XEXP (x, 1), XEXP (x, 2));
3791 break;
3792 }
3793
3794 if (temp)
3795 {
3796 x = temp;
3797 code = GET_CODE (temp);
3798 op0_mode = VOIDmode;
3799 mode = GET_MODE (temp);
3800 }
3801
3802 /* First see if we can apply the inverse distributive law. */
3803 if (code == PLUS || code == MINUS
3804 || code == AND || code == IOR || code == XOR)
3805 {
3806 x = apply_distributive_law (x);
3807 code = GET_CODE (x);
3808 op0_mode = VOIDmode;
3809 }
3810
3811 /* If CODE is an associative operation not otherwise handled, see if we
3812 can associate some operands. This can win if they are constants or
3813 if they are logically related (i.e. (a & b) & a). */
3814 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3815 || code == AND || code == IOR || code == XOR
3816 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3817 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3818 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3819 {
3820 if (GET_CODE (XEXP (x, 0)) == code)
3821 {
3822 rtx other = XEXP (XEXP (x, 0), 0);
3823 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3824 rtx inner_op1 = XEXP (x, 1);
3825 rtx inner;
3826
3827 /* Make sure we pass the constant operand if any as the second
3828 one if this is a commutative operation. */
3829 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3830 {
3831 rtx tem = inner_op0;
3832 inner_op0 = inner_op1;
3833 inner_op1 = tem;
3834 }
3835 inner = simplify_binary_operation (code == MINUS ? PLUS
3836 : code == DIV ? MULT
3837 : code,
3838 mode, inner_op0, inner_op1);
3839
3840 /* For commutative operations, try the other pair if that one
3841 didn't simplify. */
3842 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3843 {
3844 other = XEXP (XEXP (x, 0), 1);
3845 inner = simplify_binary_operation (code, mode,
3846 XEXP (XEXP (x, 0), 0),
3847 XEXP (x, 1));
3848 }
3849
3850 if (inner)
3851 return gen_binary (code, mode, other, inner);
3852 }
3853 }
3854
3855 /* A little bit of algebraic simplification here. */
3856 switch (code)
3857 {
3858 case MEM:
3859 /* Ensure that our address has any ASHIFTs converted to MULT in case
3860 address-recognizing predicates are called later. */
3861 temp = make_compound_operation (XEXP (x, 0), MEM);
3862 SUBST (XEXP (x, 0), temp);
3863 break;
3864
3865 case SUBREG:
3866 if (op0_mode == VOIDmode)
3867 op0_mode = GET_MODE (SUBREG_REG (x));
3868
3869 /* simplify_subreg can't use gen_lowpart_for_combine. */
3870 if (CONSTANT_P (SUBREG_REG (x))
3871 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3872 /* Don't call gen_lowpart_for_combine if the inner mode
3873 is VOIDmode and we cannot simplify it, as SUBREG without
3874 inner mode is invalid. */
3875 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3876 || gen_lowpart_common (mode, SUBREG_REG (x))))
3877 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3878
3879 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3880 break;
3881 {
3882 rtx temp;
3883 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3884 SUBREG_BYTE (x));
3885 if (temp)
3886 return temp;
3887 }
3888
3889 /* Don't change the mode of the MEM if that would change the meaning
3890 of the address. */
3891 if (GET_CODE (SUBREG_REG (x)) == MEM
3892 && (MEM_VOLATILE_P (SUBREG_REG (x))
3893 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3894 return gen_rtx_CLOBBER (mode, const0_rtx);
3895
3896 /* Note that we cannot do any narrowing for non-constants since
3897 we might have been counting on using the fact that some bits were
3898 zero. We now do this in the SET. */
3899
3900 break;
3901
3902 case NOT:
3903 /* (not (plus X -1)) can become (neg X). */
3904 if (GET_CODE (XEXP (x, 0)) == PLUS
3905 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3906 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3907
3908 /* Similarly, (not (neg X)) is (plus X -1). */
3909 if (GET_CODE (XEXP (x, 0)) == NEG)
3910 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3911
3912 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3913 if (GET_CODE (XEXP (x, 0)) == XOR
3914 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3915 && (temp = simplify_unary_operation (NOT, mode,
3916 XEXP (XEXP (x, 0), 1),
3917 mode)) != 0)
3918 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3919
3920 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3921 other than 1, but that is not valid. We could do a similar
3922 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3923 but this doesn't seem common enough to bother with. */
3924 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3925 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3926 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3927 const1_rtx, mode),
3928 XEXP (XEXP (x, 0), 1));
3929
3930 if (GET_CODE (XEXP (x, 0)) == SUBREG
3931 && subreg_lowpart_p (XEXP (x, 0))
3932 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3933 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3934 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3935 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3936 {
3937 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3938
3939 x = gen_rtx_ROTATE (inner_mode,
3940 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3941 inner_mode),
3942 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3943 return gen_lowpart_for_combine (mode, x);
3944 }
3945
3946 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3947 reversing the comparison code if valid. */
3948 if (STORE_FLAG_VALUE == -1
3949 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3950 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3951 XEXP (XEXP (x, 0), 1))))
3952 return reversed;
3953
3954 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3955 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3956 perform the above simplification. */
3957
3958 if (STORE_FLAG_VALUE == -1
3959 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3960 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3961 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3962 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3963
3964 /* Apply De Morgan's laws to reduce number of patterns for machines
3965 with negating logical insns (and-not, nand, etc.). If result has
3966 only one NOT, put it first, since that is how the patterns are
3967 coded. */
3968
3969 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3970 {
3971 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3972 enum machine_mode op_mode;
3973
3974 op_mode = GET_MODE (in1);
3975 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3976
3977 op_mode = GET_MODE (in2);
3978 if (op_mode == VOIDmode)
3979 op_mode = mode;
3980 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3981
3982 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3983 {
3984 rtx tem = in2;
3985 in2 = in1; in1 = tem;
3986 }
3987
3988 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3989 mode, in1, in2);
3990 }
3991 break;
3992
3993 case NEG:
3994 /* (neg (plus X 1)) can become (not X). */
3995 if (GET_CODE (XEXP (x, 0)) == PLUS
3996 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3997 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3998
3999 /* Similarly, (neg (not X)) is (plus X 1). */
4000 if (GET_CODE (XEXP (x, 0)) == NOT)
4001 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
4002
4003 /* (neg (minus X Y)) can become (minus Y X). This transformation
4004 isn't safe for modes with signed zeros, since if X and Y are
4005 both +0, (minus Y X) is the same as (minus X Y). If the rounding
4006 mode is towards +infinity (or -infinity) then the two expressions
4007 will be rounded differently. */
4008 if (GET_CODE (XEXP (x, 0)) == MINUS
4009 && !HONOR_SIGNED_ZEROS (mode)
4010 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4011 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4012 XEXP (XEXP (x, 0), 0));
4013
4014 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
4015 if (GET_CODE (XEXP (x, 0)) == PLUS
4016 && !HONOR_SIGNED_ZEROS (mode)
4017 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4018 {
4019 temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
4020 temp = combine_simplify_rtx (temp, mode, last, in_dest);
4021 return gen_binary (MINUS, mode, temp, XEXP (XEXP (x, 0), 1));
4022 }
4023
4024 /* (neg (mult A B)) becomes (mult (neg A) B).
4025 This works even for floating-point values. */
4026 if (GET_CODE (XEXP (x, 0)) == MULT)
4027 {
4028 temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
4029 return gen_binary (MULT, mode, temp, XEXP (XEXP (x, 0), 1));
4030 }
4031
4032 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4033 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
4034 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4035 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4036
4037 /* NEG commutes with ASHIFT since it is multiplication. Only do this
4038 if we can then eliminate the NEG (e.g.,
4039 if the operand is a constant). */
4040
4041 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4042 {
4043 temp = simplify_unary_operation (NEG, mode,
4044 XEXP (XEXP (x, 0), 0), mode);
4045 if (temp)
4046 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
4047 }
4048
4049 temp = expand_compound_operation (XEXP (x, 0));
4050
4051 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4052 replaced by (lshiftrt X C). This will convert
4053 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4054
4055 if (GET_CODE (temp) == ASHIFTRT
4056 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4057 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4058 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4059 INTVAL (XEXP (temp, 1)));
4060
4061 /* If X has only a single bit that might be nonzero, say, bit I, convert
4062 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4063 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4064 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4065 or a SUBREG of one since we'd be making the expression more
4066 complex if it was just a register. */
4067
4068 if (GET_CODE (temp) != REG
4069 && ! (GET_CODE (temp) == SUBREG
4070 && GET_CODE (SUBREG_REG (temp)) == REG)
4071 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4072 {
4073 rtx temp1 = simplify_shift_const
4074 (NULL_RTX, ASHIFTRT, mode,
4075 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4076 GET_MODE_BITSIZE (mode) - 1 - i),
4077 GET_MODE_BITSIZE (mode) - 1 - i);
4078
4079 /* If all we did was surround TEMP with the two shifts, we
4080 haven't improved anything, so don't use it. Otherwise,
4081 we are better off with TEMP1. */
4082 if (GET_CODE (temp1) != ASHIFTRT
4083 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4084 || XEXP (XEXP (temp1, 0), 0) != temp)
4085 return temp1;
4086 }
4087 break;
4088
4089 case TRUNCATE:
4090 /* We can't handle truncation to a partial integer mode here
4091 because we don't know the real bitsize of the partial
4092 integer mode. */
4093 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4094 break;
4095
4096 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4097 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4098 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4099 SUBST (XEXP (x, 0),
4100 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4101 GET_MODE_MASK (mode), NULL_RTX, 0));
4102
4103 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4104 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4105 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4106 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4107 return XEXP (XEXP (x, 0), 0);
4108
4109 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4110 (OP:SI foo:SI) if OP is NEG or ABS. */
4111 if ((GET_CODE (XEXP (x, 0)) == ABS
4112 || GET_CODE (XEXP (x, 0)) == NEG)
4113 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4114 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4115 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4116 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4117 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4118
4119 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4120 (truncate:SI x). */
4121 if (GET_CODE (XEXP (x, 0)) == SUBREG
4122 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4123 && subreg_lowpart_p (XEXP (x, 0)))
4124 return SUBREG_REG (XEXP (x, 0));
4125
4126 /* If we know that the value is already truncated, we can
4127 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4128 is nonzero for the corresponding modes. But don't do this
4129 for an (LSHIFTRT (MULT ...)) since this will cause problems
4130 with the umulXi3_highpart patterns. */
4131 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4132 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4133 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4134 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4135 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4136 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4137 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4138
4139 /* A truncate of a comparison can be replaced with a subreg if
4140 STORE_FLAG_VALUE permits. This is like the previous test,
4141 but it works even if the comparison is done in a mode larger
4142 than HOST_BITS_PER_WIDE_INT. */
4143 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4144 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4145 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4146 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4147
4148 /* Similarly, a truncate of a register whose value is a
4149 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4150 permits. */
4151 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4152 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4153 && (temp = get_last_value (XEXP (x, 0)))
4154 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4155 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4156
4157 break;
4158
4159 case FLOAT_TRUNCATE:
4160 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4161 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4162 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4163 return XEXP (XEXP (x, 0), 0);
4164
4165 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4166 (OP:SF foo:SF) if OP is NEG or ABS. */
4167 if ((GET_CODE (XEXP (x, 0)) == ABS
4168 || GET_CODE (XEXP (x, 0)) == NEG)
4169 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4170 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4171 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4172 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4173
4174 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4175 is (float_truncate:SF x). */
4176 if (GET_CODE (XEXP (x, 0)) == SUBREG
4177 && subreg_lowpart_p (XEXP (x, 0))
4178 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4179 return SUBREG_REG (XEXP (x, 0));
4180 break;
4181
4182 #ifdef HAVE_cc0
4183 case COMPARE:
4184 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4185 using cc0, in which case we want to leave it as a COMPARE
4186 so we can distinguish it from a register-register-copy. */
4187 if (XEXP (x, 1) == const0_rtx)
4188 return XEXP (x, 0);
4189
4190 /* x - 0 is the same as x unless x's mode has signed zeros and
4191 allows rounding towards -infinity. Under those conditions,
4192 0 - 0 is -0. */
4193 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4194 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4195 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4196 return XEXP (x, 0);
4197 break;
4198 #endif
4199
4200 case CONST:
4201 /* (const (const X)) can become (const X). Do it this way rather than
4202 returning the inner CONST since CONST can be shared with a
4203 REG_EQUAL note. */
4204 if (GET_CODE (XEXP (x, 0)) == CONST)
4205 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4206 break;
4207
4208 #ifdef HAVE_lo_sum
4209 case LO_SUM:
4210 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4211 can add in an offset. find_split_point will split this address up
4212 again if it doesn't match. */
4213 if (GET_CODE (XEXP (x, 0)) == HIGH
4214 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4215 return XEXP (x, 1);
4216 break;
4217 #endif
4218
4219 case PLUS:
4220 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4221 */
4222 if (GET_CODE (XEXP (x, 0)) == MULT
4223 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4224 {
4225 rtx in1, in2;
4226
4227 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4228 in2 = XEXP (XEXP (x, 0), 1);
4229 return gen_binary (MINUS, mode, XEXP (x, 1),
4230 gen_binary (MULT, mode, in1, in2));
4231 }
4232
4233 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4234 outermost. That's because that's the way indexed addresses are
4235 supposed to appear. This code used to check many more cases, but
4236 they are now checked elsewhere. */
4237 if (GET_CODE (XEXP (x, 0)) == PLUS
4238 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4239 return gen_binary (PLUS, mode,
4240 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4241 XEXP (x, 1)),
4242 XEXP (XEXP (x, 0), 1));
4243
4244 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4245 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4246 bit-field and can be replaced by either a sign_extend or a
4247 sign_extract. The `and' may be a zero_extend and the two
4248 <c>, -<c> constants may be reversed. */
4249 if (GET_CODE (XEXP (x, 0)) == XOR
4250 && GET_CODE (XEXP (x, 1)) == CONST_INT
4251 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4252 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4253 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4254 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4255 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4256 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4257 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4258 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4259 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4260 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4261 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4262 == (unsigned int) i + 1))))
4263 return simplify_shift_const
4264 (NULL_RTX, ASHIFTRT, mode,
4265 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4266 XEXP (XEXP (XEXP (x, 0), 0), 0),
4267 GET_MODE_BITSIZE (mode) - (i + 1)),
4268 GET_MODE_BITSIZE (mode) - (i + 1));
4269
4270 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4271 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4272 is 1. This produces better code than the alternative immediately
4273 below. */
4274 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4275 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4276 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4277 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4278 XEXP (XEXP (x, 0), 0),
4279 XEXP (XEXP (x, 0), 1))))
4280 return
4281 simplify_gen_unary (NEG, mode, reversed, mode);
4282
4283 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4284 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4285 the bitsize of the mode - 1. This allows simplification of
4286 "a = (b & 8) == 0;" */
4287 if (XEXP (x, 1) == constm1_rtx
4288 && GET_CODE (XEXP (x, 0)) != REG
4289 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4290 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4291 && nonzero_bits (XEXP (x, 0), mode) == 1)
4292 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4293 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4294 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4295 GET_MODE_BITSIZE (mode) - 1),
4296 GET_MODE_BITSIZE (mode) - 1);
4297
4298 /* If we are adding two things that have no bits in common, convert
4299 the addition into an IOR. This will often be further simplified,
4300 for example in cases like ((a & 1) + (a & 2)), which can
4301 become a & 3. */
4302
4303 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4304 && (nonzero_bits (XEXP (x, 0), mode)
4305 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4306 {
4307 /* Try to simplify the expression further. */
4308 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4309 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4310
4311 /* If we could, great. If not, do not go ahead with the IOR
4312 replacement, since PLUS appears in many special purpose
4313 address arithmetic instructions. */
4314 if (GET_CODE (temp) != CLOBBER && temp != tor)
4315 return temp;
4316 }
4317 break;
4318
4319 case MINUS:
4320 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4321 by reversing the comparison code if valid. */
4322 if (STORE_FLAG_VALUE == 1
4323 && XEXP (x, 0) == const1_rtx
4324 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4325 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4326 XEXP (XEXP (x, 1), 0),
4327 XEXP (XEXP (x, 1), 1))))
4328 return reversed;
4329
4330 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4331 (and <foo> (const_int pow2-1)) */
4332 if (GET_CODE (XEXP (x, 1)) == AND
4333 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4334 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4335 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4336 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4337 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4338
4339 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4340 */
4341 if (GET_CODE (XEXP (x, 1)) == MULT
4342 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4343 {
4344 rtx in1, in2;
4345
4346 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4347 in2 = XEXP (XEXP (x, 1), 1);
4348 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4349 XEXP (x, 0));
4350 }
4351
4352 /* Canonicalize (minus (neg A) (mult B C)) to
4353 (minus (mult (neg B) C) A). */
4354 if (GET_CODE (XEXP (x, 1)) == MULT
4355 && GET_CODE (XEXP (x, 0)) == NEG)
4356 {
4357 rtx in1, in2;
4358
4359 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4360 in2 = XEXP (XEXP (x, 1), 1);
4361 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4362 XEXP (XEXP (x, 0), 0));
4363 }
4364
4365 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4366 integers. */
4367 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4368 return gen_binary (MINUS, mode,
4369 gen_binary (MINUS, mode, XEXP (x, 0),
4370 XEXP (XEXP (x, 1), 0)),
4371 XEXP (XEXP (x, 1), 1));
4372 break;
4373
4374 case MULT:
4375 /* If we have (mult (plus A B) C), apply the distributive law and then
4376 the inverse distributive law to see if things simplify. This
4377 occurs mostly in addresses, often when unrolling loops. */
4378
4379 if (GET_CODE (XEXP (x, 0)) == PLUS)
4380 {
4381 x = apply_distributive_law
4382 (gen_binary (PLUS, mode,
4383 gen_binary (MULT, mode,
4384 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4385 gen_binary (MULT, mode,
4386 XEXP (XEXP (x, 0), 1),
4387 copy_rtx (XEXP (x, 1)))));
4388
4389 if (GET_CODE (x) != MULT)
4390 return x;
4391 }
4392 /* Try simplify a*(b/c) as (a*b)/c. */
4393 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4394 && GET_CODE (XEXP (x, 0)) == DIV)
4395 {
4396 rtx tem = simplify_binary_operation (MULT, mode,
4397 XEXP (XEXP (x, 0), 0),
4398 XEXP (x, 1));
4399 if (tem)
4400 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4401 }
4402 break;
4403
4404 case UDIV:
4405 /* If this is a divide by a power of two, treat it as a shift if
4406 its first operand is a shift. */
4407 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4408 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4409 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4410 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4411 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4412 || GET_CODE (XEXP (x, 0)) == ROTATE
4413 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4414 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4415 break;
4416
4417 case EQ: case NE:
4418 case GT: case GTU: case GE: case GEU:
4419 case LT: case LTU: case LE: case LEU:
4420 case UNEQ: case LTGT:
4421 case UNGT: case UNGE:
4422 case UNLT: case UNLE:
4423 case UNORDERED: case ORDERED:
4424 /* If the first operand is a condition code, we can't do anything
4425 with it. */
4426 if (GET_CODE (XEXP (x, 0)) == COMPARE
4427 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4428 #ifdef HAVE_cc0
4429 && XEXP (x, 0) != cc0_rtx
4430 #endif
4431 ))
4432 {
4433 rtx op0 = XEXP (x, 0);
4434 rtx op1 = XEXP (x, 1);
4435 enum rtx_code new_code;
4436
4437 if (GET_CODE (op0) == COMPARE)
4438 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4439
4440 /* Simplify our comparison, if possible. */
4441 new_code = simplify_comparison (code, &op0, &op1);
4442
4443 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4444 if only the low-order bit is possibly nonzero in X (such as when
4445 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4446 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4447 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4448 (plus X 1).
4449
4450 Remove any ZERO_EXTRACT we made when thinking this was a
4451 comparison. It may now be simpler to use, e.g., an AND. If a
4452 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4453 the call to make_compound_operation in the SET case. */
4454
4455 if (STORE_FLAG_VALUE == 1
4456 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4457 && op1 == const0_rtx
4458 && mode == GET_MODE (op0)
4459 && nonzero_bits (op0, mode) == 1)
4460 return gen_lowpart_for_combine (mode,
4461 expand_compound_operation (op0));
4462
4463 else if (STORE_FLAG_VALUE == 1
4464 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4465 && op1 == const0_rtx
4466 && mode == GET_MODE (op0)
4467 && (num_sign_bit_copies (op0, mode)
4468 == GET_MODE_BITSIZE (mode)))
4469 {
4470 op0 = expand_compound_operation (op0);
4471 return simplify_gen_unary (NEG, mode,
4472 gen_lowpart_for_combine (mode, op0),
4473 mode);
4474 }
4475
4476 else if (STORE_FLAG_VALUE == 1
4477 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4478 && op1 == const0_rtx
4479 && mode == GET_MODE (op0)
4480 && nonzero_bits (op0, mode) == 1)
4481 {
4482 op0 = expand_compound_operation (op0);
4483 return gen_binary (XOR, mode,
4484 gen_lowpart_for_combine (mode, op0),
4485 const1_rtx);
4486 }
4487
4488 else if (STORE_FLAG_VALUE == 1
4489 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4490 && op1 == const0_rtx
4491 && mode == GET_MODE (op0)
4492 && (num_sign_bit_copies (op0, mode)
4493 == GET_MODE_BITSIZE (mode)))
4494 {
4495 op0 = expand_compound_operation (op0);
4496 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4497 }
4498
4499 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4500 those above. */
4501 if (STORE_FLAG_VALUE == -1
4502 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4503 && op1 == const0_rtx
4504 && (num_sign_bit_copies (op0, mode)
4505 == GET_MODE_BITSIZE (mode)))
4506 return gen_lowpart_for_combine (mode,
4507 expand_compound_operation (op0));
4508
4509 else if (STORE_FLAG_VALUE == -1
4510 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4511 && op1 == const0_rtx
4512 && mode == GET_MODE (op0)
4513 && nonzero_bits (op0, mode) == 1)
4514 {
4515 op0 = expand_compound_operation (op0);
4516 return simplify_gen_unary (NEG, mode,
4517 gen_lowpart_for_combine (mode, op0),
4518 mode);
4519 }
4520
4521 else if (STORE_FLAG_VALUE == -1
4522 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4523 && op1 == const0_rtx
4524 && mode == GET_MODE (op0)
4525 && (num_sign_bit_copies (op0, mode)
4526 == GET_MODE_BITSIZE (mode)))
4527 {
4528 op0 = expand_compound_operation (op0);
4529 return simplify_gen_unary (NOT, mode,
4530 gen_lowpart_for_combine (mode, op0),
4531 mode);
4532 }
4533
4534 /* If X is 0/1, (eq X 0) is X-1. */
4535 else if (STORE_FLAG_VALUE == -1
4536 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4537 && op1 == const0_rtx
4538 && mode == GET_MODE (op0)
4539 && nonzero_bits (op0, mode) == 1)
4540 {
4541 op0 = expand_compound_operation (op0);
4542 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4543 }
4544
4545 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4546 one bit that might be nonzero, we can convert (ne x 0) to
4547 (ashift x c) where C puts the bit in the sign bit. Remove any
4548 AND with STORE_FLAG_VALUE when we are done, since we are only
4549 going to test the sign bit. */
4550 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4551 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4552 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4553 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4554 && op1 == const0_rtx
4555 && mode == GET_MODE (op0)
4556 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4557 {
4558 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4559 expand_compound_operation (op0),
4560 GET_MODE_BITSIZE (mode) - 1 - i);
4561 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4562 return XEXP (x, 0);
4563 else
4564 return x;
4565 }
4566
4567 /* If the code changed, return a whole new comparison. */
4568 if (new_code != code)
4569 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4570
4571 /* Otherwise, keep this operation, but maybe change its operands.
4572 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4573 SUBST (XEXP (x, 0), op0);
4574 SUBST (XEXP (x, 1), op1);
4575 }
4576 break;
4577
4578 case IF_THEN_ELSE:
4579 return simplify_if_then_else (x);
4580
4581 case ZERO_EXTRACT:
4582 case SIGN_EXTRACT:
4583 case ZERO_EXTEND:
4584 case SIGN_EXTEND:
4585 /* If we are processing SET_DEST, we are done. */
4586 if (in_dest)
4587 return x;
4588
4589 return expand_compound_operation (x);
4590
4591 case SET:
4592 return simplify_set (x);
4593
4594 case AND:
4595 case IOR:
4596 case XOR:
4597 return simplify_logical (x, last);
4598
4599 case ABS:
4600 /* (abs (neg <foo>)) -> (abs <foo>) */
4601 if (GET_CODE (XEXP (x, 0)) == NEG)
4602 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4603
4604 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4605 do nothing. */
4606 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4607 break;
4608
4609 /* If operand is something known to be positive, ignore the ABS. */
4610 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4611 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4612 <= HOST_BITS_PER_WIDE_INT)
4613 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4614 & ((HOST_WIDE_INT) 1
4615 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4616 == 0)))
4617 return XEXP (x, 0);
4618
4619 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4620 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4621 return gen_rtx_NEG (mode, XEXP (x, 0));
4622
4623 break;
4624
4625 case FFS:
4626 /* (ffs (*_extend <X>)) = (ffs <X>) */
4627 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4628 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4629 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4630 break;
4631
4632 case FLOAT:
4633 /* (float (sign_extend <X>)) = (float <X>). */
4634 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4635 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4636 break;
4637
4638 case ASHIFT:
4639 case LSHIFTRT:
4640 case ASHIFTRT:
4641 case ROTATE:
4642 case ROTATERT:
4643 /* If this is a shift by a constant amount, simplify it. */
4644 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4645 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4646 INTVAL (XEXP (x, 1)));
4647
4648 #ifdef SHIFT_COUNT_TRUNCATED
4649 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4650 SUBST (XEXP (x, 1),
4651 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4652 ((HOST_WIDE_INT) 1
4653 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4654 - 1,
4655 NULL_RTX, 0));
4656 #endif
4657
4658 break;
4659
4660 case VEC_SELECT:
4661 {
4662 rtx op0 = XEXP (x, 0);
4663 rtx op1 = XEXP (x, 1);
4664 int len;
4665
4666 if (GET_CODE (op1) != PARALLEL)
4667 abort ();
4668 len = XVECLEN (op1, 0);
4669 if (len == 1
4670 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4671 && GET_CODE (op0) == VEC_CONCAT)
4672 {
4673 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4674
4675 /* Try to find the element in the VEC_CONCAT. */
4676 for (;;)
4677 {
4678 if (GET_MODE (op0) == GET_MODE (x))
4679 return op0;
4680 if (GET_CODE (op0) == VEC_CONCAT)
4681 {
4682 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4683 if (op0_size < offset)
4684 op0 = XEXP (op0, 0);
4685 else
4686 {
4687 offset -= op0_size;
4688 op0 = XEXP (op0, 1);
4689 }
4690 }
4691 else
4692 break;
4693 }
4694 }
4695 }
4696
4697 break;
4698
4699 default:
4700 break;
4701 }
4702
4703 return x;
4704 }
4705 \f
4706 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4707
4708 static rtx
4709 simplify_if_then_else (x)
4710 rtx x;
4711 {
4712 enum machine_mode mode = GET_MODE (x);
4713 rtx cond = XEXP (x, 0);
4714 rtx true_rtx = XEXP (x, 1);
4715 rtx false_rtx = XEXP (x, 2);
4716 enum rtx_code true_code = GET_CODE (cond);
4717 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4718 rtx temp;
4719 int i;
4720 enum rtx_code false_code;
4721 rtx reversed;
4722
4723 /* Simplify storing of the truth value. */
4724 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4725 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4726
4727 /* Also when the truth value has to be reversed. */
4728 if (comparison_p
4729 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4730 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4731 XEXP (cond, 1))))
4732 return reversed;
4733
4734 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4735 in it is being compared against certain values. Get the true and false
4736 comparisons and see if that says anything about the value of each arm. */
4737
4738 if (comparison_p
4739 && ((false_code = combine_reversed_comparison_code (cond))
4740 != UNKNOWN)
4741 && GET_CODE (XEXP (cond, 0)) == REG)
4742 {
4743 HOST_WIDE_INT nzb;
4744 rtx from = XEXP (cond, 0);
4745 rtx true_val = XEXP (cond, 1);
4746 rtx false_val = true_val;
4747 int swapped = 0;
4748
4749 /* If FALSE_CODE is EQ, swap the codes and arms. */
4750
4751 if (false_code == EQ)
4752 {
4753 swapped = 1, true_code = EQ, false_code = NE;
4754 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4755 }
4756
4757 /* If we are comparing against zero and the expression being tested has
4758 only a single bit that might be nonzero, that is its value when it is
4759 not equal to zero. Similarly if it is known to be -1 or 0. */
4760
4761 if (true_code == EQ && true_val == const0_rtx
4762 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4763 false_code = EQ, false_val = GEN_INT (nzb);
4764 else if (true_code == EQ && true_val == const0_rtx
4765 && (num_sign_bit_copies (from, GET_MODE (from))
4766 == GET_MODE_BITSIZE (GET_MODE (from))))
4767 false_code = EQ, false_val = constm1_rtx;
4768
4769 /* Now simplify an arm if we know the value of the register in the
4770 branch and it is used in the arm. Be careful due to the potential
4771 of locally-shared RTL. */
4772
4773 if (reg_mentioned_p (from, true_rtx))
4774 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4775 from, true_val),
4776 pc_rtx, pc_rtx, 0, 0);
4777 if (reg_mentioned_p (from, false_rtx))
4778 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4779 from, false_val),
4780 pc_rtx, pc_rtx, 0, 0);
4781
4782 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4783 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4784
4785 true_rtx = XEXP (x, 1);
4786 false_rtx = XEXP (x, 2);
4787 true_code = GET_CODE (cond);
4788 }
4789
4790 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4791 reversed, do so to avoid needing two sets of patterns for
4792 subtract-and-branch insns. Similarly if we have a constant in the true
4793 arm, the false arm is the same as the first operand of the comparison, or
4794 the false arm is more complicated than the true arm. */
4795
4796 if (comparison_p
4797 && combine_reversed_comparison_code (cond) != UNKNOWN
4798 && (true_rtx == pc_rtx
4799 || (CONSTANT_P (true_rtx)
4800 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4801 || true_rtx == const0_rtx
4802 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4803 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4804 || (GET_CODE (true_rtx) == SUBREG
4805 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4806 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4807 || reg_mentioned_p (true_rtx, false_rtx)
4808 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4809 {
4810 true_code = reversed_comparison_code (cond, NULL);
4811 SUBST (XEXP (x, 0),
4812 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4813 XEXP (cond, 1)));
4814
4815 SUBST (XEXP (x, 1), false_rtx);
4816 SUBST (XEXP (x, 2), true_rtx);
4817
4818 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4819 cond = XEXP (x, 0);
4820
4821 /* It is possible that the conditional has been simplified out. */
4822 true_code = GET_CODE (cond);
4823 comparison_p = GET_RTX_CLASS (true_code) == '<';
4824 }
4825
4826 /* If the two arms are identical, we don't need the comparison. */
4827
4828 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4829 return true_rtx;
4830
4831 /* Convert a == b ? b : a to "a". */
4832 if (true_code == EQ && ! side_effects_p (cond)
4833 && !HONOR_NANS (mode)
4834 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4835 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4836 return false_rtx;
4837 else if (true_code == NE && ! side_effects_p (cond)
4838 && !HONOR_NANS (mode)
4839 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4840 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4841 return true_rtx;
4842
4843 /* Look for cases where we have (abs x) or (neg (abs X)). */
4844
4845 if (GET_MODE_CLASS (mode) == MODE_INT
4846 && GET_CODE (false_rtx) == NEG
4847 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4848 && comparison_p
4849 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4850 && ! side_effects_p (true_rtx))
4851 switch (true_code)
4852 {
4853 case GT:
4854 case GE:
4855 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4856 case LT:
4857 case LE:
4858 return
4859 simplify_gen_unary (NEG, mode,
4860 simplify_gen_unary (ABS, mode, true_rtx, mode),
4861 mode);
4862 default:
4863 break;
4864 }
4865
4866 /* Look for MIN or MAX. */
4867
4868 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4869 && comparison_p
4870 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4871 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4872 && ! side_effects_p (cond))
4873 switch (true_code)
4874 {
4875 case GE:
4876 case GT:
4877 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4878 case LE:
4879 case LT:
4880 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4881 case GEU:
4882 case GTU:
4883 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4884 case LEU:
4885 case LTU:
4886 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4887 default:
4888 break;
4889 }
4890
4891 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4892 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4893 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4894 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4895 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4896 neither 1 or -1, but it isn't worth checking for. */
4897
4898 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4899 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4900 {
4901 rtx t = make_compound_operation (true_rtx, SET);
4902 rtx f = make_compound_operation (false_rtx, SET);
4903 rtx cond_op0 = XEXP (cond, 0);
4904 rtx cond_op1 = XEXP (cond, 1);
4905 enum rtx_code op = NIL, extend_op = NIL;
4906 enum machine_mode m = mode;
4907 rtx z = 0, c1 = NULL_RTX;
4908
4909 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4910 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4911 || GET_CODE (t) == ASHIFT
4912 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4913 && rtx_equal_p (XEXP (t, 0), f))
4914 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4915
4916 /* If an identity-zero op is commutative, check whether there
4917 would be a match if we swapped the operands. */
4918 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4919 || GET_CODE (t) == XOR)
4920 && rtx_equal_p (XEXP (t, 1), f))
4921 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4922 else if (GET_CODE (t) == SIGN_EXTEND
4923 && (GET_CODE (XEXP (t, 0)) == PLUS
4924 || GET_CODE (XEXP (t, 0)) == MINUS
4925 || GET_CODE (XEXP (t, 0)) == IOR
4926 || GET_CODE (XEXP (t, 0)) == XOR
4927 || GET_CODE (XEXP (t, 0)) == ASHIFT
4928 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4929 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4930 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4931 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4932 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4933 && (num_sign_bit_copies (f, GET_MODE (f))
4934 > (unsigned int)
4935 (GET_MODE_BITSIZE (mode)
4936 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4937 {
4938 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4939 extend_op = SIGN_EXTEND;
4940 m = GET_MODE (XEXP (t, 0));
4941 }
4942 else if (GET_CODE (t) == SIGN_EXTEND
4943 && (GET_CODE (XEXP (t, 0)) == PLUS
4944 || GET_CODE (XEXP (t, 0)) == IOR
4945 || GET_CODE (XEXP (t, 0)) == XOR)
4946 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4947 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4948 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4949 && (num_sign_bit_copies (f, GET_MODE (f))
4950 > (unsigned int)
4951 (GET_MODE_BITSIZE (mode)
4952 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4953 {
4954 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4955 extend_op = SIGN_EXTEND;
4956 m = GET_MODE (XEXP (t, 0));
4957 }
4958 else if (GET_CODE (t) == ZERO_EXTEND
4959 && (GET_CODE (XEXP (t, 0)) == PLUS
4960 || GET_CODE (XEXP (t, 0)) == MINUS
4961 || GET_CODE (XEXP (t, 0)) == IOR
4962 || GET_CODE (XEXP (t, 0)) == XOR
4963 || GET_CODE (XEXP (t, 0)) == ASHIFT
4964 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4965 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4966 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4967 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4968 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4969 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4970 && ((nonzero_bits (f, GET_MODE (f))
4971 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4972 == 0))
4973 {
4974 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4975 extend_op = ZERO_EXTEND;
4976 m = GET_MODE (XEXP (t, 0));
4977 }
4978 else if (GET_CODE (t) == ZERO_EXTEND
4979 && (GET_CODE (XEXP (t, 0)) == PLUS
4980 || GET_CODE (XEXP (t, 0)) == IOR
4981 || GET_CODE (XEXP (t, 0)) == XOR)
4982 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4983 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4984 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4985 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4986 && ((nonzero_bits (f, GET_MODE (f))
4987 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4988 == 0))
4989 {
4990 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4991 extend_op = ZERO_EXTEND;
4992 m = GET_MODE (XEXP (t, 0));
4993 }
4994
4995 if (z)
4996 {
4997 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4998 pc_rtx, pc_rtx, 0, 0);
4999 temp = gen_binary (MULT, m, temp,
5000 gen_binary (MULT, m, c1, const_true_rtx));
5001 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5002 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
5003
5004 if (extend_op != NIL)
5005 temp = simplify_gen_unary (extend_op, mode, temp, m);
5006
5007 return temp;
5008 }
5009 }
5010
5011 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5012 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5013 negation of a single bit, we can convert this operation to a shift. We
5014 can actually do this more generally, but it doesn't seem worth it. */
5015
5016 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5017 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5018 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5019 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5020 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5021 == GET_MODE_BITSIZE (mode))
5022 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5023 return
5024 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5025 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
5026
5027 return x;
5028 }
5029 \f
5030 /* Simplify X, a SET expression. Return the new expression. */
5031
5032 static rtx
5033 simplify_set (x)
5034 rtx x;
5035 {
5036 rtx src = SET_SRC (x);
5037 rtx dest = SET_DEST (x);
5038 enum machine_mode mode
5039 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5040 rtx other_insn;
5041 rtx *cc_use;
5042
5043 /* (set (pc) (return)) gets written as (return). */
5044 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5045 return src;
5046
5047 /* Now that we know for sure which bits of SRC we are using, see if we can
5048 simplify the expression for the object knowing that we only need the
5049 low-order bits. */
5050
5051 if (GET_MODE_CLASS (mode) == MODE_INT
5052 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5053 {
5054 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5055 SUBST (SET_SRC (x), src);
5056 }
5057
5058 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5059 the comparison result and try to simplify it unless we already have used
5060 undobuf.other_insn. */
5061 if ((GET_MODE_CLASS (mode) == MODE_CC
5062 || GET_CODE (src) == COMPARE
5063 || CC0_P (dest))
5064 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5065 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5066 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
5067 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5068 {
5069 enum rtx_code old_code = GET_CODE (*cc_use);
5070 enum rtx_code new_code;
5071 rtx op0, op1, tmp;
5072 int other_changed = 0;
5073 enum machine_mode compare_mode = GET_MODE (dest);
5074 enum machine_mode tmp_mode;
5075
5076 if (GET_CODE (src) == COMPARE)
5077 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5078 else
5079 op0 = src, op1 = const0_rtx;
5080
5081 /* Check whether the comparison is known at compile time. */
5082 if (GET_MODE (op0) != VOIDmode)
5083 tmp_mode = GET_MODE (op0);
5084 else if (GET_MODE (op1) != VOIDmode)
5085 tmp_mode = GET_MODE (op1);
5086 else
5087 tmp_mode = compare_mode;
5088 tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
5089 if (tmp != NULL_RTX)
5090 {
5091 rtx pat = PATTERN (other_insn);
5092 undobuf.other_insn = other_insn;
5093 SUBST (*cc_use, tmp);
5094
5095 /* Attempt to simplify CC user. */
5096 if (GET_CODE (pat) == SET)
5097 {
5098 rtx new = simplify_rtx (SET_SRC (pat));
5099 if (new != NULL_RTX)
5100 SUBST (SET_SRC (pat), new);
5101 }
5102
5103 /* Convert X into a no-op move. */
5104 SUBST (SET_DEST (x), pc_rtx);
5105 SUBST (SET_SRC (x), pc_rtx);
5106 return x;
5107 }
5108
5109 /* Simplify our comparison, if possible. */
5110 new_code = simplify_comparison (old_code, &op0, &op1);
5111
5112 #ifdef EXTRA_CC_MODES
5113 /* If this machine has CC modes other than CCmode, check to see if we
5114 need to use a different CC mode here. */
5115 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5116 #endif /* EXTRA_CC_MODES */
5117
5118 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5119 /* If the mode changed, we have to change SET_DEST, the mode in the
5120 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5121 a hard register, just build new versions with the proper mode. If it
5122 is a pseudo, we lose unless it is only time we set the pseudo, in
5123 which case we can safely change its mode. */
5124 if (compare_mode != GET_MODE (dest))
5125 {
5126 unsigned int regno = REGNO (dest);
5127 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5128
5129 if (regno < FIRST_PSEUDO_REGISTER
5130 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5131 {
5132 if (regno >= FIRST_PSEUDO_REGISTER)
5133 SUBST (regno_reg_rtx[regno], new_dest);
5134
5135 SUBST (SET_DEST (x), new_dest);
5136 SUBST (XEXP (*cc_use, 0), new_dest);
5137 other_changed = 1;
5138
5139 dest = new_dest;
5140 }
5141 }
5142 #endif
5143
5144 /* If the code changed, we have to build a new comparison in
5145 undobuf.other_insn. */
5146 if (new_code != old_code)
5147 {
5148 unsigned HOST_WIDE_INT mask;
5149
5150 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5151 dest, const0_rtx));
5152
5153 /* If the only change we made was to change an EQ into an NE or
5154 vice versa, OP0 has only one bit that might be nonzero, and OP1
5155 is zero, check if changing the user of the condition code will
5156 produce a valid insn. If it won't, we can keep the original code
5157 in that insn by surrounding our operation with an XOR. */
5158
5159 if (((old_code == NE && new_code == EQ)
5160 || (old_code == EQ && new_code == NE))
5161 && ! other_changed && op1 == const0_rtx
5162 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5163 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5164 {
5165 rtx pat = PATTERN (other_insn), note = 0;
5166
5167 if ((recog_for_combine (&pat, other_insn, &note) < 0
5168 && ! check_asm_operands (pat)))
5169 {
5170 PUT_CODE (*cc_use, old_code);
5171 other_insn = 0;
5172
5173 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5174 }
5175 }
5176
5177 other_changed = 1;
5178 }
5179
5180 if (other_changed)
5181 undobuf.other_insn = other_insn;
5182
5183 #ifdef HAVE_cc0
5184 /* If we are now comparing against zero, change our source if
5185 needed. If we do not use cc0, we always have a COMPARE. */
5186 if (op1 == const0_rtx && dest == cc0_rtx)
5187 {
5188 SUBST (SET_SRC (x), op0);
5189 src = op0;
5190 }
5191 else
5192 #endif
5193
5194 /* Otherwise, if we didn't previously have a COMPARE in the
5195 correct mode, we need one. */
5196 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5197 {
5198 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5199 src = SET_SRC (x);
5200 }
5201 else
5202 {
5203 /* Otherwise, update the COMPARE if needed. */
5204 SUBST (XEXP (src, 0), op0);
5205 SUBST (XEXP (src, 1), op1);
5206 }
5207 }
5208 else
5209 {
5210 /* Get SET_SRC in a form where we have placed back any
5211 compound expressions. Then do the checks below. */
5212 src = make_compound_operation (src, SET);
5213 SUBST (SET_SRC (x), src);
5214 }
5215
5216 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5217 and X being a REG or (subreg (reg)), we may be able to convert this to
5218 (set (subreg:m2 x) (op)).
5219
5220 We can always do this if M1 is narrower than M2 because that means that
5221 we only care about the low bits of the result.
5222
5223 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5224 perform a narrower operation than requested since the high-order bits will
5225 be undefined. On machine where it is defined, this transformation is safe
5226 as long as M1 and M2 have the same number of words. */
5227
5228 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5229 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5230 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5231 / UNITS_PER_WORD)
5232 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5233 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5234 #ifndef WORD_REGISTER_OPERATIONS
5235 && (GET_MODE_SIZE (GET_MODE (src))
5236 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5237 #endif
5238 #ifdef CANNOT_CHANGE_MODE_CLASS
5239 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5240 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5241 GET_MODE (src),
5242 GET_MODE (SUBREG_REG (src))))
5243 #endif
5244 && (GET_CODE (dest) == REG
5245 || (GET_CODE (dest) == SUBREG
5246 && GET_CODE (SUBREG_REG (dest)) == REG)))
5247 {
5248 SUBST (SET_DEST (x),
5249 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5250 dest));
5251 SUBST (SET_SRC (x), SUBREG_REG (src));
5252
5253 src = SET_SRC (x), dest = SET_DEST (x);
5254 }
5255
5256 #ifdef HAVE_cc0
5257 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5258 in SRC. */
5259 if (dest == cc0_rtx
5260 && GET_CODE (src) == SUBREG
5261 && subreg_lowpart_p (src)
5262 && (GET_MODE_BITSIZE (GET_MODE (src))
5263 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5264 {
5265 rtx inner = SUBREG_REG (src);
5266 enum machine_mode inner_mode = GET_MODE (inner);
5267
5268 /* Here we make sure that we don't have a sign bit on. */
5269 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5270 && (nonzero_bits (inner, inner_mode)
5271 < ((unsigned HOST_WIDE_INT) 1
5272 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5273 {
5274 SUBST (SET_SRC (x), inner);
5275 src = SET_SRC (x);
5276 }
5277 }
5278 #endif
5279
5280 #ifdef LOAD_EXTEND_OP
5281 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5282 would require a paradoxical subreg. Replace the subreg with a
5283 zero_extend to avoid the reload that would otherwise be required. */
5284
5285 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5286 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5287 && SUBREG_BYTE (src) == 0
5288 && (GET_MODE_SIZE (GET_MODE (src))
5289 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5290 && GET_CODE (SUBREG_REG (src)) == MEM)
5291 {
5292 SUBST (SET_SRC (x),
5293 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5294 GET_MODE (src), SUBREG_REG (src)));
5295
5296 src = SET_SRC (x);
5297 }
5298 #endif
5299
5300 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5301 are comparing an item known to be 0 or -1 against 0, use a logical
5302 operation instead. Check for one of the arms being an IOR of the other
5303 arm with some value. We compute three terms to be IOR'ed together. In
5304 practice, at most two will be nonzero. Then we do the IOR's. */
5305
5306 if (GET_CODE (dest) != PC
5307 && GET_CODE (src) == IF_THEN_ELSE
5308 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5309 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5310 && XEXP (XEXP (src, 0), 1) == const0_rtx
5311 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5312 #ifdef HAVE_conditional_move
5313 && ! can_conditionally_move_p (GET_MODE (src))
5314 #endif
5315 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5316 GET_MODE (XEXP (XEXP (src, 0), 0)))
5317 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5318 && ! side_effects_p (src))
5319 {
5320 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5321 ? XEXP (src, 1) : XEXP (src, 2));
5322 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5323 ? XEXP (src, 2) : XEXP (src, 1));
5324 rtx term1 = const0_rtx, term2, term3;
5325
5326 if (GET_CODE (true_rtx) == IOR
5327 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5328 term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5329 else if (GET_CODE (true_rtx) == IOR
5330 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5331 term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5332 else if (GET_CODE (false_rtx) == IOR
5333 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5334 term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5335 else if (GET_CODE (false_rtx) == IOR
5336 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5337 term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5338
5339 term2 = gen_binary (AND, GET_MODE (src),
5340 XEXP (XEXP (src, 0), 0), true_rtx);
5341 term3 = gen_binary (AND, GET_MODE (src),
5342 simplify_gen_unary (NOT, GET_MODE (src),
5343 XEXP (XEXP (src, 0), 0),
5344 GET_MODE (src)),
5345 false_rtx);
5346
5347 SUBST (SET_SRC (x),
5348 gen_binary (IOR, GET_MODE (src),
5349 gen_binary (IOR, GET_MODE (src), term1, term2),
5350 term3));
5351
5352 src = SET_SRC (x);
5353 }
5354
5355 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5356 whole thing fail. */
5357 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5358 return src;
5359 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5360 return dest;
5361 else
5362 /* Convert this into a field assignment operation, if possible. */
5363 return make_field_assignment (x);
5364 }
5365 \f
5366 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5367 result. LAST is nonzero if this is the last retry. */
5368
5369 static rtx
5370 simplify_logical (x, last)
5371 rtx x;
5372 int last;
5373 {
5374 enum machine_mode mode = GET_MODE (x);
5375 rtx op0 = XEXP (x, 0);
5376 rtx op1 = XEXP (x, 1);
5377 rtx reversed;
5378
5379 switch (GET_CODE (x))
5380 {
5381 case AND:
5382 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5383 insn (and may simplify more). */
5384 if (GET_CODE (op0) == XOR
5385 && rtx_equal_p (XEXP (op0, 0), op1)
5386 && ! side_effects_p (op1))
5387 x = gen_binary (AND, mode,
5388 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5389 op1);
5390
5391 if (GET_CODE (op0) == XOR
5392 && rtx_equal_p (XEXP (op0, 1), op1)
5393 && ! side_effects_p (op1))
5394 x = gen_binary (AND, mode,
5395 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5396 op1);
5397
5398 /* Similarly for (~(A ^ B)) & A. */
5399 if (GET_CODE (op0) == NOT
5400 && GET_CODE (XEXP (op0, 0)) == XOR
5401 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5402 && ! side_effects_p (op1))
5403 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5404
5405 if (GET_CODE (op0) == NOT
5406 && GET_CODE (XEXP (op0, 0)) == XOR
5407 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5408 && ! side_effects_p (op1))
5409 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5410
5411 /* We can call simplify_and_const_int only if we don't lose
5412 any (sign) bits when converting INTVAL (op1) to
5413 "unsigned HOST_WIDE_INT". */
5414 if (GET_CODE (op1) == CONST_INT
5415 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5416 || INTVAL (op1) > 0))
5417 {
5418 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5419
5420 /* If we have (ior (and (X C1) C2)) and the next restart would be
5421 the last, simplify this by making C1 as small as possible
5422 and then exit. */
5423 if (last
5424 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5425 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5426 && GET_CODE (op1) == CONST_INT)
5427 return gen_binary (IOR, mode,
5428 gen_binary (AND, mode, XEXP (op0, 0),
5429 GEN_INT (INTVAL (XEXP (op0, 1))
5430 & ~INTVAL (op1))), op1);
5431
5432 if (GET_CODE (x) != AND)
5433 return x;
5434
5435 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5436 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5437 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5438 }
5439
5440 /* Convert (A | B) & A to A. */
5441 if (GET_CODE (op0) == IOR
5442 && (rtx_equal_p (XEXP (op0, 0), op1)
5443 || rtx_equal_p (XEXP (op0, 1), op1))
5444 && ! side_effects_p (XEXP (op0, 0))
5445 && ! side_effects_p (XEXP (op0, 1)))
5446 return op1;
5447
5448 /* In the following group of tests (and those in case IOR below),
5449 we start with some combination of logical operations and apply
5450 the distributive law followed by the inverse distributive law.
5451 Most of the time, this results in no change. However, if some of
5452 the operands are the same or inverses of each other, simplifications
5453 will result.
5454
5455 For example, (and (ior A B) (not B)) can occur as the result of
5456 expanding a bit field assignment. When we apply the distributive
5457 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5458 which then simplifies to (and (A (not B))).
5459
5460 If we have (and (ior A B) C), apply the distributive law and then
5461 the inverse distributive law to see if things simplify. */
5462
5463 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5464 {
5465 x = apply_distributive_law
5466 (gen_binary (GET_CODE (op0), mode,
5467 gen_binary (AND, mode, XEXP (op0, 0), op1),
5468 gen_binary (AND, mode, XEXP (op0, 1),
5469 copy_rtx (op1))));
5470 if (GET_CODE (x) != AND)
5471 return x;
5472 }
5473
5474 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5475 return apply_distributive_law
5476 (gen_binary (GET_CODE (op1), mode,
5477 gen_binary (AND, mode, XEXP (op1, 0), op0),
5478 gen_binary (AND, mode, XEXP (op1, 1),
5479 copy_rtx (op0))));
5480
5481 /* Similarly, taking advantage of the fact that
5482 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5483
5484 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5485 return apply_distributive_law
5486 (gen_binary (XOR, mode,
5487 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5488 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5489 XEXP (op1, 1))));
5490
5491 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5492 return apply_distributive_law
5493 (gen_binary (XOR, mode,
5494 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5495 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5496 break;
5497
5498 case IOR:
5499 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5500 if (GET_CODE (op1) == CONST_INT
5501 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5502 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5503 return op1;
5504
5505 /* Convert (A & B) | A to A. */
5506 if (GET_CODE (op0) == AND
5507 && (rtx_equal_p (XEXP (op0, 0), op1)
5508 || rtx_equal_p (XEXP (op0, 1), op1))
5509 && ! side_effects_p (XEXP (op0, 0))
5510 && ! side_effects_p (XEXP (op0, 1)))
5511 return op1;
5512
5513 /* If we have (ior (and A B) C), apply the distributive law and then
5514 the inverse distributive law to see if things simplify. */
5515
5516 if (GET_CODE (op0) == AND)
5517 {
5518 x = apply_distributive_law
5519 (gen_binary (AND, mode,
5520 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5521 gen_binary (IOR, mode, XEXP (op0, 1),
5522 copy_rtx (op1))));
5523
5524 if (GET_CODE (x) != IOR)
5525 return x;
5526 }
5527
5528 if (GET_CODE (op1) == AND)
5529 {
5530 x = apply_distributive_law
5531 (gen_binary (AND, mode,
5532 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5533 gen_binary (IOR, mode, XEXP (op1, 1),
5534 copy_rtx (op0))));
5535
5536 if (GET_CODE (x) != IOR)
5537 return x;
5538 }
5539
5540 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5541 mode size to (rotate A CX). */
5542
5543 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5544 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5545 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5546 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5547 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5548 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5549 == GET_MODE_BITSIZE (mode)))
5550 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5551 (GET_CODE (op0) == ASHIFT
5552 ? XEXP (op0, 1) : XEXP (op1, 1)));
5553
5554 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5555 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5556 does not affect any of the bits in OP1, it can really be done
5557 as a PLUS and we can associate. We do this by seeing if OP1
5558 can be safely shifted left C bits. */
5559 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5560 && GET_CODE (XEXP (op0, 0)) == PLUS
5561 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5562 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5563 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5564 {
5565 int count = INTVAL (XEXP (op0, 1));
5566 HOST_WIDE_INT mask = INTVAL (op1) << count;
5567
5568 if (mask >> count == INTVAL (op1)
5569 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5570 {
5571 SUBST (XEXP (XEXP (op0, 0), 1),
5572 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5573 return op0;
5574 }
5575 }
5576 break;
5577
5578 case XOR:
5579 /* If we are XORing two things that have no bits in common,
5580 convert them into an IOR. This helps to detect rotation encoded
5581 using those methods and possibly other simplifications. */
5582
5583 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5584 && (nonzero_bits (op0, mode)
5585 & nonzero_bits (op1, mode)) == 0)
5586 return (gen_binary (IOR, mode, op0, op1));
5587
5588 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5589 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5590 (NOT y). */
5591 {
5592 int num_negated = 0;
5593
5594 if (GET_CODE (op0) == NOT)
5595 num_negated++, op0 = XEXP (op0, 0);
5596 if (GET_CODE (op1) == NOT)
5597 num_negated++, op1 = XEXP (op1, 0);
5598
5599 if (num_negated == 2)
5600 {
5601 SUBST (XEXP (x, 0), op0);
5602 SUBST (XEXP (x, 1), op1);
5603 }
5604 else if (num_negated == 1)
5605 return
5606 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5607 mode);
5608 }
5609
5610 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5611 correspond to a machine insn or result in further simplifications
5612 if B is a constant. */
5613
5614 if (GET_CODE (op0) == AND
5615 && rtx_equal_p (XEXP (op0, 1), op1)
5616 && ! side_effects_p (op1))
5617 return gen_binary (AND, mode,
5618 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5619 op1);
5620
5621 else if (GET_CODE (op0) == AND
5622 && rtx_equal_p (XEXP (op0, 0), op1)
5623 && ! side_effects_p (op1))
5624 return gen_binary (AND, mode,
5625 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5626 op1);
5627
5628 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5629 comparison if STORE_FLAG_VALUE is 1. */
5630 if (STORE_FLAG_VALUE == 1
5631 && op1 == const1_rtx
5632 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5633 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5634 XEXP (op0, 1))))
5635 return reversed;
5636
5637 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5638 is (lt foo (const_int 0)), so we can perform the above
5639 simplification if STORE_FLAG_VALUE is 1. */
5640
5641 if (STORE_FLAG_VALUE == 1
5642 && op1 == const1_rtx
5643 && GET_CODE (op0) == LSHIFTRT
5644 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5645 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5646 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5647
5648 /* (xor (comparison foo bar) (const_int sign-bit))
5649 when STORE_FLAG_VALUE is the sign bit. */
5650 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5651 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5652 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5653 && op1 == const_true_rtx
5654 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5655 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5656 XEXP (op0, 1))))
5657 return reversed;
5658
5659 break;
5660
5661 default:
5662 abort ();
5663 }
5664
5665 return x;
5666 }
5667 \f
5668 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5669 operations" because they can be replaced with two more basic operations.
5670 ZERO_EXTEND is also considered "compound" because it can be replaced with
5671 an AND operation, which is simpler, though only one operation.
5672
5673 The function expand_compound_operation is called with an rtx expression
5674 and will convert it to the appropriate shifts and AND operations,
5675 simplifying at each stage.
5676
5677 The function make_compound_operation is called to convert an expression
5678 consisting of shifts and ANDs into the equivalent compound expression.
5679 It is the inverse of this function, loosely speaking. */
5680
5681 static rtx
5682 expand_compound_operation (x)
5683 rtx x;
5684 {
5685 unsigned HOST_WIDE_INT pos = 0, len;
5686 int unsignedp = 0;
5687 unsigned int modewidth;
5688 rtx tem;
5689
5690 switch (GET_CODE (x))
5691 {
5692 case ZERO_EXTEND:
5693 unsignedp = 1;
5694 case SIGN_EXTEND:
5695 /* We can't necessarily use a const_int for a multiword mode;
5696 it depends on implicitly extending the value.
5697 Since we don't know the right way to extend it,
5698 we can't tell whether the implicit way is right.
5699
5700 Even for a mode that is no wider than a const_int,
5701 we can't win, because we need to sign extend one of its bits through
5702 the rest of it, and we don't know which bit. */
5703 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5704 return x;
5705
5706 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5707 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5708 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5709 reloaded. If not for that, MEM's would very rarely be safe.
5710
5711 Reject MODEs bigger than a word, because we might not be able
5712 to reference a two-register group starting with an arbitrary register
5713 (and currently gen_lowpart might crash for a SUBREG). */
5714
5715 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5716 return x;
5717
5718 /* Reject MODEs that aren't scalar integers because turning vector
5719 or complex modes into shifts causes problems. */
5720
5721 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5722 return x;
5723
5724 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5725 /* If the inner object has VOIDmode (the only way this can happen
5726 is if it is an ASM_OPERANDS), we can't do anything since we don't
5727 know how much masking to do. */
5728 if (len == 0)
5729 return x;
5730
5731 break;
5732
5733 case ZERO_EXTRACT:
5734 unsignedp = 1;
5735 case SIGN_EXTRACT:
5736 /* If the operand is a CLOBBER, just return it. */
5737 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5738 return XEXP (x, 0);
5739
5740 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5741 || GET_CODE (XEXP (x, 2)) != CONST_INT
5742 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5743 return x;
5744
5745 /* Reject MODEs that aren't scalar integers because turning vector
5746 or complex modes into shifts causes problems. */
5747
5748 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5749 return x;
5750
5751 len = INTVAL (XEXP (x, 1));
5752 pos = INTVAL (XEXP (x, 2));
5753
5754 /* If this goes outside the object being extracted, replace the object
5755 with a (use (mem ...)) construct that only combine understands
5756 and is used only for this purpose. */
5757 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5758 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5759
5760 if (BITS_BIG_ENDIAN)
5761 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5762
5763 break;
5764
5765 default:
5766 return x;
5767 }
5768 /* Convert sign extension to zero extension, if we know that the high
5769 bit is not set, as this is easier to optimize. It will be converted
5770 back to cheaper alternative in make_extraction. */
5771 if (GET_CODE (x) == SIGN_EXTEND
5772 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5773 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5774 & ~(((unsigned HOST_WIDE_INT)
5775 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5776 >> 1))
5777 == 0)))
5778 {
5779 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5780 return expand_compound_operation (temp);
5781 }
5782
5783 /* We can optimize some special cases of ZERO_EXTEND. */
5784 if (GET_CODE (x) == ZERO_EXTEND)
5785 {
5786 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5787 know that the last value didn't have any inappropriate bits
5788 set. */
5789 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5790 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5791 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5792 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5793 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5794 return XEXP (XEXP (x, 0), 0);
5795
5796 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5797 if (GET_CODE (XEXP (x, 0)) == SUBREG
5798 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5799 && subreg_lowpart_p (XEXP (x, 0))
5800 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5801 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5802 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5803 return SUBREG_REG (XEXP (x, 0));
5804
5805 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5806 is a comparison and STORE_FLAG_VALUE permits. This is like
5807 the first case, but it works even when GET_MODE (x) is larger
5808 than HOST_WIDE_INT. */
5809 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5810 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5811 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5812 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5813 <= HOST_BITS_PER_WIDE_INT)
5814 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5815 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5816 return XEXP (XEXP (x, 0), 0);
5817
5818 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5819 if (GET_CODE (XEXP (x, 0)) == SUBREG
5820 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5821 && subreg_lowpart_p (XEXP (x, 0))
5822 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5823 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5824 <= HOST_BITS_PER_WIDE_INT)
5825 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5826 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5827 return SUBREG_REG (XEXP (x, 0));
5828
5829 }
5830
5831 /* If we reach here, we want to return a pair of shifts. The inner
5832 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5833 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5834 logical depending on the value of UNSIGNEDP.
5835
5836 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5837 converted into an AND of a shift.
5838
5839 We must check for the case where the left shift would have a negative
5840 count. This can happen in a case like (x >> 31) & 255 on machines
5841 that can't shift by a constant. On those machines, we would first
5842 combine the shift with the AND to produce a variable-position
5843 extraction. Then the constant of 31 would be substituted in to produce
5844 a such a position. */
5845
5846 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5847 if (modewidth + len >= pos)
5848 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5849 GET_MODE (x),
5850 simplify_shift_const (NULL_RTX, ASHIFT,
5851 GET_MODE (x),
5852 XEXP (x, 0),
5853 modewidth - pos - len),
5854 modewidth - len);
5855
5856 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5857 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5858 simplify_shift_const (NULL_RTX, LSHIFTRT,
5859 GET_MODE (x),
5860 XEXP (x, 0), pos),
5861 ((HOST_WIDE_INT) 1 << len) - 1);
5862 else
5863 /* Any other cases we can't handle. */
5864 return x;
5865
5866 /* If we couldn't do this for some reason, return the original
5867 expression. */
5868 if (GET_CODE (tem) == CLOBBER)
5869 return x;
5870
5871 return tem;
5872 }
5873 \f
5874 /* X is a SET which contains an assignment of one object into
5875 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5876 or certain SUBREGS). If possible, convert it into a series of
5877 logical operations.
5878
5879 We half-heartedly support variable positions, but do not at all
5880 support variable lengths. */
5881
5882 static rtx
5883 expand_field_assignment (x)
5884 rtx x;
5885 {
5886 rtx inner;
5887 rtx pos; /* Always counts from low bit. */
5888 int len;
5889 rtx mask;
5890 enum machine_mode compute_mode;
5891
5892 /* Loop until we find something we can't simplify. */
5893 while (1)
5894 {
5895 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5896 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5897 {
5898 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5899 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5900 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5901 }
5902 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5903 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5904 {
5905 inner = XEXP (SET_DEST (x), 0);
5906 len = INTVAL (XEXP (SET_DEST (x), 1));
5907 pos = XEXP (SET_DEST (x), 2);
5908
5909 /* If the position is constant and spans the width of INNER,
5910 surround INNER with a USE to indicate this. */
5911 if (GET_CODE (pos) == CONST_INT
5912 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5913 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5914
5915 if (BITS_BIG_ENDIAN)
5916 {
5917 if (GET_CODE (pos) == CONST_INT)
5918 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5919 - INTVAL (pos));
5920 else if (GET_CODE (pos) == MINUS
5921 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5922 && (INTVAL (XEXP (pos, 1))
5923 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5924 /* If position is ADJUST - X, new position is X. */
5925 pos = XEXP (pos, 0);
5926 else
5927 pos = gen_binary (MINUS, GET_MODE (pos),
5928 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5929 - len),
5930 pos);
5931 }
5932 }
5933
5934 /* A SUBREG between two modes that occupy the same numbers of words
5935 can be done by moving the SUBREG to the source. */
5936 else if (GET_CODE (SET_DEST (x)) == SUBREG
5937 /* We need SUBREGs to compute nonzero_bits properly. */
5938 && nonzero_sign_valid
5939 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5940 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5941 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5942 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5943 {
5944 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5945 gen_lowpart_for_combine
5946 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5947 SET_SRC (x)));
5948 continue;
5949 }
5950 else
5951 break;
5952
5953 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5954 inner = SUBREG_REG (inner);
5955
5956 compute_mode = GET_MODE (inner);
5957
5958 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5959 if (! SCALAR_INT_MODE_P (compute_mode))
5960 {
5961 enum machine_mode imode;
5962
5963 /* Don't do anything for vector or complex integral types. */
5964 if (! FLOAT_MODE_P (compute_mode))
5965 break;
5966
5967 /* Try to find an integral mode to pun with. */
5968 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5969 if (imode == BLKmode)
5970 break;
5971
5972 compute_mode = imode;
5973 inner = gen_lowpart_for_combine (imode, inner);
5974 }
5975
5976 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5977 if (len < HOST_BITS_PER_WIDE_INT)
5978 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5979 else
5980 break;
5981
5982 /* Now compute the equivalent expression. Make a copy of INNER
5983 for the SET_DEST in case it is a MEM into which we will substitute;
5984 we don't want shared RTL in that case. */
5985 x = gen_rtx_SET
5986 (VOIDmode, copy_rtx (inner),
5987 gen_binary (IOR, compute_mode,
5988 gen_binary (AND, compute_mode,
5989 simplify_gen_unary (NOT, compute_mode,
5990 gen_binary (ASHIFT,
5991 compute_mode,
5992 mask, pos),
5993 compute_mode),
5994 inner),
5995 gen_binary (ASHIFT, compute_mode,
5996 gen_binary (AND, compute_mode,
5997 gen_lowpart_for_combine
5998 (compute_mode, SET_SRC (x)),
5999 mask),
6000 pos)));
6001 }
6002
6003 return x;
6004 }
6005 \f
6006 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6007 it is an RTX that represents a variable starting position; otherwise,
6008 POS is the (constant) starting bit position (counted from the LSB).
6009
6010 INNER may be a USE. This will occur when we started with a bitfield
6011 that went outside the boundary of the object in memory, which is
6012 allowed on most machines. To isolate this case, we produce a USE
6013 whose mode is wide enough and surround the MEM with it. The only
6014 code that understands the USE is this routine. If it is not removed,
6015 it will cause the resulting insn not to match.
6016
6017 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6018 signed reference.
6019
6020 IN_DEST is nonzero if this is a reference in the destination of a
6021 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6022 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6023 be used.
6024
6025 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6026 ZERO_EXTRACT should be built even for bits starting at bit 0.
6027
6028 MODE is the desired mode of the result (if IN_DEST == 0).
6029
6030 The result is an RTX for the extraction or NULL_RTX if the target
6031 can't handle it. */
6032
6033 static rtx
6034 make_extraction (mode, inner, pos, pos_rtx, len,
6035 unsignedp, in_dest, in_compare)
6036 enum machine_mode mode;
6037 rtx inner;
6038 HOST_WIDE_INT pos;
6039 rtx pos_rtx;
6040 unsigned HOST_WIDE_INT len;
6041 int unsignedp;
6042 int in_dest, in_compare;
6043 {
6044 /* This mode describes the size of the storage area
6045 to fetch the overall value from. Within that, we
6046 ignore the POS lowest bits, etc. */
6047 enum machine_mode is_mode = GET_MODE (inner);
6048 enum machine_mode inner_mode;
6049 enum machine_mode wanted_inner_mode = byte_mode;
6050 enum machine_mode wanted_inner_reg_mode = word_mode;
6051 enum machine_mode pos_mode = word_mode;
6052 enum machine_mode extraction_mode = word_mode;
6053 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6054 int spans_byte = 0;
6055 rtx new = 0;
6056 rtx orig_pos_rtx = pos_rtx;
6057 HOST_WIDE_INT orig_pos;
6058
6059 /* Get some information about INNER and get the innermost object. */
6060 if (GET_CODE (inner) == USE)
6061 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6062 /* We don't need to adjust the position because we set up the USE
6063 to pretend that it was a full-word object. */
6064 spans_byte = 1, inner = XEXP (inner, 0);
6065 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6066 {
6067 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6068 consider just the QI as the memory to extract from.
6069 The subreg adds or removes high bits; its mode is
6070 irrelevant to the meaning of this extraction,
6071 since POS and LEN count from the lsb. */
6072 if (GET_CODE (SUBREG_REG (inner)) == MEM)
6073 is_mode = GET_MODE (SUBREG_REG (inner));
6074 inner = SUBREG_REG (inner);
6075 }
6076 else if (GET_CODE (inner) == ASHIFT
6077 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6078 && pos_rtx == 0 && pos == 0
6079 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6080 {
6081 /* We're extracting the least significant bits of an rtx
6082 (ashift X (const_int C)), where LEN > C. Extract the
6083 least significant (LEN - C) bits of X, giving an rtx
6084 whose mode is MODE, then shift it left C times. */
6085 new = make_extraction (mode, XEXP (inner, 0),
6086 0, 0, len - INTVAL (XEXP (inner, 1)),
6087 unsignedp, in_dest, in_compare);
6088 if (new != 0)
6089 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6090 }
6091
6092 inner_mode = GET_MODE (inner);
6093
6094 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6095 pos = INTVAL (pos_rtx), pos_rtx = 0;
6096
6097 /* See if this can be done without an extraction. We never can if the
6098 width of the field is not the same as that of some integer mode. For
6099 registers, we can only avoid the extraction if the position is at the
6100 low-order bit and this is either not in the destination or we have the
6101 appropriate STRICT_LOW_PART operation available.
6102
6103 For MEM, we can avoid an extract if the field starts on an appropriate
6104 boundary and we can change the mode of the memory reference. However,
6105 we cannot directly access the MEM if we have a USE and the underlying
6106 MEM is not TMODE. This combination means that MEM was being used in a
6107 context where bits outside its mode were being referenced; that is only
6108 valid in bit-field insns. */
6109
6110 if (tmode != BLKmode
6111 && ! (spans_byte && inner_mode != tmode)
6112 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6113 && GET_CODE (inner) != MEM
6114 && (! in_dest
6115 || (GET_CODE (inner) == REG
6116 && have_insn_for (STRICT_LOW_PART, tmode))))
6117 || (GET_CODE (inner) == MEM && pos_rtx == 0
6118 && (pos
6119 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6120 : BITS_PER_UNIT)) == 0
6121 /* We can't do this if we are widening INNER_MODE (it
6122 may not be aligned, for one thing). */
6123 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6124 && (inner_mode == tmode
6125 || (! mode_dependent_address_p (XEXP (inner, 0))
6126 && ! MEM_VOLATILE_P (inner))))))
6127 {
6128 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6129 field. If the original and current mode are the same, we need not
6130 adjust the offset. Otherwise, we do if bytes big endian.
6131
6132 If INNER is not a MEM, get a piece consisting of just the field
6133 of interest (in this case POS % BITS_PER_WORD must be 0). */
6134
6135 if (GET_CODE (inner) == MEM)
6136 {
6137 HOST_WIDE_INT offset;
6138
6139 /* POS counts from lsb, but make OFFSET count in memory order. */
6140 if (BYTES_BIG_ENDIAN)
6141 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6142 else
6143 offset = pos / BITS_PER_UNIT;
6144
6145 new = adjust_address_nv (inner, tmode, offset);
6146 }
6147 else if (GET_CODE (inner) == REG)
6148 {
6149 /* We can't call gen_lowpart_for_combine here since we always want
6150 a SUBREG and it would sometimes return a new hard register. */
6151 if (tmode != inner_mode)
6152 {
6153 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6154
6155 if (WORDS_BIG_ENDIAN
6156 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6157 final_word = ((GET_MODE_SIZE (inner_mode)
6158 - GET_MODE_SIZE (tmode))
6159 / UNITS_PER_WORD) - final_word;
6160
6161 final_word *= UNITS_PER_WORD;
6162 if (BYTES_BIG_ENDIAN &&
6163 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6164 final_word += (GET_MODE_SIZE (inner_mode)
6165 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6166
6167 /* Avoid creating invalid subregs, for example when
6168 simplifying (x>>32)&255. */
6169 if (final_word >= GET_MODE_SIZE (inner_mode))
6170 return NULL_RTX;
6171
6172 new = gen_rtx_SUBREG (tmode, inner, final_word);
6173 }
6174 else
6175 new = inner;
6176 }
6177 else
6178 new = force_to_mode (inner, tmode,
6179 len >= HOST_BITS_PER_WIDE_INT
6180 ? ~(unsigned HOST_WIDE_INT) 0
6181 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6182 NULL_RTX, 0);
6183
6184 /* If this extraction is going into the destination of a SET,
6185 make a STRICT_LOW_PART unless we made a MEM. */
6186
6187 if (in_dest)
6188 return (GET_CODE (new) == MEM ? new
6189 : (GET_CODE (new) != SUBREG
6190 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6191 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6192
6193 if (mode == tmode)
6194 return new;
6195
6196 if (GET_CODE (new) == CONST_INT)
6197 return gen_int_mode (INTVAL (new), mode);
6198
6199 /* If we know that no extraneous bits are set, and that the high
6200 bit is not set, convert the extraction to the cheaper of
6201 sign and zero extension, that are equivalent in these cases. */
6202 if (flag_expensive_optimizations
6203 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6204 && ((nonzero_bits (new, tmode)
6205 & ~(((unsigned HOST_WIDE_INT)
6206 GET_MODE_MASK (tmode))
6207 >> 1))
6208 == 0)))
6209 {
6210 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6211 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6212
6213 /* Prefer ZERO_EXTENSION, since it gives more information to
6214 backends. */
6215 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6216 return temp;
6217 return temp1;
6218 }
6219
6220 /* Otherwise, sign- or zero-extend unless we already are in the
6221 proper mode. */
6222
6223 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6224 mode, new));
6225 }
6226
6227 /* Unless this is a COMPARE or we have a funny memory reference,
6228 don't do anything with zero-extending field extracts starting at
6229 the low-order bit since they are simple AND operations. */
6230 if (pos_rtx == 0 && pos == 0 && ! in_dest
6231 && ! in_compare && ! spans_byte && unsignedp)
6232 return 0;
6233
6234 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6235 we would be spanning bytes or if the position is not a constant and the
6236 length is not 1. In all other cases, we would only be going outside
6237 our object in cases when an original shift would have been
6238 undefined. */
6239 if (! spans_byte && GET_CODE (inner) == MEM
6240 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6241 || (pos_rtx != 0 && len != 1)))
6242 return 0;
6243
6244 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6245 and the mode for the result. */
6246 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6247 {
6248 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6249 pos_mode = mode_for_extraction (EP_insv, 2);
6250 extraction_mode = mode_for_extraction (EP_insv, 3);
6251 }
6252
6253 if (! in_dest && unsignedp
6254 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6255 {
6256 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6257 pos_mode = mode_for_extraction (EP_extzv, 3);
6258 extraction_mode = mode_for_extraction (EP_extzv, 0);
6259 }
6260
6261 if (! in_dest && ! unsignedp
6262 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6263 {
6264 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6265 pos_mode = mode_for_extraction (EP_extv, 3);
6266 extraction_mode = mode_for_extraction (EP_extv, 0);
6267 }
6268
6269 /* Never narrow an object, since that might not be safe. */
6270
6271 if (mode != VOIDmode
6272 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6273 extraction_mode = mode;
6274
6275 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6276 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6277 pos_mode = GET_MODE (pos_rtx);
6278
6279 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6280 if we have to change the mode of memory and cannot, the desired mode is
6281 EXTRACTION_MODE. */
6282 if (GET_CODE (inner) != MEM)
6283 wanted_inner_mode = wanted_inner_reg_mode;
6284 else if (inner_mode != wanted_inner_mode
6285 && (mode_dependent_address_p (XEXP (inner, 0))
6286 || MEM_VOLATILE_P (inner)))
6287 wanted_inner_mode = extraction_mode;
6288
6289 orig_pos = pos;
6290
6291 if (BITS_BIG_ENDIAN)
6292 {
6293 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6294 BITS_BIG_ENDIAN style. If position is constant, compute new
6295 position. Otherwise, build subtraction.
6296 Note that POS is relative to the mode of the original argument.
6297 If it's a MEM we need to recompute POS relative to that.
6298 However, if we're extracting from (or inserting into) a register,
6299 we want to recompute POS relative to wanted_inner_mode. */
6300 int width = (GET_CODE (inner) == MEM
6301 ? GET_MODE_BITSIZE (is_mode)
6302 : GET_MODE_BITSIZE (wanted_inner_mode));
6303
6304 if (pos_rtx == 0)
6305 pos = width - len - pos;
6306 else
6307 pos_rtx
6308 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6309 /* POS may be less than 0 now, but we check for that below.
6310 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6311 }
6312
6313 /* If INNER has a wider mode, make it smaller. If this is a constant
6314 extract, try to adjust the byte to point to the byte containing
6315 the value. */
6316 if (wanted_inner_mode != VOIDmode
6317 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6318 && ((GET_CODE (inner) == MEM
6319 && (inner_mode == wanted_inner_mode
6320 || (! mode_dependent_address_p (XEXP (inner, 0))
6321 && ! MEM_VOLATILE_P (inner))))))
6322 {
6323 int offset = 0;
6324
6325 /* The computations below will be correct if the machine is big
6326 endian in both bits and bytes or little endian in bits and bytes.
6327 If it is mixed, we must adjust. */
6328
6329 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6330 adjust OFFSET to compensate. */
6331 if (BYTES_BIG_ENDIAN
6332 && ! spans_byte
6333 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6334 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6335
6336 /* If this is a constant position, we can move to the desired byte. */
6337 if (pos_rtx == 0)
6338 {
6339 offset += pos / BITS_PER_UNIT;
6340 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6341 }
6342
6343 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6344 && ! spans_byte
6345 && is_mode != wanted_inner_mode)
6346 offset = (GET_MODE_SIZE (is_mode)
6347 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6348
6349 if (offset != 0 || inner_mode != wanted_inner_mode)
6350 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6351 }
6352
6353 /* If INNER is not memory, we can always get it into the proper mode. If we
6354 are changing its mode, POS must be a constant and smaller than the size
6355 of the new mode. */
6356 else if (GET_CODE (inner) != MEM)
6357 {
6358 if (GET_MODE (inner) != wanted_inner_mode
6359 && (pos_rtx != 0
6360 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6361 return 0;
6362
6363 inner = force_to_mode (inner, wanted_inner_mode,
6364 pos_rtx
6365 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6366 ? ~(unsigned HOST_WIDE_INT) 0
6367 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6368 << orig_pos),
6369 NULL_RTX, 0);
6370 }
6371
6372 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6373 have to zero extend. Otherwise, we can just use a SUBREG. */
6374 if (pos_rtx != 0
6375 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6376 {
6377 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6378
6379 /* If we know that no extraneous bits are set, and that the high
6380 bit is not set, convert extraction to cheaper one - either
6381 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6382 cases. */
6383 if (flag_expensive_optimizations
6384 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6385 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6386 & ~(((unsigned HOST_WIDE_INT)
6387 GET_MODE_MASK (GET_MODE (pos_rtx)))
6388 >> 1))
6389 == 0)))
6390 {
6391 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6392
6393 /* Prefer ZERO_EXTENSION, since it gives more information to
6394 backends. */
6395 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6396 temp = temp1;
6397 }
6398 pos_rtx = temp;
6399 }
6400 else if (pos_rtx != 0
6401 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6402 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6403
6404 /* Make POS_RTX unless we already have it and it is correct. If we don't
6405 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6406 be a CONST_INT. */
6407 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6408 pos_rtx = orig_pos_rtx;
6409
6410 else if (pos_rtx == 0)
6411 pos_rtx = GEN_INT (pos);
6412
6413 /* Make the required operation. See if we can use existing rtx. */
6414 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6415 extraction_mode, inner, GEN_INT (len), pos_rtx);
6416 if (! in_dest)
6417 new = gen_lowpart_for_combine (mode, new);
6418
6419 return new;
6420 }
6421 \f
6422 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6423 with any other operations in X. Return X without that shift if so. */
6424
6425 static rtx
6426 extract_left_shift (x, count)
6427 rtx x;
6428 int count;
6429 {
6430 enum rtx_code code = GET_CODE (x);
6431 enum machine_mode mode = GET_MODE (x);
6432 rtx tem;
6433
6434 switch (code)
6435 {
6436 case ASHIFT:
6437 /* This is the shift itself. If it is wide enough, we will return
6438 either the value being shifted if the shift count is equal to
6439 COUNT or a shift for the difference. */
6440 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6441 && INTVAL (XEXP (x, 1)) >= count)
6442 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6443 INTVAL (XEXP (x, 1)) - count);
6444 break;
6445
6446 case NEG: case NOT:
6447 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6448 return simplify_gen_unary (code, mode, tem, mode);
6449
6450 break;
6451
6452 case PLUS: case IOR: case XOR: case AND:
6453 /* If we can safely shift this constant and we find the inner shift,
6454 make a new operation. */
6455 if (GET_CODE (XEXP (x,1)) == CONST_INT
6456 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6457 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6458 return gen_binary (code, mode, tem,
6459 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6460
6461 break;
6462
6463 default:
6464 break;
6465 }
6466
6467 return 0;
6468 }
6469 \f
6470 /* Look at the expression rooted at X. Look for expressions
6471 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6472 Form these expressions.
6473
6474 Return the new rtx, usually just X.
6475
6476 Also, for machines like the VAX that don't have logical shift insns,
6477 try to convert logical to arithmetic shift operations in cases where
6478 they are equivalent. This undoes the canonicalizations to logical
6479 shifts done elsewhere.
6480
6481 We try, as much as possible, to re-use rtl expressions to save memory.
6482
6483 IN_CODE says what kind of expression we are processing. Normally, it is
6484 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6485 being kludges), it is MEM. When processing the arguments of a comparison
6486 or a COMPARE against zero, it is COMPARE. */
6487
6488 static rtx
6489 make_compound_operation (x, in_code)
6490 rtx x;
6491 enum rtx_code in_code;
6492 {
6493 enum rtx_code code = GET_CODE (x);
6494 enum machine_mode mode = GET_MODE (x);
6495 int mode_width = GET_MODE_BITSIZE (mode);
6496 rtx rhs, lhs;
6497 enum rtx_code next_code;
6498 int i;
6499 rtx new = 0;
6500 rtx tem;
6501 const char *fmt;
6502
6503 /* Select the code to be used in recursive calls. Once we are inside an
6504 address, we stay there. If we have a comparison, set to COMPARE,
6505 but once inside, go back to our default of SET. */
6506
6507 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6508 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6509 && XEXP (x, 1) == const0_rtx) ? COMPARE
6510 : in_code == COMPARE ? SET : in_code);
6511
6512 /* Process depending on the code of this operation. If NEW is set
6513 nonzero, it will be returned. */
6514
6515 switch (code)
6516 {
6517 case ASHIFT:
6518 /* Convert shifts by constants into multiplications if inside
6519 an address. */
6520 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6521 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6522 && INTVAL (XEXP (x, 1)) >= 0)
6523 {
6524 new = make_compound_operation (XEXP (x, 0), next_code);
6525 new = gen_rtx_MULT (mode, new,
6526 GEN_INT ((HOST_WIDE_INT) 1
6527 << INTVAL (XEXP (x, 1))));
6528 }
6529 break;
6530
6531 case AND:
6532 /* If the second operand is not a constant, we can't do anything
6533 with it. */
6534 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6535 break;
6536
6537 /* If the constant is a power of two minus one and the first operand
6538 is a logical right shift, make an extraction. */
6539 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6540 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6541 {
6542 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6543 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6544 0, in_code == COMPARE);
6545 }
6546
6547 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6548 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6549 && subreg_lowpart_p (XEXP (x, 0))
6550 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6551 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6552 {
6553 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6554 next_code);
6555 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6556 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6557 0, in_code == COMPARE);
6558 }
6559 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6560 else if ((GET_CODE (XEXP (x, 0)) == XOR
6561 || GET_CODE (XEXP (x, 0)) == IOR)
6562 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6563 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6564 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6565 {
6566 /* Apply the distributive law, and then try to make extractions. */
6567 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6568 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6569 XEXP (x, 1)),
6570 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6571 XEXP (x, 1)));
6572 new = make_compound_operation (new, in_code);
6573 }
6574
6575 /* If we are have (and (rotate X C) M) and C is larger than the number
6576 of bits in M, this is an extraction. */
6577
6578 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6579 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6580 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6581 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6582 {
6583 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6584 new = make_extraction (mode, new,
6585 (GET_MODE_BITSIZE (mode)
6586 - INTVAL (XEXP (XEXP (x, 0), 1))),
6587 NULL_RTX, i, 1, 0, in_code == COMPARE);
6588 }
6589
6590 /* On machines without logical shifts, if the operand of the AND is
6591 a logical shift and our mask turns off all the propagated sign
6592 bits, we can replace the logical shift with an arithmetic shift. */
6593 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6594 && !have_insn_for (LSHIFTRT, mode)
6595 && have_insn_for (ASHIFTRT, mode)
6596 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6597 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6598 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6599 && mode_width <= HOST_BITS_PER_WIDE_INT)
6600 {
6601 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6602
6603 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6604 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6605 SUBST (XEXP (x, 0),
6606 gen_rtx_ASHIFTRT (mode,
6607 make_compound_operation
6608 (XEXP (XEXP (x, 0), 0), next_code),
6609 XEXP (XEXP (x, 0), 1)));
6610 }
6611
6612 /* If the constant is one less than a power of two, this might be
6613 representable by an extraction even if no shift is present.
6614 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6615 we are in a COMPARE. */
6616 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6617 new = make_extraction (mode,
6618 make_compound_operation (XEXP (x, 0),
6619 next_code),
6620 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6621
6622 /* If we are in a comparison and this is an AND with a power of two,
6623 convert this into the appropriate bit extract. */
6624 else if (in_code == COMPARE
6625 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6626 new = make_extraction (mode,
6627 make_compound_operation (XEXP (x, 0),
6628 next_code),
6629 i, NULL_RTX, 1, 1, 0, 1);
6630
6631 break;
6632
6633 case LSHIFTRT:
6634 /* If the sign bit is known to be zero, replace this with an
6635 arithmetic shift. */
6636 if (have_insn_for (ASHIFTRT, mode)
6637 && ! have_insn_for (LSHIFTRT, mode)
6638 && mode_width <= HOST_BITS_PER_WIDE_INT
6639 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6640 {
6641 new = gen_rtx_ASHIFTRT (mode,
6642 make_compound_operation (XEXP (x, 0),
6643 next_code),
6644 XEXP (x, 1));
6645 break;
6646 }
6647
6648 /* ... fall through ... */
6649
6650 case ASHIFTRT:
6651 lhs = XEXP (x, 0);
6652 rhs = XEXP (x, 1);
6653
6654 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6655 this is a SIGN_EXTRACT. */
6656 if (GET_CODE (rhs) == CONST_INT
6657 && GET_CODE (lhs) == ASHIFT
6658 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6659 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6660 {
6661 new = make_compound_operation (XEXP (lhs, 0), next_code);
6662 new = make_extraction (mode, new,
6663 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6664 NULL_RTX, mode_width - INTVAL (rhs),
6665 code == LSHIFTRT, 0, in_code == COMPARE);
6666 break;
6667 }
6668
6669 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6670 If so, try to merge the shifts into a SIGN_EXTEND. We could
6671 also do this for some cases of SIGN_EXTRACT, but it doesn't
6672 seem worth the effort; the case checked for occurs on Alpha. */
6673
6674 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6675 && ! (GET_CODE (lhs) == SUBREG
6676 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6677 && GET_CODE (rhs) == CONST_INT
6678 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6679 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6680 new = make_extraction (mode, make_compound_operation (new, next_code),
6681 0, NULL_RTX, mode_width - INTVAL (rhs),
6682 code == LSHIFTRT, 0, in_code == COMPARE);
6683
6684 break;
6685
6686 case SUBREG:
6687 /* Call ourselves recursively on the inner expression. If we are
6688 narrowing the object and it has a different RTL code from
6689 what it originally did, do this SUBREG as a force_to_mode. */
6690
6691 tem = make_compound_operation (SUBREG_REG (x), in_code);
6692 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6693 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6694 && subreg_lowpart_p (x))
6695 {
6696 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6697 NULL_RTX, 0);
6698
6699 /* If we have something other than a SUBREG, we might have
6700 done an expansion, so rerun ourselves. */
6701 if (GET_CODE (newer) != SUBREG)
6702 newer = make_compound_operation (newer, in_code);
6703
6704 return newer;
6705 }
6706
6707 /* If this is a paradoxical subreg, and the new code is a sign or
6708 zero extension, omit the subreg and widen the extension. If it
6709 is a regular subreg, we can still get rid of the subreg by not
6710 widening so much, or in fact removing the extension entirely. */
6711 if ((GET_CODE (tem) == SIGN_EXTEND
6712 || GET_CODE (tem) == ZERO_EXTEND)
6713 && subreg_lowpart_p (x))
6714 {
6715 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6716 || (GET_MODE_SIZE (mode) >
6717 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6718 {
6719 if (! INTEGRAL_MODE_P (mode))
6720 break;
6721 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6722 }
6723 else
6724 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6725 return tem;
6726 }
6727 break;
6728
6729 default:
6730 break;
6731 }
6732
6733 if (new)
6734 {
6735 x = gen_lowpart_for_combine (mode, new);
6736 code = GET_CODE (x);
6737 }
6738
6739 /* Now recursively process each operand of this operation. */
6740 fmt = GET_RTX_FORMAT (code);
6741 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6742 if (fmt[i] == 'e')
6743 {
6744 new = make_compound_operation (XEXP (x, i), next_code);
6745 SUBST (XEXP (x, i), new);
6746 }
6747
6748 return x;
6749 }
6750 \f
6751 /* Given M see if it is a value that would select a field of bits
6752 within an item, but not the entire word. Return -1 if not.
6753 Otherwise, return the starting position of the field, where 0 is the
6754 low-order bit.
6755
6756 *PLEN is set to the length of the field. */
6757
6758 static int
6759 get_pos_from_mask (m, plen)
6760 unsigned HOST_WIDE_INT m;
6761 unsigned HOST_WIDE_INT *plen;
6762 {
6763 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6764 int pos = exact_log2 (m & -m);
6765 int len;
6766
6767 if (pos < 0)
6768 return -1;
6769
6770 /* Now shift off the low-order zero bits and see if we have a power of
6771 two minus 1. */
6772 len = exact_log2 ((m >> pos) + 1);
6773
6774 if (len <= 0)
6775 return -1;
6776
6777 *plen = len;
6778 return pos;
6779 }
6780 \f
6781 /* See if X can be simplified knowing that we will only refer to it in
6782 MODE and will only refer to those bits that are nonzero in MASK.
6783 If other bits are being computed or if masking operations are done
6784 that select a superset of the bits in MASK, they can sometimes be
6785 ignored.
6786
6787 Return a possibly simplified expression, but always convert X to
6788 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6789
6790 Also, if REG is nonzero and X is a register equal in value to REG,
6791 replace X with REG.
6792
6793 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6794 are all off in X. This is used when X will be complemented, by either
6795 NOT, NEG, or XOR. */
6796
6797 static rtx
6798 force_to_mode (x, mode, mask, reg, just_select)
6799 rtx x;
6800 enum machine_mode mode;
6801 unsigned HOST_WIDE_INT mask;
6802 rtx reg;
6803 int just_select;
6804 {
6805 enum rtx_code code = GET_CODE (x);
6806 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6807 enum machine_mode op_mode;
6808 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6809 rtx op0, op1, temp;
6810
6811 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6812 code below will do the wrong thing since the mode of such an
6813 expression is VOIDmode.
6814
6815 Also do nothing if X is a CLOBBER; this can happen if X was
6816 the return value from a call to gen_lowpart_for_combine. */
6817 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6818 return x;
6819
6820 /* We want to perform the operation is its present mode unless we know
6821 that the operation is valid in MODE, in which case we do the operation
6822 in MODE. */
6823 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6824 && have_insn_for (code, mode))
6825 ? mode : GET_MODE (x));
6826
6827 /* It is not valid to do a right-shift in a narrower mode
6828 than the one it came in with. */
6829 if ((code == LSHIFTRT || code == ASHIFTRT)
6830 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6831 op_mode = GET_MODE (x);
6832
6833 /* Truncate MASK to fit OP_MODE. */
6834 if (op_mode)
6835 mask &= GET_MODE_MASK (op_mode);
6836
6837 /* When we have an arithmetic operation, or a shift whose count we
6838 do not know, we need to assume that all bit the up to the highest-order
6839 bit in MASK will be needed. This is how we form such a mask. */
6840 if (op_mode)
6841 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6842 ? GET_MODE_MASK (op_mode)
6843 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6844 - 1));
6845 else
6846 fuller_mask = ~(HOST_WIDE_INT) 0;
6847
6848 /* Determine what bits of X are guaranteed to be (non)zero. */
6849 nonzero = nonzero_bits (x, mode);
6850
6851 /* If none of the bits in X are needed, return a zero. */
6852 if (! just_select && (nonzero & mask) == 0)
6853 x = const0_rtx;
6854
6855 /* If X is a CONST_INT, return a new one. Do this here since the
6856 test below will fail. */
6857 if (GET_CODE (x) == CONST_INT)
6858 {
6859 if (SCALAR_INT_MODE_P (mode))
6860 return gen_int_mode (INTVAL (x) & mask, mode);
6861 else
6862 {
6863 x = GEN_INT (INTVAL (x) & mask);
6864 return gen_lowpart_common (mode, x);
6865 }
6866 }
6867
6868 /* If X is narrower than MODE and we want all the bits in X's mode, just
6869 get X in the proper mode. */
6870 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6871 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6872 return gen_lowpart_for_combine (mode, x);
6873
6874 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6875 MASK are already known to be zero in X, we need not do anything. */
6876 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6877 return x;
6878
6879 switch (code)
6880 {
6881 case CLOBBER:
6882 /* If X is a (clobber (const_int)), return it since we know we are
6883 generating something that won't match. */
6884 return x;
6885
6886 case USE:
6887 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6888 spanned the boundary of the MEM. If we are now masking so it is
6889 within that boundary, we don't need the USE any more. */
6890 if (! BITS_BIG_ENDIAN
6891 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6892 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6893 break;
6894
6895 case SIGN_EXTEND:
6896 case ZERO_EXTEND:
6897 case ZERO_EXTRACT:
6898 case SIGN_EXTRACT:
6899 x = expand_compound_operation (x);
6900 if (GET_CODE (x) != code)
6901 return force_to_mode (x, mode, mask, reg, next_select);
6902 break;
6903
6904 case REG:
6905 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6906 || rtx_equal_p (reg, get_last_value (x))))
6907 x = reg;
6908 break;
6909
6910 case SUBREG:
6911 if (subreg_lowpart_p (x)
6912 /* We can ignore the effect of this SUBREG if it narrows the mode or
6913 if the constant masks to zero all the bits the mode doesn't
6914 have. */
6915 && ((GET_MODE_SIZE (GET_MODE (x))
6916 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6917 || (0 == (mask
6918 & GET_MODE_MASK (GET_MODE (x))
6919 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6920 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6921 break;
6922
6923 case AND:
6924 /* If this is an AND with a constant, convert it into an AND
6925 whose constant is the AND of that constant with MASK. If it
6926 remains an AND of MASK, delete it since it is redundant. */
6927
6928 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6929 {
6930 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6931 mask & INTVAL (XEXP (x, 1)));
6932
6933 /* If X is still an AND, see if it is an AND with a mask that
6934 is just some low-order bits. If so, and it is MASK, we don't
6935 need it. */
6936
6937 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6938 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6939 == mask))
6940 x = XEXP (x, 0);
6941
6942 /* If it remains an AND, try making another AND with the bits
6943 in the mode mask that aren't in MASK turned on. If the
6944 constant in the AND is wide enough, this might make a
6945 cheaper constant. */
6946
6947 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6948 && GET_MODE_MASK (GET_MODE (x)) != mask
6949 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6950 {
6951 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6952 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6953 int width = GET_MODE_BITSIZE (GET_MODE (x));
6954 rtx y;
6955
6956 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6957 number, sign extend it. */
6958 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6959 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6960 cval |= (HOST_WIDE_INT) -1 << width;
6961
6962 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6963 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6964 x = y;
6965 }
6966
6967 break;
6968 }
6969
6970 goto binop;
6971
6972 case PLUS:
6973 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6974 low-order bits (as in an alignment operation) and FOO is already
6975 aligned to that boundary, mask C1 to that boundary as well.
6976 This may eliminate that PLUS and, later, the AND. */
6977
6978 {
6979 unsigned int width = GET_MODE_BITSIZE (mode);
6980 unsigned HOST_WIDE_INT smask = mask;
6981
6982 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6983 number, sign extend it. */
6984
6985 if (width < HOST_BITS_PER_WIDE_INT
6986 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6987 smask |= (HOST_WIDE_INT) -1 << width;
6988
6989 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6990 && exact_log2 (- smask) >= 0
6991 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6992 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6993 return force_to_mode (plus_constant (XEXP (x, 0),
6994 (INTVAL (XEXP (x, 1)) & smask)),
6995 mode, smask, reg, next_select);
6996 }
6997
6998 /* ... fall through ... */
6999
7000 case MULT:
7001 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7002 most significant bit in MASK since carries from those bits will
7003 affect the bits we are interested in. */
7004 mask = fuller_mask;
7005 goto binop;
7006
7007 case MINUS:
7008 /* If X is (minus C Y) where C's least set bit is larger than any bit
7009 in the mask, then we may replace with (neg Y). */
7010 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7011 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7012 & -INTVAL (XEXP (x, 0))))
7013 > mask))
7014 {
7015 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7016 GET_MODE (x));
7017 return force_to_mode (x, mode, mask, reg, next_select);
7018 }
7019
7020 /* Similarly, if C contains every bit in the fuller_mask, then we may
7021 replace with (not Y). */
7022 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7023 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7024 == INTVAL (XEXP (x, 0))))
7025 {
7026 x = simplify_gen_unary (NOT, GET_MODE (x),
7027 XEXP (x, 1), GET_MODE (x));
7028 return force_to_mode (x, mode, mask, reg, next_select);
7029 }
7030
7031 mask = fuller_mask;
7032 goto binop;
7033
7034 case IOR:
7035 case XOR:
7036 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7037 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7038 operation which may be a bitfield extraction. Ensure that the
7039 constant we form is not wider than the mode of X. */
7040
7041 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7042 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7043 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7044 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7045 && GET_CODE (XEXP (x, 1)) == CONST_INT
7046 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7047 + floor_log2 (INTVAL (XEXP (x, 1))))
7048 < GET_MODE_BITSIZE (GET_MODE (x)))
7049 && (INTVAL (XEXP (x, 1))
7050 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7051 {
7052 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7053 << INTVAL (XEXP (XEXP (x, 0), 1)));
7054 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7055 XEXP (XEXP (x, 0), 0), temp);
7056 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7057 XEXP (XEXP (x, 0), 1));
7058 return force_to_mode (x, mode, mask, reg, next_select);
7059 }
7060
7061 binop:
7062 /* For most binary operations, just propagate into the operation and
7063 change the mode if we have an operation of that mode. */
7064
7065 op0 = gen_lowpart_for_combine (op_mode,
7066 force_to_mode (XEXP (x, 0), mode, mask,
7067 reg, next_select));
7068 op1 = gen_lowpart_for_combine (op_mode,
7069 force_to_mode (XEXP (x, 1), mode, mask,
7070 reg, next_select));
7071
7072 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7073 x = gen_binary (code, op_mode, op0, op1);
7074 break;
7075
7076 case ASHIFT:
7077 /* For left shifts, do the same, but just for the first operand.
7078 However, we cannot do anything with shifts where we cannot
7079 guarantee that the counts are smaller than the size of the mode
7080 because such a count will have a different meaning in a
7081 wider mode. */
7082
7083 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7084 && INTVAL (XEXP (x, 1)) >= 0
7085 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7086 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7087 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7088 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7089 break;
7090
7091 /* If the shift count is a constant and we can do arithmetic in
7092 the mode of the shift, refine which bits we need. Otherwise, use the
7093 conservative form of the mask. */
7094 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7095 && INTVAL (XEXP (x, 1)) >= 0
7096 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7097 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7098 mask >>= INTVAL (XEXP (x, 1));
7099 else
7100 mask = fuller_mask;
7101
7102 op0 = gen_lowpart_for_combine (op_mode,
7103 force_to_mode (XEXP (x, 0), op_mode,
7104 mask, reg, next_select));
7105
7106 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7107 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7108 break;
7109
7110 case LSHIFTRT:
7111 /* Here we can only do something if the shift count is a constant,
7112 this shift constant is valid for the host, and we can do arithmetic
7113 in OP_MODE. */
7114
7115 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7116 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7117 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7118 {
7119 rtx inner = XEXP (x, 0);
7120 unsigned HOST_WIDE_INT inner_mask;
7121
7122 /* Select the mask of the bits we need for the shift operand. */
7123 inner_mask = mask << INTVAL (XEXP (x, 1));
7124
7125 /* We can only change the mode of the shift if we can do arithmetic
7126 in the mode of the shift and INNER_MASK is no wider than the
7127 width of OP_MODE. */
7128 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7129 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7130 op_mode = GET_MODE (x);
7131
7132 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7133
7134 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7135 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7136 }
7137
7138 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7139 shift and AND produces only copies of the sign bit (C2 is one less
7140 than a power of two), we can do this with just a shift. */
7141
7142 if (GET_CODE (x) == LSHIFTRT
7143 && GET_CODE (XEXP (x, 1)) == CONST_INT
7144 /* The shift puts one of the sign bit copies in the least significant
7145 bit. */
7146 && ((INTVAL (XEXP (x, 1))
7147 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7148 >= GET_MODE_BITSIZE (GET_MODE (x)))
7149 && exact_log2 (mask + 1) >= 0
7150 /* Number of bits left after the shift must be more than the mask
7151 needs. */
7152 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7153 <= GET_MODE_BITSIZE (GET_MODE (x)))
7154 /* Must be more sign bit copies than the mask needs. */
7155 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7156 >= exact_log2 (mask + 1)))
7157 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7158 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7159 - exact_log2 (mask + 1)));
7160
7161 goto shiftrt;
7162
7163 case ASHIFTRT:
7164 /* If we are just looking for the sign bit, we don't need this shift at
7165 all, even if it has a variable count. */
7166 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7167 && (mask == ((unsigned HOST_WIDE_INT) 1
7168 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7169 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7170
7171 /* If this is a shift by a constant, get a mask that contains those bits
7172 that are not copies of the sign bit. We then have two cases: If
7173 MASK only includes those bits, this can be a logical shift, which may
7174 allow simplifications. If MASK is a single-bit field not within
7175 those bits, we are requesting a copy of the sign bit and hence can
7176 shift the sign bit to the appropriate location. */
7177
7178 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7179 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7180 {
7181 int i = -1;
7182
7183 /* If the considered data is wider than HOST_WIDE_INT, we can't
7184 represent a mask for all its bits in a single scalar.
7185 But we only care about the lower bits, so calculate these. */
7186
7187 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7188 {
7189 nonzero = ~(HOST_WIDE_INT) 0;
7190
7191 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7192 is the number of bits a full-width mask would have set.
7193 We need only shift if these are fewer than nonzero can
7194 hold. If not, we must keep all bits set in nonzero. */
7195
7196 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7197 < HOST_BITS_PER_WIDE_INT)
7198 nonzero >>= INTVAL (XEXP (x, 1))
7199 + HOST_BITS_PER_WIDE_INT
7200 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7201 }
7202 else
7203 {
7204 nonzero = GET_MODE_MASK (GET_MODE (x));
7205 nonzero >>= INTVAL (XEXP (x, 1));
7206 }
7207
7208 if ((mask & ~nonzero) == 0
7209 || (i = exact_log2 (mask)) >= 0)
7210 {
7211 x = simplify_shift_const
7212 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7213 i < 0 ? INTVAL (XEXP (x, 1))
7214 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7215
7216 if (GET_CODE (x) != ASHIFTRT)
7217 return force_to_mode (x, mode, mask, reg, next_select);
7218 }
7219 }
7220
7221 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7222 even if the shift count isn't a constant. */
7223 if (mask == 1)
7224 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7225
7226 shiftrt:
7227
7228 /* If this is a zero- or sign-extension operation that just affects bits
7229 we don't care about, remove it. Be sure the call above returned
7230 something that is still a shift. */
7231
7232 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7233 && GET_CODE (XEXP (x, 1)) == CONST_INT
7234 && INTVAL (XEXP (x, 1)) >= 0
7235 && (INTVAL (XEXP (x, 1))
7236 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7237 && GET_CODE (XEXP (x, 0)) == ASHIFT
7238 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7239 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7240 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7241 reg, next_select);
7242
7243 break;
7244
7245 case ROTATE:
7246 case ROTATERT:
7247 /* If the shift count is constant and we can do computations
7248 in the mode of X, compute where the bits we care about are.
7249 Otherwise, we can't do anything. Don't change the mode of
7250 the shift or propagate MODE into the shift, though. */
7251 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7252 && INTVAL (XEXP (x, 1)) >= 0)
7253 {
7254 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7255 GET_MODE (x), GEN_INT (mask),
7256 XEXP (x, 1));
7257 if (temp && GET_CODE(temp) == CONST_INT)
7258 SUBST (XEXP (x, 0),
7259 force_to_mode (XEXP (x, 0), GET_MODE (x),
7260 INTVAL (temp), reg, next_select));
7261 }
7262 break;
7263
7264 case NEG:
7265 /* If we just want the low-order bit, the NEG isn't needed since it
7266 won't change the low-order bit. */
7267 if (mask == 1)
7268 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7269
7270 /* We need any bits less significant than the most significant bit in
7271 MASK since carries from those bits will affect the bits we are
7272 interested in. */
7273 mask = fuller_mask;
7274 goto unop;
7275
7276 case NOT:
7277 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7278 same as the XOR case above. Ensure that the constant we form is not
7279 wider than the mode of X. */
7280
7281 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7282 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7283 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7284 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7285 < GET_MODE_BITSIZE (GET_MODE (x)))
7286 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7287 {
7288 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7289 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7290 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7291
7292 return force_to_mode (x, mode, mask, reg, next_select);
7293 }
7294
7295 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7296 use the full mask inside the NOT. */
7297 mask = fuller_mask;
7298
7299 unop:
7300 op0 = gen_lowpart_for_combine (op_mode,
7301 force_to_mode (XEXP (x, 0), mode, mask,
7302 reg, next_select));
7303 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7304 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7305 break;
7306
7307 case NE:
7308 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7309 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7310 which is equal to STORE_FLAG_VALUE. */
7311 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7312 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7313 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7314 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7315
7316 break;
7317
7318 case IF_THEN_ELSE:
7319 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7320 written in a narrower mode. We play it safe and do not do so. */
7321
7322 SUBST (XEXP (x, 1),
7323 gen_lowpart_for_combine (GET_MODE (x),
7324 force_to_mode (XEXP (x, 1), mode,
7325 mask, reg, next_select)));
7326 SUBST (XEXP (x, 2),
7327 gen_lowpart_for_combine (GET_MODE (x),
7328 force_to_mode (XEXP (x, 2), mode,
7329 mask, reg,next_select)));
7330 break;
7331
7332 default:
7333 break;
7334 }
7335
7336 /* Ensure we return a value of the proper mode. */
7337 return gen_lowpart_for_combine (mode, x);
7338 }
7339 \f
7340 /* Return nonzero if X is an expression that has one of two values depending on
7341 whether some other value is zero or nonzero. In that case, we return the
7342 value that is being tested, *PTRUE is set to the value if the rtx being
7343 returned has a nonzero value, and *PFALSE is set to the other alternative.
7344
7345 If we return zero, we set *PTRUE and *PFALSE to X. */
7346
7347 static rtx
7348 if_then_else_cond (x, ptrue, pfalse)
7349 rtx x;
7350 rtx *ptrue, *pfalse;
7351 {
7352 enum machine_mode mode = GET_MODE (x);
7353 enum rtx_code code = GET_CODE (x);
7354 rtx cond0, cond1, true0, true1, false0, false1;
7355 unsigned HOST_WIDE_INT nz;
7356
7357 /* If we are comparing a value against zero, we are done. */
7358 if ((code == NE || code == EQ)
7359 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7360 {
7361 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7362 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7363 return XEXP (x, 0);
7364 }
7365
7366 /* If this is a unary operation whose operand has one of two values, apply
7367 our opcode to compute those values. */
7368 else if (GET_RTX_CLASS (code) == '1'
7369 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7370 {
7371 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7372 *pfalse = simplify_gen_unary (code, mode, false0,
7373 GET_MODE (XEXP (x, 0)));
7374 return cond0;
7375 }
7376
7377 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7378 make can't possibly match and would suppress other optimizations. */
7379 else if (code == COMPARE)
7380 ;
7381
7382 /* If this is a binary operation, see if either side has only one of two
7383 values. If either one does or if both do and they are conditional on
7384 the same value, compute the new true and false values. */
7385 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7386 || GET_RTX_CLASS (code) == '<')
7387 {
7388 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7389 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7390
7391 if ((cond0 != 0 || cond1 != 0)
7392 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7393 {
7394 /* If if_then_else_cond returned zero, then true/false are the
7395 same rtl. We must copy one of them to prevent invalid rtl
7396 sharing. */
7397 if (cond0 == 0)
7398 true0 = copy_rtx (true0);
7399 else if (cond1 == 0)
7400 true1 = copy_rtx (true1);
7401
7402 *ptrue = gen_binary (code, mode, true0, true1);
7403 *pfalse = gen_binary (code, mode, false0, false1);
7404 return cond0 ? cond0 : cond1;
7405 }
7406
7407 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7408 operands is zero when the other is nonzero, and vice-versa,
7409 and STORE_FLAG_VALUE is 1 or -1. */
7410
7411 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7412 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7413 || code == UMAX)
7414 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7415 {
7416 rtx op0 = XEXP (XEXP (x, 0), 1);
7417 rtx op1 = XEXP (XEXP (x, 1), 1);
7418
7419 cond0 = XEXP (XEXP (x, 0), 0);
7420 cond1 = XEXP (XEXP (x, 1), 0);
7421
7422 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7423 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7424 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7425 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7426 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7427 || ((swap_condition (GET_CODE (cond0))
7428 == combine_reversed_comparison_code (cond1))
7429 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7430 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7431 && ! side_effects_p (x))
7432 {
7433 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7434 *pfalse = gen_binary (MULT, mode,
7435 (code == MINUS
7436 ? simplify_gen_unary (NEG, mode, op1,
7437 mode)
7438 : op1),
7439 const_true_rtx);
7440 return cond0;
7441 }
7442 }
7443
7444 /* Similarly for MULT, AND and UMIN, except that for these the result
7445 is always zero. */
7446 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7447 && (code == MULT || code == AND || code == UMIN)
7448 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7449 {
7450 cond0 = XEXP (XEXP (x, 0), 0);
7451 cond1 = XEXP (XEXP (x, 1), 0);
7452
7453 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7454 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7455 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7456 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7457 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7458 || ((swap_condition (GET_CODE (cond0))
7459 == combine_reversed_comparison_code (cond1))
7460 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7461 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7462 && ! side_effects_p (x))
7463 {
7464 *ptrue = *pfalse = const0_rtx;
7465 return cond0;
7466 }
7467 }
7468 }
7469
7470 else if (code == IF_THEN_ELSE)
7471 {
7472 /* If we have IF_THEN_ELSE already, extract the condition and
7473 canonicalize it if it is NE or EQ. */
7474 cond0 = XEXP (x, 0);
7475 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7476 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7477 return XEXP (cond0, 0);
7478 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7479 {
7480 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7481 return XEXP (cond0, 0);
7482 }
7483 else
7484 return cond0;
7485 }
7486
7487 /* If X is a SUBREG, we can narrow both the true and false values
7488 if the inner expression, if there is a condition. */
7489 else if (code == SUBREG
7490 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7491 &true0, &false0)))
7492 {
7493 *ptrue = simplify_gen_subreg (mode, true0,
7494 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7495 *pfalse = simplify_gen_subreg (mode, false0,
7496 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7497
7498 return cond0;
7499 }
7500
7501 /* If X is a constant, this isn't special and will cause confusions
7502 if we treat it as such. Likewise if it is equivalent to a constant. */
7503 else if (CONSTANT_P (x)
7504 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7505 ;
7506
7507 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7508 will be least confusing to the rest of the compiler. */
7509 else if (mode == BImode)
7510 {
7511 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7512 return x;
7513 }
7514
7515 /* If X is known to be either 0 or -1, those are the true and
7516 false values when testing X. */
7517 else if (x == constm1_rtx || x == const0_rtx
7518 || (mode != VOIDmode
7519 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7520 {
7521 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7522 return x;
7523 }
7524
7525 /* Likewise for 0 or a single bit. */
7526 else if (mode != VOIDmode
7527 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7528 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7529 {
7530 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7531 return x;
7532 }
7533
7534 /* Otherwise fail; show no condition with true and false values the same. */
7535 *ptrue = *pfalse = x;
7536 return 0;
7537 }
7538 \f
7539 /* Return the value of expression X given the fact that condition COND
7540 is known to be true when applied to REG as its first operand and VAL
7541 as its second. X is known to not be shared and so can be modified in
7542 place.
7543
7544 We only handle the simplest cases, and specifically those cases that
7545 arise with IF_THEN_ELSE expressions. */
7546
7547 static rtx
7548 known_cond (x, cond, reg, val)
7549 rtx x;
7550 enum rtx_code cond;
7551 rtx reg, val;
7552 {
7553 enum rtx_code code = GET_CODE (x);
7554 rtx temp;
7555 const char *fmt;
7556 int i, j;
7557
7558 if (side_effects_p (x))
7559 return x;
7560
7561 /* If either operand of the condition is a floating point value,
7562 then we have to avoid collapsing an EQ comparison. */
7563 if (cond == EQ
7564 && rtx_equal_p (x, reg)
7565 && ! FLOAT_MODE_P (GET_MODE (x))
7566 && ! FLOAT_MODE_P (GET_MODE (val)))
7567 return val;
7568
7569 if (cond == UNEQ && rtx_equal_p (x, reg))
7570 return val;
7571
7572 /* If X is (abs REG) and we know something about REG's relationship
7573 with zero, we may be able to simplify this. */
7574
7575 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7576 switch (cond)
7577 {
7578 case GE: case GT: case EQ:
7579 return XEXP (x, 0);
7580 case LT: case LE:
7581 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7582 XEXP (x, 0),
7583 GET_MODE (XEXP (x, 0)));
7584 default:
7585 break;
7586 }
7587
7588 /* The only other cases we handle are MIN, MAX, and comparisons if the
7589 operands are the same as REG and VAL. */
7590
7591 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7592 {
7593 if (rtx_equal_p (XEXP (x, 0), val))
7594 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7595
7596 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7597 {
7598 if (GET_RTX_CLASS (code) == '<')
7599 {
7600 if (comparison_dominates_p (cond, code))
7601 return const_true_rtx;
7602
7603 code = combine_reversed_comparison_code (x);
7604 if (code != UNKNOWN
7605 && comparison_dominates_p (cond, code))
7606 return const0_rtx;
7607 else
7608 return x;
7609 }
7610 else if (code == SMAX || code == SMIN
7611 || code == UMIN || code == UMAX)
7612 {
7613 int unsignedp = (code == UMIN || code == UMAX);
7614
7615 /* Do not reverse the condition when it is NE or EQ.
7616 This is because we cannot conclude anything about
7617 the value of 'SMAX (x, y)' when x is not equal to y,
7618 but we can when x equals y. */
7619 if ((code == SMAX || code == UMAX)
7620 && ! (cond == EQ || cond == NE))
7621 cond = reverse_condition (cond);
7622
7623 switch (cond)
7624 {
7625 case GE: case GT:
7626 return unsignedp ? x : XEXP (x, 1);
7627 case LE: case LT:
7628 return unsignedp ? x : XEXP (x, 0);
7629 case GEU: case GTU:
7630 return unsignedp ? XEXP (x, 1) : x;
7631 case LEU: case LTU:
7632 return unsignedp ? XEXP (x, 0) : x;
7633 default:
7634 break;
7635 }
7636 }
7637 }
7638 }
7639 else if (code == SUBREG)
7640 {
7641 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7642 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7643
7644 if (SUBREG_REG (x) != r)
7645 {
7646 /* We must simplify subreg here, before we lose track of the
7647 original inner_mode. */
7648 new = simplify_subreg (GET_MODE (x), r,
7649 inner_mode, SUBREG_BYTE (x));
7650 if (new)
7651 return new;
7652 else
7653 SUBST (SUBREG_REG (x), r);
7654 }
7655
7656 return x;
7657 }
7658 /* We don't have to handle SIGN_EXTEND here, because even in the
7659 case of replacing something with a modeless CONST_INT, a
7660 CONST_INT is already (supposed to be) a valid sign extension for
7661 its narrower mode, which implies it's already properly
7662 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7663 story is different. */
7664 else if (code == ZERO_EXTEND)
7665 {
7666 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7667 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7668
7669 if (XEXP (x, 0) != r)
7670 {
7671 /* We must simplify the zero_extend here, before we lose
7672 track of the original inner_mode. */
7673 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7674 r, inner_mode);
7675 if (new)
7676 return new;
7677 else
7678 SUBST (XEXP (x, 0), r);
7679 }
7680
7681 return x;
7682 }
7683
7684 fmt = GET_RTX_FORMAT (code);
7685 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7686 {
7687 if (fmt[i] == 'e')
7688 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7689 else if (fmt[i] == 'E')
7690 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7691 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7692 cond, reg, val));
7693 }
7694
7695 return x;
7696 }
7697 \f
7698 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7699 assignment as a field assignment. */
7700
7701 static int
7702 rtx_equal_for_field_assignment_p (x, y)
7703 rtx x;
7704 rtx y;
7705 {
7706 if (x == y || rtx_equal_p (x, y))
7707 return 1;
7708
7709 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7710 return 0;
7711
7712 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7713 Note that all SUBREGs of MEM are paradoxical; otherwise they
7714 would have been rewritten. */
7715 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7716 && GET_CODE (SUBREG_REG (y)) == MEM
7717 && rtx_equal_p (SUBREG_REG (y),
7718 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7719 return 1;
7720
7721 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7722 && GET_CODE (SUBREG_REG (x)) == MEM
7723 && rtx_equal_p (SUBREG_REG (x),
7724 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7725 return 1;
7726
7727 /* We used to see if get_last_value of X and Y were the same but that's
7728 not correct. In one direction, we'll cause the assignment to have
7729 the wrong destination and in the case, we'll import a register into this
7730 insn that might have already have been dead. So fail if none of the
7731 above cases are true. */
7732 return 0;
7733 }
7734 \f
7735 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7736 Return that assignment if so.
7737
7738 We only handle the most common cases. */
7739
7740 static rtx
7741 make_field_assignment (x)
7742 rtx x;
7743 {
7744 rtx dest = SET_DEST (x);
7745 rtx src = SET_SRC (x);
7746 rtx assign;
7747 rtx rhs, lhs;
7748 HOST_WIDE_INT c1;
7749 HOST_WIDE_INT pos;
7750 unsigned HOST_WIDE_INT len;
7751 rtx other;
7752 enum machine_mode mode;
7753
7754 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7755 a clear of a one-bit field. We will have changed it to
7756 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7757 for a SUBREG. */
7758
7759 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7760 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7761 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7762 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7763 {
7764 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7765 1, 1, 1, 0);
7766 if (assign != 0)
7767 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7768 return x;
7769 }
7770
7771 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7772 && subreg_lowpart_p (XEXP (src, 0))
7773 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7774 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7775 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7776 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7777 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7778 {
7779 assign = make_extraction (VOIDmode, dest, 0,
7780 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7781 1, 1, 1, 0);
7782 if (assign != 0)
7783 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7784 return x;
7785 }
7786
7787 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7788 one-bit field. */
7789 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7790 && XEXP (XEXP (src, 0), 0) == const1_rtx
7791 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7792 {
7793 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7794 1, 1, 1, 0);
7795 if (assign != 0)
7796 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7797 return x;
7798 }
7799
7800 /* The other case we handle is assignments into a constant-position
7801 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7802 a mask that has all one bits except for a group of zero bits and
7803 OTHER is known to have zeros where C1 has ones, this is such an
7804 assignment. Compute the position and length from C1. Shift OTHER
7805 to the appropriate position, force it to the required mode, and
7806 make the extraction. Check for the AND in both operands. */
7807
7808 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7809 return x;
7810
7811 rhs = expand_compound_operation (XEXP (src, 0));
7812 lhs = expand_compound_operation (XEXP (src, 1));
7813
7814 if (GET_CODE (rhs) == AND
7815 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7816 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7817 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7818 else if (GET_CODE (lhs) == AND
7819 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7820 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7821 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7822 else
7823 return x;
7824
7825 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7826 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7827 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7828 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7829 return x;
7830
7831 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7832 if (assign == 0)
7833 return x;
7834
7835 /* The mode to use for the source is the mode of the assignment, or of
7836 what is inside a possible STRICT_LOW_PART. */
7837 mode = (GET_CODE (assign) == STRICT_LOW_PART
7838 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7839
7840 /* Shift OTHER right POS places and make it the source, restricting it
7841 to the proper length and mode. */
7842
7843 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7844 GET_MODE (src), other, pos),
7845 mode,
7846 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7847 ? ~(unsigned HOST_WIDE_INT) 0
7848 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7849 dest, 0);
7850
7851 return gen_rtx_SET (VOIDmode, assign, src);
7852 }
7853 \f
7854 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7855 if so. */
7856
7857 static rtx
7858 apply_distributive_law (x)
7859 rtx x;
7860 {
7861 enum rtx_code code = GET_CODE (x);
7862 rtx lhs, rhs, other;
7863 rtx tem;
7864 enum rtx_code inner_code;
7865
7866 /* Distributivity is not true for floating point.
7867 It can change the value. So don't do it.
7868 -- rms and moshier@world.std.com. */
7869 if (FLOAT_MODE_P (GET_MODE (x)))
7870 return x;
7871
7872 /* The outer operation can only be one of the following: */
7873 if (code != IOR && code != AND && code != XOR
7874 && code != PLUS && code != MINUS)
7875 return x;
7876
7877 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7878
7879 /* If either operand is a primitive we can't do anything, so get out
7880 fast. */
7881 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7882 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7883 return x;
7884
7885 lhs = expand_compound_operation (lhs);
7886 rhs = expand_compound_operation (rhs);
7887 inner_code = GET_CODE (lhs);
7888 if (inner_code != GET_CODE (rhs))
7889 return x;
7890
7891 /* See if the inner and outer operations distribute. */
7892 switch (inner_code)
7893 {
7894 case LSHIFTRT:
7895 case ASHIFTRT:
7896 case AND:
7897 case IOR:
7898 /* These all distribute except over PLUS. */
7899 if (code == PLUS || code == MINUS)
7900 return x;
7901 break;
7902
7903 case MULT:
7904 if (code != PLUS && code != MINUS)
7905 return x;
7906 break;
7907
7908 case ASHIFT:
7909 /* This is also a multiply, so it distributes over everything. */
7910 break;
7911
7912 case SUBREG:
7913 /* Non-paradoxical SUBREGs distributes over all operations, provided
7914 the inner modes and byte offsets are the same, this is an extraction
7915 of a low-order part, we don't convert an fp operation to int or
7916 vice versa, and we would not be converting a single-word
7917 operation into a multi-word operation. The latter test is not
7918 required, but it prevents generating unneeded multi-word operations.
7919 Some of the previous tests are redundant given the latter test, but
7920 are retained because they are required for correctness.
7921
7922 We produce the result slightly differently in this case. */
7923
7924 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7925 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7926 || ! subreg_lowpart_p (lhs)
7927 || (GET_MODE_CLASS (GET_MODE (lhs))
7928 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7929 || (GET_MODE_SIZE (GET_MODE (lhs))
7930 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7931 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7932 return x;
7933
7934 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7935 SUBREG_REG (lhs), SUBREG_REG (rhs));
7936 return gen_lowpart_for_combine (GET_MODE (x), tem);
7937
7938 default:
7939 return x;
7940 }
7941
7942 /* Set LHS and RHS to the inner operands (A and B in the example
7943 above) and set OTHER to the common operand (C in the example).
7944 These is only one way to do this unless the inner operation is
7945 commutative. */
7946 if (GET_RTX_CLASS (inner_code) == 'c'
7947 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7948 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7949 else if (GET_RTX_CLASS (inner_code) == 'c'
7950 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7951 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7952 else if (GET_RTX_CLASS (inner_code) == 'c'
7953 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7954 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7955 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7956 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7957 else
7958 return x;
7959
7960 /* Form the new inner operation, seeing if it simplifies first. */
7961 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7962
7963 /* There is one exception to the general way of distributing:
7964 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7965 if (code == XOR && inner_code == IOR)
7966 {
7967 inner_code = AND;
7968 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7969 }
7970
7971 /* We may be able to continuing distributing the result, so call
7972 ourselves recursively on the inner operation before forming the
7973 outer operation, which we return. */
7974 return gen_binary (inner_code, GET_MODE (x),
7975 apply_distributive_law (tem), other);
7976 }
7977 \f
7978 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7979 in MODE.
7980
7981 Return an equivalent form, if different from X. Otherwise, return X. If
7982 X is zero, we are to always construct the equivalent form. */
7983
7984 static rtx
7985 simplify_and_const_int (x, mode, varop, constop)
7986 rtx x;
7987 enum machine_mode mode;
7988 rtx varop;
7989 unsigned HOST_WIDE_INT constop;
7990 {
7991 unsigned HOST_WIDE_INT nonzero;
7992 int i;
7993
7994 /* Simplify VAROP knowing that we will be only looking at some of the
7995 bits in it.
7996
7997 Note by passing in CONSTOP, we guarantee that the bits not set in
7998 CONSTOP are not significant and will never be examined. We must
7999 ensure that is the case by explicitly masking out those bits
8000 before returning. */
8001 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8002
8003 /* If VAROP is a CLOBBER, we will fail so return it. */
8004 if (GET_CODE (varop) == CLOBBER)
8005 return varop;
8006
8007 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8008 to VAROP and return the new constant. */
8009 if (GET_CODE (varop) == CONST_INT)
8010 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8011
8012 /* See what bits may be nonzero in VAROP. Unlike the general case of
8013 a call to nonzero_bits, here we don't care about bits outside
8014 MODE. */
8015
8016 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8017
8018 /* Turn off all bits in the constant that are known to already be zero.
8019 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8020 which is tested below. */
8021
8022 constop &= nonzero;
8023
8024 /* If we don't have any bits left, return zero. */
8025 if (constop == 0)
8026 return const0_rtx;
8027
8028 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8029 a power of two, we can replace this with an ASHIFT. */
8030 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8031 && (i = exact_log2 (constop)) >= 0)
8032 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8033
8034 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8035 or XOR, then try to apply the distributive law. This may eliminate
8036 operations if either branch can be simplified because of the AND.
8037 It may also make some cases more complex, but those cases probably
8038 won't match a pattern either with or without this. */
8039
8040 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8041 return
8042 gen_lowpart_for_combine
8043 (mode,
8044 apply_distributive_law
8045 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8046 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8047 XEXP (varop, 0), constop),
8048 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8049 XEXP (varop, 1), constop))));
8050
8051 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8052 the AND and see if one of the operands simplifies to zero. If so, we
8053 may eliminate it. */
8054
8055 if (GET_CODE (varop) == PLUS
8056 && exact_log2 (constop + 1) >= 0)
8057 {
8058 rtx o0, o1;
8059
8060 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8061 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8062 if (o0 == const0_rtx)
8063 return o1;
8064 if (o1 == const0_rtx)
8065 return o0;
8066 }
8067
8068 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8069 if we already had one (just check for the simplest cases). */
8070 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8071 && GET_MODE (XEXP (x, 0)) == mode
8072 && SUBREG_REG (XEXP (x, 0)) == varop)
8073 varop = XEXP (x, 0);
8074 else
8075 varop = gen_lowpart_for_combine (mode, varop);
8076
8077 /* If we can't make the SUBREG, try to return what we were given. */
8078 if (GET_CODE (varop) == CLOBBER)
8079 return x ? x : varop;
8080
8081 /* If we are only masking insignificant bits, return VAROP. */
8082 if (constop == nonzero)
8083 x = varop;
8084 else
8085 {
8086 /* Otherwise, return an AND. */
8087 constop = trunc_int_for_mode (constop, mode);
8088 /* See how much, if any, of X we can use. */
8089 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8090 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8091
8092 else
8093 {
8094 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8095 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8096 SUBST (XEXP (x, 1), GEN_INT (constop));
8097
8098 SUBST (XEXP (x, 0), varop);
8099 }
8100 }
8101
8102 return x;
8103 }
8104 \f
8105 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8106 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8107 is less useful. We can't allow both, because that results in exponential
8108 run time recursion. There is a nullstone testcase that triggered
8109 this. This macro avoids accidental uses of num_sign_bit_copies. */
8110 #define num_sign_bit_copies()
8111
8112 /* Given an expression, X, compute which bits in X can be nonzero.
8113 We don't care about bits outside of those defined in MODE.
8114
8115 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8116 a shift, AND, or zero_extract, we can do better. */
8117
8118 static unsigned HOST_WIDE_INT
8119 nonzero_bits (x, mode)
8120 rtx x;
8121 enum machine_mode mode;
8122 {
8123 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8124 unsigned HOST_WIDE_INT inner_nz;
8125 enum rtx_code code;
8126 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8127 rtx tem;
8128
8129 /* For floating-point values, assume all bits are needed. */
8130 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8131 return nonzero;
8132
8133 /* If X is wider than MODE, use its mode instead. */
8134 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8135 {
8136 mode = GET_MODE (x);
8137 nonzero = GET_MODE_MASK (mode);
8138 mode_width = GET_MODE_BITSIZE (mode);
8139 }
8140
8141 if (mode_width > HOST_BITS_PER_WIDE_INT)
8142 /* Our only callers in this case look for single bit values. So
8143 just return the mode mask. Those tests will then be false. */
8144 return nonzero;
8145
8146 #ifndef WORD_REGISTER_OPERATIONS
8147 /* If MODE is wider than X, but both are a single word for both the host
8148 and target machines, we can compute this from which bits of the
8149 object might be nonzero in its own mode, taking into account the fact
8150 that on many CISC machines, accessing an object in a wider mode
8151 causes the high-order bits to become undefined. So they are
8152 not known to be zero. */
8153
8154 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8155 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8156 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8157 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8158 {
8159 nonzero &= nonzero_bits (x, GET_MODE (x));
8160 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8161 return nonzero;
8162 }
8163 #endif
8164
8165 code = GET_CODE (x);
8166 switch (code)
8167 {
8168 case REG:
8169 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8170 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8171 all the bits above ptr_mode are known to be zero. */
8172 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8173 && REG_POINTER (x))
8174 nonzero &= GET_MODE_MASK (ptr_mode);
8175 #endif
8176
8177 /* Include declared information about alignment of pointers. */
8178 /* ??? We don't properly preserve REG_POINTER changes across
8179 pointer-to-integer casts, so we can't trust it except for
8180 things that we know must be pointers. See execute/960116-1.c. */
8181 if ((x == stack_pointer_rtx
8182 || x == frame_pointer_rtx
8183 || x == arg_pointer_rtx)
8184 && REGNO_POINTER_ALIGN (REGNO (x)))
8185 {
8186 unsigned HOST_WIDE_INT alignment
8187 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8188
8189 #ifdef PUSH_ROUNDING
8190 /* If PUSH_ROUNDING is defined, it is possible for the
8191 stack to be momentarily aligned only to that amount,
8192 so we pick the least alignment. */
8193 if (x == stack_pointer_rtx && PUSH_ARGS)
8194 alignment = MIN (PUSH_ROUNDING (1), alignment);
8195 #endif
8196
8197 nonzero &= ~(alignment - 1);
8198 }
8199
8200 /* If X is a register whose nonzero bits value is current, use it.
8201 Otherwise, if X is a register whose value we can find, use that
8202 value. Otherwise, use the previously-computed global nonzero bits
8203 for this register. */
8204
8205 if (reg_last_set_value[REGNO (x)] != 0
8206 && (reg_last_set_mode[REGNO (x)] == mode
8207 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8208 && GET_MODE_CLASS (mode) == MODE_INT))
8209 && (reg_last_set_label[REGNO (x)] == label_tick
8210 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8211 && REG_N_SETS (REGNO (x)) == 1
8212 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8213 REGNO (x))))
8214 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8215 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8216
8217 tem = get_last_value (x);
8218
8219 if (tem)
8220 {
8221 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8222 /* If X is narrower than MODE and TEM is a non-negative
8223 constant that would appear negative in the mode of X,
8224 sign-extend it for use in reg_nonzero_bits because some
8225 machines (maybe most) will actually do the sign-extension
8226 and this is the conservative approach.
8227
8228 ??? For 2.5, try to tighten up the MD files in this regard
8229 instead of this kludge. */
8230
8231 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8232 && GET_CODE (tem) == CONST_INT
8233 && INTVAL (tem) > 0
8234 && 0 != (INTVAL (tem)
8235 & ((HOST_WIDE_INT) 1
8236 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8237 tem = GEN_INT (INTVAL (tem)
8238 | ((HOST_WIDE_INT) (-1)
8239 << GET_MODE_BITSIZE (GET_MODE (x))));
8240 #endif
8241 return nonzero_bits (tem, mode) & nonzero;
8242 }
8243 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8244 {
8245 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8246
8247 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8248 /* We don't know anything about the upper bits. */
8249 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8250 return nonzero & mask;
8251 }
8252 else
8253 return nonzero;
8254
8255 case CONST_INT:
8256 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8257 /* If X is negative in MODE, sign-extend the value. */
8258 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8259 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8260 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8261 #endif
8262
8263 return INTVAL (x);
8264
8265 case MEM:
8266 #ifdef LOAD_EXTEND_OP
8267 /* In many, if not most, RISC machines, reading a byte from memory
8268 zeros the rest of the register. Noticing that fact saves a lot
8269 of extra zero-extends. */
8270 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8271 nonzero &= GET_MODE_MASK (GET_MODE (x));
8272 #endif
8273 break;
8274
8275 case EQ: case NE:
8276 case UNEQ: case LTGT:
8277 case GT: case GTU: case UNGT:
8278 case LT: case LTU: case UNLT:
8279 case GE: case GEU: case UNGE:
8280 case LE: case LEU: case UNLE:
8281 case UNORDERED: case ORDERED:
8282
8283 /* If this produces an integer result, we know which bits are set.
8284 Code here used to clear bits outside the mode of X, but that is
8285 now done above. */
8286
8287 if (GET_MODE_CLASS (mode) == MODE_INT
8288 && mode_width <= HOST_BITS_PER_WIDE_INT)
8289 nonzero = STORE_FLAG_VALUE;
8290 break;
8291
8292 case NEG:
8293 #if 0
8294 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8295 and num_sign_bit_copies. */
8296 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8297 == GET_MODE_BITSIZE (GET_MODE (x)))
8298 nonzero = 1;
8299 #endif
8300
8301 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8302 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8303 break;
8304
8305 case ABS:
8306 #if 0
8307 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8308 and num_sign_bit_copies. */
8309 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8310 == GET_MODE_BITSIZE (GET_MODE (x)))
8311 nonzero = 1;
8312 #endif
8313 break;
8314
8315 case TRUNCATE:
8316 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8317 break;
8318
8319 case ZERO_EXTEND:
8320 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8321 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8322 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8323 break;
8324
8325 case SIGN_EXTEND:
8326 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8327 Otherwise, show all the bits in the outer mode but not the inner
8328 may be nonzero. */
8329 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8330 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8331 {
8332 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8333 if (inner_nz
8334 & (((HOST_WIDE_INT) 1
8335 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8336 inner_nz |= (GET_MODE_MASK (mode)
8337 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8338 }
8339
8340 nonzero &= inner_nz;
8341 break;
8342
8343 case AND:
8344 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8345 & nonzero_bits (XEXP (x, 1), mode));
8346 break;
8347
8348 case XOR: case IOR:
8349 case UMIN: case UMAX: case SMIN: case SMAX:
8350 {
8351 unsigned HOST_WIDE_INT nonzero0 = nonzero_bits (XEXP (x, 0), mode);
8352
8353 /* Don't call nonzero_bits for the second time if it cannot change
8354 anything. */
8355 if ((nonzero & nonzero0) != nonzero)
8356 nonzero &= (nonzero0 | nonzero_bits (XEXP (x, 1), mode));
8357 }
8358 break;
8359
8360 case PLUS: case MINUS:
8361 case MULT:
8362 case DIV: case UDIV:
8363 case MOD: case UMOD:
8364 /* We can apply the rules of arithmetic to compute the number of
8365 high- and low-order zero bits of these operations. We start by
8366 computing the width (position of the highest-order nonzero bit)
8367 and the number of low-order zero bits for each value. */
8368 {
8369 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8370 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8371 int width0 = floor_log2 (nz0) + 1;
8372 int width1 = floor_log2 (nz1) + 1;
8373 int low0 = floor_log2 (nz0 & -nz0);
8374 int low1 = floor_log2 (nz1 & -nz1);
8375 HOST_WIDE_INT op0_maybe_minusp
8376 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8377 HOST_WIDE_INT op1_maybe_minusp
8378 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8379 unsigned int result_width = mode_width;
8380 int result_low = 0;
8381
8382 switch (code)
8383 {
8384 case PLUS:
8385 result_width = MAX (width0, width1) + 1;
8386 result_low = MIN (low0, low1);
8387 break;
8388 case MINUS:
8389 result_low = MIN (low0, low1);
8390 break;
8391 case MULT:
8392 result_width = width0 + width1;
8393 result_low = low0 + low1;
8394 break;
8395 case DIV:
8396 if (width1 == 0)
8397 break;
8398 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8399 result_width = width0;
8400 break;
8401 case UDIV:
8402 if (width1 == 0)
8403 break;
8404 result_width = width0;
8405 break;
8406 case MOD:
8407 if (width1 == 0)
8408 break;
8409 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8410 result_width = MIN (width0, width1);
8411 result_low = MIN (low0, low1);
8412 break;
8413 case UMOD:
8414 if (width1 == 0)
8415 break;
8416 result_width = MIN (width0, width1);
8417 result_low = MIN (low0, low1);
8418 break;
8419 default:
8420 abort ();
8421 }
8422
8423 if (result_width < mode_width)
8424 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8425
8426 if (result_low > 0)
8427 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8428
8429 #ifdef POINTERS_EXTEND_UNSIGNED
8430 /* If pointers extend unsigned and this is an addition or subtraction
8431 to a pointer in Pmode, all the bits above ptr_mode are known to be
8432 zero. */
8433 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8434 && (code == PLUS || code == MINUS)
8435 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8436 nonzero &= GET_MODE_MASK (ptr_mode);
8437 #endif
8438 }
8439 break;
8440
8441 case ZERO_EXTRACT:
8442 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8443 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8444 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8445 break;
8446
8447 case SUBREG:
8448 /* If this is a SUBREG formed for a promoted variable that has
8449 been zero-extended, we know that at least the high-order bits
8450 are zero, though others might be too. */
8451
8452 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8453 nonzero = (GET_MODE_MASK (GET_MODE (x))
8454 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8455
8456 /* If the inner mode is a single word for both the host and target
8457 machines, we can compute this from which bits of the inner
8458 object might be nonzero. */
8459 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8460 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8461 <= HOST_BITS_PER_WIDE_INT))
8462 {
8463 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8464
8465 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8466 /* If this is a typical RISC machine, we only have to worry
8467 about the way loads are extended. */
8468 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8469 ? (((nonzero
8470 & (((unsigned HOST_WIDE_INT) 1
8471 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8472 != 0))
8473 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8474 || GET_CODE (SUBREG_REG (x)) != MEM)
8475 #endif
8476 {
8477 /* On many CISC machines, accessing an object in a wider mode
8478 causes the high-order bits to become undefined. So they are
8479 not known to be zero. */
8480 if (GET_MODE_SIZE (GET_MODE (x))
8481 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8482 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8483 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8484 }
8485 }
8486 break;
8487
8488 case ASHIFTRT:
8489 case LSHIFTRT:
8490 case ASHIFT:
8491 case ROTATE:
8492 /* The nonzero bits are in two classes: any bits within MODE
8493 that aren't in GET_MODE (x) are always significant. The rest of the
8494 nonzero bits are those that are significant in the operand of
8495 the shift when shifted the appropriate number of bits. This
8496 shows that high-order bits are cleared by the right shift and
8497 low-order bits by left shifts. */
8498 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8499 && INTVAL (XEXP (x, 1)) >= 0
8500 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8501 {
8502 enum machine_mode inner_mode = GET_MODE (x);
8503 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8504 int count = INTVAL (XEXP (x, 1));
8505 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8506 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8507 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8508 unsigned HOST_WIDE_INT outer = 0;
8509
8510 if (mode_width > width)
8511 outer = (op_nonzero & nonzero & ~mode_mask);
8512
8513 if (code == LSHIFTRT)
8514 inner >>= count;
8515 else if (code == ASHIFTRT)
8516 {
8517 inner >>= count;
8518
8519 /* If the sign bit may have been nonzero before the shift, we
8520 need to mark all the places it could have been copied to
8521 by the shift as possibly nonzero. */
8522 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8523 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8524 }
8525 else if (code == ASHIFT)
8526 inner <<= count;
8527 else
8528 inner = ((inner << (count % width)
8529 | (inner >> (width - (count % width)))) & mode_mask);
8530
8531 nonzero &= (outer | inner);
8532 }
8533 break;
8534
8535 case FFS:
8536 /* This is at most the number of bits in the mode. */
8537 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8538 break;
8539
8540 case IF_THEN_ELSE:
8541 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8542 | nonzero_bits (XEXP (x, 2), mode));
8543 break;
8544
8545 default:
8546 break;
8547 }
8548
8549 return nonzero;
8550 }
8551
8552 /* See the macro definition above. */
8553 #undef num_sign_bit_copies
8554 \f
8555 /* Return the number of bits at the high-order end of X that are known to
8556 be equal to the sign bit. X will be used in mode MODE; if MODE is
8557 VOIDmode, X will be used in its own mode. The returned value will always
8558 be between 1 and the number of bits in MODE. */
8559
8560 static unsigned int
8561 num_sign_bit_copies (x, mode)
8562 rtx x;
8563 enum machine_mode mode;
8564 {
8565 enum rtx_code code = GET_CODE (x);
8566 unsigned int bitwidth;
8567 int num0, num1, result;
8568 unsigned HOST_WIDE_INT nonzero;
8569 rtx tem;
8570
8571 /* If we weren't given a mode, use the mode of X. If the mode is still
8572 VOIDmode, we don't know anything. Likewise if one of the modes is
8573 floating-point. */
8574
8575 if (mode == VOIDmode)
8576 mode = GET_MODE (x);
8577
8578 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8579 return 1;
8580
8581 bitwidth = GET_MODE_BITSIZE (mode);
8582
8583 /* For a smaller object, just ignore the high bits. */
8584 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8585 {
8586 num0 = num_sign_bit_copies (x, GET_MODE (x));
8587 return MAX (1,
8588 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8589 }
8590
8591 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8592 {
8593 #ifndef WORD_REGISTER_OPERATIONS
8594 /* If this machine does not do all register operations on the entire
8595 register and MODE is wider than the mode of X, we can say nothing
8596 at all about the high-order bits. */
8597 return 1;
8598 #else
8599 /* Likewise on machines that do, if the mode of the object is smaller
8600 than a word and loads of that size don't sign extend, we can say
8601 nothing about the high order bits. */
8602 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8603 #ifdef LOAD_EXTEND_OP
8604 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8605 #endif
8606 )
8607 return 1;
8608 #endif
8609 }
8610
8611 switch (code)
8612 {
8613 case REG:
8614
8615 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8616 /* If pointers extend signed and this is a pointer in Pmode, say that
8617 all the bits above ptr_mode are known to be sign bit copies. */
8618 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8619 && REG_POINTER (x))
8620 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8621 #endif
8622
8623 if (reg_last_set_value[REGNO (x)] != 0
8624 && reg_last_set_mode[REGNO (x)] == mode
8625 && (reg_last_set_label[REGNO (x)] == label_tick
8626 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8627 && REG_N_SETS (REGNO (x)) == 1
8628 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8629 REGNO (x))))
8630 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8631 return reg_last_set_sign_bit_copies[REGNO (x)];
8632
8633 tem = get_last_value (x);
8634 if (tem != 0)
8635 return num_sign_bit_copies (tem, mode);
8636
8637 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8638 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8639 return reg_sign_bit_copies[REGNO (x)];
8640 break;
8641
8642 case MEM:
8643 #ifdef LOAD_EXTEND_OP
8644 /* Some RISC machines sign-extend all loads of smaller than a word. */
8645 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8646 return MAX (1, ((int) bitwidth
8647 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8648 #endif
8649 break;
8650
8651 case CONST_INT:
8652 /* If the constant is negative, take its 1's complement and remask.
8653 Then see how many zero bits we have. */
8654 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8655 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8656 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8657 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8658
8659 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8660
8661 case SUBREG:
8662 /* If this is a SUBREG for a promoted object that is sign-extended
8663 and we are looking at it in a wider mode, we know that at least the
8664 high-order bits are known to be sign bit copies. */
8665
8666 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8667 {
8668 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8669 return MAX ((int) bitwidth
8670 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8671 num0);
8672 }
8673
8674 /* For a smaller object, just ignore the high bits. */
8675 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8676 {
8677 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8678 return MAX (1, (num0
8679 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8680 - bitwidth)));
8681 }
8682
8683 #ifdef WORD_REGISTER_OPERATIONS
8684 #ifdef LOAD_EXTEND_OP
8685 /* For paradoxical SUBREGs on machines where all register operations
8686 affect the entire register, just look inside. Note that we are
8687 passing MODE to the recursive call, so the number of sign bit copies
8688 will remain relative to that mode, not the inner mode. */
8689
8690 /* This works only if loads sign extend. Otherwise, if we get a
8691 reload for the inner part, it may be loaded from the stack, and
8692 then we lose all sign bit copies that existed before the store
8693 to the stack. */
8694
8695 if ((GET_MODE_SIZE (GET_MODE (x))
8696 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8697 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8698 && GET_CODE (SUBREG_REG (x)) == MEM)
8699 return num_sign_bit_copies (SUBREG_REG (x), mode);
8700 #endif
8701 #endif
8702 break;
8703
8704 case SIGN_EXTRACT:
8705 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8706 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8707 break;
8708
8709 case SIGN_EXTEND:
8710 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8711 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8712
8713 case TRUNCATE:
8714 /* For a smaller object, just ignore the high bits. */
8715 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8716 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8717 - bitwidth)));
8718
8719 case NOT:
8720 return num_sign_bit_copies (XEXP (x, 0), mode);
8721
8722 case ROTATE: case ROTATERT:
8723 /* If we are rotating left by a number of bits less than the number
8724 of sign bit copies, we can just subtract that amount from the
8725 number. */
8726 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8727 && INTVAL (XEXP (x, 1)) >= 0
8728 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8729 {
8730 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8731 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8732 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8733 }
8734 break;
8735
8736 case NEG:
8737 /* In general, this subtracts one sign bit copy. But if the value
8738 is known to be positive, the number of sign bit copies is the
8739 same as that of the input. Finally, if the input has just one bit
8740 that might be nonzero, all the bits are copies of the sign bit. */
8741 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8742 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8743 return num0 > 1 ? num0 - 1 : 1;
8744
8745 nonzero = nonzero_bits (XEXP (x, 0), mode);
8746 if (nonzero == 1)
8747 return bitwidth;
8748
8749 if (num0 > 1
8750 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8751 num0--;
8752
8753 return num0;
8754
8755 case IOR: case AND: case XOR:
8756 case SMIN: case SMAX: case UMIN: case UMAX:
8757 /* Logical operations will preserve the number of sign-bit copies.
8758 MIN and MAX operations always return one of the operands. */
8759 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8760 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8761 return MIN (num0, num1);
8762
8763 case PLUS: case MINUS:
8764 /* For addition and subtraction, we can have a 1-bit carry. However,
8765 if we are subtracting 1 from a positive number, there will not
8766 be such a carry. Furthermore, if the positive number is known to
8767 be 0 or 1, we know the result is either -1 or 0. */
8768
8769 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8770 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8771 {
8772 nonzero = nonzero_bits (XEXP (x, 0), mode);
8773 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8774 return (nonzero == 1 || nonzero == 0 ? bitwidth
8775 : bitwidth - floor_log2 (nonzero) - 1);
8776 }
8777
8778 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8779 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8780 result = MAX (1, MIN (num0, num1) - 1);
8781
8782 #ifdef POINTERS_EXTEND_UNSIGNED
8783 /* If pointers extend signed and this is an addition or subtraction
8784 to a pointer in Pmode, all the bits above ptr_mode are known to be
8785 sign bit copies. */
8786 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8787 && (code == PLUS || code == MINUS)
8788 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8789 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8790 - GET_MODE_BITSIZE (ptr_mode) + 1),
8791 result);
8792 #endif
8793 return result;
8794
8795 case MULT:
8796 /* The number of bits of the product is the sum of the number of
8797 bits of both terms. However, unless one of the terms if known
8798 to be positive, we must allow for an additional bit since negating
8799 a negative number can remove one sign bit copy. */
8800
8801 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8802 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8803
8804 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8805 if (result > 0
8806 && (bitwidth > HOST_BITS_PER_WIDE_INT
8807 || (((nonzero_bits (XEXP (x, 0), mode)
8808 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8809 && ((nonzero_bits (XEXP (x, 1), mode)
8810 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8811 result--;
8812
8813 return MAX (1, result);
8814
8815 case UDIV:
8816 /* The result must be <= the first operand. If the first operand
8817 has the high bit set, we know nothing about the number of sign
8818 bit copies. */
8819 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8820 return 1;
8821 else if ((nonzero_bits (XEXP (x, 0), mode)
8822 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8823 return 1;
8824 else
8825 return num_sign_bit_copies (XEXP (x, 0), mode);
8826
8827 case UMOD:
8828 /* The result must be <= the second operand. */
8829 return num_sign_bit_copies (XEXP (x, 1), mode);
8830
8831 case DIV:
8832 /* Similar to unsigned division, except that we have to worry about
8833 the case where the divisor is negative, in which case we have
8834 to add 1. */
8835 result = num_sign_bit_copies (XEXP (x, 0), mode);
8836 if (result > 1
8837 && (bitwidth > HOST_BITS_PER_WIDE_INT
8838 || (nonzero_bits (XEXP (x, 1), mode)
8839 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8840 result--;
8841
8842 return result;
8843
8844 case MOD:
8845 result = num_sign_bit_copies (XEXP (x, 1), mode);
8846 if (result > 1
8847 && (bitwidth > HOST_BITS_PER_WIDE_INT
8848 || (nonzero_bits (XEXP (x, 1), mode)
8849 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8850 result--;
8851
8852 return result;
8853
8854 case ASHIFTRT:
8855 /* Shifts by a constant add to the number of bits equal to the
8856 sign bit. */
8857 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8858 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8859 && INTVAL (XEXP (x, 1)) > 0)
8860 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8861
8862 return num0;
8863
8864 case ASHIFT:
8865 /* Left shifts destroy copies. */
8866 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8867 || INTVAL (XEXP (x, 1)) < 0
8868 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8869 return 1;
8870
8871 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8872 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8873
8874 case IF_THEN_ELSE:
8875 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8876 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8877 return MIN (num0, num1);
8878
8879 case EQ: case NE: case GE: case GT: case LE: case LT:
8880 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8881 case GEU: case GTU: case LEU: case LTU:
8882 case UNORDERED: case ORDERED:
8883 /* If the constant is negative, take its 1's complement and remask.
8884 Then see how many zero bits we have. */
8885 nonzero = STORE_FLAG_VALUE;
8886 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8887 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8888 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8889
8890 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8891 break;
8892
8893 default:
8894 break;
8895 }
8896
8897 /* If we haven't been able to figure it out by one of the above rules,
8898 see if some of the high-order bits are known to be zero. If so,
8899 count those bits and return one less than that amount. If we can't
8900 safely compute the mask for this mode, always return BITWIDTH. */
8901
8902 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8903 return 1;
8904
8905 nonzero = nonzero_bits (x, mode);
8906 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8907 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8908 }
8909 \f
8910 /* Return the number of "extended" bits there are in X, when interpreted
8911 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8912 unsigned quantities, this is the number of high-order zero bits.
8913 For signed quantities, this is the number of copies of the sign bit
8914 minus 1. In both case, this function returns the number of "spare"
8915 bits. For example, if two quantities for which this function returns
8916 at least 1 are added, the addition is known not to overflow.
8917
8918 This function will always return 0 unless called during combine, which
8919 implies that it must be called from a define_split. */
8920
8921 unsigned int
8922 extended_count (x, mode, unsignedp)
8923 rtx x;
8924 enum machine_mode mode;
8925 int unsignedp;
8926 {
8927 if (nonzero_sign_valid == 0)
8928 return 0;
8929
8930 return (unsignedp
8931 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8932 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8933 - floor_log2 (nonzero_bits (x, mode)))
8934 : 0)
8935 : num_sign_bit_copies (x, mode) - 1);
8936 }
8937 \f
8938 /* This function is called from `simplify_shift_const' to merge two
8939 outer operations. Specifically, we have already found that we need
8940 to perform operation *POP0 with constant *PCONST0 at the outermost
8941 position. We would now like to also perform OP1 with constant CONST1
8942 (with *POP0 being done last).
8943
8944 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8945 the resulting operation. *PCOMP_P is set to 1 if we would need to
8946 complement the innermost operand, otherwise it is unchanged.
8947
8948 MODE is the mode in which the operation will be done. No bits outside
8949 the width of this mode matter. It is assumed that the width of this mode
8950 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8951
8952 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8953 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8954 result is simply *PCONST0.
8955
8956 If the resulting operation cannot be expressed as one operation, we
8957 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8958
8959 static int
8960 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8961 enum rtx_code *pop0;
8962 HOST_WIDE_INT *pconst0;
8963 enum rtx_code op1;
8964 HOST_WIDE_INT const1;
8965 enum machine_mode mode;
8966 int *pcomp_p;
8967 {
8968 enum rtx_code op0 = *pop0;
8969 HOST_WIDE_INT const0 = *pconst0;
8970
8971 const0 &= GET_MODE_MASK (mode);
8972 const1 &= GET_MODE_MASK (mode);
8973
8974 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8975 if (op0 == AND)
8976 const1 &= const0;
8977
8978 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8979 if OP0 is SET. */
8980
8981 if (op1 == NIL || op0 == SET)
8982 return 1;
8983
8984 else if (op0 == NIL)
8985 op0 = op1, const0 = const1;
8986
8987 else if (op0 == op1)
8988 {
8989 switch (op0)
8990 {
8991 case AND:
8992 const0 &= const1;
8993 break;
8994 case IOR:
8995 const0 |= const1;
8996 break;
8997 case XOR:
8998 const0 ^= const1;
8999 break;
9000 case PLUS:
9001 const0 += const1;
9002 break;
9003 case NEG:
9004 op0 = NIL;
9005 break;
9006 default:
9007 break;
9008 }
9009 }
9010
9011 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9012 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9013 return 0;
9014
9015 /* If the two constants aren't the same, we can't do anything. The
9016 remaining six cases can all be done. */
9017 else if (const0 != const1)
9018 return 0;
9019
9020 else
9021 switch (op0)
9022 {
9023 case IOR:
9024 if (op1 == AND)
9025 /* (a & b) | b == b */
9026 op0 = SET;
9027 else /* op1 == XOR */
9028 /* (a ^ b) | b == a | b */
9029 {;}
9030 break;
9031
9032 case XOR:
9033 if (op1 == AND)
9034 /* (a & b) ^ b == (~a) & b */
9035 op0 = AND, *pcomp_p = 1;
9036 else /* op1 == IOR */
9037 /* (a | b) ^ b == a & ~b */
9038 op0 = AND, *pconst0 = ~const0;
9039 break;
9040
9041 case AND:
9042 if (op1 == IOR)
9043 /* (a | b) & b == b */
9044 op0 = SET;
9045 else /* op1 == XOR */
9046 /* (a ^ b) & b) == (~a) & b */
9047 *pcomp_p = 1;
9048 break;
9049 default:
9050 break;
9051 }
9052
9053 /* Check for NO-OP cases. */
9054 const0 &= GET_MODE_MASK (mode);
9055 if (const0 == 0
9056 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9057 op0 = NIL;
9058 else if (const0 == 0 && op0 == AND)
9059 op0 = SET;
9060 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9061 && op0 == AND)
9062 op0 = NIL;
9063
9064 /* ??? Slightly redundant with the above mask, but not entirely.
9065 Moving this above means we'd have to sign-extend the mode mask
9066 for the final test. */
9067 const0 = trunc_int_for_mode (const0, mode);
9068
9069 *pop0 = op0;
9070 *pconst0 = const0;
9071
9072 return 1;
9073 }
9074 \f
9075 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9076 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
9077 that we started with.
9078
9079 The shift is normally computed in the widest mode we find in VAROP, as
9080 long as it isn't a different number of words than RESULT_MODE. Exceptions
9081 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9082
9083 static rtx
9084 simplify_shift_const (x, code, result_mode, varop, orig_count)
9085 rtx x;
9086 enum rtx_code code;
9087 enum machine_mode result_mode;
9088 rtx varop;
9089 int orig_count;
9090 {
9091 enum rtx_code orig_code = code;
9092 unsigned int count;
9093 int signed_count;
9094 enum machine_mode mode = result_mode;
9095 enum machine_mode shift_mode, tmode;
9096 unsigned int mode_words
9097 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9098 /* We form (outer_op (code varop count) (outer_const)). */
9099 enum rtx_code outer_op = NIL;
9100 HOST_WIDE_INT outer_const = 0;
9101 rtx const_rtx;
9102 int complement_p = 0;
9103 rtx new;
9104
9105 /* Make sure and truncate the "natural" shift on the way in. We don't
9106 want to do this inside the loop as it makes it more difficult to
9107 combine shifts. */
9108 #ifdef SHIFT_COUNT_TRUNCATED
9109 if (SHIFT_COUNT_TRUNCATED)
9110 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9111 #endif
9112
9113 /* If we were given an invalid count, don't do anything except exactly
9114 what was requested. */
9115
9116 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9117 {
9118 if (x)
9119 return x;
9120
9121 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9122 }
9123
9124 count = orig_count;
9125
9126 /* Unless one of the branches of the `if' in this loop does a `continue',
9127 we will `break' the loop after the `if'. */
9128
9129 while (count != 0)
9130 {
9131 /* If we have an operand of (clobber (const_int 0)), just return that
9132 value. */
9133 if (GET_CODE (varop) == CLOBBER)
9134 return varop;
9135
9136 /* If we discovered we had to complement VAROP, leave. Making a NOT
9137 here would cause an infinite loop. */
9138 if (complement_p)
9139 break;
9140
9141 /* Convert ROTATERT to ROTATE. */
9142 if (code == ROTATERT)
9143 {
9144 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9145 code = ROTATE;
9146 if (VECTOR_MODE_P (result_mode))
9147 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9148 else
9149 count = bitsize - count;
9150 }
9151
9152 /* We need to determine what mode we will do the shift in. If the
9153 shift is a right shift or a ROTATE, we must always do it in the mode
9154 it was originally done in. Otherwise, we can do it in MODE, the
9155 widest mode encountered. */
9156 shift_mode
9157 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9158 ? result_mode : mode);
9159
9160 /* Handle cases where the count is greater than the size of the mode
9161 minus 1. For ASHIFT, use the size minus one as the count (this can
9162 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9163 take the count modulo the size. For other shifts, the result is
9164 zero.
9165
9166 Since these shifts are being produced by the compiler by combining
9167 multiple operations, each of which are defined, we know what the
9168 result is supposed to be. */
9169
9170 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9171 {
9172 if (code == ASHIFTRT)
9173 count = GET_MODE_BITSIZE (shift_mode) - 1;
9174 else if (code == ROTATE || code == ROTATERT)
9175 count %= GET_MODE_BITSIZE (shift_mode);
9176 else
9177 {
9178 /* We can't simply return zero because there may be an
9179 outer op. */
9180 varop = const0_rtx;
9181 count = 0;
9182 break;
9183 }
9184 }
9185
9186 /* An arithmetic right shift of a quantity known to be -1 or 0
9187 is a no-op. */
9188 if (code == ASHIFTRT
9189 && (num_sign_bit_copies (varop, shift_mode)
9190 == GET_MODE_BITSIZE (shift_mode)))
9191 {
9192 count = 0;
9193 break;
9194 }
9195
9196 /* If we are doing an arithmetic right shift and discarding all but
9197 the sign bit copies, this is equivalent to doing a shift by the
9198 bitsize minus one. Convert it into that shift because it will often
9199 allow other simplifications. */
9200
9201 if (code == ASHIFTRT
9202 && (count + num_sign_bit_copies (varop, shift_mode)
9203 >= GET_MODE_BITSIZE (shift_mode)))
9204 count = GET_MODE_BITSIZE (shift_mode) - 1;
9205
9206 /* We simplify the tests below and elsewhere by converting
9207 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9208 `make_compound_operation' will convert it to an ASHIFTRT for
9209 those machines (such as VAX) that don't have an LSHIFTRT. */
9210 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9211 && code == ASHIFTRT
9212 && ((nonzero_bits (varop, shift_mode)
9213 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9214 == 0))
9215 code = LSHIFTRT;
9216
9217 switch (GET_CODE (varop))
9218 {
9219 case SIGN_EXTEND:
9220 case ZERO_EXTEND:
9221 case SIGN_EXTRACT:
9222 case ZERO_EXTRACT:
9223 new = expand_compound_operation (varop);
9224 if (new != varop)
9225 {
9226 varop = new;
9227 continue;
9228 }
9229 break;
9230
9231 case MEM:
9232 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9233 minus the width of a smaller mode, we can do this with a
9234 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9235 if ((code == ASHIFTRT || code == LSHIFTRT)
9236 && ! mode_dependent_address_p (XEXP (varop, 0))
9237 && ! MEM_VOLATILE_P (varop)
9238 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9239 MODE_INT, 1)) != BLKmode)
9240 {
9241 new = adjust_address_nv (varop, tmode,
9242 BYTES_BIG_ENDIAN ? 0
9243 : count / BITS_PER_UNIT);
9244
9245 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9246 : ZERO_EXTEND, mode, new);
9247 count = 0;
9248 continue;
9249 }
9250 break;
9251
9252 case USE:
9253 /* Similar to the case above, except that we can only do this if
9254 the resulting mode is the same as that of the underlying
9255 MEM and adjust the address depending on the *bits* endianness
9256 because of the way that bit-field extract insns are defined. */
9257 if ((code == ASHIFTRT || code == LSHIFTRT)
9258 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9259 MODE_INT, 1)) != BLKmode
9260 && tmode == GET_MODE (XEXP (varop, 0)))
9261 {
9262 if (BITS_BIG_ENDIAN)
9263 new = XEXP (varop, 0);
9264 else
9265 {
9266 new = copy_rtx (XEXP (varop, 0));
9267 SUBST (XEXP (new, 0),
9268 plus_constant (XEXP (new, 0),
9269 count / BITS_PER_UNIT));
9270 }
9271
9272 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9273 : ZERO_EXTEND, mode, new);
9274 count = 0;
9275 continue;
9276 }
9277 break;
9278
9279 case SUBREG:
9280 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9281 the same number of words as what we've seen so far. Then store
9282 the widest mode in MODE. */
9283 if (subreg_lowpart_p (varop)
9284 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9285 > GET_MODE_SIZE (GET_MODE (varop)))
9286 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9287 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9288 == mode_words)
9289 {
9290 varop = SUBREG_REG (varop);
9291 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9292 mode = GET_MODE (varop);
9293 continue;
9294 }
9295 break;
9296
9297 case MULT:
9298 /* Some machines use MULT instead of ASHIFT because MULT
9299 is cheaper. But it is still better on those machines to
9300 merge two shifts into one. */
9301 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9302 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9303 {
9304 varop
9305 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9306 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9307 continue;
9308 }
9309 break;
9310
9311 case UDIV:
9312 /* Similar, for when divides are cheaper. */
9313 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9314 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9315 {
9316 varop
9317 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9318 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9319 continue;
9320 }
9321 break;
9322
9323 case ASHIFTRT:
9324 /* If we are extracting just the sign bit of an arithmetic
9325 right shift, that shift is not needed. However, the sign
9326 bit of a wider mode may be different from what would be
9327 interpreted as the sign bit in a narrower mode, so, if
9328 the result is narrower, don't discard the shift. */
9329 if (code == LSHIFTRT
9330 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9331 && (GET_MODE_BITSIZE (result_mode)
9332 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9333 {
9334 varop = XEXP (varop, 0);
9335 continue;
9336 }
9337
9338 /* ... fall through ... */
9339
9340 case LSHIFTRT:
9341 case ASHIFT:
9342 case ROTATE:
9343 /* Here we have two nested shifts. The result is usually the
9344 AND of a new shift with a mask. We compute the result below. */
9345 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9346 && INTVAL (XEXP (varop, 1)) >= 0
9347 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9348 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9349 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9350 {
9351 enum rtx_code first_code = GET_CODE (varop);
9352 unsigned int first_count = INTVAL (XEXP (varop, 1));
9353 unsigned HOST_WIDE_INT mask;
9354 rtx mask_rtx;
9355
9356 /* We have one common special case. We can't do any merging if
9357 the inner code is an ASHIFTRT of a smaller mode. However, if
9358 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9359 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9360 we can convert it to
9361 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9362 This simplifies certain SIGN_EXTEND operations. */
9363 if (code == ASHIFT && first_code == ASHIFTRT
9364 && count == (unsigned int)
9365 (GET_MODE_BITSIZE (result_mode)
9366 - GET_MODE_BITSIZE (GET_MODE (varop))))
9367 {
9368 /* C3 has the low-order C1 bits zero. */
9369
9370 mask = (GET_MODE_MASK (mode)
9371 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9372
9373 varop = simplify_and_const_int (NULL_RTX, result_mode,
9374 XEXP (varop, 0), mask);
9375 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9376 varop, count);
9377 count = first_count;
9378 code = ASHIFTRT;
9379 continue;
9380 }
9381
9382 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9383 than C1 high-order bits equal to the sign bit, we can convert
9384 this to either an ASHIFT or an ASHIFTRT depending on the
9385 two counts.
9386
9387 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9388
9389 if (code == ASHIFTRT && first_code == ASHIFT
9390 && GET_MODE (varop) == shift_mode
9391 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9392 > first_count))
9393 {
9394 varop = XEXP (varop, 0);
9395
9396 signed_count = count - first_count;
9397 if (signed_count < 0)
9398 count = -signed_count, code = ASHIFT;
9399 else
9400 count = signed_count;
9401
9402 continue;
9403 }
9404
9405 /* There are some cases we can't do. If CODE is ASHIFTRT,
9406 we can only do this if FIRST_CODE is also ASHIFTRT.
9407
9408 We can't do the case when CODE is ROTATE and FIRST_CODE is
9409 ASHIFTRT.
9410
9411 If the mode of this shift is not the mode of the outer shift,
9412 we can't do this if either shift is a right shift or ROTATE.
9413
9414 Finally, we can't do any of these if the mode is too wide
9415 unless the codes are the same.
9416
9417 Handle the case where the shift codes are the same
9418 first. */
9419
9420 if (code == first_code)
9421 {
9422 if (GET_MODE (varop) != result_mode
9423 && (code == ASHIFTRT || code == LSHIFTRT
9424 || code == ROTATE))
9425 break;
9426
9427 count += first_count;
9428 varop = XEXP (varop, 0);
9429 continue;
9430 }
9431
9432 if (code == ASHIFTRT
9433 || (code == ROTATE && first_code == ASHIFTRT)
9434 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9435 || (GET_MODE (varop) != result_mode
9436 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9437 || first_code == ROTATE
9438 || code == ROTATE)))
9439 break;
9440
9441 /* To compute the mask to apply after the shift, shift the
9442 nonzero bits of the inner shift the same way the
9443 outer shift will. */
9444
9445 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9446
9447 mask_rtx
9448 = simplify_binary_operation (code, result_mode, mask_rtx,
9449 GEN_INT (count));
9450
9451 /* Give up if we can't compute an outer operation to use. */
9452 if (mask_rtx == 0
9453 || GET_CODE (mask_rtx) != CONST_INT
9454 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9455 INTVAL (mask_rtx),
9456 result_mode, &complement_p))
9457 break;
9458
9459 /* If the shifts are in the same direction, we add the
9460 counts. Otherwise, we subtract them. */
9461 signed_count = count;
9462 if ((code == ASHIFTRT || code == LSHIFTRT)
9463 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9464 signed_count += first_count;
9465 else
9466 signed_count -= first_count;
9467
9468 /* If COUNT is positive, the new shift is usually CODE,
9469 except for the two exceptions below, in which case it is
9470 FIRST_CODE. If the count is negative, FIRST_CODE should
9471 always be used */
9472 if (signed_count > 0
9473 && ((first_code == ROTATE && code == ASHIFT)
9474 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9475 code = first_code, count = signed_count;
9476 else if (signed_count < 0)
9477 code = first_code, count = -signed_count;
9478 else
9479 count = signed_count;
9480
9481 varop = XEXP (varop, 0);
9482 continue;
9483 }
9484
9485 /* If we have (A << B << C) for any shift, we can convert this to
9486 (A << C << B). This wins if A is a constant. Only try this if
9487 B is not a constant. */
9488
9489 else if (GET_CODE (varop) == code
9490 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9491 && 0 != (new
9492 = simplify_binary_operation (code, mode,
9493 XEXP (varop, 0),
9494 GEN_INT (count))))
9495 {
9496 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9497 count = 0;
9498 continue;
9499 }
9500 break;
9501
9502 case NOT:
9503 /* Make this fit the case below. */
9504 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9505 GEN_INT (GET_MODE_MASK (mode)));
9506 continue;
9507
9508 case IOR:
9509 case AND:
9510 case XOR:
9511 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9512 with C the size of VAROP - 1 and the shift is logical if
9513 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9514 we have an (le X 0) operation. If we have an arithmetic shift
9515 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9516 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9517
9518 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9519 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9520 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9521 && (code == LSHIFTRT || code == ASHIFTRT)
9522 && count == (unsigned int)
9523 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9524 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9525 {
9526 count = 0;
9527 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9528 const0_rtx);
9529
9530 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9531 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9532
9533 continue;
9534 }
9535
9536 /* If we have (shift (logical)), move the logical to the outside
9537 to allow it to possibly combine with another logical and the
9538 shift to combine with another shift. This also canonicalizes to
9539 what a ZERO_EXTRACT looks like. Also, some machines have
9540 (and (shift)) insns. */
9541
9542 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9543 && (new = simplify_binary_operation (code, result_mode,
9544 XEXP (varop, 1),
9545 GEN_INT (count))) != 0
9546 && GET_CODE (new) == CONST_INT
9547 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9548 INTVAL (new), result_mode, &complement_p))
9549 {
9550 varop = XEXP (varop, 0);
9551 continue;
9552 }
9553
9554 /* If we can't do that, try to simplify the shift in each arm of the
9555 logical expression, make a new logical expression, and apply
9556 the inverse distributive law. */
9557 {
9558 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9559 XEXP (varop, 0), count);
9560 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9561 XEXP (varop, 1), count);
9562
9563 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9564 varop = apply_distributive_law (varop);
9565
9566 count = 0;
9567 }
9568 break;
9569
9570 case EQ:
9571 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9572 says that the sign bit can be tested, FOO has mode MODE, C is
9573 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9574 that may be nonzero. */
9575 if (code == LSHIFTRT
9576 && XEXP (varop, 1) == const0_rtx
9577 && GET_MODE (XEXP (varop, 0)) == result_mode
9578 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9579 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9580 && ((STORE_FLAG_VALUE
9581 & ((HOST_WIDE_INT) 1
9582 < (GET_MODE_BITSIZE (result_mode) - 1))))
9583 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9584 && merge_outer_ops (&outer_op, &outer_const, XOR,
9585 (HOST_WIDE_INT) 1, result_mode,
9586 &complement_p))
9587 {
9588 varop = XEXP (varop, 0);
9589 count = 0;
9590 continue;
9591 }
9592 break;
9593
9594 case NEG:
9595 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9596 than the number of bits in the mode is equivalent to A. */
9597 if (code == LSHIFTRT
9598 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9599 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9600 {
9601 varop = XEXP (varop, 0);
9602 count = 0;
9603 continue;
9604 }
9605
9606 /* NEG commutes with ASHIFT since it is multiplication. Move the
9607 NEG outside to allow shifts to combine. */
9608 if (code == ASHIFT
9609 && merge_outer_ops (&outer_op, &outer_const, NEG,
9610 (HOST_WIDE_INT) 0, result_mode,
9611 &complement_p))
9612 {
9613 varop = XEXP (varop, 0);
9614 continue;
9615 }
9616 break;
9617
9618 case PLUS:
9619 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9620 is one less than the number of bits in the mode is
9621 equivalent to (xor A 1). */
9622 if (code == LSHIFTRT
9623 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9624 && XEXP (varop, 1) == constm1_rtx
9625 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9626 && merge_outer_ops (&outer_op, &outer_const, XOR,
9627 (HOST_WIDE_INT) 1, result_mode,
9628 &complement_p))
9629 {
9630 count = 0;
9631 varop = XEXP (varop, 0);
9632 continue;
9633 }
9634
9635 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9636 that might be nonzero in BAR are those being shifted out and those
9637 bits are known zero in FOO, we can replace the PLUS with FOO.
9638 Similarly in the other operand order. This code occurs when
9639 we are computing the size of a variable-size array. */
9640
9641 if ((code == ASHIFTRT || code == LSHIFTRT)
9642 && count < HOST_BITS_PER_WIDE_INT
9643 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9644 && (nonzero_bits (XEXP (varop, 1), result_mode)
9645 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9646 {
9647 varop = XEXP (varop, 0);
9648 continue;
9649 }
9650 else if ((code == ASHIFTRT || code == LSHIFTRT)
9651 && count < HOST_BITS_PER_WIDE_INT
9652 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9653 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9654 >> count)
9655 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9656 & nonzero_bits (XEXP (varop, 1),
9657 result_mode)))
9658 {
9659 varop = XEXP (varop, 1);
9660 continue;
9661 }
9662
9663 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9664 if (code == ASHIFT
9665 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9666 && (new = simplify_binary_operation (ASHIFT, result_mode,
9667 XEXP (varop, 1),
9668 GEN_INT (count))) != 0
9669 && GET_CODE (new) == CONST_INT
9670 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9671 INTVAL (new), result_mode, &complement_p))
9672 {
9673 varop = XEXP (varop, 0);
9674 continue;
9675 }
9676 break;
9677
9678 case MINUS:
9679 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9680 with C the size of VAROP - 1 and the shift is logical if
9681 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9682 we have a (gt X 0) operation. If the shift is arithmetic with
9683 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9684 we have a (neg (gt X 0)) operation. */
9685
9686 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9687 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9688 && count == (unsigned int)
9689 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9690 && (code == LSHIFTRT || code == ASHIFTRT)
9691 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9692 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9693 == count
9694 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9695 {
9696 count = 0;
9697 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9698 const0_rtx);
9699
9700 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9701 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9702
9703 continue;
9704 }
9705 break;
9706
9707 case TRUNCATE:
9708 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9709 if the truncate does not affect the value. */
9710 if (code == LSHIFTRT
9711 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9712 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9713 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9714 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9715 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9716 {
9717 rtx varop_inner = XEXP (varop, 0);
9718
9719 varop_inner
9720 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9721 XEXP (varop_inner, 0),
9722 GEN_INT
9723 (count + INTVAL (XEXP (varop_inner, 1))));
9724 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9725 count = 0;
9726 continue;
9727 }
9728 break;
9729
9730 default:
9731 break;
9732 }
9733
9734 break;
9735 }
9736
9737 /* We need to determine what mode to do the shift in. If the shift is
9738 a right shift or ROTATE, we must always do it in the mode it was
9739 originally done in. Otherwise, we can do it in MODE, the widest mode
9740 encountered. The code we care about is that of the shift that will
9741 actually be done, not the shift that was originally requested. */
9742 shift_mode
9743 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9744 ? result_mode : mode);
9745
9746 /* We have now finished analyzing the shift. The result should be
9747 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9748 OUTER_OP is non-NIL, it is an operation that needs to be applied
9749 to the result of the shift. OUTER_CONST is the relevant constant,
9750 but we must turn off all bits turned off in the shift.
9751
9752 If we were passed a value for X, see if we can use any pieces of
9753 it. If not, make new rtx. */
9754
9755 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9756 && GET_CODE (XEXP (x, 1)) == CONST_INT
9757 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9758 const_rtx = XEXP (x, 1);
9759 else
9760 const_rtx = GEN_INT (count);
9761
9762 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9763 && GET_MODE (XEXP (x, 0)) == shift_mode
9764 && SUBREG_REG (XEXP (x, 0)) == varop)
9765 varop = XEXP (x, 0);
9766 else if (GET_MODE (varop) != shift_mode)
9767 varop = gen_lowpart_for_combine (shift_mode, varop);
9768
9769 /* If we can't make the SUBREG, try to return what we were given. */
9770 if (GET_CODE (varop) == CLOBBER)
9771 return x ? x : varop;
9772
9773 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9774 if (new != 0)
9775 x = new;
9776 else
9777 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9778
9779 /* If we have an outer operation and we just made a shift, it is
9780 possible that we could have simplified the shift were it not
9781 for the outer operation. So try to do the simplification
9782 recursively. */
9783
9784 if (outer_op != NIL && GET_CODE (x) == code
9785 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9786 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9787 INTVAL (XEXP (x, 1)));
9788
9789 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9790 turn off all the bits that the shift would have turned off. */
9791 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9792 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9793 GET_MODE_MASK (result_mode) >> orig_count);
9794
9795 /* Do the remainder of the processing in RESULT_MODE. */
9796 x = gen_lowpart_for_combine (result_mode, x);
9797
9798 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9799 operation. */
9800 if (complement_p)
9801 x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9802
9803 if (outer_op != NIL)
9804 {
9805 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9806 outer_const = trunc_int_for_mode (outer_const, result_mode);
9807
9808 if (outer_op == AND)
9809 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9810 else if (outer_op == SET)
9811 /* This means that we have determined that the result is
9812 equivalent to a constant. This should be rare. */
9813 x = GEN_INT (outer_const);
9814 else if (GET_RTX_CLASS (outer_op) == '1')
9815 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9816 else
9817 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9818 }
9819
9820 return x;
9821 }
9822 \f
9823 /* Like recog, but we receive the address of a pointer to a new pattern.
9824 We try to match the rtx that the pointer points to.
9825 If that fails, we may try to modify or replace the pattern,
9826 storing the replacement into the same pointer object.
9827
9828 Modifications include deletion or addition of CLOBBERs.
9829
9830 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9831 the CLOBBERs are placed.
9832
9833 The value is the final insn code from the pattern ultimately matched,
9834 or -1. */
9835
9836 static int
9837 recog_for_combine (pnewpat, insn, pnotes)
9838 rtx *pnewpat;
9839 rtx insn;
9840 rtx *pnotes;
9841 {
9842 rtx pat = *pnewpat;
9843 int insn_code_number;
9844 int num_clobbers_to_add = 0;
9845 int i;
9846 rtx notes = 0;
9847 rtx dummy_insn;
9848
9849 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9850 we use to indicate that something didn't match. If we find such a
9851 thing, force rejection. */
9852 if (GET_CODE (pat) == PARALLEL)
9853 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9854 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9855 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9856 return -1;
9857
9858 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9859 instruction for pattern recognition. */
9860 dummy_insn = shallow_copy_rtx (insn);
9861 PATTERN (dummy_insn) = pat;
9862 REG_NOTES (dummy_insn) = 0;
9863
9864 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9865
9866 /* If it isn't, there is the possibility that we previously had an insn
9867 that clobbered some register as a side effect, but the combined
9868 insn doesn't need to do that. So try once more without the clobbers
9869 unless this represents an ASM insn. */
9870
9871 if (insn_code_number < 0 && ! check_asm_operands (pat)
9872 && GET_CODE (pat) == PARALLEL)
9873 {
9874 int pos;
9875
9876 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9877 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9878 {
9879 if (i != pos)
9880 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9881 pos++;
9882 }
9883
9884 SUBST_INT (XVECLEN (pat, 0), pos);
9885
9886 if (pos == 1)
9887 pat = XVECEXP (pat, 0, 0);
9888
9889 PATTERN (dummy_insn) = pat;
9890 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9891 }
9892
9893 /* Recognize all noop sets, these will be killed by followup pass. */
9894 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9895 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9896
9897 /* If we had any clobbers to add, make a new pattern than contains
9898 them. Then check to make sure that all of them are dead. */
9899 if (num_clobbers_to_add)
9900 {
9901 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9902 rtvec_alloc (GET_CODE (pat) == PARALLEL
9903 ? (XVECLEN (pat, 0)
9904 + num_clobbers_to_add)
9905 : num_clobbers_to_add + 1));
9906
9907 if (GET_CODE (pat) == PARALLEL)
9908 for (i = 0; i < XVECLEN (pat, 0); i++)
9909 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9910 else
9911 XVECEXP (newpat, 0, 0) = pat;
9912
9913 add_clobbers (newpat, insn_code_number);
9914
9915 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9916 i < XVECLEN (newpat, 0); i++)
9917 {
9918 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9919 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9920 return -1;
9921 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9922 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9923 }
9924 pat = newpat;
9925 }
9926
9927 *pnewpat = pat;
9928 *pnotes = notes;
9929
9930 return insn_code_number;
9931 }
9932 \f
9933 /* Like gen_lowpart but for use by combine. In combine it is not possible
9934 to create any new pseudoregs. However, it is safe to create
9935 invalid memory addresses, because combine will try to recognize
9936 them and all they will do is make the combine attempt fail.
9937
9938 If for some reason this cannot do its job, an rtx
9939 (clobber (const_int 0)) is returned.
9940 An insn containing that will not be recognized. */
9941
9942 #undef gen_lowpart
9943
9944 static rtx
9945 gen_lowpart_for_combine (mode, x)
9946 enum machine_mode mode;
9947 rtx x;
9948 {
9949 rtx result;
9950
9951 if (GET_MODE (x) == mode)
9952 return x;
9953
9954 /* We can only support MODE being wider than a word if X is a
9955 constant integer or has a mode the same size. */
9956
9957 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9958 && ! ((GET_MODE (x) == VOIDmode
9959 && (GET_CODE (x) == CONST_INT
9960 || GET_CODE (x) == CONST_DOUBLE))
9961 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9962 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9963
9964 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9965 won't know what to do. So we will strip off the SUBREG here and
9966 process normally. */
9967 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9968 {
9969 x = SUBREG_REG (x);
9970 if (GET_MODE (x) == mode)
9971 return x;
9972 }
9973
9974 result = gen_lowpart_common (mode, x);
9975 #ifdef CANNOT_CHANGE_MODE_CLASS
9976 if (result != 0
9977 && GET_CODE (result) == SUBREG
9978 && GET_CODE (SUBREG_REG (result)) == REG
9979 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER)
9980 SET_REGNO_REG_SET (&subregs_of_mode[GET_MODE (result)],
9981 REGNO (SUBREG_REG (result)));
9982 #endif
9983
9984 if (result)
9985 return result;
9986
9987 if (GET_CODE (x) == MEM)
9988 {
9989 int offset = 0;
9990
9991 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9992 address. */
9993 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9994 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9995
9996 /* If we want to refer to something bigger than the original memref,
9997 generate a perverse subreg instead. That will force a reload
9998 of the original memref X. */
9999 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
10000 return gen_rtx_SUBREG (mode, x, 0);
10001
10002 if (WORDS_BIG_ENDIAN)
10003 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
10004 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
10005
10006 if (BYTES_BIG_ENDIAN)
10007 {
10008 /* Adjust the address so that the address-after-the-data is
10009 unchanged. */
10010 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
10011 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
10012 }
10013
10014 return adjust_address_nv (x, mode, offset);
10015 }
10016
10017 /* If X is a comparison operator, rewrite it in a new mode. This
10018 probably won't match, but may allow further simplifications. */
10019 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
10020 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
10021
10022 /* If we couldn't simplify X any other way, just enclose it in a
10023 SUBREG. Normally, this SUBREG won't match, but some patterns may
10024 include an explicit SUBREG or we may simplify it further in combine. */
10025 else
10026 {
10027 int offset = 0;
10028 rtx res;
10029 enum machine_mode sub_mode = GET_MODE (x);
10030
10031 offset = subreg_lowpart_offset (mode, sub_mode);
10032 if (sub_mode == VOIDmode)
10033 {
10034 sub_mode = int_mode_for_mode (mode);
10035 x = gen_lowpart_common (sub_mode, x);
10036 }
10037 res = simplify_gen_subreg (mode, x, sub_mode, offset);
10038 if (res)
10039 return res;
10040 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10041 }
10042 }
10043 \f
10044 /* These routines make binary and unary operations by first seeing if they
10045 fold; if not, a new expression is allocated. */
10046
10047 static rtx
10048 gen_binary (code, mode, op0, op1)
10049 enum rtx_code code;
10050 enum machine_mode mode;
10051 rtx op0, op1;
10052 {
10053 rtx result;
10054 rtx tem;
10055
10056 if (GET_RTX_CLASS (code) == 'c'
10057 && swap_commutative_operands_p (op0, op1))
10058 tem = op0, op0 = op1, op1 = tem;
10059
10060 if (GET_RTX_CLASS (code) == '<')
10061 {
10062 enum machine_mode op_mode = GET_MODE (op0);
10063
10064 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10065 just (REL_OP X Y). */
10066 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10067 {
10068 op1 = XEXP (op0, 1);
10069 op0 = XEXP (op0, 0);
10070 op_mode = GET_MODE (op0);
10071 }
10072
10073 if (op_mode == VOIDmode)
10074 op_mode = GET_MODE (op1);
10075 result = simplify_relational_operation (code, op_mode, op0, op1);
10076 }
10077 else
10078 result = simplify_binary_operation (code, mode, op0, op1);
10079
10080 if (result)
10081 return result;
10082
10083 /* Put complex operands first and constants second. */
10084 if (GET_RTX_CLASS (code) == 'c'
10085 && swap_commutative_operands_p (op0, op1))
10086 return gen_rtx_fmt_ee (code, mode, op1, op0);
10087
10088 /* If we are turning off bits already known off in OP0, we need not do
10089 an AND. */
10090 else if (code == AND && GET_CODE (op1) == CONST_INT
10091 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10092 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10093 return op0;
10094
10095 return gen_rtx_fmt_ee (code, mode, op0, op1);
10096 }
10097 \f
10098 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10099 comparison code that will be tested.
10100
10101 The result is a possibly different comparison code to use. *POP0 and
10102 *POP1 may be updated.
10103
10104 It is possible that we might detect that a comparison is either always
10105 true or always false. However, we do not perform general constant
10106 folding in combine, so this knowledge isn't useful. Such tautologies
10107 should have been detected earlier. Hence we ignore all such cases. */
10108
10109 static enum rtx_code
10110 simplify_comparison (code, pop0, pop1)
10111 enum rtx_code code;
10112 rtx *pop0;
10113 rtx *pop1;
10114 {
10115 rtx op0 = *pop0;
10116 rtx op1 = *pop1;
10117 rtx tem, tem1;
10118 int i;
10119 enum machine_mode mode, tmode;
10120
10121 /* Try a few ways of applying the same transformation to both operands. */
10122 while (1)
10123 {
10124 #ifndef WORD_REGISTER_OPERATIONS
10125 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10126 so check specially. */
10127 if (code != GTU && code != GEU && code != LTU && code != LEU
10128 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10129 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10130 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10131 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10132 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10133 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10134 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10135 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10136 && GET_CODE (XEXP (op1, 1)) == CONST_INT
10137 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10138 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
10139 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
10140 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
10141 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
10142 && (INTVAL (XEXP (op0, 1))
10143 == (GET_MODE_BITSIZE (GET_MODE (op0))
10144 - (GET_MODE_BITSIZE
10145 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10146 {
10147 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10148 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10149 }
10150 #endif
10151
10152 /* If both operands are the same constant shift, see if we can ignore the
10153 shift. We can if the shift is a rotate or if the bits shifted out of
10154 this shift are known to be zero for both inputs and if the type of
10155 comparison is compatible with the shift. */
10156 if (GET_CODE (op0) == GET_CODE (op1)
10157 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10158 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10159 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10160 && (code != GT && code != LT && code != GE && code != LE))
10161 || (GET_CODE (op0) == ASHIFTRT
10162 && (code != GTU && code != LTU
10163 && code != GEU && code != LEU)))
10164 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10165 && INTVAL (XEXP (op0, 1)) >= 0
10166 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10167 && XEXP (op0, 1) == XEXP (op1, 1))
10168 {
10169 enum machine_mode mode = GET_MODE (op0);
10170 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10171 int shift_count = INTVAL (XEXP (op0, 1));
10172
10173 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10174 mask &= (mask >> shift_count) << shift_count;
10175 else if (GET_CODE (op0) == ASHIFT)
10176 mask = (mask & (mask << shift_count)) >> shift_count;
10177
10178 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10179 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10180 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10181 else
10182 break;
10183 }
10184
10185 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10186 SUBREGs are of the same mode, and, in both cases, the AND would
10187 be redundant if the comparison was done in the narrower mode,
10188 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10189 and the operand's possibly nonzero bits are 0xffffff01; in that case
10190 if we only care about QImode, we don't need the AND). This case
10191 occurs if the output mode of an scc insn is not SImode and
10192 STORE_FLAG_VALUE == 1 (e.g., the 386).
10193
10194 Similarly, check for a case where the AND's are ZERO_EXTEND
10195 operations from some narrower mode even though a SUBREG is not
10196 present. */
10197
10198 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10199 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10200 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10201 {
10202 rtx inner_op0 = XEXP (op0, 0);
10203 rtx inner_op1 = XEXP (op1, 0);
10204 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10205 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10206 int changed = 0;
10207
10208 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10209 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10210 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10211 && (GET_MODE (SUBREG_REG (inner_op0))
10212 == GET_MODE (SUBREG_REG (inner_op1)))
10213 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10214 <= HOST_BITS_PER_WIDE_INT)
10215 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10216 GET_MODE (SUBREG_REG (inner_op0)))))
10217 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10218 GET_MODE (SUBREG_REG (inner_op1))))))
10219 {
10220 op0 = SUBREG_REG (inner_op0);
10221 op1 = SUBREG_REG (inner_op1);
10222
10223 /* The resulting comparison is always unsigned since we masked
10224 off the original sign bit. */
10225 code = unsigned_condition (code);
10226
10227 changed = 1;
10228 }
10229
10230 else if (c0 == c1)
10231 for (tmode = GET_CLASS_NARROWEST_MODE
10232 (GET_MODE_CLASS (GET_MODE (op0)));
10233 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10234 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10235 {
10236 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10237 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10238 code = unsigned_condition (code);
10239 changed = 1;
10240 break;
10241 }
10242
10243 if (! changed)
10244 break;
10245 }
10246
10247 /* If both operands are NOT, we can strip off the outer operation
10248 and adjust the comparison code for swapped operands; similarly for
10249 NEG, except that this must be an equality comparison. */
10250 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10251 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10252 && (code == EQ || code == NE)))
10253 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10254
10255 else
10256 break;
10257 }
10258
10259 /* If the first operand is a constant, swap the operands and adjust the
10260 comparison code appropriately, but don't do this if the second operand
10261 is already a constant integer. */
10262 if (swap_commutative_operands_p (op0, op1))
10263 {
10264 tem = op0, op0 = op1, op1 = tem;
10265 code = swap_condition (code);
10266 }
10267
10268 /* We now enter a loop during which we will try to simplify the comparison.
10269 For the most part, we only are concerned with comparisons with zero,
10270 but some things may really be comparisons with zero but not start
10271 out looking that way. */
10272
10273 while (GET_CODE (op1) == CONST_INT)
10274 {
10275 enum machine_mode mode = GET_MODE (op0);
10276 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10277 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10278 int equality_comparison_p;
10279 int sign_bit_comparison_p;
10280 int unsigned_comparison_p;
10281 HOST_WIDE_INT const_op;
10282
10283 /* We only want to handle integral modes. This catches VOIDmode,
10284 CCmode, and the floating-point modes. An exception is that we
10285 can handle VOIDmode if OP0 is a COMPARE or a comparison
10286 operation. */
10287
10288 if (GET_MODE_CLASS (mode) != MODE_INT
10289 && ! (mode == VOIDmode
10290 && (GET_CODE (op0) == COMPARE
10291 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10292 break;
10293
10294 /* Get the constant we are comparing against and turn off all bits
10295 not on in our mode. */
10296 const_op = INTVAL (op1);
10297 if (mode != VOIDmode)
10298 const_op = trunc_int_for_mode (const_op, mode);
10299 op1 = GEN_INT (const_op);
10300
10301 /* If we are comparing against a constant power of two and the value
10302 being compared can only have that single bit nonzero (e.g., it was
10303 `and'ed with that bit), we can replace this with a comparison
10304 with zero. */
10305 if (const_op
10306 && (code == EQ || code == NE || code == GE || code == GEU
10307 || code == LT || code == LTU)
10308 && mode_width <= HOST_BITS_PER_WIDE_INT
10309 && exact_log2 (const_op) >= 0
10310 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10311 {
10312 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10313 op1 = const0_rtx, const_op = 0;
10314 }
10315
10316 /* Similarly, if we are comparing a value known to be either -1 or
10317 0 with -1, change it to the opposite comparison against zero. */
10318
10319 if (const_op == -1
10320 && (code == EQ || code == NE || code == GT || code == LE
10321 || code == GEU || code == LTU)
10322 && num_sign_bit_copies (op0, mode) == mode_width)
10323 {
10324 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10325 op1 = const0_rtx, const_op = 0;
10326 }
10327
10328 /* Do some canonicalizations based on the comparison code. We prefer
10329 comparisons against zero and then prefer equality comparisons.
10330 If we can reduce the size of a constant, we will do that too. */
10331
10332 switch (code)
10333 {
10334 case LT:
10335 /* < C is equivalent to <= (C - 1) */
10336 if (const_op > 0)
10337 {
10338 const_op -= 1;
10339 op1 = GEN_INT (const_op);
10340 code = LE;
10341 /* ... fall through to LE case below. */
10342 }
10343 else
10344 break;
10345
10346 case LE:
10347 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10348 if (const_op < 0)
10349 {
10350 const_op += 1;
10351 op1 = GEN_INT (const_op);
10352 code = LT;
10353 }
10354
10355 /* If we are doing a <= 0 comparison on a value known to have
10356 a zero sign bit, we can replace this with == 0. */
10357 else if (const_op == 0
10358 && mode_width <= HOST_BITS_PER_WIDE_INT
10359 && (nonzero_bits (op0, mode)
10360 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10361 code = EQ;
10362 break;
10363
10364 case GE:
10365 /* >= C is equivalent to > (C - 1). */
10366 if (const_op > 0)
10367 {
10368 const_op -= 1;
10369 op1 = GEN_INT (const_op);
10370 code = GT;
10371 /* ... fall through to GT below. */
10372 }
10373 else
10374 break;
10375
10376 case GT:
10377 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10378 if (const_op < 0)
10379 {
10380 const_op += 1;
10381 op1 = GEN_INT (const_op);
10382 code = GE;
10383 }
10384
10385 /* If we are doing a > 0 comparison on a value known to have
10386 a zero sign bit, we can replace this with != 0. */
10387 else if (const_op == 0
10388 && mode_width <= HOST_BITS_PER_WIDE_INT
10389 && (nonzero_bits (op0, mode)
10390 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10391 code = NE;
10392 break;
10393
10394 case LTU:
10395 /* < C is equivalent to <= (C - 1). */
10396 if (const_op > 0)
10397 {
10398 const_op -= 1;
10399 op1 = GEN_INT (const_op);
10400 code = LEU;
10401 /* ... fall through ... */
10402 }
10403
10404 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10405 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10406 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10407 {
10408 const_op = 0, op1 = const0_rtx;
10409 code = GE;
10410 break;
10411 }
10412 else
10413 break;
10414
10415 case LEU:
10416 /* unsigned <= 0 is equivalent to == 0 */
10417 if (const_op == 0)
10418 code = EQ;
10419
10420 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10421 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10422 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10423 {
10424 const_op = 0, op1 = const0_rtx;
10425 code = GE;
10426 }
10427 break;
10428
10429 case GEU:
10430 /* >= C is equivalent to < (C - 1). */
10431 if (const_op > 1)
10432 {
10433 const_op -= 1;
10434 op1 = GEN_INT (const_op);
10435 code = GTU;
10436 /* ... fall through ... */
10437 }
10438
10439 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10440 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10441 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10442 {
10443 const_op = 0, op1 = const0_rtx;
10444 code = LT;
10445 break;
10446 }
10447 else
10448 break;
10449
10450 case GTU:
10451 /* unsigned > 0 is equivalent to != 0 */
10452 if (const_op == 0)
10453 code = NE;
10454
10455 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10456 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10457 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10458 {
10459 const_op = 0, op1 = const0_rtx;
10460 code = LT;
10461 }
10462 break;
10463
10464 default:
10465 break;
10466 }
10467
10468 /* Compute some predicates to simplify code below. */
10469
10470 equality_comparison_p = (code == EQ || code == NE);
10471 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10472 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10473 || code == GEU);
10474
10475 /* If this is a sign bit comparison and we can do arithmetic in
10476 MODE, say that we will only be needing the sign bit of OP0. */
10477 if (sign_bit_comparison_p
10478 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10479 op0 = force_to_mode (op0, mode,
10480 ((HOST_WIDE_INT) 1
10481 << (GET_MODE_BITSIZE (mode) - 1)),
10482 NULL_RTX, 0);
10483
10484 /* Now try cases based on the opcode of OP0. If none of the cases
10485 does a "continue", we exit this loop immediately after the
10486 switch. */
10487
10488 switch (GET_CODE (op0))
10489 {
10490 case ZERO_EXTRACT:
10491 /* If we are extracting a single bit from a variable position in
10492 a constant that has only a single bit set and are comparing it
10493 with zero, we can convert this into an equality comparison
10494 between the position and the location of the single bit. */
10495
10496 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10497 && XEXP (op0, 1) == const1_rtx
10498 && equality_comparison_p && const_op == 0
10499 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10500 {
10501 if (BITS_BIG_ENDIAN)
10502 {
10503 enum machine_mode new_mode
10504 = mode_for_extraction (EP_extzv, 1);
10505 if (new_mode == MAX_MACHINE_MODE)
10506 i = BITS_PER_WORD - 1 - i;
10507 else
10508 {
10509 mode = new_mode;
10510 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10511 }
10512 }
10513
10514 op0 = XEXP (op0, 2);
10515 op1 = GEN_INT (i);
10516 const_op = i;
10517
10518 /* Result is nonzero iff shift count is equal to I. */
10519 code = reverse_condition (code);
10520 continue;
10521 }
10522
10523 /* ... fall through ... */
10524
10525 case SIGN_EXTRACT:
10526 tem = expand_compound_operation (op0);
10527 if (tem != op0)
10528 {
10529 op0 = tem;
10530 continue;
10531 }
10532 break;
10533
10534 case NOT:
10535 /* If testing for equality, we can take the NOT of the constant. */
10536 if (equality_comparison_p
10537 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10538 {
10539 op0 = XEXP (op0, 0);
10540 op1 = tem;
10541 continue;
10542 }
10543
10544 /* If just looking at the sign bit, reverse the sense of the
10545 comparison. */
10546 if (sign_bit_comparison_p)
10547 {
10548 op0 = XEXP (op0, 0);
10549 code = (code == GE ? LT : GE);
10550 continue;
10551 }
10552 break;
10553
10554 case NEG:
10555 /* If testing for equality, we can take the NEG of the constant. */
10556 if (equality_comparison_p
10557 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10558 {
10559 op0 = XEXP (op0, 0);
10560 op1 = tem;
10561 continue;
10562 }
10563
10564 /* The remaining cases only apply to comparisons with zero. */
10565 if (const_op != 0)
10566 break;
10567
10568 /* When X is ABS or is known positive,
10569 (neg X) is < 0 if and only if X != 0. */
10570
10571 if (sign_bit_comparison_p
10572 && (GET_CODE (XEXP (op0, 0)) == ABS
10573 || (mode_width <= HOST_BITS_PER_WIDE_INT
10574 && (nonzero_bits (XEXP (op0, 0), mode)
10575 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10576 {
10577 op0 = XEXP (op0, 0);
10578 code = (code == LT ? NE : EQ);
10579 continue;
10580 }
10581
10582 /* If we have NEG of something whose two high-order bits are the
10583 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10584 if (num_sign_bit_copies (op0, mode) >= 2)
10585 {
10586 op0 = XEXP (op0, 0);
10587 code = swap_condition (code);
10588 continue;
10589 }
10590 break;
10591
10592 case ROTATE:
10593 /* If we are testing equality and our count is a constant, we
10594 can perform the inverse operation on our RHS. */
10595 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10596 && (tem = simplify_binary_operation (ROTATERT, mode,
10597 op1, XEXP (op0, 1))) != 0)
10598 {
10599 op0 = XEXP (op0, 0);
10600 op1 = tem;
10601 continue;
10602 }
10603
10604 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10605 a particular bit. Convert it to an AND of a constant of that
10606 bit. This will be converted into a ZERO_EXTRACT. */
10607 if (const_op == 0 && sign_bit_comparison_p
10608 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10609 && mode_width <= HOST_BITS_PER_WIDE_INT)
10610 {
10611 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10612 ((HOST_WIDE_INT) 1
10613 << (mode_width - 1
10614 - INTVAL (XEXP (op0, 1)))));
10615 code = (code == LT ? NE : EQ);
10616 continue;
10617 }
10618
10619 /* Fall through. */
10620
10621 case ABS:
10622 /* ABS is ignorable inside an equality comparison with zero. */
10623 if (const_op == 0 && equality_comparison_p)
10624 {
10625 op0 = XEXP (op0, 0);
10626 continue;
10627 }
10628 break;
10629
10630 case SIGN_EXTEND:
10631 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10632 to (compare FOO CONST) if CONST fits in FOO's mode and we
10633 are either testing inequality or have an unsigned comparison
10634 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10635 if (! unsigned_comparison_p
10636 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10637 <= HOST_BITS_PER_WIDE_INT)
10638 && ((unsigned HOST_WIDE_INT) const_op
10639 < (((unsigned HOST_WIDE_INT) 1
10640 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10641 {
10642 op0 = XEXP (op0, 0);
10643 continue;
10644 }
10645 break;
10646
10647 case SUBREG:
10648 /* Check for the case where we are comparing A - C1 with C2,
10649 both constants are smaller than 1/2 the maximum positive
10650 value in MODE, and the comparison is equality or unsigned.
10651 In that case, if A is either zero-extended to MODE or has
10652 sufficient sign bits so that the high-order bit in MODE
10653 is a copy of the sign in the inner mode, we can prove that it is
10654 safe to do the operation in the wider mode. This simplifies
10655 many range checks. */
10656
10657 if (mode_width <= HOST_BITS_PER_WIDE_INT
10658 && subreg_lowpart_p (op0)
10659 && GET_CODE (SUBREG_REG (op0)) == PLUS
10660 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10661 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10662 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10663 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10664 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10665 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10666 GET_MODE (SUBREG_REG (op0)))
10667 & ~GET_MODE_MASK (mode))
10668 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10669 GET_MODE (SUBREG_REG (op0)))
10670 > (unsigned int)
10671 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10672 - GET_MODE_BITSIZE (mode)))))
10673 {
10674 op0 = SUBREG_REG (op0);
10675 continue;
10676 }
10677
10678 /* If the inner mode is narrower and we are extracting the low part,
10679 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10680 if (subreg_lowpart_p (op0)
10681 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10682 /* Fall through */ ;
10683 else
10684 break;
10685
10686 /* ... fall through ... */
10687
10688 case ZERO_EXTEND:
10689 if ((unsigned_comparison_p || equality_comparison_p)
10690 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10691 <= HOST_BITS_PER_WIDE_INT)
10692 && ((unsigned HOST_WIDE_INT) const_op
10693 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10694 {
10695 op0 = XEXP (op0, 0);
10696 continue;
10697 }
10698 break;
10699
10700 case PLUS:
10701 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10702 this for equality comparisons due to pathological cases involving
10703 overflows. */
10704 if (equality_comparison_p
10705 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10706 op1, XEXP (op0, 1))))
10707 {
10708 op0 = XEXP (op0, 0);
10709 op1 = tem;
10710 continue;
10711 }
10712
10713 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10714 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10715 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10716 {
10717 op0 = XEXP (XEXP (op0, 0), 0);
10718 code = (code == LT ? EQ : NE);
10719 continue;
10720 }
10721 break;
10722
10723 case MINUS:
10724 /* We used to optimize signed comparisons against zero, but that
10725 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10726 arrive here as equality comparisons, or (GEU, LTU) are
10727 optimized away. No need to special-case them. */
10728
10729 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10730 (eq B (minus A C)), whichever simplifies. We can only do
10731 this for equality comparisons due to pathological cases involving
10732 overflows. */
10733 if (equality_comparison_p
10734 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10735 XEXP (op0, 1), op1)))
10736 {
10737 op0 = XEXP (op0, 0);
10738 op1 = tem;
10739 continue;
10740 }
10741
10742 if (equality_comparison_p
10743 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10744 XEXP (op0, 0), op1)))
10745 {
10746 op0 = XEXP (op0, 1);
10747 op1 = tem;
10748 continue;
10749 }
10750
10751 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10752 of bits in X minus 1, is one iff X > 0. */
10753 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10754 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10755 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10756 == mode_width - 1
10757 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10758 {
10759 op0 = XEXP (op0, 1);
10760 code = (code == GE ? LE : GT);
10761 continue;
10762 }
10763 break;
10764
10765 case XOR:
10766 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10767 if C is zero or B is a constant. */
10768 if (equality_comparison_p
10769 && 0 != (tem = simplify_binary_operation (XOR, mode,
10770 XEXP (op0, 1), op1)))
10771 {
10772 op0 = XEXP (op0, 0);
10773 op1 = tem;
10774 continue;
10775 }
10776 break;
10777
10778 case EQ: case NE:
10779 case UNEQ: case LTGT:
10780 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10781 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10782 case UNORDERED: case ORDERED:
10783 /* We can't do anything if OP0 is a condition code value, rather
10784 than an actual data value. */
10785 if (const_op != 0
10786 #ifdef HAVE_cc0
10787 || XEXP (op0, 0) == cc0_rtx
10788 #endif
10789 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10790 break;
10791
10792 /* Get the two operands being compared. */
10793 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10794 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10795 else
10796 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10797
10798 /* Check for the cases where we simply want the result of the
10799 earlier test or the opposite of that result. */
10800 if (code == NE || code == EQ
10801 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10802 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10803 && (STORE_FLAG_VALUE
10804 & (((HOST_WIDE_INT) 1
10805 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10806 && (code == LT || code == GE)))
10807 {
10808 enum rtx_code new_code;
10809 if (code == LT || code == NE)
10810 new_code = GET_CODE (op0);
10811 else
10812 new_code = combine_reversed_comparison_code (op0);
10813
10814 if (new_code != UNKNOWN)
10815 {
10816 code = new_code;
10817 op0 = tem;
10818 op1 = tem1;
10819 continue;
10820 }
10821 }
10822 break;
10823
10824 case IOR:
10825 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10826 iff X <= 0. */
10827 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10828 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10829 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10830 {
10831 op0 = XEXP (op0, 1);
10832 code = (code == GE ? GT : LE);
10833 continue;
10834 }
10835 break;
10836
10837 case AND:
10838 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10839 will be converted to a ZERO_EXTRACT later. */
10840 if (const_op == 0 && equality_comparison_p
10841 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10842 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10843 {
10844 op0 = simplify_and_const_int
10845 (op0, mode, gen_rtx_LSHIFTRT (mode,
10846 XEXP (op0, 1),
10847 XEXP (XEXP (op0, 0), 1)),
10848 (HOST_WIDE_INT) 1);
10849 continue;
10850 }
10851
10852 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10853 zero and X is a comparison and C1 and C2 describe only bits set
10854 in STORE_FLAG_VALUE, we can compare with X. */
10855 if (const_op == 0 && equality_comparison_p
10856 && mode_width <= HOST_BITS_PER_WIDE_INT
10857 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10858 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10859 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10860 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10861 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10862 {
10863 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10864 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10865 if ((~STORE_FLAG_VALUE & mask) == 0
10866 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10867 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10868 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10869 {
10870 op0 = XEXP (XEXP (op0, 0), 0);
10871 continue;
10872 }
10873 }
10874
10875 /* If we are doing an equality comparison of an AND of a bit equal
10876 to the sign bit, replace this with a LT or GE comparison of
10877 the underlying value. */
10878 if (equality_comparison_p
10879 && const_op == 0
10880 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10881 && mode_width <= HOST_BITS_PER_WIDE_INT
10882 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10883 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10884 {
10885 op0 = XEXP (op0, 0);
10886 code = (code == EQ ? GE : LT);
10887 continue;
10888 }
10889
10890 /* If this AND operation is really a ZERO_EXTEND from a narrower
10891 mode, the constant fits within that mode, and this is either an
10892 equality or unsigned comparison, try to do this comparison in
10893 the narrower mode. */
10894 if ((equality_comparison_p || unsigned_comparison_p)
10895 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10896 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10897 & GET_MODE_MASK (mode))
10898 + 1)) >= 0
10899 && const_op >> i == 0
10900 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10901 {
10902 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10903 continue;
10904 }
10905
10906 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10907 in both M1 and M2 and the SUBREG is either paradoxical or
10908 represents the low part, permute the SUBREG and the AND and
10909 try again. */
10910 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10911 && (0
10912 #ifdef WORD_REGISTER_OPERATIONS
10913 || ((mode_width
10914 > (GET_MODE_BITSIZE
10915 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10916 && mode_width <= BITS_PER_WORD)
10917 #endif
10918 || ((mode_width
10919 <= (GET_MODE_BITSIZE
10920 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10921 && subreg_lowpart_p (XEXP (op0, 0))))
10922 #ifndef WORD_REGISTER_OPERATIONS
10923 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10924 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10925 As originally written the upper bits have a defined value
10926 due to the AND operation. However, if we commute the AND
10927 inside the SUBREG then they no longer have defined values
10928 and the meaning of the code has been changed. */
10929 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10930 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10931 #endif
10932 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10933 && mode_width <= HOST_BITS_PER_WIDE_INT
10934 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10935 <= HOST_BITS_PER_WIDE_INT)
10936 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10937 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10938 & INTVAL (XEXP (op0, 1)))
10939 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10940 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10941 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10942
10943 {
10944 op0
10945 = gen_lowpart_for_combine
10946 (mode,
10947 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10948 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10949 continue;
10950 }
10951
10952 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10953 (eq (and (lshiftrt X) 1) 0). */
10954 if (const_op == 0 && equality_comparison_p
10955 && XEXP (op0, 1) == const1_rtx
10956 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10957 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10958 {
10959 op0 = simplify_and_const_int
10960 (op0, mode,
10961 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10962 XEXP (XEXP (op0, 0), 1)),
10963 (HOST_WIDE_INT) 1);
10964 code = (code == NE ? EQ : NE);
10965 continue;
10966 }
10967 break;
10968
10969 case ASHIFT:
10970 /* If we have (compare (ashift FOO N) (const_int C)) and
10971 the high order N bits of FOO (N+1 if an inequality comparison)
10972 are known to be zero, we can do this by comparing FOO with C
10973 shifted right N bits so long as the low-order N bits of C are
10974 zero. */
10975 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10976 && INTVAL (XEXP (op0, 1)) >= 0
10977 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10978 < HOST_BITS_PER_WIDE_INT)
10979 && ((const_op
10980 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10981 && mode_width <= HOST_BITS_PER_WIDE_INT
10982 && (nonzero_bits (XEXP (op0, 0), mode)
10983 & ~(mask >> (INTVAL (XEXP (op0, 1))
10984 + ! equality_comparison_p))) == 0)
10985 {
10986 /* We must perform a logical shift, not an arithmetic one,
10987 as we want the top N bits of C to be zero. */
10988 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10989
10990 temp >>= INTVAL (XEXP (op0, 1));
10991 op1 = gen_int_mode (temp, mode);
10992 op0 = XEXP (op0, 0);
10993 continue;
10994 }
10995
10996 /* If we are doing a sign bit comparison, it means we are testing
10997 a particular bit. Convert it to the appropriate AND. */
10998 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10999 && mode_width <= HOST_BITS_PER_WIDE_INT)
11000 {
11001 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11002 ((HOST_WIDE_INT) 1
11003 << (mode_width - 1
11004 - INTVAL (XEXP (op0, 1)))));
11005 code = (code == LT ? NE : EQ);
11006 continue;
11007 }
11008
11009 /* If this an equality comparison with zero and we are shifting
11010 the low bit to the sign bit, we can convert this to an AND of the
11011 low-order bit. */
11012 if (const_op == 0 && equality_comparison_p
11013 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11014 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11015 == mode_width - 1)
11016 {
11017 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11018 (HOST_WIDE_INT) 1);
11019 continue;
11020 }
11021 break;
11022
11023 case ASHIFTRT:
11024 /* If this is an equality comparison with zero, we can do this
11025 as a logical shift, which might be much simpler. */
11026 if (equality_comparison_p && const_op == 0
11027 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
11028 {
11029 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11030 XEXP (op0, 0),
11031 INTVAL (XEXP (op0, 1)));
11032 continue;
11033 }
11034
11035 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11036 do the comparison in a narrower mode. */
11037 if (! unsigned_comparison_p
11038 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11039 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11040 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11041 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11042 MODE_INT, 1)) != BLKmode
11043 && (((unsigned HOST_WIDE_INT) const_op
11044 + (GET_MODE_MASK (tmode) >> 1) + 1)
11045 <= GET_MODE_MASK (tmode)))
11046 {
11047 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
11048 continue;
11049 }
11050
11051 /* Likewise if OP0 is a PLUS of a sign extension with a
11052 constant, which is usually represented with the PLUS
11053 between the shifts. */
11054 if (! unsigned_comparison_p
11055 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11056 && GET_CODE (XEXP (op0, 0)) == PLUS
11057 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11058 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11059 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11060 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11061 MODE_INT, 1)) != BLKmode
11062 && (((unsigned HOST_WIDE_INT) const_op
11063 + (GET_MODE_MASK (tmode) >> 1) + 1)
11064 <= GET_MODE_MASK (tmode)))
11065 {
11066 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11067 rtx add_const = XEXP (XEXP (op0, 0), 1);
11068 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11069 XEXP (op0, 1));
11070
11071 op0 = gen_binary (PLUS, tmode,
11072 gen_lowpart_for_combine (tmode, inner),
11073 new_const);
11074 continue;
11075 }
11076
11077 /* ... fall through ... */
11078 case LSHIFTRT:
11079 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11080 the low order N bits of FOO are known to be zero, we can do this
11081 by comparing FOO with C shifted left N bits so long as no
11082 overflow occurs. */
11083 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11084 && INTVAL (XEXP (op0, 1)) >= 0
11085 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11086 && mode_width <= HOST_BITS_PER_WIDE_INT
11087 && (nonzero_bits (XEXP (op0, 0), mode)
11088 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11089 && (((unsigned HOST_WIDE_INT) const_op
11090 + (GET_CODE (op0) != LSHIFTRT
11091 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11092 + 1)
11093 : 0))
11094 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11095 {
11096 /* If the shift was logical, then we must make the condition
11097 unsigned. */
11098 if (GET_CODE (op0) == LSHIFTRT)
11099 code = unsigned_condition (code);
11100
11101 const_op <<= INTVAL (XEXP (op0, 1));
11102 op1 = GEN_INT (const_op);
11103 op0 = XEXP (op0, 0);
11104 continue;
11105 }
11106
11107 /* If we are using this shift to extract just the sign bit, we
11108 can replace this with an LT or GE comparison. */
11109 if (const_op == 0
11110 && (equality_comparison_p || sign_bit_comparison_p)
11111 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11112 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11113 == mode_width - 1)
11114 {
11115 op0 = XEXP (op0, 0);
11116 code = (code == NE || code == GT ? LT : GE);
11117 continue;
11118 }
11119 break;
11120
11121 default:
11122 break;
11123 }
11124
11125 break;
11126 }
11127
11128 /* Now make any compound operations involved in this comparison. Then,
11129 check for an outmost SUBREG on OP0 that is not doing anything or is
11130 paradoxical. The latter transformation must only be performed when
11131 it is known that the "extra" bits will be the same in op0 and op1 or
11132 that they don't matter. There are three cases to consider:
11133
11134 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11135 care bits and we can assume they have any convenient value. So
11136 making the transformation is safe.
11137
11138 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11139 In this case the upper bits of op0 are undefined. We should not make
11140 the simplification in that case as we do not know the contents of
11141 those bits.
11142
11143 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11144 NIL. In that case we know those bits are zeros or ones. We must
11145 also be sure that they are the same as the upper bits of op1.
11146
11147 We can never remove a SUBREG for a non-equality comparison because
11148 the sign bit is in a different place in the underlying object. */
11149
11150 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11151 op1 = make_compound_operation (op1, SET);
11152
11153 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11154 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
11155 implemented. */
11156 && GET_CODE (SUBREG_REG (op0)) == REG
11157 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11158 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11159 && (code == NE || code == EQ))
11160 {
11161 if (GET_MODE_SIZE (GET_MODE (op0))
11162 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11163 {
11164 op0 = SUBREG_REG (op0);
11165 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11166 }
11167 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11168 <= HOST_BITS_PER_WIDE_INT)
11169 && (nonzero_bits (SUBREG_REG (op0),
11170 GET_MODE (SUBREG_REG (op0)))
11171 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11172 {
11173 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11174
11175 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11176 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11177 op0 = SUBREG_REG (op0), op1 = tem;
11178 }
11179 }
11180
11181 /* We now do the opposite procedure: Some machines don't have compare
11182 insns in all modes. If OP0's mode is an integer mode smaller than a
11183 word and we can't do a compare in that mode, see if there is a larger
11184 mode for which we can do the compare. There are a number of cases in
11185 which we can use the wider mode. */
11186
11187 mode = GET_MODE (op0);
11188 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11189 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11190 && ! have_insn_for (COMPARE, mode))
11191 for (tmode = GET_MODE_WIDER_MODE (mode);
11192 (tmode != VOIDmode
11193 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11194 tmode = GET_MODE_WIDER_MODE (tmode))
11195 if (have_insn_for (COMPARE, tmode))
11196 {
11197 int zero_extended;
11198
11199 /* If the only nonzero bits in OP0 and OP1 are those in the
11200 narrower mode and this is an equality or unsigned comparison,
11201 we can use the wider mode. Similarly for sign-extended
11202 values, in which case it is true for all comparisons. */
11203 zero_extended = ((code == EQ || code == NE
11204 || code == GEU || code == GTU
11205 || code == LEU || code == LTU)
11206 && (nonzero_bits (op0, tmode)
11207 & ~GET_MODE_MASK (mode)) == 0
11208 && ((GET_CODE (op1) == CONST_INT
11209 || (nonzero_bits (op1, tmode)
11210 & ~GET_MODE_MASK (mode)) == 0)));
11211
11212 if (zero_extended
11213 || ((num_sign_bit_copies (op0, tmode)
11214 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11215 - GET_MODE_BITSIZE (mode)))
11216 && (num_sign_bit_copies (op1, tmode)
11217 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11218 - GET_MODE_BITSIZE (mode)))))
11219 {
11220 /* If OP0 is an AND and we don't have an AND in MODE either,
11221 make a new AND in the proper mode. */
11222 if (GET_CODE (op0) == AND
11223 && !have_insn_for (AND, mode))
11224 op0 = gen_binary (AND, tmode,
11225 gen_lowpart_for_combine (tmode,
11226 XEXP (op0, 0)),
11227 gen_lowpart_for_combine (tmode,
11228 XEXP (op0, 1)));
11229
11230 op0 = gen_lowpart_for_combine (tmode, op0);
11231 if (zero_extended && GET_CODE (op1) == CONST_INT)
11232 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11233 op1 = gen_lowpart_for_combine (tmode, op1);
11234 break;
11235 }
11236
11237 /* If this is a test for negative, we can make an explicit
11238 test of the sign bit. */
11239
11240 if (op1 == const0_rtx && (code == LT || code == GE)
11241 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11242 {
11243 op0 = gen_binary (AND, tmode,
11244 gen_lowpart_for_combine (tmode, op0),
11245 GEN_INT ((HOST_WIDE_INT) 1
11246 << (GET_MODE_BITSIZE (mode) - 1)));
11247 code = (code == LT) ? NE : EQ;
11248 break;
11249 }
11250 }
11251
11252 #ifdef CANONICALIZE_COMPARISON
11253 /* If this machine only supports a subset of valid comparisons, see if we
11254 can convert an unsupported one into a supported one. */
11255 CANONICALIZE_COMPARISON (code, op0, op1);
11256 #endif
11257
11258 *pop0 = op0;
11259 *pop1 = op1;
11260
11261 return code;
11262 }
11263 \f
11264 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11265 searching backward. */
11266 static enum rtx_code
11267 combine_reversed_comparison_code (exp)
11268 rtx exp;
11269 {
11270 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11271 rtx x;
11272
11273 if (code1 != UNKNOWN
11274 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11275 return code1;
11276 /* Otherwise try and find where the condition codes were last set and
11277 use that. */
11278 x = get_last_value (XEXP (exp, 0));
11279 if (!x || GET_CODE (x) != COMPARE)
11280 return UNKNOWN;
11281 return reversed_comparison_code_parts (GET_CODE (exp),
11282 XEXP (x, 0), XEXP (x, 1), NULL);
11283 }
11284 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11285 Return NULL_RTX in case we fail to do the reversal. */
11286 static rtx
11287 reversed_comparison (exp, mode, op0, op1)
11288 rtx exp, op0, op1;
11289 enum machine_mode mode;
11290 {
11291 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11292 if (reversed_code == UNKNOWN)
11293 return NULL_RTX;
11294 else
11295 return gen_binary (reversed_code, mode, op0, op1);
11296 }
11297 \f
11298 /* Utility function for following routine. Called when X is part of a value
11299 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11300 for each register mentioned. Similar to mention_regs in cse.c */
11301
11302 static void
11303 update_table_tick (x)
11304 rtx x;
11305 {
11306 enum rtx_code code = GET_CODE (x);
11307 const char *fmt = GET_RTX_FORMAT (code);
11308 int i;
11309
11310 if (code == REG)
11311 {
11312 unsigned int regno = REGNO (x);
11313 unsigned int endregno
11314 = regno + (regno < FIRST_PSEUDO_REGISTER
11315 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11316 unsigned int r;
11317
11318 for (r = regno; r < endregno; r++)
11319 reg_last_set_table_tick[r] = label_tick;
11320
11321 return;
11322 }
11323
11324 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11325 /* Note that we can't have an "E" in values stored; see
11326 get_last_value_validate. */
11327 if (fmt[i] == 'e')
11328 update_table_tick (XEXP (x, i));
11329 }
11330
11331 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11332 are saying that the register is clobbered and we no longer know its
11333 value. If INSN is zero, don't update reg_last_set; this is only permitted
11334 with VALUE also zero and is used to invalidate the register. */
11335
11336 static void
11337 record_value_for_reg (reg, insn, value)
11338 rtx reg;
11339 rtx insn;
11340 rtx value;
11341 {
11342 unsigned int regno = REGNO (reg);
11343 unsigned int endregno
11344 = regno + (regno < FIRST_PSEUDO_REGISTER
11345 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11346 unsigned int i;
11347
11348 /* If VALUE contains REG and we have a previous value for REG, substitute
11349 the previous value. */
11350 if (value && insn && reg_overlap_mentioned_p (reg, value))
11351 {
11352 rtx tem;
11353
11354 /* Set things up so get_last_value is allowed to see anything set up to
11355 our insn. */
11356 subst_low_cuid = INSN_CUID (insn);
11357 tem = get_last_value (reg);
11358
11359 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11360 it isn't going to be useful and will take a lot of time to process,
11361 so just use the CLOBBER. */
11362
11363 if (tem)
11364 {
11365 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11366 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11367 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11368 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11369 tem = XEXP (tem, 0);
11370
11371 value = replace_rtx (copy_rtx (value), reg, tem);
11372 }
11373 }
11374
11375 /* For each register modified, show we don't know its value, that
11376 we don't know about its bitwise content, that its value has been
11377 updated, and that we don't know the location of the death of the
11378 register. */
11379 for (i = regno; i < endregno; i++)
11380 {
11381 if (insn)
11382 reg_last_set[i] = insn;
11383
11384 reg_last_set_value[i] = 0;
11385 reg_last_set_mode[i] = 0;
11386 reg_last_set_nonzero_bits[i] = 0;
11387 reg_last_set_sign_bit_copies[i] = 0;
11388 reg_last_death[i] = 0;
11389 }
11390
11391 /* Mark registers that are being referenced in this value. */
11392 if (value)
11393 update_table_tick (value);
11394
11395 /* Now update the status of each register being set.
11396 If someone is using this register in this block, set this register
11397 to invalid since we will get confused between the two lives in this
11398 basic block. This makes using this register always invalid. In cse, we
11399 scan the table to invalidate all entries using this register, but this
11400 is too much work for us. */
11401
11402 for (i = regno; i < endregno; i++)
11403 {
11404 reg_last_set_label[i] = label_tick;
11405 if (value && reg_last_set_table_tick[i] == label_tick)
11406 reg_last_set_invalid[i] = 1;
11407 else
11408 reg_last_set_invalid[i] = 0;
11409 }
11410
11411 /* The value being assigned might refer to X (like in "x++;"). In that
11412 case, we must replace it with (clobber (const_int 0)) to prevent
11413 infinite loops. */
11414 if (value && ! get_last_value_validate (&value, insn,
11415 reg_last_set_label[regno], 0))
11416 {
11417 value = copy_rtx (value);
11418 if (! get_last_value_validate (&value, insn,
11419 reg_last_set_label[regno], 1))
11420 value = 0;
11421 }
11422
11423 /* For the main register being modified, update the value, the mode, the
11424 nonzero bits, and the number of sign bit copies. */
11425
11426 reg_last_set_value[regno] = value;
11427
11428 if (value)
11429 {
11430 enum machine_mode mode = GET_MODE (reg);
11431 subst_low_cuid = INSN_CUID (insn);
11432 reg_last_set_mode[regno] = mode;
11433 if (GET_MODE_CLASS (mode) == MODE_INT
11434 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11435 mode = nonzero_bits_mode;
11436 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11437 reg_last_set_sign_bit_copies[regno]
11438 = num_sign_bit_copies (value, GET_MODE (reg));
11439 }
11440 }
11441
11442 /* Called via note_stores from record_dead_and_set_regs to handle one
11443 SET or CLOBBER in an insn. DATA is the instruction in which the
11444 set is occurring. */
11445
11446 static void
11447 record_dead_and_set_regs_1 (dest, setter, data)
11448 rtx dest, setter;
11449 void *data;
11450 {
11451 rtx record_dead_insn = (rtx) data;
11452
11453 if (GET_CODE (dest) == SUBREG)
11454 dest = SUBREG_REG (dest);
11455
11456 if (GET_CODE (dest) == REG)
11457 {
11458 /* If we are setting the whole register, we know its value. Otherwise
11459 show that we don't know the value. We can handle SUBREG in
11460 some cases. */
11461 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11462 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11463 else if (GET_CODE (setter) == SET
11464 && GET_CODE (SET_DEST (setter)) == SUBREG
11465 && SUBREG_REG (SET_DEST (setter)) == dest
11466 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11467 && subreg_lowpart_p (SET_DEST (setter)))
11468 record_value_for_reg (dest, record_dead_insn,
11469 gen_lowpart_for_combine (GET_MODE (dest),
11470 SET_SRC (setter)));
11471 else
11472 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11473 }
11474 else if (GET_CODE (dest) == MEM
11475 /* Ignore pushes, they clobber nothing. */
11476 && ! push_operand (dest, GET_MODE (dest)))
11477 mem_last_set = INSN_CUID (record_dead_insn);
11478 }
11479
11480 /* Update the records of when each REG was most recently set or killed
11481 for the things done by INSN. This is the last thing done in processing
11482 INSN in the combiner loop.
11483
11484 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11485 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11486 and also the similar information mem_last_set (which insn most recently
11487 modified memory) and last_call_cuid (which insn was the most recent
11488 subroutine call). */
11489
11490 static void
11491 record_dead_and_set_regs (insn)
11492 rtx insn;
11493 {
11494 rtx link;
11495 unsigned int i;
11496
11497 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11498 {
11499 if (REG_NOTE_KIND (link) == REG_DEAD
11500 && GET_CODE (XEXP (link, 0)) == REG)
11501 {
11502 unsigned int regno = REGNO (XEXP (link, 0));
11503 unsigned int endregno
11504 = regno + (regno < FIRST_PSEUDO_REGISTER
11505 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11506 : 1);
11507
11508 for (i = regno; i < endregno; i++)
11509 reg_last_death[i] = insn;
11510 }
11511 else if (REG_NOTE_KIND (link) == REG_INC)
11512 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11513 }
11514
11515 if (GET_CODE (insn) == CALL_INSN)
11516 {
11517 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11518 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11519 {
11520 reg_last_set_value[i] = 0;
11521 reg_last_set_mode[i] = 0;
11522 reg_last_set_nonzero_bits[i] = 0;
11523 reg_last_set_sign_bit_copies[i] = 0;
11524 reg_last_death[i] = 0;
11525 }
11526
11527 last_call_cuid = mem_last_set = INSN_CUID (insn);
11528
11529 /* Don't bother recording what this insn does. It might set the
11530 return value register, but we can't combine into a call
11531 pattern anyway, so there's no point trying (and it may cause
11532 a crash, if e.g. we wind up asking for last_set_value of a
11533 SUBREG of the return value register). */
11534 return;
11535 }
11536
11537 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11538 }
11539
11540 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11541 register present in the SUBREG, so for each such SUBREG go back and
11542 adjust nonzero and sign bit information of the registers that are
11543 known to have some zero/sign bits set.
11544
11545 This is needed because when combine blows the SUBREGs away, the
11546 information on zero/sign bits is lost and further combines can be
11547 missed because of that. */
11548
11549 static void
11550 record_promoted_value (insn, subreg)
11551 rtx insn;
11552 rtx subreg;
11553 {
11554 rtx links, set;
11555 unsigned int regno = REGNO (SUBREG_REG (subreg));
11556 enum machine_mode mode = GET_MODE (subreg);
11557
11558 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11559 return;
11560
11561 for (links = LOG_LINKS (insn); links;)
11562 {
11563 insn = XEXP (links, 0);
11564 set = single_set (insn);
11565
11566 if (! set || GET_CODE (SET_DEST (set)) != REG
11567 || REGNO (SET_DEST (set)) != regno
11568 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11569 {
11570 links = XEXP (links, 1);
11571 continue;
11572 }
11573
11574 if (reg_last_set[regno] == insn)
11575 {
11576 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11577 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11578 }
11579
11580 if (GET_CODE (SET_SRC (set)) == REG)
11581 {
11582 regno = REGNO (SET_SRC (set));
11583 links = LOG_LINKS (insn);
11584 }
11585 else
11586 break;
11587 }
11588 }
11589
11590 /* Scan X for promoted SUBREGs. For each one found,
11591 note what it implies to the registers used in it. */
11592
11593 static void
11594 check_promoted_subreg (insn, x)
11595 rtx insn;
11596 rtx x;
11597 {
11598 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11599 && GET_CODE (SUBREG_REG (x)) == REG)
11600 record_promoted_value (insn, x);
11601 else
11602 {
11603 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11604 int i, j;
11605
11606 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11607 switch (format[i])
11608 {
11609 case 'e':
11610 check_promoted_subreg (insn, XEXP (x, i));
11611 break;
11612 case 'V':
11613 case 'E':
11614 if (XVEC (x, i) != 0)
11615 for (j = 0; j < XVECLEN (x, i); j++)
11616 check_promoted_subreg (insn, XVECEXP (x, i, j));
11617 break;
11618 }
11619 }
11620 }
11621 \f
11622 /* Utility routine for the following function. Verify that all the registers
11623 mentioned in *LOC are valid when *LOC was part of a value set when
11624 label_tick == TICK. Return 0 if some are not.
11625
11626 If REPLACE is nonzero, replace the invalid reference with
11627 (clobber (const_int 0)) and return 1. This replacement is useful because
11628 we often can get useful information about the form of a value (e.g., if
11629 it was produced by a shift that always produces -1 or 0) even though
11630 we don't know exactly what registers it was produced from. */
11631
11632 static int
11633 get_last_value_validate (loc, insn, tick, replace)
11634 rtx *loc;
11635 rtx insn;
11636 int tick;
11637 int replace;
11638 {
11639 rtx x = *loc;
11640 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11641 int len = GET_RTX_LENGTH (GET_CODE (x));
11642 int i;
11643
11644 if (GET_CODE (x) == REG)
11645 {
11646 unsigned int regno = REGNO (x);
11647 unsigned int endregno
11648 = regno + (regno < FIRST_PSEUDO_REGISTER
11649 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11650 unsigned int j;
11651
11652 for (j = regno; j < endregno; j++)
11653 if (reg_last_set_invalid[j]
11654 /* If this is a pseudo-register that was only set once and not
11655 live at the beginning of the function, it is always valid. */
11656 || (! (regno >= FIRST_PSEUDO_REGISTER
11657 && REG_N_SETS (regno) == 1
11658 && (! REGNO_REG_SET_P
11659 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11660 && reg_last_set_label[j] > tick))
11661 {
11662 if (replace)
11663 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11664 return replace;
11665 }
11666
11667 return 1;
11668 }
11669 /* If this is a memory reference, make sure that there were
11670 no stores after it that might have clobbered the value. We don't
11671 have alias info, so we assume any store invalidates it. */
11672 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11673 && INSN_CUID (insn) <= mem_last_set)
11674 {
11675 if (replace)
11676 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11677 return replace;
11678 }
11679
11680 for (i = 0; i < len; i++)
11681 if ((fmt[i] == 'e'
11682 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11683 /* Don't bother with these. They shouldn't occur anyway. */
11684 || fmt[i] == 'E')
11685 return 0;
11686
11687 /* If we haven't found a reason for it to be invalid, it is valid. */
11688 return 1;
11689 }
11690
11691 /* Get the last value assigned to X, if known. Some registers
11692 in the value may be replaced with (clobber (const_int 0)) if their value
11693 is known longer known reliably. */
11694
11695 static rtx
11696 get_last_value (x)
11697 rtx x;
11698 {
11699 unsigned int regno;
11700 rtx value;
11701
11702 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11703 then convert it to the desired mode. If this is a paradoxical SUBREG,
11704 we cannot predict what values the "extra" bits might have. */
11705 if (GET_CODE (x) == SUBREG
11706 && subreg_lowpart_p (x)
11707 && (GET_MODE_SIZE (GET_MODE (x))
11708 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11709 && (value = get_last_value (SUBREG_REG (x))) != 0)
11710 return gen_lowpart_for_combine (GET_MODE (x), value);
11711
11712 if (GET_CODE (x) != REG)
11713 return 0;
11714
11715 regno = REGNO (x);
11716 value = reg_last_set_value[regno];
11717
11718 /* If we don't have a value, or if it isn't for this basic block and
11719 it's either a hard register, set more than once, or it's a live
11720 at the beginning of the function, return 0.
11721
11722 Because if it's not live at the beginning of the function then the reg
11723 is always set before being used (is never used without being set).
11724 And, if it's set only once, and it's always set before use, then all
11725 uses must have the same last value, even if it's not from this basic
11726 block. */
11727
11728 if (value == 0
11729 || (reg_last_set_label[regno] != label_tick
11730 && (regno < FIRST_PSEUDO_REGISTER
11731 || REG_N_SETS (regno) != 1
11732 || (REGNO_REG_SET_P
11733 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11734 return 0;
11735
11736 /* If the value was set in a later insn than the ones we are processing,
11737 we can't use it even if the register was only set once. */
11738 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11739 return 0;
11740
11741 /* If the value has all its registers valid, return it. */
11742 if (get_last_value_validate (&value, reg_last_set[regno],
11743 reg_last_set_label[regno], 0))
11744 return value;
11745
11746 /* Otherwise, make a copy and replace any invalid register with
11747 (clobber (const_int 0)). If that fails for some reason, return 0. */
11748
11749 value = copy_rtx (value);
11750 if (get_last_value_validate (&value, reg_last_set[regno],
11751 reg_last_set_label[regno], 1))
11752 return value;
11753
11754 return 0;
11755 }
11756 \f
11757 /* Return nonzero if expression X refers to a REG or to memory
11758 that is set in an instruction more recent than FROM_CUID. */
11759
11760 static int
11761 use_crosses_set_p (x, from_cuid)
11762 rtx x;
11763 int from_cuid;
11764 {
11765 const char *fmt;
11766 int i;
11767 enum rtx_code code = GET_CODE (x);
11768
11769 if (code == REG)
11770 {
11771 unsigned int regno = REGNO (x);
11772 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11773 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11774
11775 #ifdef PUSH_ROUNDING
11776 /* Don't allow uses of the stack pointer to be moved,
11777 because we don't know whether the move crosses a push insn. */
11778 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11779 return 1;
11780 #endif
11781 for (; regno < endreg; regno++)
11782 if (reg_last_set[regno]
11783 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11784 return 1;
11785 return 0;
11786 }
11787
11788 if (code == MEM && mem_last_set > from_cuid)
11789 return 1;
11790
11791 fmt = GET_RTX_FORMAT (code);
11792
11793 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11794 {
11795 if (fmt[i] == 'E')
11796 {
11797 int j;
11798 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11799 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11800 return 1;
11801 }
11802 else if (fmt[i] == 'e'
11803 && use_crosses_set_p (XEXP (x, i), from_cuid))
11804 return 1;
11805 }
11806 return 0;
11807 }
11808 \f
11809 /* Define three variables used for communication between the following
11810 routines. */
11811
11812 static unsigned int reg_dead_regno, reg_dead_endregno;
11813 static int reg_dead_flag;
11814
11815 /* Function called via note_stores from reg_dead_at_p.
11816
11817 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11818 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11819
11820 static void
11821 reg_dead_at_p_1 (dest, x, data)
11822 rtx dest;
11823 rtx x;
11824 void *data ATTRIBUTE_UNUSED;
11825 {
11826 unsigned int regno, endregno;
11827
11828 if (GET_CODE (dest) != REG)
11829 return;
11830
11831 regno = REGNO (dest);
11832 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11833 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11834
11835 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11836 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11837 }
11838
11839 /* Return nonzero if REG is known to be dead at INSN.
11840
11841 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11842 referencing REG, it is dead. If we hit a SET referencing REG, it is
11843 live. Otherwise, see if it is live or dead at the start of the basic
11844 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11845 must be assumed to be always live. */
11846
11847 static int
11848 reg_dead_at_p (reg, insn)
11849 rtx reg;
11850 rtx insn;
11851 {
11852 basic_block block;
11853 unsigned int i;
11854
11855 /* Set variables for reg_dead_at_p_1. */
11856 reg_dead_regno = REGNO (reg);
11857 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11858 ? HARD_REGNO_NREGS (reg_dead_regno,
11859 GET_MODE (reg))
11860 : 1);
11861
11862 reg_dead_flag = 0;
11863
11864 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11865 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11866 {
11867 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11868 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11869 return 0;
11870 }
11871
11872 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11873 beginning of function. */
11874 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11875 insn = prev_nonnote_insn (insn))
11876 {
11877 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11878 if (reg_dead_flag)
11879 return reg_dead_flag == 1 ? 1 : 0;
11880
11881 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11882 return 1;
11883 }
11884
11885 /* Get the basic block that we were in. */
11886 if (insn == 0)
11887 block = ENTRY_BLOCK_PTR->next_bb;
11888 else
11889 {
11890 FOR_EACH_BB (block)
11891 if (insn == block->head)
11892 break;
11893
11894 if (block == EXIT_BLOCK_PTR)
11895 return 0;
11896 }
11897
11898 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11899 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11900 return 0;
11901
11902 return 1;
11903 }
11904 \f
11905 /* Note hard registers in X that are used. This code is similar to
11906 that in flow.c, but much simpler since we don't care about pseudos. */
11907
11908 static void
11909 mark_used_regs_combine (x)
11910 rtx x;
11911 {
11912 RTX_CODE code = GET_CODE (x);
11913 unsigned int regno;
11914 int i;
11915
11916 switch (code)
11917 {
11918 case LABEL_REF:
11919 case SYMBOL_REF:
11920 case CONST_INT:
11921 case CONST:
11922 case CONST_DOUBLE:
11923 case CONST_VECTOR:
11924 case PC:
11925 case ADDR_VEC:
11926 case ADDR_DIFF_VEC:
11927 case ASM_INPUT:
11928 #ifdef HAVE_cc0
11929 /* CC0 must die in the insn after it is set, so we don't need to take
11930 special note of it here. */
11931 case CC0:
11932 #endif
11933 return;
11934
11935 case CLOBBER:
11936 /* If we are clobbering a MEM, mark any hard registers inside the
11937 address as used. */
11938 if (GET_CODE (XEXP (x, 0)) == MEM)
11939 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11940 return;
11941
11942 case REG:
11943 regno = REGNO (x);
11944 /* A hard reg in a wide mode may really be multiple registers.
11945 If so, mark all of them just like the first. */
11946 if (regno < FIRST_PSEUDO_REGISTER)
11947 {
11948 unsigned int endregno, r;
11949
11950 /* None of this applies to the stack, frame or arg pointers. */
11951 if (regno == STACK_POINTER_REGNUM
11952 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11953 || regno == HARD_FRAME_POINTER_REGNUM
11954 #endif
11955 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11956 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11957 #endif
11958 || regno == FRAME_POINTER_REGNUM)
11959 return;
11960
11961 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11962 for (r = regno; r < endregno; r++)
11963 SET_HARD_REG_BIT (newpat_used_regs, r);
11964 }
11965 return;
11966
11967 case SET:
11968 {
11969 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11970 the address. */
11971 rtx testreg = SET_DEST (x);
11972
11973 while (GET_CODE (testreg) == SUBREG
11974 || GET_CODE (testreg) == ZERO_EXTRACT
11975 || GET_CODE (testreg) == SIGN_EXTRACT
11976 || GET_CODE (testreg) == STRICT_LOW_PART)
11977 testreg = XEXP (testreg, 0);
11978
11979 if (GET_CODE (testreg) == MEM)
11980 mark_used_regs_combine (XEXP (testreg, 0));
11981
11982 mark_used_regs_combine (SET_SRC (x));
11983 }
11984 return;
11985
11986 default:
11987 break;
11988 }
11989
11990 /* Recursively scan the operands of this expression. */
11991
11992 {
11993 const char *fmt = GET_RTX_FORMAT (code);
11994
11995 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11996 {
11997 if (fmt[i] == 'e')
11998 mark_used_regs_combine (XEXP (x, i));
11999 else if (fmt[i] == 'E')
12000 {
12001 int j;
12002
12003 for (j = 0; j < XVECLEN (x, i); j++)
12004 mark_used_regs_combine (XVECEXP (x, i, j));
12005 }
12006 }
12007 }
12008 }
12009 \f
12010 /* Remove register number REGNO from the dead registers list of INSN.
12011
12012 Return the note used to record the death, if there was one. */
12013
12014 rtx
12015 remove_death (regno, insn)
12016 unsigned int regno;
12017 rtx insn;
12018 {
12019 rtx note = find_regno_note (insn, REG_DEAD, regno);
12020
12021 if (note)
12022 {
12023 REG_N_DEATHS (regno)--;
12024 remove_note (insn, note);
12025 }
12026
12027 return note;
12028 }
12029
12030 /* For each register (hardware or pseudo) used within expression X, if its
12031 death is in an instruction with cuid between FROM_CUID (inclusive) and
12032 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12033 list headed by PNOTES.
12034
12035 That said, don't move registers killed by maybe_kill_insn.
12036
12037 This is done when X is being merged by combination into TO_INSN. These
12038 notes will then be distributed as needed. */
12039
12040 static void
12041 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
12042 rtx x;
12043 rtx maybe_kill_insn;
12044 int from_cuid;
12045 rtx to_insn;
12046 rtx *pnotes;
12047 {
12048 const char *fmt;
12049 int len, i;
12050 enum rtx_code code = GET_CODE (x);
12051
12052 if (code == REG)
12053 {
12054 unsigned int regno = REGNO (x);
12055 rtx where_dead = reg_last_death[regno];
12056 rtx before_dead, after_dead;
12057
12058 /* Don't move the register if it gets killed in between from and to. */
12059 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12060 && ! reg_referenced_p (x, maybe_kill_insn))
12061 return;
12062
12063 /* WHERE_DEAD could be a USE insn made by combine, so first we
12064 make sure that we have insns with valid INSN_CUID values. */
12065 before_dead = where_dead;
12066 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12067 before_dead = PREV_INSN (before_dead);
12068
12069 after_dead = where_dead;
12070 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12071 after_dead = NEXT_INSN (after_dead);
12072
12073 if (before_dead && after_dead
12074 && INSN_CUID (before_dead) >= from_cuid
12075 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12076 || (where_dead != after_dead
12077 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12078 {
12079 rtx note = remove_death (regno, where_dead);
12080
12081 /* It is possible for the call above to return 0. This can occur
12082 when reg_last_death points to I2 or I1 that we combined with.
12083 In that case make a new note.
12084
12085 We must also check for the case where X is a hard register
12086 and NOTE is a death note for a range of hard registers
12087 including X. In that case, we must put REG_DEAD notes for
12088 the remaining registers in place of NOTE. */
12089
12090 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12091 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12092 > GET_MODE_SIZE (GET_MODE (x))))
12093 {
12094 unsigned int deadregno = REGNO (XEXP (note, 0));
12095 unsigned int deadend
12096 = (deadregno + HARD_REGNO_NREGS (deadregno,
12097 GET_MODE (XEXP (note, 0))));
12098 unsigned int ourend
12099 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12100 unsigned int i;
12101
12102 for (i = deadregno; i < deadend; i++)
12103 if (i < regno || i >= ourend)
12104 REG_NOTES (where_dead)
12105 = gen_rtx_EXPR_LIST (REG_DEAD,
12106 regno_reg_rtx[i],
12107 REG_NOTES (where_dead));
12108 }
12109
12110 /* If we didn't find any note, or if we found a REG_DEAD note that
12111 covers only part of the given reg, and we have a multi-reg hard
12112 register, then to be safe we must check for REG_DEAD notes
12113 for each register other than the first. They could have
12114 their own REG_DEAD notes lying around. */
12115 else if ((note == 0
12116 || (note != 0
12117 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12118 < GET_MODE_SIZE (GET_MODE (x)))))
12119 && regno < FIRST_PSEUDO_REGISTER
12120 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
12121 {
12122 unsigned int ourend
12123 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12124 unsigned int i, offset;
12125 rtx oldnotes = 0;
12126
12127 if (note)
12128 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
12129 else
12130 offset = 1;
12131
12132 for (i = regno + offset; i < ourend; i++)
12133 move_deaths (regno_reg_rtx[i],
12134 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12135 }
12136
12137 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12138 {
12139 XEXP (note, 1) = *pnotes;
12140 *pnotes = note;
12141 }
12142 else
12143 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12144
12145 REG_N_DEATHS (regno)++;
12146 }
12147
12148 return;
12149 }
12150
12151 else if (GET_CODE (x) == SET)
12152 {
12153 rtx dest = SET_DEST (x);
12154
12155 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12156
12157 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12158 that accesses one word of a multi-word item, some
12159 piece of everything register in the expression is used by
12160 this insn, so remove any old death. */
12161 /* ??? So why do we test for equality of the sizes? */
12162
12163 if (GET_CODE (dest) == ZERO_EXTRACT
12164 || GET_CODE (dest) == STRICT_LOW_PART
12165 || (GET_CODE (dest) == SUBREG
12166 && (((GET_MODE_SIZE (GET_MODE (dest))
12167 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12168 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12169 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12170 {
12171 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12172 return;
12173 }
12174
12175 /* If this is some other SUBREG, we know it replaces the entire
12176 value, so use that as the destination. */
12177 if (GET_CODE (dest) == SUBREG)
12178 dest = SUBREG_REG (dest);
12179
12180 /* If this is a MEM, adjust deaths of anything used in the address.
12181 For a REG (the only other possibility), the entire value is
12182 being replaced so the old value is not used in this insn. */
12183
12184 if (GET_CODE (dest) == MEM)
12185 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12186 to_insn, pnotes);
12187 return;
12188 }
12189
12190 else if (GET_CODE (x) == CLOBBER)
12191 return;
12192
12193 len = GET_RTX_LENGTH (code);
12194 fmt = GET_RTX_FORMAT (code);
12195
12196 for (i = 0; i < len; i++)
12197 {
12198 if (fmt[i] == 'E')
12199 {
12200 int j;
12201 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12202 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12203 to_insn, pnotes);
12204 }
12205 else if (fmt[i] == 'e')
12206 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12207 }
12208 }
12209 \f
12210 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12211 pattern of an insn. X must be a REG. */
12212
12213 static int
12214 reg_bitfield_target_p (x, body)
12215 rtx x;
12216 rtx body;
12217 {
12218 int i;
12219
12220 if (GET_CODE (body) == SET)
12221 {
12222 rtx dest = SET_DEST (body);
12223 rtx target;
12224 unsigned int regno, tregno, endregno, endtregno;
12225
12226 if (GET_CODE (dest) == ZERO_EXTRACT)
12227 target = XEXP (dest, 0);
12228 else if (GET_CODE (dest) == STRICT_LOW_PART)
12229 target = SUBREG_REG (XEXP (dest, 0));
12230 else
12231 return 0;
12232
12233 if (GET_CODE (target) == SUBREG)
12234 target = SUBREG_REG (target);
12235
12236 if (GET_CODE (target) != REG)
12237 return 0;
12238
12239 tregno = REGNO (target), regno = REGNO (x);
12240 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12241 return target == x;
12242
12243 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12244 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12245
12246 return endregno > tregno && regno < endtregno;
12247 }
12248
12249 else if (GET_CODE (body) == PARALLEL)
12250 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12251 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12252 return 1;
12253
12254 return 0;
12255 }
12256 \f
12257 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12258 as appropriate. I3 and I2 are the insns resulting from the combination
12259 insns including FROM (I2 may be zero).
12260
12261 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12262 not need REG_DEAD notes because they are being substituted for. This
12263 saves searching in the most common cases.
12264
12265 Each note in the list is either ignored or placed on some insns, depending
12266 on the type of note. */
12267
12268 static void
12269 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12270 rtx notes;
12271 rtx from_insn;
12272 rtx i3, i2;
12273 rtx elim_i2, elim_i1;
12274 {
12275 rtx note, next_note;
12276 rtx tem;
12277
12278 for (note = notes; note; note = next_note)
12279 {
12280 rtx place = 0, place2 = 0;
12281
12282 /* If this NOTE references a pseudo register, ensure it references
12283 the latest copy of that register. */
12284 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12285 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12286 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12287
12288 next_note = XEXP (note, 1);
12289 switch (REG_NOTE_KIND (note))
12290 {
12291 case REG_BR_PROB:
12292 case REG_BR_PRED:
12293 case REG_EXEC_COUNT:
12294 /* Doesn't matter much where we put this, as long as it's somewhere.
12295 It is preferable to keep these notes on branches, which is most
12296 likely to be i3. */
12297 place = i3;
12298 break;
12299
12300 case REG_VTABLE_REF:
12301 /* ??? Should remain with *a particular* memory load. Given the
12302 nature of vtable data, the last insn seems relatively safe. */
12303 place = i3;
12304 break;
12305
12306 case REG_NON_LOCAL_GOTO:
12307 if (GET_CODE (i3) == JUMP_INSN)
12308 place = i3;
12309 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12310 place = i2;
12311 else
12312 abort ();
12313 break;
12314
12315 case REG_EH_REGION:
12316 /* These notes must remain with the call or trapping instruction. */
12317 if (GET_CODE (i3) == CALL_INSN)
12318 place = i3;
12319 else if (i2 && GET_CODE (i2) == CALL_INSN)
12320 place = i2;
12321 else if (flag_non_call_exceptions)
12322 {
12323 if (may_trap_p (i3))
12324 place = i3;
12325 else if (i2 && may_trap_p (i2))
12326 place = i2;
12327 /* ??? Otherwise assume we've combined things such that we
12328 can now prove that the instructions can't trap. Drop the
12329 note in this case. */
12330 }
12331 else
12332 abort ();
12333 break;
12334
12335 case REG_NORETURN:
12336 case REG_SETJMP:
12337 /* These notes must remain with the call. It should not be
12338 possible for both I2 and I3 to be a call. */
12339 if (GET_CODE (i3) == CALL_INSN)
12340 place = i3;
12341 else if (i2 && GET_CODE (i2) == CALL_INSN)
12342 place = i2;
12343 else
12344 abort ();
12345 break;
12346
12347 case REG_UNUSED:
12348 /* Any clobbers for i3 may still exist, and so we must process
12349 REG_UNUSED notes from that insn.
12350
12351 Any clobbers from i2 or i1 can only exist if they were added by
12352 recog_for_combine. In that case, recog_for_combine created the
12353 necessary REG_UNUSED notes. Trying to keep any original
12354 REG_UNUSED notes from these insns can cause incorrect output
12355 if it is for the same register as the original i3 dest.
12356 In that case, we will notice that the register is set in i3,
12357 and then add a REG_UNUSED note for the destination of i3, which
12358 is wrong. However, it is possible to have REG_UNUSED notes from
12359 i2 or i1 for register which were both used and clobbered, so
12360 we keep notes from i2 or i1 if they will turn into REG_DEAD
12361 notes. */
12362
12363 /* If this register is set or clobbered in I3, put the note there
12364 unless there is one already. */
12365 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12366 {
12367 if (from_insn != i3)
12368 break;
12369
12370 if (! (GET_CODE (XEXP (note, 0)) == REG
12371 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12372 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12373 place = i3;
12374 }
12375 /* Otherwise, if this register is used by I3, then this register
12376 now dies here, so we must put a REG_DEAD note here unless there
12377 is one already. */
12378 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12379 && ! (GET_CODE (XEXP (note, 0)) == REG
12380 ? find_regno_note (i3, REG_DEAD,
12381 REGNO (XEXP (note, 0)))
12382 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12383 {
12384 PUT_REG_NOTE_KIND (note, REG_DEAD);
12385 place = i3;
12386 }
12387 break;
12388
12389 case REG_EQUAL:
12390 case REG_EQUIV:
12391 case REG_NOALIAS:
12392 /* These notes say something about results of an insn. We can
12393 only support them if they used to be on I3 in which case they
12394 remain on I3. Otherwise they are ignored.
12395
12396 If the note refers to an expression that is not a constant, we
12397 must also ignore the note since we cannot tell whether the
12398 equivalence is still true. It might be possible to do
12399 slightly better than this (we only have a problem if I2DEST
12400 or I1DEST is present in the expression), but it doesn't
12401 seem worth the trouble. */
12402
12403 if (from_insn == i3
12404 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12405 place = i3;
12406 break;
12407
12408 case REG_INC:
12409 case REG_NO_CONFLICT:
12410 /* These notes say something about how a register is used. They must
12411 be present on any use of the register in I2 or I3. */
12412 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12413 place = i3;
12414
12415 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12416 {
12417 if (place)
12418 place2 = i2;
12419 else
12420 place = i2;
12421 }
12422 break;
12423
12424 case REG_LABEL:
12425 /* This can show up in several ways -- either directly in the
12426 pattern, or hidden off in the constant pool with (or without?)
12427 a REG_EQUAL note. */
12428 /* ??? Ignore the without-reg_equal-note problem for now. */
12429 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12430 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12431 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12432 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12433 place = i3;
12434
12435 if (i2
12436 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12437 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12438 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12439 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12440 {
12441 if (place)
12442 place2 = i2;
12443 else
12444 place = i2;
12445 }
12446
12447 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12448 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12449 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12450 {
12451 if (JUMP_LABEL (place) != XEXP (note, 0))
12452 abort ();
12453 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12454 LABEL_NUSES (JUMP_LABEL (place))--;
12455 place = 0;
12456 }
12457 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12458 {
12459 if (JUMP_LABEL (place2) != XEXP (note, 0))
12460 abort ();
12461 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12462 LABEL_NUSES (JUMP_LABEL (place2))--;
12463 place2 = 0;
12464 }
12465 break;
12466
12467 case REG_NONNEG:
12468 case REG_WAS_0:
12469 /* These notes say something about the value of a register prior
12470 to the execution of an insn. It is too much trouble to see
12471 if the note is still correct in all situations. It is better
12472 to simply delete it. */
12473 break;
12474
12475 case REG_RETVAL:
12476 /* If the insn previously containing this note still exists,
12477 put it back where it was. Otherwise move it to the previous
12478 insn. Adjust the corresponding REG_LIBCALL note. */
12479 if (GET_CODE (from_insn) != NOTE)
12480 place = from_insn;
12481 else
12482 {
12483 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12484 place = prev_real_insn (from_insn);
12485 if (tem && place)
12486 XEXP (tem, 0) = place;
12487 /* If we're deleting the last remaining instruction of a
12488 libcall sequence, don't add the notes. */
12489 else if (XEXP (note, 0) == from_insn)
12490 tem = place = 0;
12491 }
12492 break;
12493
12494 case REG_LIBCALL:
12495 /* This is handled similarly to REG_RETVAL. */
12496 if (GET_CODE (from_insn) != NOTE)
12497 place = from_insn;
12498 else
12499 {
12500 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12501 place = next_real_insn (from_insn);
12502 if (tem && place)
12503 XEXP (tem, 0) = place;
12504 /* If we're deleting the last remaining instruction of a
12505 libcall sequence, don't add the notes. */
12506 else if (XEXP (note, 0) == from_insn)
12507 tem = place = 0;
12508 }
12509 break;
12510
12511 case REG_DEAD:
12512 /* If the register is used as an input in I3, it dies there.
12513 Similarly for I2, if it is nonzero and adjacent to I3.
12514
12515 If the register is not used as an input in either I3 or I2
12516 and it is not one of the registers we were supposed to eliminate,
12517 there are two possibilities. We might have a non-adjacent I2
12518 or we might have somehow eliminated an additional register
12519 from a computation. For example, we might have had A & B where
12520 we discover that B will always be zero. In this case we will
12521 eliminate the reference to A.
12522
12523 In both cases, we must search to see if we can find a previous
12524 use of A and put the death note there. */
12525
12526 if (from_insn
12527 && GET_CODE (from_insn) == CALL_INSN
12528 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12529 place = from_insn;
12530 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12531 place = i3;
12532 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12533 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12534 place = i2;
12535
12536 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12537 || rtx_equal_p (XEXP (note, 0), elim_i1))
12538 break;
12539
12540 if (place == 0)
12541 {
12542 basic_block bb = this_basic_block;
12543
12544 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12545 {
12546 if (! INSN_P (tem))
12547 {
12548 if (tem == bb->head)
12549 break;
12550 continue;
12551 }
12552
12553 /* If the register is being set at TEM, see if that is all
12554 TEM is doing. If so, delete TEM. Otherwise, make this
12555 into a REG_UNUSED note instead. */
12556 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12557 {
12558 rtx set = single_set (tem);
12559 rtx inner_dest = 0;
12560 #ifdef HAVE_cc0
12561 rtx cc0_setter = NULL_RTX;
12562 #endif
12563
12564 if (set != 0)
12565 for (inner_dest = SET_DEST (set);
12566 (GET_CODE (inner_dest) == STRICT_LOW_PART
12567 || GET_CODE (inner_dest) == SUBREG
12568 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12569 inner_dest = XEXP (inner_dest, 0))
12570 ;
12571
12572 /* Verify that it was the set, and not a clobber that
12573 modified the register.
12574
12575 CC0 targets must be careful to maintain setter/user
12576 pairs. If we cannot delete the setter due to side
12577 effects, mark the user with an UNUSED note instead
12578 of deleting it. */
12579
12580 if (set != 0 && ! side_effects_p (SET_SRC (set))
12581 && rtx_equal_p (XEXP (note, 0), inner_dest)
12582 #ifdef HAVE_cc0
12583 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12584 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12585 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12586 #endif
12587 )
12588 {
12589 /* Move the notes and links of TEM elsewhere.
12590 This might delete other dead insns recursively.
12591 First set the pattern to something that won't use
12592 any register. */
12593
12594 PATTERN (tem) = pc_rtx;
12595
12596 distribute_notes (REG_NOTES (tem), tem, tem,
12597 NULL_RTX, NULL_RTX, NULL_RTX);
12598 distribute_links (LOG_LINKS (tem));
12599
12600 PUT_CODE (tem, NOTE);
12601 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12602 NOTE_SOURCE_FILE (tem) = 0;
12603
12604 #ifdef HAVE_cc0
12605 /* Delete the setter too. */
12606 if (cc0_setter)
12607 {
12608 PATTERN (cc0_setter) = pc_rtx;
12609
12610 distribute_notes (REG_NOTES (cc0_setter),
12611 cc0_setter, cc0_setter,
12612 NULL_RTX, NULL_RTX, NULL_RTX);
12613 distribute_links (LOG_LINKS (cc0_setter));
12614
12615 PUT_CODE (cc0_setter, NOTE);
12616 NOTE_LINE_NUMBER (cc0_setter)
12617 = NOTE_INSN_DELETED;
12618 NOTE_SOURCE_FILE (cc0_setter) = 0;
12619 }
12620 #endif
12621 }
12622 /* If the register is both set and used here, put the
12623 REG_DEAD note here, but place a REG_UNUSED note
12624 here too unless there already is one. */
12625 else if (reg_referenced_p (XEXP (note, 0),
12626 PATTERN (tem)))
12627 {
12628 place = tem;
12629
12630 if (! find_regno_note (tem, REG_UNUSED,
12631 REGNO (XEXP (note, 0))))
12632 REG_NOTES (tem)
12633 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12634 REG_NOTES (tem));
12635 }
12636 else
12637 {
12638 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12639
12640 /* If there isn't already a REG_UNUSED note, put one
12641 here. */
12642 if (! find_regno_note (tem, REG_UNUSED,
12643 REGNO (XEXP (note, 0))))
12644 place = tem;
12645 break;
12646 }
12647 }
12648 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12649 || (GET_CODE (tem) == CALL_INSN
12650 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12651 {
12652 place = tem;
12653
12654 /* If we are doing a 3->2 combination, and we have a
12655 register which formerly died in i3 and was not used
12656 by i2, which now no longer dies in i3 and is used in
12657 i2 but does not die in i2, and place is between i2
12658 and i3, then we may need to move a link from place to
12659 i2. */
12660 if (i2 && INSN_UID (place) <= max_uid_cuid
12661 && INSN_CUID (place) > INSN_CUID (i2)
12662 && from_insn
12663 && INSN_CUID (from_insn) > INSN_CUID (i2)
12664 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12665 {
12666 rtx links = LOG_LINKS (place);
12667 LOG_LINKS (place) = 0;
12668 distribute_links (links);
12669 }
12670 break;
12671 }
12672
12673 if (tem == bb->head)
12674 break;
12675 }
12676
12677 /* We haven't found an insn for the death note and it
12678 is still a REG_DEAD note, but we have hit the beginning
12679 of the block. If the existing life info says the reg
12680 was dead, there's nothing left to do. Otherwise, we'll
12681 need to do a global life update after combine. */
12682 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12683 && REGNO_REG_SET_P (bb->global_live_at_start,
12684 REGNO (XEXP (note, 0))))
12685 SET_BIT (refresh_blocks, this_basic_block->index);
12686 }
12687
12688 /* If the register is set or already dead at PLACE, we needn't do
12689 anything with this note if it is still a REG_DEAD note.
12690 We can here if it is set at all, not if is it totally replace,
12691 which is what `dead_or_set_p' checks, so also check for it being
12692 set partially. */
12693
12694 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12695 {
12696 unsigned int regno = REGNO (XEXP (note, 0));
12697
12698 /* Similarly, if the instruction on which we want to place
12699 the note is a noop, we'll need do a global live update
12700 after we remove them in delete_noop_moves. */
12701 if (noop_move_p (place))
12702 SET_BIT (refresh_blocks, this_basic_block->index);
12703
12704 if (dead_or_set_p (place, XEXP (note, 0))
12705 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12706 {
12707 /* Unless the register previously died in PLACE, clear
12708 reg_last_death. [I no longer understand why this is
12709 being done.] */
12710 if (reg_last_death[regno] != place)
12711 reg_last_death[regno] = 0;
12712 place = 0;
12713 }
12714 else
12715 reg_last_death[regno] = place;
12716
12717 /* If this is a death note for a hard reg that is occupying
12718 multiple registers, ensure that we are still using all
12719 parts of the object. If we find a piece of the object
12720 that is unused, we must arrange for an appropriate REG_DEAD
12721 note to be added for it. However, we can't just emit a USE
12722 and tag the note to it, since the register might actually
12723 be dead; so we recourse, and the recursive call then finds
12724 the previous insn that used this register. */
12725
12726 if (place && regno < FIRST_PSEUDO_REGISTER
12727 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12728 {
12729 unsigned int endregno
12730 = regno + HARD_REGNO_NREGS (regno,
12731 GET_MODE (XEXP (note, 0)));
12732 int all_used = 1;
12733 unsigned int i;
12734
12735 for (i = regno; i < endregno; i++)
12736 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12737 && ! find_regno_fusage (place, USE, i))
12738 || dead_or_set_regno_p (place, i))
12739 all_used = 0;
12740
12741 if (! all_used)
12742 {
12743 /* Put only REG_DEAD notes for pieces that are
12744 not already dead or set. */
12745
12746 for (i = regno; i < endregno;
12747 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12748 {
12749 rtx piece = regno_reg_rtx[i];
12750 basic_block bb = this_basic_block;
12751
12752 if (! dead_or_set_p (place, piece)
12753 && ! reg_bitfield_target_p (piece,
12754 PATTERN (place)))
12755 {
12756 rtx new_note
12757 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12758
12759 distribute_notes (new_note, place, place,
12760 NULL_RTX, NULL_RTX, NULL_RTX);
12761 }
12762 else if (! refers_to_regno_p (i, i + 1,
12763 PATTERN (place), 0)
12764 && ! find_regno_fusage (place, USE, i))
12765 for (tem = PREV_INSN (place); ;
12766 tem = PREV_INSN (tem))
12767 {
12768 if (! INSN_P (tem))
12769 {
12770 if (tem == bb->head)
12771 {
12772 SET_BIT (refresh_blocks,
12773 this_basic_block->index);
12774 break;
12775 }
12776 continue;
12777 }
12778 if (dead_or_set_p (tem, piece)
12779 || reg_bitfield_target_p (piece,
12780 PATTERN (tem)))
12781 {
12782 REG_NOTES (tem)
12783 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12784 REG_NOTES (tem));
12785 break;
12786 }
12787 }
12788
12789 }
12790
12791 place = 0;
12792 }
12793 }
12794 }
12795 break;
12796
12797 default:
12798 /* Any other notes should not be present at this point in the
12799 compilation. */
12800 abort ();
12801 }
12802
12803 if (place)
12804 {
12805 XEXP (note, 1) = REG_NOTES (place);
12806 REG_NOTES (place) = note;
12807 }
12808 else if ((REG_NOTE_KIND (note) == REG_DEAD
12809 || REG_NOTE_KIND (note) == REG_UNUSED)
12810 && GET_CODE (XEXP (note, 0)) == REG)
12811 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12812
12813 if (place2)
12814 {
12815 if ((REG_NOTE_KIND (note) == REG_DEAD
12816 || REG_NOTE_KIND (note) == REG_UNUSED)
12817 && GET_CODE (XEXP (note, 0)) == REG)
12818 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12819
12820 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12821 REG_NOTE_KIND (note),
12822 XEXP (note, 0),
12823 REG_NOTES (place2));
12824 }
12825 }
12826 }
12827 \f
12828 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12829 I3, I2, and I1 to new locations. This is also called in one case to
12830 add a link pointing at I3 when I3's destination is changed. */
12831
12832 static void
12833 distribute_links (links)
12834 rtx links;
12835 {
12836 rtx link, next_link;
12837
12838 for (link = links; link; link = next_link)
12839 {
12840 rtx place = 0;
12841 rtx insn;
12842 rtx set, reg;
12843
12844 next_link = XEXP (link, 1);
12845
12846 /* If the insn that this link points to is a NOTE or isn't a single
12847 set, ignore it. In the latter case, it isn't clear what we
12848 can do other than ignore the link, since we can't tell which
12849 register it was for. Such links wouldn't be used by combine
12850 anyway.
12851
12852 It is not possible for the destination of the target of the link to
12853 have been changed by combine. The only potential of this is if we
12854 replace I3, I2, and I1 by I3 and I2. But in that case the
12855 destination of I2 also remains unchanged. */
12856
12857 if (GET_CODE (XEXP (link, 0)) == NOTE
12858 || (set = single_set (XEXP (link, 0))) == 0)
12859 continue;
12860
12861 reg = SET_DEST (set);
12862 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12863 || GET_CODE (reg) == SIGN_EXTRACT
12864 || GET_CODE (reg) == STRICT_LOW_PART)
12865 reg = XEXP (reg, 0);
12866
12867 /* A LOG_LINK is defined as being placed on the first insn that uses
12868 a register and points to the insn that sets the register. Start
12869 searching at the next insn after the target of the link and stop
12870 when we reach a set of the register or the end of the basic block.
12871
12872 Note that this correctly handles the link that used to point from
12873 I3 to I2. Also note that not much searching is typically done here
12874 since most links don't point very far away. */
12875
12876 for (insn = NEXT_INSN (XEXP (link, 0));
12877 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12878 || this_basic_block->next_bb->head != insn));
12879 insn = NEXT_INSN (insn))
12880 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12881 {
12882 if (reg_referenced_p (reg, PATTERN (insn)))
12883 place = insn;
12884 break;
12885 }
12886 else if (GET_CODE (insn) == CALL_INSN
12887 && find_reg_fusage (insn, USE, reg))
12888 {
12889 place = insn;
12890 break;
12891 }
12892
12893 /* If we found a place to put the link, place it there unless there
12894 is already a link to the same insn as LINK at that point. */
12895
12896 if (place)
12897 {
12898 rtx link2;
12899
12900 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12901 if (XEXP (link2, 0) == XEXP (link, 0))
12902 break;
12903
12904 if (link2 == 0)
12905 {
12906 XEXP (link, 1) = LOG_LINKS (place);
12907 LOG_LINKS (place) = link;
12908
12909 /* Set added_links_insn to the earliest insn we added a
12910 link to. */
12911 if (added_links_insn == 0
12912 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12913 added_links_insn = place;
12914 }
12915 }
12916 }
12917 }
12918 \f
12919 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12920
12921 static int
12922 insn_cuid (insn)
12923 rtx insn;
12924 {
12925 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12926 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12927 insn = NEXT_INSN (insn);
12928
12929 if (INSN_UID (insn) > max_uid_cuid)
12930 abort ();
12931
12932 return INSN_CUID (insn);
12933 }
12934 \f
12935 void
12936 dump_combine_stats (file)
12937 FILE *file;
12938 {
12939 fnotice
12940 (file,
12941 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12942 combine_attempts, combine_merges, combine_extras, combine_successes);
12943 }
12944
12945 void
12946 dump_combine_total_stats (file)
12947 FILE *file;
12948 {
12949 fnotice
12950 (file,
12951 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12952 total_attempts, total_merges, total_extras, total_successes);
12953 }