]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/combine.c
Mark untyped calls and handle them specially [PR98689]
[thirdparty/gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "expr.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107 #include "function-abi.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx_insn *i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 struct reg_stat_type {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx_insn *last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx_insn *last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 };
254
255
256 static vec<reg_stat_type> reg_stat;
257
258 /* One plus the highest pseudo for which we track REG_N_SETS.
259 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
260 but during combine_split_insns new pseudos can be created. As we don't have
261 updated DF information in that case, it is hard to initialize the array
262 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
263 so instead of growing the arrays, just assume all newly created pseudos
264 during combine might be set multiple times. */
265
266 static unsigned int reg_n_sets_max;
267
268 /* Record the luid of the last insn that invalidated memory
269 (anything that writes memory, and subroutine calls, but not pushes). */
270
271 static int mem_last_set;
272
273 /* Record the luid of the last CALL_INSN
274 so we can tell whether a potential combination crosses any calls. */
275
276 static int last_call_luid;
277
278 /* When `subst' is called, this is the insn that is being modified
279 (by combining in a previous insn). The PATTERN of this insn
280 is still the old pattern partially modified and it should not be
281 looked at, but this may be used to examine the successors of the insn
282 to judge whether a simplification is valid. */
283
284 static rtx_insn *subst_insn;
285
286 /* This is the lowest LUID that `subst' is currently dealing with.
287 get_last_value will not return a value if the register was set at or
288 after this LUID. If not for this mechanism, we could get confused if
289 I2 or I1 in try_combine were an insn that used the old value of a register
290 to obtain a new value. In that case, we might erroneously get the
291 new value of the register when we wanted the old one. */
292
293 static int subst_low_luid;
294
295 /* This contains any hard registers that are used in newpat; reg_dead_at_p
296 must consider all these registers to be always live. */
297
298 static HARD_REG_SET newpat_used_regs;
299
300 /* This is an insn to which a LOG_LINKS entry has been added. If this
301 insn is the earlier than I2 or I3, combine should rescan starting at
302 that location. */
303
304 static rtx_insn *added_links_insn;
305
306 /* And similarly, for notes. */
307
308 static rtx_insn *added_notes_insn;
309
310 /* Basic block in which we are performing combines. */
311 static basic_block this_basic_block;
312 static bool optimize_this_for_speed_p;
313
314 \f
315 /* Length of the currently allocated uid_insn_cost array. */
316
317 static int max_uid_known;
318
319 /* The following array records the insn_cost for every insn
320 in the instruction stream. */
321
322 static int *uid_insn_cost;
323
324 /* The following array records the LOG_LINKS for every insn in the
325 instruction stream as struct insn_link pointers. */
326
327 struct insn_link {
328 rtx_insn *insn;
329 unsigned int regno;
330 struct insn_link *next;
331 };
332
333 static struct insn_link **uid_log_links;
334
335 static inline int
336 insn_uid_check (const_rtx insn)
337 {
338 int uid = INSN_UID (insn);
339 gcc_checking_assert (uid <= max_uid_known);
340 return uid;
341 }
342
343 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
344 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
345
346 #define FOR_EACH_LOG_LINK(L, INSN) \
347 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
348
349 /* Links for LOG_LINKS are allocated from this obstack. */
350
351 static struct obstack insn_link_obstack;
352
353 /* Allocate a link. */
354
355 static inline struct insn_link *
356 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
357 {
358 struct insn_link *l
359 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
360 sizeof (struct insn_link));
361 l->insn = insn;
362 l->regno = regno;
363 l->next = next;
364 return l;
365 }
366
367 /* Incremented for each basic block. */
368
369 static int label_tick;
370
371 /* Reset to label_tick for each extended basic block in scanning order. */
372
373 static int label_tick_ebb_start;
374
375 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
376 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
377
378 static scalar_int_mode nonzero_bits_mode;
379
380 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
381 be safely used. It is zero while computing them and after combine has
382 completed. This former test prevents propagating values based on
383 previously set values, which can be incorrect if a variable is modified
384 in a loop. */
385
386 static int nonzero_sign_valid;
387
388 \f
389 /* Record one modification to rtl structure
390 to be undone by storing old_contents into *where. */
391
392 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
393
394 struct undo
395 {
396 struct undo *next;
397 enum undo_kind kind;
398 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
399 union { rtx *r; int *i; struct insn_link **l; } where;
400 };
401
402 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
403 num_undo says how many are currently recorded.
404
405 other_insn is nonzero if we have modified some other insn in the process
406 of working on subst_insn. It must be verified too. */
407
408 struct undobuf
409 {
410 struct undo *undos;
411 struct undo *frees;
412 rtx_insn *other_insn;
413 };
414
415 static struct undobuf undobuf;
416
417 /* Number of times the pseudo being substituted for
418 was found and replaced. */
419
420 static int n_occurrences;
421
422 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
423 scalar_int_mode,
424 unsigned HOST_WIDE_INT *);
425 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
426 scalar_int_mode,
427 unsigned int *);
428 static void do_SUBST (rtx *, rtx);
429 static void do_SUBST_INT (int *, int);
430 static void init_reg_last (void);
431 static void setup_incoming_promotions (rtx_insn *);
432 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
433 static int cant_combine_insn_p (rtx_insn *);
434 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 rtx_insn *, rtx_insn *, rtx *, rtx *);
436 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
437 static int contains_muldiv (rtx);
438 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
439 int *, rtx_insn *);
440 static void undo_all (void);
441 static void undo_commit (void);
442 static rtx *find_split_point (rtx *, rtx_insn *, bool);
443 static rtx subst (rtx, rtx, rtx, int, int, int);
444 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
445 static rtx simplify_if_then_else (rtx);
446 static rtx simplify_set (rtx);
447 static rtx simplify_logical (rtx);
448 static rtx expand_compound_operation (rtx);
449 static const_rtx expand_field_assignment (const_rtx);
450 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
451 rtx, unsigned HOST_WIDE_INT, int, int, int);
452 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
453 unsigned HOST_WIDE_INT *);
454 static rtx canon_reg_for_combine (rtx, rtx);
455 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
456 scalar_int_mode, unsigned HOST_WIDE_INT, int);
457 static rtx force_to_mode (rtx, machine_mode,
458 unsigned HOST_WIDE_INT, int);
459 static rtx if_then_else_cond (rtx, rtx *, rtx *);
460 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
461 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
462 static rtx make_field_assignment (rtx);
463 static rtx apply_distributive_law (rtx);
464 static rtx distribute_and_simplify_rtx (rtx, int);
465 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
466 unsigned HOST_WIDE_INT);
467 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
468 unsigned HOST_WIDE_INT);
469 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
470 HOST_WIDE_INT, machine_mode, int *);
471 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
472 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
473 int);
474 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
475 static rtx gen_lowpart_for_combine (machine_mode, rtx);
476 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
477 rtx, rtx *);
478 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
479 static void update_table_tick (rtx);
480 static void record_value_for_reg (rtx, rtx_insn *, rtx);
481 static void check_promoted_subreg (rtx_insn *, rtx);
482 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
483 static void record_dead_and_set_regs (rtx_insn *);
484 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
485 static rtx get_last_value (const_rtx);
486 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
487 static int reg_dead_at_p (rtx, rtx_insn *);
488 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
489 static int reg_bitfield_target_p (rtx, rtx);
490 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
491 static void distribute_links (struct insn_link *);
492 static void mark_used_regs_combine (rtx);
493 static void record_promoted_value (rtx_insn *, rtx);
494 static bool unmentioned_reg_p (rtx, rtx);
495 static void record_truncated_values (rtx *, void *);
496 static bool reg_truncated_to_mode (machine_mode, const_rtx);
497 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
498 \f
499
500 /* It is not safe to use ordinary gen_lowpart in combine.
501 See comments in gen_lowpart_for_combine. */
502 #undef RTL_HOOKS_GEN_LOWPART
503 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
504
505 /* Our implementation of gen_lowpart never emits a new pseudo. */
506 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
507 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
508
509 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
510 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
511
512 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
513 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
514
515 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
516 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
517
518 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
519
520 \f
521 /* Convenience wrapper for the canonicalize_comparison target hook.
522 Target hooks cannot use enum rtx_code. */
523 static inline void
524 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
525 bool op0_preserve_value)
526 {
527 int code_int = (int)*code;
528 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
529 *code = (enum rtx_code)code_int;
530 }
531
532 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
533 PATTERN cannot be split. Otherwise, it returns an insn sequence.
534 This is a wrapper around split_insns which ensures that the
535 reg_stat vector is made larger if the splitter creates a new
536 register. */
537
538 static rtx_insn *
539 combine_split_insns (rtx pattern, rtx_insn *insn)
540 {
541 rtx_insn *ret;
542 unsigned int nregs;
543
544 ret = split_insns (pattern, insn);
545 nregs = max_reg_num ();
546 if (nregs > reg_stat.length ())
547 reg_stat.safe_grow_cleared (nregs, true);
548 return ret;
549 }
550
551 /* This is used by find_single_use to locate an rtx in LOC that
552 contains exactly one use of DEST, which is typically either a REG
553 or CC0. It returns a pointer to the innermost rtx expression
554 containing DEST. Appearances of DEST that are being used to
555 totally replace it are not counted. */
556
557 static rtx *
558 find_single_use_1 (rtx dest, rtx *loc)
559 {
560 rtx x = *loc;
561 enum rtx_code code = GET_CODE (x);
562 rtx *result = NULL;
563 rtx *this_result;
564 int i;
565 const char *fmt;
566
567 switch (code)
568 {
569 case CONST:
570 case LABEL_REF:
571 case SYMBOL_REF:
572 CASE_CONST_ANY:
573 case CLOBBER:
574 return 0;
575
576 case SET:
577 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
578 of a REG that occupies all of the REG, the insn uses DEST if
579 it is mentioned in the destination or the source. Otherwise, we
580 need just check the source. */
581 if (GET_CODE (SET_DEST (x)) != CC0
582 && GET_CODE (SET_DEST (x)) != PC
583 && !REG_P (SET_DEST (x))
584 && ! (GET_CODE (SET_DEST (x)) == SUBREG
585 && REG_P (SUBREG_REG (SET_DEST (x)))
586 && !read_modify_subreg_p (SET_DEST (x))))
587 break;
588
589 return find_single_use_1 (dest, &SET_SRC (x));
590
591 case MEM:
592 case SUBREG:
593 return find_single_use_1 (dest, &XEXP (x, 0));
594
595 default:
596 break;
597 }
598
599 /* If it wasn't one of the common cases above, check each expression and
600 vector of this code. Look for a unique usage of DEST. */
601
602 fmt = GET_RTX_FORMAT (code);
603 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
604 {
605 if (fmt[i] == 'e')
606 {
607 if (dest == XEXP (x, i)
608 || (REG_P (dest) && REG_P (XEXP (x, i))
609 && REGNO (dest) == REGNO (XEXP (x, i))))
610 this_result = loc;
611 else
612 this_result = find_single_use_1 (dest, &XEXP (x, i));
613
614 if (result == NULL)
615 result = this_result;
616 else if (this_result)
617 /* Duplicate usage. */
618 return NULL;
619 }
620 else if (fmt[i] == 'E')
621 {
622 int j;
623
624 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
625 {
626 if (XVECEXP (x, i, j) == dest
627 || (REG_P (dest)
628 && REG_P (XVECEXP (x, i, j))
629 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
630 this_result = loc;
631 else
632 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
633
634 if (result == NULL)
635 result = this_result;
636 else if (this_result)
637 return NULL;
638 }
639 }
640 }
641
642 return result;
643 }
644
645
646 /* See if DEST, produced in INSN, is used only a single time in the
647 sequel. If so, return a pointer to the innermost rtx expression in which
648 it is used.
649
650 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
651
652 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
653 care about REG_DEAD notes or LOG_LINKS.
654
655 Otherwise, we find the single use by finding an insn that has a
656 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
657 only referenced once in that insn, we know that it must be the first
658 and last insn referencing DEST. */
659
660 static rtx *
661 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
662 {
663 basic_block bb;
664 rtx_insn *next;
665 rtx *result;
666 struct insn_link *link;
667
668 if (dest == cc0_rtx)
669 {
670 next = NEXT_INSN (insn);
671 if (next == 0
672 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
673 return 0;
674
675 result = find_single_use_1 (dest, &PATTERN (next));
676 if (result && ploc)
677 *ploc = next;
678 return result;
679 }
680
681 if (!REG_P (dest))
682 return 0;
683
684 bb = BLOCK_FOR_INSN (insn);
685 for (next = NEXT_INSN (insn);
686 next && BLOCK_FOR_INSN (next) == bb;
687 next = NEXT_INSN (next))
688 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
689 {
690 FOR_EACH_LOG_LINK (link, next)
691 if (link->insn == insn && link->regno == REGNO (dest))
692 break;
693
694 if (link)
695 {
696 result = find_single_use_1 (dest, &PATTERN (next));
697 if (ploc)
698 *ploc = next;
699 return result;
700 }
701 }
702
703 return 0;
704 }
705 \f
706 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
707 insn. The substitution can be undone by undo_all. If INTO is already
708 set to NEWVAL, do not record this change. Because computing NEWVAL might
709 also call SUBST, we have to compute it before we put anything into
710 the undo table. */
711
712 static void
713 do_SUBST (rtx *into, rtx newval)
714 {
715 struct undo *buf;
716 rtx oldval = *into;
717
718 if (oldval == newval)
719 return;
720
721 /* We'd like to catch as many invalid transformations here as
722 possible. Unfortunately, there are way too many mode changes
723 that are perfectly valid, so we'd waste too much effort for
724 little gain doing the checks here. Focus on catching invalid
725 transformations involving integer constants. */
726 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
727 && CONST_INT_P (newval))
728 {
729 /* Sanity check that we're replacing oldval with a CONST_INT
730 that is a valid sign-extension for the original mode. */
731 gcc_assert (INTVAL (newval)
732 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
733
734 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
735 CONST_INT is not valid, because after the replacement, the
736 original mode would be gone. Unfortunately, we can't tell
737 when do_SUBST is called to replace the operand thereof, so we
738 perform this test on oldval instead, checking whether an
739 invalid replacement took place before we got here. */
740 gcc_assert (!(GET_CODE (oldval) == SUBREG
741 && CONST_INT_P (SUBREG_REG (oldval))));
742 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
743 && CONST_INT_P (XEXP (oldval, 0))));
744 }
745
746 if (undobuf.frees)
747 buf = undobuf.frees, undobuf.frees = buf->next;
748 else
749 buf = XNEW (struct undo);
750
751 buf->kind = UNDO_RTX;
752 buf->where.r = into;
753 buf->old_contents.r = oldval;
754 *into = newval;
755
756 buf->next = undobuf.undos, undobuf.undos = buf;
757 }
758
759 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
760
761 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
762 for the value of a HOST_WIDE_INT value (including CONST_INT) is
763 not safe. */
764
765 static void
766 do_SUBST_INT (int *into, int newval)
767 {
768 struct undo *buf;
769 int oldval = *into;
770
771 if (oldval == newval)
772 return;
773
774 if (undobuf.frees)
775 buf = undobuf.frees, undobuf.frees = buf->next;
776 else
777 buf = XNEW (struct undo);
778
779 buf->kind = UNDO_INT;
780 buf->where.i = into;
781 buf->old_contents.i = oldval;
782 *into = newval;
783
784 buf->next = undobuf.undos, undobuf.undos = buf;
785 }
786
787 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
788
789 /* Similar to SUBST, but just substitute the mode. This is used when
790 changing the mode of a pseudo-register, so that any other
791 references to the entry in the regno_reg_rtx array will change as
792 well. */
793
794 static void
795 do_SUBST_MODE (rtx *into, machine_mode newval)
796 {
797 struct undo *buf;
798 machine_mode oldval = GET_MODE (*into);
799
800 if (oldval == newval)
801 return;
802
803 if (undobuf.frees)
804 buf = undobuf.frees, undobuf.frees = buf->next;
805 else
806 buf = XNEW (struct undo);
807
808 buf->kind = UNDO_MODE;
809 buf->where.r = into;
810 buf->old_contents.m = oldval;
811 adjust_reg_mode (*into, newval);
812
813 buf->next = undobuf.undos, undobuf.undos = buf;
814 }
815
816 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
817
818 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
819
820 static void
821 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
822 {
823 struct undo *buf;
824 struct insn_link * oldval = *into;
825
826 if (oldval == newval)
827 return;
828
829 if (undobuf.frees)
830 buf = undobuf.frees, undobuf.frees = buf->next;
831 else
832 buf = XNEW (struct undo);
833
834 buf->kind = UNDO_LINKS;
835 buf->where.l = into;
836 buf->old_contents.l = oldval;
837 *into = newval;
838
839 buf->next = undobuf.undos, undobuf.undos = buf;
840 }
841
842 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
843 \f
844 /* Subroutine of try_combine. Determine whether the replacement patterns
845 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
846 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
847 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
848 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
849 of all the instructions can be estimated and the replacements are more
850 expensive than the original sequence. */
851
852 static bool
853 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
854 rtx newpat, rtx newi2pat, rtx newotherpat)
855 {
856 int i0_cost, i1_cost, i2_cost, i3_cost;
857 int new_i2_cost, new_i3_cost;
858 int old_cost, new_cost;
859
860 /* Lookup the original insn_costs. */
861 i2_cost = INSN_COST (i2);
862 i3_cost = INSN_COST (i3);
863
864 if (i1)
865 {
866 i1_cost = INSN_COST (i1);
867 if (i0)
868 {
869 i0_cost = INSN_COST (i0);
870 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
871 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
872 }
873 else
874 {
875 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
876 ? i1_cost + i2_cost + i3_cost : 0);
877 i0_cost = 0;
878 }
879 }
880 else
881 {
882 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
883 i1_cost = i0_cost = 0;
884 }
885
886 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
887 correct that. */
888 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
889 old_cost -= i1_cost;
890
891
892 /* Calculate the replacement insn_costs. */
893 rtx tmp = PATTERN (i3);
894 PATTERN (i3) = newpat;
895 int tmpi = INSN_CODE (i3);
896 INSN_CODE (i3) = -1;
897 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
898 PATTERN (i3) = tmp;
899 INSN_CODE (i3) = tmpi;
900 if (newi2pat)
901 {
902 tmp = PATTERN (i2);
903 PATTERN (i2) = newi2pat;
904 tmpi = INSN_CODE (i2);
905 INSN_CODE (i2) = -1;
906 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
907 PATTERN (i2) = tmp;
908 INSN_CODE (i2) = tmpi;
909 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
910 ? new_i2_cost + new_i3_cost : 0;
911 }
912 else
913 {
914 new_cost = new_i3_cost;
915 new_i2_cost = 0;
916 }
917
918 if (undobuf.other_insn)
919 {
920 int old_other_cost, new_other_cost;
921
922 old_other_cost = INSN_COST (undobuf.other_insn);
923 tmp = PATTERN (undobuf.other_insn);
924 PATTERN (undobuf.other_insn) = newotherpat;
925 tmpi = INSN_CODE (undobuf.other_insn);
926 INSN_CODE (undobuf.other_insn) = -1;
927 new_other_cost = insn_cost (undobuf.other_insn,
928 optimize_this_for_speed_p);
929 PATTERN (undobuf.other_insn) = tmp;
930 INSN_CODE (undobuf.other_insn) = tmpi;
931 if (old_other_cost > 0 && new_other_cost > 0)
932 {
933 old_cost += old_other_cost;
934 new_cost += new_other_cost;
935 }
936 else
937 old_cost = 0;
938 }
939
940 /* Disallow this combination if both new_cost and old_cost are greater than
941 zero, and new_cost is greater than old cost. */
942 int reject = old_cost > 0 && new_cost > old_cost;
943
944 if (dump_file)
945 {
946 fprintf (dump_file, "%s combination of insns ",
947 reject ? "rejecting" : "allowing");
948 if (i0)
949 fprintf (dump_file, "%d, ", INSN_UID (i0));
950 if (i1 && INSN_UID (i1) != INSN_UID (i2))
951 fprintf (dump_file, "%d, ", INSN_UID (i1));
952 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
953
954 fprintf (dump_file, "original costs ");
955 if (i0)
956 fprintf (dump_file, "%d + ", i0_cost);
957 if (i1 && INSN_UID (i1) != INSN_UID (i2))
958 fprintf (dump_file, "%d + ", i1_cost);
959 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
960
961 if (newi2pat)
962 fprintf (dump_file, "replacement costs %d + %d = %d\n",
963 new_i2_cost, new_i3_cost, new_cost);
964 else
965 fprintf (dump_file, "replacement cost %d\n", new_cost);
966 }
967
968 if (reject)
969 return false;
970
971 /* Update the uid_insn_cost array with the replacement costs. */
972 INSN_COST (i2) = new_i2_cost;
973 INSN_COST (i3) = new_i3_cost;
974 if (i1)
975 {
976 INSN_COST (i1) = 0;
977 if (i0)
978 INSN_COST (i0) = 0;
979 }
980
981 return true;
982 }
983
984
985 /* Delete any insns that copy a register to itself.
986 Return true if the CFG was changed. */
987
988 static bool
989 delete_noop_moves (void)
990 {
991 rtx_insn *insn, *next;
992 basic_block bb;
993
994 bool edges_deleted = false;
995
996 FOR_EACH_BB_FN (bb, cfun)
997 {
998 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
999 {
1000 next = NEXT_INSN (insn);
1001 if (INSN_P (insn) && noop_move_p (insn))
1002 {
1003 if (dump_file)
1004 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1005
1006 edges_deleted |= delete_insn_and_edges (insn);
1007 }
1008 }
1009 }
1010
1011 return edges_deleted;
1012 }
1013
1014 \f
1015 /* Return false if we do not want to (or cannot) combine DEF. */
1016 static bool
1017 can_combine_def_p (df_ref def)
1018 {
1019 /* Do not consider if it is pre/post modification in MEM. */
1020 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1021 return false;
1022
1023 unsigned int regno = DF_REF_REGNO (def);
1024
1025 /* Do not combine frame pointer adjustments. */
1026 if ((regno == FRAME_POINTER_REGNUM
1027 && (!reload_completed || frame_pointer_needed))
1028 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1029 && regno == HARD_FRAME_POINTER_REGNUM
1030 && (!reload_completed || frame_pointer_needed))
1031 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1032 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1033 return false;
1034
1035 return true;
1036 }
1037
1038 /* Return false if we do not want to (or cannot) combine USE. */
1039 static bool
1040 can_combine_use_p (df_ref use)
1041 {
1042 /* Do not consider the usage of the stack pointer by function call. */
1043 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1044 return false;
1045
1046 return true;
1047 }
1048
1049 /* Fill in log links field for all insns. */
1050
1051 static void
1052 create_log_links (void)
1053 {
1054 basic_block bb;
1055 rtx_insn **next_use;
1056 rtx_insn *insn;
1057 df_ref def, use;
1058
1059 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1060
1061 /* Pass through each block from the end, recording the uses of each
1062 register and establishing log links when def is encountered.
1063 Note that we do not clear next_use array in order to save time,
1064 so we have to test whether the use is in the same basic block as def.
1065
1066 There are a few cases below when we do not consider the definition or
1067 usage -- these are taken from original flow.c did. Don't ask me why it is
1068 done this way; I don't know and if it works, I don't want to know. */
1069
1070 FOR_EACH_BB_FN (bb, cfun)
1071 {
1072 FOR_BB_INSNS_REVERSE (bb, insn)
1073 {
1074 if (!NONDEBUG_INSN_P (insn))
1075 continue;
1076
1077 /* Log links are created only once. */
1078 gcc_assert (!LOG_LINKS (insn));
1079
1080 FOR_EACH_INSN_DEF (def, insn)
1081 {
1082 unsigned int regno = DF_REF_REGNO (def);
1083 rtx_insn *use_insn;
1084
1085 if (!next_use[regno])
1086 continue;
1087
1088 if (!can_combine_def_p (def))
1089 continue;
1090
1091 use_insn = next_use[regno];
1092 next_use[regno] = NULL;
1093
1094 if (BLOCK_FOR_INSN (use_insn) != bb)
1095 continue;
1096
1097 /* flow.c claimed:
1098
1099 We don't build a LOG_LINK for hard registers contained
1100 in ASM_OPERANDs. If these registers get replaced,
1101 we might wind up changing the semantics of the insn,
1102 even if reload can make what appear to be valid
1103 assignments later. */
1104 if (regno < FIRST_PSEUDO_REGISTER
1105 && asm_noperands (PATTERN (use_insn)) >= 0)
1106 continue;
1107
1108 /* Don't add duplicate links between instructions. */
1109 struct insn_link *links;
1110 FOR_EACH_LOG_LINK (links, use_insn)
1111 if (insn == links->insn && regno == links->regno)
1112 break;
1113
1114 if (!links)
1115 LOG_LINKS (use_insn)
1116 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1117 }
1118
1119 FOR_EACH_INSN_USE (use, insn)
1120 if (can_combine_use_p (use))
1121 next_use[DF_REF_REGNO (use)] = insn;
1122 }
1123 }
1124
1125 free (next_use);
1126 }
1127
1128 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1129 true if we found a LOG_LINK that proves that A feeds B. This only works
1130 if there are no instructions between A and B which could have a link
1131 depending on A, since in that case we would not record a link for B.
1132 We also check the implicit dependency created by a cc0 setter/user
1133 pair. */
1134
1135 static bool
1136 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1137 {
1138 struct insn_link *links;
1139 FOR_EACH_LOG_LINK (links, b)
1140 if (links->insn == a)
1141 return true;
1142 if (HAVE_cc0 && sets_cc0_p (a))
1143 return true;
1144 return false;
1145 }
1146 \f
1147 /* Main entry point for combiner. F is the first insn of the function.
1148 NREGS is the first unused pseudo-reg number.
1149
1150 Return nonzero if the CFG was changed (e.g. if the combiner has
1151 turned an indirect jump instruction into a direct jump). */
1152 static int
1153 combine_instructions (rtx_insn *f, unsigned int nregs)
1154 {
1155 rtx_insn *insn, *next;
1156 rtx_insn *prev;
1157 struct insn_link *links, *nextlinks;
1158 rtx_insn *first;
1159 basic_block last_bb;
1160
1161 int new_direct_jump_p = 0;
1162
1163 for (first = f; first && !NONDEBUG_INSN_P (first); )
1164 first = NEXT_INSN (first);
1165 if (!first)
1166 return 0;
1167
1168 combine_attempts = 0;
1169 combine_merges = 0;
1170 combine_extras = 0;
1171 combine_successes = 0;
1172
1173 rtl_hooks = combine_rtl_hooks;
1174
1175 reg_stat.safe_grow_cleared (nregs, true);
1176
1177 init_recog_no_volatile ();
1178
1179 /* Allocate array for insn info. */
1180 max_uid_known = get_max_uid ();
1181 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1182 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1183 gcc_obstack_init (&insn_link_obstack);
1184
1185 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1186
1187 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1188 problems when, for example, we have j <<= 1 in a loop. */
1189
1190 nonzero_sign_valid = 0;
1191 label_tick = label_tick_ebb_start = 1;
1192
1193 /* Scan all SETs and see if we can deduce anything about what
1194 bits are known to be zero for some registers and how many copies
1195 of the sign bit are known to exist for those registers.
1196
1197 Also set any known values so that we can use it while searching
1198 for what bits are known to be set. */
1199
1200 setup_incoming_promotions (first);
1201 /* Allow the entry block and the first block to fall into the same EBB.
1202 Conceptually the incoming promotions are assigned to the entry block. */
1203 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1204
1205 create_log_links ();
1206 FOR_EACH_BB_FN (this_basic_block, cfun)
1207 {
1208 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1209 last_call_luid = 0;
1210 mem_last_set = -1;
1211
1212 label_tick++;
1213 if (!single_pred_p (this_basic_block)
1214 || single_pred (this_basic_block) != last_bb)
1215 label_tick_ebb_start = label_tick;
1216 last_bb = this_basic_block;
1217
1218 FOR_BB_INSNS (this_basic_block, insn)
1219 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1220 {
1221 rtx links;
1222
1223 subst_low_luid = DF_INSN_LUID (insn);
1224 subst_insn = insn;
1225
1226 note_stores (insn, set_nonzero_bits_and_sign_copies, insn);
1227 record_dead_and_set_regs (insn);
1228
1229 if (AUTO_INC_DEC)
1230 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1231 if (REG_NOTE_KIND (links) == REG_INC)
1232 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1233 insn);
1234
1235 /* Record the current insn_cost of this instruction. */
1236 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1237 if (dump_file)
1238 {
1239 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1240 dump_insn_slim (dump_file, insn);
1241 }
1242 }
1243 }
1244
1245 nonzero_sign_valid = 1;
1246
1247 /* Now scan all the insns in forward order. */
1248 label_tick = label_tick_ebb_start = 1;
1249 init_reg_last ();
1250 setup_incoming_promotions (first);
1251 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1252 int max_combine = param_max_combine_insns;
1253
1254 FOR_EACH_BB_FN (this_basic_block, cfun)
1255 {
1256 rtx_insn *last_combined_insn = NULL;
1257
1258 /* Ignore instruction combination in basic blocks that are going to
1259 be removed as unreachable anyway. See PR82386. */
1260 if (EDGE_COUNT (this_basic_block->preds) == 0)
1261 continue;
1262
1263 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1264 last_call_luid = 0;
1265 mem_last_set = -1;
1266
1267 label_tick++;
1268 if (!single_pred_p (this_basic_block)
1269 || single_pred (this_basic_block) != last_bb)
1270 label_tick_ebb_start = label_tick;
1271 last_bb = this_basic_block;
1272
1273 rtl_profile_for_bb (this_basic_block);
1274 for (insn = BB_HEAD (this_basic_block);
1275 insn != NEXT_INSN (BB_END (this_basic_block));
1276 insn = next ? next : NEXT_INSN (insn))
1277 {
1278 next = 0;
1279 if (!NONDEBUG_INSN_P (insn))
1280 continue;
1281
1282 while (last_combined_insn
1283 && (!NONDEBUG_INSN_P (last_combined_insn)
1284 || last_combined_insn->deleted ()))
1285 last_combined_insn = PREV_INSN (last_combined_insn);
1286 if (last_combined_insn == NULL_RTX
1287 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1288 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1289 last_combined_insn = insn;
1290
1291 /* See if we know about function return values before this
1292 insn based upon SUBREG flags. */
1293 check_promoted_subreg (insn, PATTERN (insn));
1294
1295 /* See if we can find hardregs and subreg of pseudos in
1296 narrower modes. This could help turning TRUNCATEs
1297 into SUBREGs. */
1298 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1299
1300 /* Try this insn with each insn it links back to. */
1301
1302 FOR_EACH_LOG_LINK (links, insn)
1303 if ((next = try_combine (insn, links->insn, NULL,
1304 NULL, &new_direct_jump_p,
1305 last_combined_insn)) != 0)
1306 {
1307 statistics_counter_event (cfun, "two-insn combine", 1);
1308 goto retry;
1309 }
1310
1311 /* Try each sequence of three linked insns ending with this one. */
1312
1313 if (max_combine >= 3)
1314 FOR_EACH_LOG_LINK (links, insn)
1315 {
1316 rtx_insn *link = links->insn;
1317
1318 /* If the linked insn has been replaced by a note, then there
1319 is no point in pursuing this chain any further. */
1320 if (NOTE_P (link))
1321 continue;
1322
1323 FOR_EACH_LOG_LINK (nextlinks, link)
1324 if ((next = try_combine (insn, link, nextlinks->insn,
1325 NULL, &new_direct_jump_p,
1326 last_combined_insn)) != 0)
1327 {
1328 statistics_counter_event (cfun, "three-insn combine", 1);
1329 goto retry;
1330 }
1331 }
1332
1333 /* Try to combine a jump insn that uses CC0
1334 with a preceding insn that sets CC0, and maybe with its
1335 logical predecessor as well.
1336 This is how we make decrement-and-branch insns.
1337 We need this special code because data flow connections
1338 via CC0 do not get entered in LOG_LINKS. */
1339
1340 if (HAVE_cc0
1341 && JUMP_P (insn)
1342 && (prev = prev_nonnote_insn (insn)) != 0
1343 && NONJUMP_INSN_P (prev)
1344 && sets_cc0_p (PATTERN (prev)))
1345 {
1346 if ((next = try_combine (insn, prev, NULL, NULL,
1347 &new_direct_jump_p,
1348 last_combined_insn)) != 0)
1349 goto retry;
1350
1351 FOR_EACH_LOG_LINK (nextlinks, prev)
1352 if ((next = try_combine (insn, prev, nextlinks->insn,
1353 NULL, &new_direct_jump_p,
1354 last_combined_insn)) != 0)
1355 goto retry;
1356 }
1357
1358 /* Do the same for an insn that explicitly references CC0. */
1359 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1360 && (prev = prev_nonnote_insn (insn)) != 0
1361 && NONJUMP_INSN_P (prev)
1362 && sets_cc0_p (PATTERN (prev))
1363 && GET_CODE (PATTERN (insn)) == SET
1364 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1365 {
1366 if ((next = try_combine (insn, prev, NULL, NULL,
1367 &new_direct_jump_p,
1368 last_combined_insn)) != 0)
1369 goto retry;
1370
1371 FOR_EACH_LOG_LINK (nextlinks, prev)
1372 if ((next = try_combine (insn, prev, nextlinks->insn,
1373 NULL, &new_direct_jump_p,
1374 last_combined_insn)) != 0)
1375 goto retry;
1376 }
1377
1378 /* Finally, see if any of the insns that this insn links to
1379 explicitly references CC0. If so, try this insn, that insn,
1380 and its predecessor if it sets CC0. */
1381 if (HAVE_cc0)
1382 {
1383 FOR_EACH_LOG_LINK (links, insn)
1384 if (NONJUMP_INSN_P (links->insn)
1385 && GET_CODE (PATTERN (links->insn)) == SET
1386 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1387 && (prev = prev_nonnote_insn (links->insn)) != 0
1388 && NONJUMP_INSN_P (prev)
1389 && sets_cc0_p (PATTERN (prev))
1390 && (next = try_combine (insn, links->insn,
1391 prev, NULL, &new_direct_jump_p,
1392 last_combined_insn)) != 0)
1393 goto retry;
1394 }
1395
1396 /* Try combining an insn with two different insns whose results it
1397 uses. */
1398 if (max_combine >= 3)
1399 FOR_EACH_LOG_LINK (links, insn)
1400 for (nextlinks = links->next; nextlinks;
1401 nextlinks = nextlinks->next)
1402 if ((next = try_combine (insn, links->insn,
1403 nextlinks->insn, NULL,
1404 &new_direct_jump_p,
1405 last_combined_insn)) != 0)
1406
1407 {
1408 statistics_counter_event (cfun, "three-insn combine", 1);
1409 goto retry;
1410 }
1411
1412 /* Try four-instruction combinations. */
1413 if (max_combine >= 4)
1414 FOR_EACH_LOG_LINK (links, insn)
1415 {
1416 struct insn_link *next1;
1417 rtx_insn *link = links->insn;
1418
1419 /* If the linked insn has been replaced by a note, then there
1420 is no point in pursuing this chain any further. */
1421 if (NOTE_P (link))
1422 continue;
1423
1424 FOR_EACH_LOG_LINK (next1, link)
1425 {
1426 rtx_insn *link1 = next1->insn;
1427 if (NOTE_P (link1))
1428 continue;
1429 /* I0 -> I1 -> I2 -> I3. */
1430 FOR_EACH_LOG_LINK (nextlinks, link1)
1431 if ((next = try_combine (insn, link, link1,
1432 nextlinks->insn,
1433 &new_direct_jump_p,
1434 last_combined_insn)) != 0)
1435 {
1436 statistics_counter_event (cfun, "four-insn combine", 1);
1437 goto retry;
1438 }
1439 /* I0, I1 -> I2, I2 -> I3. */
1440 for (nextlinks = next1->next; nextlinks;
1441 nextlinks = nextlinks->next)
1442 if ((next = try_combine (insn, link, link1,
1443 nextlinks->insn,
1444 &new_direct_jump_p,
1445 last_combined_insn)) != 0)
1446 {
1447 statistics_counter_event (cfun, "four-insn combine", 1);
1448 goto retry;
1449 }
1450 }
1451
1452 for (next1 = links->next; next1; next1 = next1->next)
1453 {
1454 rtx_insn *link1 = next1->insn;
1455 if (NOTE_P (link1))
1456 continue;
1457 /* I0 -> I2; I1, I2 -> I3. */
1458 FOR_EACH_LOG_LINK (nextlinks, link)
1459 if ((next = try_combine (insn, link, link1,
1460 nextlinks->insn,
1461 &new_direct_jump_p,
1462 last_combined_insn)) != 0)
1463 {
1464 statistics_counter_event (cfun, "four-insn combine", 1);
1465 goto retry;
1466 }
1467 /* I0 -> I1; I1, I2 -> I3. */
1468 FOR_EACH_LOG_LINK (nextlinks, link1)
1469 if ((next = try_combine (insn, link, link1,
1470 nextlinks->insn,
1471 &new_direct_jump_p,
1472 last_combined_insn)) != 0)
1473 {
1474 statistics_counter_event (cfun, "four-insn combine", 1);
1475 goto retry;
1476 }
1477 }
1478 }
1479
1480 /* Try this insn with each REG_EQUAL note it links back to. */
1481 FOR_EACH_LOG_LINK (links, insn)
1482 {
1483 rtx set, note;
1484 rtx_insn *temp = links->insn;
1485 if ((set = single_set (temp)) != 0
1486 && (note = find_reg_equal_equiv_note (temp)) != 0
1487 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1488 && ! side_effects_p (SET_SRC (set))
1489 /* Avoid using a register that may already been marked
1490 dead by an earlier instruction. */
1491 && ! unmentioned_reg_p (note, SET_SRC (set))
1492 && (GET_MODE (note) == VOIDmode
1493 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1494 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1495 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1496 || (GET_MODE (XEXP (SET_DEST (set), 0))
1497 == GET_MODE (note))))))
1498 {
1499 /* Temporarily replace the set's source with the
1500 contents of the REG_EQUAL note. The insn will
1501 be deleted or recognized by try_combine. */
1502 rtx orig_src = SET_SRC (set);
1503 rtx orig_dest = SET_DEST (set);
1504 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1505 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1506 SET_SRC (set) = note;
1507 i2mod = temp;
1508 i2mod_old_rhs = copy_rtx (orig_src);
1509 i2mod_new_rhs = copy_rtx (note);
1510 next = try_combine (insn, i2mod, NULL, NULL,
1511 &new_direct_jump_p,
1512 last_combined_insn);
1513 i2mod = NULL;
1514 if (next)
1515 {
1516 statistics_counter_event (cfun, "insn-with-note combine", 1);
1517 goto retry;
1518 }
1519 SET_SRC (set) = orig_src;
1520 SET_DEST (set) = orig_dest;
1521 }
1522 }
1523
1524 if (!NOTE_P (insn))
1525 record_dead_and_set_regs (insn);
1526
1527 retry:
1528 ;
1529 }
1530 }
1531
1532 default_rtl_profile ();
1533 clear_bb_flags ();
1534 new_direct_jump_p |= purge_all_dead_edges ();
1535 new_direct_jump_p |= delete_noop_moves ();
1536
1537 /* Clean up. */
1538 obstack_free (&insn_link_obstack, NULL);
1539 free (uid_log_links);
1540 free (uid_insn_cost);
1541 reg_stat.release ();
1542
1543 {
1544 struct undo *undo, *next;
1545 for (undo = undobuf.frees; undo; undo = next)
1546 {
1547 next = undo->next;
1548 free (undo);
1549 }
1550 undobuf.frees = 0;
1551 }
1552
1553 total_attempts += combine_attempts;
1554 total_merges += combine_merges;
1555 total_extras += combine_extras;
1556 total_successes += combine_successes;
1557
1558 nonzero_sign_valid = 0;
1559 rtl_hooks = general_rtl_hooks;
1560
1561 /* Make recognizer allow volatile MEMs again. */
1562 init_recog ();
1563
1564 return new_direct_jump_p;
1565 }
1566
1567 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1568
1569 static void
1570 init_reg_last (void)
1571 {
1572 unsigned int i;
1573 reg_stat_type *p;
1574
1575 FOR_EACH_VEC_ELT (reg_stat, i, p)
1576 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1577 }
1578 \f
1579 /* Set up any promoted values for incoming argument registers. */
1580
1581 static void
1582 setup_incoming_promotions (rtx_insn *first)
1583 {
1584 tree arg;
1585 bool strictly_local = false;
1586
1587 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1588 arg = DECL_CHAIN (arg))
1589 {
1590 rtx x, reg = DECL_INCOMING_RTL (arg);
1591 int uns1, uns3;
1592 machine_mode mode1, mode2, mode3, mode4;
1593
1594 /* Only continue if the incoming argument is in a register. */
1595 if (!REG_P (reg))
1596 continue;
1597
1598 /* Determine, if possible, whether all call sites of the current
1599 function lie within the current compilation unit. (This does
1600 take into account the exporting of a function via taking its
1601 address, and so forth.) */
1602 strictly_local
1603 = cgraph_node::local_info_node (current_function_decl)->local;
1604
1605 /* The mode and signedness of the argument before any promotions happen
1606 (equal to the mode of the pseudo holding it at that stage). */
1607 mode1 = TYPE_MODE (TREE_TYPE (arg));
1608 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1609
1610 /* The mode and signedness of the argument after any source language and
1611 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1612 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1613 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1614
1615 /* The mode and signedness of the argument as it is actually passed,
1616 see assign_parm_setup_reg in function.c. */
1617 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1618 TREE_TYPE (cfun->decl), 0);
1619
1620 /* The mode of the register in which the argument is being passed. */
1621 mode4 = GET_MODE (reg);
1622
1623 /* Eliminate sign extensions in the callee when:
1624 (a) A mode promotion has occurred; */
1625 if (mode1 == mode3)
1626 continue;
1627 /* (b) The mode of the register is the same as the mode of
1628 the argument as it is passed; */
1629 if (mode3 != mode4)
1630 continue;
1631 /* (c) There's no language level extension; */
1632 if (mode1 == mode2)
1633 ;
1634 /* (c.1) All callers are from the current compilation unit. If that's
1635 the case we don't have to rely on an ABI, we only have to know
1636 what we're generating right now, and we know that we will do the
1637 mode1 to mode2 promotion with the given sign. */
1638 else if (!strictly_local)
1639 continue;
1640 /* (c.2) The combination of the two promotions is useful. This is
1641 true when the signs match, or if the first promotion is unsigned.
1642 In the later case, (sign_extend (zero_extend x)) is the same as
1643 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1644 else if (uns1)
1645 uns3 = true;
1646 else if (uns3)
1647 continue;
1648
1649 /* Record that the value was promoted from mode1 to mode3,
1650 so that any sign extension at the head of the current
1651 function may be eliminated. */
1652 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1653 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1654 record_value_for_reg (reg, first, x);
1655 }
1656 }
1657
1658 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1659 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1660 because some machines (maybe most) will actually do the sign-extension and
1661 this is the conservative approach.
1662
1663 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1664 kludge. */
1665
1666 static rtx
1667 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1668 {
1669 scalar_int_mode int_mode;
1670 if (CONST_INT_P (src)
1671 && is_a <scalar_int_mode> (mode, &int_mode)
1672 && GET_MODE_PRECISION (int_mode) < prec
1673 && INTVAL (src) > 0
1674 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1675 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1676
1677 return src;
1678 }
1679
1680 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1681 and SET. */
1682
1683 static void
1684 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1685 rtx x)
1686 {
1687 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1688 unsigned HOST_WIDE_INT bits = 0;
1689 rtx reg_equal = NULL, src = SET_SRC (set);
1690 unsigned int num = 0;
1691
1692 if (reg_equal_note)
1693 reg_equal = XEXP (reg_equal_note, 0);
1694
1695 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1696 {
1697 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1698 if (reg_equal)
1699 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1700 }
1701
1702 /* Don't call nonzero_bits if it cannot change anything. */
1703 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1704 {
1705 machine_mode mode = GET_MODE (x);
1706 if (GET_MODE_CLASS (mode) == MODE_INT
1707 && HWI_COMPUTABLE_MODE_P (mode))
1708 mode = nonzero_bits_mode;
1709 bits = nonzero_bits (src, mode);
1710 if (reg_equal && bits)
1711 bits &= nonzero_bits (reg_equal, mode);
1712 rsp->nonzero_bits |= bits;
1713 }
1714
1715 /* Don't call num_sign_bit_copies if it cannot change anything. */
1716 if (rsp->sign_bit_copies != 1)
1717 {
1718 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1719 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1720 {
1721 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1722 if (num == 0 || numeq > num)
1723 num = numeq;
1724 }
1725 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1726 rsp->sign_bit_copies = num;
1727 }
1728 }
1729
1730 /* Called via note_stores. If X is a pseudo that is narrower than
1731 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1732
1733 If we are setting only a portion of X and we can't figure out what
1734 portion, assume all bits will be used since we don't know what will
1735 be happening.
1736
1737 Similarly, set how many bits of X are known to be copies of the sign bit
1738 at all locations in the function. This is the smallest number implied
1739 by any set of X. */
1740
1741 static void
1742 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1743 {
1744 rtx_insn *insn = (rtx_insn *) data;
1745 scalar_int_mode mode;
1746
1747 if (REG_P (x)
1748 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1749 /* If this register is undefined at the start of the file, we can't
1750 say what its contents were. */
1751 && ! REGNO_REG_SET_P
1752 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1753 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1754 && HWI_COMPUTABLE_MODE_P (mode))
1755 {
1756 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1757
1758 if (set == 0 || GET_CODE (set) == CLOBBER)
1759 {
1760 rsp->nonzero_bits = GET_MODE_MASK (mode);
1761 rsp->sign_bit_copies = 1;
1762 return;
1763 }
1764
1765 /* If this register is being initialized using itself, and the
1766 register is uninitialized in this basic block, and there are
1767 no LOG_LINKS which set the register, then part of the
1768 register is uninitialized. In that case we can't assume
1769 anything about the number of nonzero bits.
1770
1771 ??? We could do better if we checked this in
1772 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1773 could avoid making assumptions about the insn which initially
1774 sets the register, while still using the information in other
1775 insns. We would have to be careful to check every insn
1776 involved in the combination. */
1777
1778 if (insn
1779 && reg_referenced_p (x, PATTERN (insn))
1780 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1781 REGNO (x)))
1782 {
1783 struct insn_link *link;
1784
1785 FOR_EACH_LOG_LINK (link, insn)
1786 if (dead_or_set_p (link->insn, x))
1787 break;
1788 if (!link)
1789 {
1790 rsp->nonzero_bits = GET_MODE_MASK (mode);
1791 rsp->sign_bit_copies = 1;
1792 return;
1793 }
1794 }
1795
1796 /* If this is a complex assignment, see if we can convert it into a
1797 simple assignment. */
1798 set = expand_field_assignment (set);
1799
1800 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1801 set what we know about X. */
1802
1803 if (SET_DEST (set) == x
1804 || (paradoxical_subreg_p (SET_DEST (set))
1805 && SUBREG_REG (SET_DEST (set)) == x))
1806 update_rsp_from_reg_equal (rsp, insn, set, x);
1807 else
1808 {
1809 rsp->nonzero_bits = GET_MODE_MASK (mode);
1810 rsp->sign_bit_copies = 1;
1811 }
1812 }
1813 }
1814 \f
1815 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1816 optionally insns that were previously combined into I3 or that will be
1817 combined into the merger of INSN and I3. The order is PRED, PRED2,
1818 INSN, SUCC, SUCC2, I3.
1819
1820 Return 0 if the combination is not allowed for any reason.
1821
1822 If the combination is allowed, *PDEST will be set to the single
1823 destination of INSN and *PSRC to the single source, and this function
1824 will return 1. */
1825
1826 static int
1827 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1828 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1829 rtx *pdest, rtx *psrc)
1830 {
1831 int i;
1832 const_rtx set = 0;
1833 rtx src, dest;
1834 rtx_insn *p;
1835 rtx link;
1836 bool all_adjacent = true;
1837 int (*is_volatile_p) (const_rtx);
1838
1839 if (succ)
1840 {
1841 if (succ2)
1842 {
1843 if (next_active_insn (succ2) != i3)
1844 all_adjacent = false;
1845 if (next_active_insn (succ) != succ2)
1846 all_adjacent = false;
1847 }
1848 else if (next_active_insn (succ) != i3)
1849 all_adjacent = false;
1850 if (next_active_insn (insn) != succ)
1851 all_adjacent = false;
1852 }
1853 else if (next_active_insn (insn) != i3)
1854 all_adjacent = false;
1855
1856 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1857 or a PARALLEL consisting of such a SET and CLOBBERs.
1858
1859 If INSN has CLOBBER parallel parts, ignore them for our processing.
1860 By definition, these happen during the execution of the insn. When it
1861 is merged with another insn, all bets are off. If they are, in fact,
1862 needed and aren't also supplied in I3, they may be added by
1863 recog_for_combine. Otherwise, it won't match.
1864
1865 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1866 note.
1867
1868 Get the source and destination of INSN. If more than one, can't
1869 combine. */
1870
1871 if (GET_CODE (PATTERN (insn)) == SET)
1872 set = PATTERN (insn);
1873 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1874 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1875 {
1876 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1877 {
1878 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1879
1880 switch (GET_CODE (elt))
1881 {
1882 /* This is important to combine floating point insns
1883 for the SH4 port. */
1884 case USE:
1885 /* Combining an isolated USE doesn't make sense.
1886 We depend here on combinable_i3pat to reject them. */
1887 /* The code below this loop only verifies that the inputs of
1888 the SET in INSN do not change. We call reg_set_between_p
1889 to verify that the REG in the USE does not change between
1890 I3 and INSN.
1891 If the USE in INSN was for a pseudo register, the matching
1892 insn pattern will likely match any register; combining this
1893 with any other USE would only be safe if we knew that the
1894 used registers have identical values, or if there was
1895 something to tell them apart, e.g. different modes. For
1896 now, we forgo such complicated tests and simply disallow
1897 combining of USES of pseudo registers with any other USE. */
1898 if (REG_P (XEXP (elt, 0))
1899 && GET_CODE (PATTERN (i3)) == PARALLEL)
1900 {
1901 rtx i3pat = PATTERN (i3);
1902 int i = XVECLEN (i3pat, 0) - 1;
1903 unsigned int regno = REGNO (XEXP (elt, 0));
1904
1905 do
1906 {
1907 rtx i3elt = XVECEXP (i3pat, 0, i);
1908
1909 if (GET_CODE (i3elt) == USE
1910 && REG_P (XEXP (i3elt, 0))
1911 && (REGNO (XEXP (i3elt, 0)) == regno
1912 ? reg_set_between_p (XEXP (elt, 0),
1913 PREV_INSN (insn), i3)
1914 : regno >= FIRST_PSEUDO_REGISTER))
1915 return 0;
1916 }
1917 while (--i >= 0);
1918 }
1919 break;
1920
1921 /* We can ignore CLOBBERs. */
1922 case CLOBBER:
1923 break;
1924
1925 case SET:
1926 /* Ignore SETs whose result isn't used but not those that
1927 have side-effects. */
1928 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1929 && insn_nothrow_p (insn)
1930 && !side_effects_p (elt))
1931 break;
1932
1933 /* If we have already found a SET, this is a second one and
1934 so we cannot combine with this insn. */
1935 if (set)
1936 return 0;
1937
1938 set = elt;
1939 break;
1940
1941 default:
1942 /* Anything else means we can't combine. */
1943 return 0;
1944 }
1945 }
1946
1947 if (set == 0
1948 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1949 so don't do anything with it. */
1950 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1951 return 0;
1952 }
1953 else
1954 return 0;
1955
1956 if (set == 0)
1957 return 0;
1958
1959 /* The simplification in expand_field_assignment may call back to
1960 get_last_value, so set safe guard here. */
1961 subst_low_luid = DF_INSN_LUID (insn);
1962
1963 set = expand_field_assignment (set);
1964 src = SET_SRC (set), dest = SET_DEST (set);
1965
1966 /* Do not eliminate user-specified register if it is in an
1967 asm input because we may break the register asm usage defined
1968 in GCC manual if allow to do so.
1969 Be aware that this may cover more cases than we expect but this
1970 should be harmless. */
1971 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1972 && extract_asm_operands (PATTERN (i3)))
1973 return 0;
1974
1975 /* Don't eliminate a store in the stack pointer. */
1976 if (dest == stack_pointer_rtx
1977 /* Don't combine with an insn that sets a register to itself if it has
1978 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1979 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1980 /* Can't merge an ASM_OPERANDS. */
1981 || GET_CODE (src) == ASM_OPERANDS
1982 /* Can't merge a function call. */
1983 || GET_CODE (src) == CALL
1984 /* Don't eliminate a function call argument. */
1985 || (CALL_P (i3)
1986 && (find_reg_fusage (i3, USE, dest)
1987 || (REG_P (dest)
1988 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1989 && global_regs[REGNO (dest)])))
1990 /* Don't substitute into an incremented register. */
1991 || FIND_REG_INC_NOTE (i3, dest)
1992 || (succ && FIND_REG_INC_NOTE (succ, dest))
1993 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1994 /* Don't substitute into a non-local goto, this confuses CFG. */
1995 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1996 /* Make sure that DEST is not used after INSN but before SUCC, or
1997 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1998 || (!all_adjacent
1999 && ((succ2
2000 && (reg_used_between_p (dest, succ2, i3)
2001 || reg_used_between_p (dest, succ, succ2)))
2002 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
2003 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
2004 || (succ
2005 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
2006 that case SUCC is not in the insn stream, so use SUCC2
2007 instead for this test. */
2008 && reg_used_between_p (dest, insn,
2009 succ2
2010 && INSN_UID (succ) == INSN_UID (succ2)
2011 ? succ2 : succ))))
2012 /* Make sure that the value that is to be substituted for the register
2013 does not use any registers whose values alter in between. However,
2014 If the insns are adjacent, a use can't cross a set even though we
2015 think it might (this can happen for a sequence of insns each setting
2016 the same destination; last_set of that register might point to
2017 a NOTE). If INSN has a REG_EQUIV note, the register is always
2018 equivalent to the memory so the substitution is valid even if there
2019 are intervening stores. Also, don't move a volatile asm or
2020 UNSPEC_VOLATILE across any other insns. */
2021 || (! all_adjacent
2022 && (((!MEM_P (src)
2023 || ! find_reg_note (insn, REG_EQUIV, src))
2024 && modified_between_p (src, insn, i3))
2025 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2026 || GET_CODE (src) == UNSPEC_VOLATILE))
2027 /* Don't combine across a CALL_INSN, because that would possibly
2028 change whether the life span of some REGs crosses calls or not,
2029 and it is a pain to update that information.
2030 Exception: if source is a constant, moving it later can't hurt.
2031 Accept that as a special case. */
2032 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2033 return 0;
2034
2035 /* DEST must either be a REG or CC0. */
2036 if (REG_P (dest))
2037 {
2038 /* If register alignment is being enforced for multi-word items in all
2039 cases except for parameters, it is possible to have a register copy
2040 insn referencing a hard register that is not allowed to contain the
2041 mode being copied and which would not be valid as an operand of most
2042 insns. Eliminate this problem by not combining with such an insn.
2043
2044 Also, on some machines we don't want to extend the life of a hard
2045 register. */
2046
2047 if (REG_P (src)
2048 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2049 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2050 /* Don't extend the life of a hard register unless it is
2051 user variable (if we have few registers) or it can't
2052 fit into the desired register (meaning something special
2053 is going on).
2054 Also avoid substituting a return register into I3, because
2055 reload can't handle a conflict with constraints of other
2056 inputs. */
2057 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2058 && !targetm.hard_regno_mode_ok (REGNO (src),
2059 GET_MODE (src)))))
2060 return 0;
2061 }
2062 else if (GET_CODE (dest) != CC0)
2063 return 0;
2064
2065
2066 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2067 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2068 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2069 {
2070 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2071
2072 /* If the clobber represents an earlyclobber operand, we must not
2073 substitute an expression containing the clobbered register.
2074 As we do not analyze the constraint strings here, we have to
2075 make the conservative assumption. However, if the register is
2076 a fixed hard reg, the clobber cannot represent any operand;
2077 we leave it up to the machine description to either accept or
2078 reject use-and-clobber patterns. */
2079 if (!REG_P (reg)
2080 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2081 || !fixed_regs[REGNO (reg)])
2082 if (reg_overlap_mentioned_p (reg, src))
2083 return 0;
2084 }
2085
2086 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2087 or not), reject, unless nothing volatile comes between it and I3 */
2088
2089 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2090 {
2091 /* Make sure neither succ nor succ2 contains a volatile reference. */
2092 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2093 return 0;
2094 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2095 return 0;
2096 /* We'll check insns between INSN and I3 below. */
2097 }
2098
2099 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2100 to be an explicit register variable, and was chosen for a reason. */
2101
2102 if (GET_CODE (src) == ASM_OPERANDS
2103 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2104 return 0;
2105
2106 /* If INSN contains volatile references (specifically volatile MEMs),
2107 we cannot combine across any other volatile references.
2108 Even if INSN doesn't contain volatile references, any intervening
2109 volatile insn might affect machine state. */
2110
2111 is_volatile_p = volatile_refs_p (PATTERN (insn))
2112 ? volatile_refs_p
2113 : volatile_insn_p;
2114
2115 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2116 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2117 return 0;
2118
2119 /* If INSN contains an autoincrement or autodecrement, make sure that
2120 register is not used between there and I3, and not already used in
2121 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2122 Also insist that I3 not be a jump if using LRA; if it were one
2123 and the incremented register were spilled, we would lose.
2124 Reload handles this correctly. */
2125
2126 if (AUTO_INC_DEC)
2127 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2128 if (REG_NOTE_KIND (link) == REG_INC
2129 && ((JUMP_P (i3) && targetm.lra_p ())
2130 || reg_used_between_p (XEXP (link, 0), insn, i3)
2131 || (pred != NULL_RTX
2132 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2133 || (pred2 != NULL_RTX
2134 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2135 || (succ != NULL_RTX
2136 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2137 || (succ2 != NULL_RTX
2138 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2139 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2140 return 0;
2141
2142 /* Don't combine an insn that follows a CC0-setting insn.
2143 An insn that uses CC0 must not be separated from the one that sets it.
2144 We do, however, allow I2 to follow a CC0-setting insn if that insn
2145 is passed as I1; in that case it will be deleted also.
2146 We also allow combining in this case if all the insns are adjacent
2147 because that would leave the two CC0 insns adjacent as well.
2148 It would be more logical to test whether CC0 occurs inside I1 or I2,
2149 but that would be much slower, and this ought to be equivalent. */
2150
2151 if (HAVE_cc0)
2152 {
2153 p = prev_nonnote_insn (insn);
2154 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2155 && ! all_adjacent)
2156 return 0;
2157 }
2158
2159 /* If we get here, we have passed all the tests and the combination is
2160 to be allowed. */
2161
2162 *pdest = dest;
2163 *psrc = src;
2164
2165 return 1;
2166 }
2167 \f
2168 /* LOC is the location within I3 that contains its pattern or the component
2169 of a PARALLEL of the pattern. We validate that it is valid for combining.
2170
2171 One problem is if I3 modifies its output, as opposed to replacing it
2172 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2173 doing so would produce an insn that is not equivalent to the original insns.
2174
2175 Consider:
2176
2177 (set (reg:DI 101) (reg:DI 100))
2178 (set (subreg:SI (reg:DI 101) 0) <foo>)
2179
2180 This is NOT equivalent to:
2181
2182 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2183 (set (reg:DI 101) (reg:DI 100))])
2184
2185 Not only does this modify 100 (in which case it might still be valid
2186 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2187
2188 We can also run into a problem if I2 sets a register that I1
2189 uses and I1 gets directly substituted into I3 (not via I2). In that
2190 case, we would be getting the wrong value of I2DEST into I3, so we
2191 must reject the combination. This case occurs when I2 and I1 both
2192 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2193 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2194 of a SET must prevent combination from occurring. The same situation
2195 can occur for I0, in which case I0_NOT_IN_SRC is set.
2196
2197 Before doing the above check, we first try to expand a field assignment
2198 into a set of logical operations.
2199
2200 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2201 we place a register that is both set and used within I3. If more than one
2202 such register is detected, we fail.
2203
2204 Return 1 if the combination is valid, zero otherwise. */
2205
2206 static int
2207 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2208 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2209 {
2210 rtx x = *loc;
2211
2212 if (GET_CODE (x) == SET)
2213 {
2214 rtx set = x ;
2215 rtx dest = SET_DEST (set);
2216 rtx src = SET_SRC (set);
2217 rtx inner_dest = dest;
2218 rtx subdest;
2219
2220 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2221 || GET_CODE (inner_dest) == SUBREG
2222 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2223 inner_dest = XEXP (inner_dest, 0);
2224
2225 /* Check for the case where I3 modifies its output, as discussed
2226 above. We don't want to prevent pseudos from being combined
2227 into the address of a MEM, so only prevent the combination if
2228 i1 or i2 set the same MEM. */
2229 if ((inner_dest != dest &&
2230 (!MEM_P (inner_dest)
2231 || rtx_equal_p (i2dest, inner_dest)
2232 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2233 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2234 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2235 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2236 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2237
2238 /* This is the same test done in can_combine_p except we can't test
2239 all_adjacent; we don't have to, since this instruction will stay
2240 in place, thus we are not considering increasing the lifetime of
2241 INNER_DEST.
2242
2243 Also, if this insn sets a function argument, combining it with
2244 something that might need a spill could clobber a previous
2245 function argument; the all_adjacent test in can_combine_p also
2246 checks this; here, we do a more specific test for this case. */
2247
2248 || (REG_P (inner_dest)
2249 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2250 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2251 GET_MODE (inner_dest)))
2252 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2253 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2254 return 0;
2255
2256 /* If DEST is used in I3, it is being killed in this insn, so
2257 record that for later. We have to consider paradoxical
2258 subregs here, since they kill the whole register, but we
2259 ignore partial subregs, STRICT_LOW_PART, etc.
2260 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2261 STACK_POINTER_REGNUM, since these are always considered to be
2262 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2263 subdest = dest;
2264 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2265 subdest = SUBREG_REG (subdest);
2266 if (pi3dest_killed
2267 && REG_P (subdest)
2268 && reg_referenced_p (subdest, PATTERN (i3))
2269 && REGNO (subdest) != FRAME_POINTER_REGNUM
2270 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2271 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2272 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2273 || (REGNO (subdest) != ARG_POINTER_REGNUM
2274 || ! fixed_regs [REGNO (subdest)]))
2275 && REGNO (subdest) != STACK_POINTER_REGNUM)
2276 {
2277 if (*pi3dest_killed)
2278 return 0;
2279
2280 *pi3dest_killed = subdest;
2281 }
2282 }
2283
2284 else if (GET_CODE (x) == PARALLEL)
2285 {
2286 int i;
2287
2288 for (i = 0; i < XVECLEN (x, 0); i++)
2289 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2290 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2291 return 0;
2292 }
2293
2294 return 1;
2295 }
2296 \f
2297 /* Return 1 if X is an arithmetic expression that contains a multiplication
2298 and division. We don't count multiplications by powers of two here. */
2299
2300 static int
2301 contains_muldiv (rtx x)
2302 {
2303 switch (GET_CODE (x))
2304 {
2305 case MOD: case DIV: case UMOD: case UDIV:
2306 return 1;
2307
2308 case MULT:
2309 return ! (CONST_INT_P (XEXP (x, 1))
2310 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2311 default:
2312 if (BINARY_P (x))
2313 return contains_muldiv (XEXP (x, 0))
2314 || contains_muldiv (XEXP (x, 1));
2315
2316 if (UNARY_P (x))
2317 return contains_muldiv (XEXP (x, 0));
2318
2319 return 0;
2320 }
2321 }
2322 \f
2323 /* Determine whether INSN can be used in a combination. Return nonzero if
2324 not. This is used in try_combine to detect early some cases where we
2325 can't perform combinations. */
2326
2327 static int
2328 cant_combine_insn_p (rtx_insn *insn)
2329 {
2330 rtx set;
2331 rtx src, dest;
2332
2333 /* If this isn't really an insn, we can't do anything.
2334 This can occur when flow deletes an insn that it has merged into an
2335 auto-increment address. */
2336 if (!NONDEBUG_INSN_P (insn))
2337 return 1;
2338
2339 /* Never combine loads and stores involving hard regs that are likely
2340 to be spilled. The register allocator can usually handle such
2341 reg-reg moves by tying. If we allow the combiner to make
2342 substitutions of likely-spilled regs, reload might die.
2343 As an exception, we allow combinations involving fixed regs; these are
2344 not available to the register allocator so there's no risk involved. */
2345
2346 set = single_set (insn);
2347 if (! set)
2348 return 0;
2349 src = SET_SRC (set);
2350 dest = SET_DEST (set);
2351 if (GET_CODE (src) == SUBREG)
2352 src = SUBREG_REG (src);
2353 if (GET_CODE (dest) == SUBREG)
2354 dest = SUBREG_REG (dest);
2355 if (REG_P (src) && REG_P (dest)
2356 && ((HARD_REGISTER_P (src)
2357 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2358 #ifdef LEAF_REGISTERS
2359 && ! LEAF_REGISTERS [REGNO (src)])
2360 #else
2361 )
2362 #endif
2363 || (HARD_REGISTER_P (dest)
2364 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2365 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2366 return 1;
2367
2368 return 0;
2369 }
2370
2371 struct likely_spilled_retval_info
2372 {
2373 unsigned regno, nregs;
2374 unsigned mask;
2375 };
2376
2377 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2378 hard registers that are known to be written to / clobbered in full. */
2379 static void
2380 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2381 {
2382 struct likely_spilled_retval_info *const info =
2383 (struct likely_spilled_retval_info *) data;
2384 unsigned regno, nregs;
2385 unsigned new_mask;
2386
2387 if (!REG_P (XEXP (set, 0)))
2388 return;
2389 regno = REGNO (x);
2390 if (regno >= info->regno + info->nregs)
2391 return;
2392 nregs = REG_NREGS (x);
2393 if (regno + nregs <= info->regno)
2394 return;
2395 new_mask = (2U << (nregs - 1)) - 1;
2396 if (regno < info->regno)
2397 new_mask >>= info->regno - regno;
2398 else
2399 new_mask <<= regno - info->regno;
2400 info->mask &= ~new_mask;
2401 }
2402
2403 /* Return nonzero iff part of the return value is live during INSN, and
2404 it is likely spilled. This can happen when more than one insn is needed
2405 to copy the return value, e.g. when we consider to combine into the
2406 second copy insn for a complex value. */
2407
2408 static int
2409 likely_spilled_retval_p (rtx_insn *insn)
2410 {
2411 rtx_insn *use = BB_END (this_basic_block);
2412 rtx reg;
2413 rtx_insn *p;
2414 unsigned regno, nregs;
2415 /* We assume here that no machine mode needs more than
2416 32 hard registers when the value overlaps with a register
2417 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2418 unsigned mask;
2419 struct likely_spilled_retval_info info;
2420
2421 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2422 return 0;
2423 reg = XEXP (PATTERN (use), 0);
2424 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2425 return 0;
2426 regno = REGNO (reg);
2427 nregs = REG_NREGS (reg);
2428 if (nregs == 1)
2429 return 0;
2430 mask = (2U << (nregs - 1)) - 1;
2431
2432 /* Disregard parts of the return value that are set later. */
2433 info.regno = regno;
2434 info.nregs = nregs;
2435 info.mask = mask;
2436 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2437 if (INSN_P (p))
2438 note_stores (p, likely_spilled_retval_1, &info);
2439 mask = info.mask;
2440
2441 /* Check if any of the (probably) live return value registers is
2442 likely spilled. */
2443 nregs --;
2444 do
2445 {
2446 if ((mask & 1 << nregs)
2447 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2448 return 1;
2449 } while (nregs--);
2450 return 0;
2451 }
2452
2453 /* Adjust INSN after we made a change to its destination.
2454
2455 Changing the destination can invalidate notes that say something about
2456 the results of the insn and a LOG_LINK pointing to the insn. */
2457
2458 static void
2459 adjust_for_new_dest (rtx_insn *insn)
2460 {
2461 /* For notes, be conservative and simply remove them. */
2462 remove_reg_equal_equiv_notes (insn, true);
2463
2464 /* The new insn will have a destination that was previously the destination
2465 of an insn just above it. Call distribute_links to make a LOG_LINK from
2466 the next use of that destination. */
2467
2468 rtx set = single_set (insn);
2469 gcc_assert (set);
2470
2471 rtx reg = SET_DEST (set);
2472
2473 while (GET_CODE (reg) == ZERO_EXTRACT
2474 || GET_CODE (reg) == STRICT_LOW_PART
2475 || GET_CODE (reg) == SUBREG)
2476 reg = XEXP (reg, 0);
2477 gcc_assert (REG_P (reg));
2478
2479 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2480
2481 df_insn_rescan (insn);
2482 }
2483
2484 /* Return TRUE if combine can reuse reg X in mode MODE.
2485 ADDED_SETS is nonzero if the original set is still required. */
2486 static bool
2487 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2488 {
2489 unsigned int regno;
2490
2491 if (!REG_P (x))
2492 return false;
2493
2494 /* Don't change between modes with different underlying register sizes,
2495 since this could lead to invalid subregs. */
2496 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2497 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2498 return false;
2499
2500 regno = REGNO (x);
2501 /* Allow hard registers if the new mode is legal, and occupies no more
2502 registers than the old mode. */
2503 if (regno < FIRST_PSEUDO_REGISTER)
2504 return (targetm.hard_regno_mode_ok (regno, mode)
2505 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2506
2507 /* Or a pseudo that is only used once. */
2508 return (regno < reg_n_sets_max
2509 && REG_N_SETS (regno) == 1
2510 && !added_sets
2511 && !REG_USERVAR_P (x));
2512 }
2513
2514
2515 /* Check whether X, the destination of a set, refers to part of
2516 the register specified by REG. */
2517
2518 static bool
2519 reg_subword_p (rtx x, rtx reg)
2520 {
2521 /* Check that reg is an integer mode register. */
2522 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2523 return false;
2524
2525 if (GET_CODE (x) == STRICT_LOW_PART
2526 || GET_CODE (x) == ZERO_EXTRACT)
2527 x = XEXP (x, 0);
2528
2529 return GET_CODE (x) == SUBREG
2530 && SUBREG_REG (x) == reg
2531 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2532 }
2533
2534 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2535 by an arbitrary number of CLOBBERs. */
2536 static bool
2537 is_parallel_of_n_reg_sets (rtx pat, int n)
2538 {
2539 if (GET_CODE (pat) != PARALLEL)
2540 return false;
2541
2542 int len = XVECLEN (pat, 0);
2543 if (len < n)
2544 return false;
2545
2546 int i;
2547 for (i = 0; i < n; i++)
2548 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2549 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2550 return false;
2551 for ( ; i < len; i++)
2552 switch (GET_CODE (XVECEXP (pat, 0, i)))
2553 {
2554 case CLOBBER:
2555 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2556 return false;
2557 break;
2558 default:
2559 return false;
2560 }
2561 return true;
2562 }
2563
2564 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2565 CLOBBERs), can be split into individual SETs in that order, without
2566 changing semantics. */
2567 static bool
2568 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2569 {
2570 if (!insn_nothrow_p (insn))
2571 return false;
2572
2573 rtx pat = PATTERN (insn);
2574
2575 int i, j;
2576 for (i = 0; i < n; i++)
2577 {
2578 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2579 return false;
2580
2581 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2582
2583 for (j = i + 1; j < n; j++)
2584 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2585 return false;
2586 }
2587
2588 return true;
2589 }
2590
2591 /* Return whether X is just a single_set, with the source
2592 a general_operand. */
2593 static bool
2594 is_just_move (rtx_insn *x)
2595 {
2596 rtx set = single_set (x);
2597 if (!set)
2598 return false;
2599
2600 return general_operand (SET_SRC (set), VOIDmode);
2601 }
2602
2603 /* Callback function to count autoincs. */
2604
2605 static int
2606 count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
2607 {
2608 (*((int *) arg))++;
2609
2610 return 0;
2611 }
2612
2613 /* Try to combine the insns I0, I1 and I2 into I3.
2614 Here I0, I1 and I2 appear earlier than I3.
2615 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2616 I3.
2617
2618 If we are combining more than two insns and the resulting insn is not
2619 recognized, try splitting it into two insns. If that happens, I2 and I3
2620 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2621 Otherwise, I0, I1 and I2 are pseudo-deleted.
2622
2623 Return 0 if the combination does not work. Then nothing is changed.
2624 If we did the combination, return the insn at which combine should
2625 resume scanning.
2626
2627 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2628 new direct jump instruction.
2629
2630 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2631 been I3 passed to an earlier try_combine within the same basic
2632 block. */
2633
2634 static rtx_insn *
2635 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2636 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2637 {
2638 /* New patterns for I3 and I2, respectively. */
2639 rtx newpat, newi2pat = 0;
2640 rtvec newpat_vec_with_clobbers = 0;
2641 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2642 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2643 dead. */
2644 int added_sets_0, added_sets_1, added_sets_2;
2645 /* Total number of SETs to put into I3. */
2646 int total_sets;
2647 /* Nonzero if I2's or I1's body now appears in I3. */
2648 int i2_is_used = 0, i1_is_used = 0;
2649 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2650 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2651 /* Contains I3 if the destination of I3 is used in its source, which means
2652 that the old life of I3 is being killed. If that usage is placed into
2653 I2 and not in I3, a REG_DEAD note must be made. */
2654 rtx i3dest_killed = 0;
2655 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2656 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2657 /* Copy of SET_SRC of I1 and I0, if needed. */
2658 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2659 /* Set if I2DEST was reused as a scratch register. */
2660 bool i2scratch = false;
2661 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2662 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2663 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2664 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2665 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2666 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2667 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2668 /* Notes that must be added to REG_NOTES in I3 and I2. */
2669 rtx new_i3_notes, new_i2_notes;
2670 /* Notes that we substituted I3 into I2 instead of the normal case. */
2671 int i3_subst_into_i2 = 0;
2672 /* Notes that I1, I2 or I3 is a MULT operation. */
2673 int have_mult = 0;
2674 int swap_i2i3 = 0;
2675 int split_i2i3 = 0;
2676 int changed_i3_dest = 0;
2677 bool i2_was_move = false, i3_was_move = false;
2678 int n_auto_inc = 0;
2679
2680 int maxreg;
2681 rtx_insn *temp_insn;
2682 rtx temp_expr;
2683 struct insn_link *link;
2684 rtx other_pat = 0;
2685 rtx new_other_notes;
2686 int i;
2687 scalar_int_mode dest_mode, temp_mode;
2688
2689 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2690 never be). */
2691 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2692 return 0;
2693
2694 /* Only try four-insn combinations when there's high likelihood of
2695 success. Look for simple insns, such as loads of constants or
2696 binary operations involving a constant. */
2697 if (i0)
2698 {
2699 int i;
2700 int ngood = 0;
2701 int nshift = 0;
2702 rtx set0, set3;
2703
2704 if (!flag_expensive_optimizations)
2705 return 0;
2706
2707 for (i = 0; i < 4; i++)
2708 {
2709 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2710 rtx set = single_set (insn);
2711 rtx src;
2712 if (!set)
2713 continue;
2714 src = SET_SRC (set);
2715 if (CONSTANT_P (src))
2716 {
2717 ngood += 2;
2718 break;
2719 }
2720 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2721 ngood++;
2722 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2723 || GET_CODE (src) == LSHIFTRT)
2724 nshift++;
2725 }
2726
2727 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2728 are likely manipulating its value. Ideally we'll be able to combine
2729 all four insns into a bitfield insertion of some kind.
2730
2731 Note the source in I0 might be inside a sign/zero extension and the
2732 memory modes in I0 and I3 might be different. So extract the address
2733 from the destination of I3 and search for it in the source of I0.
2734
2735 In the event that there's a match but the source/dest do not actually
2736 refer to the same memory, the worst that happens is we try some
2737 combinations that we wouldn't have otherwise. */
2738 if ((set0 = single_set (i0))
2739 /* Ensure the source of SET0 is a MEM, possibly buried inside
2740 an extension. */
2741 && (GET_CODE (SET_SRC (set0)) == MEM
2742 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2743 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2744 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2745 && (set3 = single_set (i3))
2746 /* Ensure the destination of SET3 is a MEM. */
2747 && GET_CODE (SET_DEST (set3)) == MEM
2748 /* Would it be better to extract the base address for the MEM
2749 in SET3 and look for that? I don't have cases where it matters
2750 but I could envision such cases. */
2751 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2752 ngood += 2;
2753
2754 if (ngood < 2 && nshift < 2)
2755 return 0;
2756 }
2757
2758 /* Exit early if one of the insns involved can't be used for
2759 combinations. */
2760 if (CALL_P (i2)
2761 || (i1 && CALL_P (i1))
2762 || (i0 && CALL_P (i0))
2763 || cant_combine_insn_p (i3)
2764 || cant_combine_insn_p (i2)
2765 || (i1 && cant_combine_insn_p (i1))
2766 || (i0 && cant_combine_insn_p (i0))
2767 || likely_spilled_retval_p (i3))
2768 return 0;
2769
2770 combine_attempts++;
2771 undobuf.other_insn = 0;
2772
2773 /* Reset the hard register usage information. */
2774 CLEAR_HARD_REG_SET (newpat_used_regs);
2775
2776 if (dump_file && (dump_flags & TDF_DETAILS))
2777 {
2778 if (i0)
2779 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2780 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2781 else if (i1)
2782 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2783 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2784 else
2785 fprintf (dump_file, "\nTrying %d -> %d:\n",
2786 INSN_UID (i2), INSN_UID (i3));
2787
2788 if (i0)
2789 dump_insn_slim (dump_file, i0);
2790 if (i1)
2791 dump_insn_slim (dump_file, i1);
2792 dump_insn_slim (dump_file, i2);
2793 dump_insn_slim (dump_file, i3);
2794 }
2795
2796 /* If multiple insns feed into one of I2 or I3, they can be in any
2797 order. To simplify the code below, reorder them in sequence. */
2798 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2799 std::swap (i0, i2);
2800 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2801 std::swap (i0, i1);
2802 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2803 std::swap (i1, i2);
2804
2805 added_links_insn = 0;
2806 added_notes_insn = 0;
2807
2808 /* First check for one important special case that the code below will
2809 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2810 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2811 we may be able to replace that destination with the destination of I3.
2812 This occurs in the common code where we compute both a quotient and
2813 remainder into a structure, in which case we want to do the computation
2814 directly into the structure to avoid register-register copies.
2815
2816 Note that this case handles both multiple sets in I2 and also cases
2817 where I2 has a number of CLOBBERs inside the PARALLEL.
2818
2819 We make very conservative checks below and only try to handle the
2820 most common cases of this. For example, we only handle the case
2821 where I2 and I3 are adjacent to avoid making difficult register
2822 usage tests. */
2823
2824 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2825 && REG_P (SET_SRC (PATTERN (i3)))
2826 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2827 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2828 && GET_CODE (PATTERN (i2)) == PARALLEL
2829 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2830 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2831 below would need to check what is inside (and reg_overlap_mentioned_p
2832 doesn't support those codes anyway). Don't allow those destinations;
2833 the resulting insn isn't likely to be recognized anyway. */
2834 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2835 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2836 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2837 SET_DEST (PATTERN (i3)))
2838 && next_active_insn (i2) == i3)
2839 {
2840 rtx p2 = PATTERN (i2);
2841
2842 /* Make sure that the destination of I3,
2843 which we are going to substitute into one output of I2,
2844 is not used within another output of I2. We must avoid making this:
2845 (parallel [(set (mem (reg 69)) ...)
2846 (set (reg 69) ...)])
2847 which is not well-defined as to order of actions.
2848 (Besides, reload can't handle output reloads for this.)
2849
2850 The problem can also happen if the dest of I3 is a memory ref,
2851 if another dest in I2 is an indirect memory ref.
2852
2853 Neither can this PARALLEL be an asm. We do not allow combining
2854 that usually (see can_combine_p), so do not here either. */
2855 bool ok = true;
2856 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2857 {
2858 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2859 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2860 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2861 SET_DEST (XVECEXP (p2, 0, i))))
2862 ok = false;
2863 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2864 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2865 ok = false;
2866 }
2867
2868 if (ok)
2869 for (i = 0; i < XVECLEN (p2, 0); i++)
2870 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2871 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2872 {
2873 combine_merges++;
2874
2875 subst_insn = i3;
2876 subst_low_luid = DF_INSN_LUID (i2);
2877
2878 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2879 i2src = SET_SRC (XVECEXP (p2, 0, i));
2880 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2881 i2dest_killed = dead_or_set_p (i2, i2dest);
2882
2883 /* Replace the dest in I2 with our dest and make the resulting
2884 insn the new pattern for I3. Then skip to where we validate
2885 the pattern. Everything was set up above. */
2886 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2887 newpat = p2;
2888 i3_subst_into_i2 = 1;
2889 goto validate_replacement;
2890 }
2891 }
2892
2893 /* If I2 is setting a pseudo to a constant and I3 is setting some
2894 sub-part of it to another constant, merge them by making a new
2895 constant. */
2896 if (i1 == 0
2897 && (temp_expr = single_set (i2)) != 0
2898 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2899 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2900 && GET_CODE (PATTERN (i3)) == SET
2901 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2902 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2903 {
2904 rtx dest = SET_DEST (PATTERN (i3));
2905 rtx temp_dest = SET_DEST (temp_expr);
2906 int offset = -1;
2907 int width = 0;
2908
2909 if (GET_CODE (dest) == ZERO_EXTRACT)
2910 {
2911 if (CONST_INT_P (XEXP (dest, 1))
2912 && CONST_INT_P (XEXP (dest, 2))
2913 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2914 &dest_mode))
2915 {
2916 width = INTVAL (XEXP (dest, 1));
2917 offset = INTVAL (XEXP (dest, 2));
2918 dest = XEXP (dest, 0);
2919 if (BITS_BIG_ENDIAN)
2920 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2921 }
2922 }
2923 else
2924 {
2925 if (GET_CODE (dest) == STRICT_LOW_PART)
2926 dest = XEXP (dest, 0);
2927 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2928 {
2929 width = GET_MODE_PRECISION (dest_mode);
2930 offset = 0;
2931 }
2932 }
2933
2934 if (offset >= 0)
2935 {
2936 /* If this is the low part, we're done. */
2937 if (subreg_lowpart_p (dest))
2938 ;
2939 /* Handle the case where inner is twice the size of outer. */
2940 else if (GET_MODE_PRECISION (temp_mode)
2941 == 2 * GET_MODE_PRECISION (dest_mode))
2942 offset += GET_MODE_PRECISION (dest_mode);
2943 /* Otherwise give up for now. */
2944 else
2945 offset = -1;
2946 }
2947
2948 if (offset >= 0)
2949 {
2950 rtx inner = SET_SRC (PATTERN (i3));
2951 rtx outer = SET_SRC (temp_expr);
2952
2953 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2954 rtx_mode_t (inner, dest_mode),
2955 offset, width);
2956
2957 combine_merges++;
2958 subst_insn = i3;
2959 subst_low_luid = DF_INSN_LUID (i2);
2960 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2961 i2dest = temp_dest;
2962 i2dest_killed = dead_or_set_p (i2, i2dest);
2963
2964 /* Replace the source in I2 with the new constant and make the
2965 resulting insn the new pattern for I3. Then skip to where we
2966 validate the pattern. Everything was set up above. */
2967 SUBST (SET_SRC (temp_expr),
2968 immed_wide_int_const (o, temp_mode));
2969
2970 newpat = PATTERN (i2);
2971
2972 /* The dest of I3 has been replaced with the dest of I2. */
2973 changed_i3_dest = 1;
2974 goto validate_replacement;
2975 }
2976 }
2977
2978 /* If we have no I1 and I2 looks like:
2979 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2980 (set Y OP)])
2981 make up a dummy I1 that is
2982 (set Y OP)
2983 and change I2 to be
2984 (set (reg:CC X) (compare:CC Y (const_int 0)))
2985
2986 (We can ignore any trailing CLOBBERs.)
2987
2988 This undoes a previous combination and allows us to match a branch-and-
2989 decrement insn. */
2990
2991 if (!HAVE_cc0 && i1 == 0
2992 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2993 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2994 == MODE_CC)
2995 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2996 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2997 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2998 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2999 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3000 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3001 {
3002 /* We make I1 with the same INSN_UID as I2. This gives it
3003 the same DF_INSN_LUID for value tracking. Our fake I1 will
3004 never appear in the insn stream so giving it the same INSN_UID
3005 as I2 will not cause a problem. */
3006
3007 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3008 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3009 -1, NULL_RTX);
3010 INSN_UID (i1) = INSN_UID (i2);
3011
3012 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3013 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3014 SET_DEST (PATTERN (i1)));
3015 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3016 SUBST_LINK (LOG_LINKS (i2),
3017 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3018 }
3019
3020 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3021 make those two SETs separate I1 and I2 insns, and make an I0 that is
3022 the original I1. */
3023 if (!HAVE_cc0 && i0 == 0
3024 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3025 && can_split_parallel_of_n_reg_sets (i2, 2)
3026 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3027 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3028 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3029 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3030 {
3031 /* If there is no I1, there is no I0 either. */
3032 i0 = i1;
3033
3034 /* We make I1 with the same INSN_UID as I2. This gives it
3035 the same DF_INSN_LUID for value tracking. Our fake I1 will
3036 never appear in the insn stream so giving it the same INSN_UID
3037 as I2 will not cause a problem. */
3038
3039 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3040 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3041 -1, NULL_RTX);
3042 INSN_UID (i1) = INSN_UID (i2);
3043
3044 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3045 }
3046
3047 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3048 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3049 {
3050 if (dump_file && (dump_flags & TDF_DETAILS))
3051 fprintf (dump_file, "Can't combine i2 into i3\n");
3052 undo_all ();
3053 return 0;
3054 }
3055 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3056 {
3057 if (dump_file && (dump_flags & TDF_DETAILS))
3058 fprintf (dump_file, "Can't combine i1 into i3\n");
3059 undo_all ();
3060 return 0;
3061 }
3062 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3063 {
3064 if (dump_file && (dump_flags & TDF_DETAILS))
3065 fprintf (dump_file, "Can't combine i0 into i3\n");
3066 undo_all ();
3067 return 0;
3068 }
3069
3070 /* Record whether i2 and i3 are trivial moves. */
3071 i2_was_move = is_just_move (i2);
3072 i3_was_move = is_just_move (i3);
3073
3074 /* Record whether I2DEST is used in I2SRC and similarly for the other
3075 cases. Knowing this will help in register status updating below. */
3076 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3077 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3078 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3079 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3080 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3081 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3082 i2dest_killed = dead_or_set_p (i2, i2dest);
3083 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3084 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3085
3086 /* For the earlier insns, determine which of the subsequent ones they
3087 feed. */
3088 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3089 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3090 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3091 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3092 && reg_overlap_mentioned_p (i0dest, i2src))));
3093
3094 /* Ensure that I3's pattern can be the destination of combines. */
3095 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3096 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3097 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3098 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3099 &i3dest_killed))
3100 {
3101 undo_all ();
3102 return 0;
3103 }
3104
3105 /* See if any of the insns is a MULT operation. Unless one is, we will
3106 reject a combination that is, since it must be slower. Be conservative
3107 here. */
3108 if (GET_CODE (i2src) == MULT
3109 || (i1 != 0 && GET_CODE (i1src) == MULT)
3110 || (i0 != 0 && GET_CODE (i0src) == MULT)
3111 || (GET_CODE (PATTERN (i3)) == SET
3112 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3113 have_mult = 1;
3114
3115 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3116 We used to do this EXCEPT in one case: I3 has a post-inc in an
3117 output operand. However, that exception can give rise to insns like
3118 mov r3,(r3)+
3119 which is a famous insn on the PDP-11 where the value of r3 used as the
3120 source was model-dependent. Avoid this sort of thing. */
3121
3122 #if 0
3123 if (!(GET_CODE (PATTERN (i3)) == SET
3124 && REG_P (SET_SRC (PATTERN (i3)))
3125 && MEM_P (SET_DEST (PATTERN (i3)))
3126 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3127 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3128 /* It's not the exception. */
3129 #endif
3130 if (AUTO_INC_DEC)
3131 {
3132 rtx link;
3133 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3134 if (REG_NOTE_KIND (link) == REG_INC
3135 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3136 || (i1 != 0
3137 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3138 {
3139 undo_all ();
3140 return 0;
3141 }
3142 }
3143
3144 /* See if the SETs in I1 or I2 need to be kept around in the merged
3145 instruction: whenever the value set there is still needed past I3.
3146 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3147
3148 For the SET in I1, we have two cases: if I1 and I2 independently feed
3149 into I3, the set in I1 needs to be kept around unless I1DEST dies
3150 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3151 in I1 needs to be kept around unless I1DEST dies or is set in either
3152 I2 or I3. The same considerations apply to I0. */
3153
3154 added_sets_2 = !dead_or_set_p (i3, i2dest);
3155
3156 if (i1)
3157 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3158 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3159 else
3160 added_sets_1 = 0;
3161
3162 if (i0)
3163 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3164 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3165 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3166 && dead_or_set_p (i2, i0dest)));
3167 else
3168 added_sets_0 = 0;
3169
3170 /* We are about to copy insns for the case where they need to be kept
3171 around. Check that they can be copied in the merged instruction. */
3172
3173 if (targetm.cannot_copy_insn_p
3174 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3175 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3176 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3177 {
3178 undo_all ();
3179 return 0;
3180 }
3181
3182 /* Count how many auto_inc expressions there were in the original insns;
3183 we need to have the same number in the resulting patterns. */
3184
3185 if (i0)
3186 for_each_inc_dec (PATTERN (i0), count_auto_inc, &n_auto_inc);
3187 if (i1)
3188 for_each_inc_dec (PATTERN (i1), count_auto_inc, &n_auto_inc);
3189 for_each_inc_dec (PATTERN (i2), count_auto_inc, &n_auto_inc);
3190 for_each_inc_dec (PATTERN (i3), count_auto_inc, &n_auto_inc);
3191
3192 /* If the set in I2 needs to be kept around, we must make a copy of
3193 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3194 PATTERN (I2), we are only substituting for the original I1DEST, not into
3195 an already-substituted copy. This also prevents making self-referential
3196 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3197 I2DEST. */
3198
3199 if (added_sets_2)
3200 {
3201 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3202 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3203 else
3204 i2pat = copy_rtx (PATTERN (i2));
3205 }
3206
3207 if (added_sets_1)
3208 {
3209 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3210 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3211 else
3212 i1pat = copy_rtx (PATTERN (i1));
3213 }
3214
3215 if (added_sets_0)
3216 {
3217 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3218 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3219 else
3220 i0pat = copy_rtx (PATTERN (i0));
3221 }
3222
3223 combine_merges++;
3224
3225 /* Substitute in the latest insn for the regs set by the earlier ones. */
3226
3227 maxreg = max_reg_num ();
3228
3229 subst_insn = i3;
3230
3231 /* Many machines that don't use CC0 have insns that can both perform an
3232 arithmetic operation and set the condition code. These operations will
3233 be represented as a PARALLEL with the first element of the vector
3234 being a COMPARE of an arithmetic operation with the constant zero.
3235 The second element of the vector will set some pseudo to the result
3236 of the same arithmetic operation. If we simplify the COMPARE, we won't
3237 match such a pattern and so will generate an extra insn. Here we test
3238 for this case, where both the comparison and the operation result are
3239 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3240 I2SRC. Later we will make the PARALLEL that contains I2. */
3241
3242 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3243 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3244 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3245 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3246 {
3247 rtx newpat_dest;
3248 rtx *cc_use_loc = NULL;
3249 rtx_insn *cc_use_insn = NULL;
3250 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3251 machine_mode compare_mode, orig_compare_mode;
3252 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3253 scalar_int_mode mode;
3254
3255 newpat = PATTERN (i3);
3256 newpat_dest = SET_DEST (newpat);
3257 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3258
3259 if (undobuf.other_insn == 0
3260 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3261 &cc_use_insn)))
3262 {
3263 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3264 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3265 compare_code = simplify_compare_const (compare_code, mode,
3266 op0, &op1);
3267 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3268 }
3269
3270 /* Do the rest only if op1 is const0_rtx, which may be the
3271 result of simplification. */
3272 if (op1 == const0_rtx)
3273 {
3274 /* If a single use of the CC is found, prepare to modify it
3275 when SELECT_CC_MODE returns a new CC-class mode, or when
3276 the above simplify_compare_const() returned a new comparison
3277 operator. undobuf.other_insn is assigned the CC use insn
3278 when modifying it. */
3279 if (cc_use_loc)
3280 {
3281 #ifdef SELECT_CC_MODE
3282 machine_mode new_mode
3283 = SELECT_CC_MODE (compare_code, op0, op1);
3284 if (new_mode != orig_compare_mode
3285 && can_change_dest_mode (SET_DEST (newpat),
3286 added_sets_2, new_mode))
3287 {
3288 unsigned int regno = REGNO (newpat_dest);
3289 compare_mode = new_mode;
3290 if (regno < FIRST_PSEUDO_REGISTER)
3291 newpat_dest = gen_rtx_REG (compare_mode, regno);
3292 else
3293 {
3294 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3295 newpat_dest = regno_reg_rtx[regno];
3296 }
3297 }
3298 #endif
3299 /* Cases for modifying the CC-using comparison. */
3300 if (compare_code != orig_compare_code
3301 /* ??? Do we need to verify the zero rtx? */
3302 && XEXP (*cc_use_loc, 1) == const0_rtx)
3303 {
3304 /* Replace cc_use_loc with entire new RTX. */
3305 SUBST (*cc_use_loc,
3306 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3307 newpat_dest, const0_rtx));
3308 undobuf.other_insn = cc_use_insn;
3309 }
3310 else if (compare_mode != orig_compare_mode)
3311 {
3312 /* Just replace the CC reg with a new mode. */
3313 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3314 undobuf.other_insn = cc_use_insn;
3315 }
3316 }
3317
3318 /* Now we modify the current newpat:
3319 First, SET_DEST(newpat) is updated if the CC mode has been
3320 altered. For targets without SELECT_CC_MODE, this should be
3321 optimized away. */
3322 if (compare_mode != orig_compare_mode)
3323 SUBST (SET_DEST (newpat), newpat_dest);
3324 /* This is always done to propagate i2src into newpat. */
3325 SUBST (SET_SRC (newpat),
3326 gen_rtx_COMPARE (compare_mode, op0, op1));
3327 /* Create new version of i2pat if needed; the below PARALLEL
3328 creation needs this to work correctly. */
3329 if (! rtx_equal_p (i2src, op0))
3330 i2pat = gen_rtx_SET (i2dest, op0);
3331 i2_is_used = 1;
3332 }
3333 }
3334
3335 if (i2_is_used == 0)
3336 {
3337 /* It is possible that the source of I2 or I1 may be performing
3338 an unneeded operation, such as a ZERO_EXTEND of something
3339 that is known to have the high part zero. Handle that case
3340 by letting subst look at the inner insns.
3341
3342 Another way to do this would be to have a function that tries
3343 to simplify a single insn instead of merging two or more
3344 insns. We don't do this because of the potential of infinite
3345 loops and because of the potential extra memory required.
3346 However, doing it the way we are is a bit of a kludge and
3347 doesn't catch all cases.
3348
3349 But only do this if -fexpensive-optimizations since it slows
3350 things down and doesn't usually win.
3351
3352 This is not done in the COMPARE case above because the
3353 unmodified I2PAT is used in the PARALLEL and so a pattern
3354 with a modified I2SRC would not match. */
3355
3356 if (flag_expensive_optimizations)
3357 {
3358 /* Pass pc_rtx so no substitutions are done, just
3359 simplifications. */
3360 if (i1)
3361 {
3362 subst_low_luid = DF_INSN_LUID (i1);
3363 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3364 }
3365
3366 subst_low_luid = DF_INSN_LUID (i2);
3367 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3368 }
3369
3370 n_occurrences = 0; /* `subst' counts here */
3371 subst_low_luid = DF_INSN_LUID (i2);
3372
3373 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3374 copy of I2SRC each time we substitute it, in order to avoid creating
3375 self-referential RTL when we will be substituting I1SRC for I1DEST
3376 later. Likewise if I0 feeds into I2, either directly or indirectly
3377 through I1, and I0DEST is in I0SRC. */
3378 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3379 (i1_feeds_i2_n && i1dest_in_i1src)
3380 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3381 && i0dest_in_i0src));
3382 substed_i2 = 1;
3383
3384 /* Record whether I2's body now appears within I3's body. */
3385 i2_is_used = n_occurrences;
3386 }
3387
3388 /* If we already got a failure, don't try to do more. Otherwise, try to
3389 substitute I1 if we have it. */
3390
3391 if (i1 && GET_CODE (newpat) != CLOBBER)
3392 {
3393 /* Before we can do this substitution, we must redo the test done
3394 above (see detailed comments there) that ensures I1DEST isn't
3395 mentioned in any SETs in NEWPAT that are field assignments. */
3396 if (!combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3397 0, 0, 0))
3398 {
3399 undo_all ();
3400 return 0;
3401 }
3402
3403 n_occurrences = 0;
3404 subst_low_luid = DF_INSN_LUID (i1);
3405
3406 /* If the following substitution will modify I1SRC, make a copy of it
3407 for the case where it is substituted for I1DEST in I2PAT later. */
3408 if (added_sets_2 && i1_feeds_i2_n)
3409 i1src_copy = copy_rtx (i1src);
3410
3411 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3412 copy of I1SRC each time we substitute it, in order to avoid creating
3413 self-referential RTL when we will be substituting I0SRC for I0DEST
3414 later. */
3415 newpat = subst (newpat, i1dest, i1src, 0, 0,
3416 i0_feeds_i1_n && i0dest_in_i0src);
3417 substed_i1 = 1;
3418
3419 /* Record whether I1's body now appears within I3's body. */
3420 i1_is_used = n_occurrences;
3421 }
3422
3423 /* Likewise for I0 if we have it. */
3424
3425 if (i0 && GET_CODE (newpat) != CLOBBER)
3426 {
3427 if (!combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3428 0, 0, 0))
3429 {
3430 undo_all ();
3431 return 0;
3432 }
3433
3434 /* If the following substitution will modify I0SRC, make a copy of it
3435 for the case where it is substituted for I0DEST in I1PAT later. */
3436 if (added_sets_1 && i0_feeds_i1_n)
3437 i0src_copy = copy_rtx (i0src);
3438 /* And a copy for I0DEST in I2PAT substitution. */
3439 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3440 || (i0_feeds_i2_n)))
3441 i0src_copy2 = copy_rtx (i0src);
3442
3443 n_occurrences = 0;
3444 subst_low_luid = DF_INSN_LUID (i0);
3445 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3446 substed_i0 = 1;
3447 }
3448
3449 if (n_auto_inc)
3450 {
3451 int new_n_auto_inc = 0;
3452 for_each_inc_dec (newpat, count_auto_inc, &new_n_auto_inc);
3453
3454 if (n_auto_inc != new_n_auto_inc)
3455 {
3456 if (dump_file && (dump_flags & TDF_DETAILS))
3457 fprintf (dump_file, "Number of auto_inc expressions changed\n");
3458 undo_all ();
3459 return 0;
3460 }
3461 }
3462
3463 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3464 to count all the ways that I2SRC and I1SRC can be used. */
3465 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3466 && i2_is_used + added_sets_2 > 1)
3467 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3468 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3469 > 1))
3470 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3471 && (n_occurrences + added_sets_0
3472 + (added_sets_1 && i0_feeds_i1_n)
3473 + (added_sets_2 && i0_feeds_i2_n)
3474 > 1))
3475 /* Fail if we tried to make a new register. */
3476 || max_reg_num () != maxreg
3477 /* Fail if we couldn't do something and have a CLOBBER. */
3478 || GET_CODE (newpat) == CLOBBER
3479 /* Fail if this new pattern is a MULT and we didn't have one before
3480 at the outer level. */
3481 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3482 && ! have_mult))
3483 {
3484 undo_all ();
3485 return 0;
3486 }
3487
3488 /* If the actions of the earlier insns must be kept
3489 in addition to substituting them into the latest one,
3490 we must make a new PARALLEL for the latest insn
3491 to hold additional the SETs. */
3492
3493 if (added_sets_0 || added_sets_1 || added_sets_2)
3494 {
3495 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3496 combine_extras++;
3497
3498 if (GET_CODE (newpat) == PARALLEL)
3499 {
3500 rtvec old = XVEC (newpat, 0);
3501 total_sets = XVECLEN (newpat, 0) + extra_sets;
3502 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3503 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3504 sizeof (old->elem[0]) * old->num_elem);
3505 }
3506 else
3507 {
3508 rtx old = newpat;
3509 total_sets = 1 + extra_sets;
3510 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3511 XVECEXP (newpat, 0, 0) = old;
3512 }
3513
3514 if (added_sets_0)
3515 XVECEXP (newpat, 0, --total_sets) = i0pat;
3516
3517 if (added_sets_1)
3518 {
3519 rtx t = i1pat;
3520 if (i0_feeds_i1_n)
3521 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3522
3523 XVECEXP (newpat, 0, --total_sets) = t;
3524 }
3525 if (added_sets_2)
3526 {
3527 rtx t = i2pat;
3528 if (i1_feeds_i2_n)
3529 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3530 i0_feeds_i1_n && i0dest_in_i0src);
3531 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3532 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3533
3534 XVECEXP (newpat, 0, --total_sets) = t;
3535 }
3536 }
3537
3538 validate_replacement:
3539
3540 /* Note which hard regs this insn has as inputs. */
3541 mark_used_regs_combine (newpat);
3542
3543 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3544 consider splitting this pattern, we might need these clobbers. */
3545 if (i1 && GET_CODE (newpat) == PARALLEL
3546 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3547 {
3548 int len = XVECLEN (newpat, 0);
3549
3550 newpat_vec_with_clobbers = rtvec_alloc (len);
3551 for (i = 0; i < len; i++)
3552 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3553 }
3554
3555 /* We have recognized nothing yet. */
3556 insn_code_number = -1;
3557
3558 /* See if this is a PARALLEL of two SETs where one SET's destination is
3559 a register that is unused and this isn't marked as an instruction that
3560 might trap in an EH region. In that case, we just need the other SET.
3561 We prefer this over the PARALLEL.
3562
3563 This can occur when simplifying a divmod insn. We *must* test for this
3564 case here because the code below that splits two independent SETs doesn't
3565 handle this case correctly when it updates the register status.
3566
3567 It's pointless doing this if we originally had two sets, one from
3568 i3, and one from i2. Combining then splitting the parallel results
3569 in the original i2 again plus an invalid insn (which we delete).
3570 The net effect is only to move instructions around, which makes
3571 debug info less accurate.
3572
3573 If the remaining SET came from I2 its destination should not be used
3574 between I2 and I3. See PR82024. */
3575
3576 if (!(added_sets_2 && i1 == 0)
3577 && is_parallel_of_n_reg_sets (newpat, 2)
3578 && asm_noperands (newpat) < 0)
3579 {
3580 rtx set0 = XVECEXP (newpat, 0, 0);
3581 rtx set1 = XVECEXP (newpat, 0, 1);
3582 rtx oldpat = newpat;
3583
3584 if (((REG_P (SET_DEST (set1))
3585 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3586 || (GET_CODE (SET_DEST (set1)) == SUBREG
3587 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3588 && insn_nothrow_p (i3)
3589 && !side_effects_p (SET_SRC (set1)))
3590 {
3591 newpat = set0;
3592 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3593 }
3594
3595 else if (((REG_P (SET_DEST (set0))
3596 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3597 || (GET_CODE (SET_DEST (set0)) == SUBREG
3598 && find_reg_note (i3, REG_UNUSED,
3599 SUBREG_REG (SET_DEST (set0)))))
3600 && insn_nothrow_p (i3)
3601 && !side_effects_p (SET_SRC (set0)))
3602 {
3603 rtx dest = SET_DEST (set1);
3604 if (GET_CODE (dest) == SUBREG)
3605 dest = SUBREG_REG (dest);
3606 if (!reg_used_between_p (dest, i2, i3))
3607 {
3608 newpat = set1;
3609 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3610
3611 if (insn_code_number >= 0)
3612 changed_i3_dest = 1;
3613 }
3614 }
3615
3616 if (insn_code_number < 0)
3617 newpat = oldpat;
3618 }
3619
3620 /* Is the result of combination a valid instruction? */
3621 if (insn_code_number < 0)
3622 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3623
3624 /* If we were combining three insns and the result is a simple SET
3625 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3626 insns. There are two ways to do this. It can be split using a
3627 machine-specific method (like when you have an addition of a large
3628 constant) or by combine in the function find_split_point. */
3629
3630 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3631 && asm_noperands (newpat) < 0)
3632 {
3633 rtx parallel, *split;
3634 rtx_insn *m_split_insn;
3635
3636 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3637 use I2DEST as a scratch register will help. In the latter case,
3638 convert I2DEST to the mode of the source of NEWPAT if we can. */
3639
3640 m_split_insn = combine_split_insns (newpat, i3);
3641
3642 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3643 inputs of NEWPAT. */
3644
3645 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3646 possible to try that as a scratch reg. This would require adding
3647 more code to make it work though. */
3648
3649 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3650 {
3651 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3652
3653 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3654 (temporarily, until we are committed to this instruction
3655 combination) does not work: for example, any call to nonzero_bits
3656 on the register (from a splitter in the MD file, for example)
3657 will get the old information, which is invalid.
3658
3659 Since nowadays we can create registers during combine just fine,
3660 we should just create a new one here, not reuse i2dest. */
3661
3662 /* First try to split using the original register as a
3663 scratch register. */
3664 parallel = gen_rtx_PARALLEL (VOIDmode,
3665 gen_rtvec (2, newpat,
3666 gen_rtx_CLOBBER (VOIDmode,
3667 i2dest)));
3668 m_split_insn = combine_split_insns (parallel, i3);
3669
3670 /* If that didn't work, try changing the mode of I2DEST if
3671 we can. */
3672 if (m_split_insn == 0
3673 && new_mode != GET_MODE (i2dest)
3674 && new_mode != VOIDmode
3675 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3676 {
3677 machine_mode old_mode = GET_MODE (i2dest);
3678 rtx ni2dest;
3679
3680 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3681 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3682 else
3683 {
3684 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3685 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3686 }
3687
3688 parallel = (gen_rtx_PARALLEL
3689 (VOIDmode,
3690 gen_rtvec (2, newpat,
3691 gen_rtx_CLOBBER (VOIDmode,
3692 ni2dest))));
3693 m_split_insn = combine_split_insns (parallel, i3);
3694
3695 if (m_split_insn == 0
3696 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3697 {
3698 struct undo *buf;
3699
3700 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3701 buf = undobuf.undos;
3702 undobuf.undos = buf->next;
3703 buf->next = undobuf.frees;
3704 undobuf.frees = buf;
3705 }
3706 }
3707
3708 i2scratch = m_split_insn != 0;
3709 }
3710
3711 /* If recog_for_combine has discarded clobbers, try to use them
3712 again for the split. */
3713 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3714 {
3715 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3716 m_split_insn = combine_split_insns (parallel, i3);
3717 }
3718
3719 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3720 {
3721 rtx m_split_pat = PATTERN (m_split_insn);
3722 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3723 if (insn_code_number >= 0)
3724 newpat = m_split_pat;
3725 }
3726 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3727 && (next_nonnote_nondebug_insn (i2) == i3
3728 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3729 {
3730 rtx i2set, i3set;
3731 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3732 newi2pat = PATTERN (m_split_insn);
3733
3734 i3set = single_set (NEXT_INSN (m_split_insn));
3735 i2set = single_set (m_split_insn);
3736
3737 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3738
3739 /* If I2 or I3 has multiple SETs, we won't know how to track
3740 register status, so don't use these insns. If I2's destination
3741 is used between I2 and I3, we also can't use these insns. */
3742
3743 if (i2_code_number >= 0 && i2set && i3set
3744 && (next_nonnote_nondebug_insn (i2) == i3
3745 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3746 insn_code_number = recog_for_combine (&newi3pat, i3,
3747 &new_i3_notes);
3748 if (insn_code_number >= 0)
3749 newpat = newi3pat;
3750
3751 /* It is possible that both insns now set the destination of I3.
3752 If so, we must show an extra use of it. */
3753
3754 if (insn_code_number >= 0)
3755 {
3756 rtx new_i3_dest = SET_DEST (i3set);
3757 rtx new_i2_dest = SET_DEST (i2set);
3758
3759 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3760 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3761 || GET_CODE (new_i3_dest) == SUBREG)
3762 new_i3_dest = XEXP (new_i3_dest, 0);
3763
3764 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3765 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3766 || GET_CODE (new_i2_dest) == SUBREG)
3767 new_i2_dest = XEXP (new_i2_dest, 0);
3768
3769 if (REG_P (new_i3_dest)
3770 && REG_P (new_i2_dest)
3771 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3772 && REGNO (new_i2_dest) < reg_n_sets_max)
3773 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3774 }
3775 }
3776
3777 /* If we can split it and use I2DEST, go ahead and see if that
3778 helps things be recognized. Verify that none of the registers
3779 are set between I2 and I3. */
3780 if (insn_code_number < 0
3781 && (split = find_split_point (&newpat, i3, false)) != 0
3782 && (!HAVE_cc0 || REG_P (i2dest))
3783 /* We need I2DEST in the proper mode. If it is a hard register
3784 or the only use of a pseudo, we can change its mode.
3785 Make sure we don't change a hard register to have a mode that
3786 isn't valid for it, or change the number of registers. */
3787 && (GET_MODE (*split) == GET_MODE (i2dest)
3788 || GET_MODE (*split) == VOIDmode
3789 || can_change_dest_mode (i2dest, added_sets_2,
3790 GET_MODE (*split)))
3791 && (next_nonnote_nondebug_insn (i2) == i3
3792 || !modified_between_p (*split, i2, i3))
3793 /* We can't overwrite I2DEST if its value is still used by
3794 NEWPAT. */
3795 && ! reg_referenced_p (i2dest, newpat))
3796 {
3797 rtx newdest = i2dest;
3798 enum rtx_code split_code = GET_CODE (*split);
3799 machine_mode split_mode = GET_MODE (*split);
3800 bool subst_done = false;
3801 newi2pat = NULL_RTX;
3802
3803 i2scratch = true;
3804
3805 /* *SPLIT may be part of I2SRC, so make sure we have the
3806 original expression around for later debug processing.
3807 We should not need I2SRC any more in other cases. */
3808 if (MAY_HAVE_DEBUG_BIND_INSNS)
3809 i2src = copy_rtx (i2src);
3810 else
3811 i2src = NULL;
3812
3813 /* Get NEWDEST as a register in the proper mode. We have already
3814 validated that we can do this. */
3815 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3816 {
3817 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3818 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3819 else
3820 {
3821 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3822 newdest = regno_reg_rtx[REGNO (i2dest)];
3823 }
3824 }
3825
3826 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3827 an ASHIFT. This can occur if it was inside a PLUS and hence
3828 appeared to be a memory address. This is a kludge. */
3829 if (split_code == MULT
3830 && CONST_INT_P (XEXP (*split, 1))
3831 && INTVAL (XEXP (*split, 1)) > 0
3832 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3833 {
3834 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3835 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3836 XEXP (*split, 0), i_rtx));
3837 /* Update split_code because we may not have a multiply
3838 anymore. */
3839 split_code = GET_CODE (*split);
3840 }
3841
3842 /* Similarly for (plus (mult FOO (const_int pow2))). */
3843 if (split_code == PLUS
3844 && GET_CODE (XEXP (*split, 0)) == MULT
3845 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3846 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3847 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3848 {
3849 rtx nsplit = XEXP (*split, 0);
3850 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3851 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3852 XEXP (nsplit, 0),
3853 i_rtx));
3854 /* Update split_code because we may not have a multiply
3855 anymore. */
3856 split_code = GET_CODE (*split);
3857 }
3858
3859 #ifdef INSN_SCHEDULING
3860 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3861 be written as a ZERO_EXTEND. */
3862 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3863 {
3864 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3865 what it really is. */
3866 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3867 == SIGN_EXTEND)
3868 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3869 SUBREG_REG (*split)));
3870 else
3871 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3872 SUBREG_REG (*split)));
3873 }
3874 #endif
3875
3876 /* Attempt to split binary operators using arithmetic identities. */
3877 if (BINARY_P (SET_SRC (newpat))
3878 && split_mode == GET_MODE (SET_SRC (newpat))
3879 && ! side_effects_p (SET_SRC (newpat)))
3880 {
3881 rtx setsrc = SET_SRC (newpat);
3882 machine_mode mode = GET_MODE (setsrc);
3883 enum rtx_code code = GET_CODE (setsrc);
3884 rtx src_op0 = XEXP (setsrc, 0);
3885 rtx src_op1 = XEXP (setsrc, 1);
3886
3887 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3888 if (rtx_equal_p (src_op0, src_op1))
3889 {
3890 newi2pat = gen_rtx_SET (newdest, src_op0);
3891 SUBST (XEXP (setsrc, 0), newdest);
3892 SUBST (XEXP (setsrc, 1), newdest);
3893 subst_done = true;
3894 }
3895 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3896 else if ((code == PLUS || code == MULT)
3897 && GET_CODE (src_op0) == code
3898 && GET_CODE (XEXP (src_op0, 0)) == code
3899 && (INTEGRAL_MODE_P (mode)
3900 || (FLOAT_MODE_P (mode)
3901 && flag_unsafe_math_optimizations)))
3902 {
3903 rtx p = XEXP (XEXP (src_op0, 0), 0);
3904 rtx q = XEXP (XEXP (src_op0, 0), 1);
3905 rtx r = XEXP (src_op0, 1);
3906 rtx s = src_op1;
3907
3908 /* Split both "((X op Y) op X) op Y" and
3909 "((X op Y) op Y) op X" as "T op T" where T is
3910 "X op Y". */
3911 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3912 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3913 {
3914 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3915 SUBST (XEXP (setsrc, 0), newdest);
3916 SUBST (XEXP (setsrc, 1), newdest);
3917 subst_done = true;
3918 }
3919 /* Split "((X op X) op Y) op Y)" as "T op T" where
3920 T is "X op Y". */
3921 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3922 {
3923 rtx tmp = simplify_gen_binary (code, mode, p, r);
3924 newi2pat = gen_rtx_SET (newdest, tmp);
3925 SUBST (XEXP (setsrc, 0), newdest);
3926 SUBST (XEXP (setsrc, 1), newdest);
3927 subst_done = true;
3928 }
3929 }
3930 }
3931
3932 if (!subst_done)
3933 {
3934 newi2pat = gen_rtx_SET (newdest, *split);
3935 SUBST (*split, newdest);
3936 }
3937
3938 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3939
3940 /* recog_for_combine might have added CLOBBERs to newi2pat.
3941 Make sure NEWPAT does not depend on the clobbered regs. */
3942 if (GET_CODE (newi2pat) == PARALLEL)
3943 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3944 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3945 {
3946 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3947 if (reg_overlap_mentioned_p (reg, newpat))
3948 {
3949 undo_all ();
3950 return 0;
3951 }
3952 }
3953
3954 /* If the split point was a MULT and we didn't have one before,
3955 don't use one now. */
3956 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3957 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3958 }
3959 }
3960
3961 /* Check for a case where we loaded from memory in a narrow mode and
3962 then sign extended it, but we need both registers. In that case,
3963 we have a PARALLEL with both loads from the same memory location.
3964 We can split this into a load from memory followed by a register-register
3965 copy. This saves at least one insn, more if register allocation can
3966 eliminate the copy.
3967
3968 We cannot do this if the destination of the first assignment is a
3969 condition code register or cc0. We eliminate this case by making sure
3970 the SET_DEST and SET_SRC have the same mode.
3971
3972 We cannot do this if the destination of the second assignment is
3973 a register that we have already assumed is zero-extended. Similarly
3974 for a SUBREG of such a register. */
3975
3976 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3977 && GET_CODE (newpat) == PARALLEL
3978 && XVECLEN (newpat, 0) == 2
3979 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3980 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3981 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3982 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3983 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3984 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3985 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3986 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3987 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3988 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3989 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3990 (REG_P (temp_expr)
3991 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3992 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3993 BITS_PER_WORD)
3994 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3995 HOST_BITS_PER_INT)
3996 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3997 != GET_MODE_MASK (word_mode))))
3998 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3999 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
4000 (REG_P (temp_expr)
4001 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4002 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4003 BITS_PER_WORD)
4004 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4005 HOST_BITS_PER_INT)
4006 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4007 != GET_MODE_MASK (word_mode)))))
4008 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4009 SET_SRC (XVECEXP (newpat, 0, 1)))
4010 && ! find_reg_note (i3, REG_UNUSED,
4011 SET_DEST (XVECEXP (newpat, 0, 0))))
4012 {
4013 rtx ni2dest;
4014
4015 newi2pat = XVECEXP (newpat, 0, 0);
4016 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
4017 newpat = XVECEXP (newpat, 0, 1);
4018 SUBST (SET_SRC (newpat),
4019 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
4020 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4021
4022 if (i2_code_number >= 0)
4023 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4024
4025 if (insn_code_number >= 0)
4026 swap_i2i3 = 1;
4027 }
4028
4029 /* Similarly, check for a case where we have a PARALLEL of two independent
4030 SETs but we started with three insns. In this case, we can do the sets
4031 as two separate insns. This case occurs when some SET allows two
4032 other insns to combine, but the destination of that SET is still live.
4033
4034 Also do this if we started with two insns and (at least) one of the
4035 resulting sets is a noop; this noop will be deleted later.
4036
4037 Also do this if we started with two insns neither of which was a simple
4038 move. */
4039
4040 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4041 && GET_CODE (newpat) == PARALLEL
4042 && XVECLEN (newpat, 0) == 2
4043 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4044 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4045 && (i1
4046 || set_noop_p (XVECEXP (newpat, 0, 0))
4047 || set_noop_p (XVECEXP (newpat, 0, 1))
4048 || (!i2_was_move && !i3_was_move))
4049 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4050 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4051 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4052 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4053 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4054 XVECEXP (newpat, 0, 0))
4055 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4056 XVECEXP (newpat, 0, 1))
4057 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4058 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4059 {
4060 rtx set0 = XVECEXP (newpat, 0, 0);
4061 rtx set1 = XVECEXP (newpat, 0, 1);
4062
4063 /* Normally, it doesn't matter which of the two is done first,
4064 but the one that references cc0 can't be the second, and
4065 one which uses any regs/memory set in between i2 and i3 can't
4066 be first. The PARALLEL might also have been pre-existing in i3,
4067 so we need to make sure that we won't wrongly hoist a SET to i2
4068 that would conflict with a death note present in there, or would
4069 have its dest modified between i2 and i3. */
4070 if (!modified_between_p (SET_SRC (set1), i2, i3)
4071 && !(REG_P (SET_DEST (set1))
4072 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4073 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4074 && find_reg_note (i2, REG_DEAD,
4075 SUBREG_REG (SET_DEST (set1))))
4076 && !modified_between_p (SET_DEST (set1), i2, i3)
4077 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4078 /* If I3 is a jump, ensure that set0 is a jump so that
4079 we do not create invalid RTL. */
4080 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4081 )
4082 {
4083 newi2pat = set1;
4084 newpat = set0;
4085 }
4086 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4087 && !(REG_P (SET_DEST (set0))
4088 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4089 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4090 && find_reg_note (i2, REG_DEAD,
4091 SUBREG_REG (SET_DEST (set0))))
4092 && !modified_between_p (SET_DEST (set0), i2, i3)
4093 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4094 /* If I3 is a jump, ensure that set1 is a jump so that
4095 we do not create invalid RTL. */
4096 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4097 )
4098 {
4099 newi2pat = set0;
4100 newpat = set1;
4101 }
4102 else
4103 {
4104 undo_all ();
4105 return 0;
4106 }
4107
4108 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4109
4110 if (i2_code_number >= 0)
4111 {
4112 /* recog_for_combine might have added CLOBBERs to newi2pat.
4113 Make sure NEWPAT does not depend on the clobbered regs. */
4114 if (GET_CODE (newi2pat) == PARALLEL)
4115 {
4116 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4117 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4118 {
4119 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4120 if (reg_overlap_mentioned_p (reg, newpat))
4121 {
4122 undo_all ();
4123 return 0;
4124 }
4125 }
4126 }
4127
4128 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4129
4130 if (insn_code_number >= 0)
4131 split_i2i3 = 1;
4132 }
4133 }
4134
4135 /* If it still isn't recognized, fail and change things back the way they
4136 were. */
4137 if ((insn_code_number < 0
4138 /* Is the result a reasonable ASM_OPERANDS? */
4139 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4140 {
4141 undo_all ();
4142 return 0;
4143 }
4144
4145 /* If we had to change another insn, make sure it is valid also. */
4146 if (undobuf.other_insn)
4147 {
4148 CLEAR_HARD_REG_SET (newpat_used_regs);
4149
4150 other_pat = PATTERN (undobuf.other_insn);
4151 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4152 &new_other_notes);
4153
4154 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4155 {
4156 undo_all ();
4157 return 0;
4158 }
4159 }
4160
4161 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4162 they are adjacent to each other or not. */
4163 if (HAVE_cc0)
4164 {
4165 rtx_insn *p = prev_nonnote_insn (i3);
4166 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4167 && sets_cc0_p (newi2pat))
4168 {
4169 undo_all ();
4170 return 0;
4171 }
4172 }
4173
4174 /* Only allow this combination if insn_cost reports that the
4175 replacement instructions are cheaper than the originals. */
4176 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4177 {
4178 undo_all ();
4179 return 0;
4180 }
4181
4182 if (MAY_HAVE_DEBUG_BIND_INSNS)
4183 {
4184 struct undo *undo;
4185
4186 for (undo = undobuf.undos; undo; undo = undo->next)
4187 if (undo->kind == UNDO_MODE)
4188 {
4189 rtx reg = *undo->where.r;
4190 machine_mode new_mode = GET_MODE (reg);
4191 machine_mode old_mode = undo->old_contents.m;
4192
4193 /* Temporarily revert mode back. */
4194 adjust_reg_mode (reg, old_mode);
4195
4196 if (reg == i2dest && i2scratch)
4197 {
4198 /* If we used i2dest as a scratch register with a
4199 different mode, substitute it for the original
4200 i2src while its original mode is temporarily
4201 restored, and then clear i2scratch so that we don't
4202 do it again later. */
4203 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4204 this_basic_block);
4205 i2scratch = false;
4206 /* Put back the new mode. */
4207 adjust_reg_mode (reg, new_mode);
4208 }
4209 else
4210 {
4211 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4212 rtx_insn *first, *last;
4213
4214 if (reg == i2dest)
4215 {
4216 first = i2;
4217 last = last_combined_insn;
4218 }
4219 else
4220 {
4221 first = i3;
4222 last = undobuf.other_insn;
4223 gcc_assert (last);
4224 if (DF_INSN_LUID (last)
4225 < DF_INSN_LUID (last_combined_insn))
4226 last = last_combined_insn;
4227 }
4228
4229 /* We're dealing with a reg that changed mode but not
4230 meaning, so we want to turn it into a subreg for
4231 the new mode. However, because of REG sharing and
4232 because its mode had already changed, we have to do
4233 it in two steps. First, replace any debug uses of
4234 reg, with its original mode temporarily restored,
4235 with this copy we have created; then, replace the
4236 copy with the SUBREG of the original shared reg,
4237 once again changed to the new mode. */
4238 propagate_for_debug (first, last, reg, tempreg,
4239 this_basic_block);
4240 adjust_reg_mode (reg, new_mode);
4241 propagate_for_debug (first, last, tempreg,
4242 lowpart_subreg (old_mode, reg, new_mode),
4243 this_basic_block);
4244 }
4245 }
4246 }
4247
4248 /* If we will be able to accept this, we have made a
4249 change to the destination of I3. This requires us to
4250 do a few adjustments. */
4251
4252 if (changed_i3_dest)
4253 {
4254 PATTERN (i3) = newpat;
4255 adjust_for_new_dest (i3);
4256 }
4257
4258 /* We now know that we can do this combination. Merge the insns and
4259 update the status of registers and LOG_LINKS. */
4260
4261 if (undobuf.other_insn)
4262 {
4263 rtx note, next;
4264
4265 PATTERN (undobuf.other_insn) = other_pat;
4266
4267 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4268 ensure that they are still valid. Then add any non-duplicate
4269 notes added by recog_for_combine. */
4270 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4271 {
4272 next = XEXP (note, 1);
4273
4274 if ((REG_NOTE_KIND (note) == REG_DEAD
4275 && !reg_referenced_p (XEXP (note, 0),
4276 PATTERN (undobuf.other_insn)))
4277 ||(REG_NOTE_KIND (note) == REG_UNUSED
4278 && !reg_set_p (XEXP (note, 0),
4279 PATTERN (undobuf.other_insn)))
4280 /* Simply drop equal note since it may be no longer valid
4281 for other_insn. It may be possible to record that CC
4282 register is changed and only discard those notes, but
4283 in practice it's unnecessary complication and doesn't
4284 give any meaningful improvement.
4285
4286 See PR78559. */
4287 || REG_NOTE_KIND (note) == REG_EQUAL
4288 || REG_NOTE_KIND (note) == REG_EQUIV)
4289 remove_note (undobuf.other_insn, note);
4290 }
4291
4292 distribute_notes (new_other_notes, undobuf.other_insn,
4293 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4294 NULL_RTX);
4295 }
4296
4297 if (swap_i2i3)
4298 {
4299 /* I3 now uses what used to be its destination and which is now
4300 I2's destination. This requires us to do a few adjustments. */
4301 PATTERN (i3) = newpat;
4302 adjust_for_new_dest (i3);
4303 }
4304
4305 if (swap_i2i3 || split_i2i3)
4306 {
4307 /* We might need a LOG_LINK from I3 to I2. But then we used to
4308 have one, so we still will.
4309
4310 However, some later insn might be using I2's dest and have
4311 a LOG_LINK pointing at I3. We should change it to point at
4312 I2 instead. */
4313
4314 /* newi2pat is usually a SET here; however, recog_for_combine might
4315 have added some clobbers. */
4316 rtx x = newi2pat;
4317 if (GET_CODE (x) == PARALLEL)
4318 x = XVECEXP (newi2pat, 0, 0);
4319
4320 if (REG_P (SET_DEST (x))
4321 || (GET_CODE (SET_DEST (x)) == SUBREG
4322 && REG_P (SUBREG_REG (SET_DEST (x)))))
4323 {
4324 unsigned int regno = reg_or_subregno (SET_DEST (x));
4325
4326 bool done = false;
4327 for (rtx_insn *insn = NEXT_INSN (i3);
4328 !done
4329 && insn
4330 && NONDEBUG_INSN_P (insn)
4331 && BLOCK_FOR_INSN (insn) == this_basic_block;
4332 insn = NEXT_INSN (insn))
4333 {
4334 struct insn_link *link;
4335 FOR_EACH_LOG_LINK (link, insn)
4336 if (link->insn == i3 && link->regno == regno)
4337 {
4338 link->insn = i2;
4339 done = true;
4340 break;
4341 }
4342 }
4343 }
4344 }
4345
4346 {
4347 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4348 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4349 rtx midnotes = 0;
4350 int from_luid;
4351 /* Compute which registers we expect to eliminate. newi2pat may be setting
4352 either i3dest or i2dest, so we must check it. */
4353 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4354 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4355 || !i2dest_killed
4356 ? 0 : i2dest);
4357 /* For i1, we need to compute both local elimination and global
4358 elimination information with respect to newi2pat because i1dest
4359 may be the same as i3dest, in which case newi2pat may be setting
4360 i1dest. Global information is used when distributing REG_DEAD
4361 note for i2 and i3, in which case it does matter if newi2pat sets
4362 i1dest or not.
4363
4364 Local information is used when distributing REG_DEAD note for i1,
4365 in which case it doesn't matter if newi2pat sets i1dest or not.
4366 See PR62151, if we have four insns combination:
4367 i0: r0 <- i0src
4368 i1: r1 <- i1src (using r0)
4369 REG_DEAD (r0)
4370 i2: r0 <- i2src (using r1)
4371 i3: r3 <- i3src (using r0)
4372 ix: using r0
4373 From i1's point of view, r0 is eliminated, no matter if it is set
4374 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4375 should be discarded.
4376
4377 Note local information only affects cases in forms like "I1->I2->I3",
4378 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4379 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4380 i0dest anyway. */
4381 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4382 || !i1dest_killed
4383 ? 0 : i1dest);
4384 rtx elim_i1 = (local_elim_i1 == 0
4385 || (newi2pat && reg_set_p (i1dest, newi2pat))
4386 ? 0 : i1dest);
4387 /* Same case as i1. */
4388 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4389 ? 0 : i0dest);
4390 rtx elim_i0 = (local_elim_i0 == 0
4391 || (newi2pat && reg_set_p (i0dest, newi2pat))
4392 ? 0 : i0dest);
4393
4394 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4395 clear them. */
4396 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4397 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4398 if (i1)
4399 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4400 if (i0)
4401 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4402
4403 /* Ensure that we do not have something that should not be shared but
4404 occurs multiple times in the new insns. Check this by first
4405 resetting all the `used' flags and then copying anything is shared. */
4406
4407 reset_used_flags (i3notes);
4408 reset_used_flags (i2notes);
4409 reset_used_flags (i1notes);
4410 reset_used_flags (i0notes);
4411 reset_used_flags (newpat);
4412 reset_used_flags (newi2pat);
4413 if (undobuf.other_insn)
4414 reset_used_flags (PATTERN (undobuf.other_insn));
4415
4416 i3notes = copy_rtx_if_shared (i3notes);
4417 i2notes = copy_rtx_if_shared (i2notes);
4418 i1notes = copy_rtx_if_shared (i1notes);
4419 i0notes = copy_rtx_if_shared (i0notes);
4420 newpat = copy_rtx_if_shared (newpat);
4421 newi2pat = copy_rtx_if_shared (newi2pat);
4422 if (undobuf.other_insn)
4423 reset_used_flags (PATTERN (undobuf.other_insn));
4424
4425 INSN_CODE (i3) = insn_code_number;
4426 PATTERN (i3) = newpat;
4427
4428 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4429 {
4430 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4431 link = XEXP (link, 1))
4432 {
4433 if (substed_i2)
4434 {
4435 /* I2SRC must still be meaningful at this point. Some
4436 splitting operations can invalidate I2SRC, but those
4437 operations do not apply to calls. */
4438 gcc_assert (i2src);
4439 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4440 i2dest, i2src);
4441 }
4442 if (substed_i1)
4443 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4444 i1dest, i1src);
4445 if (substed_i0)
4446 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4447 i0dest, i0src);
4448 }
4449 }
4450
4451 if (undobuf.other_insn)
4452 INSN_CODE (undobuf.other_insn) = other_code_number;
4453
4454 /* We had one special case above where I2 had more than one set and
4455 we replaced a destination of one of those sets with the destination
4456 of I3. In that case, we have to update LOG_LINKS of insns later
4457 in this basic block. Note that this (expensive) case is rare.
4458
4459 Also, in this case, we must pretend that all REG_NOTEs for I2
4460 actually came from I3, so that REG_UNUSED notes from I2 will be
4461 properly handled. */
4462
4463 if (i3_subst_into_i2)
4464 {
4465 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4466 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4467 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4468 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4469 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4470 && ! find_reg_note (i2, REG_UNUSED,
4471 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4472 for (temp_insn = NEXT_INSN (i2);
4473 temp_insn
4474 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4475 || BB_HEAD (this_basic_block) != temp_insn);
4476 temp_insn = NEXT_INSN (temp_insn))
4477 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4478 FOR_EACH_LOG_LINK (link, temp_insn)
4479 if (link->insn == i2)
4480 link->insn = i3;
4481
4482 if (i3notes)
4483 {
4484 rtx link = i3notes;
4485 while (XEXP (link, 1))
4486 link = XEXP (link, 1);
4487 XEXP (link, 1) = i2notes;
4488 }
4489 else
4490 i3notes = i2notes;
4491 i2notes = 0;
4492 }
4493
4494 LOG_LINKS (i3) = NULL;
4495 REG_NOTES (i3) = 0;
4496 LOG_LINKS (i2) = NULL;
4497 REG_NOTES (i2) = 0;
4498
4499 if (newi2pat)
4500 {
4501 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4502 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4503 this_basic_block);
4504 INSN_CODE (i2) = i2_code_number;
4505 PATTERN (i2) = newi2pat;
4506 }
4507 else
4508 {
4509 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4510 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4511 this_basic_block);
4512 SET_INSN_DELETED (i2);
4513 }
4514
4515 if (i1)
4516 {
4517 LOG_LINKS (i1) = NULL;
4518 REG_NOTES (i1) = 0;
4519 if (MAY_HAVE_DEBUG_BIND_INSNS)
4520 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4521 this_basic_block);
4522 SET_INSN_DELETED (i1);
4523 }
4524
4525 if (i0)
4526 {
4527 LOG_LINKS (i0) = NULL;
4528 REG_NOTES (i0) = 0;
4529 if (MAY_HAVE_DEBUG_BIND_INSNS)
4530 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4531 this_basic_block);
4532 SET_INSN_DELETED (i0);
4533 }
4534
4535 /* Get death notes for everything that is now used in either I3 or
4536 I2 and used to die in a previous insn. If we built two new
4537 patterns, move from I1 to I2 then I2 to I3 so that we get the
4538 proper movement on registers that I2 modifies. */
4539
4540 if (i0)
4541 from_luid = DF_INSN_LUID (i0);
4542 else if (i1)
4543 from_luid = DF_INSN_LUID (i1);
4544 else
4545 from_luid = DF_INSN_LUID (i2);
4546 if (newi2pat)
4547 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4548 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4549
4550 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4551 if (i3notes)
4552 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4553 elim_i2, elim_i1, elim_i0);
4554 if (i2notes)
4555 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4556 elim_i2, elim_i1, elim_i0);
4557 if (i1notes)
4558 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4559 elim_i2, local_elim_i1, local_elim_i0);
4560 if (i0notes)
4561 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4562 elim_i2, elim_i1, local_elim_i0);
4563 if (midnotes)
4564 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4565 elim_i2, elim_i1, elim_i0);
4566
4567 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4568 know these are REG_UNUSED and want them to go to the desired insn,
4569 so we always pass it as i3. */
4570
4571 if (newi2pat && new_i2_notes)
4572 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4573 NULL_RTX);
4574
4575 if (new_i3_notes)
4576 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4577 NULL_RTX);
4578
4579 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4580 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4581 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4582 in that case, it might delete I2. Similarly for I2 and I1.
4583 Show an additional death due to the REG_DEAD note we make here. If
4584 we discard it in distribute_notes, we will decrement it again. */
4585
4586 if (i3dest_killed)
4587 {
4588 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4589 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4590 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4591 elim_i1, elim_i0);
4592 else
4593 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4594 elim_i2, elim_i1, elim_i0);
4595 }
4596
4597 if (i2dest_in_i2src)
4598 {
4599 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4600 if (newi2pat && reg_set_p (i2dest, newi2pat))
4601 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4602 NULL_RTX, NULL_RTX);
4603 else
4604 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4605 NULL_RTX, NULL_RTX, NULL_RTX);
4606 }
4607
4608 if (i1dest_in_i1src)
4609 {
4610 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4611 if (newi2pat && reg_set_p (i1dest, newi2pat))
4612 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4613 NULL_RTX, NULL_RTX);
4614 else
4615 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4616 NULL_RTX, NULL_RTX, NULL_RTX);
4617 }
4618
4619 if (i0dest_in_i0src)
4620 {
4621 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4622 if (newi2pat && reg_set_p (i0dest, newi2pat))
4623 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4624 NULL_RTX, NULL_RTX);
4625 else
4626 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4627 NULL_RTX, NULL_RTX, NULL_RTX);
4628 }
4629
4630 distribute_links (i3links);
4631 distribute_links (i2links);
4632 distribute_links (i1links);
4633 distribute_links (i0links);
4634
4635 if (REG_P (i2dest))
4636 {
4637 struct insn_link *link;
4638 rtx_insn *i2_insn = 0;
4639 rtx i2_val = 0, set;
4640
4641 /* The insn that used to set this register doesn't exist, and
4642 this life of the register may not exist either. See if one of
4643 I3's links points to an insn that sets I2DEST. If it does,
4644 that is now the last known value for I2DEST. If we don't update
4645 this and I2 set the register to a value that depended on its old
4646 contents, we will get confused. If this insn is used, thing
4647 will be set correctly in combine_instructions. */
4648 FOR_EACH_LOG_LINK (link, i3)
4649 if ((set = single_set (link->insn)) != 0
4650 && rtx_equal_p (i2dest, SET_DEST (set)))
4651 i2_insn = link->insn, i2_val = SET_SRC (set);
4652
4653 record_value_for_reg (i2dest, i2_insn, i2_val);
4654
4655 /* If the reg formerly set in I2 died only once and that was in I3,
4656 zero its use count so it won't make `reload' do any work. */
4657 if (! added_sets_2
4658 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4659 && ! i2dest_in_i2src
4660 && REGNO (i2dest) < reg_n_sets_max)
4661 INC_REG_N_SETS (REGNO (i2dest), -1);
4662 }
4663
4664 if (i1 && REG_P (i1dest))
4665 {
4666 struct insn_link *link;
4667 rtx_insn *i1_insn = 0;
4668 rtx i1_val = 0, set;
4669
4670 FOR_EACH_LOG_LINK (link, i3)
4671 if ((set = single_set (link->insn)) != 0
4672 && rtx_equal_p (i1dest, SET_DEST (set)))
4673 i1_insn = link->insn, i1_val = SET_SRC (set);
4674
4675 record_value_for_reg (i1dest, i1_insn, i1_val);
4676
4677 if (! added_sets_1
4678 && ! i1dest_in_i1src
4679 && REGNO (i1dest) < reg_n_sets_max)
4680 INC_REG_N_SETS (REGNO (i1dest), -1);
4681 }
4682
4683 if (i0 && REG_P (i0dest))
4684 {
4685 struct insn_link *link;
4686 rtx_insn *i0_insn = 0;
4687 rtx i0_val = 0, set;
4688
4689 FOR_EACH_LOG_LINK (link, i3)
4690 if ((set = single_set (link->insn)) != 0
4691 && rtx_equal_p (i0dest, SET_DEST (set)))
4692 i0_insn = link->insn, i0_val = SET_SRC (set);
4693
4694 record_value_for_reg (i0dest, i0_insn, i0_val);
4695
4696 if (! added_sets_0
4697 && ! i0dest_in_i0src
4698 && REGNO (i0dest) < reg_n_sets_max)
4699 INC_REG_N_SETS (REGNO (i0dest), -1);
4700 }
4701
4702 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4703 been made to this insn. The order is important, because newi2pat
4704 can affect nonzero_bits of newpat. */
4705 if (newi2pat)
4706 note_pattern_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4707 note_pattern_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4708 }
4709
4710 if (undobuf.other_insn != NULL_RTX)
4711 {
4712 if (dump_file)
4713 {
4714 fprintf (dump_file, "modifying other_insn ");
4715 dump_insn_slim (dump_file, undobuf.other_insn);
4716 }
4717 df_insn_rescan (undobuf.other_insn);
4718 }
4719
4720 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4721 {
4722 if (dump_file)
4723 {
4724 fprintf (dump_file, "modifying insn i0 ");
4725 dump_insn_slim (dump_file, i0);
4726 }
4727 df_insn_rescan (i0);
4728 }
4729
4730 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4731 {
4732 if (dump_file)
4733 {
4734 fprintf (dump_file, "modifying insn i1 ");
4735 dump_insn_slim (dump_file, i1);
4736 }
4737 df_insn_rescan (i1);
4738 }
4739
4740 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4741 {
4742 if (dump_file)
4743 {
4744 fprintf (dump_file, "modifying insn i2 ");
4745 dump_insn_slim (dump_file, i2);
4746 }
4747 df_insn_rescan (i2);
4748 }
4749
4750 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4751 {
4752 if (dump_file)
4753 {
4754 fprintf (dump_file, "modifying insn i3 ");
4755 dump_insn_slim (dump_file, i3);
4756 }
4757 df_insn_rescan (i3);
4758 }
4759
4760 /* Set new_direct_jump_p if a new return or simple jump instruction
4761 has been created. Adjust the CFG accordingly. */
4762 if (returnjump_p (i3) || any_uncondjump_p (i3))
4763 {
4764 *new_direct_jump_p = 1;
4765 mark_jump_label (PATTERN (i3), i3, 0);
4766 update_cfg_for_uncondjump (i3);
4767 }
4768
4769 if (undobuf.other_insn != NULL_RTX
4770 && (returnjump_p (undobuf.other_insn)
4771 || any_uncondjump_p (undobuf.other_insn)))
4772 {
4773 *new_direct_jump_p = 1;
4774 update_cfg_for_uncondjump (undobuf.other_insn);
4775 }
4776
4777 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4778 && XEXP (PATTERN (i3), 0) == const1_rtx)
4779 {
4780 basic_block bb = BLOCK_FOR_INSN (i3);
4781 gcc_assert (bb);
4782 remove_edge (split_block (bb, i3));
4783 emit_barrier_after_bb (bb);
4784 *new_direct_jump_p = 1;
4785 }
4786
4787 if (undobuf.other_insn
4788 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4789 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4790 {
4791 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4792 gcc_assert (bb);
4793 remove_edge (split_block (bb, undobuf.other_insn));
4794 emit_barrier_after_bb (bb);
4795 *new_direct_jump_p = 1;
4796 }
4797
4798 /* A noop might also need cleaning up of CFG, if it comes from the
4799 simplification of a jump. */
4800 if (JUMP_P (i3)
4801 && GET_CODE (newpat) == SET
4802 && SET_SRC (newpat) == pc_rtx
4803 && SET_DEST (newpat) == pc_rtx)
4804 {
4805 *new_direct_jump_p = 1;
4806 update_cfg_for_uncondjump (i3);
4807 }
4808
4809 if (undobuf.other_insn != NULL_RTX
4810 && JUMP_P (undobuf.other_insn)
4811 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4812 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4813 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4814 {
4815 *new_direct_jump_p = 1;
4816 update_cfg_for_uncondjump (undobuf.other_insn);
4817 }
4818
4819 combine_successes++;
4820 undo_commit ();
4821
4822 rtx_insn *ret = newi2pat ? i2 : i3;
4823 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4824 ret = added_links_insn;
4825 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4826 ret = added_notes_insn;
4827
4828 return ret;
4829 }
4830 \f
4831 /* Get a marker for undoing to the current state. */
4832
4833 static void *
4834 get_undo_marker (void)
4835 {
4836 return undobuf.undos;
4837 }
4838
4839 /* Undo the modifications up to the marker. */
4840
4841 static void
4842 undo_to_marker (void *marker)
4843 {
4844 struct undo *undo, *next;
4845
4846 for (undo = undobuf.undos; undo != marker; undo = next)
4847 {
4848 gcc_assert (undo);
4849
4850 next = undo->next;
4851 switch (undo->kind)
4852 {
4853 case UNDO_RTX:
4854 *undo->where.r = undo->old_contents.r;
4855 break;
4856 case UNDO_INT:
4857 *undo->where.i = undo->old_contents.i;
4858 break;
4859 case UNDO_MODE:
4860 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4861 break;
4862 case UNDO_LINKS:
4863 *undo->where.l = undo->old_contents.l;
4864 break;
4865 default:
4866 gcc_unreachable ();
4867 }
4868
4869 undo->next = undobuf.frees;
4870 undobuf.frees = undo;
4871 }
4872
4873 undobuf.undos = (struct undo *) marker;
4874 }
4875
4876 /* Undo all the modifications recorded in undobuf. */
4877
4878 static void
4879 undo_all (void)
4880 {
4881 undo_to_marker (0);
4882 }
4883
4884 /* We've committed to accepting the changes we made. Move all
4885 of the undos to the free list. */
4886
4887 static void
4888 undo_commit (void)
4889 {
4890 struct undo *undo, *next;
4891
4892 for (undo = undobuf.undos; undo; undo = next)
4893 {
4894 next = undo->next;
4895 undo->next = undobuf.frees;
4896 undobuf.frees = undo;
4897 }
4898 undobuf.undos = 0;
4899 }
4900 \f
4901 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4902 where we have an arithmetic expression and return that point. LOC will
4903 be inside INSN.
4904
4905 try_combine will call this function to see if an insn can be split into
4906 two insns. */
4907
4908 static rtx *
4909 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4910 {
4911 rtx x = *loc;
4912 enum rtx_code code = GET_CODE (x);
4913 rtx *split;
4914 unsigned HOST_WIDE_INT len = 0;
4915 HOST_WIDE_INT pos = 0;
4916 int unsignedp = 0;
4917 rtx inner = NULL_RTX;
4918 scalar_int_mode mode, inner_mode;
4919
4920 /* First special-case some codes. */
4921 switch (code)
4922 {
4923 case SUBREG:
4924 #ifdef INSN_SCHEDULING
4925 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4926 point. */
4927 if (MEM_P (SUBREG_REG (x)))
4928 return loc;
4929 #endif
4930 return find_split_point (&SUBREG_REG (x), insn, false);
4931
4932 case MEM:
4933 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4934 using LO_SUM and HIGH. */
4935 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4936 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4937 {
4938 machine_mode address_mode = get_address_mode (x);
4939
4940 SUBST (XEXP (x, 0),
4941 gen_rtx_LO_SUM (address_mode,
4942 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4943 XEXP (x, 0)));
4944 return &XEXP (XEXP (x, 0), 0);
4945 }
4946
4947 /* If we have a PLUS whose second operand is a constant and the
4948 address is not valid, perhaps we can split it up using
4949 the machine-specific way to split large constants. We use
4950 the first pseudo-reg (one of the virtual regs) as a placeholder;
4951 it will not remain in the result. */
4952 if (GET_CODE (XEXP (x, 0)) == PLUS
4953 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4954 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4955 MEM_ADDR_SPACE (x)))
4956 {
4957 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4958 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4959 subst_insn);
4960
4961 /* This should have produced two insns, each of which sets our
4962 placeholder. If the source of the second is a valid address,
4963 we can put both sources together and make a split point
4964 in the middle. */
4965
4966 if (seq
4967 && NEXT_INSN (seq) != NULL_RTX
4968 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4969 && NONJUMP_INSN_P (seq)
4970 && GET_CODE (PATTERN (seq)) == SET
4971 && SET_DEST (PATTERN (seq)) == reg
4972 && ! reg_mentioned_p (reg,
4973 SET_SRC (PATTERN (seq)))
4974 && NONJUMP_INSN_P (NEXT_INSN (seq))
4975 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4976 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4977 && memory_address_addr_space_p
4978 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4979 MEM_ADDR_SPACE (x)))
4980 {
4981 rtx src1 = SET_SRC (PATTERN (seq));
4982 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4983
4984 /* Replace the placeholder in SRC2 with SRC1. If we can
4985 find where in SRC2 it was placed, that can become our
4986 split point and we can replace this address with SRC2.
4987 Just try two obvious places. */
4988
4989 src2 = replace_rtx (src2, reg, src1);
4990 split = 0;
4991 if (XEXP (src2, 0) == src1)
4992 split = &XEXP (src2, 0);
4993 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4994 && XEXP (XEXP (src2, 0), 0) == src1)
4995 split = &XEXP (XEXP (src2, 0), 0);
4996
4997 if (split)
4998 {
4999 SUBST (XEXP (x, 0), src2);
5000 return split;
5001 }
5002 }
5003
5004 /* If that didn't work and we have a nested plus, like:
5005 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
5006 is valid address, try to split (REG1 * CONST1). */
5007 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5008 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5009 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5010 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
5011 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5012 0), 0)))))
5013 {
5014 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
5015 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
5016 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5017 MEM_ADDR_SPACE (x)))
5018 {
5019 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5020 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
5021 }
5022 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5023 }
5024 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5025 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5026 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5027 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
5028 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5029 0), 1)))))
5030 {
5031 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
5032 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
5033 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5034 MEM_ADDR_SPACE (x)))
5035 {
5036 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5037 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
5038 }
5039 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5040 }
5041
5042 /* If that didn't work, perhaps the first operand is complex and
5043 needs to be computed separately, so make a split point there.
5044 This will occur on machines that just support REG + CONST
5045 and have a constant moved through some previous computation. */
5046 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
5047 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5048 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5049 return &XEXP (XEXP (x, 0), 0);
5050 }
5051
5052 /* If we have a PLUS whose first operand is complex, try computing it
5053 separately by making a split there. */
5054 if (GET_CODE (XEXP (x, 0)) == PLUS
5055 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5056 MEM_ADDR_SPACE (x))
5057 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
5058 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5059 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5060 return &XEXP (XEXP (x, 0), 0);
5061 break;
5062
5063 case SET:
5064 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5065 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5066 we need to put the operand into a register. So split at that
5067 point. */
5068
5069 if (SET_DEST (x) == cc0_rtx
5070 && GET_CODE (SET_SRC (x)) != COMPARE
5071 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
5072 && !OBJECT_P (SET_SRC (x))
5073 && ! (GET_CODE (SET_SRC (x)) == SUBREG
5074 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5075 return &SET_SRC (x);
5076
5077 /* See if we can split SET_SRC as it stands. */
5078 split = find_split_point (&SET_SRC (x), insn, true);
5079 if (split && split != &SET_SRC (x))
5080 return split;
5081
5082 /* See if we can split SET_DEST as it stands. */
5083 split = find_split_point (&SET_DEST (x), insn, false);
5084 if (split && split != &SET_DEST (x))
5085 return split;
5086
5087 /* See if this is a bitfield assignment with everything constant. If
5088 so, this is an IOR of an AND, so split it into that. */
5089 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5090 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5091 &inner_mode)
5092 && HWI_COMPUTABLE_MODE_P (inner_mode)
5093 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5094 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5095 && CONST_INT_P (SET_SRC (x))
5096 && ((INTVAL (XEXP (SET_DEST (x), 1))
5097 + INTVAL (XEXP (SET_DEST (x), 2)))
5098 <= GET_MODE_PRECISION (inner_mode))
5099 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5100 {
5101 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5102 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5103 rtx dest = XEXP (SET_DEST (x), 0);
5104 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << len) - 1;
5105 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x)) & mask;
5106 rtx or_mask;
5107
5108 if (BITS_BIG_ENDIAN)
5109 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5110
5111 or_mask = gen_int_mode (src << pos, inner_mode);
5112 if (src == mask)
5113 SUBST (SET_SRC (x),
5114 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5115 else
5116 {
5117 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5118 SUBST (SET_SRC (x),
5119 simplify_gen_binary (IOR, inner_mode,
5120 simplify_gen_binary (AND, inner_mode,
5121 dest, negmask),
5122 or_mask));
5123 }
5124
5125 SUBST (SET_DEST (x), dest);
5126
5127 split = find_split_point (&SET_SRC (x), insn, true);
5128 if (split && split != &SET_SRC (x))
5129 return split;
5130 }
5131
5132 /* Otherwise, see if this is an operation that we can split into two.
5133 If so, try to split that. */
5134 code = GET_CODE (SET_SRC (x));
5135
5136 switch (code)
5137 {
5138 case AND:
5139 /* If we are AND'ing with a large constant that is only a single
5140 bit and the result is only being used in a context where we
5141 need to know if it is zero or nonzero, replace it with a bit
5142 extraction. This will avoid the large constant, which might
5143 have taken more than one insn to make. If the constant were
5144 not a valid argument to the AND but took only one insn to make,
5145 this is no worse, but if it took more than one insn, it will
5146 be better. */
5147
5148 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5149 && REG_P (XEXP (SET_SRC (x), 0))
5150 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5151 && REG_P (SET_DEST (x))
5152 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5153 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5154 && XEXP (*split, 0) == SET_DEST (x)
5155 && XEXP (*split, 1) == const0_rtx)
5156 {
5157 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5158 XEXP (SET_SRC (x), 0),
5159 pos, NULL_RTX, 1, 1, 0, 0);
5160 if (extraction != 0)
5161 {
5162 SUBST (SET_SRC (x), extraction);
5163 return find_split_point (loc, insn, false);
5164 }
5165 }
5166 break;
5167
5168 case NE:
5169 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5170 is known to be on, this can be converted into a NEG of a shift. */
5171 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5172 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5173 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5174 GET_MODE (XEXP (SET_SRC (x),
5175 0))))) >= 1))
5176 {
5177 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5178 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5179 SUBST (SET_SRC (x),
5180 gen_rtx_NEG (mode,
5181 gen_rtx_LSHIFTRT (mode,
5182 XEXP (SET_SRC (x), 0),
5183 pos_rtx)));
5184
5185 split = find_split_point (&SET_SRC (x), insn, true);
5186 if (split && split != &SET_SRC (x))
5187 return split;
5188 }
5189 break;
5190
5191 case SIGN_EXTEND:
5192 inner = XEXP (SET_SRC (x), 0);
5193
5194 /* We can't optimize if either mode is a partial integer
5195 mode as we don't know how many bits are significant
5196 in those modes. */
5197 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5198 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5199 break;
5200
5201 pos = 0;
5202 len = GET_MODE_PRECISION (inner_mode);
5203 unsignedp = 0;
5204 break;
5205
5206 case SIGN_EXTRACT:
5207 case ZERO_EXTRACT:
5208 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5209 &inner_mode)
5210 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5211 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5212 {
5213 inner = XEXP (SET_SRC (x), 0);
5214 len = INTVAL (XEXP (SET_SRC (x), 1));
5215 pos = INTVAL (XEXP (SET_SRC (x), 2));
5216
5217 if (BITS_BIG_ENDIAN)
5218 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5219 unsignedp = (code == ZERO_EXTRACT);
5220 }
5221 break;
5222
5223 default:
5224 break;
5225 }
5226
5227 if (len
5228 && known_subrange_p (pos, len,
5229 0, GET_MODE_PRECISION (GET_MODE (inner)))
5230 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5231 {
5232 /* For unsigned, we have a choice of a shift followed by an
5233 AND or two shifts. Use two shifts for field sizes where the
5234 constant might be too large. We assume here that we can
5235 always at least get 8-bit constants in an AND insn, which is
5236 true for every current RISC. */
5237
5238 if (unsignedp && len <= 8)
5239 {
5240 unsigned HOST_WIDE_INT mask
5241 = (HOST_WIDE_INT_1U << len) - 1;
5242 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5243 SUBST (SET_SRC (x),
5244 gen_rtx_AND (mode,
5245 gen_rtx_LSHIFTRT
5246 (mode, gen_lowpart (mode, inner), pos_rtx),
5247 gen_int_mode (mask, mode)));
5248
5249 split = find_split_point (&SET_SRC (x), insn, true);
5250 if (split && split != &SET_SRC (x))
5251 return split;
5252 }
5253 else
5254 {
5255 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5256 int right_bits = GET_MODE_PRECISION (mode) - len;
5257 SUBST (SET_SRC (x),
5258 gen_rtx_fmt_ee
5259 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5260 gen_rtx_ASHIFT (mode,
5261 gen_lowpart (mode, inner),
5262 gen_int_shift_amount (mode, left_bits)),
5263 gen_int_shift_amount (mode, right_bits)));
5264
5265 split = find_split_point (&SET_SRC (x), insn, true);
5266 if (split && split != &SET_SRC (x))
5267 return split;
5268 }
5269 }
5270
5271 /* See if this is a simple operation with a constant as the second
5272 operand. It might be that this constant is out of range and hence
5273 could be used as a split point. */
5274 if (BINARY_P (SET_SRC (x))
5275 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5276 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5277 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5278 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5279 return &XEXP (SET_SRC (x), 1);
5280
5281 /* Finally, see if this is a simple operation with its first operand
5282 not in a register. The operation might require this operand in a
5283 register, so return it as a split point. We can always do this
5284 because if the first operand were another operation, we would have
5285 already found it as a split point. */
5286 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5287 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5288 return &XEXP (SET_SRC (x), 0);
5289
5290 return 0;
5291
5292 case AND:
5293 case IOR:
5294 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5295 it is better to write this as (not (ior A B)) so we can split it.
5296 Similarly for IOR. */
5297 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5298 {
5299 SUBST (*loc,
5300 gen_rtx_NOT (GET_MODE (x),
5301 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5302 GET_MODE (x),
5303 XEXP (XEXP (x, 0), 0),
5304 XEXP (XEXP (x, 1), 0))));
5305 return find_split_point (loc, insn, set_src);
5306 }
5307
5308 /* Many RISC machines have a large set of logical insns. If the
5309 second operand is a NOT, put it first so we will try to split the
5310 other operand first. */
5311 if (GET_CODE (XEXP (x, 1)) == NOT)
5312 {
5313 rtx tem = XEXP (x, 0);
5314 SUBST (XEXP (x, 0), XEXP (x, 1));
5315 SUBST (XEXP (x, 1), tem);
5316 }
5317 break;
5318
5319 case PLUS:
5320 case MINUS:
5321 /* Canonicalization can produce (minus A (mult B C)), where C is a
5322 constant. It may be better to try splitting (plus (mult B -C) A)
5323 instead if this isn't a multiply by a power of two. */
5324 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5325 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5326 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5327 {
5328 machine_mode mode = GET_MODE (x);
5329 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5330 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5331 SUBST (*loc, gen_rtx_PLUS (mode,
5332 gen_rtx_MULT (mode,
5333 XEXP (XEXP (x, 1), 0),
5334 gen_int_mode (other_int,
5335 mode)),
5336 XEXP (x, 0)));
5337 return find_split_point (loc, insn, set_src);
5338 }
5339
5340 /* Split at a multiply-accumulate instruction. However if this is
5341 the SET_SRC, we likely do not have such an instruction and it's
5342 worthless to try this split. */
5343 if (!set_src
5344 && (GET_CODE (XEXP (x, 0)) == MULT
5345 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5346 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5347 return loc;
5348
5349 default:
5350 break;
5351 }
5352
5353 /* Otherwise, select our actions depending on our rtx class. */
5354 switch (GET_RTX_CLASS (code))
5355 {
5356 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5357 case RTX_TERNARY:
5358 split = find_split_point (&XEXP (x, 2), insn, false);
5359 if (split)
5360 return split;
5361 /* fall through */
5362 case RTX_BIN_ARITH:
5363 case RTX_COMM_ARITH:
5364 case RTX_COMPARE:
5365 case RTX_COMM_COMPARE:
5366 split = find_split_point (&XEXP (x, 1), insn, false);
5367 if (split)
5368 return split;
5369 /* fall through */
5370 case RTX_UNARY:
5371 /* Some machines have (and (shift ...) ...) insns. If X is not
5372 an AND, but XEXP (X, 0) is, use it as our split point. */
5373 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5374 return &XEXP (x, 0);
5375
5376 split = find_split_point (&XEXP (x, 0), insn, false);
5377 if (split)
5378 return split;
5379 return loc;
5380
5381 default:
5382 /* Otherwise, we don't have a split point. */
5383 return 0;
5384 }
5385 }
5386 \f
5387 /* Throughout X, replace FROM with TO, and return the result.
5388 The result is TO if X is FROM;
5389 otherwise the result is X, but its contents may have been modified.
5390 If they were modified, a record was made in undobuf so that
5391 undo_all will (among other things) return X to its original state.
5392
5393 If the number of changes necessary is too much to record to undo,
5394 the excess changes are not made, so the result is invalid.
5395 The changes already made can still be undone.
5396 undobuf.num_undo is incremented for such changes, so by testing that
5397 the caller can tell whether the result is valid.
5398
5399 `n_occurrences' is incremented each time FROM is replaced.
5400
5401 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5402
5403 IN_COND is nonzero if we are at the top level of a condition.
5404
5405 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5406 by copying if `n_occurrences' is nonzero. */
5407
5408 static rtx
5409 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5410 {
5411 enum rtx_code code = GET_CODE (x);
5412 machine_mode op0_mode = VOIDmode;
5413 const char *fmt;
5414 int len, i;
5415 rtx new_rtx;
5416
5417 /* Two expressions are equal if they are identical copies of a shared
5418 RTX or if they are both registers with the same register number
5419 and mode. */
5420
5421 #define COMBINE_RTX_EQUAL_P(X,Y) \
5422 ((X) == (Y) \
5423 || (REG_P (X) && REG_P (Y) \
5424 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5425
5426 /* Do not substitute into clobbers of regs -- this will never result in
5427 valid RTL. */
5428 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5429 return x;
5430
5431 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5432 {
5433 n_occurrences++;
5434 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5435 }
5436
5437 /* If X and FROM are the same register but different modes, they
5438 will not have been seen as equal above. However, the log links code
5439 will make a LOG_LINKS entry for that case. If we do nothing, we
5440 will try to rerecognize our original insn and, when it succeeds,
5441 we will delete the feeding insn, which is incorrect.
5442
5443 So force this insn not to match in this (rare) case. */
5444 if (! in_dest && code == REG && REG_P (from)
5445 && reg_overlap_mentioned_p (x, from))
5446 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5447
5448 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5449 of which may contain things that can be combined. */
5450 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5451 return x;
5452
5453 /* It is possible to have a subexpression appear twice in the insn.
5454 Suppose that FROM is a register that appears within TO.
5455 Then, after that subexpression has been scanned once by `subst',
5456 the second time it is scanned, TO may be found. If we were
5457 to scan TO here, we would find FROM within it and create a
5458 self-referent rtl structure which is completely wrong. */
5459 if (COMBINE_RTX_EQUAL_P (x, to))
5460 return to;
5461
5462 /* Parallel asm_operands need special attention because all of the
5463 inputs are shared across the arms. Furthermore, unsharing the
5464 rtl results in recognition failures. Failure to handle this case
5465 specially can result in circular rtl.
5466
5467 Solve this by doing a normal pass across the first entry of the
5468 parallel, and only processing the SET_DESTs of the subsequent
5469 entries. Ug. */
5470
5471 if (code == PARALLEL
5472 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5473 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5474 {
5475 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5476
5477 /* If this substitution failed, this whole thing fails. */
5478 if (GET_CODE (new_rtx) == CLOBBER
5479 && XEXP (new_rtx, 0) == const0_rtx)
5480 return new_rtx;
5481
5482 SUBST (XVECEXP (x, 0, 0), new_rtx);
5483
5484 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5485 {
5486 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5487
5488 if (!REG_P (dest)
5489 && GET_CODE (dest) != CC0
5490 && GET_CODE (dest) != PC)
5491 {
5492 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5493
5494 /* If this substitution failed, this whole thing fails. */
5495 if (GET_CODE (new_rtx) == CLOBBER
5496 && XEXP (new_rtx, 0) == const0_rtx)
5497 return new_rtx;
5498
5499 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5500 }
5501 }
5502 }
5503 else
5504 {
5505 len = GET_RTX_LENGTH (code);
5506 fmt = GET_RTX_FORMAT (code);
5507
5508 /* We don't need to process a SET_DEST that is a register, CC0,
5509 or PC, so set up to skip this common case. All other cases
5510 where we want to suppress replacing something inside a
5511 SET_SRC are handled via the IN_DEST operand. */
5512 if (code == SET
5513 && (REG_P (SET_DEST (x))
5514 || GET_CODE (SET_DEST (x)) == CC0
5515 || GET_CODE (SET_DEST (x)) == PC))
5516 fmt = "ie";
5517
5518 /* Trying to simplify the operands of a widening MULT is not likely
5519 to create RTL matching a machine insn. */
5520 if (code == MULT
5521 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5522 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5523 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5524 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5525 && REG_P (XEXP (XEXP (x, 0), 0))
5526 && REG_P (XEXP (XEXP (x, 1), 0))
5527 && from == to)
5528 return x;
5529
5530
5531 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5532 constant. */
5533 if (fmt[0] == 'e')
5534 op0_mode = GET_MODE (XEXP (x, 0));
5535
5536 for (i = 0; i < len; i++)
5537 {
5538 if (fmt[i] == 'E')
5539 {
5540 int j;
5541 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5542 {
5543 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5544 {
5545 new_rtx = (unique_copy && n_occurrences
5546 ? copy_rtx (to) : to);
5547 n_occurrences++;
5548 }
5549 else
5550 {
5551 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5552 unique_copy);
5553
5554 /* If this substitution failed, this whole thing
5555 fails. */
5556 if (GET_CODE (new_rtx) == CLOBBER
5557 && XEXP (new_rtx, 0) == const0_rtx)
5558 return new_rtx;
5559 }
5560
5561 SUBST (XVECEXP (x, i, j), new_rtx);
5562 }
5563 }
5564 else if (fmt[i] == 'e')
5565 {
5566 /* If this is a register being set, ignore it. */
5567 new_rtx = XEXP (x, i);
5568 if (in_dest
5569 && i == 0
5570 && (((code == SUBREG || code == ZERO_EXTRACT)
5571 && REG_P (new_rtx))
5572 || code == STRICT_LOW_PART))
5573 ;
5574
5575 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5576 {
5577 /* In general, don't install a subreg involving two
5578 modes not tieable. It can worsen register
5579 allocation, and can even make invalid reload
5580 insns, since the reg inside may need to be copied
5581 from in the outside mode, and that may be invalid
5582 if it is an fp reg copied in integer mode.
5583
5584 We allow two exceptions to this: It is valid if
5585 it is inside another SUBREG and the mode of that
5586 SUBREG and the mode of the inside of TO is
5587 tieable and it is valid if X is a SET that copies
5588 FROM to CC0. */
5589
5590 if (GET_CODE (to) == SUBREG
5591 && !targetm.modes_tieable_p (GET_MODE (to),
5592 GET_MODE (SUBREG_REG (to)))
5593 && ! (code == SUBREG
5594 && (targetm.modes_tieable_p
5595 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5596 && (!HAVE_cc0
5597 || (! (code == SET
5598 && i == 1
5599 && XEXP (x, 0) == cc0_rtx))))
5600 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5601
5602 if (code == SUBREG
5603 && REG_P (to)
5604 && REGNO (to) < FIRST_PSEUDO_REGISTER
5605 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5606 SUBREG_BYTE (x),
5607 GET_MODE (x)) < 0)
5608 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5609
5610 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5611 n_occurrences++;
5612 }
5613 else
5614 /* If we are in a SET_DEST, suppress most cases unless we
5615 have gone inside a MEM, in which case we want to
5616 simplify the address. We assume here that things that
5617 are actually part of the destination have their inner
5618 parts in the first expression. This is true for SUBREG,
5619 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5620 things aside from REG and MEM that should appear in a
5621 SET_DEST. */
5622 new_rtx = subst (XEXP (x, i), from, to,
5623 (((in_dest
5624 && (code == SUBREG || code == STRICT_LOW_PART
5625 || code == ZERO_EXTRACT))
5626 || code == SET)
5627 && i == 0),
5628 code == IF_THEN_ELSE && i == 0,
5629 unique_copy);
5630
5631 /* If we found that we will have to reject this combination,
5632 indicate that by returning the CLOBBER ourselves, rather than
5633 an expression containing it. This will speed things up as
5634 well as prevent accidents where two CLOBBERs are considered
5635 to be equal, thus producing an incorrect simplification. */
5636
5637 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5638 return new_rtx;
5639
5640 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5641 {
5642 machine_mode mode = GET_MODE (x);
5643
5644 x = simplify_subreg (GET_MODE (x), new_rtx,
5645 GET_MODE (SUBREG_REG (x)),
5646 SUBREG_BYTE (x));
5647 if (! x)
5648 x = gen_rtx_CLOBBER (mode, const0_rtx);
5649 }
5650 else if (CONST_SCALAR_INT_P (new_rtx)
5651 && (GET_CODE (x) == ZERO_EXTEND
5652 || GET_CODE (x) == SIGN_EXTEND
5653 || GET_CODE (x) == FLOAT
5654 || GET_CODE (x) == UNSIGNED_FLOAT))
5655 {
5656 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5657 new_rtx,
5658 GET_MODE (XEXP (x, 0)));
5659 if (!x)
5660 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5661 }
5662 else
5663 SUBST (XEXP (x, i), new_rtx);
5664 }
5665 }
5666 }
5667
5668 /* Check if we are loading something from the constant pool via float
5669 extension; in this case we would undo compress_float_constant
5670 optimization and degenerate constant load to an immediate value. */
5671 if (GET_CODE (x) == FLOAT_EXTEND
5672 && MEM_P (XEXP (x, 0))
5673 && MEM_READONLY_P (XEXP (x, 0)))
5674 {
5675 rtx tmp = avoid_constant_pool_reference (x);
5676 if (x != tmp)
5677 return x;
5678 }
5679
5680 /* Try to simplify X. If the simplification changed the code, it is likely
5681 that further simplification will help, so loop, but limit the number
5682 of repetitions that will be performed. */
5683
5684 for (i = 0; i < 4; i++)
5685 {
5686 /* If X is sufficiently simple, don't bother trying to do anything
5687 with it. */
5688 if (code != CONST_INT && code != REG && code != CLOBBER)
5689 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5690
5691 if (GET_CODE (x) == code)
5692 break;
5693
5694 code = GET_CODE (x);
5695
5696 /* We no longer know the original mode of operand 0 since we
5697 have changed the form of X) */
5698 op0_mode = VOIDmode;
5699 }
5700
5701 return x;
5702 }
5703 \f
5704 /* If X is a commutative operation whose operands are not in the canonical
5705 order, use substitutions to swap them. */
5706
5707 static void
5708 maybe_swap_commutative_operands (rtx x)
5709 {
5710 if (COMMUTATIVE_ARITH_P (x)
5711 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5712 {
5713 rtx temp = XEXP (x, 0);
5714 SUBST (XEXP (x, 0), XEXP (x, 1));
5715 SUBST (XEXP (x, 1), temp);
5716 }
5717 }
5718
5719 /* Simplify X, a piece of RTL. We just operate on the expression at the
5720 outer level; call `subst' to simplify recursively. Return the new
5721 expression.
5722
5723 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5724 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5725 of a condition. */
5726
5727 static rtx
5728 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5729 int in_cond)
5730 {
5731 enum rtx_code code = GET_CODE (x);
5732 machine_mode mode = GET_MODE (x);
5733 scalar_int_mode int_mode;
5734 rtx temp;
5735 int i;
5736
5737 /* If this is a commutative operation, put a constant last and a complex
5738 expression first. We don't need to do this for comparisons here. */
5739 maybe_swap_commutative_operands (x);
5740
5741 /* Try to fold this expression in case we have constants that weren't
5742 present before. */
5743 temp = 0;
5744 switch (GET_RTX_CLASS (code))
5745 {
5746 case RTX_UNARY:
5747 if (op0_mode == VOIDmode)
5748 op0_mode = GET_MODE (XEXP (x, 0));
5749 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5750 break;
5751 case RTX_COMPARE:
5752 case RTX_COMM_COMPARE:
5753 {
5754 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5755 if (cmp_mode == VOIDmode)
5756 {
5757 cmp_mode = GET_MODE (XEXP (x, 1));
5758 if (cmp_mode == VOIDmode)
5759 cmp_mode = op0_mode;
5760 }
5761 temp = simplify_relational_operation (code, mode, cmp_mode,
5762 XEXP (x, 0), XEXP (x, 1));
5763 }
5764 break;
5765 case RTX_COMM_ARITH:
5766 case RTX_BIN_ARITH:
5767 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5768 break;
5769 case RTX_BITFIELD_OPS:
5770 case RTX_TERNARY:
5771 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5772 XEXP (x, 1), XEXP (x, 2));
5773 break;
5774 default:
5775 break;
5776 }
5777
5778 if (temp)
5779 {
5780 x = temp;
5781 code = GET_CODE (temp);
5782 op0_mode = VOIDmode;
5783 mode = GET_MODE (temp);
5784 }
5785
5786 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5787 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5788 things. Check for cases where both arms are testing the same
5789 condition.
5790
5791 Don't do anything if all operands are very simple. */
5792
5793 if ((BINARY_P (x)
5794 && ((!OBJECT_P (XEXP (x, 0))
5795 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5796 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5797 || (!OBJECT_P (XEXP (x, 1))
5798 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5799 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5800 || (UNARY_P (x)
5801 && (!OBJECT_P (XEXP (x, 0))
5802 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5803 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5804 {
5805 rtx cond, true_rtx, false_rtx;
5806
5807 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5808 if (cond != 0
5809 /* If everything is a comparison, what we have is highly unlikely
5810 to be simpler, so don't use it. */
5811 && ! (COMPARISON_P (x)
5812 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5813 /* Similarly, if we end up with one of the expressions the same
5814 as the original, it is certainly not simpler. */
5815 && ! rtx_equal_p (x, true_rtx)
5816 && ! rtx_equal_p (x, false_rtx))
5817 {
5818 rtx cop1 = const0_rtx;
5819 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5820
5821 if (cond_code == NE && COMPARISON_P (cond))
5822 return x;
5823
5824 /* Simplify the alternative arms; this may collapse the true and
5825 false arms to store-flag values. Be careful to use copy_rtx
5826 here since true_rtx or false_rtx might share RTL with x as a
5827 result of the if_then_else_cond call above. */
5828 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5829 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5830
5831 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5832 is unlikely to be simpler. */
5833 if (general_operand (true_rtx, VOIDmode)
5834 && general_operand (false_rtx, VOIDmode))
5835 {
5836 enum rtx_code reversed;
5837
5838 /* Restarting if we generate a store-flag expression will cause
5839 us to loop. Just drop through in this case. */
5840
5841 /* If the result values are STORE_FLAG_VALUE and zero, we can
5842 just make the comparison operation. */
5843 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5844 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5845 cond, cop1);
5846 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5847 && ((reversed = reversed_comparison_code_parts
5848 (cond_code, cond, cop1, NULL))
5849 != UNKNOWN))
5850 x = simplify_gen_relational (reversed, mode, VOIDmode,
5851 cond, cop1);
5852
5853 /* Likewise, we can make the negate of a comparison operation
5854 if the result values are - STORE_FLAG_VALUE and zero. */
5855 else if (CONST_INT_P (true_rtx)
5856 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5857 && false_rtx == const0_rtx)
5858 x = simplify_gen_unary (NEG, mode,
5859 simplify_gen_relational (cond_code,
5860 mode, VOIDmode,
5861 cond, cop1),
5862 mode);
5863 else if (CONST_INT_P (false_rtx)
5864 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5865 && true_rtx == const0_rtx
5866 && ((reversed = reversed_comparison_code_parts
5867 (cond_code, cond, cop1, NULL))
5868 != UNKNOWN))
5869 x = simplify_gen_unary (NEG, mode,
5870 simplify_gen_relational (reversed,
5871 mode, VOIDmode,
5872 cond, cop1),
5873 mode);
5874
5875 code = GET_CODE (x);
5876 op0_mode = VOIDmode;
5877 }
5878 }
5879 }
5880
5881 /* First see if we can apply the inverse distributive law. */
5882 if (code == PLUS || code == MINUS
5883 || code == AND || code == IOR || code == XOR)
5884 {
5885 x = apply_distributive_law (x);
5886 code = GET_CODE (x);
5887 op0_mode = VOIDmode;
5888 }
5889
5890 /* If CODE is an associative operation not otherwise handled, see if we
5891 can associate some operands. This can win if they are constants or
5892 if they are logically related (i.e. (a & b) & a). */
5893 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5894 || code == AND || code == IOR || code == XOR
5895 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5896 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5897 || (flag_associative_math && FLOAT_MODE_P (mode))))
5898 {
5899 if (GET_CODE (XEXP (x, 0)) == code)
5900 {
5901 rtx other = XEXP (XEXP (x, 0), 0);
5902 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5903 rtx inner_op1 = XEXP (x, 1);
5904 rtx inner;
5905
5906 /* Make sure we pass the constant operand if any as the second
5907 one if this is a commutative operation. */
5908 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5909 std::swap (inner_op0, inner_op1);
5910 inner = simplify_binary_operation (code == MINUS ? PLUS
5911 : code == DIV ? MULT
5912 : code,
5913 mode, inner_op0, inner_op1);
5914
5915 /* For commutative operations, try the other pair if that one
5916 didn't simplify. */
5917 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5918 {
5919 other = XEXP (XEXP (x, 0), 1);
5920 inner = simplify_binary_operation (code, mode,
5921 XEXP (XEXP (x, 0), 0),
5922 XEXP (x, 1));
5923 }
5924
5925 if (inner)
5926 return simplify_gen_binary (code, mode, other, inner);
5927 }
5928 }
5929
5930 /* A little bit of algebraic simplification here. */
5931 switch (code)
5932 {
5933 case MEM:
5934 /* Ensure that our address has any ASHIFTs converted to MULT in case
5935 address-recognizing predicates are called later. */
5936 temp = make_compound_operation (XEXP (x, 0), MEM);
5937 SUBST (XEXP (x, 0), temp);
5938 break;
5939
5940 case SUBREG:
5941 if (op0_mode == VOIDmode)
5942 op0_mode = GET_MODE (SUBREG_REG (x));
5943
5944 /* See if this can be moved to simplify_subreg. */
5945 if (CONSTANT_P (SUBREG_REG (x))
5946 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5947 /* Don't call gen_lowpart if the inner mode
5948 is VOIDmode and we cannot simplify it, as SUBREG without
5949 inner mode is invalid. */
5950 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5951 || gen_lowpart_common (mode, SUBREG_REG (x))))
5952 return gen_lowpart (mode, SUBREG_REG (x));
5953
5954 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5955 break;
5956 {
5957 rtx temp;
5958 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5959 SUBREG_BYTE (x));
5960 if (temp)
5961 return temp;
5962
5963 /* If op is known to have all lower bits zero, the result is zero. */
5964 scalar_int_mode int_mode, int_op0_mode;
5965 if (!in_dest
5966 && is_a <scalar_int_mode> (mode, &int_mode)
5967 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5968 && (GET_MODE_PRECISION (int_mode)
5969 < GET_MODE_PRECISION (int_op0_mode))
5970 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5971 SUBREG_BYTE (x))
5972 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5973 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
5974 & GET_MODE_MASK (int_mode)) == 0)
5975 && !side_effects_p (SUBREG_REG (x)))
5976 return CONST0_RTX (int_mode);
5977 }
5978
5979 /* Don't change the mode of the MEM if that would change the meaning
5980 of the address. */
5981 if (MEM_P (SUBREG_REG (x))
5982 && (MEM_VOLATILE_P (SUBREG_REG (x))
5983 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5984 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5985 return gen_rtx_CLOBBER (mode, const0_rtx);
5986
5987 /* Note that we cannot do any narrowing for non-constants since
5988 we might have been counting on using the fact that some bits were
5989 zero. We now do this in the SET. */
5990
5991 break;
5992
5993 case NEG:
5994 temp = expand_compound_operation (XEXP (x, 0));
5995
5996 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5997 replaced by (lshiftrt X C). This will convert
5998 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5999
6000 if (GET_CODE (temp) == ASHIFTRT
6001 && CONST_INT_P (XEXP (temp, 1))
6002 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
6003 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
6004 INTVAL (XEXP (temp, 1)));
6005
6006 /* If X has only a single bit that might be nonzero, say, bit I, convert
6007 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
6008 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
6009 (sign_extract X 1 Y). But only do this if TEMP isn't a register
6010 or a SUBREG of one since we'd be making the expression more
6011 complex if it was just a register. */
6012
6013 if (!REG_P (temp)
6014 && ! (GET_CODE (temp) == SUBREG
6015 && REG_P (SUBREG_REG (temp)))
6016 && is_a <scalar_int_mode> (mode, &int_mode)
6017 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
6018 {
6019 rtx temp1 = simplify_shift_const
6020 (NULL_RTX, ASHIFTRT, int_mode,
6021 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
6022 GET_MODE_PRECISION (int_mode) - 1 - i),
6023 GET_MODE_PRECISION (int_mode) - 1 - i);
6024
6025 /* If all we did was surround TEMP with the two shifts, we
6026 haven't improved anything, so don't use it. Otherwise,
6027 we are better off with TEMP1. */
6028 if (GET_CODE (temp1) != ASHIFTRT
6029 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
6030 || XEXP (XEXP (temp1, 0), 0) != temp)
6031 return temp1;
6032 }
6033 break;
6034
6035 case TRUNCATE:
6036 /* We can't handle truncation to a partial integer mode here
6037 because we don't know the real bitsize of the partial
6038 integer mode. */
6039 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6040 break;
6041
6042 if (HWI_COMPUTABLE_MODE_P (mode))
6043 SUBST (XEXP (x, 0),
6044 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6045 GET_MODE_MASK (mode), 0));
6046
6047 /* We can truncate a constant value and return it. */
6048 {
6049 poly_int64 c;
6050 if (poly_int_rtx_p (XEXP (x, 0), &c))
6051 return gen_int_mode (c, mode);
6052 }
6053
6054 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
6055 whose value is a comparison can be replaced with a subreg if
6056 STORE_FLAG_VALUE permits. */
6057 if (HWI_COMPUTABLE_MODE_P (mode)
6058 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6059 && (temp = get_last_value (XEXP (x, 0)))
6060 && COMPARISON_P (temp))
6061 return gen_lowpart (mode, XEXP (x, 0));
6062 break;
6063
6064 case CONST:
6065 /* (const (const X)) can become (const X). Do it this way rather than
6066 returning the inner CONST since CONST can be shared with a
6067 REG_EQUAL note. */
6068 if (GET_CODE (XEXP (x, 0)) == CONST)
6069 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6070 break;
6071
6072 case LO_SUM:
6073 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6074 can add in an offset. find_split_point will split this address up
6075 again if it doesn't match. */
6076 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6077 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6078 return XEXP (x, 1);
6079 break;
6080
6081 case PLUS:
6082 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6083 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6084 bit-field and can be replaced by either a sign_extend or a
6085 sign_extract. The `and' may be a zero_extend and the two
6086 <c>, -<c> constants may be reversed. */
6087 if (GET_CODE (XEXP (x, 0)) == XOR
6088 && is_a <scalar_int_mode> (mode, &int_mode)
6089 && CONST_INT_P (XEXP (x, 1))
6090 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6091 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6092 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6093 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6094 && HWI_COMPUTABLE_MODE_P (int_mode)
6095 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6096 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6097 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6098 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6099 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6100 && known_eq ((GET_MODE_PRECISION
6101 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6102 (unsigned int) i + 1))))
6103 return simplify_shift_const
6104 (NULL_RTX, ASHIFTRT, int_mode,
6105 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6106 XEXP (XEXP (XEXP (x, 0), 0), 0),
6107 GET_MODE_PRECISION (int_mode) - (i + 1)),
6108 GET_MODE_PRECISION (int_mode) - (i + 1));
6109
6110 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6111 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6112 the bitsize of the mode - 1. This allows simplification of
6113 "a = (b & 8) == 0;" */
6114 if (XEXP (x, 1) == constm1_rtx
6115 && !REG_P (XEXP (x, 0))
6116 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6117 && REG_P (SUBREG_REG (XEXP (x, 0))))
6118 && is_a <scalar_int_mode> (mode, &int_mode)
6119 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6120 return simplify_shift_const
6121 (NULL_RTX, ASHIFTRT, int_mode,
6122 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6123 gen_rtx_XOR (int_mode, XEXP (x, 0),
6124 const1_rtx),
6125 GET_MODE_PRECISION (int_mode) - 1),
6126 GET_MODE_PRECISION (int_mode) - 1);
6127
6128 /* If we are adding two things that have no bits in common, convert
6129 the addition into an IOR. This will often be further simplified,
6130 for example in cases like ((a & 1) + (a & 2)), which can
6131 become a & 3. */
6132
6133 if (HWI_COMPUTABLE_MODE_P (mode)
6134 && (nonzero_bits (XEXP (x, 0), mode)
6135 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6136 {
6137 /* Try to simplify the expression further. */
6138 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6139 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6140
6141 /* If we could, great. If not, do not go ahead with the IOR
6142 replacement, since PLUS appears in many special purpose
6143 address arithmetic instructions. */
6144 if (GET_CODE (temp) != CLOBBER
6145 && (GET_CODE (temp) != IOR
6146 || ((XEXP (temp, 0) != XEXP (x, 0)
6147 || XEXP (temp, 1) != XEXP (x, 1))
6148 && (XEXP (temp, 0) != XEXP (x, 1)
6149 || XEXP (temp, 1) != XEXP (x, 0)))))
6150 return temp;
6151 }
6152
6153 /* Canonicalize x + x into x << 1. */
6154 if (GET_MODE_CLASS (mode) == MODE_INT
6155 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6156 && !side_effects_p (XEXP (x, 0)))
6157 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6158
6159 break;
6160
6161 case MINUS:
6162 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6163 (and <foo> (const_int pow2-1)) */
6164 if (is_a <scalar_int_mode> (mode, &int_mode)
6165 && GET_CODE (XEXP (x, 1)) == AND
6166 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6167 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6168 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6169 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6170 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6171 break;
6172
6173 case MULT:
6174 /* If we have (mult (plus A B) C), apply the distributive law and then
6175 the inverse distributive law to see if things simplify. This
6176 occurs mostly in addresses, often when unrolling loops. */
6177
6178 if (GET_CODE (XEXP (x, 0)) == PLUS)
6179 {
6180 rtx result = distribute_and_simplify_rtx (x, 0);
6181 if (result)
6182 return result;
6183 }
6184
6185 /* Try simplify a*(b/c) as (a*b)/c. */
6186 if (FLOAT_MODE_P (mode) && flag_associative_math
6187 && GET_CODE (XEXP (x, 0)) == DIV)
6188 {
6189 rtx tem = simplify_binary_operation (MULT, mode,
6190 XEXP (XEXP (x, 0), 0),
6191 XEXP (x, 1));
6192 if (tem)
6193 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6194 }
6195 break;
6196
6197 case UDIV:
6198 /* If this is a divide by a power of two, treat it as a shift if
6199 its first operand is a shift. */
6200 if (is_a <scalar_int_mode> (mode, &int_mode)
6201 && CONST_INT_P (XEXP (x, 1))
6202 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6203 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6204 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6205 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6206 || GET_CODE (XEXP (x, 0)) == ROTATE
6207 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6208 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6209 XEXP (x, 0), i);
6210 break;
6211
6212 case EQ: case NE:
6213 case GT: case GTU: case GE: case GEU:
6214 case LT: case LTU: case LE: case LEU:
6215 case UNEQ: case LTGT:
6216 case UNGT: case UNGE:
6217 case UNLT: case UNLE:
6218 case UNORDERED: case ORDERED:
6219 /* If the first operand is a condition code, we can't do anything
6220 with it. */
6221 if (GET_CODE (XEXP (x, 0)) == COMPARE
6222 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6223 && ! CC0_P (XEXP (x, 0))))
6224 {
6225 rtx op0 = XEXP (x, 0);
6226 rtx op1 = XEXP (x, 1);
6227 enum rtx_code new_code;
6228
6229 if (GET_CODE (op0) == COMPARE)
6230 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6231
6232 /* Simplify our comparison, if possible. */
6233 new_code = simplify_comparison (code, &op0, &op1);
6234
6235 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6236 if only the low-order bit is possibly nonzero in X (such as when
6237 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6238 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6239 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6240 (plus X 1).
6241
6242 Remove any ZERO_EXTRACT we made when thinking this was a
6243 comparison. It may now be simpler to use, e.g., an AND. If a
6244 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6245 the call to make_compound_operation in the SET case.
6246
6247 Don't apply these optimizations if the caller would
6248 prefer a comparison rather than a value.
6249 E.g., for the condition in an IF_THEN_ELSE most targets need
6250 an explicit comparison. */
6251
6252 if (in_cond)
6253 ;
6254
6255 else if (STORE_FLAG_VALUE == 1
6256 && new_code == NE
6257 && is_int_mode (mode, &int_mode)
6258 && op1 == const0_rtx
6259 && int_mode == GET_MODE (op0)
6260 && nonzero_bits (op0, int_mode) == 1)
6261 return gen_lowpart (int_mode,
6262 expand_compound_operation (op0));
6263
6264 else if (STORE_FLAG_VALUE == 1
6265 && new_code == NE
6266 && is_int_mode (mode, &int_mode)
6267 && op1 == const0_rtx
6268 && int_mode == GET_MODE (op0)
6269 && (num_sign_bit_copies (op0, int_mode)
6270 == GET_MODE_PRECISION (int_mode)))
6271 {
6272 op0 = expand_compound_operation (op0);
6273 return simplify_gen_unary (NEG, int_mode,
6274 gen_lowpart (int_mode, op0),
6275 int_mode);
6276 }
6277
6278 else if (STORE_FLAG_VALUE == 1
6279 && new_code == EQ
6280 && is_int_mode (mode, &int_mode)
6281 && op1 == const0_rtx
6282 && int_mode == GET_MODE (op0)
6283 && nonzero_bits (op0, int_mode) == 1)
6284 {
6285 op0 = expand_compound_operation (op0);
6286 return simplify_gen_binary (XOR, int_mode,
6287 gen_lowpart (int_mode, op0),
6288 const1_rtx);
6289 }
6290
6291 else if (STORE_FLAG_VALUE == 1
6292 && new_code == EQ
6293 && is_int_mode (mode, &int_mode)
6294 && op1 == const0_rtx
6295 && int_mode == GET_MODE (op0)
6296 && (num_sign_bit_copies (op0, int_mode)
6297 == GET_MODE_PRECISION (int_mode)))
6298 {
6299 op0 = expand_compound_operation (op0);
6300 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6301 }
6302
6303 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6304 those above. */
6305 if (in_cond)
6306 ;
6307
6308 else if (STORE_FLAG_VALUE == -1
6309 && new_code == NE
6310 && is_int_mode (mode, &int_mode)
6311 && op1 == const0_rtx
6312 && int_mode == GET_MODE (op0)
6313 && (num_sign_bit_copies (op0, int_mode)
6314 == GET_MODE_PRECISION (int_mode)))
6315 return gen_lowpart (int_mode, expand_compound_operation (op0));
6316
6317 else if (STORE_FLAG_VALUE == -1
6318 && new_code == NE
6319 && is_int_mode (mode, &int_mode)
6320 && op1 == const0_rtx
6321 && int_mode == GET_MODE (op0)
6322 && nonzero_bits (op0, int_mode) == 1)
6323 {
6324 op0 = expand_compound_operation (op0);
6325 return simplify_gen_unary (NEG, int_mode,
6326 gen_lowpart (int_mode, op0),
6327 int_mode);
6328 }
6329
6330 else if (STORE_FLAG_VALUE == -1
6331 && new_code == EQ
6332 && is_int_mode (mode, &int_mode)
6333 && op1 == const0_rtx
6334 && int_mode == GET_MODE (op0)
6335 && (num_sign_bit_copies (op0, int_mode)
6336 == GET_MODE_PRECISION (int_mode)))
6337 {
6338 op0 = expand_compound_operation (op0);
6339 return simplify_gen_unary (NOT, int_mode,
6340 gen_lowpart (int_mode, op0),
6341 int_mode);
6342 }
6343
6344 /* If X is 0/1, (eq X 0) is X-1. */
6345 else if (STORE_FLAG_VALUE == -1
6346 && new_code == EQ
6347 && is_int_mode (mode, &int_mode)
6348 && op1 == const0_rtx
6349 && int_mode == GET_MODE (op0)
6350 && nonzero_bits (op0, int_mode) == 1)
6351 {
6352 op0 = expand_compound_operation (op0);
6353 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6354 }
6355
6356 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6357 one bit that might be nonzero, we can convert (ne x 0) to
6358 (ashift x c) where C puts the bit in the sign bit. Remove any
6359 AND with STORE_FLAG_VALUE when we are done, since we are only
6360 going to test the sign bit. */
6361 if (new_code == NE
6362 && is_int_mode (mode, &int_mode)
6363 && HWI_COMPUTABLE_MODE_P (int_mode)
6364 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6365 && op1 == const0_rtx
6366 && int_mode == GET_MODE (op0)
6367 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6368 {
6369 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6370 expand_compound_operation (op0),
6371 GET_MODE_PRECISION (int_mode) - 1 - i);
6372 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6373 return XEXP (x, 0);
6374 else
6375 return x;
6376 }
6377
6378 /* If the code changed, return a whole new comparison.
6379 We also need to avoid using SUBST in cases where
6380 simplify_comparison has widened a comparison with a CONST_INT,
6381 since in that case the wider CONST_INT may fail the sanity
6382 checks in do_SUBST. */
6383 if (new_code != code
6384 || (CONST_INT_P (op1)
6385 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6386 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6387 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6388
6389 /* Otherwise, keep this operation, but maybe change its operands.
6390 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6391 SUBST (XEXP (x, 0), op0);
6392 SUBST (XEXP (x, 1), op1);
6393 }
6394 break;
6395
6396 case IF_THEN_ELSE:
6397 return simplify_if_then_else (x);
6398
6399 case ZERO_EXTRACT:
6400 case SIGN_EXTRACT:
6401 case ZERO_EXTEND:
6402 case SIGN_EXTEND:
6403 /* If we are processing SET_DEST, we are done. */
6404 if (in_dest)
6405 return x;
6406
6407 return expand_compound_operation (x);
6408
6409 case SET:
6410 return simplify_set (x);
6411
6412 case AND:
6413 case IOR:
6414 return simplify_logical (x);
6415
6416 case ASHIFT:
6417 case LSHIFTRT:
6418 case ASHIFTRT:
6419 case ROTATE:
6420 case ROTATERT:
6421 /* If this is a shift by a constant amount, simplify it. */
6422 if (CONST_INT_P (XEXP (x, 1)))
6423 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6424 INTVAL (XEXP (x, 1)));
6425
6426 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6427 SUBST (XEXP (x, 1),
6428 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6429 (HOST_WIDE_INT_1U
6430 << exact_log2 (GET_MODE_UNIT_BITSIZE
6431 (GET_MODE (x))))
6432 - 1,
6433 0));
6434 break;
6435
6436 default:
6437 break;
6438 }
6439
6440 return x;
6441 }
6442 \f
6443 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6444
6445 static rtx
6446 simplify_if_then_else (rtx x)
6447 {
6448 machine_mode mode = GET_MODE (x);
6449 rtx cond = XEXP (x, 0);
6450 rtx true_rtx = XEXP (x, 1);
6451 rtx false_rtx = XEXP (x, 2);
6452 enum rtx_code true_code = GET_CODE (cond);
6453 int comparison_p = COMPARISON_P (cond);
6454 rtx temp;
6455 int i;
6456 enum rtx_code false_code;
6457 rtx reversed;
6458 scalar_int_mode int_mode, inner_mode;
6459
6460 /* Simplify storing of the truth value. */
6461 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6462 return simplify_gen_relational (true_code, mode, VOIDmode,
6463 XEXP (cond, 0), XEXP (cond, 1));
6464
6465 /* Also when the truth value has to be reversed. */
6466 if (comparison_p
6467 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6468 && (reversed = reversed_comparison (cond, mode)))
6469 return reversed;
6470
6471 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6472 in it is being compared against certain values. Get the true and false
6473 comparisons and see if that says anything about the value of each arm. */
6474
6475 if (comparison_p
6476 && ((false_code = reversed_comparison_code (cond, NULL))
6477 != UNKNOWN)
6478 && REG_P (XEXP (cond, 0)))
6479 {
6480 HOST_WIDE_INT nzb;
6481 rtx from = XEXP (cond, 0);
6482 rtx true_val = XEXP (cond, 1);
6483 rtx false_val = true_val;
6484 int swapped = 0;
6485
6486 /* If FALSE_CODE is EQ, swap the codes and arms. */
6487
6488 if (false_code == EQ)
6489 {
6490 swapped = 1, true_code = EQ, false_code = NE;
6491 std::swap (true_rtx, false_rtx);
6492 }
6493
6494 scalar_int_mode from_mode;
6495 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6496 {
6497 /* If we are comparing against zero and the expression being
6498 tested has only a single bit that might be nonzero, that is
6499 its value when it is not equal to zero. Similarly if it is
6500 known to be -1 or 0. */
6501 if (true_code == EQ
6502 && true_val == const0_rtx
6503 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6504 {
6505 false_code = EQ;
6506 false_val = gen_int_mode (nzb, from_mode);
6507 }
6508 else if (true_code == EQ
6509 && true_val == const0_rtx
6510 && (num_sign_bit_copies (from, from_mode)
6511 == GET_MODE_PRECISION (from_mode)))
6512 {
6513 false_code = EQ;
6514 false_val = constm1_rtx;
6515 }
6516 }
6517
6518 /* Now simplify an arm if we know the value of the register in the
6519 branch and it is used in the arm. Be careful due to the potential
6520 of locally-shared RTL. */
6521
6522 if (reg_mentioned_p (from, true_rtx))
6523 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6524 from, true_val),
6525 pc_rtx, pc_rtx, 0, 0, 0);
6526 if (reg_mentioned_p (from, false_rtx))
6527 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6528 from, false_val),
6529 pc_rtx, pc_rtx, 0, 0, 0);
6530
6531 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6532 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6533
6534 true_rtx = XEXP (x, 1);
6535 false_rtx = XEXP (x, 2);
6536 true_code = GET_CODE (cond);
6537 }
6538
6539 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6540 reversed, do so to avoid needing two sets of patterns for
6541 subtract-and-branch insns. Similarly if we have a constant in the true
6542 arm, the false arm is the same as the first operand of the comparison, or
6543 the false arm is more complicated than the true arm. */
6544
6545 if (comparison_p
6546 && reversed_comparison_code (cond, NULL) != UNKNOWN
6547 && (true_rtx == pc_rtx
6548 || (CONSTANT_P (true_rtx)
6549 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6550 || true_rtx == const0_rtx
6551 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6552 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6553 && !OBJECT_P (false_rtx))
6554 || reg_mentioned_p (true_rtx, false_rtx)
6555 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6556 {
6557 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6558 SUBST (XEXP (x, 1), false_rtx);
6559 SUBST (XEXP (x, 2), true_rtx);
6560
6561 std::swap (true_rtx, false_rtx);
6562 cond = XEXP (x, 0);
6563
6564 /* It is possible that the conditional has been simplified out. */
6565 true_code = GET_CODE (cond);
6566 comparison_p = COMPARISON_P (cond);
6567 }
6568
6569 /* If the two arms are identical, we don't need the comparison. */
6570
6571 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6572 return true_rtx;
6573
6574 /* Convert a == b ? b : a to "a". */
6575 if (true_code == EQ && ! side_effects_p (cond)
6576 && !HONOR_NANS (mode)
6577 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6578 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6579 return false_rtx;
6580 else if (true_code == NE && ! side_effects_p (cond)
6581 && !HONOR_NANS (mode)
6582 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6583 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6584 return true_rtx;
6585
6586 /* Look for cases where we have (abs x) or (neg (abs X)). */
6587
6588 if (GET_MODE_CLASS (mode) == MODE_INT
6589 && comparison_p
6590 && XEXP (cond, 1) == const0_rtx
6591 && GET_CODE (false_rtx) == NEG
6592 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6593 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6594 && ! side_effects_p (true_rtx))
6595 switch (true_code)
6596 {
6597 case GT:
6598 case GE:
6599 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6600 case LT:
6601 case LE:
6602 return
6603 simplify_gen_unary (NEG, mode,
6604 simplify_gen_unary (ABS, mode, true_rtx, mode),
6605 mode);
6606 default:
6607 break;
6608 }
6609
6610 /* Look for MIN or MAX. */
6611
6612 if ((! FLOAT_MODE_P (mode)
6613 || (flag_unsafe_math_optimizations
6614 && !HONOR_NANS (mode)
6615 && !HONOR_SIGNED_ZEROS (mode)))
6616 && comparison_p
6617 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6618 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6619 && ! side_effects_p (cond))
6620 switch (true_code)
6621 {
6622 case GE:
6623 case GT:
6624 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6625 case LE:
6626 case LT:
6627 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6628 case GEU:
6629 case GTU:
6630 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6631 case LEU:
6632 case LTU:
6633 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6634 default:
6635 break;
6636 }
6637
6638 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6639 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6640 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6641 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6642 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6643 neither 1 or -1, but it isn't worth checking for. */
6644
6645 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6646 && comparison_p
6647 && is_int_mode (mode, &int_mode)
6648 && ! side_effects_p (x))
6649 {
6650 rtx t = make_compound_operation (true_rtx, SET);
6651 rtx f = make_compound_operation (false_rtx, SET);
6652 rtx cond_op0 = XEXP (cond, 0);
6653 rtx cond_op1 = XEXP (cond, 1);
6654 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6655 scalar_int_mode m = int_mode;
6656 rtx z = 0, c1 = NULL_RTX;
6657
6658 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6659 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6660 || GET_CODE (t) == ASHIFT
6661 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6662 && rtx_equal_p (XEXP (t, 0), f))
6663 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6664
6665 /* If an identity-zero op is commutative, check whether there
6666 would be a match if we swapped the operands. */
6667 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6668 || GET_CODE (t) == XOR)
6669 && rtx_equal_p (XEXP (t, 1), f))
6670 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6671 else if (GET_CODE (t) == SIGN_EXTEND
6672 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6673 && (GET_CODE (XEXP (t, 0)) == PLUS
6674 || GET_CODE (XEXP (t, 0)) == MINUS
6675 || GET_CODE (XEXP (t, 0)) == IOR
6676 || GET_CODE (XEXP (t, 0)) == XOR
6677 || GET_CODE (XEXP (t, 0)) == ASHIFT
6678 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6679 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6680 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6681 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6682 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6683 && (num_sign_bit_copies (f, GET_MODE (f))
6684 > (unsigned int)
6685 (GET_MODE_PRECISION (int_mode)
6686 - GET_MODE_PRECISION (inner_mode))))
6687 {
6688 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6689 extend_op = SIGN_EXTEND;
6690 m = inner_mode;
6691 }
6692 else if (GET_CODE (t) == SIGN_EXTEND
6693 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6694 && (GET_CODE (XEXP (t, 0)) == PLUS
6695 || GET_CODE (XEXP (t, 0)) == IOR
6696 || GET_CODE (XEXP (t, 0)) == XOR)
6697 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6698 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6699 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6700 && (num_sign_bit_copies (f, GET_MODE (f))
6701 > (unsigned int)
6702 (GET_MODE_PRECISION (int_mode)
6703 - GET_MODE_PRECISION (inner_mode))))
6704 {
6705 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6706 extend_op = SIGN_EXTEND;
6707 m = inner_mode;
6708 }
6709 else if (GET_CODE (t) == ZERO_EXTEND
6710 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6711 && (GET_CODE (XEXP (t, 0)) == PLUS
6712 || GET_CODE (XEXP (t, 0)) == MINUS
6713 || GET_CODE (XEXP (t, 0)) == IOR
6714 || GET_CODE (XEXP (t, 0)) == XOR
6715 || GET_CODE (XEXP (t, 0)) == ASHIFT
6716 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6717 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6718 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6719 && HWI_COMPUTABLE_MODE_P (int_mode)
6720 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6721 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6722 && ((nonzero_bits (f, GET_MODE (f))
6723 & ~GET_MODE_MASK (inner_mode))
6724 == 0))
6725 {
6726 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6727 extend_op = ZERO_EXTEND;
6728 m = inner_mode;
6729 }
6730 else if (GET_CODE (t) == ZERO_EXTEND
6731 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6732 && (GET_CODE (XEXP (t, 0)) == PLUS
6733 || GET_CODE (XEXP (t, 0)) == IOR
6734 || GET_CODE (XEXP (t, 0)) == XOR)
6735 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6736 && HWI_COMPUTABLE_MODE_P (int_mode)
6737 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6738 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6739 && ((nonzero_bits (f, GET_MODE (f))
6740 & ~GET_MODE_MASK (inner_mode))
6741 == 0))
6742 {
6743 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6744 extend_op = ZERO_EXTEND;
6745 m = inner_mode;
6746 }
6747
6748 if (z)
6749 {
6750 machine_mode cm = m;
6751 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6752 && GET_MODE (c1) != VOIDmode)
6753 cm = GET_MODE (c1);
6754 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6755 cond_op0, cond_op1),
6756 pc_rtx, pc_rtx, 0, 0, 0);
6757 temp = simplify_gen_binary (MULT, cm, temp,
6758 simplify_gen_binary (MULT, cm, c1,
6759 const_true_rtx));
6760 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6761 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6762
6763 if (extend_op != UNKNOWN)
6764 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6765
6766 return temp;
6767 }
6768 }
6769
6770 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6771 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6772 negation of a single bit, we can convert this operation to a shift. We
6773 can actually do this more generally, but it doesn't seem worth it. */
6774
6775 if (true_code == NE
6776 && is_a <scalar_int_mode> (mode, &int_mode)
6777 && XEXP (cond, 1) == const0_rtx
6778 && false_rtx == const0_rtx
6779 && CONST_INT_P (true_rtx)
6780 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6781 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6782 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6783 == GET_MODE_PRECISION (int_mode))
6784 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6785 return
6786 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6787 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6788
6789 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6790 non-zero bit in A is C1. */
6791 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6792 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6793 && is_a <scalar_int_mode> (mode, &int_mode)
6794 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6795 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6796 == nonzero_bits (XEXP (cond, 0), inner_mode)
6797 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6798 {
6799 rtx val = XEXP (cond, 0);
6800 if (inner_mode == int_mode)
6801 return val;
6802 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6803 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6804 }
6805
6806 return x;
6807 }
6808 \f
6809 /* Simplify X, a SET expression. Return the new expression. */
6810
6811 static rtx
6812 simplify_set (rtx x)
6813 {
6814 rtx src = SET_SRC (x);
6815 rtx dest = SET_DEST (x);
6816 machine_mode mode
6817 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6818 rtx_insn *other_insn;
6819 rtx *cc_use;
6820 scalar_int_mode int_mode;
6821
6822 /* (set (pc) (return)) gets written as (return). */
6823 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6824 return src;
6825
6826 /* Now that we know for sure which bits of SRC we are using, see if we can
6827 simplify the expression for the object knowing that we only need the
6828 low-order bits. */
6829
6830 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6831 {
6832 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6833 SUBST (SET_SRC (x), src);
6834 }
6835
6836 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6837 the comparison result and try to simplify it unless we already have used
6838 undobuf.other_insn. */
6839 if ((GET_MODE_CLASS (mode) == MODE_CC
6840 || GET_CODE (src) == COMPARE
6841 || CC0_P (dest))
6842 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6843 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6844 && COMPARISON_P (*cc_use)
6845 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6846 {
6847 enum rtx_code old_code = GET_CODE (*cc_use);
6848 enum rtx_code new_code;
6849 rtx op0, op1, tmp;
6850 int other_changed = 0;
6851 rtx inner_compare = NULL_RTX;
6852 machine_mode compare_mode = GET_MODE (dest);
6853
6854 if (GET_CODE (src) == COMPARE)
6855 {
6856 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6857 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6858 {
6859 inner_compare = op0;
6860 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6861 }
6862 }
6863 else
6864 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6865
6866 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6867 op0, op1);
6868 if (!tmp)
6869 new_code = old_code;
6870 else if (!CONSTANT_P (tmp))
6871 {
6872 new_code = GET_CODE (tmp);
6873 op0 = XEXP (tmp, 0);
6874 op1 = XEXP (tmp, 1);
6875 }
6876 else
6877 {
6878 rtx pat = PATTERN (other_insn);
6879 undobuf.other_insn = other_insn;
6880 SUBST (*cc_use, tmp);
6881
6882 /* Attempt to simplify CC user. */
6883 if (GET_CODE (pat) == SET)
6884 {
6885 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6886 if (new_rtx != NULL_RTX)
6887 SUBST (SET_SRC (pat), new_rtx);
6888 }
6889
6890 /* Convert X into a no-op move. */
6891 SUBST (SET_DEST (x), pc_rtx);
6892 SUBST (SET_SRC (x), pc_rtx);
6893 return x;
6894 }
6895
6896 /* Simplify our comparison, if possible. */
6897 new_code = simplify_comparison (new_code, &op0, &op1);
6898
6899 #ifdef SELECT_CC_MODE
6900 /* If this machine has CC modes other than CCmode, check to see if we
6901 need to use a different CC mode here. */
6902 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6903 compare_mode = GET_MODE (op0);
6904 else if (inner_compare
6905 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6906 && new_code == old_code
6907 && op0 == XEXP (inner_compare, 0)
6908 && op1 == XEXP (inner_compare, 1))
6909 compare_mode = GET_MODE (inner_compare);
6910 else
6911 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6912
6913 /* If the mode changed, we have to change SET_DEST, the mode in the
6914 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6915 a hard register, just build new versions with the proper mode. If it
6916 is a pseudo, we lose unless it is only time we set the pseudo, in
6917 which case we can safely change its mode. */
6918 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6919 {
6920 if (can_change_dest_mode (dest, 0, compare_mode))
6921 {
6922 unsigned int regno = REGNO (dest);
6923 rtx new_dest;
6924
6925 if (regno < FIRST_PSEUDO_REGISTER)
6926 new_dest = gen_rtx_REG (compare_mode, regno);
6927 else
6928 {
6929 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6930 new_dest = regno_reg_rtx[regno];
6931 }
6932
6933 SUBST (SET_DEST (x), new_dest);
6934 SUBST (XEXP (*cc_use, 0), new_dest);
6935 other_changed = 1;
6936
6937 dest = new_dest;
6938 }
6939 }
6940 #endif /* SELECT_CC_MODE */
6941
6942 /* If the code changed, we have to build a new comparison in
6943 undobuf.other_insn. */
6944 if (new_code != old_code)
6945 {
6946 int other_changed_previously = other_changed;
6947 unsigned HOST_WIDE_INT mask;
6948 rtx old_cc_use = *cc_use;
6949
6950 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6951 dest, const0_rtx));
6952 other_changed = 1;
6953
6954 /* If the only change we made was to change an EQ into an NE or
6955 vice versa, OP0 has only one bit that might be nonzero, and OP1
6956 is zero, check if changing the user of the condition code will
6957 produce a valid insn. If it won't, we can keep the original code
6958 in that insn by surrounding our operation with an XOR. */
6959
6960 if (((old_code == NE && new_code == EQ)
6961 || (old_code == EQ && new_code == NE))
6962 && ! other_changed_previously && op1 == const0_rtx
6963 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6964 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6965 {
6966 rtx pat = PATTERN (other_insn), note = 0;
6967
6968 if ((recog_for_combine (&pat, other_insn, &note) < 0
6969 && ! check_asm_operands (pat)))
6970 {
6971 *cc_use = old_cc_use;
6972 other_changed = 0;
6973
6974 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6975 gen_int_mode (mask,
6976 GET_MODE (op0)));
6977 }
6978 }
6979 }
6980
6981 if (other_changed)
6982 undobuf.other_insn = other_insn;
6983
6984 /* Don't generate a compare of a CC with 0, just use that CC. */
6985 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6986 {
6987 SUBST (SET_SRC (x), op0);
6988 src = SET_SRC (x);
6989 }
6990 /* Otherwise, if we didn't previously have the same COMPARE we
6991 want, create it from scratch. */
6992 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6993 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6994 {
6995 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6996 src = SET_SRC (x);
6997 }
6998 }
6999 else
7000 {
7001 /* Get SET_SRC in a form where we have placed back any
7002 compound expressions. Then do the checks below. */
7003 src = make_compound_operation (src, SET);
7004 SUBST (SET_SRC (x), src);
7005 }
7006
7007 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
7008 and X being a REG or (subreg (reg)), we may be able to convert this to
7009 (set (subreg:m2 x) (op)).
7010
7011 We can always do this if M1 is narrower than M2 because that means that
7012 we only care about the low bits of the result.
7013
7014 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
7015 perform a narrower operation than requested since the high-order bits will
7016 be undefined. On machine where it is defined, this transformation is safe
7017 as long as M1 and M2 have the same number of words. */
7018
7019 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
7020 && !OBJECT_P (SUBREG_REG (src))
7021 && (known_equal_after_align_up
7022 (GET_MODE_SIZE (GET_MODE (src)),
7023 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
7024 UNITS_PER_WORD))
7025 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
7026 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
7027 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
7028 GET_MODE (SUBREG_REG (src)),
7029 GET_MODE (src)))
7030 && (REG_P (dest)
7031 || (GET_CODE (dest) == SUBREG
7032 && REG_P (SUBREG_REG (dest)))))
7033 {
7034 SUBST (SET_DEST (x),
7035 gen_lowpart (GET_MODE (SUBREG_REG (src)),
7036 dest));
7037 SUBST (SET_SRC (x), SUBREG_REG (src));
7038
7039 src = SET_SRC (x), dest = SET_DEST (x);
7040 }
7041
7042 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
7043 in SRC. */
7044 if (dest == cc0_rtx
7045 && partial_subreg_p (src)
7046 && subreg_lowpart_p (src))
7047 {
7048 rtx inner = SUBREG_REG (src);
7049 machine_mode inner_mode = GET_MODE (inner);
7050
7051 /* Here we make sure that we don't have a sign bit on. */
7052 if (val_signbit_known_clear_p (GET_MODE (src),
7053 nonzero_bits (inner, inner_mode)))
7054 {
7055 SUBST (SET_SRC (x), inner);
7056 src = SET_SRC (x);
7057 }
7058 }
7059
7060 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7061 would require a paradoxical subreg. Replace the subreg with a
7062 zero_extend to avoid the reload that would otherwise be required.
7063 Don't do this unless we have a scalar integer mode, otherwise the
7064 transformation is incorrect. */
7065
7066 enum rtx_code extend_op;
7067 if (paradoxical_subreg_p (src)
7068 && MEM_P (SUBREG_REG (src))
7069 && SCALAR_INT_MODE_P (GET_MODE (src))
7070 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7071 {
7072 SUBST (SET_SRC (x),
7073 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7074
7075 src = SET_SRC (x);
7076 }
7077
7078 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7079 are comparing an item known to be 0 or -1 against 0, use a logical
7080 operation instead. Check for one of the arms being an IOR of the other
7081 arm with some value. We compute three terms to be IOR'ed together. In
7082 practice, at most two will be nonzero. Then we do the IOR's. */
7083
7084 if (GET_CODE (dest) != PC
7085 && GET_CODE (src) == IF_THEN_ELSE
7086 && is_int_mode (GET_MODE (src), &int_mode)
7087 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7088 && XEXP (XEXP (src, 0), 1) == const0_rtx
7089 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7090 && (!HAVE_conditional_move
7091 || ! can_conditionally_move_p (int_mode))
7092 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7093 == GET_MODE_PRECISION (int_mode))
7094 && ! side_effects_p (src))
7095 {
7096 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7097 ? XEXP (src, 1) : XEXP (src, 2));
7098 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7099 ? XEXP (src, 2) : XEXP (src, 1));
7100 rtx term1 = const0_rtx, term2, term3;
7101
7102 if (GET_CODE (true_rtx) == IOR
7103 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7104 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7105 else if (GET_CODE (true_rtx) == IOR
7106 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7107 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7108 else if (GET_CODE (false_rtx) == IOR
7109 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7110 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7111 else if (GET_CODE (false_rtx) == IOR
7112 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7113 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7114
7115 term2 = simplify_gen_binary (AND, int_mode,
7116 XEXP (XEXP (src, 0), 0), true_rtx);
7117 term3 = simplify_gen_binary (AND, int_mode,
7118 simplify_gen_unary (NOT, int_mode,
7119 XEXP (XEXP (src, 0), 0),
7120 int_mode),
7121 false_rtx);
7122
7123 SUBST (SET_SRC (x),
7124 simplify_gen_binary (IOR, int_mode,
7125 simplify_gen_binary (IOR, int_mode,
7126 term1, term2),
7127 term3));
7128
7129 src = SET_SRC (x);
7130 }
7131
7132 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7133 whole thing fail. */
7134 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7135 return src;
7136 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7137 return dest;
7138 else
7139 /* Convert this into a field assignment operation, if possible. */
7140 return make_field_assignment (x);
7141 }
7142 \f
7143 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7144 result. */
7145
7146 static rtx
7147 simplify_logical (rtx x)
7148 {
7149 rtx op0 = XEXP (x, 0);
7150 rtx op1 = XEXP (x, 1);
7151 scalar_int_mode mode;
7152
7153 switch (GET_CODE (x))
7154 {
7155 case AND:
7156 /* We can call simplify_and_const_int only if we don't lose
7157 any (sign) bits when converting INTVAL (op1) to
7158 "unsigned HOST_WIDE_INT". */
7159 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7160 && CONST_INT_P (op1)
7161 && (HWI_COMPUTABLE_MODE_P (mode)
7162 || INTVAL (op1) > 0))
7163 {
7164 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7165 if (GET_CODE (x) != AND)
7166 return x;
7167
7168 op0 = XEXP (x, 0);
7169 op1 = XEXP (x, 1);
7170 }
7171
7172 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7173 apply the distributive law and then the inverse distributive
7174 law to see if things simplify. */
7175 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7176 {
7177 rtx result = distribute_and_simplify_rtx (x, 0);
7178 if (result)
7179 return result;
7180 }
7181 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7182 {
7183 rtx result = distribute_and_simplify_rtx (x, 1);
7184 if (result)
7185 return result;
7186 }
7187 break;
7188
7189 case IOR:
7190 /* If we have (ior (and A B) C), apply the distributive law and then
7191 the inverse distributive law to see if things simplify. */
7192
7193 if (GET_CODE (op0) == AND)
7194 {
7195 rtx result = distribute_and_simplify_rtx (x, 0);
7196 if (result)
7197 return result;
7198 }
7199
7200 if (GET_CODE (op1) == AND)
7201 {
7202 rtx result = distribute_and_simplify_rtx (x, 1);
7203 if (result)
7204 return result;
7205 }
7206 break;
7207
7208 default:
7209 gcc_unreachable ();
7210 }
7211
7212 return x;
7213 }
7214 \f
7215 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7216 operations" because they can be replaced with two more basic operations.
7217 ZERO_EXTEND is also considered "compound" because it can be replaced with
7218 an AND operation, which is simpler, though only one operation.
7219
7220 The function expand_compound_operation is called with an rtx expression
7221 and will convert it to the appropriate shifts and AND operations,
7222 simplifying at each stage.
7223
7224 The function make_compound_operation is called to convert an expression
7225 consisting of shifts and ANDs into the equivalent compound expression.
7226 It is the inverse of this function, loosely speaking. */
7227
7228 static rtx
7229 expand_compound_operation (rtx x)
7230 {
7231 unsigned HOST_WIDE_INT pos = 0, len;
7232 int unsignedp = 0;
7233 unsigned int modewidth;
7234 rtx tem;
7235 scalar_int_mode inner_mode;
7236
7237 switch (GET_CODE (x))
7238 {
7239 case ZERO_EXTEND:
7240 unsignedp = 1;
7241 /* FALLTHRU */
7242 case SIGN_EXTEND:
7243 /* We can't necessarily use a const_int for a multiword mode;
7244 it depends on implicitly extending the value.
7245 Since we don't know the right way to extend it,
7246 we can't tell whether the implicit way is right.
7247
7248 Even for a mode that is no wider than a const_int,
7249 we can't win, because we need to sign extend one of its bits through
7250 the rest of it, and we don't know which bit. */
7251 if (CONST_INT_P (XEXP (x, 0)))
7252 return x;
7253
7254 /* Reject modes that aren't scalar integers because turning vector
7255 or complex modes into shifts causes problems. */
7256 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7257 return x;
7258
7259 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7260 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7261 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7262 reloaded. If not for that, MEM's would very rarely be safe.
7263
7264 Reject modes bigger than a word, because we might not be able
7265 to reference a two-register group starting with an arbitrary register
7266 (and currently gen_lowpart might crash for a SUBREG). */
7267
7268 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7269 return x;
7270
7271 len = GET_MODE_PRECISION (inner_mode);
7272 /* If the inner object has VOIDmode (the only way this can happen
7273 is if it is an ASM_OPERANDS), we can't do anything since we don't
7274 know how much masking to do. */
7275 if (len == 0)
7276 return x;
7277
7278 break;
7279
7280 case ZERO_EXTRACT:
7281 unsignedp = 1;
7282
7283 /* fall through */
7284
7285 case SIGN_EXTRACT:
7286 /* If the operand is a CLOBBER, just return it. */
7287 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7288 return XEXP (x, 0);
7289
7290 if (!CONST_INT_P (XEXP (x, 1))
7291 || !CONST_INT_P (XEXP (x, 2)))
7292 return x;
7293
7294 /* Reject modes that aren't scalar integers because turning vector
7295 or complex modes into shifts causes problems. */
7296 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7297 return x;
7298
7299 len = INTVAL (XEXP (x, 1));
7300 pos = INTVAL (XEXP (x, 2));
7301
7302 /* This should stay within the object being extracted, fail otherwise. */
7303 if (len + pos > GET_MODE_PRECISION (inner_mode))
7304 return x;
7305
7306 if (BITS_BIG_ENDIAN)
7307 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7308
7309 break;
7310
7311 default:
7312 return x;
7313 }
7314
7315 /* We've rejected non-scalar operations by now. */
7316 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7317
7318 /* Convert sign extension to zero extension, if we know that the high
7319 bit is not set, as this is easier to optimize. It will be converted
7320 back to cheaper alternative in make_extraction. */
7321 if (GET_CODE (x) == SIGN_EXTEND
7322 && HWI_COMPUTABLE_MODE_P (mode)
7323 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7324 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7325 == 0))
7326 {
7327 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7328 rtx temp2 = expand_compound_operation (temp);
7329
7330 /* Make sure this is a profitable operation. */
7331 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7332 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7333 return temp2;
7334 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7335 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7336 return temp;
7337 else
7338 return x;
7339 }
7340
7341 /* We can optimize some special cases of ZERO_EXTEND. */
7342 if (GET_CODE (x) == ZERO_EXTEND)
7343 {
7344 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7345 know that the last value didn't have any inappropriate bits
7346 set. */
7347 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7348 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7349 && HWI_COMPUTABLE_MODE_P (mode)
7350 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7351 & ~GET_MODE_MASK (inner_mode)) == 0)
7352 return XEXP (XEXP (x, 0), 0);
7353
7354 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7355 if (GET_CODE (XEXP (x, 0)) == SUBREG
7356 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7357 && subreg_lowpart_p (XEXP (x, 0))
7358 && HWI_COMPUTABLE_MODE_P (mode)
7359 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7360 & ~GET_MODE_MASK (inner_mode)) == 0)
7361 return SUBREG_REG (XEXP (x, 0));
7362
7363 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7364 is a comparison and STORE_FLAG_VALUE permits. This is like
7365 the first case, but it works even when MODE is larger
7366 than HOST_WIDE_INT. */
7367 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7368 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7369 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7370 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7371 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7372 return XEXP (XEXP (x, 0), 0);
7373
7374 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7375 if (GET_CODE (XEXP (x, 0)) == SUBREG
7376 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7377 && subreg_lowpart_p (XEXP (x, 0))
7378 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7379 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7380 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7381 return SUBREG_REG (XEXP (x, 0));
7382
7383 }
7384
7385 /* If we reach here, we want to return a pair of shifts. The inner
7386 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7387 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7388 logical depending on the value of UNSIGNEDP.
7389
7390 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7391 converted into an AND of a shift.
7392
7393 We must check for the case where the left shift would have a negative
7394 count. This can happen in a case like (x >> 31) & 255 on machines
7395 that can't shift by a constant. On those machines, we would first
7396 combine the shift with the AND to produce a variable-position
7397 extraction. Then the constant of 31 would be substituted in
7398 to produce such a position. */
7399
7400 modewidth = GET_MODE_PRECISION (mode);
7401 if (modewidth >= pos + len)
7402 {
7403 tem = gen_lowpart (mode, XEXP (x, 0));
7404 if (!tem || GET_CODE (tem) == CLOBBER)
7405 return x;
7406 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7407 tem, modewidth - pos - len);
7408 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7409 mode, tem, modewidth - len);
7410 }
7411 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7412 {
7413 tem = simplify_shift_const (NULL_RTX, LSHIFTRT, inner_mode,
7414 XEXP (x, 0), pos);
7415 tem = gen_lowpart (mode, tem);
7416 if (!tem || GET_CODE (tem) == CLOBBER)
7417 return x;
7418 tem = simplify_and_const_int (NULL_RTX, mode, tem,
7419 (HOST_WIDE_INT_1U << len) - 1);
7420 }
7421 else
7422 /* Any other cases we can't handle. */
7423 return x;
7424
7425 /* If we couldn't do this for some reason, return the original
7426 expression. */
7427 if (GET_CODE (tem) == CLOBBER)
7428 return x;
7429
7430 return tem;
7431 }
7432 \f
7433 /* X is a SET which contains an assignment of one object into
7434 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7435 or certain SUBREGS). If possible, convert it into a series of
7436 logical operations.
7437
7438 We half-heartedly support variable positions, but do not at all
7439 support variable lengths. */
7440
7441 static const_rtx
7442 expand_field_assignment (const_rtx x)
7443 {
7444 rtx inner;
7445 rtx pos; /* Always counts from low bit. */
7446 int len, inner_len;
7447 rtx mask, cleared, masked;
7448 scalar_int_mode compute_mode;
7449
7450 /* Loop until we find something we can't simplify. */
7451 while (1)
7452 {
7453 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7454 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7455 {
7456 rtx x0 = XEXP (SET_DEST (x), 0);
7457 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7458 break;
7459 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7460 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7461 MAX_MODE_INT);
7462 }
7463 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7464 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7465 {
7466 inner = XEXP (SET_DEST (x), 0);
7467 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7468 break;
7469
7470 len = INTVAL (XEXP (SET_DEST (x), 1));
7471 pos = XEXP (SET_DEST (x), 2);
7472
7473 /* A constant position should stay within the width of INNER. */
7474 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7475 break;
7476
7477 if (BITS_BIG_ENDIAN)
7478 {
7479 if (CONST_INT_P (pos))
7480 pos = GEN_INT (inner_len - len - INTVAL (pos));
7481 else if (GET_CODE (pos) == MINUS
7482 && CONST_INT_P (XEXP (pos, 1))
7483 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7484 /* If position is ADJUST - X, new position is X. */
7485 pos = XEXP (pos, 0);
7486 else
7487 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7488 gen_int_mode (inner_len - len,
7489 GET_MODE (pos)),
7490 pos);
7491 }
7492 }
7493
7494 /* If the destination is a subreg that overwrites the whole of the inner
7495 register, we can move the subreg to the source. */
7496 else if (GET_CODE (SET_DEST (x)) == SUBREG
7497 /* We need SUBREGs to compute nonzero_bits properly. */
7498 && nonzero_sign_valid
7499 && !read_modify_subreg_p (SET_DEST (x)))
7500 {
7501 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7502 gen_lowpart
7503 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7504 SET_SRC (x)));
7505 continue;
7506 }
7507 else
7508 break;
7509
7510 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7511 inner = SUBREG_REG (inner);
7512
7513 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7514 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7515 {
7516 /* Don't do anything for vector or complex integral types. */
7517 if (! FLOAT_MODE_P (GET_MODE (inner)))
7518 break;
7519
7520 /* Try to find an integral mode to pun with. */
7521 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7522 .exists (&compute_mode))
7523 break;
7524
7525 inner = gen_lowpart (compute_mode, inner);
7526 }
7527
7528 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7529 if (len >= HOST_BITS_PER_WIDE_INT)
7530 break;
7531
7532 /* Don't try to compute in too wide unsupported modes. */
7533 if (!targetm.scalar_mode_supported_p (compute_mode))
7534 break;
7535
7536 /* Now compute the equivalent expression. Make a copy of INNER
7537 for the SET_DEST in case it is a MEM into which we will substitute;
7538 we don't want shared RTL in that case. */
7539 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7540 compute_mode);
7541 cleared = simplify_gen_binary (AND, compute_mode,
7542 simplify_gen_unary (NOT, compute_mode,
7543 simplify_gen_binary (ASHIFT,
7544 compute_mode,
7545 mask, pos),
7546 compute_mode),
7547 inner);
7548 masked = simplify_gen_binary (ASHIFT, compute_mode,
7549 simplify_gen_binary (
7550 AND, compute_mode,
7551 gen_lowpart (compute_mode, SET_SRC (x)),
7552 mask),
7553 pos);
7554
7555 x = gen_rtx_SET (copy_rtx (inner),
7556 simplify_gen_binary (IOR, compute_mode,
7557 cleared, masked));
7558 }
7559
7560 return x;
7561 }
7562 \f
7563 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7564 it is an RTX that represents the (variable) starting position; otherwise,
7565 POS is the (constant) starting bit position. Both are counted from the LSB.
7566
7567 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7568
7569 IN_DEST is nonzero if this is a reference in the destination of a SET.
7570 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7571 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7572 be used.
7573
7574 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7575 ZERO_EXTRACT should be built even for bits starting at bit 0.
7576
7577 MODE is the desired mode of the result (if IN_DEST == 0).
7578
7579 The result is an RTX for the extraction or NULL_RTX if the target
7580 can't handle it. */
7581
7582 static rtx
7583 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7584 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7585 int in_dest, int in_compare)
7586 {
7587 /* This mode describes the size of the storage area
7588 to fetch the overall value from. Within that, we
7589 ignore the POS lowest bits, etc. */
7590 machine_mode is_mode = GET_MODE (inner);
7591 machine_mode inner_mode;
7592 scalar_int_mode wanted_inner_mode;
7593 scalar_int_mode wanted_inner_reg_mode = word_mode;
7594 scalar_int_mode pos_mode = word_mode;
7595 machine_mode extraction_mode = word_mode;
7596 rtx new_rtx = 0;
7597 rtx orig_pos_rtx = pos_rtx;
7598 HOST_WIDE_INT orig_pos;
7599
7600 if (pos_rtx && CONST_INT_P (pos_rtx))
7601 pos = INTVAL (pos_rtx), pos_rtx = 0;
7602
7603 if (GET_CODE (inner) == SUBREG
7604 && subreg_lowpart_p (inner)
7605 && (paradoxical_subreg_p (inner)
7606 /* If trying or potentionally trying to extract
7607 bits outside of is_mode, don't look through
7608 non-paradoxical SUBREGs. See PR82192. */
7609 || (pos_rtx == NULL_RTX
7610 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7611 {
7612 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7613 consider just the QI as the memory to extract from.
7614 The subreg adds or removes high bits; its mode is
7615 irrelevant to the meaning of this extraction,
7616 since POS and LEN count from the lsb. */
7617 if (MEM_P (SUBREG_REG (inner)))
7618 is_mode = GET_MODE (SUBREG_REG (inner));
7619 inner = SUBREG_REG (inner);
7620 }
7621 else if (GET_CODE (inner) == ASHIFT
7622 && CONST_INT_P (XEXP (inner, 1))
7623 && pos_rtx == 0 && pos == 0
7624 && len > UINTVAL (XEXP (inner, 1)))
7625 {
7626 /* We're extracting the least significant bits of an rtx
7627 (ashift X (const_int C)), where LEN > C. Extract the
7628 least significant (LEN - C) bits of X, giving an rtx
7629 whose mode is MODE, then shift it left C times. */
7630 new_rtx = make_extraction (mode, XEXP (inner, 0),
7631 0, 0, len - INTVAL (XEXP (inner, 1)),
7632 unsignedp, in_dest, in_compare);
7633 if (new_rtx != 0)
7634 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7635 }
7636 else if (GET_CODE (inner) == MULT
7637 && CONST_INT_P (XEXP (inner, 1))
7638 && pos_rtx == 0 && pos == 0)
7639 {
7640 /* We're extracting the least significant bits of an rtx
7641 (mult X (const_int 2^C)), where LEN > C. Extract the
7642 least significant (LEN - C) bits of X, giving an rtx
7643 whose mode is MODE, then multiply it by 2^C. */
7644 const HOST_WIDE_INT shift_amt = exact_log2 (INTVAL (XEXP (inner, 1)));
7645 if (IN_RANGE (shift_amt, 1, len - 1))
7646 {
7647 new_rtx = make_extraction (mode, XEXP (inner, 0),
7648 0, 0, len - shift_amt,
7649 unsignedp, in_dest, in_compare);
7650 if (new_rtx)
7651 return gen_rtx_MULT (mode, new_rtx, XEXP (inner, 1));
7652 }
7653 }
7654 else if (GET_CODE (inner) == TRUNCATE
7655 /* If trying or potentionally trying to extract
7656 bits outside of is_mode, don't look through
7657 TRUNCATE. See PR82192. */
7658 && pos_rtx == NULL_RTX
7659 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7660 inner = XEXP (inner, 0);
7661
7662 inner_mode = GET_MODE (inner);
7663
7664 /* See if this can be done without an extraction. We never can if the
7665 width of the field is not the same as that of some integer mode. For
7666 registers, we can only avoid the extraction if the position is at the
7667 low-order bit and this is either not in the destination or we have the
7668 appropriate STRICT_LOW_PART operation available.
7669
7670 For MEM, we can avoid an extract if the field starts on an appropriate
7671 boundary and we can change the mode of the memory reference. */
7672
7673 scalar_int_mode tmode;
7674 if (int_mode_for_size (len, 1).exists (&tmode)
7675 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7676 && !MEM_P (inner)
7677 && (pos == 0 || REG_P (inner))
7678 && (inner_mode == tmode
7679 || !REG_P (inner)
7680 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7681 || reg_truncated_to_mode (tmode, inner))
7682 && (! in_dest
7683 || (REG_P (inner)
7684 && have_insn_for (STRICT_LOW_PART, tmode))))
7685 || (MEM_P (inner) && pos_rtx == 0
7686 && (pos
7687 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7688 : BITS_PER_UNIT)) == 0
7689 /* We can't do this if we are widening INNER_MODE (it
7690 may not be aligned, for one thing). */
7691 && !paradoxical_subreg_p (tmode, inner_mode)
7692 && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7693 && (inner_mode == tmode
7694 || (! mode_dependent_address_p (XEXP (inner, 0),
7695 MEM_ADDR_SPACE (inner))
7696 && ! MEM_VOLATILE_P (inner))))))
7697 {
7698 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7699 field. If the original and current mode are the same, we need not
7700 adjust the offset. Otherwise, we do if bytes big endian.
7701
7702 If INNER is not a MEM, get a piece consisting of just the field
7703 of interest (in this case POS % BITS_PER_WORD must be 0). */
7704
7705 if (MEM_P (inner))
7706 {
7707 poly_int64 offset;
7708
7709 /* POS counts from lsb, but make OFFSET count in memory order. */
7710 if (BYTES_BIG_ENDIAN)
7711 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7712 - len - pos);
7713 else
7714 offset = pos / BITS_PER_UNIT;
7715
7716 new_rtx = adjust_address_nv (inner, tmode, offset);
7717 }
7718 else if (REG_P (inner))
7719 {
7720 if (tmode != inner_mode)
7721 {
7722 /* We can't call gen_lowpart in a DEST since we
7723 always want a SUBREG (see below) and it would sometimes
7724 return a new hard register. */
7725 if (pos || in_dest)
7726 {
7727 poly_uint64 offset
7728 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7729
7730 /* Avoid creating invalid subregs, for example when
7731 simplifying (x>>32)&255. */
7732 if (!validate_subreg (tmode, inner_mode, inner, offset))
7733 return NULL_RTX;
7734
7735 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7736 }
7737 else
7738 new_rtx = gen_lowpart (tmode, inner);
7739 }
7740 else
7741 new_rtx = inner;
7742 }
7743 else
7744 new_rtx = force_to_mode (inner, tmode,
7745 len >= HOST_BITS_PER_WIDE_INT
7746 ? HOST_WIDE_INT_M1U
7747 : (HOST_WIDE_INT_1U << len) - 1, 0);
7748
7749 /* If this extraction is going into the destination of a SET,
7750 make a STRICT_LOW_PART unless we made a MEM. */
7751
7752 if (in_dest)
7753 return (MEM_P (new_rtx) ? new_rtx
7754 : (GET_CODE (new_rtx) != SUBREG
7755 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7756 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7757
7758 if (mode == tmode)
7759 return new_rtx;
7760
7761 if (CONST_SCALAR_INT_P (new_rtx))
7762 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7763 mode, new_rtx, tmode);
7764
7765 /* If we know that no extraneous bits are set, and that the high
7766 bit is not set, convert the extraction to the cheaper of
7767 sign and zero extension, that are equivalent in these cases. */
7768 if (flag_expensive_optimizations
7769 && (HWI_COMPUTABLE_MODE_P (tmode)
7770 && ((nonzero_bits (new_rtx, tmode)
7771 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7772 == 0)))
7773 {
7774 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7775 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7776
7777 /* Prefer ZERO_EXTENSION, since it gives more information to
7778 backends. */
7779 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7780 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7781 return temp;
7782 return temp1;
7783 }
7784
7785 /* Otherwise, sign- or zero-extend unless we already are in the
7786 proper mode. */
7787
7788 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7789 mode, new_rtx));
7790 }
7791
7792 /* Unless this is a COMPARE or we have a funny memory reference,
7793 don't do anything with zero-extending field extracts starting at
7794 the low-order bit since they are simple AND operations. */
7795 if (pos_rtx == 0 && pos == 0 && ! in_dest
7796 && ! in_compare && unsignedp)
7797 return 0;
7798
7799 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7800 if the position is not a constant and the length is not 1. In all
7801 other cases, we would only be going outside our object in cases when
7802 an original shift would have been undefined. */
7803 if (MEM_P (inner)
7804 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7805 || (pos_rtx != 0 && len != 1)))
7806 return 0;
7807
7808 enum extraction_pattern pattern = (in_dest ? EP_insv
7809 : unsignedp ? EP_extzv : EP_extv);
7810
7811 /* If INNER is not from memory, we want it to have the mode of a register
7812 extraction pattern's structure operand, or word_mode if there is no
7813 such pattern. The same applies to extraction_mode and pos_mode
7814 and their respective operands.
7815
7816 For memory, assume that the desired extraction_mode and pos_mode
7817 are the same as for a register operation, since at present we don't
7818 have named patterns for aligned memory structures. */
7819 class extraction_insn insn;
7820 unsigned int inner_size;
7821 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7822 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7823 {
7824 wanted_inner_reg_mode = insn.struct_mode.require ();
7825 pos_mode = insn.pos_mode;
7826 extraction_mode = insn.field_mode;
7827 }
7828
7829 /* Never narrow an object, since that might not be safe. */
7830
7831 if (mode != VOIDmode
7832 && partial_subreg_p (extraction_mode, mode))
7833 extraction_mode = mode;
7834
7835 /* Punt if len is too large for extraction_mode. */
7836 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7837 return NULL_RTX;
7838
7839 if (!MEM_P (inner))
7840 wanted_inner_mode = wanted_inner_reg_mode;
7841 else
7842 {
7843 /* Be careful not to go beyond the extracted object and maintain the
7844 natural alignment of the memory. */
7845 wanted_inner_mode = smallest_int_mode_for_size (len);
7846 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7847 > GET_MODE_BITSIZE (wanted_inner_mode))
7848 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7849 }
7850
7851 orig_pos = pos;
7852
7853 if (BITS_BIG_ENDIAN)
7854 {
7855 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7856 BITS_BIG_ENDIAN style. If position is constant, compute new
7857 position. Otherwise, build subtraction.
7858 Note that POS is relative to the mode of the original argument.
7859 If it's a MEM we need to recompute POS relative to that.
7860 However, if we're extracting from (or inserting into) a register,
7861 we want to recompute POS relative to wanted_inner_mode. */
7862 int width;
7863 if (!MEM_P (inner))
7864 width = GET_MODE_BITSIZE (wanted_inner_mode);
7865 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7866 return NULL_RTX;
7867
7868 if (pos_rtx == 0)
7869 pos = width - len - pos;
7870 else
7871 pos_rtx
7872 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7873 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7874 pos_rtx);
7875 /* POS may be less than 0 now, but we check for that below.
7876 Note that it can only be less than 0 if !MEM_P (inner). */
7877 }
7878
7879 /* If INNER has a wider mode, and this is a constant extraction, try to
7880 make it smaller and adjust the byte to point to the byte containing
7881 the value. */
7882 if (wanted_inner_mode != VOIDmode
7883 && inner_mode != wanted_inner_mode
7884 && ! pos_rtx
7885 && partial_subreg_p (wanted_inner_mode, is_mode)
7886 && MEM_P (inner)
7887 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7888 && ! MEM_VOLATILE_P (inner))
7889 {
7890 poly_int64 offset = 0;
7891
7892 /* The computations below will be correct if the machine is big
7893 endian in both bits and bytes or little endian in bits and bytes.
7894 If it is mixed, we must adjust. */
7895
7896 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7897 adjust OFFSET to compensate. */
7898 if (BYTES_BIG_ENDIAN
7899 && paradoxical_subreg_p (is_mode, inner_mode))
7900 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7901
7902 /* We can now move to the desired byte. */
7903 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7904 * GET_MODE_SIZE (wanted_inner_mode);
7905 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7906
7907 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7908 && is_mode != wanted_inner_mode)
7909 offset = (GET_MODE_SIZE (is_mode)
7910 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7911
7912 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7913 }
7914
7915 /* If INNER is not memory, get it into the proper mode. If we are changing
7916 its mode, POS must be a constant and smaller than the size of the new
7917 mode. */
7918 else if (!MEM_P (inner))
7919 {
7920 /* On the LHS, don't create paradoxical subregs implicitely truncating
7921 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7922 if (in_dest
7923 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7924 wanted_inner_mode))
7925 return NULL_RTX;
7926
7927 if (GET_MODE (inner) != wanted_inner_mode
7928 && (pos_rtx != 0
7929 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7930 return NULL_RTX;
7931
7932 if (orig_pos < 0)
7933 return NULL_RTX;
7934
7935 inner = force_to_mode (inner, wanted_inner_mode,
7936 pos_rtx
7937 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7938 ? HOST_WIDE_INT_M1U
7939 : (((HOST_WIDE_INT_1U << len) - 1)
7940 << orig_pos),
7941 0);
7942 }
7943
7944 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7945 have to zero extend. Otherwise, we can just use a SUBREG.
7946
7947 We dealt with constant rtxes earlier, so pos_rtx cannot
7948 have VOIDmode at this point. */
7949 if (pos_rtx != 0
7950 && (GET_MODE_SIZE (pos_mode)
7951 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7952 {
7953 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7954 GET_MODE (pos_rtx));
7955
7956 /* If we know that no extraneous bits are set, and that the high
7957 bit is not set, convert extraction to cheaper one - either
7958 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7959 cases. */
7960 if (flag_expensive_optimizations
7961 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7962 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7963 & ~(((unsigned HOST_WIDE_INT)
7964 GET_MODE_MASK (GET_MODE (pos_rtx)))
7965 >> 1))
7966 == 0)))
7967 {
7968 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7969 GET_MODE (pos_rtx));
7970
7971 /* Prefer ZERO_EXTENSION, since it gives more information to
7972 backends. */
7973 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7974 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7975 temp = temp1;
7976 }
7977 pos_rtx = temp;
7978 }
7979
7980 /* Make POS_RTX unless we already have it and it is correct. If we don't
7981 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7982 be a CONST_INT. */
7983 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7984 pos_rtx = orig_pos_rtx;
7985
7986 else if (pos_rtx == 0)
7987 pos_rtx = GEN_INT (pos);
7988
7989 /* Make the required operation. See if we can use existing rtx. */
7990 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7991 extraction_mode, inner, GEN_INT (len), pos_rtx);
7992 if (! in_dest)
7993 new_rtx = gen_lowpart (mode, new_rtx);
7994
7995 return new_rtx;
7996 }
7997 \f
7998 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7999 can be commuted with any other operations in X. Return X without
8000 that shift if so. */
8001
8002 static rtx
8003 extract_left_shift (scalar_int_mode mode, rtx x, int count)
8004 {
8005 enum rtx_code code = GET_CODE (x);
8006 rtx tem;
8007
8008 switch (code)
8009 {
8010 case ASHIFT:
8011 /* This is the shift itself. If it is wide enough, we will return
8012 either the value being shifted if the shift count is equal to
8013 COUNT or a shift for the difference. */
8014 if (CONST_INT_P (XEXP (x, 1))
8015 && INTVAL (XEXP (x, 1)) >= count)
8016 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
8017 INTVAL (XEXP (x, 1)) - count);
8018 break;
8019
8020 case NEG: case NOT:
8021 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8022 return simplify_gen_unary (code, mode, tem, mode);
8023
8024 break;
8025
8026 case PLUS: case IOR: case XOR: case AND:
8027 /* If we can safely shift this constant and we find the inner shift,
8028 make a new operation. */
8029 if (CONST_INT_P (XEXP (x, 1))
8030 && (UINTVAL (XEXP (x, 1))
8031 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
8032 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8033 {
8034 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
8035 return simplify_gen_binary (code, mode, tem,
8036 gen_int_mode (val, mode));
8037 }
8038 break;
8039
8040 default:
8041 break;
8042 }
8043
8044 return 0;
8045 }
8046 \f
8047 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
8048 level of the expression and MODE is its mode. IN_CODE is as for
8049 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
8050 that should be used when recursing on operands of *X_PTR.
8051
8052 There are two possible actions:
8053
8054 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
8055 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
8056
8057 - Return a new rtx, which the caller returns directly. */
8058
8059 static rtx
8060 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
8061 enum rtx_code in_code,
8062 enum rtx_code *next_code_ptr)
8063 {
8064 rtx x = *x_ptr;
8065 enum rtx_code next_code = *next_code_ptr;
8066 enum rtx_code code = GET_CODE (x);
8067 int mode_width = GET_MODE_PRECISION (mode);
8068 rtx rhs, lhs;
8069 rtx new_rtx = 0;
8070 int i;
8071 rtx tem;
8072 scalar_int_mode inner_mode;
8073 bool equality_comparison = false;
8074
8075 if (in_code == EQ)
8076 {
8077 equality_comparison = true;
8078 in_code = COMPARE;
8079 }
8080
8081 /* Process depending on the code of this operation. If NEW is set
8082 nonzero, it will be returned. */
8083
8084 switch (code)
8085 {
8086 case ASHIFT:
8087 /* Convert shifts by constants into multiplications if inside
8088 an address. */
8089 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8090 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8091 && INTVAL (XEXP (x, 1)) >= 0)
8092 {
8093 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8094 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8095
8096 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8097 if (GET_CODE (new_rtx) == NEG)
8098 {
8099 new_rtx = XEXP (new_rtx, 0);
8100 multval = -multval;
8101 }
8102 multval = trunc_int_for_mode (multval, mode);
8103 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8104 }
8105 break;
8106
8107 case PLUS:
8108 lhs = XEXP (x, 0);
8109 rhs = XEXP (x, 1);
8110 lhs = make_compound_operation (lhs, next_code);
8111 rhs = make_compound_operation (rhs, next_code);
8112 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8113 {
8114 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8115 XEXP (lhs, 1));
8116 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8117 }
8118 else if (GET_CODE (lhs) == MULT
8119 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8120 {
8121 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8122 simplify_gen_unary (NEG, mode,
8123 XEXP (lhs, 1),
8124 mode));
8125 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8126 }
8127 else
8128 {
8129 SUBST (XEXP (x, 0), lhs);
8130 SUBST (XEXP (x, 1), rhs);
8131 }
8132 maybe_swap_commutative_operands (x);
8133 return x;
8134
8135 case MINUS:
8136 lhs = XEXP (x, 0);
8137 rhs = XEXP (x, 1);
8138 lhs = make_compound_operation (lhs, next_code);
8139 rhs = make_compound_operation (rhs, next_code);
8140 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8141 {
8142 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8143 XEXP (rhs, 1));
8144 return simplify_gen_binary (PLUS, mode, tem, lhs);
8145 }
8146 else if (GET_CODE (rhs) == MULT
8147 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8148 {
8149 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8150 simplify_gen_unary (NEG, mode,
8151 XEXP (rhs, 1),
8152 mode));
8153 return simplify_gen_binary (PLUS, mode, tem, lhs);
8154 }
8155 else
8156 {
8157 SUBST (XEXP (x, 0), lhs);
8158 SUBST (XEXP (x, 1), rhs);
8159 return x;
8160 }
8161
8162 case AND:
8163 /* If the second operand is not a constant, we can't do anything
8164 with it. */
8165 if (!CONST_INT_P (XEXP (x, 1)))
8166 break;
8167
8168 /* If the constant is a power of two minus one and the first operand
8169 is a logical right shift, make an extraction. */
8170 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8171 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8172 {
8173 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8174 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8175 i, 1, 0, in_code == COMPARE);
8176 }
8177
8178 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8179 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8180 && subreg_lowpart_p (XEXP (x, 0))
8181 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8182 &inner_mode)
8183 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8184 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8185 {
8186 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8187 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8188 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8189 XEXP (inner_x0, 1),
8190 i, 1, 0, in_code == COMPARE);
8191
8192 /* If we narrowed the mode when dropping the subreg, then we lose. */
8193 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8194 new_rtx = NULL;
8195
8196 /* If that didn't give anything, see if the AND simplifies on
8197 its own. */
8198 if (!new_rtx && i >= 0)
8199 {
8200 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8201 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8202 0, in_code == COMPARE);
8203 }
8204 }
8205 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8206 else if ((GET_CODE (XEXP (x, 0)) == XOR
8207 || GET_CODE (XEXP (x, 0)) == IOR)
8208 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8209 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8210 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8211 {
8212 /* Apply the distributive law, and then try to make extractions. */
8213 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8214 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8215 XEXP (x, 1)),
8216 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8217 XEXP (x, 1)));
8218 new_rtx = make_compound_operation (new_rtx, in_code);
8219 }
8220
8221 /* If we are have (and (rotate X C) M) and C is larger than the number
8222 of bits in M, this is an extraction. */
8223
8224 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8225 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8226 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8227 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8228 {
8229 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8230 new_rtx = make_extraction (mode, new_rtx,
8231 (GET_MODE_PRECISION (mode)
8232 - INTVAL (XEXP (XEXP (x, 0), 1))),
8233 NULL_RTX, i, 1, 0, in_code == COMPARE);
8234 }
8235
8236 /* On machines without logical shifts, if the operand of the AND is
8237 a logical shift and our mask turns off all the propagated sign
8238 bits, we can replace the logical shift with an arithmetic shift. */
8239 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8240 && !have_insn_for (LSHIFTRT, mode)
8241 && have_insn_for (ASHIFTRT, mode)
8242 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8243 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8244 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8245 && mode_width <= HOST_BITS_PER_WIDE_INT)
8246 {
8247 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8248
8249 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8250 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8251 SUBST (XEXP (x, 0),
8252 gen_rtx_ASHIFTRT (mode,
8253 make_compound_operation (XEXP (XEXP (x,
8254 0),
8255 0),
8256 next_code),
8257 XEXP (XEXP (x, 0), 1)));
8258 }
8259
8260 /* If the constant is one less than a power of two, this might be
8261 representable by an extraction even if no shift is present.
8262 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8263 we are in a COMPARE. */
8264 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8265 new_rtx = make_extraction (mode,
8266 make_compound_operation (XEXP (x, 0),
8267 next_code),
8268 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8269
8270 /* If we are in a comparison and this is an AND with a power of two,
8271 convert this into the appropriate bit extract. */
8272 else if (in_code == COMPARE
8273 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8274 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8275 new_rtx = make_extraction (mode,
8276 make_compound_operation (XEXP (x, 0),
8277 next_code),
8278 i, NULL_RTX, 1, 1, 0, 1);
8279
8280 /* If the one operand is a paradoxical subreg of a register or memory and
8281 the constant (limited to the smaller mode) has only zero bits where
8282 the sub expression has known zero bits, this can be expressed as
8283 a zero_extend. */
8284 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8285 {
8286 rtx sub;
8287
8288 sub = XEXP (XEXP (x, 0), 0);
8289 machine_mode sub_mode = GET_MODE (sub);
8290 int sub_width;
8291 if ((REG_P (sub) || MEM_P (sub))
8292 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8293 && sub_width < mode_width)
8294 {
8295 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8296 unsigned HOST_WIDE_INT mask;
8297
8298 /* original AND constant with all the known zero bits set */
8299 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8300 if ((mask & mode_mask) == mode_mask)
8301 {
8302 new_rtx = make_compound_operation (sub, next_code);
8303 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8304 1, 0, in_code == COMPARE);
8305 }
8306 }
8307 }
8308
8309 break;
8310
8311 case LSHIFTRT:
8312 /* If the sign bit is known to be zero, replace this with an
8313 arithmetic shift. */
8314 if (have_insn_for (ASHIFTRT, mode)
8315 && ! have_insn_for (LSHIFTRT, mode)
8316 && mode_width <= HOST_BITS_PER_WIDE_INT
8317 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8318 {
8319 new_rtx = gen_rtx_ASHIFTRT (mode,
8320 make_compound_operation (XEXP (x, 0),
8321 next_code),
8322 XEXP (x, 1));
8323 break;
8324 }
8325
8326 /* fall through */
8327
8328 case ASHIFTRT:
8329 lhs = XEXP (x, 0);
8330 rhs = XEXP (x, 1);
8331
8332 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8333 this is a SIGN_EXTRACT. */
8334 if (CONST_INT_P (rhs)
8335 && GET_CODE (lhs) == ASHIFT
8336 && CONST_INT_P (XEXP (lhs, 1))
8337 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8338 && INTVAL (XEXP (lhs, 1)) >= 0
8339 && INTVAL (rhs) < mode_width)
8340 {
8341 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8342 new_rtx = make_extraction (mode, new_rtx,
8343 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8344 NULL_RTX, mode_width - INTVAL (rhs),
8345 code == LSHIFTRT, 0, in_code == COMPARE);
8346 break;
8347 }
8348
8349 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8350 If so, try to merge the shifts into a SIGN_EXTEND. We could
8351 also do this for some cases of SIGN_EXTRACT, but it doesn't
8352 seem worth the effort; the case checked for occurs on Alpha. */
8353
8354 if (!OBJECT_P (lhs)
8355 && ! (GET_CODE (lhs) == SUBREG
8356 && (OBJECT_P (SUBREG_REG (lhs))))
8357 && CONST_INT_P (rhs)
8358 && INTVAL (rhs) >= 0
8359 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8360 && INTVAL (rhs) < mode_width
8361 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8362 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8363 next_code),
8364 0, NULL_RTX, mode_width - INTVAL (rhs),
8365 code == LSHIFTRT, 0, in_code == COMPARE);
8366
8367 break;
8368
8369 case SUBREG:
8370 /* Call ourselves recursively on the inner expression. If we are
8371 narrowing the object and it has a different RTL code from
8372 what it originally did, do this SUBREG as a force_to_mode. */
8373 {
8374 rtx inner = SUBREG_REG (x), simplified;
8375 enum rtx_code subreg_code = in_code;
8376
8377 /* If the SUBREG is masking of a logical right shift,
8378 make an extraction. */
8379 if (GET_CODE (inner) == LSHIFTRT
8380 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8381 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8382 && CONST_INT_P (XEXP (inner, 1))
8383 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8384 && subreg_lowpart_p (x))
8385 {
8386 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8387 int width = GET_MODE_PRECISION (inner_mode)
8388 - INTVAL (XEXP (inner, 1));
8389 if (width > mode_width)
8390 width = mode_width;
8391 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8392 width, 1, 0, in_code == COMPARE);
8393 break;
8394 }
8395
8396 /* If in_code is COMPARE, it isn't always safe to pass it through
8397 to the recursive make_compound_operation call. */
8398 if (subreg_code == COMPARE
8399 && (!subreg_lowpart_p (x)
8400 || GET_CODE (inner) == SUBREG
8401 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8402 is (const_int 0), rather than
8403 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8404 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8405 for non-equality comparisons against 0 is not equivalent
8406 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8407 || (GET_CODE (inner) == AND
8408 && CONST_INT_P (XEXP (inner, 1))
8409 && partial_subreg_p (x)
8410 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8411 >= GET_MODE_BITSIZE (mode) - 1)))
8412 subreg_code = SET;
8413
8414 tem = make_compound_operation (inner, subreg_code);
8415
8416 simplified
8417 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8418 if (simplified)
8419 tem = simplified;
8420
8421 if (GET_CODE (tem) != GET_CODE (inner)
8422 && partial_subreg_p (x)
8423 && subreg_lowpart_p (x))
8424 {
8425 rtx newer
8426 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8427
8428 /* If we have something other than a SUBREG, we might have
8429 done an expansion, so rerun ourselves. */
8430 if (GET_CODE (newer) != SUBREG)
8431 newer = make_compound_operation (newer, in_code);
8432
8433 /* force_to_mode can expand compounds. If it just re-expanded
8434 the compound, use gen_lowpart to convert to the desired
8435 mode. */
8436 if (rtx_equal_p (newer, x)
8437 /* Likewise if it re-expanded the compound only partially.
8438 This happens for SUBREG of ZERO_EXTRACT if they extract
8439 the same number of bits. */
8440 || (GET_CODE (newer) == SUBREG
8441 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8442 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8443 && GET_CODE (inner) == AND
8444 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8445 return gen_lowpart (GET_MODE (x), tem);
8446
8447 return newer;
8448 }
8449
8450 if (simplified)
8451 return tem;
8452 }
8453 break;
8454
8455 default:
8456 break;
8457 }
8458
8459 if (new_rtx)
8460 *x_ptr = gen_lowpart (mode, new_rtx);
8461 *next_code_ptr = next_code;
8462 return NULL_RTX;
8463 }
8464
8465 /* Look at the expression rooted at X. Look for expressions
8466 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8467 Form these expressions.
8468
8469 Return the new rtx, usually just X.
8470
8471 Also, for machines like the VAX that don't have logical shift insns,
8472 try to convert logical to arithmetic shift operations in cases where
8473 they are equivalent. This undoes the canonicalizations to logical
8474 shifts done elsewhere.
8475
8476 We try, as much as possible, to re-use rtl expressions to save memory.
8477
8478 IN_CODE says what kind of expression we are processing. Normally, it is
8479 SET. In a memory address it is MEM. When processing the arguments of
8480 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8481 precisely it is an equality comparison against zero. */
8482
8483 rtx
8484 make_compound_operation (rtx x, enum rtx_code in_code)
8485 {
8486 enum rtx_code code = GET_CODE (x);
8487 const char *fmt;
8488 int i, j;
8489 enum rtx_code next_code;
8490 rtx new_rtx, tem;
8491
8492 /* Select the code to be used in recursive calls. Once we are inside an
8493 address, we stay there. If we have a comparison, set to COMPARE,
8494 but once inside, go back to our default of SET. */
8495
8496 next_code = (code == MEM ? MEM
8497 : ((code == COMPARE || COMPARISON_P (x))
8498 && XEXP (x, 1) == const0_rtx) ? COMPARE
8499 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8500
8501 scalar_int_mode mode;
8502 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8503 {
8504 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8505 &next_code);
8506 if (new_rtx)
8507 return new_rtx;
8508 code = GET_CODE (x);
8509 }
8510
8511 /* Now recursively process each operand of this operation. We need to
8512 handle ZERO_EXTEND specially so that we don't lose track of the
8513 inner mode. */
8514 if (code == ZERO_EXTEND)
8515 {
8516 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8517 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8518 new_rtx, GET_MODE (XEXP (x, 0)));
8519 if (tem)
8520 return tem;
8521 SUBST (XEXP (x, 0), new_rtx);
8522 return x;
8523 }
8524
8525 fmt = GET_RTX_FORMAT (code);
8526 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8527 if (fmt[i] == 'e')
8528 {
8529 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8530 SUBST (XEXP (x, i), new_rtx);
8531 }
8532 else if (fmt[i] == 'E')
8533 for (j = 0; j < XVECLEN (x, i); j++)
8534 {
8535 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8536 SUBST (XVECEXP (x, i, j), new_rtx);
8537 }
8538
8539 maybe_swap_commutative_operands (x);
8540 return x;
8541 }
8542 \f
8543 /* Given M see if it is a value that would select a field of bits
8544 within an item, but not the entire word. Return -1 if not.
8545 Otherwise, return the starting position of the field, where 0 is the
8546 low-order bit.
8547
8548 *PLEN is set to the length of the field. */
8549
8550 static int
8551 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8552 {
8553 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8554 int pos = m ? ctz_hwi (m) : -1;
8555 int len = 0;
8556
8557 if (pos >= 0)
8558 /* Now shift off the low-order zero bits and see if we have a
8559 power of two minus 1. */
8560 len = exact_log2 ((m >> pos) + 1);
8561
8562 if (len <= 0)
8563 pos = -1;
8564
8565 *plen = len;
8566 return pos;
8567 }
8568 \f
8569 /* If X refers to a register that equals REG in value, replace these
8570 references with REG. */
8571 static rtx
8572 canon_reg_for_combine (rtx x, rtx reg)
8573 {
8574 rtx op0, op1, op2;
8575 const char *fmt;
8576 int i;
8577 bool copied;
8578
8579 enum rtx_code code = GET_CODE (x);
8580 switch (GET_RTX_CLASS (code))
8581 {
8582 case RTX_UNARY:
8583 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8584 if (op0 != XEXP (x, 0))
8585 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8586 GET_MODE (reg));
8587 break;
8588
8589 case RTX_BIN_ARITH:
8590 case RTX_COMM_ARITH:
8591 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8592 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8593 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8594 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8595 break;
8596
8597 case RTX_COMPARE:
8598 case RTX_COMM_COMPARE:
8599 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8600 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8601 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8602 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8603 GET_MODE (op0), op0, op1);
8604 break;
8605
8606 case RTX_TERNARY:
8607 case RTX_BITFIELD_OPS:
8608 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8609 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8610 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8611 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8612 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8613 GET_MODE (op0), op0, op1, op2);
8614 /* FALLTHRU */
8615
8616 case RTX_OBJ:
8617 if (REG_P (x))
8618 {
8619 if (rtx_equal_p (get_last_value (reg), x)
8620 || rtx_equal_p (reg, get_last_value (x)))
8621 return reg;
8622 else
8623 break;
8624 }
8625
8626 /* fall through */
8627
8628 default:
8629 fmt = GET_RTX_FORMAT (code);
8630 copied = false;
8631 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8632 if (fmt[i] == 'e')
8633 {
8634 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8635 if (op != XEXP (x, i))
8636 {
8637 if (!copied)
8638 {
8639 copied = true;
8640 x = copy_rtx (x);
8641 }
8642 XEXP (x, i) = op;
8643 }
8644 }
8645 else if (fmt[i] == 'E')
8646 {
8647 int j;
8648 for (j = 0; j < XVECLEN (x, i); j++)
8649 {
8650 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8651 if (op != XVECEXP (x, i, j))
8652 {
8653 if (!copied)
8654 {
8655 copied = true;
8656 x = copy_rtx (x);
8657 }
8658 XVECEXP (x, i, j) = op;
8659 }
8660 }
8661 }
8662
8663 break;
8664 }
8665
8666 return x;
8667 }
8668
8669 /* Return X converted to MODE. If the value is already truncated to
8670 MODE we can just return a subreg even though in the general case we
8671 would need an explicit truncation. */
8672
8673 static rtx
8674 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8675 {
8676 if (!CONST_INT_P (x)
8677 && partial_subreg_p (mode, GET_MODE (x))
8678 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8679 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8680 {
8681 /* Bit-cast X into an integer mode. */
8682 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8683 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8684 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8685 x, GET_MODE (x));
8686 }
8687
8688 return gen_lowpart (mode, x);
8689 }
8690
8691 /* See if X can be simplified knowing that we will only refer to it in
8692 MODE and will only refer to those bits that are nonzero in MASK.
8693 If other bits are being computed or if masking operations are done
8694 that select a superset of the bits in MASK, they can sometimes be
8695 ignored.
8696
8697 Return a possibly simplified expression, but always convert X to
8698 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8699
8700 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8701 are all off in X. This is used when X will be complemented, by either
8702 NOT, NEG, or XOR. */
8703
8704 static rtx
8705 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8706 int just_select)
8707 {
8708 enum rtx_code code = GET_CODE (x);
8709 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8710 machine_mode op_mode;
8711 unsigned HOST_WIDE_INT nonzero;
8712
8713 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8714 code below will do the wrong thing since the mode of such an
8715 expression is VOIDmode.
8716
8717 Also do nothing if X is a CLOBBER; this can happen if X was
8718 the return value from a call to gen_lowpart. */
8719 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8720 return x;
8721
8722 /* We want to perform the operation in its present mode unless we know
8723 that the operation is valid in MODE, in which case we do the operation
8724 in MODE. */
8725 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8726 && have_insn_for (code, mode))
8727 ? mode : GET_MODE (x));
8728
8729 /* It is not valid to do a right-shift in a narrower mode
8730 than the one it came in with. */
8731 if ((code == LSHIFTRT || code == ASHIFTRT)
8732 && partial_subreg_p (mode, GET_MODE (x)))
8733 op_mode = GET_MODE (x);
8734
8735 /* Truncate MASK to fit OP_MODE. */
8736 if (op_mode)
8737 mask &= GET_MODE_MASK (op_mode);
8738
8739 /* Determine what bits of X are guaranteed to be (non)zero. */
8740 nonzero = nonzero_bits (x, mode);
8741
8742 /* If none of the bits in X are needed, return a zero. */
8743 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8744 x = const0_rtx;
8745
8746 /* If X is a CONST_INT, return a new one. Do this here since the
8747 test below will fail. */
8748 if (CONST_INT_P (x))
8749 {
8750 if (SCALAR_INT_MODE_P (mode))
8751 return gen_int_mode (INTVAL (x) & mask, mode);
8752 else
8753 {
8754 x = GEN_INT (INTVAL (x) & mask);
8755 return gen_lowpart_common (mode, x);
8756 }
8757 }
8758
8759 /* If X is narrower than MODE and we want all the bits in X's mode, just
8760 get X in the proper mode. */
8761 if (paradoxical_subreg_p (mode, GET_MODE (x))
8762 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8763 return gen_lowpart (mode, x);
8764
8765 /* We can ignore the effect of a SUBREG if it narrows the mode or
8766 if the constant masks to zero all the bits the mode doesn't have. */
8767 if (GET_CODE (x) == SUBREG
8768 && subreg_lowpart_p (x)
8769 && (partial_subreg_p (x)
8770 || (mask
8771 & GET_MODE_MASK (GET_MODE (x))
8772 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8773 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8774
8775 scalar_int_mode int_mode, xmode;
8776 if (is_a <scalar_int_mode> (mode, &int_mode)
8777 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8778 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8779 integer too. */
8780 return force_int_to_mode (x, int_mode, xmode,
8781 as_a <scalar_int_mode> (op_mode),
8782 mask, just_select);
8783
8784 return gen_lowpart_or_truncate (mode, x);
8785 }
8786
8787 /* Subroutine of force_to_mode that handles cases in which both X and
8788 the result are scalar integers. MODE is the mode of the result,
8789 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8790 is preferred for simplified versions of X. The other arguments
8791 are as for force_to_mode. */
8792
8793 static rtx
8794 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8795 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8796 int just_select)
8797 {
8798 enum rtx_code code = GET_CODE (x);
8799 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8800 unsigned HOST_WIDE_INT fuller_mask;
8801 rtx op0, op1, temp;
8802 poly_int64 const_op0;
8803
8804 /* When we have an arithmetic operation, or a shift whose count we
8805 do not know, we need to assume that all bits up to the highest-order
8806 bit in MASK will be needed. This is how we form such a mask. */
8807 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8808 fuller_mask = HOST_WIDE_INT_M1U;
8809 else
8810 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8811 - 1);
8812
8813 switch (code)
8814 {
8815 case CLOBBER:
8816 /* If X is a (clobber (const_int)), return it since we know we are
8817 generating something that won't match. */
8818 return x;
8819
8820 case SIGN_EXTEND:
8821 case ZERO_EXTEND:
8822 case ZERO_EXTRACT:
8823 case SIGN_EXTRACT:
8824 x = expand_compound_operation (x);
8825 if (GET_CODE (x) != code)
8826 return force_to_mode (x, mode, mask, next_select);
8827 break;
8828
8829 case TRUNCATE:
8830 /* Similarly for a truncate. */
8831 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8832
8833 case AND:
8834 /* If this is an AND with a constant, convert it into an AND
8835 whose constant is the AND of that constant with MASK. If it
8836 remains an AND of MASK, delete it since it is redundant. */
8837
8838 if (CONST_INT_P (XEXP (x, 1)))
8839 {
8840 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8841 mask & INTVAL (XEXP (x, 1)));
8842 xmode = op_mode;
8843
8844 /* If X is still an AND, see if it is an AND with a mask that
8845 is just some low-order bits. If so, and it is MASK, we don't
8846 need it. */
8847
8848 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8849 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8850 x = XEXP (x, 0);
8851
8852 /* If it remains an AND, try making another AND with the bits
8853 in the mode mask that aren't in MASK turned on. If the
8854 constant in the AND is wide enough, this might make a
8855 cheaper constant. */
8856
8857 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8858 && GET_MODE_MASK (xmode) != mask
8859 && HWI_COMPUTABLE_MODE_P (xmode))
8860 {
8861 unsigned HOST_WIDE_INT cval
8862 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8863 rtx y;
8864
8865 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8866 gen_int_mode (cval, xmode));
8867 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8868 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8869 x = y;
8870 }
8871
8872 break;
8873 }
8874
8875 goto binop;
8876
8877 case PLUS:
8878 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8879 low-order bits (as in an alignment operation) and FOO is already
8880 aligned to that boundary, mask C1 to that boundary as well.
8881 This may eliminate that PLUS and, later, the AND. */
8882
8883 {
8884 unsigned int width = GET_MODE_PRECISION (mode);
8885 unsigned HOST_WIDE_INT smask = mask;
8886
8887 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8888 number, sign extend it. */
8889
8890 if (width < HOST_BITS_PER_WIDE_INT
8891 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8892 smask |= HOST_WIDE_INT_M1U << width;
8893
8894 if (CONST_INT_P (XEXP (x, 1))
8895 && pow2p_hwi (- smask)
8896 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8897 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8898 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8899 (INTVAL (XEXP (x, 1)) & smask)),
8900 mode, smask, next_select);
8901 }
8902
8903 /* fall through */
8904
8905 case MULT:
8906 /* Substituting into the operands of a widening MULT is not likely to
8907 create RTL matching a machine insn. */
8908 if (code == MULT
8909 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8910 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8911 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8912 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8913 && REG_P (XEXP (XEXP (x, 0), 0))
8914 && REG_P (XEXP (XEXP (x, 1), 0)))
8915 return gen_lowpart_or_truncate (mode, x);
8916
8917 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8918 most significant bit in MASK since carries from those bits will
8919 affect the bits we are interested in. */
8920 mask = fuller_mask;
8921 goto binop;
8922
8923 case MINUS:
8924 /* If X is (minus C Y) where C's least set bit is larger than any bit
8925 in the mask, then we may replace with (neg Y). */
8926 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8927 && known_alignment (poly_uint64 (const_op0)) > mask)
8928 {
8929 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8930 return force_to_mode (x, mode, mask, next_select);
8931 }
8932
8933 /* Similarly, if C contains every bit in the fuller_mask, then we may
8934 replace with (not Y). */
8935 if (CONST_INT_P (XEXP (x, 0))
8936 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8937 {
8938 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8939 return force_to_mode (x, mode, mask, next_select);
8940 }
8941
8942 mask = fuller_mask;
8943 goto binop;
8944
8945 case IOR:
8946 case XOR:
8947 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8948 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8949 operation which may be a bitfield extraction. Ensure that the
8950 constant we form is not wider than the mode of X. */
8951
8952 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8953 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8954 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8955 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8956 && CONST_INT_P (XEXP (x, 1))
8957 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8958 + floor_log2 (INTVAL (XEXP (x, 1))))
8959 < GET_MODE_PRECISION (xmode))
8960 && (UINTVAL (XEXP (x, 1))
8961 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8962 {
8963 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8964 << INTVAL (XEXP (XEXP (x, 0), 1)),
8965 xmode);
8966 temp = simplify_gen_binary (GET_CODE (x), xmode,
8967 XEXP (XEXP (x, 0), 0), temp);
8968 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8969 XEXP (XEXP (x, 0), 1));
8970 return force_to_mode (x, mode, mask, next_select);
8971 }
8972
8973 binop:
8974 /* For most binary operations, just propagate into the operation and
8975 change the mode if we have an operation of that mode. */
8976
8977 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8978 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8979
8980 /* If we ended up truncating both operands, truncate the result of the
8981 operation instead. */
8982 if (GET_CODE (op0) == TRUNCATE
8983 && GET_CODE (op1) == TRUNCATE)
8984 {
8985 op0 = XEXP (op0, 0);
8986 op1 = XEXP (op1, 0);
8987 }
8988
8989 op0 = gen_lowpart_or_truncate (op_mode, op0);
8990 op1 = gen_lowpart_or_truncate (op_mode, op1);
8991
8992 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8993 {
8994 x = simplify_gen_binary (code, op_mode, op0, op1);
8995 xmode = op_mode;
8996 }
8997 break;
8998
8999 case ASHIFT:
9000 /* For left shifts, do the same, but just for the first operand.
9001 However, we cannot do anything with shifts where we cannot
9002 guarantee that the counts are smaller than the size of the mode
9003 because such a count will have a different meaning in a
9004 wider mode. */
9005
9006 if (! (CONST_INT_P (XEXP (x, 1))
9007 && INTVAL (XEXP (x, 1)) >= 0
9008 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
9009 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
9010 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
9011 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
9012 break;
9013
9014 /* If the shift count is a constant and we can do arithmetic in
9015 the mode of the shift, refine which bits we need. Otherwise, use the
9016 conservative form of the mask. */
9017 if (CONST_INT_P (XEXP (x, 1))
9018 && INTVAL (XEXP (x, 1)) >= 0
9019 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
9020 && HWI_COMPUTABLE_MODE_P (op_mode))
9021 mask >>= INTVAL (XEXP (x, 1));
9022 else
9023 mask = fuller_mask;
9024
9025 op0 = gen_lowpart_or_truncate (op_mode,
9026 force_to_mode (XEXP (x, 0), mode,
9027 mask, next_select));
9028
9029 if (op_mode != xmode || op0 != XEXP (x, 0))
9030 {
9031 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
9032 xmode = op_mode;
9033 }
9034 break;
9035
9036 case LSHIFTRT:
9037 /* Here we can only do something if the shift count is a constant,
9038 this shift constant is valid for the host, and we can do arithmetic
9039 in OP_MODE. */
9040
9041 if (CONST_INT_P (XEXP (x, 1))
9042 && INTVAL (XEXP (x, 1)) >= 0
9043 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
9044 && HWI_COMPUTABLE_MODE_P (op_mode))
9045 {
9046 rtx inner = XEXP (x, 0);
9047 unsigned HOST_WIDE_INT inner_mask;
9048
9049 /* Select the mask of the bits we need for the shift operand. */
9050 inner_mask = mask << INTVAL (XEXP (x, 1));
9051
9052 /* We can only change the mode of the shift if we can do arithmetic
9053 in the mode of the shift and INNER_MASK is no wider than the
9054 width of X's mode. */
9055 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
9056 op_mode = xmode;
9057
9058 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
9059
9060 if (xmode != op_mode || inner != XEXP (x, 0))
9061 {
9062 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
9063 xmode = op_mode;
9064 }
9065 }
9066
9067 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9068 shift and AND produces only copies of the sign bit (C2 is one less
9069 than a power of two), we can do this with just a shift. */
9070
9071 if (GET_CODE (x) == LSHIFTRT
9072 && CONST_INT_P (XEXP (x, 1))
9073 /* The shift puts one of the sign bit copies in the least significant
9074 bit. */
9075 && ((INTVAL (XEXP (x, 1))
9076 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9077 >= GET_MODE_PRECISION (xmode))
9078 && pow2p_hwi (mask + 1)
9079 /* Number of bits left after the shift must be more than the mask
9080 needs. */
9081 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
9082 <= GET_MODE_PRECISION (xmode))
9083 /* Must be more sign bit copies than the mask needs. */
9084 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9085 >= exact_log2 (mask + 1)))
9086 {
9087 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9088 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9089 gen_int_shift_amount (xmode, nbits));
9090 }
9091 goto shiftrt;
9092
9093 case ASHIFTRT:
9094 /* If we are just looking for the sign bit, we don't need this shift at
9095 all, even if it has a variable count. */
9096 if (val_signbit_p (xmode, mask))
9097 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9098
9099 /* If this is a shift by a constant, get a mask that contains those bits
9100 that are not copies of the sign bit. We then have two cases: If
9101 MASK only includes those bits, this can be a logical shift, which may
9102 allow simplifications. If MASK is a single-bit field not within
9103 those bits, we are requesting a copy of the sign bit and hence can
9104 shift the sign bit to the appropriate location. */
9105
9106 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9107 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9108 {
9109 unsigned HOST_WIDE_INT nonzero;
9110 int i;
9111
9112 /* If the considered data is wider than HOST_WIDE_INT, we can't
9113 represent a mask for all its bits in a single scalar.
9114 But we only care about the lower bits, so calculate these. */
9115
9116 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9117 {
9118 nonzero = HOST_WIDE_INT_M1U;
9119
9120 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9121 is the number of bits a full-width mask would have set.
9122 We need only shift if these are fewer than nonzero can
9123 hold. If not, we must keep all bits set in nonzero. */
9124
9125 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9126 < HOST_BITS_PER_WIDE_INT)
9127 nonzero >>= INTVAL (XEXP (x, 1))
9128 + HOST_BITS_PER_WIDE_INT
9129 - GET_MODE_PRECISION (xmode);
9130 }
9131 else
9132 {
9133 nonzero = GET_MODE_MASK (xmode);
9134 nonzero >>= INTVAL (XEXP (x, 1));
9135 }
9136
9137 if ((mask & ~nonzero) == 0)
9138 {
9139 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9140 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9141 if (GET_CODE (x) != ASHIFTRT)
9142 return force_to_mode (x, mode, mask, next_select);
9143 }
9144
9145 else if ((i = exact_log2 (mask)) >= 0)
9146 {
9147 x = simplify_shift_const
9148 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9149 GET_MODE_PRECISION (xmode) - 1 - i);
9150
9151 if (GET_CODE (x) != ASHIFTRT)
9152 return force_to_mode (x, mode, mask, next_select);
9153 }
9154 }
9155
9156 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9157 even if the shift count isn't a constant. */
9158 if (mask == 1)
9159 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9160
9161 shiftrt:
9162
9163 /* If this is a zero- or sign-extension operation that just affects bits
9164 we don't care about, remove it. Be sure the call above returned
9165 something that is still a shift. */
9166
9167 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9168 && CONST_INT_P (XEXP (x, 1))
9169 && INTVAL (XEXP (x, 1)) >= 0
9170 && (INTVAL (XEXP (x, 1))
9171 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9172 && GET_CODE (XEXP (x, 0)) == ASHIFT
9173 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9174 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9175 next_select);
9176
9177 break;
9178
9179 case ROTATE:
9180 case ROTATERT:
9181 /* If the shift count is constant and we can do computations
9182 in the mode of X, compute where the bits we care about are.
9183 Otherwise, we can't do anything. Don't change the mode of
9184 the shift or propagate MODE into the shift, though. */
9185 if (CONST_INT_P (XEXP (x, 1))
9186 && INTVAL (XEXP (x, 1)) >= 0)
9187 {
9188 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9189 xmode, gen_int_mode (mask, xmode),
9190 XEXP (x, 1));
9191 if (temp && CONST_INT_P (temp))
9192 x = simplify_gen_binary (code, xmode,
9193 force_to_mode (XEXP (x, 0), xmode,
9194 INTVAL (temp), next_select),
9195 XEXP (x, 1));
9196 }
9197 break;
9198
9199 case NEG:
9200 /* If we just want the low-order bit, the NEG isn't needed since it
9201 won't change the low-order bit. */
9202 if (mask == 1)
9203 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9204
9205 /* We need any bits less significant than the most significant bit in
9206 MASK since carries from those bits will affect the bits we are
9207 interested in. */
9208 mask = fuller_mask;
9209 goto unop;
9210
9211 case NOT:
9212 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9213 same as the XOR case above. Ensure that the constant we form is not
9214 wider than the mode of X. */
9215
9216 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9217 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9218 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9219 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9220 < GET_MODE_PRECISION (xmode))
9221 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9222 {
9223 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9224 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9225 x = simplify_gen_binary (LSHIFTRT, xmode,
9226 temp, XEXP (XEXP (x, 0), 1));
9227
9228 return force_to_mode (x, mode, mask, next_select);
9229 }
9230
9231 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9232 use the full mask inside the NOT. */
9233 mask = fuller_mask;
9234
9235 unop:
9236 op0 = gen_lowpart_or_truncate (op_mode,
9237 force_to_mode (XEXP (x, 0), mode, mask,
9238 next_select));
9239 if (op_mode != xmode || op0 != XEXP (x, 0))
9240 {
9241 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9242 xmode = op_mode;
9243 }
9244 break;
9245
9246 case NE:
9247 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9248 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9249 which is equal to STORE_FLAG_VALUE. */
9250 if ((mask & ~STORE_FLAG_VALUE) == 0
9251 && XEXP (x, 1) == const0_rtx
9252 && GET_MODE (XEXP (x, 0)) == mode
9253 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9254 && (nonzero_bits (XEXP (x, 0), mode)
9255 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9256 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9257
9258 break;
9259
9260 case IF_THEN_ELSE:
9261 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9262 written in a narrower mode. We play it safe and do not do so. */
9263
9264 op0 = gen_lowpart_or_truncate (xmode,
9265 force_to_mode (XEXP (x, 1), mode,
9266 mask, next_select));
9267 op1 = gen_lowpart_or_truncate (xmode,
9268 force_to_mode (XEXP (x, 2), mode,
9269 mask, next_select));
9270 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9271 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9272 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9273 op0, op1);
9274 break;
9275
9276 default:
9277 break;
9278 }
9279
9280 /* Ensure we return a value of the proper mode. */
9281 return gen_lowpart_or_truncate (mode, x);
9282 }
9283 \f
9284 /* Return nonzero if X is an expression that has one of two values depending on
9285 whether some other value is zero or nonzero. In that case, we return the
9286 value that is being tested, *PTRUE is set to the value if the rtx being
9287 returned has a nonzero value, and *PFALSE is set to the other alternative.
9288
9289 If we return zero, we set *PTRUE and *PFALSE to X. */
9290
9291 static rtx
9292 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9293 {
9294 machine_mode mode = GET_MODE (x);
9295 enum rtx_code code = GET_CODE (x);
9296 rtx cond0, cond1, true0, true1, false0, false1;
9297 unsigned HOST_WIDE_INT nz;
9298 scalar_int_mode int_mode;
9299
9300 /* If we are comparing a value against zero, we are done. */
9301 if ((code == NE || code == EQ)
9302 && XEXP (x, 1) == const0_rtx)
9303 {
9304 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9305 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9306 return XEXP (x, 0);
9307 }
9308
9309 /* If this is a unary operation whose operand has one of two values, apply
9310 our opcode to compute those values. */
9311 else if (UNARY_P (x)
9312 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9313 {
9314 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9315 *pfalse = simplify_gen_unary (code, mode, false0,
9316 GET_MODE (XEXP (x, 0)));
9317 return cond0;
9318 }
9319
9320 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9321 make can't possibly match and would suppress other optimizations. */
9322 else if (code == COMPARE)
9323 ;
9324
9325 /* If this is a binary operation, see if either side has only one of two
9326 values. If either one does or if both do and they are conditional on
9327 the same value, compute the new true and false values. */
9328 else if (BINARY_P (x))
9329 {
9330 rtx op0 = XEXP (x, 0);
9331 rtx op1 = XEXP (x, 1);
9332 cond0 = if_then_else_cond (op0, &true0, &false0);
9333 cond1 = if_then_else_cond (op1, &true1, &false1);
9334
9335 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9336 && (REG_P (op0) || REG_P (op1)))
9337 {
9338 /* Try to enable a simplification by undoing work done by
9339 if_then_else_cond if it converted a REG into something more
9340 complex. */
9341 if (REG_P (op0))
9342 {
9343 cond0 = 0;
9344 true0 = false0 = op0;
9345 }
9346 else
9347 {
9348 cond1 = 0;
9349 true1 = false1 = op1;
9350 }
9351 }
9352
9353 if ((cond0 != 0 || cond1 != 0)
9354 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9355 {
9356 /* If if_then_else_cond returned zero, then true/false are the
9357 same rtl. We must copy one of them to prevent invalid rtl
9358 sharing. */
9359 if (cond0 == 0)
9360 true0 = copy_rtx (true0);
9361 else if (cond1 == 0)
9362 true1 = copy_rtx (true1);
9363
9364 if (COMPARISON_P (x))
9365 {
9366 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9367 true0, true1);
9368 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9369 false0, false1);
9370 }
9371 else
9372 {
9373 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9374 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9375 }
9376
9377 return cond0 ? cond0 : cond1;
9378 }
9379
9380 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9381 operands is zero when the other is nonzero, and vice-versa,
9382 and STORE_FLAG_VALUE is 1 or -1. */
9383
9384 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9385 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9386 || code == UMAX)
9387 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9388 {
9389 rtx op0 = XEXP (XEXP (x, 0), 1);
9390 rtx op1 = XEXP (XEXP (x, 1), 1);
9391
9392 cond0 = XEXP (XEXP (x, 0), 0);
9393 cond1 = XEXP (XEXP (x, 1), 0);
9394
9395 if (COMPARISON_P (cond0)
9396 && COMPARISON_P (cond1)
9397 && SCALAR_INT_MODE_P (mode)
9398 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9399 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9400 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9401 || ((swap_condition (GET_CODE (cond0))
9402 == reversed_comparison_code (cond1, NULL))
9403 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9404 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9405 && ! side_effects_p (x))
9406 {
9407 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9408 *pfalse = simplify_gen_binary (MULT, mode,
9409 (code == MINUS
9410 ? simplify_gen_unary (NEG, mode,
9411 op1, mode)
9412 : op1),
9413 const_true_rtx);
9414 return cond0;
9415 }
9416 }
9417
9418 /* Similarly for MULT, AND and UMIN, except that for these the result
9419 is always zero. */
9420 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9421 && (code == MULT || code == AND || code == UMIN)
9422 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9423 {
9424 cond0 = XEXP (XEXP (x, 0), 0);
9425 cond1 = XEXP (XEXP (x, 1), 0);
9426
9427 if (COMPARISON_P (cond0)
9428 && COMPARISON_P (cond1)
9429 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9430 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9431 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9432 || ((swap_condition (GET_CODE (cond0))
9433 == reversed_comparison_code (cond1, NULL))
9434 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9435 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9436 && ! side_effects_p (x))
9437 {
9438 *ptrue = *pfalse = const0_rtx;
9439 return cond0;
9440 }
9441 }
9442 }
9443
9444 else if (code == IF_THEN_ELSE)
9445 {
9446 /* If we have IF_THEN_ELSE already, extract the condition and
9447 canonicalize it if it is NE or EQ. */
9448 cond0 = XEXP (x, 0);
9449 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9450 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9451 return XEXP (cond0, 0);
9452 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9453 {
9454 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9455 return XEXP (cond0, 0);
9456 }
9457 else
9458 return cond0;
9459 }
9460
9461 /* If X is a SUBREG, we can narrow both the true and false values
9462 if the inner expression, if there is a condition. */
9463 else if (code == SUBREG
9464 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9465 &false0)) != 0)
9466 {
9467 true0 = simplify_gen_subreg (mode, true0,
9468 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9469 false0 = simplify_gen_subreg (mode, false0,
9470 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9471 if (true0 && false0)
9472 {
9473 *ptrue = true0;
9474 *pfalse = false0;
9475 return cond0;
9476 }
9477 }
9478
9479 /* If X is a constant, this isn't special and will cause confusions
9480 if we treat it as such. Likewise if it is equivalent to a constant. */
9481 else if (CONSTANT_P (x)
9482 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9483 ;
9484
9485 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9486 will be least confusing to the rest of the compiler. */
9487 else if (mode == BImode)
9488 {
9489 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9490 return x;
9491 }
9492
9493 /* If X is known to be either 0 or -1, those are the true and
9494 false values when testing X. */
9495 else if (x == constm1_rtx || x == const0_rtx
9496 || (is_a <scalar_int_mode> (mode, &int_mode)
9497 && (num_sign_bit_copies (x, int_mode)
9498 == GET_MODE_PRECISION (int_mode))))
9499 {
9500 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9501 return x;
9502 }
9503
9504 /* Likewise for 0 or a single bit. */
9505 else if (HWI_COMPUTABLE_MODE_P (mode)
9506 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9507 {
9508 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9509 return x;
9510 }
9511
9512 /* Otherwise fail; show no condition with true and false values the same. */
9513 *ptrue = *pfalse = x;
9514 return 0;
9515 }
9516 \f
9517 /* Return the value of expression X given the fact that condition COND
9518 is known to be true when applied to REG as its first operand and VAL
9519 as its second. X is known to not be shared and so can be modified in
9520 place.
9521
9522 We only handle the simplest cases, and specifically those cases that
9523 arise with IF_THEN_ELSE expressions. */
9524
9525 static rtx
9526 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9527 {
9528 enum rtx_code code = GET_CODE (x);
9529 const char *fmt;
9530 int i, j;
9531
9532 if (side_effects_p (x))
9533 return x;
9534
9535 /* If either operand of the condition is a floating point value,
9536 then we have to avoid collapsing an EQ comparison. */
9537 if (cond == EQ
9538 && rtx_equal_p (x, reg)
9539 && ! FLOAT_MODE_P (GET_MODE (x))
9540 && ! FLOAT_MODE_P (GET_MODE (val)))
9541 return val;
9542
9543 if (cond == UNEQ && rtx_equal_p (x, reg))
9544 return val;
9545
9546 /* If X is (abs REG) and we know something about REG's relationship
9547 with zero, we may be able to simplify this. */
9548
9549 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9550 switch (cond)
9551 {
9552 case GE: case GT: case EQ:
9553 return XEXP (x, 0);
9554 case LT: case LE:
9555 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9556 XEXP (x, 0),
9557 GET_MODE (XEXP (x, 0)));
9558 default:
9559 break;
9560 }
9561
9562 /* The only other cases we handle are MIN, MAX, and comparisons if the
9563 operands are the same as REG and VAL. */
9564
9565 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9566 {
9567 if (rtx_equal_p (XEXP (x, 0), val))
9568 {
9569 std::swap (val, reg);
9570 cond = swap_condition (cond);
9571 }
9572
9573 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9574 {
9575 if (COMPARISON_P (x))
9576 {
9577 if (comparison_dominates_p (cond, code))
9578 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9579
9580 code = reversed_comparison_code (x, NULL);
9581 if (code != UNKNOWN
9582 && comparison_dominates_p (cond, code))
9583 return CONST0_RTX (GET_MODE (x));
9584 else
9585 return x;
9586 }
9587 else if (code == SMAX || code == SMIN
9588 || code == UMIN || code == UMAX)
9589 {
9590 int unsignedp = (code == UMIN || code == UMAX);
9591
9592 /* Do not reverse the condition when it is NE or EQ.
9593 This is because we cannot conclude anything about
9594 the value of 'SMAX (x, y)' when x is not equal to y,
9595 but we can when x equals y. */
9596 if ((code == SMAX || code == UMAX)
9597 && ! (cond == EQ || cond == NE))
9598 cond = reverse_condition (cond);
9599
9600 switch (cond)
9601 {
9602 case GE: case GT:
9603 return unsignedp ? x : XEXP (x, 1);
9604 case LE: case LT:
9605 return unsignedp ? x : XEXP (x, 0);
9606 case GEU: case GTU:
9607 return unsignedp ? XEXP (x, 1) : x;
9608 case LEU: case LTU:
9609 return unsignedp ? XEXP (x, 0) : x;
9610 default:
9611 break;
9612 }
9613 }
9614 }
9615 }
9616 else if (code == SUBREG)
9617 {
9618 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9619 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9620
9621 if (SUBREG_REG (x) != r)
9622 {
9623 /* We must simplify subreg here, before we lose track of the
9624 original inner_mode. */
9625 new_rtx = simplify_subreg (GET_MODE (x), r,
9626 inner_mode, SUBREG_BYTE (x));
9627 if (new_rtx)
9628 return new_rtx;
9629 else
9630 SUBST (SUBREG_REG (x), r);
9631 }
9632
9633 return x;
9634 }
9635 /* We don't have to handle SIGN_EXTEND here, because even in the
9636 case of replacing something with a modeless CONST_INT, a
9637 CONST_INT is already (supposed to be) a valid sign extension for
9638 its narrower mode, which implies it's already properly
9639 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9640 story is different. */
9641 else if (code == ZERO_EXTEND)
9642 {
9643 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9644 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9645
9646 if (XEXP (x, 0) != r)
9647 {
9648 /* We must simplify the zero_extend here, before we lose
9649 track of the original inner_mode. */
9650 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9651 r, inner_mode);
9652 if (new_rtx)
9653 return new_rtx;
9654 else
9655 SUBST (XEXP (x, 0), r);
9656 }
9657
9658 return x;
9659 }
9660
9661 fmt = GET_RTX_FORMAT (code);
9662 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9663 {
9664 if (fmt[i] == 'e')
9665 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9666 else if (fmt[i] == 'E')
9667 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9668 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9669 cond, reg, val));
9670 }
9671
9672 return x;
9673 }
9674 \f
9675 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9676 assignment as a field assignment. */
9677
9678 static int
9679 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9680 {
9681 if (widen_x && GET_MODE (x) != GET_MODE (y))
9682 {
9683 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9684 return 0;
9685 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9686 return 0;
9687 x = adjust_address_nv (x, GET_MODE (y),
9688 byte_lowpart_offset (GET_MODE (y),
9689 GET_MODE (x)));
9690 }
9691
9692 if (x == y || rtx_equal_p (x, y))
9693 return 1;
9694
9695 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9696 return 0;
9697
9698 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9699 Note that all SUBREGs of MEM are paradoxical; otherwise they
9700 would have been rewritten. */
9701 if (MEM_P (x) && GET_CODE (y) == SUBREG
9702 && MEM_P (SUBREG_REG (y))
9703 && rtx_equal_p (SUBREG_REG (y),
9704 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9705 return 1;
9706
9707 if (MEM_P (y) && GET_CODE (x) == SUBREG
9708 && MEM_P (SUBREG_REG (x))
9709 && rtx_equal_p (SUBREG_REG (x),
9710 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9711 return 1;
9712
9713 /* We used to see if get_last_value of X and Y were the same but that's
9714 not correct. In one direction, we'll cause the assignment to have
9715 the wrong destination and in the case, we'll import a register into this
9716 insn that might have already have been dead. So fail if none of the
9717 above cases are true. */
9718 return 0;
9719 }
9720 \f
9721 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9722 Return that assignment if so.
9723
9724 We only handle the most common cases. */
9725
9726 static rtx
9727 make_field_assignment (rtx x)
9728 {
9729 rtx dest = SET_DEST (x);
9730 rtx src = SET_SRC (x);
9731 rtx assign;
9732 rtx rhs, lhs;
9733 HOST_WIDE_INT c1;
9734 HOST_WIDE_INT pos;
9735 unsigned HOST_WIDE_INT len;
9736 rtx other;
9737
9738 /* All the rules in this function are specific to scalar integers. */
9739 scalar_int_mode mode;
9740 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9741 return x;
9742
9743 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9744 a clear of a one-bit field. We will have changed it to
9745 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9746 for a SUBREG. */
9747
9748 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9749 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9750 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9751 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9752 {
9753 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9754 1, 1, 1, 0);
9755 if (assign != 0)
9756 return gen_rtx_SET (assign, const0_rtx);
9757 return x;
9758 }
9759
9760 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9761 && subreg_lowpart_p (XEXP (src, 0))
9762 && partial_subreg_p (XEXP (src, 0))
9763 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9764 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9765 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9766 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9767 {
9768 assign = make_extraction (VOIDmode, dest, 0,
9769 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9770 1, 1, 1, 0);
9771 if (assign != 0)
9772 return gen_rtx_SET (assign, const0_rtx);
9773 return x;
9774 }
9775
9776 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9777 one-bit field. */
9778 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9779 && XEXP (XEXP (src, 0), 0) == const1_rtx
9780 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9781 {
9782 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9783 1, 1, 1, 0);
9784 if (assign != 0)
9785 return gen_rtx_SET (assign, const1_rtx);
9786 return x;
9787 }
9788
9789 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9790 SRC is an AND with all bits of that field set, then we can discard
9791 the AND. */
9792 if (GET_CODE (dest) == ZERO_EXTRACT
9793 && CONST_INT_P (XEXP (dest, 1))
9794 && GET_CODE (src) == AND
9795 && CONST_INT_P (XEXP (src, 1)))
9796 {
9797 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9798 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9799 unsigned HOST_WIDE_INT ze_mask;
9800
9801 if (width >= HOST_BITS_PER_WIDE_INT)
9802 ze_mask = -1;
9803 else
9804 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9805
9806 /* Complete overlap. We can remove the source AND. */
9807 if ((and_mask & ze_mask) == ze_mask)
9808 return gen_rtx_SET (dest, XEXP (src, 0));
9809
9810 /* Partial overlap. We can reduce the source AND. */
9811 if ((and_mask & ze_mask) != and_mask)
9812 {
9813 src = gen_rtx_AND (mode, XEXP (src, 0),
9814 gen_int_mode (and_mask & ze_mask, mode));
9815 return gen_rtx_SET (dest, src);
9816 }
9817 }
9818
9819 /* The other case we handle is assignments into a constant-position
9820 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9821 a mask that has all one bits except for a group of zero bits and
9822 OTHER is known to have zeros where C1 has ones, this is such an
9823 assignment. Compute the position and length from C1. Shift OTHER
9824 to the appropriate position, force it to the required mode, and
9825 make the extraction. Check for the AND in both operands. */
9826
9827 /* One or more SUBREGs might obscure the constant-position field
9828 assignment. The first one we are likely to encounter is an outer
9829 narrowing SUBREG, which we can just strip for the purposes of
9830 identifying the constant-field assignment. */
9831 scalar_int_mode src_mode = mode;
9832 if (GET_CODE (src) == SUBREG
9833 && subreg_lowpart_p (src)
9834 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9835 src = SUBREG_REG (src);
9836
9837 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9838 return x;
9839
9840 rhs = expand_compound_operation (XEXP (src, 0));
9841 lhs = expand_compound_operation (XEXP (src, 1));
9842
9843 if (GET_CODE (rhs) == AND
9844 && CONST_INT_P (XEXP (rhs, 1))
9845 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9846 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9847 /* The second SUBREG that might get in the way is a paradoxical
9848 SUBREG around the first operand of the AND. We want to
9849 pretend the operand is as wide as the destination here. We
9850 do this by adjusting the MEM to wider mode for the sole
9851 purpose of the call to rtx_equal_for_field_assignment_p. Also
9852 note this trick only works for MEMs. */
9853 else if (GET_CODE (rhs) == AND
9854 && paradoxical_subreg_p (XEXP (rhs, 0))
9855 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9856 && CONST_INT_P (XEXP (rhs, 1))
9857 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9858 dest, true))
9859 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9860 else if (GET_CODE (lhs) == AND
9861 && CONST_INT_P (XEXP (lhs, 1))
9862 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9863 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9864 /* The second SUBREG that might get in the way is a paradoxical
9865 SUBREG around the first operand of the AND. We want to
9866 pretend the operand is as wide as the destination here. We
9867 do this by adjusting the MEM to wider mode for the sole
9868 purpose of the call to rtx_equal_for_field_assignment_p. Also
9869 note this trick only works for MEMs. */
9870 else if (GET_CODE (lhs) == AND
9871 && paradoxical_subreg_p (XEXP (lhs, 0))
9872 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9873 && CONST_INT_P (XEXP (lhs, 1))
9874 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9875 dest, true))
9876 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9877 else
9878 return x;
9879
9880 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9881 if (pos < 0
9882 || pos + len > GET_MODE_PRECISION (mode)
9883 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9884 || (c1 & nonzero_bits (other, mode)) != 0)
9885 return x;
9886
9887 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9888 if (assign == 0)
9889 return x;
9890
9891 /* The mode to use for the source is the mode of the assignment, or of
9892 what is inside a possible STRICT_LOW_PART. */
9893 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9894 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9895
9896 /* Shift OTHER right POS places and make it the source, restricting it
9897 to the proper length and mode. */
9898
9899 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9900 src_mode, other, pos),
9901 dest);
9902 src = force_to_mode (src, new_mode,
9903 len >= HOST_BITS_PER_WIDE_INT
9904 ? HOST_WIDE_INT_M1U
9905 : (HOST_WIDE_INT_1U << len) - 1,
9906 0);
9907
9908 /* If SRC is masked by an AND that does not make a difference in
9909 the value being stored, strip it. */
9910 if (GET_CODE (assign) == ZERO_EXTRACT
9911 && CONST_INT_P (XEXP (assign, 1))
9912 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9913 && GET_CODE (src) == AND
9914 && CONST_INT_P (XEXP (src, 1))
9915 && UINTVAL (XEXP (src, 1))
9916 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9917 src = XEXP (src, 0);
9918
9919 return gen_rtx_SET (assign, src);
9920 }
9921 \f
9922 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9923 if so. */
9924
9925 static rtx
9926 apply_distributive_law (rtx x)
9927 {
9928 enum rtx_code code = GET_CODE (x);
9929 enum rtx_code inner_code;
9930 rtx lhs, rhs, other;
9931 rtx tem;
9932
9933 /* Distributivity is not true for floating point as it can change the
9934 value. So we don't do it unless -funsafe-math-optimizations. */
9935 if (FLOAT_MODE_P (GET_MODE (x))
9936 && ! flag_unsafe_math_optimizations)
9937 return x;
9938
9939 /* The outer operation can only be one of the following: */
9940 if (code != IOR && code != AND && code != XOR
9941 && code != PLUS && code != MINUS)
9942 return x;
9943
9944 lhs = XEXP (x, 0);
9945 rhs = XEXP (x, 1);
9946
9947 /* If either operand is a primitive we can't do anything, so get out
9948 fast. */
9949 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9950 return x;
9951
9952 lhs = expand_compound_operation (lhs);
9953 rhs = expand_compound_operation (rhs);
9954 inner_code = GET_CODE (lhs);
9955 if (inner_code != GET_CODE (rhs))
9956 return x;
9957
9958 /* See if the inner and outer operations distribute. */
9959 switch (inner_code)
9960 {
9961 case LSHIFTRT:
9962 case ASHIFTRT:
9963 case AND:
9964 case IOR:
9965 /* These all distribute except over PLUS. */
9966 if (code == PLUS || code == MINUS)
9967 return x;
9968 break;
9969
9970 case MULT:
9971 if (code != PLUS && code != MINUS)
9972 return x;
9973 break;
9974
9975 case ASHIFT:
9976 /* This is also a multiply, so it distributes over everything. */
9977 break;
9978
9979 /* This used to handle SUBREG, but this turned out to be counter-
9980 productive, since (subreg (op ...)) usually is not handled by
9981 insn patterns, and this "optimization" therefore transformed
9982 recognizable patterns into unrecognizable ones. Therefore the
9983 SUBREG case was removed from here.
9984
9985 It is possible that distributing SUBREG over arithmetic operations
9986 leads to an intermediate result than can then be optimized further,
9987 e.g. by moving the outer SUBREG to the other side of a SET as done
9988 in simplify_set. This seems to have been the original intent of
9989 handling SUBREGs here.
9990
9991 However, with current GCC this does not appear to actually happen,
9992 at least on major platforms. If some case is found where removing
9993 the SUBREG case here prevents follow-on optimizations, distributing
9994 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9995
9996 default:
9997 return x;
9998 }
9999
10000 /* Set LHS and RHS to the inner operands (A and B in the example
10001 above) and set OTHER to the common operand (C in the example).
10002 There is only one way to do this unless the inner operation is
10003 commutative. */
10004 if (COMMUTATIVE_ARITH_P (lhs)
10005 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
10006 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
10007 else if (COMMUTATIVE_ARITH_P (lhs)
10008 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
10009 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
10010 else if (COMMUTATIVE_ARITH_P (lhs)
10011 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
10012 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
10013 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
10014 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
10015 else
10016 return x;
10017
10018 /* Form the new inner operation, seeing if it simplifies first. */
10019 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
10020
10021 /* There is one exception to the general way of distributing:
10022 (a | c) ^ (b | c) -> (a ^ b) & ~c */
10023 if (code == XOR && inner_code == IOR)
10024 {
10025 inner_code = AND;
10026 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
10027 }
10028
10029 /* We may be able to continuing distributing the result, so call
10030 ourselves recursively on the inner operation before forming the
10031 outer operation, which we return. */
10032 return simplify_gen_binary (inner_code, GET_MODE (x),
10033 apply_distributive_law (tem), other);
10034 }
10035
10036 /* See if X is of the form (* (+ A B) C), and if so convert to
10037 (+ (* A C) (* B C)) and try to simplify.
10038
10039 Most of the time, this results in no change. However, if some of
10040 the operands are the same or inverses of each other, simplifications
10041 will result.
10042
10043 For example, (and (ior A B) (not B)) can occur as the result of
10044 expanding a bit field assignment. When we apply the distributive
10045 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
10046 which then simplifies to (and (A (not B))).
10047
10048 Note that no checks happen on the validity of applying the inverse
10049 distributive law. This is pointless since we can do it in the
10050 few places where this routine is called.
10051
10052 N is the index of the term that is decomposed (the arithmetic operation,
10053 i.e. (+ A B) in the first example above). !N is the index of the term that
10054 is distributed, i.e. of C in the first example above. */
10055 static rtx
10056 distribute_and_simplify_rtx (rtx x, int n)
10057 {
10058 machine_mode mode;
10059 enum rtx_code outer_code, inner_code;
10060 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
10061
10062 /* Distributivity is not true for floating point as it can change the
10063 value. So we don't do it unless -funsafe-math-optimizations. */
10064 if (FLOAT_MODE_P (GET_MODE (x))
10065 && ! flag_unsafe_math_optimizations)
10066 return NULL_RTX;
10067
10068 decomposed = XEXP (x, n);
10069 if (!ARITHMETIC_P (decomposed))
10070 return NULL_RTX;
10071
10072 mode = GET_MODE (x);
10073 outer_code = GET_CODE (x);
10074 distributed = XEXP (x, !n);
10075
10076 inner_code = GET_CODE (decomposed);
10077 inner_op0 = XEXP (decomposed, 0);
10078 inner_op1 = XEXP (decomposed, 1);
10079
10080 /* Special case (and (xor B C) (not A)), which is equivalent to
10081 (xor (ior A B) (ior A C)) */
10082 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10083 {
10084 distributed = XEXP (distributed, 0);
10085 outer_code = IOR;
10086 }
10087
10088 if (n == 0)
10089 {
10090 /* Distribute the second term. */
10091 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10092 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10093 }
10094 else
10095 {
10096 /* Distribute the first term. */
10097 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10098 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10099 }
10100
10101 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10102 new_op0, new_op1));
10103 if (GET_CODE (tmp) != outer_code
10104 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10105 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10106 return tmp;
10107
10108 return NULL_RTX;
10109 }
10110 \f
10111 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10112 in MODE. Return an equivalent form, if different from (and VAROP
10113 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10114
10115 static rtx
10116 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10117 unsigned HOST_WIDE_INT constop)
10118 {
10119 unsigned HOST_WIDE_INT nonzero;
10120 unsigned HOST_WIDE_INT orig_constop;
10121 rtx orig_varop;
10122 int i;
10123
10124 orig_varop = varop;
10125 orig_constop = constop;
10126 if (GET_CODE (varop) == CLOBBER)
10127 return NULL_RTX;
10128
10129 /* Simplify VAROP knowing that we will be only looking at some of the
10130 bits in it.
10131
10132 Note by passing in CONSTOP, we guarantee that the bits not set in
10133 CONSTOP are not significant and will never be examined. We must
10134 ensure that is the case by explicitly masking out those bits
10135 before returning. */
10136 varop = force_to_mode (varop, mode, constop, 0);
10137
10138 /* If VAROP is a CLOBBER, we will fail so return it. */
10139 if (GET_CODE (varop) == CLOBBER)
10140 return varop;
10141
10142 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10143 to VAROP and return the new constant. */
10144 if (CONST_INT_P (varop))
10145 return gen_int_mode (INTVAL (varop) & constop, mode);
10146
10147 /* See what bits may be nonzero in VAROP. Unlike the general case of
10148 a call to nonzero_bits, here we don't care about bits outside
10149 MODE. */
10150
10151 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10152
10153 /* Turn off all bits in the constant that are known to already be zero.
10154 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10155 which is tested below. */
10156
10157 constop &= nonzero;
10158
10159 /* If we don't have any bits left, return zero. */
10160 if (constop == 0 && !side_effects_p (varop))
10161 return const0_rtx;
10162
10163 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10164 a power of two, we can replace this with an ASHIFT. */
10165 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10166 && (i = exact_log2 (constop)) >= 0)
10167 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10168
10169 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10170 or XOR, then try to apply the distributive law. This may eliminate
10171 operations if either branch can be simplified because of the AND.
10172 It may also make some cases more complex, but those cases probably
10173 won't match a pattern either with or without this. */
10174
10175 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10176 {
10177 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10178 return
10179 gen_lowpart
10180 (mode,
10181 apply_distributive_law
10182 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10183 simplify_and_const_int (NULL_RTX, varop_mode,
10184 XEXP (varop, 0),
10185 constop),
10186 simplify_and_const_int (NULL_RTX, varop_mode,
10187 XEXP (varop, 1),
10188 constop))));
10189 }
10190
10191 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10192 the AND and see if one of the operands simplifies to zero. If so, we
10193 may eliminate it. */
10194
10195 if (GET_CODE (varop) == PLUS
10196 && pow2p_hwi (constop + 1))
10197 {
10198 rtx o0, o1;
10199
10200 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10201 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10202 if (o0 == const0_rtx)
10203 return o1;
10204 if (o1 == const0_rtx)
10205 return o0;
10206 }
10207
10208 /* Make a SUBREG if necessary. If we can't make it, fail. */
10209 varop = gen_lowpart (mode, varop);
10210 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10211 return NULL_RTX;
10212
10213 /* If we are only masking insignificant bits, return VAROP. */
10214 if (constop == nonzero)
10215 return varop;
10216
10217 if (varop == orig_varop && constop == orig_constop)
10218 return NULL_RTX;
10219
10220 /* Otherwise, return an AND. */
10221 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10222 }
10223
10224
10225 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10226 in MODE.
10227
10228 Return an equivalent form, if different from X. Otherwise, return X. If
10229 X is zero, we are to always construct the equivalent form. */
10230
10231 static rtx
10232 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10233 unsigned HOST_WIDE_INT constop)
10234 {
10235 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10236 if (tem)
10237 return tem;
10238
10239 if (!x)
10240 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10241 gen_int_mode (constop, mode));
10242 if (GET_MODE (x) != mode)
10243 x = gen_lowpart (mode, x);
10244 return x;
10245 }
10246 \f
10247 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10248 We don't care about bits outside of those defined in MODE.
10249 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10250
10251 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10252 a shift, AND, or zero_extract, we can do better. */
10253
10254 static rtx
10255 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10256 scalar_int_mode mode,
10257 unsigned HOST_WIDE_INT *nonzero)
10258 {
10259 rtx tem;
10260 reg_stat_type *rsp;
10261
10262 /* If X is a register whose nonzero bits value is current, use it.
10263 Otherwise, if X is a register whose value we can find, use that
10264 value. Otherwise, use the previously-computed global nonzero bits
10265 for this register. */
10266
10267 rsp = &reg_stat[REGNO (x)];
10268 if (rsp->last_set_value != 0
10269 && (rsp->last_set_mode == mode
10270 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10271 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10272 && GET_MODE_CLASS (mode) == MODE_INT))
10273 && ((rsp->last_set_label >= label_tick_ebb_start
10274 && rsp->last_set_label < label_tick)
10275 || (rsp->last_set_label == label_tick
10276 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10277 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10278 && REGNO (x) < reg_n_sets_max
10279 && REG_N_SETS (REGNO (x)) == 1
10280 && !REGNO_REG_SET_P
10281 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10282 REGNO (x)))))
10283 {
10284 /* Note that, even if the precision of last_set_mode is lower than that
10285 of mode, record_value_for_reg invoked nonzero_bits on the register
10286 with nonzero_bits_mode (because last_set_mode is necessarily integral
10287 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10288 are all valid, hence in mode too since nonzero_bits_mode is defined
10289 to the largest HWI_COMPUTABLE_MODE_P mode. */
10290 *nonzero &= rsp->last_set_nonzero_bits;
10291 return NULL;
10292 }
10293
10294 tem = get_last_value (x);
10295 if (tem)
10296 {
10297 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10298 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10299
10300 return tem;
10301 }
10302
10303 if (nonzero_sign_valid && rsp->nonzero_bits)
10304 {
10305 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10306
10307 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10308 /* We don't know anything about the upper bits. */
10309 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10310
10311 *nonzero &= mask;
10312 }
10313
10314 return NULL;
10315 }
10316
10317 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10318 end of X that are known to be equal to the sign bit. X will be used
10319 in mode MODE; the returned value will always be between 1 and the
10320 number of bits in MODE. */
10321
10322 static rtx
10323 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10324 scalar_int_mode mode,
10325 unsigned int *result)
10326 {
10327 rtx tem;
10328 reg_stat_type *rsp;
10329
10330 rsp = &reg_stat[REGNO (x)];
10331 if (rsp->last_set_value != 0
10332 && rsp->last_set_mode == mode
10333 && ((rsp->last_set_label >= label_tick_ebb_start
10334 && rsp->last_set_label < label_tick)
10335 || (rsp->last_set_label == label_tick
10336 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10337 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10338 && REGNO (x) < reg_n_sets_max
10339 && REG_N_SETS (REGNO (x)) == 1
10340 && !REGNO_REG_SET_P
10341 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10342 REGNO (x)))))
10343 {
10344 *result = rsp->last_set_sign_bit_copies;
10345 return NULL;
10346 }
10347
10348 tem = get_last_value (x);
10349 if (tem != 0)
10350 return tem;
10351
10352 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10353 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10354 *result = rsp->sign_bit_copies;
10355
10356 return NULL;
10357 }
10358 \f
10359 /* Return the number of "extended" bits there are in X, when interpreted
10360 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10361 unsigned quantities, this is the number of high-order zero bits.
10362 For signed quantities, this is the number of copies of the sign bit
10363 minus 1. In both case, this function returns the number of "spare"
10364 bits. For example, if two quantities for which this function returns
10365 at least 1 are added, the addition is known not to overflow.
10366
10367 This function will always return 0 unless called during combine, which
10368 implies that it must be called from a define_split. */
10369
10370 unsigned int
10371 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10372 {
10373 if (nonzero_sign_valid == 0)
10374 return 0;
10375
10376 scalar_int_mode int_mode;
10377 return (unsignedp
10378 ? (is_a <scalar_int_mode> (mode, &int_mode)
10379 && HWI_COMPUTABLE_MODE_P (int_mode)
10380 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10381 - floor_log2 (nonzero_bits (x, int_mode)))
10382 : 0)
10383 : num_sign_bit_copies (x, mode) - 1);
10384 }
10385
10386 /* This function is called from `simplify_shift_const' to merge two
10387 outer operations. Specifically, we have already found that we need
10388 to perform operation *POP0 with constant *PCONST0 at the outermost
10389 position. We would now like to also perform OP1 with constant CONST1
10390 (with *POP0 being done last).
10391
10392 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10393 the resulting operation. *PCOMP_P is set to 1 if we would need to
10394 complement the innermost operand, otherwise it is unchanged.
10395
10396 MODE is the mode in which the operation will be done. No bits outside
10397 the width of this mode matter. It is assumed that the width of this mode
10398 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10399
10400 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10401 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10402 result is simply *PCONST0.
10403
10404 If the resulting operation cannot be expressed as one operation, we
10405 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10406
10407 static int
10408 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10409 {
10410 enum rtx_code op0 = *pop0;
10411 HOST_WIDE_INT const0 = *pconst0;
10412
10413 const0 &= GET_MODE_MASK (mode);
10414 const1 &= GET_MODE_MASK (mode);
10415
10416 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10417 if (op0 == AND)
10418 const1 &= const0;
10419
10420 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10421 if OP0 is SET. */
10422
10423 if (op1 == UNKNOWN || op0 == SET)
10424 return 1;
10425
10426 else if (op0 == UNKNOWN)
10427 op0 = op1, const0 = const1;
10428
10429 else if (op0 == op1)
10430 {
10431 switch (op0)
10432 {
10433 case AND:
10434 const0 &= const1;
10435 break;
10436 case IOR:
10437 const0 |= const1;
10438 break;
10439 case XOR:
10440 const0 ^= const1;
10441 break;
10442 case PLUS:
10443 const0 += const1;
10444 break;
10445 case NEG:
10446 op0 = UNKNOWN;
10447 break;
10448 default:
10449 break;
10450 }
10451 }
10452
10453 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10454 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10455 return 0;
10456
10457 /* If the two constants aren't the same, we can't do anything. The
10458 remaining six cases can all be done. */
10459 else if (const0 != const1)
10460 return 0;
10461
10462 else
10463 switch (op0)
10464 {
10465 case IOR:
10466 if (op1 == AND)
10467 /* (a & b) | b == b */
10468 op0 = SET;
10469 else /* op1 == XOR */
10470 /* (a ^ b) | b == a | b */
10471 {;}
10472 break;
10473
10474 case XOR:
10475 if (op1 == AND)
10476 /* (a & b) ^ b == (~a) & b */
10477 op0 = AND, *pcomp_p = 1;
10478 else /* op1 == IOR */
10479 /* (a | b) ^ b == a & ~b */
10480 op0 = AND, const0 = ~const0;
10481 break;
10482
10483 case AND:
10484 if (op1 == IOR)
10485 /* (a | b) & b == b */
10486 op0 = SET;
10487 else /* op1 == XOR */
10488 /* (a ^ b) & b) == (~a) & b */
10489 *pcomp_p = 1;
10490 break;
10491 default:
10492 break;
10493 }
10494
10495 /* Check for NO-OP cases. */
10496 const0 &= GET_MODE_MASK (mode);
10497 if (const0 == 0
10498 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10499 op0 = UNKNOWN;
10500 else if (const0 == 0 && op0 == AND)
10501 op0 = SET;
10502 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10503 && op0 == AND)
10504 op0 = UNKNOWN;
10505
10506 *pop0 = op0;
10507
10508 /* ??? Slightly redundant with the above mask, but not entirely.
10509 Moving this above means we'd have to sign-extend the mode mask
10510 for the final test. */
10511 if (op0 != UNKNOWN && op0 != NEG)
10512 *pconst0 = trunc_int_for_mode (const0, mode);
10513
10514 return 1;
10515 }
10516 \f
10517 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10518 the shift in. The original shift operation CODE is performed on OP in
10519 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10520 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10521 result of the shift is subject to operation OUTER_CODE with operand
10522 OUTER_CONST. */
10523
10524 static scalar_int_mode
10525 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10526 scalar_int_mode orig_mode, scalar_int_mode mode,
10527 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10528 {
10529 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10530
10531 /* In general we can't perform in wider mode for right shift and rotate. */
10532 switch (code)
10533 {
10534 case ASHIFTRT:
10535 /* We can still widen if the bits brought in from the left are identical
10536 to the sign bit of ORIG_MODE. */
10537 if (num_sign_bit_copies (op, mode)
10538 > (unsigned) (GET_MODE_PRECISION (mode)
10539 - GET_MODE_PRECISION (orig_mode)))
10540 return mode;
10541 return orig_mode;
10542
10543 case LSHIFTRT:
10544 /* Similarly here but with zero bits. */
10545 if (HWI_COMPUTABLE_MODE_P (mode)
10546 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10547 return mode;
10548
10549 /* We can also widen if the bits brought in will be masked off. This
10550 operation is performed in ORIG_MODE. */
10551 if (outer_code == AND)
10552 {
10553 int care_bits = low_bitmask_len (orig_mode, outer_const);
10554
10555 if (care_bits >= 0
10556 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10557 return mode;
10558 }
10559 /* fall through */
10560
10561 case ROTATE:
10562 return orig_mode;
10563
10564 case ROTATERT:
10565 gcc_unreachable ();
10566
10567 default:
10568 return mode;
10569 }
10570 }
10571
10572 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10573 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10574 if we cannot simplify it. Otherwise, return a simplified value.
10575
10576 The shift is normally computed in the widest mode we find in VAROP, as
10577 long as it isn't a different number of words than RESULT_MODE. Exceptions
10578 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10579
10580 static rtx
10581 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10582 rtx varop, int orig_count)
10583 {
10584 enum rtx_code orig_code = code;
10585 rtx orig_varop = varop;
10586 int count, log2;
10587 machine_mode mode = result_mode;
10588 machine_mode shift_mode;
10589 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10590 /* We form (outer_op (code varop count) (outer_const)). */
10591 enum rtx_code outer_op = UNKNOWN;
10592 HOST_WIDE_INT outer_const = 0;
10593 int complement_p = 0;
10594 rtx new_rtx, x;
10595
10596 /* Make sure and truncate the "natural" shift on the way in. We don't
10597 want to do this inside the loop as it makes it more difficult to
10598 combine shifts. */
10599 if (SHIFT_COUNT_TRUNCATED)
10600 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10601
10602 /* If we were given an invalid count, don't do anything except exactly
10603 what was requested. */
10604
10605 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10606 return NULL_RTX;
10607
10608 count = orig_count;
10609
10610 /* Unless one of the branches of the `if' in this loop does a `continue',
10611 we will `break' the loop after the `if'. */
10612
10613 while (count != 0)
10614 {
10615 /* If we have an operand of (clobber (const_int 0)), fail. */
10616 if (GET_CODE (varop) == CLOBBER)
10617 return NULL_RTX;
10618
10619 /* Convert ROTATERT to ROTATE. */
10620 if (code == ROTATERT)
10621 {
10622 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10623 code = ROTATE;
10624 count = bitsize - count;
10625 }
10626
10627 shift_mode = result_mode;
10628 if (shift_mode != mode)
10629 {
10630 /* We only change the modes of scalar shifts. */
10631 int_mode = as_a <scalar_int_mode> (mode);
10632 int_result_mode = as_a <scalar_int_mode> (result_mode);
10633 shift_mode = try_widen_shift_mode (code, varop, count,
10634 int_result_mode, int_mode,
10635 outer_op, outer_const);
10636 }
10637
10638 scalar_int_mode shift_unit_mode
10639 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10640
10641 /* Handle cases where the count is greater than the size of the mode
10642 minus 1. For ASHIFT, use the size minus one as the count (this can
10643 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10644 take the count modulo the size. For other shifts, the result is
10645 zero.
10646
10647 Since these shifts are being produced by the compiler by combining
10648 multiple operations, each of which are defined, we know what the
10649 result is supposed to be. */
10650
10651 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10652 {
10653 if (code == ASHIFTRT)
10654 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10655 else if (code == ROTATE || code == ROTATERT)
10656 count %= GET_MODE_PRECISION (shift_unit_mode);
10657 else
10658 {
10659 /* We can't simply return zero because there may be an
10660 outer op. */
10661 varop = const0_rtx;
10662 count = 0;
10663 break;
10664 }
10665 }
10666
10667 /* If we discovered we had to complement VAROP, leave. Making a NOT
10668 here would cause an infinite loop. */
10669 if (complement_p)
10670 break;
10671
10672 if (shift_mode == shift_unit_mode)
10673 {
10674 /* An arithmetic right shift of a quantity known to be -1 or 0
10675 is a no-op. */
10676 if (code == ASHIFTRT
10677 && (num_sign_bit_copies (varop, shift_unit_mode)
10678 == GET_MODE_PRECISION (shift_unit_mode)))
10679 {
10680 count = 0;
10681 break;
10682 }
10683
10684 /* If we are doing an arithmetic right shift and discarding all but
10685 the sign bit copies, this is equivalent to doing a shift by the
10686 bitsize minus one. Convert it into that shift because it will
10687 often allow other simplifications. */
10688
10689 if (code == ASHIFTRT
10690 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10691 >= GET_MODE_PRECISION (shift_unit_mode)))
10692 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10693
10694 /* We simplify the tests below and elsewhere by converting
10695 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10696 `make_compound_operation' will convert it to an ASHIFTRT for
10697 those machines (such as VAX) that don't have an LSHIFTRT. */
10698 if (code == ASHIFTRT
10699 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10700 && val_signbit_known_clear_p (shift_unit_mode,
10701 nonzero_bits (varop,
10702 shift_unit_mode)))
10703 code = LSHIFTRT;
10704
10705 if (((code == LSHIFTRT
10706 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10707 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10708 || (code == ASHIFT
10709 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10710 && !((nonzero_bits (varop, shift_unit_mode) << count)
10711 & GET_MODE_MASK (shift_unit_mode))))
10712 && !side_effects_p (varop))
10713 varop = const0_rtx;
10714 }
10715
10716 switch (GET_CODE (varop))
10717 {
10718 case SIGN_EXTEND:
10719 case ZERO_EXTEND:
10720 case SIGN_EXTRACT:
10721 case ZERO_EXTRACT:
10722 new_rtx = expand_compound_operation (varop);
10723 if (new_rtx != varop)
10724 {
10725 varop = new_rtx;
10726 continue;
10727 }
10728 break;
10729
10730 case MEM:
10731 /* The following rules apply only to scalars. */
10732 if (shift_mode != shift_unit_mode)
10733 break;
10734 int_mode = as_a <scalar_int_mode> (mode);
10735
10736 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10737 minus the width of a smaller mode, we can do this with a
10738 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10739 if ((code == ASHIFTRT || code == LSHIFTRT)
10740 && ! mode_dependent_address_p (XEXP (varop, 0),
10741 MEM_ADDR_SPACE (varop))
10742 && ! MEM_VOLATILE_P (varop)
10743 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10744 .exists (&tmode)))
10745 {
10746 new_rtx = adjust_address_nv (varop, tmode,
10747 BYTES_BIG_ENDIAN ? 0
10748 : count / BITS_PER_UNIT);
10749
10750 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10751 : ZERO_EXTEND, int_mode, new_rtx);
10752 count = 0;
10753 continue;
10754 }
10755 break;
10756
10757 case SUBREG:
10758 /* The following rules apply only to scalars. */
10759 if (shift_mode != shift_unit_mode)
10760 break;
10761 int_mode = as_a <scalar_int_mode> (mode);
10762 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10763
10764 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10765 the same number of words as what we've seen so far. Then store
10766 the widest mode in MODE. */
10767 if (subreg_lowpart_p (varop)
10768 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10769 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10770 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10771 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10772 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10773 {
10774 varop = SUBREG_REG (varop);
10775 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10776 mode = inner_mode;
10777 continue;
10778 }
10779 break;
10780
10781 case MULT:
10782 /* Some machines use MULT instead of ASHIFT because MULT
10783 is cheaper. But it is still better on those machines to
10784 merge two shifts into one. */
10785 if (CONST_INT_P (XEXP (varop, 1))
10786 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10787 {
10788 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10789 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10790 XEXP (varop, 0), log2_rtx);
10791 continue;
10792 }
10793 break;
10794
10795 case UDIV:
10796 /* Similar, for when divides are cheaper. */
10797 if (CONST_INT_P (XEXP (varop, 1))
10798 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10799 {
10800 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10801 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10802 XEXP (varop, 0), log2_rtx);
10803 continue;
10804 }
10805 break;
10806
10807 case ASHIFTRT:
10808 /* If we are extracting just the sign bit of an arithmetic
10809 right shift, that shift is not needed. However, the sign
10810 bit of a wider mode may be different from what would be
10811 interpreted as the sign bit in a narrower mode, so, if
10812 the result is narrower, don't discard the shift. */
10813 if (code == LSHIFTRT
10814 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10815 && (GET_MODE_UNIT_BITSIZE (result_mode)
10816 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10817 {
10818 varop = XEXP (varop, 0);
10819 continue;
10820 }
10821
10822 /* fall through */
10823
10824 case LSHIFTRT:
10825 case ASHIFT:
10826 case ROTATE:
10827 /* The following rules apply only to scalars. */
10828 if (shift_mode != shift_unit_mode)
10829 break;
10830 int_mode = as_a <scalar_int_mode> (mode);
10831 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10832 int_result_mode = as_a <scalar_int_mode> (result_mode);
10833
10834 /* Here we have two nested shifts. The result is usually the
10835 AND of a new shift with a mask. We compute the result below. */
10836 if (CONST_INT_P (XEXP (varop, 1))
10837 && INTVAL (XEXP (varop, 1)) >= 0
10838 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10839 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10840 && HWI_COMPUTABLE_MODE_P (int_mode))
10841 {
10842 enum rtx_code first_code = GET_CODE (varop);
10843 unsigned int first_count = INTVAL (XEXP (varop, 1));
10844 unsigned HOST_WIDE_INT mask;
10845 rtx mask_rtx;
10846
10847 /* We have one common special case. We can't do any merging if
10848 the inner code is an ASHIFTRT of a smaller mode. However, if
10849 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10850 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10851 we can convert it to
10852 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10853 This simplifies certain SIGN_EXTEND operations. */
10854 if (code == ASHIFT && first_code == ASHIFTRT
10855 && count == (GET_MODE_PRECISION (int_result_mode)
10856 - GET_MODE_PRECISION (int_varop_mode)))
10857 {
10858 /* C3 has the low-order C1 bits zero. */
10859
10860 mask = GET_MODE_MASK (int_mode)
10861 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10862
10863 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10864 XEXP (varop, 0), mask);
10865 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10866 int_result_mode, varop, count);
10867 count = first_count;
10868 code = ASHIFTRT;
10869 continue;
10870 }
10871
10872 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10873 than C1 high-order bits equal to the sign bit, we can convert
10874 this to either an ASHIFT or an ASHIFTRT depending on the
10875 two counts.
10876
10877 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10878
10879 if (code == ASHIFTRT && first_code == ASHIFT
10880 && int_varop_mode == shift_unit_mode
10881 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10882 > first_count))
10883 {
10884 varop = XEXP (varop, 0);
10885 count -= first_count;
10886 if (count < 0)
10887 {
10888 count = -count;
10889 code = ASHIFT;
10890 }
10891
10892 continue;
10893 }
10894
10895 /* There are some cases we can't do. If CODE is ASHIFTRT,
10896 we can only do this if FIRST_CODE is also ASHIFTRT.
10897
10898 We can't do the case when CODE is ROTATE and FIRST_CODE is
10899 ASHIFTRT.
10900
10901 If the mode of this shift is not the mode of the outer shift,
10902 we can't do this if either shift is a right shift or ROTATE.
10903
10904 Finally, we can't do any of these if the mode is too wide
10905 unless the codes are the same.
10906
10907 Handle the case where the shift codes are the same
10908 first. */
10909
10910 if (code == first_code)
10911 {
10912 if (int_varop_mode != int_result_mode
10913 && (code == ASHIFTRT || code == LSHIFTRT
10914 || code == ROTATE))
10915 break;
10916
10917 count += first_count;
10918 varop = XEXP (varop, 0);
10919 continue;
10920 }
10921
10922 if (code == ASHIFTRT
10923 || (code == ROTATE && first_code == ASHIFTRT)
10924 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10925 || (int_varop_mode != int_result_mode
10926 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10927 || first_code == ROTATE
10928 || code == ROTATE)))
10929 break;
10930
10931 /* To compute the mask to apply after the shift, shift the
10932 nonzero bits of the inner shift the same way the
10933 outer shift will. */
10934
10935 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10936 int_result_mode);
10937 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10938 mask_rtx
10939 = simplify_const_binary_operation (code, int_result_mode,
10940 mask_rtx, count_rtx);
10941
10942 /* Give up if we can't compute an outer operation to use. */
10943 if (mask_rtx == 0
10944 || !CONST_INT_P (mask_rtx)
10945 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10946 INTVAL (mask_rtx),
10947 int_result_mode, &complement_p))
10948 break;
10949
10950 /* If the shifts are in the same direction, we add the
10951 counts. Otherwise, we subtract them. */
10952 if ((code == ASHIFTRT || code == LSHIFTRT)
10953 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10954 count += first_count;
10955 else
10956 count -= first_count;
10957
10958 /* If COUNT is positive, the new shift is usually CODE,
10959 except for the two exceptions below, in which case it is
10960 FIRST_CODE. If the count is negative, FIRST_CODE should
10961 always be used */
10962 if (count > 0
10963 && ((first_code == ROTATE && code == ASHIFT)
10964 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10965 code = first_code;
10966 else if (count < 0)
10967 code = first_code, count = -count;
10968
10969 varop = XEXP (varop, 0);
10970 continue;
10971 }
10972
10973 /* If we have (A << B << C) for any shift, we can convert this to
10974 (A << C << B). This wins if A is a constant. Only try this if
10975 B is not a constant. */
10976
10977 else if (GET_CODE (varop) == code
10978 && CONST_INT_P (XEXP (varop, 0))
10979 && !CONST_INT_P (XEXP (varop, 1)))
10980 {
10981 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10982 sure the result will be masked. See PR70222. */
10983 if (code == LSHIFTRT
10984 && int_mode != int_result_mode
10985 && !merge_outer_ops (&outer_op, &outer_const, AND,
10986 GET_MODE_MASK (int_result_mode)
10987 >> orig_count, int_result_mode,
10988 &complement_p))
10989 break;
10990 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10991 up outer sign extension (often left and right shift) is
10992 hardly more efficient than the original. See PR70429.
10993 Similarly punt for rotates with different modes.
10994 See PR97386. */
10995 if ((code == ASHIFTRT || code == ROTATE)
10996 && int_mode != int_result_mode)
10997 break;
10998
10999 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
11000 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
11001 XEXP (varop, 0),
11002 count_rtx);
11003 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
11004 count = 0;
11005 continue;
11006 }
11007 break;
11008
11009 case NOT:
11010 /* The following rules apply only to scalars. */
11011 if (shift_mode != shift_unit_mode)
11012 break;
11013
11014 /* Make this fit the case below. */
11015 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
11016 continue;
11017
11018 case IOR:
11019 case AND:
11020 case XOR:
11021 /* The following rules apply only to scalars. */
11022 if (shift_mode != shift_unit_mode)
11023 break;
11024 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11025 int_result_mode = as_a <scalar_int_mode> (result_mode);
11026
11027 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
11028 with C the size of VAROP - 1 and the shift is logical if
11029 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11030 we have an (le X 0) operation. If we have an arithmetic shift
11031 and STORE_FLAG_VALUE is 1 or we have a logical shift with
11032 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
11033
11034 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
11035 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
11036 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11037 && (code == LSHIFTRT || code == ASHIFTRT)
11038 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11039 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11040 {
11041 count = 0;
11042 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
11043 const0_rtx);
11044
11045 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11046 varop = gen_rtx_NEG (int_varop_mode, varop);
11047
11048 continue;
11049 }
11050
11051 /* If we have (shift (logical)), move the logical to the outside
11052 to allow it to possibly combine with another logical and the
11053 shift to combine with another shift. This also canonicalizes to
11054 what a ZERO_EXTRACT looks like. Also, some machines have
11055 (and (shift)) insns. */
11056
11057 if (CONST_INT_P (XEXP (varop, 1))
11058 /* We can't do this if we have (ashiftrt (xor)) and the
11059 constant has its sign bit set in shift_unit_mode with
11060 shift_unit_mode wider than result_mode. */
11061 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11062 && int_result_mode != shift_unit_mode
11063 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11064 shift_unit_mode) < 0)
11065 && (new_rtx = simplify_const_binary_operation
11066 (code, int_result_mode,
11067 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11068 gen_int_shift_amount (int_result_mode, count))) != 0
11069 && CONST_INT_P (new_rtx)
11070 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
11071 INTVAL (new_rtx), int_result_mode,
11072 &complement_p))
11073 {
11074 varop = XEXP (varop, 0);
11075 continue;
11076 }
11077
11078 /* If we can't do that, try to simplify the shift in each arm of the
11079 logical expression, make a new logical expression, and apply
11080 the inverse distributive law. This also can't be done for
11081 (ashiftrt (xor)) where we've widened the shift and the constant
11082 changes the sign bit. */
11083 if (CONST_INT_P (XEXP (varop, 1))
11084 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11085 && int_result_mode != shift_unit_mode
11086 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11087 shift_unit_mode) < 0))
11088 {
11089 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11090 XEXP (varop, 0), count);
11091 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11092 XEXP (varop, 1), count);
11093
11094 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11095 lhs, rhs);
11096 varop = apply_distributive_law (varop);
11097
11098 count = 0;
11099 continue;
11100 }
11101 break;
11102
11103 case EQ:
11104 /* The following rules apply only to scalars. */
11105 if (shift_mode != shift_unit_mode)
11106 break;
11107 int_result_mode = as_a <scalar_int_mode> (result_mode);
11108
11109 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11110 says that the sign bit can be tested, FOO has mode MODE, C is
11111 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11112 that may be nonzero. */
11113 if (code == LSHIFTRT
11114 && XEXP (varop, 1) == const0_rtx
11115 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11116 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11117 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11118 && STORE_FLAG_VALUE == -1
11119 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11120 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11121 int_result_mode, &complement_p))
11122 {
11123 varop = XEXP (varop, 0);
11124 count = 0;
11125 continue;
11126 }
11127 break;
11128
11129 case NEG:
11130 /* The following rules apply only to scalars. */
11131 if (shift_mode != shift_unit_mode)
11132 break;
11133 int_result_mode = as_a <scalar_int_mode> (result_mode);
11134
11135 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11136 than the number of bits in the mode is equivalent to A. */
11137 if (code == LSHIFTRT
11138 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11139 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11140 {
11141 varop = XEXP (varop, 0);
11142 count = 0;
11143 continue;
11144 }
11145
11146 /* NEG commutes with ASHIFT since it is multiplication. Move the
11147 NEG outside to allow shifts to combine. */
11148 if (code == ASHIFT
11149 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11150 int_result_mode, &complement_p))
11151 {
11152 varop = XEXP (varop, 0);
11153 continue;
11154 }
11155 break;
11156
11157 case PLUS:
11158 /* The following rules apply only to scalars. */
11159 if (shift_mode != shift_unit_mode)
11160 break;
11161 int_result_mode = as_a <scalar_int_mode> (result_mode);
11162
11163 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11164 is one less than the number of bits in the mode is
11165 equivalent to (xor A 1). */
11166 if (code == LSHIFTRT
11167 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11168 && XEXP (varop, 1) == constm1_rtx
11169 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11170 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11171 int_result_mode, &complement_p))
11172 {
11173 count = 0;
11174 varop = XEXP (varop, 0);
11175 continue;
11176 }
11177
11178 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11179 that might be nonzero in BAR are those being shifted out and those
11180 bits are known zero in FOO, we can replace the PLUS with FOO.
11181 Similarly in the other operand order. This code occurs when
11182 we are computing the size of a variable-size array. */
11183
11184 if ((code == ASHIFTRT || code == LSHIFTRT)
11185 && count < HOST_BITS_PER_WIDE_INT
11186 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11187 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11188 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11189 {
11190 varop = XEXP (varop, 0);
11191 continue;
11192 }
11193 else if ((code == ASHIFTRT || code == LSHIFTRT)
11194 && count < HOST_BITS_PER_WIDE_INT
11195 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11196 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11197 >> count) == 0
11198 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11199 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11200 {
11201 varop = XEXP (varop, 1);
11202 continue;
11203 }
11204
11205 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11206 if (code == ASHIFT
11207 && CONST_INT_P (XEXP (varop, 1))
11208 && (new_rtx = simplify_const_binary_operation
11209 (ASHIFT, int_result_mode,
11210 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11211 gen_int_shift_amount (int_result_mode, count))) != 0
11212 && CONST_INT_P (new_rtx)
11213 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11214 INTVAL (new_rtx), int_result_mode,
11215 &complement_p))
11216 {
11217 varop = XEXP (varop, 0);
11218 continue;
11219 }
11220
11221 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11222 signbit', and attempt to change the PLUS to an XOR and move it to
11223 the outer operation as is done above in the AND/IOR/XOR case
11224 leg for shift(logical). See details in logical handling above
11225 for reasoning in doing so. */
11226 if (code == LSHIFTRT
11227 && CONST_INT_P (XEXP (varop, 1))
11228 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11229 && (new_rtx = simplify_const_binary_operation
11230 (code, int_result_mode,
11231 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11232 gen_int_shift_amount (int_result_mode, count))) != 0
11233 && CONST_INT_P (new_rtx)
11234 && merge_outer_ops (&outer_op, &outer_const, XOR,
11235 INTVAL (new_rtx), int_result_mode,
11236 &complement_p))
11237 {
11238 varop = XEXP (varop, 0);
11239 continue;
11240 }
11241
11242 break;
11243
11244 case MINUS:
11245 /* The following rules apply only to scalars. */
11246 if (shift_mode != shift_unit_mode)
11247 break;
11248 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11249
11250 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11251 with C the size of VAROP - 1 and the shift is logical if
11252 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11253 we have a (gt X 0) operation. If the shift is arithmetic with
11254 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11255 we have a (neg (gt X 0)) operation. */
11256
11257 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11258 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11259 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11260 && (code == LSHIFTRT || code == ASHIFTRT)
11261 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11262 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11263 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11264 {
11265 count = 0;
11266 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11267 const0_rtx);
11268
11269 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11270 varop = gen_rtx_NEG (int_varop_mode, varop);
11271
11272 continue;
11273 }
11274 break;
11275
11276 case TRUNCATE:
11277 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11278 if the truncate does not affect the value. */
11279 if (code == LSHIFTRT
11280 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11281 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11282 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11283 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11284 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11285 {
11286 rtx varop_inner = XEXP (varop, 0);
11287 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11288 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11289 new_count);
11290 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11291 XEXP (varop_inner, 0),
11292 new_count_rtx);
11293 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11294 count = 0;
11295 continue;
11296 }
11297 break;
11298
11299 default:
11300 break;
11301 }
11302
11303 break;
11304 }
11305
11306 shift_mode = result_mode;
11307 if (shift_mode != mode)
11308 {
11309 /* We only change the modes of scalar shifts. */
11310 int_mode = as_a <scalar_int_mode> (mode);
11311 int_result_mode = as_a <scalar_int_mode> (result_mode);
11312 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11313 int_mode, outer_op, outer_const);
11314 }
11315
11316 /* We have now finished analyzing the shift. The result should be
11317 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11318 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11319 to the result of the shift. OUTER_CONST is the relevant constant,
11320 but we must turn off all bits turned off in the shift. */
11321
11322 if (outer_op == UNKNOWN
11323 && orig_code == code && orig_count == count
11324 && varop == orig_varop
11325 && shift_mode == GET_MODE (varop))
11326 return NULL_RTX;
11327
11328 /* Make a SUBREG if necessary. If we can't make it, fail. */
11329 varop = gen_lowpart (shift_mode, varop);
11330 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11331 return NULL_RTX;
11332
11333 /* If we have an outer operation and we just made a shift, it is
11334 possible that we could have simplified the shift were it not
11335 for the outer operation. So try to do the simplification
11336 recursively. */
11337
11338 if (outer_op != UNKNOWN)
11339 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11340 else
11341 x = NULL_RTX;
11342
11343 if (x == NULL_RTX)
11344 x = simplify_gen_binary (code, shift_mode, varop,
11345 gen_int_shift_amount (shift_mode, count));
11346
11347 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11348 turn off all the bits that the shift would have turned off. */
11349 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11350 /* We only change the modes of scalar shifts. */
11351 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11352 x, GET_MODE_MASK (result_mode) >> orig_count);
11353
11354 /* Do the remainder of the processing in RESULT_MODE. */
11355 x = gen_lowpart_or_truncate (result_mode, x);
11356
11357 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11358 operation. */
11359 if (complement_p)
11360 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11361
11362 if (outer_op != UNKNOWN)
11363 {
11364 int_result_mode = as_a <scalar_int_mode> (result_mode);
11365
11366 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11367 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11368 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11369
11370 if (outer_op == AND)
11371 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11372 else if (outer_op == SET)
11373 {
11374 /* This means that we have determined that the result is
11375 equivalent to a constant. This should be rare. */
11376 if (!side_effects_p (x))
11377 x = GEN_INT (outer_const);
11378 }
11379 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11380 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11381 else
11382 x = simplify_gen_binary (outer_op, int_result_mode, x,
11383 GEN_INT (outer_const));
11384 }
11385
11386 return x;
11387 }
11388
11389 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11390 The result of the shift is RESULT_MODE. If we cannot simplify it,
11391 return X or, if it is NULL, synthesize the expression with
11392 simplify_gen_binary. Otherwise, return a simplified value.
11393
11394 The shift is normally computed in the widest mode we find in VAROP, as
11395 long as it isn't a different number of words than RESULT_MODE. Exceptions
11396 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11397
11398 static rtx
11399 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11400 rtx varop, int count)
11401 {
11402 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11403 if (tem)
11404 return tem;
11405
11406 if (!x)
11407 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11408 gen_int_shift_amount (GET_MODE (varop), count));
11409 if (GET_MODE (x) != result_mode)
11410 x = gen_lowpart (result_mode, x);
11411 return x;
11412 }
11413
11414 \f
11415 /* A subroutine of recog_for_combine. See there for arguments and
11416 return value. */
11417
11418 static int
11419 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11420 {
11421 rtx pat = *pnewpat;
11422 rtx pat_without_clobbers;
11423 int insn_code_number;
11424 int num_clobbers_to_add = 0;
11425 int i;
11426 rtx notes = NULL_RTX;
11427 rtx old_notes, old_pat;
11428 int old_icode;
11429
11430 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11431 we use to indicate that something didn't match. If we find such a
11432 thing, force rejection. */
11433 if (GET_CODE (pat) == PARALLEL)
11434 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11435 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11436 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11437 return -1;
11438
11439 old_pat = PATTERN (insn);
11440 old_notes = REG_NOTES (insn);
11441 PATTERN (insn) = pat;
11442 REG_NOTES (insn) = NULL_RTX;
11443
11444 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11445 if (dump_file && (dump_flags & TDF_DETAILS))
11446 {
11447 if (insn_code_number < 0)
11448 fputs ("Failed to match this instruction:\n", dump_file);
11449 else
11450 fputs ("Successfully matched this instruction:\n", dump_file);
11451 print_rtl_single (dump_file, pat);
11452 }
11453
11454 /* If it isn't, there is the possibility that we previously had an insn
11455 that clobbered some register as a side effect, but the combined
11456 insn doesn't need to do that. So try once more without the clobbers
11457 unless this represents an ASM insn. */
11458
11459 if (insn_code_number < 0 && ! check_asm_operands (pat)
11460 && GET_CODE (pat) == PARALLEL)
11461 {
11462 int pos;
11463
11464 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11465 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11466 {
11467 if (i != pos)
11468 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11469 pos++;
11470 }
11471
11472 SUBST_INT (XVECLEN (pat, 0), pos);
11473
11474 if (pos == 1)
11475 pat = XVECEXP (pat, 0, 0);
11476
11477 PATTERN (insn) = pat;
11478 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11479 if (dump_file && (dump_flags & TDF_DETAILS))
11480 {
11481 if (insn_code_number < 0)
11482 fputs ("Failed to match this instruction:\n", dump_file);
11483 else
11484 fputs ("Successfully matched this instruction:\n", dump_file);
11485 print_rtl_single (dump_file, pat);
11486 }
11487 }
11488
11489 pat_without_clobbers = pat;
11490
11491 PATTERN (insn) = old_pat;
11492 REG_NOTES (insn) = old_notes;
11493
11494 /* Recognize all noop sets, these will be killed by followup pass. */
11495 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11496 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11497
11498 /* If we had any clobbers to add, make a new pattern than contains
11499 them. Then check to make sure that all of them are dead. */
11500 if (num_clobbers_to_add)
11501 {
11502 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11503 rtvec_alloc (GET_CODE (pat) == PARALLEL
11504 ? (XVECLEN (pat, 0)
11505 + num_clobbers_to_add)
11506 : num_clobbers_to_add + 1));
11507
11508 if (GET_CODE (pat) == PARALLEL)
11509 for (i = 0; i < XVECLEN (pat, 0); i++)
11510 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11511 else
11512 XVECEXP (newpat, 0, 0) = pat;
11513
11514 add_clobbers (newpat, insn_code_number);
11515
11516 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11517 i < XVECLEN (newpat, 0); i++)
11518 {
11519 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11520 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11521 return -1;
11522 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11523 {
11524 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11525 notes = alloc_reg_note (REG_UNUSED,
11526 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11527 }
11528 }
11529 pat = newpat;
11530 }
11531
11532 if (insn_code_number >= 0
11533 && insn_code_number != NOOP_MOVE_INSN_CODE)
11534 {
11535 old_pat = PATTERN (insn);
11536 old_notes = REG_NOTES (insn);
11537 old_icode = INSN_CODE (insn);
11538 PATTERN (insn) = pat;
11539 REG_NOTES (insn) = notes;
11540 INSN_CODE (insn) = insn_code_number;
11541
11542 /* Allow targets to reject combined insn. */
11543 if (!targetm.legitimate_combined_insn (insn))
11544 {
11545 if (dump_file && (dump_flags & TDF_DETAILS))
11546 fputs ("Instruction not appropriate for target.",
11547 dump_file);
11548
11549 /* Callers expect recog_for_combine to strip
11550 clobbers from the pattern on failure. */
11551 pat = pat_without_clobbers;
11552 notes = NULL_RTX;
11553
11554 insn_code_number = -1;
11555 }
11556
11557 PATTERN (insn) = old_pat;
11558 REG_NOTES (insn) = old_notes;
11559 INSN_CODE (insn) = old_icode;
11560 }
11561
11562 *pnewpat = pat;
11563 *pnotes = notes;
11564
11565 return insn_code_number;
11566 }
11567
11568 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11569 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11570 Return whether anything was so changed. */
11571
11572 static bool
11573 change_zero_ext (rtx pat)
11574 {
11575 bool changed = false;
11576 rtx *src = &SET_SRC (pat);
11577
11578 subrtx_ptr_iterator::array_type array;
11579 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11580 {
11581 rtx x = **iter;
11582 scalar_int_mode mode, inner_mode;
11583 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11584 continue;
11585 int size;
11586
11587 if (GET_CODE (x) == ZERO_EXTRACT
11588 && CONST_INT_P (XEXP (x, 1))
11589 && CONST_INT_P (XEXP (x, 2))
11590 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11591 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11592 {
11593 size = INTVAL (XEXP (x, 1));
11594
11595 int start = INTVAL (XEXP (x, 2));
11596 if (BITS_BIG_ENDIAN)
11597 start = GET_MODE_PRECISION (inner_mode) - size - start;
11598
11599 if (start != 0)
11600 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11601 gen_int_shift_amount (inner_mode, start));
11602 else
11603 x = XEXP (x, 0);
11604
11605 if (mode != inner_mode)
11606 {
11607 if (REG_P (x) && HARD_REGISTER_P (x)
11608 && !can_change_dest_mode (x, 0, mode))
11609 continue;
11610
11611 x = gen_lowpart_SUBREG (mode, x);
11612 }
11613 }
11614 else if (GET_CODE (x) == ZERO_EXTEND
11615 && GET_CODE (XEXP (x, 0)) == SUBREG
11616 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11617 && !paradoxical_subreg_p (XEXP (x, 0))
11618 && subreg_lowpart_p (XEXP (x, 0)))
11619 {
11620 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11621 size = GET_MODE_PRECISION (inner_mode);
11622 x = SUBREG_REG (XEXP (x, 0));
11623 if (GET_MODE (x) != mode)
11624 {
11625 if (REG_P (x) && HARD_REGISTER_P (x)
11626 && !can_change_dest_mode (x, 0, mode))
11627 continue;
11628
11629 x = gen_lowpart_SUBREG (mode, x);
11630 }
11631 }
11632 else if (GET_CODE (x) == ZERO_EXTEND
11633 && REG_P (XEXP (x, 0))
11634 && HARD_REGISTER_P (XEXP (x, 0))
11635 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11636 {
11637 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11638 size = GET_MODE_PRECISION (inner_mode);
11639 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11640 }
11641 else
11642 continue;
11643
11644 if (!(GET_CODE (x) == LSHIFTRT
11645 && CONST_INT_P (XEXP (x, 1))
11646 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11647 {
11648 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11649 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11650 }
11651
11652 SUBST (**iter, x);
11653 changed = true;
11654 }
11655
11656 if (changed)
11657 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11658 maybe_swap_commutative_operands (**iter);
11659
11660 rtx *dst = &SET_DEST (pat);
11661 scalar_int_mode mode;
11662 if (GET_CODE (*dst) == ZERO_EXTRACT
11663 && REG_P (XEXP (*dst, 0))
11664 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11665 && CONST_INT_P (XEXP (*dst, 1))
11666 && CONST_INT_P (XEXP (*dst, 2)))
11667 {
11668 rtx reg = XEXP (*dst, 0);
11669 int width = INTVAL (XEXP (*dst, 1));
11670 int offset = INTVAL (XEXP (*dst, 2));
11671 int reg_width = GET_MODE_PRECISION (mode);
11672 if (BITS_BIG_ENDIAN)
11673 offset = reg_width - width - offset;
11674
11675 rtx x, y, z, w;
11676 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11677 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11678 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11679 if (offset)
11680 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11681 else
11682 y = SET_SRC (pat);
11683 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11684 w = gen_rtx_IOR (mode, x, z);
11685 SUBST (SET_DEST (pat), reg);
11686 SUBST (SET_SRC (pat), w);
11687
11688 changed = true;
11689 }
11690
11691 return changed;
11692 }
11693
11694 /* Like recog, but we receive the address of a pointer to a new pattern.
11695 We try to match the rtx that the pointer points to.
11696 If that fails, we may try to modify or replace the pattern,
11697 storing the replacement into the same pointer object.
11698
11699 Modifications include deletion or addition of CLOBBERs. If the
11700 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11701 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11702 (and undo if that fails).
11703
11704 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11705 the CLOBBERs are placed.
11706
11707 The value is the final insn code from the pattern ultimately matched,
11708 or -1. */
11709
11710 static int
11711 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11712 {
11713 rtx pat = *pnewpat;
11714 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11715 if (insn_code_number >= 0 || check_asm_operands (pat))
11716 return insn_code_number;
11717
11718 void *marker = get_undo_marker ();
11719 bool changed = false;
11720
11721 if (GET_CODE (pat) == SET)
11722 changed = change_zero_ext (pat);
11723 else if (GET_CODE (pat) == PARALLEL)
11724 {
11725 int i;
11726 for (i = 0; i < XVECLEN (pat, 0); i++)
11727 {
11728 rtx set = XVECEXP (pat, 0, i);
11729 if (GET_CODE (set) == SET)
11730 changed |= change_zero_ext (set);
11731 }
11732 }
11733
11734 if (changed)
11735 {
11736 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11737
11738 if (insn_code_number < 0)
11739 undo_to_marker (marker);
11740 }
11741
11742 return insn_code_number;
11743 }
11744 \f
11745 /* Like gen_lowpart_general but for use by combine. In combine it
11746 is not possible to create any new pseudoregs. However, it is
11747 safe to create invalid memory addresses, because combine will
11748 try to recognize them and all they will do is make the combine
11749 attempt fail.
11750
11751 If for some reason this cannot do its job, an rtx
11752 (clobber (const_int 0)) is returned.
11753 An insn containing that will not be recognized. */
11754
11755 static rtx
11756 gen_lowpart_for_combine (machine_mode omode, rtx x)
11757 {
11758 machine_mode imode = GET_MODE (x);
11759 rtx result;
11760
11761 if (omode == imode)
11762 return x;
11763
11764 /* We can only support MODE being wider than a word if X is a
11765 constant integer or has a mode the same size. */
11766 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11767 && ! (CONST_SCALAR_INT_P (x)
11768 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11769 goto fail;
11770
11771 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11772 won't know what to do. So we will strip off the SUBREG here and
11773 process normally. */
11774 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11775 {
11776 x = SUBREG_REG (x);
11777
11778 /* For use in case we fall down into the address adjustments
11779 further below, we need to adjust the known mode and size of
11780 x; imode and isize, since we just adjusted x. */
11781 imode = GET_MODE (x);
11782
11783 if (imode == omode)
11784 return x;
11785 }
11786
11787 result = gen_lowpart_common (omode, x);
11788
11789 if (result)
11790 return result;
11791
11792 if (MEM_P (x))
11793 {
11794 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11795 address. */
11796 if (MEM_VOLATILE_P (x)
11797 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11798 goto fail;
11799
11800 /* If we want to refer to something bigger than the original memref,
11801 generate a paradoxical subreg instead. That will force a reload
11802 of the original memref X. */
11803 if (paradoxical_subreg_p (omode, imode))
11804 return gen_rtx_SUBREG (omode, x, 0);
11805
11806 poly_int64 offset = byte_lowpart_offset (omode, imode);
11807 return adjust_address_nv (x, omode, offset);
11808 }
11809
11810 /* If X is a comparison operator, rewrite it in a new mode. This
11811 probably won't match, but may allow further simplifications. */
11812 else if (COMPARISON_P (x)
11813 && SCALAR_INT_MODE_P (imode)
11814 && SCALAR_INT_MODE_P (omode))
11815 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11816
11817 /* If we couldn't simplify X any other way, just enclose it in a
11818 SUBREG. Normally, this SUBREG won't match, but some patterns may
11819 include an explicit SUBREG or we may simplify it further in combine. */
11820 else
11821 {
11822 rtx res;
11823
11824 if (imode == VOIDmode)
11825 {
11826 imode = int_mode_for_mode (omode).require ();
11827 x = gen_lowpart_common (imode, x);
11828 if (x == NULL)
11829 goto fail;
11830 }
11831 res = lowpart_subreg (omode, x, imode);
11832 if (res)
11833 return res;
11834 }
11835
11836 fail:
11837 return gen_rtx_CLOBBER (omode, const0_rtx);
11838 }
11839 \f
11840 /* Try to simplify a comparison between OP0 and a constant OP1,
11841 where CODE is the comparison code that will be tested, into a
11842 (CODE OP0 const0_rtx) form.
11843
11844 The result is a possibly different comparison code to use.
11845 *POP1 may be updated. */
11846
11847 static enum rtx_code
11848 simplify_compare_const (enum rtx_code code, machine_mode mode,
11849 rtx op0, rtx *pop1)
11850 {
11851 scalar_int_mode int_mode;
11852 HOST_WIDE_INT const_op = INTVAL (*pop1);
11853
11854 /* Get the constant we are comparing against and turn off all bits
11855 not on in our mode. */
11856 if (mode != VOIDmode)
11857 const_op = trunc_int_for_mode (const_op, mode);
11858
11859 /* If we are comparing against a constant power of two and the value
11860 being compared can only have that single bit nonzero (e.g., it was
11861 `and'ed with that bit), we can replace this with a comparison
11862 with zero. */
11863 if (const_op
11864 && (code == EQ || code == NE || code == GE || code == GEU
11865 || code == LT || code == LTU)
11866 && is_a <scalar_int_mode> (mode, &int_mode)
11867 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11868 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11869 && (nonzero_bits (op0, int_mode)
11870 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11871 {
11872 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11873 const_op = 0;
11874 }
11875
11876 /* Similarly, if we are comparing a value known to be either -1 or
11877 0 with -1, change it to the opposite comparison against zero. */
11878 if (const_op == -1
11879 && (code == EQ || code == NE || code == GT || code == LE
11880 || code == GEU || code == LTU)
11881 && is_a <scalar_int_mode> (mode, &int_mode)
11882 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11883 {
11884 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11885 const_op = 0;
11886 }
11887
11888 /* Do some canonicalizations based on the comparison code. We prefer
11889 comparisons against zero and then prefer equality comparisons.
11890 If we can reduce the size of a constant, we will do that too. */
11891 switch (code)
11892 {
11893 case LT:
11894 /* < C is equivalent to <= (C - 1) */
11895 if (const_op > 0)
11896 {
11897 const_op -= 1;
11898 code = LE;
11899 /* ... fall through to LE case below. */
11900 gcc_fallthrough ();
11901 }
11902 else
11903 break;
11904
11905 case LE:
11906 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11907 if (const_op < 0)
11908 {
11909 const_op += 1;
11910 code = LT;
11911 }
11912
11913 /* If we are doing a <= 0 comparison on a value known to have
11914 a zero sign bit, we can replace this with == 0. */
11915 else if (const_op == 0
11916 && is_a <scalar_int_mode> (mode, &int_mode)
11917 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11918 && (nonzero_bits (op0, int_mode)
11919 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11920 == 0)
11921 code = EQ;
11922 break;
11923
11924 case GE:
11925 /* >= C is equivalent to > (C - 1). */
11926 if (const_op > 0)
11927 {
11928 const_op -= 1;
11929 code = GT;
11930 /* ... fall through to GT below. */
11931 gcc_fallthrough ();
11932 }
11933 else
11934 break;
11935
11936 case GT:
11937 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11938 if (const_op < 0)
11939 {
11940 const_op += 1;
11941 code = GE;
11942 }
11943
11944 /* If we are doing a > 0 comparison on a value known to have
11945 a zero sign bit, we can replace this with != 0. */
11946 else if (const_op == 0
11947 && is_a <scalar_int_mode> (mode, &int_mode)
11948 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11949 && (nonzero_bits (op0, int_mode)
11950 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11951 == 0)
11952 code = NE;
11953 break;
11954
11955 case LTU:
11956 /* < C is equivalent to <= (C - 1). */
11957 if (const_op > 0)
11958 {
11959 const_op -= 1;
11960 code = LEU;
11961 /* ... fall through ... */
11962 gcc_fallthrough ();
11963 }
11964 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11965 else if (is_a <scalar_int_mode> (mode, &int_mode)
11966 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11967 && ((unsigned HOST_WIDE_INT) const_op
11968 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11969 {
11970 const_op = 0;
11971 code = GE;
11972 break;
11973 }
11974 else
11975 break;
11976
11977 case LEU:
11978 /* unsigned <= 0 is equivalent to == 0 */
11979 if (const_op == 0)
11980 code = EQ;
11981 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11982 else if (is_a <scalar_int_mode> (mode, &int_mode)
11983 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11984 && ((unsigned HOST_WIDE_INT) const_op
11985 == ((HOST_WIDE_INT_1U
11986 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11987 {
11988 const_op = 0;
11989 code = GE;
11990 }
11991 break;
11992
11993 case GEU:
11994 /* >= C is equivalent to > (C - 1). */
11995 if (const_op > 1)
11996 {
11997 const_op -= 1;
11998 code = GTU;
11999 /* ... fall through ... */
12000 gcc_fallthrough ();
12001 }
12002
12003 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
12004 else if (is_a <scalar_int_mode> (mode, &int_mode)
12005 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12006 && ((unsigned HOST_WIDE_INT) const_op
12007 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
12008 {
12009 const_op = 0;
12010 code = LT;
12011 break;
12012 }
12013 else
12014 break;
12015
12016 case GTU:
12017 /* unsigned > 0 is equivalent to != 0 */
12018 if (const_op == 0)
12019 code = NE;
12020 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
12021 else if (is_a <scalar_int_mode> (mode, &int_mode)
12022 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12023 && ((unsigned HOST_WIDE_INT) const_op
12024 == (HOST_WIDE_INT_1U
12025 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
12026 {
12027 const_op = 0;
12028 code = LT;
12029 }
12030 break;
12031
12032 default:
12033 break;
12034 }
12035
12036 *pop1 = GEN_INT (const_op);
12037 return code;
12038 }
12039 \f
12040 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
12041 comparison code that will be tested.
12042
12043 The result is a possibly different comparison code to use. *POP0 and
12044 *POP1 may be updated.
12045
12046 It is possible that we might detect that a comparison is either always
12047 true or always false. However, we do not perform general constant
12048 folding in combine, so this knowledge isn't useful. Such tautologies
12049 should have been detected earlier. Hence we ignore all such cases. */
12050
12051 static enum rtx_code
12052 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12053 {
12054 rtx op0 = *pop0;
12055 rtx op1 = *pop1;
12056 rtx tem, tem1;
12057 int i;
12058 scalar_int_mode mode, inner_mode, tmode;
12059 opt_scalar_int_mode tmode_iter;
12060
12061 /* Try a few ways of applying the same transformation to both operands. */
12062 while (1)
12063 {
12064 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12065 so check specially. */
12066 if (!WORD_REGISTER_OPERATIONS
12067 && code != GTU && code != GEU && code != LTU && code != LEU
12068 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12069 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12070 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12071 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12072 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12073 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
12074 && (is_a <scalar_int_mode>
12075 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
12076 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12077 && CONST_INT_P (XEXP (op0, 1))
12078 && XEXP (op0, 1) == XEXP (op1, 1)
12079 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12080 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12081 && (INTVAL (XEXP (op0, 1))
12082 == (GET_MODE_PRECISION (mode)
12083 - GET_MODE_PRECISION (inner_mode))))
12084 {
12085 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12086 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12087 }
12088
12089 /* If both operands are the same constant shift, see if we can ignore the
12090 shift. We can if the shift is a rotate or if the bits shifted out of
12091 this shift are known to be zero for both inputs and if the type of
12092 comparison is compatible with the shift. */
12093 if (GET_CODE (op0) == GET_CODE (op1)
12094 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12095 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12096 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12097 && (code != GT && code != LT && code != GE && code != LE))
12098 || (GET_CODE (op0) == ASHIFTRT
12099 && (code != GTU && code != LTU
12100 && code != GEU && code != LEU)))
12101 && CONST_INT_P (XEXP (op0, 1))
12102 && INTVAL (XEXP (op0, 1)) >= 0
12103 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12104 && XEXP (op0, 1) == XEXP (op1, 1))
12105 {
12106 machine_mode mode = GET_MODE (op0);
12107 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12108 int shift_count = INTVAL (XEXP (op0, 1));
12109
12110 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12111 mask &= (mask >> shift_count) << shift_count;
12112 else if (GET_CODE (op0) == ASHIFT)
12113 mask = (mask & (mask << shift_count)) >> shift_count;
12114
12115 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12116 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12117 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12118 else
12119 break;
12120 }
12121
12122 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12123 SUBREGs are of the same mode, and, in both cases, the AND would
12124 be redundant if the comparison was done in the narrower mode,
12125 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12126 and the operand's possibly nonzero bits are 0xffffff01; in that case
12127 if we only care about QImode, we don't need the AND). This case
12128 occurs if the output mode of an scc insn is not SImode and
12129 STORE_FLAG_VALUE == 1 (e.g., the 386).
12130
12131 Similarly, check for a case where the AND's are ZERO_EXTEND
12132 operations from some narrower mode even though a SUBREG is not
12133 present. */
12134
12135 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12136 && CONST_INT_P (XEXP (op0, 1))
12137 && CONST_INT_P (XEXP (op1, 1)))
12138 {
12139 rtx inner_op0 = XEXP (op0, 0);
12140 rtx inner_op1 = XEXP (op1, 0);
12141 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12142 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12143 int changed = 0;
12144
12145 if (paradoxical_subreg_p (inner_op0)
12146 && GET_CODE (inner_op1) == SUBREG
12147 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12148 && (GET_MODE (SUBREG_REG (inner_op0))
12149 == GET_MODE (SUBREG_REG (inner_op1)))
12150 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12151 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12152 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12153 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12154 {
12155 op0 = SUBREG_REG (inner_op0);
12156 op1 = SUBREG_REG (inner_op1);
12157
12158 /* The resulting comparison is always unsigned since we masked
12159 off the original sign bit. */
12160 code = unsigned_condition (code);
12161
12162 changed = 1;
12163 }
12164
12165 else if (c0 == c1)
12166 FOR_EACH_MODE_UNTIL (tmode,
12167 as_a <scalar_int_mode> (GET_MODE (op0)))
12168 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12169 {
12170 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12171 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12172 code = unsigned_condition (code);
12173 changed = 1;
12174 break;
12175 }
12176
12177 if (! changed)
12178 break;
12179 }
12180
12181 /* If both operands are NOT, we can strip off the outer operation
12182 and adjust the comparison code for swapped operands; similarly for
12183 NEG, except that this must be an equality comparison. */
12184 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12185 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12186 && (code == EQ || code == NE)))
12187 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12188
12189 else
12190 break;
12191 }
12192
12193 /* If the first operand is a constant, swap the operands and adjust the
12194 comparison code appropriately, but don't do this if the second operand
12195 is already a constant integer. */
12196 if (swap_commutative_operands_p (op0, op1))
12197 {
12198 std::swap (op0, op1);
12199 code = swap_condition (code);
12200 }
12201
12202 /* We now enter a loop during which we will try to simplify the comparison.
12203 For the most part, we only are concerned with comparisons with zero,
12204 but some things may really be comparisons with zero but not start
12205 out looking that way. */
12206
12207 while (CONST_INT_P (op1))
12208 {
12209 machine_mode raw_mode = GET_MODE (op0);
12210 scalar_int_mode int_mode;
12211 int equality_comparison_p;
12212 int sign_bit_comparison_p;
12213 int unsigned_comparison_p;
12214 HOST_WIDE_INT const_op;
12215
12216 /* We only want to handle integral modes. This catches VOIDmode,
12217 CCmode, and the floating-point modes. An exception is that we
12218 can handle VOIDmode if OP0 is a COMPARE or a comparison
12219 operation. */
12220
12221 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12222 && ! (raw_mode == VOIDmode
12223 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12224 break;
12225
12226 /* Try to simplify the compare to constant, possibly changing the
12227 comparison op, and/or changing op1 to zero. */
12228 code = simplify_compare_const (code, raw_mode, op0, &op1);
12229 const_op = INTVAL (op1);
12230
12231 /* Compute some predicates to simplify code below. */
12232
12233 equality_comparison_p = (code == EQ || code == NE);
12234 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12235 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12236 || code == GEU);
12237
12238 /* If this is a sign bit comparison and we can do arithmetic in
12239 MODE, say that we will only be needing the sign bit of OP0. */
12240 if (sign_bit_comparison_p
12241 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12242 && HWI_COMPUTABLE_MODE_P (int_mode))
12243 op0 = force_to_mode (op0, int_mode,
12244 HOST_WIDE_INT_1U
12245 << (GET_MODE_PRECISION (int_mode) - 1),
12246 0);
12247
12248 if (COMPARISON_P (op0))
12249 {
12250 /* We can't do anything if OP0 is a condition code value, rather
12251 than an actual data value. */
12252 if (const_op != 0
12253 || CC0_P (XEXP (op0, 0))
12254 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12255 break;
12256
12257 /* Get the two operands being compared. */
12258 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12259 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12260 else
12261 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12262
12263 /* Check for the cases where we simply want the result of the
12264 earlier test or the opposite of that result. */
12265 if (code == NE || code == EQ
12266 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12267 && (code == LT || code == GE)))
12268 {
12269 enum rtx_code new_code;
12270 if (code == LT || code == NE)
12271 new_code = GET_CODE (op0);
12272 else
12273 new_code = reversed_comparison_code (op0, NULL);
12274
12275 if (new_code != UNKNOWN)
12276 {
12277 code = new_code;
12278 op0 = tem;
12279 op1 = tem1;
12280 continue;
12281 }
12282 }
12283 break;
12284 }
12285
12286 if (raw_mode == VOIDmode)
12287 break;
12288 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12289
12290 /* Now try cases based on the opcode of OP0. If none of the cases
12291 does a "continue", we exit this loop immediately after the
12292 switch. */
12293
12294 unsigned int mode_width = GET_MODE_PRECISION (mode);
12295 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12296 switch (GET_CODE (op0))
12297 {
12298 case ZERO_EXTRACT:
12299 /* If we are extracting a single bit from a variable position in
12300 a constant that has only a single bit set and are comparing it
12301 with zero, we can convert this into an equality comparison
12302 between the position and the location of the single bit. */
12303 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12304 have already reduced the shift count modulo the word size. */
12305 if (!SHIFT_COUNT_TRUNCATED
12306 && CONST_INT_P (XEXP (op0, 0))
12307 && XEXP (op0, 1) == const1_rtx
12308 && equality_comparison_p && const_op == 0
12309 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12310 {
12311 if (BITS_BIG_ENDIAN)
12312 i = BITS_PER_WORD - 1 - i;
12313
12314 op0 = XEXP (op0, 2);
12315 op1 = GEN_INT (i);
12316 const_op = i;
12317
12318 /* Result is nonzero iff shift count is equal to I. */
12319 code = reverse_condition (code);
12320 continue;
12321 }
12322
12323 /* fall through */
12324
12325 case SIGN_EXTRACT:
12326 tem = expand_compound_operation (op0);
12327 if (tem != op0)
12328 {
12329 op0 = tem;
12330 continue;
12331 }
12332 break;
12333
12334 case NOT:
12335 /* If testing for equality, we can take the NOT of the constant. */
12336 if (equality_comparison_p
12337 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12338 {
12339 op0 = XEXP (op0, 0);
12340 op1 = tem;
12341 continue;
12342 }
12343
12344 /* If just looking at the sign bit, reverse the sense of the
12345 comparison. */
12346 if (sign_bit_comparison_p)
12347 {
12348 op0 = XEXP (op0, 0);
12349 code = (code == GE ? LT : GE);
12350 continue;
12351 }
12352 break;
12353
12354 case NEG:
12355 /* If testing for equality, we can take the NEG of the constant. */
12356 if (equality_comparison_p
12357 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12358 {
12359 op0 = XEXP (op0, 0);
12360 op1 = tem;
12361 continue;
12362 }
12363
12364 /* The remaining cases only apply to comparisons with zero. */
12365 if (const_op != 0)
12366 break;
12367
12368 /* When X is ABS or is known positive,
12369 (neg X) is < 0 if and only if X != 0. */
12370
12371 if (sign_bit_comparison_p
12372 && (GET_CODE (XEXP (op0, 0)) == ABS
12373 || (mode_width <= HOST_BITS_PER_WIDE_INT
12374 && (nonzero_bits (XEXP (op0, 0), mode)
12375 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12376 == 0)))
12377 {
12378 op0 = XEXP (op0, 0);
12379 code = (code == LT ? NE : EQ);
12380 continue;
12381 }
12382
12383 /* If we have NEG of something whose two high-order bits are the
12384 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12385 if (num_sign_bit_copies (op0, mode) >= 2)
12386 {
12387 op0 = XEXP (op0, 0);
12388 code = swap_condition (code);
12389 continue;
12390 }
12391 break;
12392
12393 case ROTATE:
12394 /* If we are testing equality and our count is a constant, we
12395 can perform the inverse operation on our RHS. */
12396 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12397 && (tem = simplify_binary_operation (ROTATERT, mode,
12398 op1, XEXP (op0, 1))) != 0)
12399 {
12400 op0 = XEXP (op0, 0);
12401 op1 = tem;
12402 continue;
12403 }
12404
12405 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12406 a particular bit. Convert it to an AND of a constant of that
12407 bit. This will be converted into a ZERO_EXTRACT. */
12408 if (const_op == 0 && sign_bit_comparison_p
12409 && CONST_INT_P (XEXP (op0, 1))
12410 && mode_width <= HOST_BITS_PER_WIDE_INT
12411 && UINTVAL (XEXP (op0, 1)) < mode_width)
12412 {
12413 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12414 (HOST_WIDE_INT_1U
12415 << (mode_width - 1
12416 - INTVAL (XEXP (op0, 1)))));
12417 code = (code == LT ? NE : EQ);
12418 continue;
12419 }
12420
12421 /* Fall through. */
12422
12423 case ABS:
12424 /* ABS is ignorable inside an equality comparison with zero. */
12425 if (const_op == 0 && equality_comparison_p)
12426 {
12427 op0 = XEXP (op0, 0);
12428 continue;
12429 }
12430 break;
12431
12432 case SIGN_EXTEND:
12433 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12434 (compare FOO CONST) if CONST fits in FOO's mode and we
12435 are either testing inequality or have an unsigned
12436 comparison with ZERO_EXTEND or a signed comparison with
12437 SIGN_EXTEND. But don't do it if we don't have a compare
12438 insn of the given mode, since we'd have to revert it
12439 later on, and then we wouldn't know whether to sign- or
12440 zero-extend. */
12441 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12442 && ! unsigned_comparison_p
12443 && HWI_COMPUTABLE_MODE_P (mode)
12444 && trunc_int_for_mode (const_op, mode) == const_op
12445 && have_insn_for (COMPARE, mode))
12446 {
12447 op0 = XEXP (op0, 0);
12448 continue;
12449 }
12450 break;
12451
12452 case SUBREG:
12453 /* Check for the case where we are comparing A - C1 with C2, that is
12454
12455 (subreg:MODE (plus (A) (-C1))) op (C2)
12456
12457 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12458 comparison in the wider mode. One of the following two conditions
12459 must be true in order for this to be valid:
12460
12461 1. The mode extension results in the same bit pattern being added
12462 on both sides and the comparison is equality or unsigned. As
12463 C2 has been truncated to fit in MODE, the pattern can only be
12464 all 0s or all 1s.
12465
12466 2. The mode extension results in the sign bit being copied on
12467 each side.
12468
12469 The difficulty here is that we have predicates for A but not for
12470 (A - C1) so we need to check that C1 is within proper bounds so
12471 as to perturbate A as little as possible. */
12472
12473 if (mode_width <= HOST_BITS_PER_WIDE_INT
12474 && subreg_lowpart_p (op0)
12475 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12476 &inner_mode)
12477 && GET_MODE_PRECISION (inner_mode) > mode_width
12478 && GET_CODE (SUBREG_REG (op0)) == PLUS
12479 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12480 {
12481 rtx a = XEXP (SUBREG_REG (op0), 0);
12482 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12483
12484 if ((c1 > 0
12485 && (unsigned HOST_WIDE_INT) c1
12486 < HOST_WIDE_INT_1U << (mode_width - 1)
12487 && (equality_comparison_p || unsigned_comparison_p)
12488 /* (A - C1) zero-extends if it is positive and sign-extends
12489 if it is negative, C2 both zero- and sign-extends. */
12490 && (((nonzero_bits (a, inner_mode)
12491 & ~GET_MODE_MASK (mode)) == 0
12492 && const_op >= 0)
12493 /* (A - C1) sign-extends if it is positive and 1-extends
12494 if it is negative, C2 both sign- and 1-extends. */
12495 || (num_sign_bit_copies (a, inner_mode)
12496 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12497 - mode_width)
12498 && const_op < 0)))
12499 || ((unsigned HOST_WIDE_INT) c1
12500 < HOST_WIDE_INT_1U << (mode_width - 2)
12501 /* (A - C1) always sign-extends, like C2. */
12502 && num_sign_bit_copies (a, inner_mode)
12503 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12504 - (mode_width - 1))))
12505 {
12506 op0 = SUBREG_REG (op0);
12507 continue;
12508 }
12509 }
12510
12511 /* If the inner mode is narrower and we are extracting the low part,
12512 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12513 if (paradoxical_subreg_p (op0))
12514 ;
12515 else if (subreg_lowpart_p (op0)
12516 && GET_MODE_CLASS (mode) == MODE_INT
12517 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12518 && (code == NE || code == EQ)
12519 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12520 && !paradoxical_subreg_p (op0)
12521 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12522 & ~GET_MODE_MASK (mode)) == 0)
12523 {
12524 /* Remove outer subregs that don't do anything. */
12525 tem = gen_lowpart (inner_mode, op1);
12526
12527 if ((nonzero_bits (tem, inner_mode)
12528 & ~GET_MODE_MASK (mode)) == 0)
12529 {
12530 op0 = SUBREG_REG (op0);
12531 op1 = tem;
12532 continue;
12533 }
12534 break;
12535 }
12536 else
12537 break;
12538
12539 /* FALLTHROUGH */
12540
12541 case ZERO_EXTEND:
12542 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12543 && (unsigned_comparison_p || equality_comparison_p)
12544 && HWI_COMPUTABLE_MODE_P (mode)
12545 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12546 && const_op >= 0
12547 && have_insn_for (COMPARE, mode))
12548 {
12549 op0 = XEXP (op0, 0);
12550 continue;
12551 }
12552 break;
12553
12554 case PLUS:
12555 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12556 this for equality comparisons due to pathological cases involving
12557 overflows. */
12558 if (equality_comparison_p
12559 && (tem = simplify_binary_operation (MINUS, mode,
12560 op1, XEXP (op0, 1))) != 0)
12561 {
12562 op0 = XEXP (op0, 0);
12563 op1 = tem;
12564 continue;
12565 }
12566
12567 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12568 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12569 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12570 {
12571 op0 = XEXP (XEXP (op0, 0), 0);
12572 code = (code == LT ? EQ : NE);
12573 continue;
12574 }
12575 break;
12576
12577 case MINUS:
12578 /* We used to optimize signed comparisons against zero, but that
12579 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12580 arrive here as equality comparisons, or (GEU, LTU) are
12581 optimized away. No need to special-case them. */
12582
12583 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12584 (eq B (minus A C)), whichever simplifies. We can only do
12585 this for equality comparisons due to pathological cases involving
12586 overflows. */
12587 if (equality_comparison_p
12588 && (tem = simplify_binary_operation (PLUS, mode,
12589 XEXP (op0, 1), op1)) != 0)
12590 {
12591 op0 = XEXP (op0, 0);
12592 op1 = tem;
12593 continue;
12594 }
12595
12596 if (equality_comparison_p
12597 && (tem = simplify_binary_operation (MINUS, mode,
12598 XEXP (op0, 0), op1)) != 0)
12599 {
12600 op0 = XEXP (op0, 1);
12601 op1 = tem;
12602 continue;
12603 }
12604
12605 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12606 of bits in X minus 1, is one iff X > 0. */
12607 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12608 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12609 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12610 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12611 {
12612 op0 = XEXP (op0, 1);
12613 code = (code == GE ? LE : GT);
12614 continue;
12615 }
12616 break;
12617
12618 case XOR:
12619 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12620 if C is zero or B is a constant. */
12621 if (equality_comparison_p
12622 && (tem = simplify_binary_operation (XOR, mode,
12623 XEXP (op0, 1), op1)) != 0)
12624 {
12625 op0 = XEXP (op0, 0);
12626 op1 = tem;
12627 continue;
12628 }
12629 break;
12630
12631
12632 case IOR:
12633 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12634 iff X <= 0. */
12635 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12636 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12637 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12638 {
12639 op0 = XEXP (op0, 1);
12640 code = (code == GE ? GT : LE);
12641 continue;
12642 }
12643 break;
12644
12645 case AND:
12646 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12647 will be converted to a ZERO_EXTRACT later. */
12648 if (const_op == 0 && equality_comparison_p
12649 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12650 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12651 {
12652 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12653 XEXP (XEXP (op0, 0), 1));
12654 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12655 continue;
12656 }
12657
12658 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12659 zero and X is a comparison and C1 and C2 describe only bits set
12660 in STORE_FLAG_VALUE, we can compare with X. */
12661 if (const_op == 0 && equality_comparison_p
12662 && mode_width <= HOST_BITS_PER_WIDE_INT
12663 && CONST_INT_P (XEXP (op0, 1))
12664 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12665 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12666 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12667 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12668 {
12669 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12670 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12671 if ((~STORE_FLAG_VALUE & mask) == 0
12672 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12673 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12674 && COMPARISON_P (tem))))
12675 {
12676 op0 = XEXP (XEXP (op0, 0), 0);
12677 continue;
12678 }
12679 }
12680
12681 /* If we are doing an equality comparison of an AND of a bit equal
12682 to the sign bit, replace this with a LT or GE comparison of
12683 the underlying value. */
12684 if (equality_comparison_p
12685 && const_op == 0
12686 && CONST_INT_P (XEXP (op0, 1))
12687 && mode_width <= HOST_BITS_PER_WIDE_INT
12688 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12689 == HOST_WIDE_INT_1U << (mode_width - 1)))
12690 {
12691 op0 = XEXP (op0, 0);
12692 code = (code == EQ ? GE : LT);
12693 continue;
12694 }
12695
12696 /* If this AND operation is really a ZERO_EXTEND from a narrower
12697 mode, the constant fits within that mode, and this is either an
12698 equality or unsigned comparison, try to do this comparison in
12699 the narrower mode.
12700
12701 Note that in:
12702
12703 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12704 -> (ne:DI (reg:SI 4) (const_int 0))
12705
12706 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12707 known to hold a value of the required mode the
12708 transformation is invalid. */
12709 if ((equality_comparison_p || unsigned_comparison_p)
12710 && CONST_INT_P (XEXP (op0, 1))
12711 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12712 & GET_MODE_MASK (mode))
12713 + 1)) >= 0
12714 && const_op >> i == 0
12715 && int_mode_for_size (i, 1).exists (&tmode))
12716 {
12717 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12718 continue;
12719 }
12720
12721 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12722 fits in both M1 and M2 and the SUBREG is either paradoxical
12723 or represents the low part, permute the SUBREG and the AND
12724 and try again. */
12725 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12726 && CONST_INT_P (XEXP (op0, 1)))
12727 {
12728 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12729 /* Require an integral mode, to avoid creating something like
12730 (AND:SF ...). */
12731 if ((is_a <scalar_int_mode>
12732 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12733 /* It is unsafe to commute the AND into the SUBREG if the
12734 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12735 not defined. As originally written the upper bits
12736 have a defined value due to the AND operation.
12737 However, if we commute the AND inside the SUBREG then
12738 they no longer have defined values and the meaning of
12739 the code has been changed.
12740 Also C1 should not change value in the smaller mode,
12741 see PR67028 (a positive C1 can become negative in the
12742 smaller mode, so that the AND does no longer mask the
12743 upper bits). */
12744 && ((WORD_REGISTER_OPERATIONS
12745 && mode_width > GET_MODE_PRECISION (tmode)
12746 && mode_width <= BITS_PER_WORD
12747 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12748 || (mode_width <= GET_MODE_PRECISION (tmode)
12749 && subreg_lowpart_p (XEXP (op0, 0))))
12750 && mode_width <= HOST_BITS_PER_WIDE_INT
12751 && HWI_COMPUTABLE_MODE_P (tmode)
12752 && (c1 & ~mask) == 0
12753 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12754 && c1 != mask
12755 && c1 != GET_MODE_MASK (tmode))
12756 {
12757 op0 = simplify_gen_binary (AND, tmode,
12758 SUBREG_REG (XEXP (op0, 0)),
12759 gen_int_mode (c1, tmode));
12760 op0 = gen_lowpart (mode, op0);
12761 continue;
12762 }
12763 }
12764
12765 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12766 if (const_op == 0 && equality_comparison_p
12767 && XEXP (op0, 1) == const1_rtx
12768 && GET_CODE (XEXP (op0, 0)) == NOT)
12769 {
12770 op0 = simplify_and_const_int (NULL_RTX, mode,
12771 XEXP (XEXP (op0, 0), 0), 1);
12772 code = (code == NE ? EQ : NE);
12773 continue;
12774 }
12775
12776 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12777 (eq (and (lshiftrt X) 1) 0).
12778 Also handle the case where (not X) is expressed using xor. */
12779 if (const_op == 0 && equality_comparison_p
12780 && XEXP (op0, 1) == const1_rtx
12781 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12782 {
12783 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12784 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12785
12786 if (GET_CODE (shift_op) == NOT
12787 || (GET_CODE (shift_op) == XOR
12788 && CONST_INT_P (XEXP (shift_op, 1))
12789 && CONST_INT_P (shift_count)
12790 && HWI_COMPUTABLE_MODE_P (mode)
12791 && (UINTVAL (XEXP (shift_op, 1))
12792 == HOST_WIDE_INT_1U
12793 << INTVAL (shift_count))))
12794 {
12795 op0
12796 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12797 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12798 code = (code == NE ? EQ : NE);
12799 continue;
12800 }
12801 }
12802 break;
12803
12804 case ASHIFT:
12805 /* If we have (compare (ashift FOO N) (const_int C)) and
12806 the high order N bits of FOO (N+1 if an inequality comparison)
12807 are known to be zero, we can do this by comparing FOO with C
12808 shifted right N bits so long as the low-order N bits of C are
12809 zero. */
12810 if (CONST_INT_P (XEXP (op0, 1))
12811 && INTVAL (XEXP (op0, 1)) >= 0
12812 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12813 < HOST_BITS_PER_WIDE_INT)
12814 && (((unsigned HOST_WIDE_INT) const_op
12815 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12816 - 1)) == 0)
12817 && mode_width <= HOST_BITS_PER_WIDE_INT
12818 && (nonzero_bits (XEXP (op0, 0), mode)
12819 & ~(mask >> (INTVAL (XEXP (op0, 1))
12820 + ! equality_comparison_p))) == 0)
12821 {
12822 /* We must perform a logical shift, not an arithmetic one,
12823 as we want the top N bits of C to be zero. */
12824 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12825
12826 temp >>= INTVAL (XEXP (op0, 1));
12827 op1 = gen_int_mode (temp, mode);
12828 op0 = XEXP (op0, 0);
12829 continue;
12830 }
12831
12832 /* If we are doing a sign bit comparison, it means we are testing
12833 a particular bit. Convert it to the appropriate AND. */
12834 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12835 && mode_width <= HOST_BITS_PER_WIDE_INT)
12836 {
12837 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12838 (HOST_WIDE_INT_1U
12839 << (mode_width - 1
12840 - INTVAL (XEXP (op0, 1)))));
12841 code = (code == LT ? NE : EQ);
12842 continue;
12843 }
12844
12845 /* If this an equality comparison with zero and we are shifting
12846 the low bit to the sign bit, we can convert this to an AND of the
12847 low-order bit. */
12848 if (const_op == 0 && equality_comparison_p
12849 && CONST_INT_P (XEXP (op0, 1))
12850 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12851 {
12852 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12853 continue;
12854 }
12855 break;
12856
12857 case ASHIFTRT:
12858 /* If this is an equality comparison with zero, we can do this
12859 as a logical shift, which might be much simpler. */
12860 if (equality_comparison_p && const_op == 0
12861 && CONST_INT_P (XEXP (op0, 1)))
12862 {
12863 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12864 XEXP (op0, 0),
12865 INTVAL (XEXP (op0, 1)));
12866 continue;
12867 }
12868
12869 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12870 do the comparison in a narrower mode. */
12871 if (! unsigned_comparison_p
12872 && CONST_INT_P (XEXP (op0, 1))
12873 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12874 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12875 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12876 .exists (&tmode))
12877 && (((unsigned HOST_WIDE_INT) const_op
12878 + (GET_MODE_MASK (tmode) >> 1) + 1)
12879 <= GET_MODE_MASK (tmode)))
12880 {
12881 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12882 continue;
12883 }
12884
12885 /* Likewise if OP0 is a PLUS of a sign extension with a
12886 constant, which is usually represented with the PLUS
12887 between the shifts. */
12888 if (! unsigned_comparison_p
12889 && CONST_INT_P (XEXP (op0, 1))
12890 && GET_CODE (XEXP (op0, 0)) == PLUS
12891 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12892 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12893 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12894 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12895 .exists (&tmode))
12896 && (((unsigned HOST_WIDE_INT) const_op
12897 + (GET_MODE_MASK (tmode) >> 1) + 1)
12898 <= GET_MODE_MASK (tmode)))
12899 {
12900 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12901 rtx add_const = XEXP (XEXP (op0, 0), 1);
12902 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12903 add_const, XEXP (op0, 1));
12904
12905 op0 = simplify_gen_binary (PLUS, tmode,
12906 gen_lowpart (tmode, inner),
12907 new_const);
12908 continue;
12909 }
12910
12911 /* FALLTHROUGH */
12912 case LSHIFTRT:
12913 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12914 the low order N bits of FOO are known to be zero, we can do this
12915 by comparing FOO with C shifted left N bits so long as no
12916 overflow occurs. Even if the low order N bits of FOO aren't known
12917 to be zero, if the comparison is >= or < we can use the same
12918 optimization and for > or <= by setting all the low
12919 order N bits in the comparison constant. */
12920 if (CONST_INT_P (XEXP (op0, 1))
12921 && INTVAL (XEXP (op0, 1)) > 0
12922 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12923 && mode_width <= HOST_BITS_PER_WIDE_INT
12924 && (((unsigned HOST_WIDE_INT) const_op
12925 + (GET_CODE (op0) != LSHIFTRT
12926 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12927 + 1)
12928 : 0))
12929 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12930 {
12931 unsigned HOST_WIDE_INT low_bits
12932 = (nonzero_bits (XEXP (op0, 0), mode)
12933 & ((HOST_WIDE_INT_1U
12934 << INTVAL (XEXP (op0, 1))) - 1));
12935 if (low_bits == 0 || !equality_comparison_p)
12936 {
12937 /* If the shift was logical, then we must make the condition
12938 unsigned. */
12939 if (GET_CODE (op0) == LSHIFTRT)
12940 code = unsigned_condition (code);
12941
12942 const_op = (unsigned HOST_WIDE_INT) const_op
12943 << INTVAL (XEXP (op0, 1));
12944 if (low_bits != 0
12945 && (code == GT || code == GTU
12946 || code == LE || code == LEU))
12947 const_op
12948 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12949 op1 = GEN_INT (const_op);
12950 op0 = XEXP (op0, 0);
12951 continue;
12952 }
12953 }
12954
12955 /* If we are using this shift to extract just the sign bit, we
12956 can replace this with an LT or GE comparison. */
12957 if (const_op == 0
12958 && (equality_comparison_p || sign_bit_comparison_p)
12959 && CONST_INT_P (XEXP (op0, 1))
12960 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12961 {
12962 op0 = XEXP (op0, 0);
12963 code = (code == NE || code == GT ? LT : GE);
12964 continue;
12965 }
12966 break;
12967
12968 default:
12969 break;
12970 }
12971
12972 break;
12973 }
12974
12975 /* Now make any compound operations involved in this comparison. Then,
12976 check for an outmost SUBREG on OP0 that is not doing anything or is
12977 paradoxical. The latter transformation must only be performed when
12978 it is known that the "extra" bits will be the same in op0 and op1 or
12979 that they don't matter. There are three cases to consider:
12980
12981 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12982 care bits and we can assume they have any convenient value. So
12983 making the transformation is safe.
12984
12985 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12986 In this case the upper bits of op0 are undefined. We should not make
12987 the simplification in that case as we do not know the contents of
12988 those bits.
12989
12990 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12991 In that case we know those bits are zeros or ones. We must also be
12992 sure that they are the same as the upper bits of op1.
12993
12994 We can never remove a SUBREG for a non-equality comparison because
12995 the sign bit is in a different place in the underlying object. */
12996
12997 rtx_code op0_mco_code = SET;
12998 if (op1 == const0_rtx)
12999 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
13000
13001 op0 = make_compound_operation (op0, op0_mco_code);
13002 op1 = make_compound_operation (op1, SET);
13003
13004 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
13005 && is_int_mode (GET_MODE (op0), &mode)
13006 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
13007 && (code == NE || code == EQ))
13008 {
13009 if (paradoxical_subreg_p (op0))
13010 {
13011 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13012 implemented. */
13013 if (REG_P (SUBREG_REG (op0)))
13014 {
13015 op0 = SUBREG_REG (op0);
13016 op1 = gen_lowpart (inner_mode, op1);
13017 }
13018 }
13019 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
13020 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
13021 & ~GET_MODE_MASK (mode)) == 0)
13022 {
13023 tem = gen_lowpart (inner_mode, op1);
13024
13025 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
13026 op0 = SUBREG_REG (op0), op1 = tem;
13027 }
13028 }
13029
13030 /* We now do the opposite procedure: Some machines don't have compare
13031 insns in all modes. If OP0's mode is an integer mode smaller than a
13032 word and we can't do a compare in that mode, see if there is a larger
13033 mode for which we can do the compare. There are a number of cases in
13034 which we can use the wider mode. */
13035
13036 if (is_int_mode (GET_MODE (op0), &mode)
13037 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
13038 && ! have_insn_for (COMPARE, mode))
13039 FOR_EACH_WIDER_MODE (tmode_iter, mode)
13040 {
13041 tmode = tmode_iter.require ();
13042 if (!HWI_COMPUTABLE_MODE_P (tmode))
13043 break;
13044 if (have_insn_for (COMPARE, tmode))
13045 {
13046 int zero_extended;
13047
13048 /* If this is a test for negative, we can make an explicit
13049 test of the sign bit. Test this first so we can use
13050 a paradoxical subreg to extend OP0. */
13051
13052 if (op1 == const0_rtx && (code == LT || code == GE)
13053 && HWI_COMPUTABLE_MODE_P (mode))
13054 {
13055 unsigned HOST_WIDE_INT sign
13056 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13057 op0 = simplify_gen_binary (AND, tmode,
13058 gen_lowpart (tmode, op0),
13059 gen_int_mode (sign, tmode));
13060 code = (code == LT) ? NE : EQ;
13061 break;
13062 }
13063
13064 /* If the only nonzero bits in OP0 and OP1 are those in the
13065 narrower mode and this is an equality or unsigned comparison,
13066 we can use the wider mode. Similarly for sign-extended
13067 values, in which case it is true for all comparisons. */
13068 zero_extended = ((code == EQ || code == NE
13069 || code == GEU || code == GTU
13070 || code == LEU || code == LTU)
13071 && (nonzero_bits (op0, tmode)
13072 & ~GET_MODE_MASK (mode)) == 0
13073 && ((CONST_INT_P (op1)
13074 || (nonzero_bits (op1, tmode)
13075 & ~GET_MODE_MASK (mode)) == 0)));
13076
13077 if (zero_extended
13078 || ((num_sign_bit_copies (op0, tmode)
13079 > (unsigned int) (GET_MODE_PRECISION (tmode)
13080 - GET_MODE_PRECISION (mode)))
13081 && (num_sign_bit_copies (op1, tmode)
13082 > (unsigned int) (GET_MODE_PRECISION (tmode)
13083 - GET_MODE_PRECISION (mode)))))
13084 {
13085 /* If OP0 is an AND and we don't have an AND in MODE either,
13086 make a new AND in the proper mode. */
13087 if (GET_CODE (op0) == AND
13088 && !have_insn_for (AND, mode))
13089 op0 = simplify_gen_binary (AND, tmode,
13090 gen_lowpart (tmode,
13091 XEXP (op0, 0)),
13092 gen_lowpart (tmode,
13093 XEXP (op0, 1)));
13094 else
13095 {
13096 if (zero_extended)
13097 {
13098 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13099 op0, mode);
13100 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13101 op1, mode);
13102 }
13103 else
13104 {
13105 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13106 op0, mode);
13107 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13108 op1, mode);
13109 }
13110 break;
13111 }
13112 }
13113 }
13114 }
13115
13116 /* We may have changed the comparison operands. Re-canonicalize. */
13117 if (swap_commutative_operands_p (op0, op1))
13118 {
13119 std::swap (op0, op1);
13120 code = swap_condition (code);
13121 }
13122
13123 /* If this machine only supports a subset of valid comparisons, see if we
13124 can convert an unsupported one into a supported one. */
13125 target_canonicalize_comparison (&code, &op0, &op1, 0);
13126
13127 *pop0 = op0;
13128 *pop1 = op1;
13129
13130 return code;
13131 }
13132 \f
13133 /* Utility function for record_value_for_reg. Count number of
13134 rtxs in X. */
13135 static int
13136 count_rtxs (rtx x)
13137 {
13138 enum rtx_code code = GET_CODE (x);
13139 const char *fmt;
13140 int i, j, ret = 1;
13141
13142 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13143 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13144 {
13145 rtx x0 = XEXP (x, 0);
13146 rtx x1 = XEXP (x, 1);
13147
13148 if (x0 == x1)
13149 return 1 + 2 * count_rtxs (x0);
13150
13151 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13152 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13153 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13154 return 2 + 2 * count_rtxs (x0)
13155 + count_rtxs (x == XEXP (x1, 0)
13156 ? XEXP (x1, 1) : XEXP (x1, 0));
13157
13158 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13159 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13160 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13161 return 2 + 2 * count_rtxs (x1)
13162 + count_rtxs (x == XEXP (x0, 0)
13163 ? XEXP (x0, 1) : XEXP (x0, 0));
13164 }
13165
13166 fmt = GET_RTX_FORMAT (code);
13167 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13168 if (fmt[i] == 'e')
13169 ret += count_rtxs (XEXP (x, i));
13170 else if (fmt[i] == 'E')
13171 for (j = 0; j < XVECLEN (x, i); j++)
13172 ret += count_rtxs (XVECEXP (x, i, j));
13173
13174 return ret;
13175 }
13176 \f
13177 /* Utility function for following routine. Called when X is part of a value
13178 being stored into last_set_value. Sets last_set_table_tick
13179 for each register mentioned. Similar to mention_regs in cse.c */
13180
13181 static void
13182 update_table_tick (rtx x)
13183 {
13184 enum rtx_code code = GET_CODE (x);
13185 const char *fmt = GET_RTX_FORMAT (code);
13186 int i, j;
13187
13188 if (code == REG)
13189 {
13190 unsigned int regno = REGNO (x);
13191 unsigned int endregno = END_REGNO (x);
13192 unsigned int r;
13193
13194 for (r = regno; r < endregno; r++)
13195 {
13196 reg_stat_type *rsp = &reg_stat[r];
13197 rsp->last_set_table_tick = label_tick;
13198 }
13199
13200 return;
13201 }
13202
13203 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13204 if (fmt[i] == 'e')
13205 {
13206 /* Check for identical subexpressions. If x contains
13207 identical subexpression we only have to traverse one of
13208 them. */
13209 if (i == 0 && ARITHMETIC_P (x))
13210 {
13211 /* Note that at this point x1 has already been
13212 processed. */
13213 rtx x0 = XEXP (x, 0);
13214 rtx x1 = XEXP (x, 1);
13215
13216 /* If x0 and x1 are identical then there is no need to
13217 process x0. */
13218 if (x0 == x1)
13219 break;
13220
13221 /* If x0 is identical to a subexpression of x1 then while
13222 processing x1, x0 has already been processed. Thus we
13223 are done with x. */
13224 if (ARITHMETIC_P (x1)
13225 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13226 break;
13227
13228 /* If x1 is identical to a subexpression of x0 then we
13229 still have to process the rest of x0. */
13230 if (ARITHMETIC_P (x0)
13231 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13232 {
13233 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13234 break;
13235 }
13236 }
13237
13238 update_table_tick (XEXP (x, i));
13239 }
13240 else if (fmt[i] == 'E')
13241 for (j = 0; j < XVECLEN (x, i); j++)
13242 update_table_tick (XVECEXP (x, i, j));
13243 }
13244
13245 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13246 are saying that the register is clobbered and we no longer know its
13247 value. If INSN is zero, don't update reg_stat[].last_set; this is
13248 only permitted with VALUE also zero and is used to invalidate the
13249 register. */
13250
13251 static void
13252 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13253 {
13254 unsigned int regno = REGNO (reg);
13255 unsigned int endregno = END_REGNO (reg);
13256 unsigned int i;
13257 reg_stat_type *rsp;
13258
13259 /* If VALUE contains REG and we have a previous value for REG, substitute
13260 the previous value. */
13261 if (value && insn && reg_overlap_mentioned_p (reg, value))
13262 {
13263 rtx tem;
13264
13265 /* Set things up so get_last_value is allowed to see anything set up to
13266 our insn. */
13267 subst_low_luid = DF_INSN_LUID (insn);
13268 tem = get_last_value (reg);
13269
13270 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13271 it isn't going to be useful and will take a lot of time to process,
13272 so just use the CLOBBER. */
13273
13274 if (tem)
13275 {
13276 if (ARITHMETIC_P (tem)
13277 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13278 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13279 tem = XEXP (tem, 0);
13280 else if (count_occurrences (value, reg, 1) >= 2)
13281 {
13282 /* If there are two or more occurrences of REG in VALUE,
13283 prevent the value from growing too much. */
13284 if (count_rtxs (tem) > param_max_last_value_rtl)
13285 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13286 }
13287
13288 value = replace_rtx (copy_rtx (value), reg, tem);
13289 }
13290 }
13291
13292 /* For each register modified, show we don't know its value, that
13293 we don't know about its bitwise content, that its value has been
13294 updated, and that we don't know the location of the death of the
13295 register. */
13296 for (i = regno; i < endregno; i++)
13297 {
13298 rsp = &reg_stat[i];
13299
13300 if (insn)
13301 rsp->last_set = insn;
13302
13303 rsp->last_set_value = 0;
13304 rsp->last_set_mode = VOIDmode;
13305 rsp->last_set_nonzero_bits = 0;
13306 rsp->last_set_sign_bit_copies = 0;
13307 rsp->last_death = 0;
13308 rsp->truncated_to_mode = VOIDmode;
13309 }
13310
13311 /* Mark registers that are being referenced in this value. */
13312 if (value)
13313 update_table_tick (value);
13314
13315 /* Now update the status of each register being set.
13316 If someone is using this register in this block, set this register
13317 to invalid since we will get confused between the two lives in this
13318 basic block. This makes using this register always invalid. In cse, we
13319 scan the table to invalidate all entries using this register, but this
13320 is too much work for us. */
13321
13322 for (i = regno; i < endregno; i++)
13323 {
13324 rsp = &reg_stat[i];
13325 rsp->last_set_label = label_tick;
13326 if (!insn
13327 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13328 rsp->last_set_invalid = 1;
13329 else
13330 rsp->last_set_invalid = 0;
13331 }
13332
13333 /* The value being assigned might refer to X (like in "x++;"). In that
13334 case, we must replace it with (clobber (const_int 0)) to prevent
13335 infinite loops. */
13336 rsp = &reg_stat[regno];
13337 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13338 {
13339 value = copy_rtx (value);
13340 if (!get_last_value_validate (&value, insn, label_tick, 1))
13341 value = 0;
13342 }
13343
13344 /* For the main register being modified, update the value, the mode, the
13345 nonzero bits, and the number of sign bit copies. */
13346
13347 rsp->last_set_value = value;
13348
13349 if (value)
13350 {
13351 machine_mode mode = GET_MODE (reg);
13352 subst_low_luid = DF_INSN_LUID (insn);
13353 rsp->last_set_mode = mode;
13354 if (GET_MODE_CLASS (mode) == MODE_INT
13355 && HWI_COMPUTABLE_MODE_P (mode))
13356 mode = nonzero_bits_mode;
13357 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13358 rsp->last_set_sign_bit_copies
13359 = num_sign_bit_copies (value, GET_MODE (reg));
13360 }
13361 }
13362
13363 /* Called via note_stores from record_dead_and_set_regs to handle one
13364 SET or CLOBBER in an insn. DATA is the instruction in which the
13365 set is occurring. */
13366
13367 static void
13368 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13369 {
13370 rtx_insn *record_dead_insn = (rtx_insn *) data;
13371
13372 if (GET_CODE (dest) == SUBREG)
13373 dest = SUBREG_REG (dest);
13374
13375 if (!record_dead_insn)
13376 {
13377 if (REG_P (dest))
13378 record_value_for_reg (dest, NULL, NULL_RTX);
13379 return;
13380 }
13381
13382 if (REG_P (dest))
13383 {
13384 /* If we are setting the whole register, we know its value. Otherwise
13385 show that we don't know the value. We can handle a SUBREG if it's
13386 the low part, but we must be careful with paradoxical SUBREGs on
13387 RISC architectures because we cannot strip e.g. an extension around
13388 a load and record the naked load since the RTL middle-end considers
13389 that the upper bits are defined according to LOAD_EXTEND_OP. */
13390 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13391 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13392 else if (GET_CODE (setter) == SET
13393 && GET_CODE (SET_DEST (setter)) == SUBREG
13394 && SUBREG_REG (SET_DEST (setter)) == dest
13395 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13396 BITS_PER_WORD)
13397 && subreg_lowpart_p (SET_DEST (setter)))
13398 record_value_for_reg (dest, record_dead_insn,
13399 WORD_REGISTER_OPERATIONS
13400 && word_register_operation_p (SET_SRC (setter))
13401 && paradoxical_subreg_p (SET_DEST (setter))
13402 ? SET_SRC (setter)
13403 : gen_lowpart (GET_MODE (dest),
13404 SET_SRC (setter)));
13405 else
13406 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13407 }
13408 else if (MEM_P (dest)
13409 /* Ignore pushes, they clobber nothing. */
13410 && ! push_operand (dest, GET_MODE (dest)))
13411 mem_last_set = DF_INSN_LUID (record_dead_insn);
13412 }
13413
13414 /* Update the records of when each REG was most recently set or killed
13415 for the things done by INSN. This is the last thing done in processing
13416 INSN in the combiner loop.
13417
13418 We update reg_stat[], in particular fields last_set, last_set_value,
13419 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13420 last_death, and also the similar information mem_last_set (which insn
13421 most recently modified memory) and last_call_luid (which insn was the
13422 most recent subroutine call). */
13423
13424 static void
13425 record_dead_and_set_regs (rtx_insn *insn)
13426 {
13427 rtx link;
13428 unsigned int i;
13429
13430 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13431 {
13432 if (REG_NOTE_KIND (link) == REG_DEAD
13433 && REG_P (XEXP (link, 0)))
13434 {
13435 unsigned int regno = REGNO (XEXP (link, 0));
13436 unsigned int endregno = END_REGNO (XEXP (link, 0));
13437
13438 for (i = regno; i < endregno; i++)
13439 {
13440 reg_stat_type *rsp;
13441
13442 rsp = &reg_stat[i];
13443 rsp->last_death = insn;
13444 }
13445 }
13446 else if (REG_NOTE_KIND (link) == REG_INC)
13447 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13448 }
13449
13450 if (CALL_P (insn))
13451 {
13452 HARD_REG_SET callee_clobbers
13453 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
13454 hard_reg_set_iterator hrsi;
13455 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, i, hrsi)
13456 {
13457 reg_stat_type *rsp;
13458
13459 /* ??? We could try to preserve some information from the last
13460 set of register I if the call doesn't actually clobber
13461 (reg:last_set_mode I), which might be true for ABIs with
13462 partial clobbers. However, it would be difficult to
13463 update last_set_nonzero_bits and last_sign_bit_copies
13464 to account for the part of I that actually was clobbered.
13465 It wouldn't help much anyway, since we rarely see this
13466 situation before RA. */
13467 rsp = &reg_stat[i];
13468 rsp->last_set_invalid = 1;
13469 rsp->last_set = insn;
13470 rsp->last_set_value = 0;
13471 rsp->last_set_mode = VOIDmode;
13472 rsp->last_set_nonzero_bits = 0;
13473 rsp->last_set_sign_bit_copies = 0;
13474 rsp->last_death = 0;
13475 rsp->truncated_to_mode = VOIDmode;
13476 }
13477
13478 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13479
13480 /* We can't combine into a call pattern. Remember, though, that
13481 the return value register is set at this LUID. We could
13482 still replace a register with the return value from the
13483 wrong subroutine call! */
13484 note_stores (insn, record_dead_and_set_regs_1, NULL_RTX);
13485 }
13486 else
13487 note_stores (insn, record_dead_and_set_regs_1, insn);
13488 }
13489
13490 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13491 register present in the SUBREG, so for each such SUBREG go back and
13492 adjust nonzero and sign bit information of the registers that are
13493 known to have some zero/sign bits set.
13494
13495 This is needed because when combine blows the SUBREGs away, the
13496 information on zero/sign bits is lost and further combines can be
13497 missed because of that. */
13498
13499 static void
13500 record_promoted_value (rtx_insn *insn, rtx subreg)
13501 {
13502 struct insn_link *links;
13503 rtx set;
13504 unsigned int regno = REGNO (SUBREG_REG (subreg));
13505 machine_mode mode = GET_MODE (subreg);
13506
13507 if (!HWI_COMPUTABLE_MODE_P (mode))
13508 return;
13509
13510 for (links = LOG_LINKS (insn); links;)
13511 {
13512 reg_stat_type *rsp;
13513
13514 insn = links->insn;
13515 set = single_set (insn);
13516
13517 if (! set || !REG_P (SET_DEST (set))
13518 || REGNO (SET_DEST (set)) != regno
13519 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13520 {
13521 links = links->next;
13522 continue;
13523 }
13524
13525 rsp = &reg_stat[regno];
13526 if (rsp->last_set == insn)
13527 {
13528 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13529 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13530 }
13531
13532 if (REG_P (SET_SRC (set)))
13533 {
13534 regno = REGNO (SET_SRC (set));
13535 links = LOG_LINKS (insn);
13536 }
13537 else
13538 break;
13539 }
13540 }
13541
13542 /* Check if X, a register, is known to contain a value already
13543 truncated to MODE. In this case we can use a subreg to refer to
13544 the truncated value even though in the generic case we would need
13545 an explicit truncation. */
13546
13547 static bool
13548 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13549 {
13550 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13551 machine_mode truncated = rsp->truncated_to_mode;
13552
13553 if (truncated == 0
13554 || rsp->truncation_label < label_tick_ebb_start)
13555 return false;
13556 if (!partial_subreg_p (mode, truncated))
13557 return true;
13558 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13559 return true;
13560 return false;
13561 }
13562
13563 /* If X is a hard reg or a subreg record the mode that the register is
13564 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13565 able to turn a truncate into a subreg using this information. Return true
13566 if traversing X is complete. */
13567
13568 static bool
13569 record_truncated_value (rtx x)
13570 {
13571 machine_mode truncated_mode;
13572 reg_stat_type *rsp;
13573
13574 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13575 {
13576 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13577 truncated_mode = GET_MODE (x);
13578
13579 if (!partial_subreg_p (truncated_mode, original_mode))
13580 return true;
13581
13582 truncated_mode = GET_MODE (x);
13583 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13584 return true;
13585
13586 x = SUBREG_REG (x);
13587 }
13588 /* ??? For hard-regs we now record everything. We might be able to
13589 optimize this using last_set_mode. */
13590 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13591 truncated_mode = GET_MODE (x);
13592 else
13593 return false;
13594
13595 rsp = &reg_stat[REGNO (x)];
13596 if (rsp->truncated_to_mode == 0
13597 || rsp->truncation_label < label_tick_ebb_start
13598 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13599 {
13600 rsp->truncated_to_mode = truncated_mode;
13601 rsp->truncation_label = label_tick;
13602 }
13603
13604 return true;
13605 }
13606
13607 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13608 the modes they are used in. This can help truning TRUNCATEs into
13609 SUBREGs. */
13610
13611 static void
13612 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13613 {
13614 subrtx_var_iterator::array_type array;
13615 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13616 if (record_truncated_value (*iter))
13617 iter.skip_subrtxes ();
13618 }
13619
13620 /* Scan X for promoted SUBREGs. For each one found,
13621 note what it implies to the registers used in it. */
13622
13623 static void
13624 check_promoted_subreg (rtx_insn *insn, rtx x)
13625 {
13626 if (GET_CODE (x) == SUBREG
13627 && SUBREG_PROMOTED_VAR_P (x)
13628 && REG_P (SUBREG_REG (x)))
13629 record_promoted_value (insn, x);
13630 else
13631 {
13632 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13633 int i, j;
13634
13635 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13636 switch (format[i])
13637 {
13638 case 'e':
13639 check_promoted_subreg (insn, XEXP (x, i));
13640 break;
13641 case 'V':
13642 case 'E':
13643 if (XVEC (x, i) != 0)
13644 for (j = 0; j < XVECLEN (x, i); j++)
13645 check_promoted_subreg (insn, XVECEXP (x, i, j));
13646 break;
13647 }
13648 }
13649 }
13650 \f
13651 /* Verify that all the registers and memory references mentioned in *LOC are
13652 still valid. *LOC was part of a value set in INSN when label_tick was
13653 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13654 the invalid references with (clobber (const_int 0)) and return 1. This
13655 replacement is useful because we often can get useful information about
13656 the form of a value (e.g., if it was produced by a shift that always
13657 produces -1 or 0) even though we don't know exactly what registers it
13658 was produced from. */
13659
13660 static int
13661 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13662 {
13663 rtx x = *loc;
13664 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13665 int len = GET_RTX_LENGTH (GET_CODE (x));
13666 int i, j;
13667
13668 if (REG_P (x))
13669 {
13670 unsigned int regno = REGNO (x);
13671 unsigned int endregno = END_REGNO (x);
13672 unsigned int j;
13673
13674 for (j = regno; j < endregno; j++)
13675 {
13676 reg_stat_type *rsp = &reg_stat[j];
13677 if (rsp->last_set_invalid
13678 /* If this is a pseudo-register that was only set once and not
13679 live at the beginning of the function, it is always valid. */
13680 || (! (regno >= FIRST_PSEUDO_REGISTER
13681 && regno < reg_n_sets_max
13682 && REG_N_SETS (regno) == 1
13683 && (!REGNO_REG_SET_P
13684 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13685 regno)))
13686 && rsp->last_set_label > tick))
13687 {
13688 if (replace)
13689 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13690 return replace;
13691 }
13692 }
13693
13694 return 1;
13695 }
13696 /* If this is a memory reference, make sure that there were no stores after
13697 it that might have clobbered the value. We don't have alias info, so we
13698 assume any store invalidates it. Moreover, we only have local UIDs, so
13699 we also assume that there were stores in the intervening basic blocks. */
13700 else if (MEM_P (x) && !MEM_READONLY_P (x)
13701 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13702 {
13703 if (replace)
13704 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13705 return replace;
13706 }
13707
13708 for (i = 0; i < len; i++)
13709 {
13710 if (fmt[i] == 'e')
13711 {
13712 /* Check for identical subexpressions. If x contains
13713 identical subexpression we only have to traverse one of
13714 them. */
13715 if (i == 1 && ARITHMETIC_P (x))
13716 {
13717 /* Note that at this point x0 has already been checked
13718 and found valid. */
13719 rtx x0 = XEXP (x, 0);
13720 rtx x1 = XEXP (x, 1);
13721
13722 /* If x0 and x1 are identical then x is also valid. */
13723 if (x0 == x1)
13724 return 1;
13725
13726 /* If x1 is identical to a subexpression of x0 then
13727 while checking x0, x1 has already been checked. Thus
13728 it is valid and so as x. */
13729 if (ARITHMETIC_P (x0)
13730 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13731 return 1;
13732
13733 /* If x0 is identical to a subexpression of x1 then x is
13734 valid iff the rest of x1 is valid. */
13735 if (ARITHMETIC_P (x1)
13736 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13737 return
13738 get_last_value_validate (&XEXP (x1,
13739 x0 == XEXP (x1, 0) ? 1 : 0),
13740 insn, tick, replace);
13741 }
13742
13743 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13744 replace) == 0)
13745 return 0;
13746 }
13747 else if (fmt[i] == 'E')
13748 for (j = 0; j < XVECLEN (x, i); j++)
13749 if (get_last_value_validate (&XVECEXP (x, i, j),
13750 insn, tick, replace) == 0)
13751 return 0;
13752 }
13753
13754 /* If we haven't found a reason for it to be invalid, it is valid. */
13755 return 1;
13756 }
13757
13758 /* Get the last value assigned to X, if known. Some registers
13759 in the value may be replaced with (clobber (const_int 0)) if their value
13760 is known longer known reliably. */
13761
13762 static rtx
13763 get_last_value (const_rtx x)
13764 {
13765 unsigned int regno;
13766 rtx value;
13767 reg_stat_type *rsp;
13768
13769 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13770 then convert it to the desired mode. If this is a paradoxical SUBREG,
13771 we cannot predict what values the "extra" bits might have. */
13772 if (GET_CODE (x) == SUBREG
13773 && subreg_lowpart_p (x)
13774 && !paradoxical_subreg_p (x)
13775 && (value = get_last_value (SUBREG_REG (x))) != 0)
13776 return gen_lowpart (GET_MODE (x), value);
13777
13778 if (!REG_P (x))
13779 return 0;
13780
13781 regno = REGNO (x);
13782 rsp = &reg_stat[regno];
13783 value = rsp->last_set_value;
13784
13785 /* If we don't have a value, or if it isn't for this basic block and
13786 it's either a hard register, set more than once, or it's a live
13787 at the beginning of the function, return 0.
13788
13789 Because if it's not live at the beginning of the function then the reg
13790 is always set before being used (is never used without being set).
13791 And, if it's set only once, and it's always set before use, then all
13792 uses must have the same last value, even if it's not from this basic
13793 block. */
13794
13795 if (value == 0
13796 || (rsp->last_set_label < label_tick_ebb_start
13797 && (regno < FIRST_PSEUDO_REGISTER
13798 || regno >= reg_n_sets_max
13799 || REG_N_SETS (regno) != 1
13800 || REGNO_REG_SET_P
13801 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13802 return 0;
13803
13804 /* If the value was set in a later insn than the ones we are processing,
13805 we can't use it even if the register was only set once. */
13806 if (rsp->last_set_label == label_tick
13807 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13808 return 0;
13809
13810 /* If fewer bits were set than what we are asked for now, we cannot use
13811 the value. */
13812 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13813 GET_MODE_PRECISION (GET_MODE (x))))
13814 return 0;
13815
13816 /* If the value has all its registers valid, return it. */
13817 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13818 return value;
13819
13820 /* Otherwise, make a copy and replace any invalid register with
13821 (clobber (const_int 0)). If that fails for some reason, return 0. */
13822
13823 value = copy_rtx (value);
13824 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13825 return value;
13826
13827 return 0;
13828 }
13829 \f
13830 /* Define three variables used for communication between the following
13831 routines. */
13832
13833 static unsigned int reg_dead_regno, reg_dead_endregno;
13834 static int reg_dead_flag;
13835 rtx reg_dead_reg;
13836
13837 /* Function called via note_stores from reg_dead_at_p.
13838
13839 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13840 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13841
13842 static void
13843 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13844 {
13845 unsigned int regno, endregno;
13846
13847 if (!REG_P (dest))
13848 return;
13849
13850 regno = REGNO (dest);
13851 endregno = END_REGNO (dest);
13852 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13853 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13854 }
13855
13856 /* Return nonzero if REG is known to be dead at INSN.
13857
13858 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13859 referencing REG, it is dead. If we hit a SET referencing REG, it is
13860 live. Otherwise, see if it is live or dead at the start of the basic
13861 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13862 must be assumed to be always live. */
13863
13864 static int
13865 reg_dead_at_p (rtx reg, rtx_insn *insn)
13866 {
13867 basic_block block;
13868 unsigned int i;
13869
13870 /* Set variables for reg_dead_at_p_1. */
13871 reg_dead_regno = REGNO (reg);
13872 reg_dead_endregno = END_REGNO (reg);
13873 reg_dead_reg = reg;
13874
13875 reg_dead_flag = 0;
13876
13877 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13878 we allow the machine description to decide whether use-and-clobber
13879 patterns are OK. */
13880 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13881 {
13882 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13883 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13884 return 0;
13885 }
13886
13887 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13888 beginning of basic block. */
13889 block = BLOCK_FOR_INSN (insn);
13890 for (;;)
13891 {
13892 if (INSN_P (insn))
13893 {
13894 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13895 return 1;
13896
13897 note_stores (insn, reg_dead_at_p_1, NULL);
13898 if (reg_dead_flag)
13899 return reg_dead_flag == 1 ? 1 : 0;
13900
13901 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13902 return 1;
13903 }
13904
13905 if (insn == BB_HEAD (block))
13906 break;
13907
13908 insn = PREV_INSN (insn);
13909 }
13910
13911 /* Look at live-in sets for the basic block that we were in. */
13912 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13913 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13914 return 0;
13915
13916 return 1;
13917 }
13918 \f
13919 /* Note hard registers in X that are used. */
13920
13921 static void
13922 mark_used_regs_combine (rtx x)
13923 {
13924 RTX_CODE code = GET_CODE (x);
13925 unsigned int regno;
13926 int i;
13927
13928 switch (code)
13929 {
13930 case LABEL_REF:
13931 case SYMBOL_REF:
13932 case CONST:
13933 CASE_CONST_ANY:
13934 case PC:
13935 case ADDR_VEC:
13936 case ADDR_DIFF_VEC:
13937 case ASM_INPUT:
13938 /* CC0 must die in the insn after it is set, so we don't need to take
13939 special note of it here. */
13940 case CC0:
13941 return;
13942
13943 case CLOBBER:
13944 /* If we are clobbering a MEM, mark any hard registers inside the
13945 address as used. */
13946 if (MEM_P (XEXP (x, 0)))
13947 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13948 return;
13949
13950 case REG:
13951 regno = REGNO (x);
13952 /* A hard reg in a wide mode may really be multiple registers.
13953 If so, mark all of them just like the first. */
13954 if (regno < FIRST_PSEUDO_REGISTER)
13955 {
13956 /* None of this applies to the stack, frame or arg pointers. */
13957 if (regno == STACK_POINTER_REGNUM
13958 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13959 && regno == HARD_FRAME_POINTER_REGNUM)
13960 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13961 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13962 || regno == FRAME_POINTER_REGNUM)
13963 return;
13964
13965 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13966 }
13967 return;
13968
13969 case SET:
13970 {
13971 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13972 the address. */
13973 rtx testreg = SET_DEST (x);
13974
13975 while (GET_CODE (testreg) == SUBREG
13976 || GET_CODE (testreg) == ZERO_EXTRACT
13977 || GET_CODE (testreg) == STRICT_LOW_PART)
13978 testreg = XEXP (testreg, 0);
13979
13980 if (MEM_P (testreg))
13981 mark_used_regs_combine (XEXP (testreg, 0));
13982
13983 mark_used_regs_combine (SET_SRC (x));
13984 }
13985 return;
13986
13987 default:
13988 break;
13989 }
13990
13991 /* Recursively scan the operands of this expression. */
13992
13993 {
13994 const char *fmt = GET_RTX_FORMAT (code);
13995
13996 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13997 {
13998 if (fmt[i] == 'e')
13999 mark_used_regs_combine (XEXP (x, i));
14000 else if (fmt[i] == 'E')
14001 {
14002 int j;
14003
14004 for (j = 0; j < XVECLEN (x, i); j++)
14005 mark_used_regs_combine (XVECEXP (x, i, j));
14006 }
14007 }
14008 }
14009 }
14010 \f
14011 /* Remove register number REGNO from the dead registers list of INSN.
14012
14013 Return the note used to record the death, if there was one. */
14014
14015 rtx
14016 remove_death (unsigned int regno, rtx_insn *insn)
14017 {
14018 rtx note = find_regno_note (insn, REG_DEAD, regno);
14019
14020 if (note)
14021 remove_note (insn, note);
14022
14023 return note;
14024 }
14025
14026 /* For each register (hardware or pseudo) used within expression X, if its
14027 death is in an instruction with luid between FROM_LUID (inclusive) and
14028 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14029 list headed by PNOTES.
14030
14031 That said, don't move registers killed by maybe_kill_insn.
14032
14033 This is done when X is being merged by combination into TO_INSN. These
14034 notes will then be distributed as needed. */
14035
14036 static void
14037 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
14038 rtx *pnotes)
14039 {
14040 const char *fmt;
14041 int len, i;
14042 enum rtx_code code = GET_CODE (x);
14043
14044 if (code == REG)
14045 {
14046 unsigned int regno = REGNO (x);
14047 rtx_insn *where_dead = reg_stat[regno].last_death;
14048
14049 /* If we do not know where the register died, it may still die between
14050 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14051 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14052 {
14053 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14054 while (insn
14055 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
14056 && DF_INSN_LUID (insn) >= from_luid)
14057 {
14058 if (dead_or_set_regno_p (insn, regno))
14059 {
14060 if (find_regno_note (insn, REG_DEAD, regno))
14061 where_dead = insn;
14062 break;
14063 }
14064
14065 insn = prev_real_nondebug_insn (insn);
14066 }
14067 }
14068
14069 /* Don't move the register if it gets killed in between from and to. */
14070 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14071 && ! reg_referenced_p (x, maybe_kill_insn))
14072 return;
14073
14074 if (where_dead
14075 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
14076 && DF_INSN_LUID (where_dead) >= from_luid
14077 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14078 {
14079 rtx note = remove_death (regno, where_dead);
14080
14081 /* It is possible for the call above to return 0. This can occur
14082 when last_death points to I2 or I1 that we combined with.
14083 In that case make a new note.
14084
14085 We must also check for the case where X is a hard register
14086 and NOTE is a death note for a range of hard registers
14087 including X. In that case, we must put REG_DEAD notes for
14088 the remaining registers in place of NOTE. */
14089
14090 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14091 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14092 {
14093 unsigned int deadregno = REGNO (XEXP (note, 0));
14094 unsigned int deadend = END_REGNO (XEXP (note, 0));
14095 unsigned int ourend = END_REGNO (x);
14096 unsigned int i;
14097
14098 for (i = deadregno; i < deadend; i++)
14099 if (i < regno || i >= ourend)
14100 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14101 }
14102
14103 /* If we didn't find any note, or if we found a REG_DEAD note that
14104 covers only part of the given reg, and we have a multi-reg hard
14105 register, then to be safe we must check for REG_DEAD notes
14106 for each register other than the first. They could have
14107 their own REG_DEAD notes lying around. */
14108 else if ((note == 0
14109 || (note != 0
14110 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14111 GET_MODE (x))))
14112 && regno < FIRST_PSEUDO_REGISTER
14113 && REG_NREGS (x) > 1)
14114 {
14115 unsigned int ourend = END_REGNO (x);
14116 unsigned int i, offset;
14117 rtx oldnotes = 0;
14118
14119 if (note)
14120 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14121 else
14122 offset = 1;
14123
14124 for (i = regno + offset; i < ourend; i++)
14125 move_deaths (regno_reg_rtx[i],
14126 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14127 }
14128
14129 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14130 {
14131 XEXP (note, 1) = *pnotes;
14132 *pnotes = note;
14133 }
14134 else
14135 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14136 }
14137
14138 return;
14139 }
14140
14141 else if (GET_CODE (x) == SET)
14142 {
14143 rtx dest = SET_DEST (x);
14144
14145 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14146
14147 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14148 that accesses one word of a multi-word item, some
14149 piece of everything register in the expression is used by
14150 this insn, so remove any old death. */
14151 /* ??? So why do we test for equality of the sizes? */
14152
14153 if (GET_CODE (dest) == ZERO_EXTRACT
14154 || GET_CODE (dest) == STRICT_LOW_PART
14155 || (GET_CODE (dest) == SUBREG
14156 && !read_modify_subreg_p (dest)))
14157 {
14158 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14159 return;
14160 }
14161
14162 /* If this is some other SUBREG, we know it replaces the entire
14163 value, so use that as the destination. */
14164 if (GET_CODE (dest) == SUBREG)
14165 dest = SUBREG_REG (dest);
14166
14167 /* If this is a MEM, adjust deaths of anything used in the address.
14168 For a REG (the only other possibility), the entire value is
14169 being replaced so the old value is not used in this insn. */
14170
14171 if (MEM_P (dest))
14172 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14173 to_insn, pnotes);
14174 return;
14175 }
14176
14177 else if (GET_CODE (x) == CLOBBER)
14178 return;
14179
14180 len = GET_RTX_LENGTH (code);
14181 fmt = GET_RTX_FORMAT (code);
14182
14183 for (i = 0; i < len; i++)
14184 {
14185 if (fmt[i] == 'E')
14186 {
14187 int j;
14188 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14189 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14190 to_insn, pnotes);
14191 }
14192 else if (fmt[i] == 'e')
14193 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14194 }
14195 }
14196 \f
14197 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14198 pattern of an insn. X must be a REG. */
14199
14200 static int
14201 reg_bitfield_target_p (rtx x, rtx body)
14202 {
14203 int i;
14204
14205 if (GET_CODE (body) == SET)
14206 {
14207 rtx dest = SET_DEST (body);
14208 rtx target;
14209 unsigned int regno, tregno, endregno, endtregno;
14210
14211 if (GET_CODE (dest) == ZERO_EXTRACT)
14212 target = XEXP (dest, 0);
14213 else if (GET_CODE (dest) == STRICT_LOW_PART)
14214 target = SUBREG_REG (XEXP (dest, 0));
14215 else
14216 return 0;
14217
14218 if (GET_CODE (target) == SUBREG)
14219 target = SUBREG_REG (target);
14220
14221 if (!REG_P (target))
14222 return 0;
14223
14224 tregno = REGNO (target), regno = REGNO (x);
14225 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14226 return target == x;
14227
14228 endtregno = end_hard_regno (GET_MODE (target), tregno);
14229 endregno = end_hard_regno (GET_MODE (x), regno);
14230
14231 return endregno > tregno && regno < endtregno;
14232 }
14233
14234 else if (GET_CODE (body) == PARALLEL)
14235 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14236 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14237 return 1;
14238
14239 return 0;
14240 }
14241 \f
14242 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14243 as appropriate. I3 and I2 are the insns resulting from the combination
14244 insns including FROM (I2 may be zero).
14245
14246 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14247 not need REG_DEAD notes because they are being substituted for. This
14248 saves searching in the most common cases.
14249
14250 Each note in the list is either ignored or placed on some insns, depending
14251 on the type of note. */
14252
14253 static void
14254 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14255 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14256 {
14257 rtx note, next_note;
14258 rtx tem_note;
14259 rtx_insn *tem_insn;
14260
14261 for (note = notes; note; note = next_note)
14262 {
14263 rtx_insn *place = 0, *place2 = 0;
14264
14265 next_note = XEXP (note, 1);
14266 switch (REG_NOTE_KIND (note))
14267 {
14268 case REG_BR_PROB:
14269 case REG_BR_PRED:
14270 /* Doesn't matter much where we put this, as long as it's somewhere.
14271 It is preferable to keep these notes on branches, which is most
14272 likely to be i3. */
14273 place = i3;
14274 break;
14275
14276 case REG_NON_LOCAL_GOTO:
14277 if (JUMP_P (i3))
14278 place = i3;
14279 else
14280 {
14281 gcc_assert (i2 && JUMP_P (i2));
14282 place = i2;
14283 }
14284 break;
14285
14286 case REG_EH_REGION:
14287 /* These notes must remain with the call or trapping instruction. */
14288 if (CALL_P (i3))
14289 place = i3;
14290 else if (i2 && CALL_P (i2))
14291 place = i2;
14292 else
14293 {
14294 gcc_assert (cfun->can_throw_non_call_exceptions);
14295 if (may_trap_p (i3))
14296 place = i3;
14297 else if (i2 && may_trap_p (i2))
14298 place = i2;
14299 /* ??? Otherwise assume we've combined things such that we
14300 can now prove that the instructions can't trap. Drop the
14301 note in this case. */
14302 }
14303 break;
14304
14305 case REG_ARGS_SIZE:
14306 /* ??? How to distribute between i3-i1. Assume i3 contains the
14307 entire adjustment. Assert i3 contains at least some adjust. */
14308 if (!noop_move_p (i3))
14309 {
14310 poly_int64 old_size, args_size = get_args_size (note);
14311 /* fixup_args_size_notes looks at REG_NORETURN note,
14312 so ensure the note is placed there first. */
14313 if (CALL_P (i3))
14314 {
14315 rtx *np;
14316 for (np = &next_note; *np; np = &XEXP (*np, 1))
14317 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14318 {
14319 rtx n = *np;
14320 *np = XEXP (n, 1);
14321 XEXP (n, 1) = REG_NOTES (i3);
14322 REG_NOTES (i3) = n;
14323 break;
14324 }
14325 }
14326 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14327 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14328 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14329 gcc_assert (maybe_ne (old_size, args_size)
14330 || (CALL_P (i3)
14331 && !ACCUMULATE_OUTGOING_ARGS
14332 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14333 }
14334 break;
14335
14336 case REG_NORETURN:
14337 case REG_SETJMP:
14338 case REG_TM:
14339 case REG_CALL_DECL:
14340 case REG_UNTYPED_CALL:
14341 case REG_CALL_NOCF_CHECK:
14342 /* These notes must remain with the call. It should not be
14343 possible for both I2 and I3 to be a call. */
14344 if (CALL_P (i3))
14345 place = i3;
14346 else
14347 {
14348 gcc_assert (i2 && CALL_P (i2));
14349 place = i2;
14350 }
14351 break;
14352
14353 case REG_UNUSED:
14354 /* Any clobbers for i3 may still exist, and so we must process
14355 REG_UNUSED notes from that insn.
14356
14357 Any clobbers from i2 or i1 can only exist if they were added by
14358 recog_for_combine. In that case, recog_for_combine created the
14359 necessary REG_UNUSED notes. Trying to keep any original
14360 REG_UNUSED notes from these insns can cause incorrect output
14361 if it is for the same register as the original i3 dest.
14362 In that case, we will notice that the register is set in i3,
14363 and then add a REG_UNUSED note for the destination of i3, which
14364 is wrong. However, it is possible to have REG_UNUSED notes from
14365 i2 or i1 for register which were both used and clobbered, so
14366 we keep notes from i2 or i1 if they will turn into REG_DEAD
14367 notes. */
14368
14369 /* If this register is set or clobbered in I3, put the note there
14370 unless there is one already. */
14371 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14372 {
14373 if (from_insn != i3)
14374 break;
14375
14376 if (! (REG_P (XEXP (note, 0))
14377 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14378 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14379 place = i3;
14380 }
14381 /* Otherwise, if this register is used by I3, then this register
14382 now dies here, so we must put a REG_DEAD note here unless there
14383 is one already. */
14384 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14385 && ! (REG_P (XEXP (note, 0))
14386 ? find_regno_note (i3, REG_DEAD,
14387 REGNO (XEXP (note, 0)))
14388 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14389 {
14390 PUT_REG_NOTE_KIND (note, REG_DEAD);
14391 place = i3;
14392 }
14393
14394 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14395 but we can't tell which at this point. We must reset any
14396 expectations we had about the value that was previously
14397 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14398 and, if appropriate, restore its previous value, but we
14399 don't have enough information for that at this point. */
14400 else
14401 {
14402 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14403
14404 /* Otherwise, if this register is now referenced in i2
14405 then the register used to be modified in one of the
14406 original insns. If it was i3 (say, in an unused
14407 parallel), it's now completely gone, so the note can
14408 be discarded. But if it was modified in i2, i1 or i0
14409 and we still reference it in i2, then we're
14410 referencing the previous value, and since the
14411 register was modified and REG_UNUSED, we know that
14412 the previous value is now dead. So, if we only
14413 reference the register in i2, we change the note to
14414 REG_DEAD, to reflect the previous value. However, if
14415 we're also setting or clobbering the register as
14416 scratch, we know (because the register was not
14417 referenced in i3) that it's unused, just as it was
14418 unused before, and we place the note in i2. */
14419 if (from_insn != i3 && i2 && INSN_P (i2)
14420 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14421 {
14422 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14423 PUT_REG_NOTE_KIND (note, REG_DEAD);
14424 if (! (REG_P (XEXP (note, 0))
14425 ? find_regno_note (i2, REG_NOTE_KIND (note),
14426 REGNO (XEXP (note, 0)))
14427 : find_reg_note (i2, REG_NOTE_KIND (note),
14428 XEXP (note, 0))))
14429 place = i2;
14430 }
14431 }
14432
14433 break;
14434
14435 case REG_EQUAL:
14436 case REG_EQUIV:
14437 case REG_NOALIAS:
14438 /* These notes say something about results of an insn. We can
14439 only support them if they used to be on I3 in which case they
14440 remain on I3. Otherwise they are ignored.
14441
14442 If the note refers to an expression that is not a constant, we
14443 must also ignore the note since we cannot tell whether the
14444 equivalence is still true. It might be possible to do
14445 slightly better than this (we only have a problem if I2DEST
14446 or I1DEST is present in the expression), but it doesn't
14447 seem worth the trouble. */
14448
14449 if (from_insn == i3
14450 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14451 place = i3;
14452 break;
14453
14454 case REG_INC:
14455 /* These notes say something about how a register is used. They must
14456 be present on any use of the register in I2 or I3. */
14457 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14458 place = i3;
14459
14460 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14461 {
14462 if (place)
14463 place2 = i2;
14464 else
14465 place = i2;
14466 }
14467 break;
14468
14469 case REG_LABEL_TARGET:
14470 case REG_LABEL_OPERAND:
14471 /* This can show up in several ways -- either directly in the
14472 pattern, or hidden off in the constant pool with (or without?)
14473 a REG_EQUAL note. */
14474 /* ??? Ignore the without-reg_equal-note problem for now. */
14475 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14476 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14477 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14478 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14479 place = i3;
14480
14481 if (i2
14482 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14483 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14484 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14485 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14486 {
14487 if (place)
14488 place2 = i2;
14489 else
14490 place = i2;
14491 }
14492
14493 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14494 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14495 there. */
14496 if (place && JUMP_P (place)
14497 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14498 && (JUMP_LABEL (place) == NULL
14499 || JUMP_LABEL (place) == XEXP (note, 0)))
14500 {
14501 rtx label = JUMP_LABEL (place);
14502
14503 if (!label)
14504 JUMP_LABEL (place) = XEXP (note, 0);
14505 else if (LABEL_P (label))
14506 LABEL_NUSES (label)--;
14507 }
14508
14509 if (place2 && JUMP_P (place2)
14510 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14511 && (JUMP_LABEL (place2) == NULL
14512 || JUMP_LABEL (place2) == XEXP (note, 0)))
14513 {
14514 rtx label = JUMP_LABEL (place2);
14515
14516 if (!label)
14517 JUMP_LABEL (place2) = XEXP (note, 0);
14518 else if (LABEL_P (label))
14519 LABEL_NUSES (label)--;
14520 place2 = 0;
14521 }
14522 break;
14523
14524 case REG_NONNEG:
14525 /* This note says something about the value of a register prior
14526 to the execution of an insn. It is too much trouble to see
14527 if the note is still correct in all situations. It is better
14528 to simply delete it. */
14529 break;
14530
14531 case REG_DEAD:
14532 /* If we replaced the right hand side of FROM_INSN with a
14533 REG_EQUAL note, the original use of the dying register
14534 will not have been combined into I3 and I2. In such cases,
14535 FROM_INSN is guaranteed to be the first of the combined
14536 instructions, so we simply need to search back before
14537 FROM_INSN for the previous use or set of this register,
14538 then alter the notes there appropriately.
14539
14540 If the register is used as an input in I3, it dies there.
14541 Similarly for I2, if it is nonzero and adjacent to I3.
14542
14543 If the register is not used as an input in either I3 or I2
14544 and it is not one of the registers we were supposed to eliminate,
14545 there are two possibilities. We might have a non-adjacent I2
14546 or we might have somehow eliminated an additional register
14547 from a computation. For example, we might have had A & B where
14548 we discover that B will always be zero. In this case we will
14549 eliminate the reference to A.
14550
14551 In both cases, we must search to see if we can find a previous
14552 use of A and put the death note there. */
14553
14554 if (from_insn
14555 && from_insn == i2mod
14556 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14557 tem_insn = from_insn;
14558 else
14559 {
14560 if (from_insn
14561 && CALL_P (from_insn)
14562 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14563 place = from_insn;
14564 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14565 {
14566 /* If the new I2 sets the same register that is marked
14567 dead in the note, we do not in general know where to
14568 put the note. One important case we _can_ handle is
14569 when the note comes from I3. */
14570 if (from_insn == i3)
14571 place = i3;
14572 else
14573 break;
14574 }
14575 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14576 place = i3;
14577 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14578 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14579 place = i2;
14580 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14581 && !(i2mod
14582 && reg_overlap_mentioned_p (XEXP (note, 0),
14583 i2mod_old_rhs)))
14584 || rtx_equal_p (XEXP (note, 0), elim_i1)
14585 || rtx_equal_p (XEXP (note, 0), elim_i0))
14586 break;
14587 tem_insn = i3;
14588 }
14589
14590 if (place == 0)
14591 {
14592 basic_block bb = this_basic_block;
14593
14594 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14595 {
14596 if (!NONDEBUG_INSN_P (tem_insn))
14597 {
14598 if (tem_insn == BB_HEAD (bb))
14599 break;
14600 continue;
14601 }
14602
14603 /* If the register is being set at TEM_INSN, see if that is all
14604 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14605 into a REG_UNUSED note instead. Don't delete sets to
14606 global register vars. */
14607 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14608 || !global_regs[REGNO (XEXP (note, 0))])
14609 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14610 {
14611 rtx set = single_set (tem_insn);
14612 rtx inner_dest = 0;
14613 rtx_insn *cc0_setter = NULL;
14614
14615 if (set != 0)
14616 for (inner_dest = SET_DEST (set);
14617 (GET_CODE (inner_dest) == STRICT_LOW_PART
14618 || GET_CODE (inner_dest) == SUBREG
14619 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14620 inner_dest = XEXP (inner_dest, 0))
14621 ;
14622
14623 /* Verify that it was the set, and not a clobber that
14624 modified the register.
14625
14626 CC0 targets must be careful to maintain setter/user
14627 pairs. If we cannot delete the setter due to side
14628 effects, mark the user with an UNUSED note instead
14629 of deleting it. */
14630
14631 if (set != 0 && ! side_effects_p (SET_SRC (set))
14632 && rtx_equal_p (XEXP (note, 0), inner_dest)
14633 && (!HAVE_cc0
14634 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14635 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14636 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14637 {
14638 /* Move the notes and links of TEM_INSN elsewhere.
14639 This might delete other dead insns recursively.
14640 First set the pattern to something that won't use
14641 any register. */
14642 rtx old_notes = REG_NOTES (tem_insn);
14643
14644 PATTERN (tem_insn) = pc_rtx;
14645 REG_NOTES (tem_insn) = NULL;
14646
14647 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14648 NULL_RTX, NULL_RTX, NULL_RTX);
14649 distribute_links (LOG_LINKS (tem_insn));
14650
14651 unsigned int regno = REGNO (XEXP (note, 0));
14652 reg_stat_type *rsp = &reg_stat[regno];
14653 if (rsp->last_set == tem_insn)
14654 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14655
14656 SET_INSN_DELETED (tem_insn);
14657 if (tem_insn == i2)
14658 i2 = NULL;
14659
14660 /* Delete the setter too. */
14661 if (cc0_setter)
14662 {
14663 PATTERN (cc0_setter) = pc_rtx;
14664 old_notes = REG_NOTES (cc0_setter);
14665 REG_NOTES (cc0_setter) = NULL;
14666
14667 distribute_notes (old_notes, cc0_setter,
14668 cc0_setter, NULL,
14669 NULL_RTX, NULL_RTX, NULL_RTX);
14670 distribute_links (LOG_LINKS (cc0_setter));
14671
14672 SET_INSN_DELETED (cc0_setter);
14673 if (cc0_setter == i2)
14674 i2 = NULL;
14675 }
14676 }
14677 else
14678 {
14679 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14680
14681 /* If there isn't already a REG_UNUSED note, put one
14682 here. Do not place a REG_DEAD note, even if
14683 the register is also used here; that would not
14684 match the algorithm used in lifetime analysis
14685 and can cause the consistency check in the
14686 scheduler to fail. */
14687 if (! find_regno_note (tem_insn, REG_UNUSED,
14688 REGNO (XEXP (note, 0))))
14689 place = tem_insn;
14690 break;
14691 }
14692 }
14693 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14694 || (CALL_P (tem_insn)
14695 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14696 {
14697 place = tem_insn;
14698
14699 /* If we are doing a 3->2 combination, and we have a
14700 register which formerly died in i3 and was not used
14701 by i2, which now no longer dies in i3 and is used in
14702 i2 but does not die in i2, and place is between i2
14703 and i3, then we may need to move a link from place to
14704 i2. */
14705 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14706 && from_insn
14707 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14708 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14709 {
14710 struct insn_link *links = LOG_LINKS (place);
14711 LOG_LINKS (place) = NULL;
14712 distribute_links (links);
14713 }
14714 break;
14715 }
14716
14717 if (tem_insn == BB_HEAD (bb))
14718 break;
14719 }
14720
14721 }
14722
14723 /* If the register is set or already dead at PLACE, we needn't do
14724 anything with this note if it is still a REG_DEAD note.
14725 We check here if it is set at all, not if is it totally replaced,
14726 which is what `dead_or_set_p' checks, so also check for it being
14727 set partially. */
14728
14729 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14730 {
14731 unsigned int regno = REGNO (XEXP (note, 0));
14732 reg_stat_type *rsp = &reg_stat[regno];
14733
14734 if (dead_or_set_p (place, XEXP (note, 0))
14735 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14736 {
14737 /* Unless the register previously died in PLACE, clear
14738 last_death. [I no longer understand why this is
14739 being done.] */
14740 if (rsp->last_death != place)
14741 rsp->last_death = 0;
14742 place = 0;
14743 }
14744 else
14745 rsp->last_death = place;
14746
14747 /* If this is a death note for a hard reg that is occupying
14748 multiple registers, ensure that we are still using all
14749 parts of the object. If we find a piece of the object
14750 that is unused, we must arrange for an appropriate REG_DEAD
14751 note to be added for it. However, we can't just emit a USE
14752 and tag the note to it, since the register might actually
14753 be dead; so we recourse, and the recursive call then finds
14754 the previous insn that used this register. */
14755
14756 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14757 {
14758 unsigned int endregno = END_REGNO (XEXP (note, 0));
14759 bool all_used = true;
14760 unsigned int i;
14761
14762 for (i = regno; i < endregno; i++)
14763 if ((! refers_to_regno_p (i, PATTERN (place))
14764 && ! find_regno_fusage (place, USE, i))
14765 || dead_or_set_regno_p (place, i))
14766 {
14767 all_used = false;
14768 break;
14769 }
14770
14771 if (! all_used)
14772 {
14773 /* Put only REG_DEAD notes for pieces that are
14774 not already dead or set. */
14775
14776 for (i = regno; i < endregno;
14777 i += hard_regno_nregs (i, reg_raw_mode[i]))
14778 {
14779 rtx piece = regno_reg_rtx[i];
14780 basic_block bb = this_basic_block;
14781
14782 if (! dead_or_set_p (place, piece)
14783 && ! reg_bitfield_target_p (piece,
14784 PATTERN (place)))
14785 {
14786 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14787 NULL_RTX);
14788
14789 distribute_notes (new_note, place, place,
14790 NULL, NULL_RTX, NULL_RTX,
14791 NULL_RTX);
14792 }
14793 else if (! refers_to_regno_p (i, PATTERN (place))
14794 && ! find_regno_fusage (place, USE, i))
14795 for (tem_insn = PREV_INSN (place); ;
14796 tem_insn = PREV_INSN (tem_insn))
14797 {
14798 if (!NONDEBUG_INSN_P (tem_insn))
14799 {
14800 if (tem_insn == BB_HEAD (bb))
14801 break;
14802 continue;
14803 }
14804 if (dead_or_set_p (tem_insn, piece)
14805 || reg_bitfield_target_p (piece,
14806 PATTERN (tem_insn)))
14807 {
14808 add_reg_note (tem_insn, REG_UNUSED, piece);
14809 break;
14810 }
14811 }
14812 }
14813
14814 place = 0;
14815 }
14816 }
14817 }
14818 break;
14819
14820 default:
14821 /* Any other notes should not be present at this point in the
14822 compilation. */
14823 gcc_unreachable ();
14824 }
14825
14826 if (place)
14827 {
14828 XEXP (note, 1) = REG_NOTES (place);
14829 REG_NOTES (place) = note;
14830
14831 /* Set added_notes_insn to the earliest insn we added a note to. */
14832 if (added_notes_insn == 0
14833 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14834 added_notes_insn = place;
14835 }
14836
14837 if (place2)
14838 {
14839 add_shallow_copy_of_reg_note (place2, note);
14840
14841 /* Set added_notes_insn to the earliest insn we added a note to. */
14842 if (added_notes_insn == 0
14843 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14844 added_notes_insn = place2;
14845 }
14846 }
14847 }
14848 \f
14849 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14850 I3, I2, and I1 to new locations. This is also called to add a link
14851 pointing at I3 when I3's destination is changed. */
14852
14853 static void
14854 distribute_links (struct insn_link *links)
14855 {
14856 struct insn_link *link, *next_link;
14857
14858 for (link = links; link; link = next_link)
14859 {
14860 rtx_insn *place = 0;
14861 rtx_insn *insn;
14862 rtx set, reg;
14863
14864 next_link = link->next;
14865
14866 /* If the insn that this link points to is a NOTE, ignore it. */
14867 if (NOTE_P (link->insn))
14868 continue;
14869
14870 set = 0;
14871 rtx pat = PATTERN (link->insn);
14872 if (GET_CODE (pat) == SET)
14873 set = pat;
14874 else if (GET_CODE (pat) == PARALLEL)
14875 {
14876 int i;
14877 for (i = 0; i < XVECLEN (pat, 0); i++)
14878 {
14879 set = XVECEXP (pat, 0, i);
14880 if (GET_CODE (set) != SET)
14881 continue;
14882
14883 reg = SET_DEST (set);
14884 while (GET_CODE (reg) == ZERO_EXTRACT
14885 || GET_CODE (reg) == STRICT_LOW_PART
14886 || GET_CODE (reg) == SUBREG)
14887 reg = XEXP (reg, 0);
14888
14889 if (!REG_P (reg))
14890 continue;
14891
14892 if (REGNO (reg) == link->regno)
14893 break;
14894 }
14895 if (i == XVECLEN (pat, 0))
14896 continue;
14897 }
14898 else
14899 continue;
14900
14901 reg = SET_DEST (set);
14902
14903 while (GET_CODE (reg) == ZERO_EXTRACT
14904 || GET_CODE (reg) == STRICT_LOW_PART
14905 || GET_CODE (reg) == SUBREG)
14906 reg = XEXP (reg, 0);
14907
14908 if (reg == pc_rtx)
14909 continue;
14910
14911 /* A LOG_LINK is defined as being placed on the first insn that uses
14912 a register and points to the insn that sets the register. Start
14913 searching at the next insn after the target of the link and stop
14914 when we reach a set of the register or the end of the basic block.
14915
14916 Note that this correctly handles the link that used to point from
14917 I3 to I2. Also note that not much searching is typically done here
14918 since most links don't point very far away. */
14919
14920 for (insn = NEXT_INSN (link->insn);
14921 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14922 || BB_HEAD (this_basic_block->next_bb) != insn));
14923 insn = NEXT_INSN (insn))
14924 if (DEBUG_INSN_P (insn))
14925 continue;
14926 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14927 {
14928 if (reg_referenced_p (reg, PATTERN (insn)))
14929 place = insn;
14930 break;
14931 }
14932 else if (CALL_P (insn)
14933 && find_reg_fusage (insn, USE, reg))
14934 {
14935 place = insn;
14936 break;
14937 }
14938 else if (INSN_P (insn) && reg_set_p (reg, insn))
14939 break;
14940
14941 /* If we found a place to put the link, place it there unless there
14942 is already a link to the same insn as LINK at that point. */
14943
14944 if (place)
14945 {
14946 struct insn_link *link2;
14947
14948 FOR_EACH_LOG_LINK (link2, place)
14949 if (link2->insn == link->insn && link2->regno == link->regno)
14950 break;
14951
14952 if (link2 == NULL)
14953 {
14954 link->next = LOG_LINKS (place);
14955 LOG_LINKS (place) = link;
14956
14957 /* Set added_links_insn to the earliest insn we added a
14958 link to. */
14959 if (added_links_insn == 0
14960 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14961 added_links_insn = place;
14962 }
14963 }
14964 }
14965 }
14966 \f
14967 /* Check for any register or memory mentioned in EQUIV that is not
14968 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14969 of EXPR where some registers may have been replaced by constants. */
14970
14971 static bool
14972 unmentioned_reg_p (rtx equiv, rtx expr)
14973 {
14974 subrtx_iterator::array_type array;
14975 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14976 {
14977 const_rtx x = *iter;
14978 if ((REG_P (x) || MEM_P (x))
14979 && !reg_mentioned_p (x, expr))
14980 return true;
14981 }
14982 return false;
14983 }
14984 \f
14985 DEBUG_FUNCTION void
14986 dump_combine_stats (FILE *file)
14987 {
14988 fprintf
14989 (file,
14990 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14991 combine_attempts, combine_merges, combine_extras, combine_successes);
14992 }
14993
14994 void
14995 dump_combine_total_stats (FILE *file)
14996 {
14997 fprintf
14998 (file,
14999 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
15000 total_attempts, total_merges, total_extras, total_successes);
15001 }
15002 \f
15003 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
15004 the reg-to-reg copy can usefully combine with later instructions, but we
15005 do not want to combine the hard reg into later instructions, for that
15006 restricts register allocation. */
15007 static void
15008 make_more_copies (void)
15009 {
15010 basic_block bb;
15011
15012 FOR_EACH_BB_FN (bb, cfun)
15013 {
15014 rtx_insn *insn;
15015
15016 FOR_BB_INSNS (bb, insn)
15017 {
15018 if (!NONDEBUG_INSN_P (insn))
15019 continue;
15020
15021 rtx set = single_set (insn);
15022 if (!set)
15023 continue;
15024
15025 rtx dest = SET_DEST (set);
15026 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
15027 continue;
15028
15029 rtx src = SET_SRC (set);
15030 if (!(REG_P (src) && HARD_REGISTER_P (src)))
15031 continue;
15032 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
15033 continue;
15034
15035 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
15036 rtx_insn *new_insn = gen_move_insn (new_reg, src);
15037 SET_SRC (set) = new_reg;
15038 emit_insn_before (new_insn, insn);
15039 df_insn_rescan (insn);
15040 }
15041 }
15042 }
15043
15044 /* Try combining insns through substitution. */
15045 static unsigned int
15046 rest_of_handle_combine (void)
15047 {
15048 make_more_copies ();
15049
15050 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
15051 df_note_add_problem ();
15052 df_analyze ();
15053
15054 regstat_init_n_sets_and_refs ();
15055 reg_n_sets_max = max_reg_num ();
15056
15057 int rebuild_jump_labels_after_combine
15058 = combine_instructions (get_insns (), max_reg_num ());
15059
15060 /* Combining insns may have turned an indirect jump into a
15061 direct jump. Rebuild the JUMP_LABEL fields of jumping
15062 instructions. */
15063 if (rebuild_jump_labels_after_combine)
15064 {
15065 if (dom_info_available_p (CDI_DOMINATORS))
15066 free_dominance_info (CDI_DOMINATORS);
15067 timevar_push (TV_JUMP);
15068 rebuild_jump_labels (get_insns ());
15069 cleanup_cfg (0);
15070 timevar_pop (TV_JUMP);
15071 }
15072
15073 regstat_free_n_sets_and_refs ();
15074 return 0;
15075 }
15076
15077 namespace {
15078
15079 const pass_data pass_data_combine =
15080 {
15081 RTL_PASS, /* type */
15082 "combine", /* name */
15083 OPTGROUP_NONE, /* optinfo_flags */
15084 TV_COMBINE, /* tv_id */
15085 PROP_cfglayout, /* properties_required */
15086 0, /* properties_provided */
15087 0, /* properties_destroyed */
15088 0, /* todo_flags_start */
15089 TODO_df_finish, /* todo_flags_finish */
15090 };
15091
15092 class pass_combine : public rtl_opt_pass
15093 {
15094 public:
15095 pass_combine (gcc::context *ctxt)
15096 : rtl_opt_pass (pass_data_combine, ctxt)
15097 {}
15098
15099 /* opt_pass methods: */
15100 virtual bool gate (function *) { return (optimize > 0); }
15101 virtual unsigned int execute (function *)
15102 {
15103 return rest_of_handle_combine ();
15104 }
15105
15106 }; // class pass_combine
15107
15108 } // anon namespace
15109
15110 rtl_opt_pass *
15111 make_pass_combine (gcc::context *ctxt)
15112 {
15113 return new pass_combine (ctxt);
15114 }