]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/combine.c
Update copyright years.
[thirdparty/gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107
108 /* Number of attempts to combine instructions in this function. */
109
110 static int combine_attempts;
111
112 /* Number of attempts that got as far as substitution in this function. */
113
114 static int combine_merges;
115
116 /* Number of instructions combined with added SETs in this function. */
117
118 static int combine_extras;
119
120 /* Number of instructions combined in this function. */
121
122 static int combine_successes;
123
124 /* Totals over entire compilation. */
125
126 static int total_attempts, total_merges, total_extras, total_successes;
127
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
134
135 static rtx_insn *i2mod;
136
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138
139 static rtx i2mod_old_rhs;
140
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142
143 static rtx i2mod_new_rhs;
144 \f
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
148
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
151
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
157
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
160
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
164
165 Therefore, we maintain the following fields:
166
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
175
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
180
181 (The next two parameters are out of date).
182
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
194
195 /* Record last value assigned to (hard or pseudo) register n. */
196
197 rtx last_set_value;
198
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
201
202 int last_set_table_tick;
203
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
206
207 int last_set_label;
208
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
213
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
221
222 char last_set_invalid;
223
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
228
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
233
234 If an entry is zero, it means that we don't know anything special. */
235
236 unsigned char sign_bit_copies;
237
238 unsigned HOST_WIDE_INT nonzero_bits;
239
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
243
244 int truncation_label;
245
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
250
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 };
253
254
255 static vec<reg_stat_type> reg_stat;
256
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
264
265 static unsigned int reg_n_sets_max;
266
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
269
270 static int mem_last_set;
271
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
274
275 static int last_call_luid;
276
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
282
283 static rtx_insn *subst_insn;
284
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
291
292 static int subst_low_luid;
293
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
296
297 static HARD_REG_SET newpat_used_regs;
298
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
302
303 static rtx_insn *added_links_insn;
304
305 /* And similarly, for notes. */
306
307 static rtx_insn *added_notes_insn;
308
309 /* Basic block in which we are performing combines. */
310 static basic_block this_basic_block;
311 static bool optimize_this_for_speed_p;
312
313 \f
314 /* Length of the currently allocated uid_insn_cost array. */
315
316 static int max_uid_known;
317
318 /* The following array records the insn_cost for every insn
319 in the instruction stream. */
320
321 static int *uid_insn_cost;
322
323 /* The following array records the LOG_LINKS for every insn in the
324 instruction stream as struct insn_link pointers. */
325
326 struct insn_link {
327 rtx_insn *insn;
328 unsigned int regno;
329 struct insn_link *next;
330 };
331
332 static struct insn_link **uid_log_links;
333
334 static inline int
335 insn_uid_check (const_rtx insn)
336 {
337 int uid = INSN_UID (insn);
338 gcc_checking_assert (uid <= max_uid_known);
339 return uid;
340 }
341
342 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
343 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
344
345 #define FOR_EACH_LOG_LINK(L, INSN) \
346 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
347
348 /* Links for LOG_LINKS are allocated from this obstack. */
349
350 static struct obstack insn_link_obstack;
351
352 /* Allocate a link. */
353
354 static inline struct insn_link *
355 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
356 {
357 struct insn_link *l
358 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
359 sizeof (struct insn_link));
360 l->insn = insn;
361 l->regno = regno;
362 l->next = next;
363 return l;
364 }
365
366 /* Incremented for each basic block. */
367
368 static int label_tick;
369
370 /* Reset to label_tick for each extended basic block in scanning order. */
371
372 static int label_tick_ebb_start;
373
374 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
375 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
376
377 static scalar_int_mode nonzero_bits_mode;
378
379 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
380 be safely used. It is zero while computing them and after combine has
381 completed. This former test prevents propagating values based on
382 previously set values, which can be incorrect if a variable is modified
383 in a loop. */
384
385 static int nonzero_sign_valid;
386
387 \f
388 /* Record one modification to rtl structure
389 to be undone by storing old_contents into *where. */
390
391 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
392
393 struct undo
394 {
395 struct undo *next;
396 enum undo_kind kind;
397 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
398 union { rtx *r; int *i; struct insn_link **l; } where;
399 };
400
401 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
402 num_undo says how many are currently recorded.
403
404 other_insn is nonzero if we have modified some other insn in the process
405 of working on subst_insn. It must be verified too. */
406
407 struct undobuf
408 {
409 struct undo *undos;
410 struct undo *frees;
411 rtx_insn *other_insn;
412 };
413
414 static struct undobuf undobuf;
415
416 /* Number of times the pseudo being substituted for
417 was found and replaced. */
418
419 static int n_occurrences;
420
421 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
422 scalar_int_mode,
423 unsigned HOST_WIDE_INT *);
424 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
425 scalar_int_mode,
426 unsigned int *);
427 static void do_SUBST (rtx *, rtx);
428 static void do_SUBST_INT (int *, int);
429 static void init_reg_last (void);
430 static void setup_incoming_promotions (rtx_insn *);
431 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
432 static int cant_combine_insn_p (rtx_insn *);
433 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
434 rtx_insn *, rtx_insn *, rtx *, rtx *);
435 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
436 static int contains_muldiv (rtx);
437 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
438 int *, rtx_insn *);
439 static void undo_all (void);
440 static void undo_commit (void);
441 static rtx *find_split_point (rtx *, rtx_insn *, bool);
442 static rtx subst (rtx, rtx, rtx, int, int, int);
443 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
444 static rtx simplify_if_then_else (rtx);
445 static rtx simplify_set (rtx);
446 static rtx simplify_logical (rtx);
447 static rtx expand_compound_operation (rtx);
448 static const_rtx expand_field_assignment (const_rtx);
449 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
450 rtx, unsigned HOST_WIDE_INT, int, int, int);
451 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
452 unsigned HOST_WIDE_INT *);
453 static rtx canon_reg_for_combine (rtx, rtx);
454 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
455 scalar_int_mode, unsigned HOST_WIDE_INT, int);
456 static rtx force_to_mode (rtx, machine_mode,
457 unsigned HOST_WIDE_INT, int);
458 static rtx if_then_else_cond (rtx, rtx *, rtx *);
459 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
460 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
461 static rtx make_field_assignment (rtx);
462 static rtx apply_distributive_law (rtx);
463 static rtx distribute_and_simplify_rtx (rtx, int);
464 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
465 unsigned HOST_WIDE_INT);
466 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
467 unsigned HOST_WIDE_INT);
468 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
469 HOST_WIDE_INT, machine_mode, int *);
470 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
471 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
472 int);
473 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
474 static rtx gen_lowpart_for_combine (machine_mode, rtx);
475 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
476 rtx, rtx *);
477 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
478 static void update_table_tick (rtx);
479 static void record_value_for_reg (rtx, rtx_insn *, rtx);
480 static void check_promoted_subreg (rtx_insn *, rtx);
481 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
482 static void record_dead_and_set_regs (rtx_insn *);
483 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
484 static rtx get_last_value (const_rtx);
485 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
486 static int reg_dead_at_p (rtx, rtx_insn *);
487 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
488 static int reg_bitfield_target_p (rtx, rtx);
489 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
490 static void distribute_links (struct insn_link *);
491 static void mark_used_regs_combine (rtx);
492 static void record_promoted_value (rtx_insn *, rtx);
493 static bool unmentioned_reg_p (rtx, rtx);
494 static void record_truncated_values (rtx *, void *);
495 static bool reg_truncated_to_mode (machine_mode, const_rtx);
496 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
497 \f
498
499 /* It is not safe to use ordinary gen_lowpart in combine.
500 See comments in gen_lowpart_for_combine. */
501 #undef RTL_HOOKS_GEN_LOWPART
502 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
503
504 /* Our implementation of gen_lowpart never emits a new pseudo. */
505 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
506 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
507
508 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
509 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
510
511 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
512 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
513
514 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
515 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
516
517 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
518
519 \f
520 /* Convenience wrapper for the canonicalize_comparison target hook.
521 Target hooks cannot use enum rtx_code. */
522 static inline void
523 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
524 bool op0_preserve_value)
525 {
526 int code_int = (int)*code;
527 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
528 *code = (enum rtx_code)code_int;
529 }
530
531 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
532 PATTERN can not be split. Otherwise, it returns an insn sequence.
533 This is a wrapper around split_insns which ensures that the
534 reg_stat vector is made larger if the splitter creates a new
535 register. */
536
537 static rtx_insn *
538 combine_split_insns (rtx pattern, rtx_insn *insn)
539 {
540 rtx_insn *ret;
541 unsigned int nregs;
542
543 ret = split_insns (pattern, insn);
544 nregs = max_reg_num ();
545 if (nregs > reg_stat.length ())
546 reg_stat.safe_grow_cleared (nregs);
547 return ret;
548 }
549
550 /* This is used by find_single_use to locate an rtx in LOC that
551 contains exactly one use of DEST, which is typically either a REG
552 or CC0. It returns a pointer to the innermost rtx expression
553 containing DEST. Appearances of DEST that are being used to
554 totally replace it are not counted. */
555
556 static rtx *
557 find_single_use_1 (rtx dest, rtx *loc)
558 {
559 rtx x = *loc;
560 enum rtx_code code = GET_CODE (x);
561 rtx *result = NULL;
562 rtx *this_result;
563 int i;
564 const char *fmt;
565
566 switch (code)
567 {
568 case CONST:
569 case LABEL_REF:
570 case SYMBOL_REF:
571 CASE_CONST_ANY:
572 case CLOBBER:
573 return 0;
574
575 case SET:
576 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
577 of a REG that occupies all of the REG, the insn uses DEST if
578 it is mentioned in the destination or the source. Otherwise, we
579 need just check the source. */
580 if (GET_CODE (SET_DEST (x)) != CC0
581 && GET_CODE (SET_DEST (x)) != PC
582 && !REG_P (SET_DEST (x))
583 && ! (GET_CODE (SET_DEST (x)) == SUBREG
584 && REG_P (SUBREG_REG (SET_DEST (x)))
585 && !read_modify_subreg_p (SET_DEST (x))))
586 break;
587
588 return find_single_use_1 (dest, &SET_SRC (x));
589
590 case MEM:
591 case SUBREG:
592 return find_single_use_1 (dest, &XEXP (x, 0));
593
594 default:
595 break;
596 }
597
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
600
601 fmt = GET_RTX_FORMAT (code);
602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
603 {
604 if (fmt[i] == 'e')
605 {
606 if (dest == XEXP (x, i)
607 || (REG_P (dest) && REG_P (XEXP (x, i))
608 && REGNO (dest) == REGNO (XEXP (x, i))))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XEXP (x, i));
612
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 /* Duplicate usage. */
617 return NULL;
618 }
619 else if (fmt[i] == 'E')
620 {
621 int j;
622
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
624 {
625 if (XVECEXP (x, i, j) == dest
626 || (REG_P (dest)
627 && REG_P (XVECEXP (x, i, j))
628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 this_result = loc;
630 else
631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
632
633 if (result == NULL)
634 result = this_result;
635 else if (this_result)
636 return NULL;
637 }
638 }
639 }
640
641 return result;
642 }
643
644
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
647 it is used.
648
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
650
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
653
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
658
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
661 {
662 basic_block bb;
663 rtx_insn *next;
664 rtx *result;
665 struct insn_link *link;
666
667 if (dest == cc0_rtx)
668 {
669 next = NEXT_INSN (insn);
670 if (next == 0
671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 return 0;
673
674 result = find_single_use_1 (dest, &PATTERN (next));
675 if (result && ploc)
676 *ploc = next;
677 return result;
678 }
679
680 if (!REG_P (dest))
681 return 0;
682
683 bb = BLOCK_FOR_INSN (insn);
684 for (next = NEXT_INSN (insn);
685 next && BLOCK_FOR_INSN (next) == bb;
686 next = NEXT_INSN (next))
687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
688 {
689 FOR_EACH_LOG_LINK (link, next)
690 if (link->insn == insn && link->regno == REGNO (dest))
691 break;
692
693 if (link)
694 {
695 result = find_single_use_1 (dest, &PATTERN (next));
696 if (ploc)
697 *ploc = next;
698 return result;
699 }
700 }
701
702 return 0;
703 }
704 \f
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
709 the undo table. */
710
711 static void
712 do_SUBST (rtx *into, rtx newval)
713 {
714 struct undo *buf;
715 rtx oldval = *into;
716
717 if (oldval == newval)
718 return;
719
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726 && CONST_INT_P (newval))
727 {
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval)
731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
732
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval))));
741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval, 0))));
743 }
744
745 if (undobuf.frees)
746 buf = undobuf.frees, undobuf.frees = buf->next;
747 else
748 buf = XNEW (struct undo);
749
750 buf->kind = UNDO_RTX;
751 buf->where.r = into;
752 buf->old_contents.r = oldval;
753 *into = newval;
754
755 buf->next = undobuf.undos, undobuf.undos = buf;
756 }
757
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
759
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
762 not safe. */
763
764 static void
765 do_SUBST_INT (int *into, int newval)
766 {
767 struct undo *buf;
768 int oldval = *into;
769
770 if (oldval == newval)
771 return;
772
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
777
778 buf->kind = UNDO_INT;
779 buf->where.i = into;
780 buf->old_contents.i = oldval;
781 *into = newval;
782
783 buf->next = undobuf.undos, undobuf.undos = buf;
784 }
785
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
787
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
791 well. */
792
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
795 {
796 struct undo *buf;
797 machine_mode oldval = GET_MODE (*into);
798
799 if (oldval == newval)
800 return;
801
802 if (undobuf.frees)
803 buf = undobuf.frees, undobuf.frees = buf->next;
804 else
805 buf = XNEW (struct undo);
806
807 buf->kind = UNDO_MODE;
808 buf->where.r = into;
809 buf->old_contents.m = oldval;
810 adjust_reg_mode (*into, newval);
811
812 buf->next = undobuf.undos, undobuf.undos = buf;
813 }
814
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
816
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
818
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
821 {
822 struct undo *buf;
823 struct insn_link * oldval = *into;
824
825 if (oldval == newval)
826 return;
827
828 if (undobuf.frees)
829 buf = undobuf.frees, undobuf.frees = buf->next;
830 else
831 buf = XNEW (struct undo);
832
833 buf->kind = UNDO_LINKS;
834 buf->where.l = into;
835 buf->old_contents.l = oldval;
836 *into = newval;
837
838 buf->next = undobuf.undos, undobuf.undos = buf;
839 }
840
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
842 \f
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
850
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 rtx newpat, rtx newi2pat, rtx newotherpat)
854 {
855 int i0_cost, i1_cost, i2_cost, i3_cost;
856 int new_i2_cost, new_i3_cost;
857 int old_cost, new_cost;
858
859 /* Lookup the original insn_costs. */
860 i2_cost = INSN_COST (i2);
861 i3_cost = INSN_COST (i3);
862
863 if (i1)
864 {
865 i1_cost = INSN_COST (i1);
866 if (i0)
867 {
868 i0_cost = INSN_COST (i0);
869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
871 }
872 else
873 {
874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 ? i1_cost + i2_cost + i3_cost : 0);
876 i0_cost = 0;
877 }
878 }
879 else
880 {
881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882 i1_cost = i0_cost = 0;
883 }
884
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886 correct that. */
887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888 old_cost -= i1_cost;
889
890
891 /* Calculate the replacement insn_costs. */
892 rtx tmp = PATTERN (i3);
893 PATTERN (i3) = newpat;
894 int tmpi = INSN_CODE (i3);
895 INSN_CODE (i3) = -1;
896 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
897 PATTERN (i3) = tmp;
898 INSN_CODE (i3) = tmpi;
899 if (newi2pat)
900 {
901 tmp = PATTERN (i2);
902 PATTERN (i2) = newi2pat;
903 tmpi = INSN_CODE (i2);
904 INSN_CODE (i2) = -1;
905 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
906 PATTERN (i2) = tmp;
907 INSN_CODE (i2) = tmpi;
908 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
909 ? new_i2_cost + new_i3_cost : 0;
910 }
911 else
912 {
913 new_cost = new_i3_cost;
914 new_i2_cost = 0;
915 }
916
917 if (undobuf.other_insn)
918 {
919 int old_other_cost, new_other_cost;
920
921 old_other_cost = INSN_COST (undobuf.other_insn);
922 tmp = PATTERN (undobuf.other_insn);
923 PATTERN (undobuf.other_insn) = newotherpat;
924 tmpi = INSN_CODE (undobuf.other_insn);
925 INSN_CODE (undobuf.other_insn) = -1;
926 new_other_cost = insn_cost (undobuf.other_insn,
927 optimize_this_for_speed_p);
928 PATTERN (undobuf.other_insn) = tmp;
929 INSN_CODE (undobuf.other_insn) = tmpi;
930 if (old_other_cost > 0 && new_other_cost > 0)
931 {
932 old_cost += old_other_cost;
933 new_cost += new_other_cost;
934 }
935 else
936 old_cost = 0;
937 }
938
939 /* Disallow this combination if both new_cost and old_cost are greater than
940 zero, and new_cost is greater than old cost. */
941 int reject = old_cost > 0 && new_cost > old_cost;
942
943 if (dump_file)
944 {
945 fprintf (dump_file, "%s combination of insns ",
946 reject ? "rejecting" : "allowing");
947 if (i0)
948 fprintf (dump_file, "%d, ", INSN_UID (i0));
949 if (i1 && INSN_UID (i1) != INSN_UID (i2))
950 fprintf (dump_file, "%d, ", INSN_UID (i1));
951 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
952
953 fprintf (dump_file, "original costs ");
954 if (i0)
955 fprintf (dump_file, "%d + ", i0_cost);
956 if (i1 && INSN_UID (i1) != INSN_UID (i2))
957 fprintf (dump_file, "%d + ", i1_cost);
958 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
959
960 if (newi2pat)
961 fprintf (dump_file, "replacement costs %d + %d = %d\n",
962 new_i2_cost, new_i3_cost, new_cost);
963 else
964 fprintf (dump_file, "replacement cost %d\n", new_cost);
965 }
966
967 if (reject)
968 return false;
969
970 /* Update the uid_insn_cost array with the replacement costs. */
971 INSN_COST (i2) = new_i2_cost;
972 INSN_COST (i3) = new_i3_cost;
973 if (i1)
974 {
975 INSN_COST (i1) = 0;
976 if (i0)
977 INSN_COST (i0) = 0;
978 }
979
980 return true;
981 }
982
983
984 /* Delete any insns that copy a register to itself. */
985
986 static void
987 delete_noop_moves (void)
988 {
989 rtx_insn *insn, *next;
990 basic_block bb;
991
992 FOR_EACH_BB_FN (bb, cfun)
993 {
994 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
995 {
996 next = NEXT_INSN (insn);
997 if (INSN_P (insn) && noop_move_p (insn))
998 {
999 if (dump_file)
1000 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1001
1002 delete_insn_and_edges (insn);
1003 }
1004 }
1005 }
1006 }
1007
1008 \f
1009 /* Return false if we do not want to (or cannot) combine DEF. */
1010 static bool
1011 can_combine_def_p (df_ref def)
1012 {
1013 /* Do not consider if it is pre/post modification in MEM. */
1014 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1015 return false;
1016
1017 unsigned int regno = DF_REF_REGNO (def);
1018
1019 /* Do not combine frame pointer adjustments. */
1020 if ((regno == FRAME_POINTER_REGNUM
1021 && (!reload_completed || frame_pointer_needed))
1022 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1023 && regno == HARD_FRAME_POINTER_REGNUM
1024 && (!reload_completed || frame_pointer_needed))
1025 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1026 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1027 return false;
1028
1029 return true;
1030 }
1031
1032 /* Return false if we do not want to (or cannot) combine USE. */
1033 static bool
1034 can_combine_use_p (df_ref use)
1035 {
1036 /* Do not consider the usage of the stack pointer by function call. */
1037 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1038 return false;
1039
1040 return true;
1041 }
1042
1043 /* Fill in log links field for all insns. */
1044
1045 static void
1046 create_log_links (void)
1047 {
1048 basic_block bb;
1049 rtx_insn **next_use;
1050 rtx_insn *insn;
1051 df_ref def, use;
1052
1053 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1054
1055 /* Pass through each block from the end, recording the uses of each
1056 register and establishing log links when def is encountered.
1057 Note that we do not clear next_use array in order to save time,
1058 so we have to test whether the use is in the same basic block as def.
1059
1060 There are a few cases below when we do not consider the definition or
1061 usage -- these are taken from original flow.c did. Don't ask me why it is
1062 done this way; I don't know and if it works, I don't want to know. */
1063
1064 FOR_EACH_BB_FN (bb, cfun)
1065 {
1066 FOR_BB_INSNS_REVERSE (bb, insn)
1067 {
1068 if (!NONDEBUG_INSN_P (insn))
1069 continue;
1070
1071 /* Log links are created only once. */
1072 gcc_assert (!LOG_LINKS (insn));
1073
1074 FOR_EACH_INSN_DEF (def, insn)
1075 {
1076 unsigned int regno = DF_REF_REGNO (def);
1077 rtx_insn *use_insn;
1078
1079 if (!next_use[regno])
1080 continue;
1081
1082 if (!can_combine_def_p (def))
1083 continue;
1084
1085 use_insn = next_use[regno];
1086 next_use[regno] = NULL;
1087
1088 if (BLOCK_FOR_INSN (use_insn) != bb)
1089 continue;
1090
1091 /* flow.c claimed:
1092
1093 We don't build a LOG_LINK for hard registers contained
1094 in ASM_OPERANDs. If these registers get replaced,
1095 we might wind up changing the semantics of the insn,
1096 even if reload can make what appear to be valid
1097 assignments later. */
1098 if (regno < FIRST_PSEUDO_REGISTER
1099 && asm_noperands (PATTERN (use_insn)) >= 0)
1100 continue;
1101
1102 /* Don't add duplicate links between instructions. */
1103 struct insn_link *links;
1104 FOR_EACH_LOG_LINK (links, use_insn)
1105 if (insn == links->insn && regno == links->regno)
1106 break;
1107
1108 if (!links)
1109 LOG_LINKS (use_insn)
1110 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1111 }
1112
1113 FOR_EACH_INSN_USE (use, insn)
1114 if (can_combine_use_p (use))
1115 next_use[DF_REF_REGNO (use)] = insn;
1116 }
1117 }
1118
1119 free (next_use);
1120 }
1121
1122 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1123 true if we found a LOG_LINK that proves that A feeds B. This only works
1124 if there are no instructions between A and B which could have a link
1125 depending on A, since in that case we would not record a link for B.
1126 We also check the implicit dependency created by a cc0 setter/user
1127 pair. */
1128
1129 static bool
1130 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1131 {
1132 struct insn_link *links;
1133 FOR_EACH_LOG_LINK (links, b)
1134 if (links->insn == a)
1135 return true;
1136 if (HAVE_cc0 && sets_cc0_p (a))
1137 return true;
1138 return false;
1139 }
1140 \f
1141 /* Main entry point for combiner. F is the first insn of the function.
1142 NREGS is the first unused pseudo-reg number.
1143
1144 Return nonzero if the combiner has turned an indirect jump
1145 instruction into a direct jump. */
1146 static int
1147 combine_instructions (rtx_insn *f, unsigned int nregs)
1148 {
1149 rtx_insn *insn, *next;
1150 rtx_insn *prev;
1151 struct insn_link *links, *nextlinks;
1152 rtx_insn *first;
1153 basic_block last_bb;
1154
1155 int new_direct_jump_p = 0;
1156
1157 for (first = f; first && !NONDEBUG_INSN_P (first); )
1158 first = NEXT_INSN (first);
1159 if (!first)
1160 return 0;
1161
1162 combine_attempts = 0;
1163 combine_merges = 0;
1164 combine_extras = 0;
1165 combine_successes = 0;
1166
1167 rtl_hooks = combine_rtl_hooks;
1168
1169 reg_stat.safe_grow_cleared (nregs);
1170
1171 init_recog_no_volatile ();
1172
1173 /* Allocate array for insn info. */
1174 max_uid_known = get_max_uid ();
1175 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1176 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1177 gcc_obstack_init (&insn_link_obstack);
1178
1179 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1180
1181 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1182 problems when, for example, we have j <<= 1 in a loop. */
1183
1184 nonzero_sign_valid = 0;
1185 label_tick = label_tick_ebb_start = 1;
1186
1187 /* Scan all SETs and see if we can deduce anything about what
1188 bits are known to be zero for some registers and how many copies
1189 of the sign bit are known to exist for those registers.
1190
1191 Also set any known values so that we can use it while searching
1192 for what bits are known to be set. */
1193
1194 setup_incoming_promotions (first);
1195 /* Allow the entry block and the first block to fall into the same EBB.
1196 Conceptually the incoming promotions are assigned to the entry block. */
1197 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1198
1199 create_log_links ();
1200 FOR_EACH_BB_FN (this_basic_block, cfun)
1201 {
1202 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1203 last_call_luid = 0;
1204 mem_last_set = -1;
1205
1206 label_tick++;
1207 if (!single_pred_p (this_basic_block)
1208 || single_pred (this_basic_block) != last_bb)
1209 label_tick_ebb_start = label_tick;
1210 last_bb = this_basic_block;
1211
1212 FOR_BB_INSNS (this_basic_block, insn)
1213 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1214 {
1215 rtx links;
1216
1217 subst_low_luid = DF_INSN_LUID (insn);
1218 subst_insn = insn;
1219
1220 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1221 insn);
1222 record_dead_and_set_regs (insn);
1223
1224 if (AUTO_INC_DEC)
1225 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1226 if (REG_NOTE_KIND (links) == REG_INC)
1227 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1228 insn);
1229
1230 /* Record the current insn_cost of this instruction. */
1231 if (NONJUMP_INSN_P (insn))
1232 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1233 if (dump_file)
1234 {
1235 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1236 dump_insn_slim (dump_file, insn);
1237 }
1238 }
1239 }
1240
1241 nonzero_sign_valid = 1;
1242
1243 /* Now scan all the insns in forward order. */
1244 label_tick = label_tick_ebb_start = 1;
1245 init_reg_last ();
1246 setup_incoming_promotions (first);
1247 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1248 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1249
1250 FOR_EACH_BB_FN (this_basic_block, cfun)
1251 {
1252 rtx_insn *last_combined_insn = NULL;
1253
1254 /* Ignore instruction combination in basic blocks that are going to
1255 be removed as unreachable anyway. See PR82386. */
1256 if (EDGE_COUNT (this_basic_block->preds) == 0)
1257 continue;
1258
1259 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1260 last_call_luid = 0;
1261 mem_last_set = -1;
1262
1263 label_tick++;
1264 if (!single_pred_p (this_basic_block)
1265 || single_pred (this_basic_block) != last_bb)
1266 label_tick_ebb_start = label_tick;
1267 last_bb = this_basic_block;
1268
1269 rtl_profile_for_bb (this_basic_block);
1270 for (insn = BB_HEAD (this_basic_block);
1271 insn != NEXT_INSN (BB_END (this_basic_block));
1272 insn = next ? next : NEXT_INSN (insn))
1273 {
1274 next = 0;
1275 if (!NONDEBUG_INSN_P (insn))
1276 continue;
1277
1278 while (last_combined_insn
1279 && (!NONDEBUG_INSN_P (last_combined_insn)
1280 || last_combined_insn->deleted ()))
1281 last_combined_insn = PREV_INSN (last_combined_insn);
1282 if (last_combined_insn == NULL_RTX
1283 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1284 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1285 last_combined_insn = insn;
1286
1287 /* See if we know about function return values before this
1288 insn based upon SUBREG flags. */
1289 check_promoted_subreg (insn, PATTERN (insn));
1290
1291 /* See if we can find hardregs and subreg of pseudos in
1292 narrower modes. This could help turning TRUNCATEs
1293 into SUBREGs. */
1294 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1295
1296 /* Try this insn with each insn it links back to. */
1297
1298 FOR_EACH_LOG_LINK (links, insn)
1299 if ((next = try_combine (insn, links->insn, NULL,
1300 NULL, &new_direct_jump_p,
1301 last_combined_insn)) != 0)
1302 {
1303 statistics_counter_event (cfun, "two-insn combine", 1);
1304 goto retry;
1305 }
1306
1307 /* Try each sequence of three linked insns ending with this one. */
1308
1309 if (max_combine >= 3)
1310 FOR_EACH_LOG_LINK (links, insn)
1311 {
1312 rtx_insn *link = links->insn;
1313
1314 /* If the linked insn has been replaced by a note, then there
1315 is no point in pursuing this chain any further. */
1316 if (NOTE_P (link))
1317 continue;
1318
1319 FOR_EACH_LOG_LINK (nextlinks, link)
1320 if ((next = try_combine (insn, link, nextlinks->insn,
1321 NULL, &new_direct_jump_p,
1322 last_combined_insn)) != 0)
1323 {
1324 statistics_counter_event (cfun, "three-insn combine", 1);
1325 goto retry;
1326 }
1327 }
1328
1329 /* Try to combine a jump insn that uses CC0
1330 with a preceding insn that sets CC0, and maybe with its
1331 logical predecessor as well.
1332 This is how we make decrement-and-branch insns.
1333 We need this special code because data flow connections
1334 via CC0 do not get entered in LOG_LINKS. */
1335
1336 if (HAVE_cc0
1337 && JUMP_P (insn)
1338 && (prev = prev_nonnote_insn (insn)) != 0
1339 && NONJUMP_INSN_P (prev)
1340 && sets_cc0_p (PATTERN (prev)))
1341 {
1342 if ((next = try_combine (insn, prev, NULL, NULL,
1343 &new_direct_jump_p,
1344 last_combined_insn)) != 0)
1345 goto retry;
1346
1347 FOR_EACH_LOG_LINK (nextlinks, prev)
1348 if ((next = try_combine (insn, prev, nextlinks->insn,
1349 NULL, &new_direct_jump_p,
1350 last_combined_insn)) != 0)
1351 goto retry;
1352 }
1353
1354 /* Do the same for an insn that explicitly references CC0. */
1355 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1356 && (prev = prev_nonnote_insn (insn)) != 0
1357 && NONJUMP_INSN_P (prev)
1358 && sets_cc0_p (PATTERN (prev))
1359 && GET_CODE (PATTERN (insn)) == SET
1360 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1361 {
1362 if ((next = try_combine (insn, prev, NULL, NULL,
1363 &new_direct_jump_p,
1364 last_combined_insn)) != 0)
1365 goto retry;
1366
1367 FOR_EACH_LOG_LINK (nextlinks, prev)
1368 if ((next = try_combine (insn, prev, nextlinks->insn,
1369 NULL, &new_direct_jump_p,
1370 last_combined_insn)) != 0)
1371 goto retry;
1372 }
1373
1374 /* Finally, see if any of the insns that this insn links to
1375 explicitly references CC0. If so, try this insn, that insn,
1376 and its predecessor if it sets CC0. */
1377 if (HAVE_cc0)
1378 {
1379 FOR_EACH_LOG_LINK (links, insn)
1380 if (NONJUMP_INSN_P (links->insn)
1381 && GET_CODE (PATTERN (links->insn)) == SET
1382 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1383 && (prev = prev_nonnote_insn (links->insn)) != 0
1384 && NONJUMP_INSN_P (prev)
1385 && sets_cc0_p (PATTERN (prev))
1386 && (next = try_combine (insn, links->insn,
1387 prev, NULL, &new_direct_jump_p,
1388 last_combined_insn)) != 0)
1389 goto retry;
1390 }
1391
1392 /* Try combining an insn with two different insns whose results it
1393 uses. */
1394 if (max_combine >= 3)
1395 FOR_EACH_LOG_LINK (links, insn)
1396 for (nextlinks = links->next; nextlinks;
1397 nextlinks = nextlinks->next)
1398 if ((next = try_combine (insn, links->insn,
1399 nextlinks->insn, NULL,
1400 &new_direct_jump_p,
1401 last_combined_insn)) != 0)
1402
1403 {
1404 statistics_counter_event (cfun, "three-insn combine", 1);
1405 goto retry;
1406 }
1407
1408 /* Try four-instruction combinations. */
1409 if (max_combine >= 4)
1410 FOR_EACH_LOG_LINK (links, insn)
1411 {
1412 struct insn_link *next1;
1413 rtx_insn *link = links->insn;
1414
1415 /* If the linked insn has been replaced by a note, then there
1416 is no point in pursuing this chain any further. */
1417 if (NOTE_P (link))
1418 continue;
1419
1420 FOR_EACH_LOG_LINK (next1, link)
1421 {
1422 rtx_insn *link1 = next1->insn;
1423 if (NOTE_P (link1))
1424 continue;
1425 /* I0 -> I1 -> I2 -> I3. */
1426 FOR_EACH_LOG_LINK (nextlinks, link1)
1427 if ((next = try_combine (insn, link, link1,
1428 nextlinks->insn,
1429 &new_direct_jump_p,
1430 last_combined_insn)) != 0)
1431 {
1432 statistics_counter_event (cfun, "four-insn combine", 1);
1433 goto retry;
1434 }
1435 /* I0, I1 -> I2, I2 -> I3. */
1436 for (nextlinks = next1->next; nextlinks;
1437 nextlinks = nextlinks->next)
1438 if ((next = try_combine (insn, link, link1,
1439 nextlinks->insn,
1440 &new_direct_jump_p,
1441 last_combined_insn)) != 0)
1442 {
1443 statistics_counter_event (cfun, "four-insn combine", 1);
1444 goto retry;
1445 }
1446 }
1447
1448 for (next1 = links->next; next1; next1 = next1->next)
1449 {
1450 rtx_insn *link1 = next1->insn;
1451 if (NOTE_P (link1))
1452 continue;
1453 /* I0 -> I2; I1, I2 -> I3. */
1454 FOR_EACH_LOG_LINK (nextlinks, link)
1455 if ((next = try_combine (insn, link, link1,
1456 nextlinks->insn,
1457 &new_direct_jump_p,
1458 last_combined_insn)) != 0)
1459 {
1460 statistics_counter_event (cfun, "four-insn combine", 1);
1461 goto retry;
1462 }
1463 /* I0 -> I1; I1, I2 -> I3. */
1464 FOR_EACH_LOG_LINK (nextlinks, link1)
1465 if ((next = try_combine (insn, link, link1,
1466 nextlinks->insn,
1467 &new_direct_jump_p,
1468 last_combined_insn)) != 0)
1469 {
1470 statistics_counter_event (cfun, "four-insn combine", 1);
1471 goto retry;
1472 }
1473 }
1474 }
1475
1476 /* Try this insn with each REG_EQUAL note it links back to. */
1477 FOR_EACH_LOG_LINK (links, insn)
1478 {
1479 rtx set, note;
1480 rtx_insn *temp = links->insn;
1481 if ((set = single_set (temp)) != 0
1482 && (note = find_reg_equal_equiv_note (temp)) != 0
1483 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1484 /* Avoid using a register that may already been marked
1485 dead by an earlier instruction. */
1486 && ! unmentioned_reg_p (note, SET_SRC (set))
1487 && (GET_MODE (note) == VOIDmode
1488 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1489 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1490 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1491 || (GET_MODE (XEXP (SET_DEST (set), 0))
1492 == GET_MODE (note))))))
1493 {
1494 /* Temporarily replace the set's source with the
1495 contents of the REG_EQUAL note. The insn will
1496 be deleted or recognized by try_combine. */
1497 rtx orig_src = SET_SRC (set);
1498 rtx orig_dest = SET_DEST (set);
1499 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1500 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1501 SET_SRC (set) = note;
1502 i2mod = temp;
1503 i2mod_old_rhs = copy_rtx (orig_src);
1504 i2mod_new_rhs = copy_rtx (note);
1505 next = try_combine (insn, i2mod, NULL, NULL,
1506 &new_direct_jump_p,
1507 last_combined_insn);
1508 i2mod = NULL;
1509 if (next)
1510 {
1511 statistics_counter_event (cfun, "insn-with-note combine", 1);
1512 goto retry;
1513 }
1514 SET_SRC (set) = orig_src;
1515 SET_DEST (set) = orig_dest;
1516 }
1517 }
1518
1519 if (!NOTE_P (insn))
1520 record_dead_and_set_regs (insn);
1521
1522 retry:
1523 ;
1524 }
1525 }
1526
1527 default_rtl_profile ();
1528 clear_bb_flags ();
1529 new_direct_jump_p |= purge_all_dead_edges ();
1530 delete_noop_moves ();
1531
1532 /* Clean up. */
1533 obstack_free (&insn_link_obstack, NULL);
1534 free (uid_log_links);
1535 free (uid_insn_cost);
1536 reg_stat.release ();
1537
1538 {
1539 struct undo *undo, *next;
1540 for (undo = undobuf.frees; undo; undo = next)
1541 {
1542 next = undo->next;
1543 free (undo);
1544 }
1545 undobuf.frees = 0;
1546 }
1547
1548 total_attempts += combine_attempts;
1549 total_merges += combine_merges;
1550 total_extras += combine_extras;
1551 total_successes += combine_successes;
1552
1553 nonzero_sign_valid = 0;
1554 rtl_hooks = general_rtl_hooks;
1555
1556 /* Make recognizer allow volatile MEMs again. */
1557 init_recog ();
1558
1559 return new_direct_jump_p;
1560 }
1561
1562 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1563
1564 static void
1565 init_reg_last (void)
1566 {
1567 unsigned int i;
1568 reg_stat_type *p;
1569
1570 FOR_EACH_VEC_ELT (reg_stat, i, p)
1571 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1572 }
1573 \f
1574 /* Set up any promoted values for incoming argument registers. */
1575
1576 static void
1577 setup_incoming_promotions (rtx_insn *first)
1578 {
1579 tree arg;
1580 bool strictly_local = false;
1581
1582 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1583 arg = DECL_CHAIN (arg))
1584 {
1585 rtx x, reg = DECL_INCOMING_RTL (arg);
1586 int uns1, uns3;
1587 machine_mode mode1, mode2, mode3, mode4;
1588
1589 /* Only continue if the incoming argument is in a register. */
1590 if (!REG_P (reg))
1591 continue;
1592
1593 /* Determine, if possible, whether all call sites of the current
1594 function lie within the current compilation unit. (This does
1595 take into account the exporting of a function via taking its
1596 address, and so forth.) */
1597 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1598
1599 /* The mode and signedness of the argument before any promotions happen
1600 (equal to the mode of the pseudo holding it at that stage). */
1601 mode1 = TYPE_MODE (TREE_TYPE (arg));
1602 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1603
1604 /* The mode and signedness of the argument after any source language and
1605 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1606 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1607 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1608
1609 /* The mode and signedness of the argument as it is actually passed,
1610 see assign_parm_setup_reg in function.c. */
1611 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1612 TREE_TYPE (cfun->decl), 0);
1613
1614 /* The mode of the register in which the argument is being passed. */
1615 mode4 = GET_MODE (reg);
1616
1617 /* Eliminate sign extensions in the callee when:
1618 (a) A mode promotion has occurred; */
1619 if (mode1 == mode3)
1620 continue;
1621 /* (b) The mode of the register is the same as the mode of
1622 the argument as it is passed; */
1623 if (mode3 != mode4)
1624 continue;
1625 /* (c) There's no language level extension; */
1626 if (mode1 == mode2)
1627 ;
1628 /* (c.1) All callers are from the current compilation unit. If that's
1629 the case we don't have to rely on an ABI, we only have to know
1630 what we're generating right now, and we know that we will do the
1631 mode1 to mode2 promotion with the given sign. */
1632 else if (!strictly_local)
1633 continue;
1634 /* (c.2) The combination of the two promotions is useful. This is
1635 true when the signs match, or if the first promotion is unsigned.
1636 In the later case, (sign_extend (zero_extend x)) is the same as
1637 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1638 else if (uns1)
1639 uns3 = true;
1640 else if (uns3)
1641 continue;
1642
1643 /* Record that the value was promoted from mode1 to mode3,
1644 so that any sign extension at the head of the current
1645 function may be eliminated. */
1646 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1647 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1648 record_value_for_reg (reg, first, x);
1649 }
1650 }
1651
1652 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1653 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1654 because some machines (maybe most) will actually do the sign-extension and
1655 this is the conservative approach.
1656
1657 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1658 kludge. */
1659
1660 static rtx
1661 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1662 {
1663 scalar_int_mode int_mode;
1664 if (CONST_INT_P (src)
1665 && is_a <scalar_int_mode> (mode, &int_mode)
1666 && GET_MODE_PRECISION (int_mode) < prec
1667 && INTVAL (src) > 0
1668 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1669 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1670
1671 return src;
1672 }
1673
1674 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1675 and SET. */
1676
1677 static void
1678 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1679 rtx x)
1680 {
1681 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1682 unsigned HOST_WIDE_INT bits = 0;
1683 rtx reg_equal = NULL, src = SET_SRC (set);
1684 unsigned int num = 0;
1685
1686 if (reg_equal_note)
1687 reg_equal = XEXP (reg_equal_note, 0);
1688
1689 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1690 {
1691 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1692 if (reg_equal)
1693 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1694 }
1695
1696 /* Don't call nonzero_bits if it cannot change anything. */
1697 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1698 {
1699 bits = nonzero_bits (src, nonzero_bits_mode);
1700 if (reg_equal && bits)
1701 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1702 rsp->nonzero_bits |= bits;
1703 }
1704
1705 /* Don't call num_sign_bit_copies if it cannot change anything. */
1706 if (rsp->sign_bit_copies != 1)
1707 {
1708 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1709 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1710 {
1711 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1712 if (num == 0 || numeq > num)
1713 num = numeq;
1714 }
1715 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1716 rsp->sign_bit_copies = num;
1717 }
1718 }
1719
1720 /* Called via note_stores. If X is a pseudo that is narrower than
1721 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1722
1723 If we are setting only a portion of X and we can't figure out what
1724 portion, assume all bits will be used since we don't know what will
1725 be happening.
1726
1727 Similarly, set how many bits of X are known to be copies of the sign bit
1728 at all locations in the function. This is the smallest number implied
1729 by any set of X. */
1730
1731 static void
1732 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1733 {
1734 rtx_insn *insn = (rtx_insn *) data;
1735 scalar_int_mode mode;
1736
1737 if (REG_P (x)
1738 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1739 /* If this register is undefined at the start of the file, we can't
1740 say what its contents were. */
1741 && ! REGNO_REG_SET_P
1742 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1743 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1744 && HWI_COMPUTABLE_MODE_P (mode))
1745 {
1746 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1747
1748 if (set == 0 || GET_CODE (set) == CLOBBER)
1749 {
1750 rsp->nonzero_bits = GET_MODE_MASK (mode);
1751 rsp->sign_bit_copies = 1;
1752 return;
1753 }
1754
1755 /* If this register is being initialized using itself, and the
1756 register is uninitialized in this basic block, and there are
1757 no LOG_LINKS which set the register, then part of the
1758 register is uninitialized. In that case we can't assume
1759 anything about the number of nonzero bits.
1760
1761 ??? We could do better if we checked this in
1762 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1763 could avoid making assumptions about the insn which initially
1764 sets the register, while still using the information in other
1765 insns. We would have to be careful to check every insn
1766 involved in the combination. */
1767
1768 if (insn
1769 && reg_referenced_p (x, PATTERN (insn))
1770 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1771 REGNO (x)))
1772 {
1773 struct insn_link *link;
1774
1775 FOR_EACH_LOG_LINK (link, insn)
1776 if (dead_or_set_p (link->insn, x))
1777 break;
1778 if (!link)
1779 {
1780 rsp->nonzero_bits = GET_MODE_MASK (mode);
1781 rsp->sign_bit_copies = 1;
1782 return;
1783 }
1784 }
1785
1786 /* If this is a complex assignment, see if we can convert it into a
1787 simple assignment. */
1788 set = expand_field_assignment (set);
1789
1790 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1791 set what we know about X. */
1792
1793 if (SET_DEST (set) == x
1794 || (paradoxical_subreg_p (SET_DEST (set))
1795 && SUBREG_REG (SET_DEST (set)) == x))
1796 update_rsp_from_reg_equal (rsp, insn, set, x);
1797 else
1798 {
1799 rsp->nonzero_bits = GET_MODE_MASK (mode);
1800 rsp->sign_bit_copies = 1;
1801 }
1802 }
1803 }
1804 \f
1805 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1806 optionally insns that were previously combined into I3 or that will be
1807 combined into the merger of INSN and I3. The order is PRED, PRED2,
1808 INSN, SUCC, SUCC2, I3.
1809
1810 Return 0 if the combination is not allowed for any reason.
1811
1812 If the combination is allowed, *PDEST will be set to the single
1813 destination of INSN and *PSRC to the single source, and this function
1814 will return 1. */
1815
1816 static int
1817 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1818 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1819 rtx *pdest, rtx *psrc)
1820 {
1821 int i;
1822 const_rtx set = 0;
1823 rtx src, dest;
1824 rtx_insn *p;
1825 rtx link;
1826 bool all_adjacent = true;
1827 int (*is_volatile_p) (const_rtx);
1828
1829 if (succ)
1830 {
1831 if (succ2)
1832 {
1833 if (next_active_insn (succ2) != i3)
1834 all_adjacent = false;
1835 if (next_active_insn (succ) != succ2)
1836 all_adjacent = false;
1837 }
1838 else if (next_active_insn (succ) != i3)
1839 all_adjacent = false;
1840 if (next_active_insn (insn) != succ)
1841 all_adjacent = false;
1842 }
1843 else if (next_active_insn (insn) != i3)
1844 all_adjacent = false;
1845
1846 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1847 or a PARALLEL consisting of such a SET and CLOBBERs.
1848
1849 If INSN has CLOBBER parallel parts, ignore them for our processing.
1850 By definition, these happen during the execution of the insn. When it
1851 is merged with another insn, all bets are off. If they are, in fact,
1852 needed and aren't also supplied in I3, they may be added by
1853 recog_for_combine. Otherwise, it won't match.
1854
1855 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1856 note.
1857
1858 Get the source and destination of INSN. If more than one, can't
1859 combine. */
1860
1861 if (GET_CODE (PATTERN (insn)) == SET)
1862 set = PATTERN (insn);
1863 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1864 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1865 {
1866 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1867 {
1868 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1869
1870 switch (GET_CODE (elt))
1871 {
1872 /* This is important to combine floating point insns
1873 for the SH4 port. */
1874 case USE:
1875 /* Combining an isolated USE doesn't make sense.
1876 We depend here on combinable_i3pat to reject them. */
1877 /* The code below this loop only verifies that the inputs of
1878 the SET in INSN do not change. We call reg_set_between_p
1879 to verify that the REG in the USE does not change between
1880 I3 and INSN.
1881 If the USE in INSN was for a pseudo register, the matching
1882 insn pattern will likely match any register; combining this
1883 with any other USE would only be safe if we knew that the
1884 used registers have identical values, or if there was
1885 something to tell them apart, e.g. different modes. For
1886 now, we forgo such complicated tests and simply disallow
1887 combining of USES of pseudo registers with any other USE. */
1888 if (REG_P (XEXP (elt, 0))
1889 && GET_CODE (PATTERN (i3)) == PARALLEL)
1890 {
1891 rtx i3pat = PATTERN (i3);
1892 int i = XVECLEN (i3pat, 0) - 1;
1893 unsigned int regno = REGNO (XEXP (elt, 0));
1894
1895 do
1896 {
1897 rtx i3elt = XVECEXP (i3pat, 0, i);
1898
1899 if (GET_CODE (i3elt) == USE
1900 && REG_P (XEXP (i3elt, 0))
1901 && (REGNO (XEXP (i3elt, 0)) == regno
1902 ? reg_set_between_p (XEXP (elt, 0),
1903 PREV_INSN (insn), i3)
1904 : regno >= FIRST_PSEUDO_REGISTER))
1905 return 0;
1906 }
1907 while (--i >= 0);
1908 }
1909 break;
1910
1911 /* We can ignore CLOBBERs. */
1912 case CLOBBER:
1913 break;
1914
1915 case SET:
1916 /* Ignore SETs whose result isn't used but not those that
1917 have side-effects. */
1918 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1919 && insn_nothrow_p (insn)
1920 && !side_effects_p (elt))
1921 break;
1922
1923 /* If we have already found a SET, this is a second one and
1924 so we cannot combine with this insn. */
1925 if (set)
1926 return 0;
1927
1928 set = elt;
1929 break;
1930
1931 default:
1932 /* Anything else means we can't combine. */
1933 return 0;
1934 }
1935 }
1936
1937 if (set == 0
1938 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1939 so don't do anything with it. */
1940 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1941 return 0;
1942 }
1943 else
1944 return 0;
1945
1946 if (set == 0)
1947 return 0;
1948
1949 /* The simplification in expand_field_assignment may call back to
1950 get_last_value, so set safe guard here. */
1951 subst_low_luid = DF_INSN_LUID (insn);
1952
1953 set = expand_field_assignment (set);
1954 src = SET_SRC (set), dest = SET_DEST (set);
1955
1956 /* Do not eliminate user-specified register if it is in an
1957 asm input because we may break the register asm usage defined
1958 in GCC manual if allow to do so.
1959 Be aware that this may cover more cases than we expect but this
1960 should be harmless. */
1961 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1962 && extract_asm_operands (PATTERN (i3)))
1963 return 0;
1964
1965 /* Don't eliminate a store in the stack pointer. */
1966 if (dest == stack_pointer_rtx
1967 /* Don't combine with an insn that sets a register to itself if it has
1968 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1969 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1970 /* Can't merge an ASM_OPERANDS. */
1971 || GET_CODE (src) == ASM_OPERANDS
1972 /* Can't merge a function call. */
1973 || GET_CODE (src) == CALL
1974 /* Don't eliminate a function call argument. */
1975 || (CALL_P (i3)
1976 && (find_reg_fusage (i3, USE, dest)
1977 || (REG_P (dest)
1978 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1979 && global_regs[REGNO (dest)])))
1980 /* Don't substitute into an incremented register. */
1981 || FIND_REG_INC_NOTE (i3, dest)
1982 || (succ && FIND_REG_INC_NOTE (succ, dest))
1983 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1984 /* Don't substitute into a non-local goto, this confuses CFG. */
1985 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1986 /* Make sure that DEST is not used after INSN but before SUCC, or
1987 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1988 || (!all_adjacent
1989 && ((succ2
1990 && (reg_used_between_p (dest, succ2, i3)
1991 || reg_used_between_p (dest, succ, succ2)))
1992 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1993 || (succ
1994 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1995 that case SUCC is not in the insn stream, so use SUCC2
1996 instead for this test. */
1997 && reg_used_between_p (dest, insn,
1998 succ2
1999 && INSN_UID (succ) == INSN_UID (succ2)
2000 ? succ2 : succ))))
2001 /* Make sure that the value that is to be substituted for the register
2002 does not use any registers whose values alter in between. However,
2003 If the insns are adjacent, a use can't cross a set even though we
2004 think it might (this can happen for a sequence of insns each setting
2005 the same destination; last_set of that register might point to
2006 a NOTE). If INSN has a REG_EQUIV note, the register is always
2007 equivalent to the memory so the substitution is valid even if there
2008 are intervening stores. Also, don't move a volatile asm or
2009 UNSPEC_VOLATILE across any other insns. */
2010 || (! all_adjacent
2011 && (((!MEM_P (src)
2012 || ! find_reg_note (insn, REG_EQUIV, src))
2013 && modified_between_p (src, insn, i3))
2014 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2015 || GET_CODE (src) == UNSPEC_VOLATILE))
2016 /* Don't combine across a CALL_INSN, because that would possibly
2017 change whether the life span of some REGs crosses calls or not,
2018 and it is a pain to update that information.
2019 Exception: if source is a constant, moving it later can't hurt.
2020 Accept that as a special case. */
2021 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2022 return 0;
2023
2024 /* DEST must either be a REG or CC0. */
2025 if (REG_P (dest))
2026 {
2027 /* If register alignment is being enforced for multi-word items in all
2028 cases except for parameters, it is possible to have a register copy
2029 insn referencing a hard register that is not allowed to contain the
2030 mode being copied and which would not be valid as an operand of most
2031 insns. Eliminate this problem by not combining with such an insn.
2032
2033 Also, on some machines we don't want to extend the life of a hard
2034 register. */
2035
2036 if (REG_P (src)
2037 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2038 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2039 /* Don't extend the life of a hard register unless it is
2040 user variable (if we have few registers) or it can't
2041 fit into the desired register (meaning something special
2042 is going on).
2043 Also avoid substituting a return register into I3, because
2044 reload can't handle a conflict with constraints of other
2045 inputs. */
2046 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2047 && !targetm.hard_regno_mode_ok (REGNO (src),
2048 GET_MODE (src)))))
2049 return 0;
2050 }
2051 else if (GET_CODE (dest) != CC0)
2052 return 0;
2053
2054
2055 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2056 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2057 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2058 {
2059 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2060
2061 /* If the clobber represents an earlyclobber operand, we must not
2062 substitute an expression containing the clobbered register.
2063 As we do not analyze the constraint strings here, we have to
2064 make the conservative assumption. However, if the register is
2065 a fixed hard reg, the clobber cannot represent any operand;
2066 we leave it up to the machine description to either accept or
2067 reject use-and-clobber patterns. */
2068 if (!REG_P (reg)
2069 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2070 || !fixed_regs[REGNO (reg)])
2071 if (reg_overlap_mentioned_p (reg, src))
2072 return 0;
2073 }
2074
2075 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2076 or not), reject, unless nothing volatile comes between it and I3 */
2077
2078 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2079 {
2080 /* Make sure neither succ nor succ2 contains a volatile reference. */
2081 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2082 return 0;
2083 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2084 return 0;
2085 /* We'll check insns between INSN and I3 below. */
2086 }
2087
2088 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2089 to be an explicit register variable, and was chosen for a reason. */
2090
2091 if (GET_CODE (src) == ASM_OPERANDS
2092 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2093 return 0;
2094
2095 /* If INSN contains volatile references (specifically volatile MEMs),
2096 we cannot combine across any other volatile references.
2097 Even if INSN doesn't contain volatile references, any intervening
2098 volatile insn might affect machine state. */
2099
2100 is_volatile_p = volatile_refs_p (PATTERN (insn))
2101 ? volatile_refs_p
2102 : volatile_insn_p;
2103
2104 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2105 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2106 return 0;
2107
2108 /* If INSN contains an autoincrement or autodecrement, make sure that
2109 register is not used between there and I3, and not already used in
2110 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2111 Also insist that I3 not be a jump; if it were one
2112 and the incremented register were spilled, we would lose. */
2113
2114 if (AUTO_INC_DEC)
2115 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2116 if (REG_NOTE_KIND (link) == REG_INC
2117 && (JUMP_P (i3)
2118 || reg_used_between_p (XEXP (link, 0), insn, i3)
2119 || (pred != NULL_RTX
2120 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2121 || (pred2 != NULL_RTX
2122 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2123 || (succ != NULL_RTX
2124 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2125 || (succ2 != NULL_RTX
2126 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2127 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2128 return 0;
2129
2130 /* Don't combine an insn that follows a CC0-setting insn.
2131 An insn that uses CC0 must not be separated from the one that sets it.
2132 We do, however, allow I2 to follow a CC0-setting insn if that insn
2133 is passed as I1; in that case it will be deleted also.
2134 We also allow combining in this case if all the insns are adjacent
2135 because that would leave the two CC0 insns adjacent as well.
2136 It would be more logical to test whether CC0 occurs inside I1 or I2,
2137 but that would be much slower, and this ought to be equivalent. */
2138
2139 if (HAVE_cc0)
2140 {
2141 p = prev_nonnote_insn (insn);
2142 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2143 && ! all_adjacent)
2144 return 0;
2145 }
2146
2147 /* If we get here, we have passed all the tests and the combination is
2148 to be allowed. */
2149
2150 *pdest = dest;
2151 *psrc = src;
2152
2153 return 1;
2154 }
2155 \f
2156 /* LOC is the location within I3 that contains its pattern or the component
2157 of a PARALLEL of the pattern. We validate that it is valid for combining.
2158
2159 One problem is if I3 modifies its output, as opposed to replacing it
2160 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2161 doing so would produce an insn that is not equivalent to the original insns.
2162
2163 Consider:
2164
2165 (set (reg:DI 101) (reg:DI 100))
2166 (set (subreg:SI (reg:DI 101) 0) <foo>)
2167
2168 This is NOT equivalent to:
2169
2170 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2171 (set (reg:DI 101) (reg:DI 100))])
2172
2173 Not only does this modify 100 (in which case it might still be valid
2174 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2175
2176 We can also run into a problem if I2 sets a register that I1
2177 uses and I1 gets directly substituted into I3 (not via I2). In that
2178 case, we would be getting the wrong value of I2DEST into I3, so we
2179 must reject the combination. This case occurs when I2 and I1 both
2180 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2181 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2182 of a SET must prevent combination from occurring. The same situation
2183 can occur for I0, in which case I0_NOT_IN_SRC is set.
2184
2185 Before doing the above check, we first try to expand a field assignment
2186 into a set of logical operations.
2187
2188 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2189 we place a register that is both set and used within I3. If more than one
2190 such register is detected, we fail.
2191
2192 Return 1 if the combination is valid, zero otherwise. */
2193
2194 static int
2195 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2196 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2197 {
2198 rtx x = *loc;
2199
2200 if (GET_CODE (x) == SET)
2201 {
2202 rtx set = x ;
2203 rtx dest = SET_DEST (set);
2204 rtx src = SET_SRC (set);
2205 rtx inner_dest = dest;
2206 rtx subdest;
2207
2208 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2209 || GET_CODE (inner_dest) == SUBREG
2210 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2211 inner_dest = XEXP (inner_dest, 0);
2212
2213 /* Check for the case where I3 modifies its output, as discussed
2214 above. We don't want to prevent pseudos from being combined
2215 into the address of a MEM, so only prevent the combination if
2216 i1 or i2 set the same MEM. */
2217 if ((inner_dest != dest &&
2218 (!MEM_P (inner_dest)
2219 || rtx_equal_p (i2dest, inner_dest)
2220 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2221 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2222 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2223 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2224 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2225
2226 /* This is the same test done in can_combine_p except we can't test
2227 all_adjacent; we don't have to, since this instruction will stay
2228 in place, thus we are not considering increasing the lifetime of
2229 INNER_DEST.
2230
2231 Also, if this insn sets a function argument, combining it with
2232 something that might need a spill could clobber a previous
2233 function argument; the all_adjacent test in can_combine_p also
2234 checks this; here, we do a more specific test for this case. */
2235
2236 || (REG_P (inner_dest)
2237 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2238 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2239 GET_MODE (inner_dest)))
2240 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2241 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2242 return 0;
2243
2244 /* If DEST is used in I3, it is being killed in this insn, so
2245 record that for later. We have to consider paradoxical
2246 subregs here, since they kill the whole register, but we
2247 ignore partial subregs, STRICT_LOW_PART, etc.
2248 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2249 STACK_POINTER_REGNUM, since these are always considered to be
2250 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2251 subdest = dest;
2252 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2253 subdest = SUBREG_REG (subdest);
2254 if (pi3dest_killed
2255 && REG_P (subdest)
2256 && reg_referenced_p (subdest, PATTERN (i3))
2257 && REGNO (subdest) != FRAME_POINTER_REGNUM
2258 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2259 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2260 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2261 || (REGNO (subdest) != ARG_POINTER_REGNUM
2262 || ! fixed_regs [REGNO (subdest)]))
2263 && REGNO (subdest) != STACK_POINTER_REGNUM)
2264 {
2265 if (*pi3dest_killed)
2266 return 0;
2267
2268 *pi3dest_killed = subdest;
2269 }
2270 }
2271
2272 else if (GET_CODE (x) == PARALLEL)
2273 {
2274 int i;
2275
2276 for (i = 0; i < XVECLEN (x, 0); i++)
2277 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2278 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2279 return 0;
2280 }
2281
2282 return 1;
2283 }
2284 \f
2285 /* Return 1 if X is an arithmetic expression that contains a multiplication
2286 and division. We don't count multiplications by powers of two here. */
2287
2288 static int
2289 contains_muldiv (rtx x)
2290 {
2291 switch (GET_CODE (x))
2292 {
2293 case MOD: case DIV: case UMOD: case UDIV:
2294 return 1;
2295
2296 case MULT:
2297 return ! (CONST_INT_P (XEXP (x, 1))
2298 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2299 default:
2300 if (BINARY_P (x))
2301 return contains_muldiv (XEXP (x, 0))
2302 || contains_muldiv (XEXP (x, 1));
2303
2304 if (UNARY_P (x))
2305 return contains_muldiv (XEXP (x, 0));
2306
2307 return 0;
2308 }
2309 }
2310 \f
2311 /* Determine whether INSN can be used in a combination. Return nonzero if
2312 not. This is used in try_combine to detect early some cases where we
2313 can't perform combinations. */
2314
2315 static int
2316 cant_combine_insn_p (rtx_insn *insn)
2317 {
2318 rtx set;
2319 rtx src, dest;
2320
2321 /* If this isn't really an insn, we can't do anything.
2322 This can occur when flow deletes an insn that it has merged into an
2323 auto-increment address. */
2324 if (!NONDEBUG_INSN_P (insn))
2325 return 1;
2326
2327 /* Never combine loads and stores involving hard regs that are likely
2328 to be spilled. The register allocator can usually handle such
2329 reg-reg moves by tying. If we allow the combiner to make
2330 substitutions of likely-spilled regs, reload might die.
2331 As an exception, we allow combinations involving fixed regs; these are
2332 not available to the register allocator so there's no risk involved. */
2333
2334 set = single_set (insn);
2335 if (! set)
2336 return 0;
2337 src = SET_SRC (set);
2338 dest = SET_DEST (set);
2339 if (GET_CODE (src) == SUBREG)
2340 src = SUBREG_REG (src);
2341 if (GET_CODE (dest) == SUBREG)
2342 dest = SUBREG_REG (dest);
2343 if (REG_P (src) && REG_P (dest)
2344 && ((HARD_REGISTER_P (src)
2345 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2346 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2347 || (HARD_REGISTER_P (dest)
2348 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2349 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2350 return 1;
2351
2352 return 0;
2353 }
2354
2355 struct likely_spilled_retval_info
2356 {
2357 unsigned regno, nregs;
2358 unsigned mask;
2359 };
2360
2361 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2362 hard registers that are known to be written to / clobbered in full. */
2363 static void
2364 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2365 {
2366 struct likely_spilled_retval_info *const info =
2367 (struct likely_spilled_retval_info *) data;
2368 unsigned regno, nregs;
2369 unsigned new_mask;
2370
2371 if (!REG_P (XEXP (set, 0)))
2372 return;
2373 regno = REGNO (x);
2374 if (regno >= info->regno + info->nregs)
2375 return;
2376 nregs = REG_NREGS (x);
2377 if (regno + nregs <= info->regno)
2378 return;
2379 new_mask = (2U << (nregs - 1)) - 1;
2380 if (regno < info->regno)
2381 new_mask >>= info->regno - regno;
2382 else
2383 new_mask <<= regno - info->regno;
2384 info->mask &= ~new_mask;
2385 }
2386
2387 /* Return nonzero iff part of the return value is live during INSN, and
2388 it is likely spilled. This can happen when more than one insn is needed
2389 to copy the return value, e.g. when we consider to combine into the
2390 second copy insn for a complex value. */
2391
2392 static int
2393 likely_spilled_retval_p (rtx_insn *insn)
2394 {
2395 rtx_insn *use = BB_END (this_basic_block);
2396 rtx reg;
2397 rtx_insn *p;
2398 unsigned regno, nregs;
2399 /* We assume here that no machine mode needs more than
2400 32 hard registers when the value overlaps with a register
2401 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2402 unsigned mask;
2403 struct likely_spilled_retval_info info;
2404
2405 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2406 return 0;
2407 reg = XEXP (PATTERN (use), 0);
2408 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2409 return 0;
2410 regno = REGNO (reg);
2411 nregs = REG_NREGS (reg);
2412 if (nregs == 1)
2413 return 0;
2414 mask = (2U << (nregs - 1)) - 1;
2415
2416 /* Disregard parts of the return value that are set later. */
2417 info.regno = regno;
2418 info.nregs = nregs;
2419 info.mask = mask;
2420 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2421 if (INSN_P (p))
2422 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2423 mask = info.mask;
2424
2425 /* Check if any of the (probably) live return value registers is
2426 likely spilled. */
2427 nregs --;
2428 do
2429 {
2430 if ((mask & 1 << nregs)
2431 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2432 return 1;
2433 } while (nregs--);
2434 return 0;
2435 }
2436
2437 /* Adjust INSN after we made a change to its destination.
2438
2439 Changing the destination can invalidate notes that say something about
2440 the results of the insn and a LOG_LINK pointing to the insn. */
2441
2442 static void
2443 adjust_for_new_dest (rtx_insn *insn)
2444 {
2445 /* For notes, be conservative and simply remove them. */
2446 remove_reg_equal_equiv_notes (insn);
2447
2448 /* The new insn will have a destination that was previously the destination
2449 of an insn just above it. Call distribute_links to make a LOG_LINK from
2450 the next use of that destination. */
2451
2452 rtx set = single_set (insn);
2453 gcc_assert (set);
2454
2455 rtx reg = SET_DEST (set);
2456
2457 while (GET_CODE (reg) == ZERO_EXTRACT
2458 || GET_CODE (reg) == STRICT_LOW_PART
2459 || GET_CODE (reg) == SUBREG)
2460 reg = XEXP (reg, 0);
2461 gcc_assert (REG_P (reg));
2462
2463 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2464
2465 df_insn_rescan (insn);
2466 }
2467
2468 /* Return TRUE if combine can reuse reg X in mode MODE.
2469 ADDED_SETS is nonzero if the original set is still required. */
2470 static bool
2471 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2472 {
2473 unsigned int regno;
2474
2475 if (!REG_P (x))
2476 return false;
2477
2478 /* Don't change between modes with different underlying register sizes,
2479 since this could lead to invalid subregs. */
2480 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2481 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2482 return false;
2483
2484 regno = REGNO (x);
2485 /* Allow hard registers if the new mode is legal, and occupies no more
2486 registers than the old mode. */
2487 if (regno < FIRST_PSEUDO_REGISTER)
2488 return (targetm.hard_regno_mode_ok (regno, mode)
2489 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2490
2491 /* Or a pseudo that is only used once. */
2492 return (regno < reg_n_sets_max
2493 && REG_N_SETS (regno) == 1
2494 && !added_sets
2495 && !REG_USERVAR_P (x));
2496 }
2497
2498
2499 /* Check whether X, the destination of a set, refers to part of
2500 the register specified by REG. */
2501
2502 static bool
2503 reg_subword_p (rtx x, rtx reg)
2504 {
2505 /* Check that reg is an integer mode register. */
2506 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2507 return false;
2508
2509 if (GET_CODE (x) == STRICT_LOW_PART
2510 || GET_CODE (x) == ZERO_EXTRACT)
2511 x = XEXP (x, 0);
2512
2513 return GET_CODE (x) == SUBREG
2514 && SUBREG_REG (x) == reg
2515 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2516 }
2517
2518 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2519 Note that the INSN should be deleted *after* removing dead edges, so
2520 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2521 but not for a (set (pc) (label_ref FOO)). */
2522
2523 static void
2524 update_cfg_for_uncondjump (rtx_insn *insn)
2525 {
2526 basic_block bb = BLOCK_FOR_INSN (insn);
2527 gcc_assert (BB_END (bb) == insn);
2528
2529 purge_dead_edges (bb);
2530
2531 delete_insn (insn);
2532 if (EDGE_COUNT (bb->succs) == 1)
2533 {
2534 rtx_insn *insn;
2535
2536 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2537
2538 /* Remove barriers from the footer if there are any. */
2539 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2540 if (BARRIER_P (insn))
2541 {
2542 if (PREV_INSN (insn))
2543 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2544 else
2545 BB_FOOTER (bb) = NEXT_INSN (insn);
2546 if (NEXT_INSN (insn))
2547 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2548 }
2549 else if (LABEL_P (insn))
2550 break;
2551 }
2552 }
2553
2554 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2555 by an arbitrary number of CLOBBERs. */
2556 static bool
2557 is_parallel_of_n_reg_sets (rtx pat, int n)
2558 {
2559 if (GET_CODE (pat) != PARALLEL)
2560 return false;
2561
2562 int len = XVECLEN (pat, 0);
2563 if (len < n)
2564 return false;
2565
2566 int i;
2567 for (i = 0; i < n; i++)
2568 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2569 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2570 return false;
2571 for ( ; i < len; i++)
2572 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2573 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2574 return false;
2575
2576 return true;
2577 }
2578
2579 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2580 CLOBBERs), can be split into individual SETs in that order, without
2581 changing semantics. */
2582 static bool
2583 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2584 {
2585 if (!insn_nothrow_p (insn))
2586 return false;
2587
2588 rtx pat = PATTERN (insn);
2589
2590 int i, j;
2591 for (i = 0; i < n; i++)
2592 {
2593 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2594 return false;
2595
2596 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2597
2598 for (j = i + 1; j < n; j++)
2599 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2600 return false;
2601 }
2602
2603 return true;
2604 }
2605
2606 /* Try to combine the insns I0, I1 and I2 into I3.
2607 Here I0, I1 and I2 appear earlier than I3.
2608 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2609 I3.
2610
2611 If we are combining more than two insns and the resulting insn is not
2612 recognized, try splitting it into two insns. If that happens, I2 and I3
2613 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2614 Otherwise, I0, I1 and I2 are pseudo-deleted.
2615
2616 Return 0 if the combination does not work. Then nothing is changed.
2617 If we did the combination, return the insn at which combine should
2618 resume scanning.
2619
2620 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2621 new direct jump instruction.
2622
2623 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2624 been I3 passed to an earlier try_combine within the same basic
2625 block. */
2626
2627 static rtx_insn *
2628 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2629 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2630 {
2631 /* New patterns for I3 and I2, respectively. */
2632 rtx newpat, newi2pat = 0;
2633 rtvec newpat_vec_with_clobbers = 0;
2634 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2635 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2636 dead. */
2637 int added_sets_0, added_sets_1, added_sets_2;
2638 /* Total number of SETs to put into I3. */
2639 int total_sets;
2640 /* Nonzero if I2's or I1's body now appears in I3. */
2641 int i2_is_used = 0, i1_is_used = 0;
2642 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2643 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2644 /* Contains I3 if the destination of I3 is used in its source, which means
2645 that the old life of I3 is being killed. If that usage is placed into
2646 I2 and not in I3, a REG_DEAD note must be made. */
2647 rtx i3dest_killed = 0;
2648 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2649 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2650 /* Copy of SET_SRC of I1 and I0, if needed. */
2651 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2652 /* Set if I2DEST was reused as a scratch register. */
2653 bool i2scratch = false;
2654 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2655 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2656 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2657 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2658 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2659 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2660 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2661 /* Notes that must be added to REG_NOTES in I3 and I2. */
2662 rtx new_i3_notes, new_i2_notes;
2663 /* Notes that we substituted I3 into I2 instead of the normal case. */
2664 int i3_subst_into_i2 = 0;
2665 /* Notes that I1, I2 or I3 is a MULT operation. */
2666 int have_mult = 0;
2667 int swap_i2i3 = 0;
2668 int changed_i3_dest = 0;
2669
2670 int maxreg;
2671 rtx_insn *temp_insn;
2672 rtx temp_expr;
2673 struct insn_link *link;
2674 rtx other_pat = 0;
2675 rtx new_other_notes;
2676 int i;
2677 scalar_int_mode dest_mode, temp_mode;
2678
2679 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2680 never be). */
2681 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2682 return 0;
2683
2684 /* Only try four-insn combinations when there's high likelihood of
2685 success. Look for simple insns, such as loads of constants or
2686 binary operations involving a constant. */
2687 if (i0)
2688 {
2689 int i;
2690 int ngood = 0;
2691 int nshift = 0;
2692 rtx set0, set3;
2693
2694 if (!flag_expensive_optimizations)
2695 return 0;
2696
2697 for (i = 0; i < 4; i++)
2698 {
2699 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2700 rtx set = single_set (insn);
2701 rtx src;
2702 if (!set)
2703 continue;
2704 src = SET_SRC (set);
2705 if (CONSTANT_P (src))
2706 {
2707 ngood += 2;
2708 break;
2709 }
2710 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2711 ngood++;
2712 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2713 || GET_CODE (src) == LSHIFTRT)
2714 nshift++;
2715 }
2716
2717 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2718 are likely manipulating its value. Ideally we'll be able to combine
2719 all four insns into a bitfield insertion of some kind.
2720
2721 Note the source in I0 might be inside a sign/zero extension and the
2722 memory modes in I0 and I3 might be different. So extract the address
2723 from the destination of I3 and search for it in the source of I0.
2724
2725 In the event that there's a match but the source/dest do not actually
2726 refer to the same memory, the worst that happens is we try some
2727 combinations that we wouldn't have otherwise. */
2728 if ((set0 = single_set (i0))
2729 /* Ensure the source of SET0 is a MEM, possibly buried inside
2730 an extension. */
2731 && (GET_CODE (SET_SRC (set0)) == MEM
2732 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2733 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2734 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2735 && (set3 = single_set (i3))
2736 /* Ensure the destination of SET3 is a MEM. */
2737 && GET_CODE (SET_DEST (set3)) == MEM
2738 /* Would it be better to extract the base address for the MEM
2739 in SET3 and look for that? I don't have cases where it matters
2740 but I could envision such cases. */
2741 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2742 ngood += 2;
2743
2744 if (ngood < 2 && nshift < 2)
2745 return 0;
2746 }
2747
2748 /* Exit early if one of the insns involved can't be used for
2749 combinations. */
2750 if (CALL_P (i2)
2751 || (i1 && CALL_P (i1))
2752 || (i0 && CALL_P (i0))
2753 || cant_combine_insn_p (i3)
2754 || cant_combine_insn_p (i2)
2755 || (i1 && cant_combine_insn_p (i1))
2756 || (i0 && cant_combine_insn_p (i0))
2757 || likely_spilled_retval_p (i3))
2758 return 0;
2759
2760 combine_attempts++;
2761 undobuf.other_insn = 0;
2762
2763 /* Reset the hard register usage information. */
2764 CLEAR_HARD_REG_SET (newpat_used_regs);
2765
2766 if (dump_file && (dump_flags & TDF_DETAILS))
2767 {
2768 if (i0)
2769 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2770 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2771 else if (i1)
2772 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2773 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2774 else
2775 fprintf (dump_file, "\nTrying %d -> %d:\n",
2776 INSN_UID (i2), INSN_UID (i3));
2777
2778 if (i0)
2779 dump_insn_slim (dump_file, i0);
2780 if (i1)
2781 dump_insn_slim (dump_file, i1);
2782 dump_insn_slim (dump_file, i2);
2783 dump_insn_slim (dump_file, i3);
2784 }
2785
2786 /* If multiple insns feed into one of I2 or I3, they can be in any
2787 order. To simplify the code below, reorder them in sequence. */
2788 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2789 std::swap (i0, i2);
2790 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2791 std::swap (i0, i1);
2792 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2793 std::swap (i1, i2);
2794
2795 added_links_insn = 0;
2796 added_notes_insn = 0;
2797
2798 /* First check for one important special case that the code below will
2799 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2800 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2801 we may be able to replace that destination with the destination of I3.
2802 This occurs in the common code where we compute both a quotient and
2803 remainder into a structure, in which case we want to do the computation
2804 directly into the structure to avoid register-register copies.
2805
2806 Note that this case handles both multiple sets in I2 and also cases
2807 where I2 has a number of CLOBBERs inside the PARALLEL.
2808
2809 We make very conservative checks below and only try to handle the
2810 most common cases of this. For example, we only handle the case
2811 where I2 and I3 are adjacent to avoid making difficult register
2812 usage tests. */
2813
2814 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2815 && REG_P (SET_SRC (PATTERN (i3)))
2816 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2817 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2818 && GET_CODE (PATTERN (i2)) == PARALLEL
2819 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2820 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2821 below would need to check what is inside (and reg_overlap_mentioned_p
2822 doesn't support those codes anyway). Don't allow those destinations;
2823 the resulting insn isn't likely to be recognized anyway. */
2824 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2825 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2826 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2827 SET_DEST (PATTERN (i3)))
2828 && next_active_insn (i2) == i3)
2829 {
2830 rtx p2 = PATTERN (i2);
2831
2832 /* Make sure that the destination of I3,
2833 which we are going to substitute into one output of I2,
2834 is not used within another output of I2. We must avoid making this:
2835 (parallel [(set (mem (reg 69)) ...)
2836 (set (reg 69) ...)])
2837 which is not well-defined as to order of actions.
2838 (Besides, reload can't handle output reloads for this.)
2839
2840 The problem can also happen if the dest of I3 is a memory ref,
2841 if another dest in I2 is an indirect memory ref.
2842
2843 Neither can this PARALLEL be an asm. We do not allow combining
2844 that usually (see can_combine_p), so do not here either. */
2845 bool ok = true;
2846 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2847 {
2848 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2849 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2850 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2851 SET_DEST (XVECEXP (p2, 0, i))))
2852 ok = false;
2853 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2854 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2855 ok = false;
2856 }
2857
2858 if (ok)
2859 for (i = 0; i < XVECLEN (p2, 0); i++)
2860 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2861 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2862 {
2863 combine_merges++;
2864
2865 subst_insn = i3;
2866 subst_low_luid = DF_INSN_LUID (i2);
2867
2868 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2869 i2src = SET_SRC (XVECEXP (p2, 0, i));
2870 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2871 i2dest_killed = dead_or_set_p (i2, i2dest);
2872
2873 /* Replace the dest in I2 with our dest and make the resulting
2874 insn the new pattern for I3. Then skip to where we validate
2875 the pattern. Everything was set up above. */
2876 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2877 newpat = p2;
2878 i3_subst_into_i2 = 1;
2879 goto validate_replacement;
2880 }
2881 }
2882
2883 /* If I2 is setting a pseudo to a constant and I3 is setting some
2884 sub-part of it to another constant, merge them by making a new
2885 constant. */
2886 if (i1 == 0
2887 && (temp_expr = single_set (i2)) != 0
2888 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2889 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2890 && GET_CODE (PATTERN (i3)) == SET
2891 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2892 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2893 {
2894 rtx dest = SET_DEST (PATTERN (i3));
2895 rtx temp_dest = SET_DEST (temp_expr);
2896 int offset = -1;
2897 int width = 0;
2898
2899 if (GET_CODE (dest) == ZERO_EXTRACT)
2900 {
2901 if (CONST_INT_P (XEXP (dest, 1))
2902 && CONST_INT_P (XEXP (dest, 2))
2903 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2904 &dest_mode))
2905 {
2906 width = INTVAL (XEXP (dest, 1));
2907 offset = INTVAL (XEXP (dest, 2));
2908 dest = XEXP (dest, 0);
2909 if (BITS_BIG_ENDIAN)
2910 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2911 }
2912 }
2913 else
2914 {
2915 if (GET_CODE (dest) == STRICT_LOW_PART)
2916 dest = XEXP (dest, 0);
2917 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2918 {
2919 width = GET_MODE_PRECISION (dest_mode);
2920 offset = 0;
2921 }
2922 }
2923
2924 if (offset >= 0)
2925 {
2926 /* If this is the low part, we're done. */
2927 if (subreg_lowpart_p (dest))
2928 ;
2929 /* Handle the case where inner is twice the size of outer. */
2930 else if (GET_MODE_PRECISION (temp_mode)
2931 == 2 * GET_MODE_PRECISION (dest_mode))
2932 offset += GET_MODE_PRECISION (dest_mode);
2933 /* Otherwise give up for now. */
2934 else
2935 offset = -1;
2936 }
2937
2938 if (offset >= 0)
2939 {
2940 rtx inner = SET_SRC (PATTERN (i3));
2941 rtx outer = SET_SRC (temp_expr);
2942
2943 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2944 rtx_mode_t (inner, dest_mode),
2945 offset, width);
2946
2947 combine_merges++;
2948 subst_insn = i3;
2949 subst_low_luid = DF_INSN_LUID (i2);
2950 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2951 i2dest = temp_dest;
2952 i2dest_killed = dead_or_set_p (i2, i2dest);
2953
2954 /* Replace the source in I2 with the new constant and make the
2955 resulting insn the new pattern for I3. Then skip to where we
2956 validate the pattern. Everything was set up above. */
2957 SUBST (SET_SRC (temp_expr),
2958 immed_wide_int_const (o, temp_mode));
2959
2960 newpat = PATTERN (i2);
2961
2962 /* The dest of I3 has been replaced with the dest of I2. */
2963 changed_i3_dest = 1;
2964 goto validate_replacement;
2965 }
2966 }
2967
2968 /* If we have no I1 and I2 looks like:
2969 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2970 (set Y OP)])
2971 make up a dummy I1 that is
2972 (set Y OP)
2973 and change I2 to be
2974 (set (reg:CC X) (compare:CC Y (const_int 0)))
2975
2976 (We can ignore any trailing CLOBBERs.)
2977
2978 This undoes a previous combination and allows us to match a branch-and-
2979 decrement insn. */
2980
2981 if (!HAVE_cc0 && i1 == 0
2982 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2983 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2984 == MODE_CC)
2985 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2986 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2987 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2988 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2989 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2990 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2991 {
2992 /* We make I1 with the same INSN_UID as I2. This gives it
2993 the same DF_INSN_LUID for value tracking. Our fake I1 will
2994 never appear in the insn stream so giving it the same INSN_UID
2995 as I2 will not cause a problem. */
2996
2997 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2998 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2999 -1, NULL_RTX);
3000 INSN_UID (i1) = INSN_UID (i2);
3001
3002 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3003 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3004 SET_DEST (PATTERN (i1)));
3005 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3006 SUBST_LINK (LOG_LINKS (i2),
3007 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3008 }
3009
3010 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3011 make those two SETs separate I1 and I2 insns, and make an I0 that is
3012 the original I1. */
3013 if (!HAVE_cc0 && i0 == 0
3014 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3015 && can_split_parallel_of_n_reg_sets (i2, 2)
3016 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3017 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3018 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3019 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3020 {
3021 /* If there is no I1, there is no I0 either. */
3022 i0 = i1;
3023
3024 /* We make I1 with the same INSN_UID as I2. This gives it
3025 the same DF_INSN_LUID for value tracking. Our fake I1 will
3026 never appear in the insn stream so giving it the same INSN_UID
3027 as I2 will not cause a problem. */
3028
3029 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3030 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3031 -1, NULL_RTX);
3032 INSN_UID (i1) = INSN_UID (i2);
3033
3034 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3035 }
3036
3037 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3038 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3039 {
3040 if (dump_file)
3041 fprintf (dump_file, "Can't combine i2 into i3\n");
3042 undo_all ();
3043 return 0;
3044 }
3045 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3046 {
3047 if (dump_file)
3048 fprintf (dump_file, "Can't combine i1 into i3\n");
3049 undo_all ();
3050 return 0;
3051 }
3052 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3053 {
3054 if (dump_file)
3055 fprintf (dump_file, "Can't combine i0 into i3\n");
3056 undo_all ();
3057 return 0;
3058 }
3059
3060 /* Record whether I2DEST is used in I2SRC and similarly for the other
3061 cases. Knowing this will help in register status updating below. */
3062 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3063 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3064 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3065 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3066 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3067 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3068 i2dest_killed = dead_or_set_p (i2, i2dest);
3069 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3070 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3071
3072 /* For the earlier insns, determine which of the subsequent ones they
3073 feed. */
3074 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3075 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3076 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3077 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3078 && reg_overlap_mentioned_p (i0dest, i2src))));
3079
3080 /* Ensure that I3's pattern can be the destination of combines. */
3081 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3082 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3083 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3084 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3085 &i3dest_killed))
3086 {
3087 undo_all ();
3088 return 0;
3089 }
3090
3091 /* See if any of the insns is a MULT operation. Unless one is, we will
3092 reject a combination that is, since it must be slower. Be conservative
3093 here. */
3094 if (GET_CODE (i2src) == MULT
3095 || (i1 != 0 && GET_CODE (i1src) == MULT)
3096 || (i0 != 0 && GET_CODE (i0src) == MULT)
3097 || (GET_CODE (PATTERN (i3)) == SET
3098 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3099 have_mult = 1;
3100
3101 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3102 We used to do this EXCEPT in one case: I3 has a post-inc in an
3103 output operand. However, that exception can give rise to insns like
3104 mov r3,(r3)+
3105 which is a famous insn on the PDP-11 where the value of r3 used as the
3106 source was model-dependent. Avoid this sort of thing. */
3107
3108 #if 0
3109 if (!(GET_CODE (PATTERN (i3)) == SET
3110 && REG_P (SET_SRC (PATTERN (i3)))
3111 && MEM_P (SET_DEST (PATTERN (i3)))
3112 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3113 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3114 /* It's not the exception. */
3115 #endif
3116 if (AUTO_INC_DEC)
3117 {
3118 rtx link;
3119 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3120 if (REG_NOTE_KIND (link) == REG_INC
3121 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3122 || (i1 != 0
3123 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3124 {
3125 undo_all ();
3126 return 0;
3127 }
3128 }
3129
3130 /* See if the SETs in I1 or I2 need to be kept around in the merged
3131 instruction: whenever the value set there is still needed past I3.
3132 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3133
3134 For the SET in I1, we have two cases: if I1 and I2 independently feed
3135 into I3, the set in I1 needs to be kept around unless I1DEST dies
3136 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3137 in I1 needs to be kept around unless I1DEST dies or is set in either
3138 I2 or I3. The same considerations apply to I0. */
3139
3140 added_sets_2 = !dead_or_set_p (i3, i2dest);
3141
3142 if (i1)
3143 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3144 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3145 else
3146 added_sets_1 = 0;
3147
3148 if (i0)
3149 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3150 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3151 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3152 && dead_or_set_p (i2, i0dest)));
3153 else
3154 added_sets_0 = 0;
3155
3156 /* We are about to copy insns for the case where they need to be kept
3157 around. Check that they can be copied in the merged instruction. */
3158
3159 if (targetm.cannot_copy_insn_p
3160 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3161 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3162 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3163 {
3164 undo_all ();
3165 return 0;
3166 }
3167
3168 /* If the set in I2 needs to be kept around, we must make a copy of
3169 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3170 PATTERN (I2), we are only substituting for the original I1DEST, not into
3171 an already-substituted copy. This also prevents making self-referential
3172 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3173 I2DEST. */
3174
3175 if (added_sets_2)
3176 {
3177 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3178 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3179 else
3180 i2pat = copy_rtx (PATTERN (i2));
3181 }
3182
3183 if (added_sets_1)
3184 {
3185 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3186 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3187 else
3188 i1pat = copy_rtx (PATTERN (i1));
3189 }
3190
3191 if (added_sets_0)
3192 {
3193 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3194 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3195 else
3196 i0pat = copy_rtx (PATTERN (i0));
3197 }
3198
3199 combine_merges++;
3200
3201 /* Substitute in the latest insn for the regs set by the earlier ones. */
3202
3203 maxreg = max_reg_num ();
3204
3205 subst_insn = i3;
3206
3207 /* Many machines that don't use CC0 have insns that can both perform an
3208 arithmetic operation and set the condition code. These operations will
3209 be represented as a PARALLEL with the first element of the vector
3210 being a COMPARE of an arithmetic operation with the constant zero.
3211 The second element of the vector will set some pseudo to the result
3212 of the same arithmetic operation. If we simplify the COMPARE, we won't
3213 match such a pattern and so will generate an extra insn. Here we test
3214 for this case, where both the comparison and the operation result are
3215 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3216 I2SRC. Later we will make the PARALLEL that contains I2. */
3217
3218 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3219 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3220 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3221 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3222 {
3223 rtx newpat_dest;
3224 rtx *cc_use_loc = NULL;
3225 rtx_insn *cc_use_insn = NULL;
3226 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3227 machine_mode compare_mode, orig_compare_mode;
3228 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3229 scalar_int_mode mode;
3230
3231 newpat = PATTERN (i3);
3232 newpat_dest = SET_DEST (newpat);
3233 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3234
3235 if (undobuf.other_insn == 0
3236 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3237 &cc_use_insn)))
3238 {
3239 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3240 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3241 compare_code = simplify_compare_const (compare_code, mode,
3242 op0, &op1);
3243 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3244 }
3245
3246 /* Do the rest only if op1 is const0_rtx, which may be the
3247 result of simplification. */
3248 if (op1 == const0_rtx)
3249 {
3250 /* If a single use of the CC is found, prepare to modify it
3251 when SELECT_CC_MODE returns a new CC-class mode, or when
3252 the above simplify_compare_const() returned a new comparison
3253 operator. undobuf.other_insn is assigned the CC use insn
3254 when modifying it. */
3255 if (cc_use_loc)
3256 {
3257 #ifdef SELECT_CC_MODE
3258 machine_mode new_mode
3259 = SELECT_CC_MODE (compare_code, op0, op1);
3260 if (new_mode != orig_compare_mode
3261 && can_change_dest_mode (SET_DEST (newpat),
3262 added_sets_2, new_mode))
3263 {
3264 unsigned int regno = REGNO (newpat_dest);
3265 compare_mode = new_mode;
3266 if (regno < FIRST_PSEUDO_REGISTER)
3267 newpat_dest = gen_rtx_REG (compare_mode, regno);
3268 else
3269 {
3270 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3271 newpat_dest = regno_reg_rtx[regno];
3272 }
3273 }
3274 #endif
3275 /* Cases for modifying the CC-using comparison. */
3276 if (compare_code != orig_compare_code
3277 /* ??? Do we need to verify the zero rtx? */
3278 && XEXP (*cc_use_loc, 1) == const0_rtx)
3279 {
3280 /* Replace cc_use_loc with entire new RTX. */
3281 SUBST (*cc_use_loc,
3282 gen_rtx_fmt_ee (compare_code, compare_mode,
3283 newpat_dest, const0_rtx));
3284 undobuf.other_insn = cc_use_insn;
3285 }
3286 else if (compare_mode != orig_compare_mode)
3287 {
3288 /* Just replace the CC reg with a new mode. */
3289 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3290 undobuf.other_insn = cc_use_insn;
3291 }
3292 }
3293
3294 /* Now we modify the current newpat:
3295 First, SET_DEST(newpat) is updated if the CC mode has been
3296 altered. For targets without SELECT_CC_MODE, this should be
3297 optimized away. */
3298 if (compare_mode != orig_compare_mode)
3299 SUBST (SET_DEST (newpat), newpat_dest);
3300 /* This is always done to propagate i2src into newpat. */
3301 SUBST (SET_SRC (newpat),
3302 gen_rtx_COMPARE (compare_mode, op0, op1));
3303 /* Create new version of i2pat if needed; the below PARALLEL
3304 creation needs this to work correctly. */
3305 if (! rtx_equal_p (i2src, op0))
3306 i2pat = gen_rtx_SET (i2dest, op0);
3307 i2_is_used = 1;
3308 }
3309 }
3310
3311 if (i2_is_used == 0)
3312 {
3313 /* It is possible that the source of I2 or I1 may be performing
3314 an unneeded operation, such as a ZERO_EXTEND of something
3315 that is known to have the high part zero. Handle that case
3316 by letting subst look at the inner insns.
3317
3318 Another way to do this would be to have a function that tries
3319 to simplify a single insn instead of merging two or more
3320 insns. We don't do this because of the potential of infinite
3321 loops and because of the potential extra memory required.
3322 However, doing it the way we are is a bit of a kludge and
3323 doesn't catch all cases.
3324
3325 But only do this if -fexpensive-optimizations since it slows
3326 things down and doesn't usually win.
3327
3328 This is not done in the COMPARE case above because the
3329 unmodified I2PAT is used in the PARALLEL and so a pattern
3330 with a modified I2SRC would not match. */
3331
3332 if (flag_expensive_optimizations)
3333 {
3334 /* Pass pc_rtx so no substitutions are done, just
3335 simplifications. */
3336 if (i1)
3337 {
3338 subst_low_luid = DF_INSN_LUID (i1);
3339 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3340 }
3341
3342 subst_low_luid = DF_INSN_LUID (i2);
3343 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3344 }
3345
3346 n_occurrences = 0; /* `subst' counts here */
3347 subst_low_luid = DF_INSN_LUID (i2);
3348
3349 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3350 copy of I2SRC each time we substitute it, in order to avoid creating
3351 self-referential RTL when we will be substituting I1SRC for I1DEST
3352 later. Likewise if I0 feeds into I2, either directly or indirectly
3353 through I1, and I0DEST is in I0SRC. */
3354 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3355 (i1_feeds_i2_n && i1dest_in_i1src)
3356 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3357 && i0dest_in_i0src));
3358 substed_i2 = 1;
3359
3360 /* Record whether I2's body now appears within I3's body. */
3361 i2_is_used = n_occurrences;
3362 }
3363
3364 /* If we already got a failure, don't try to do more. Otherwise, try to
3365 substitute I1 if we have it. */
3366
3367 if (i1 && GET_CODE (newpat) != CLOBBER)
3368 {
3369 /* Check that an autoincrement side-effect on I1 has not been lost.
3370 This happens if I1DEST is mentioned in I2 and dies there, and
3371 has disappeared from the new pattern. */
3372 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3373 && i1_feeds_i2_n
3374 && dead_or_set_p (i2, i1dest)
3375 && !reg_overlap_mentioned_p (i1dest, newpat))
3376 /* Before we can do this substitution, we must redo the test done
3377 above (see detailed comments there) that ensures I1DEST isn't
3378 mentioned in any SETs in NEWPAT that are field assignments. */
3379 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3380 0, 0, 0))
3381 {
3382 undo_all ();
3383 return 0;
3384 }
3385
3386 n_occurrences = 0;
3387 subst_low_luid = DF_INSN_LUID (i1);
3388
3389 /* If the following substitution will modify I1SRC, make a copy of it
3390 for the case where it is substituted for I1DEST in I2PAT later. */
3391 if (added_sets_2 && i1_feeds_i2_n)
3392 i1src_copy = copy_rtx (i1src);
3393
3394 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3395 copy of I1SRC each time we substitute it, in order to avoid creating
3396 self-referential RTL when we will be substituting I0SRC for I0DEST
3397 later. */
3398 newpat = subst (newpat, i1dest, i1src, 0, 0,
3399 i0_feeds_i1_n && i0dest_in_i0src);
3400 substed_i1 = 1;
3401
3402 /* Record whether I1's body now appears within I3's body. */
3403 i1_is_used = n_occurrences;
3404 }
3405
3406 /* Likewise for I0 if we have it. */
3407
3408 if (i0 && GET_CODE (newpat) != CLOBBER)
3409 {
3410 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3411 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3412 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3413 && !reg_overlap_mentioned_p (i0dest, newpat))
3414 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3415 0, 0, 0))
3416 {
3417 undo_all ();
3418 return 0;
3419 }
3420
3421 /* If the following substitution will modify I0SRC, make a copy of it
3422 for the case where it is substituted for I0DEST in I1PAT later. */
3423 if (added_sets_1 && i0_feeds_i1_n)
3424 i0src_copy = copy_rtx (i0src);
3425 /* And a copy for I0DEST in I2PAT substitution. */
3426 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3427 || (i0_feeds_i2_n)))
3428 i0src_copy2 = copy_rtx (i0src);
3429
3430 n_occurrences = 0;
3431 subst_low_luid = DF_INSN_LUID (i0);
3432 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3433 substed_i0 = 1;
3434 }
3435
3436 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3437 to count all the ways that I2SRC and I1SRC can be used. */
3438 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3439 && i2_is_used + added_sets_2 > 1)
3440 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3441 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3442 > 1))
3443 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3444 && (n_occurrences + added_sets_0
3445 + (added_sets_1 && i0_feeds_i1_n)
3446 + (added_sets_2 && i0_feeds_i2_n)
3447 > 1))
3448 /* Fail if we tried to make a new register. */
3449 || max_reg_num () != maxreg
3450 /* Fail if we couldn't do something and have a CLOBBER. */
3451 || GET_CODE (newpat) == CLOBBER
3452 /* Fail if this new pattern is a MULT and we didn't have one before
3453 at the outer level. */
3454 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3455 && ! have_mult))
3456 {
3457 undo_all ();
3458 return 0;
3459 }
3460
3461 /* If the actions of the earlier insns must be kept
3462 in addition to substituting them into the latest one,
3463 we must make a new PARALLEL for the latest insn
3464 to hold additional the SETs. */
3465
3466 if (added_sets_0 || added_sets_1 || added_sets_2)
3467 {
3468 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3469 combine_extras++;
3470
3471 if (GET_CODE (newpat) == PARALLEL)
3472 {
3473 rtvec old = XVEC (newpat, 0);
3474 total_sets = XVECLEN (newpat, 0) + extra_sets;
3475 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3476 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3477 sizeof (old->elem[0]) * old->num_elem);
3478 }
3479 else
3480 {
3481 rtx old = newpat;
3482 total_sets = 1 + extra_sets;
3483 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3484 XVECEXP (newpat, 0, 0) = old;
3485 }
3486
3487 if (added_sets_0)
3488 XVECEXP (newpat, 0, --total_sets) = i0pat;
3489
3490 if (added_sets_1)
3491 {
3492 rtx t = i1pat;
3493 if (i0_feeds_i1_n)
3494 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3495
3496 XVECEXP (newpat, 0, --total_sets) = t;
3497 }
3498 if (added_sets_2)
3499 {
3500 rtx t = i2pat;
3501 if (i1_feeds_i2_n)
3502 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3503 i0_feeds_i1_n && i0dest_in_i0src);
3504 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3505 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3506
3507 XVECEXP (newpat, 0, --total_sets) = t;
3508 }
3509 }
3510
3511 validate_replacement:
3512
3513 /* Note which hard regs this insn has as inputs. */
3514 mark_used_regs_combine (newpat);
3515
3516 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3517 consider splitting this pattern, we might need these clobbers. */
3518 if (i1 && GET_CODE (newpat) == PARALLEL
3519 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3520 {
3521 int len = XVECLEN (newpat, 0);
3522
3523 newpat_vec_with_clobbers = rtvec_alloc (len);
3524 for (i = 0; i < len; i++)
3525 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3526 }
3527
3528 /* We have recognized nothing yet. */
3529 insn_code_number = -1;
3530
3531 /* See if this is a PARALLEL of two SETs where one SET's destination is
3532 a register that is unused and this isn't marked as an instruction that
3533 might trap in an EH region. In that case, we just need the other SET.
3534 We prefer this over the PARALLEL.
3535
3536 This can occur when simplifying a divmod insn. We *must* test for this
3537 case here because the code below that splits two independent SETs doesn't
3538 handle this case correctly when it updates the register status.
3539
3540 It's pointless doing this if we originally had two sets, one from
3541 i3, and one from i2. Combining then splitting the parallel results
3542 in the original i2 again plus an invalid insn (which we delete).
3543 The net effect is only to move instructions around, which makes
3544 debug info less accurate.
3545
3546 If the remaining SET came from I2 its destination should not be used
3547 between I2 and I3. See PR82024. */
3548
3549 if (!(added_sets_2 && i1 == 0)
3550 && is_parallel_of_n_reg_sets (newpat, 2)
3551 && asm_noperands (newpat) < 0)
3552 {
3553 rtx set0 = XVECEXP (newpat, 0, 0);
3554 rtx set1 = XVECEXP (newpat, 0, 1);
3555 rtx oldpat = newpat;
3556
3557 if (((REG_P (SET_DEST (set1))
3558 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3559 || (GET_CODE (SET_DEST (set1)) == SUBREG
3560 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3561 && insn_nothrow_p (i3)
3562 && !side_effects_p (SET_SRC (set1)))
3563 {
3564 newpat = set0;
3565 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3566 }
3567
3568 else if (((REG_P (SET_DEST (set0))
3569 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3570 || (GET_CODE (SET_DEST (set0)) == SUBREG
3571 && find_reg_note (i3, REG_UNUSED,
3572 SUBREG_REG (SET_DEST (set0)))))
3573 && insn_nothrow_p (i3)
3574 && !side_effects_p (SET_SRC (set0)))
3575 {
3576 rtx dest = SET_DEST (set1);
3577 if (GET_CODE (dest) == SUBREG)
3578 dest = SUBREG_REG (dest);
3579 if (!reg_used_between_p (dest, i2, i3))
3580 {
3581 newpat = set1;
3582 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3583
3584 if (insn_code_number >= 0)
3585 changed_i3_dest = 1;
3586 }
3587 }
3588
3589 if (insn_code_number < 0)
3590 newpat = oldpat;
3591 }
3592
3593 /* Is the result of combination a valid instruction? */
3594 if (insn_code_number < 0)
3595 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3596
3597 /* If we were combining three insns and the result is a simple SET
3598 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3599 insns. There are two ways to do this. It can be split using a
3600 machine-specific method (like when you have an addition of a large
3601 constant) or by combine in the function find_split_point. */
3602
3603 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3604 && asm_noperands (newpat) < 0)
3605 {
3606 rtx parallel, *split;
3607 rtx_insn *m_split_insn;
3608
3609 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3610 use I2DEST as a scratch register will help. In the latter case,
3611 convert I2DEST to the mode of the source of NEWPAT if we can. */
3612
3613 m_split_insn = combine_split_insns (newpat, i3);
3614
3615 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3616 inputs of NEWPAT. */
3617
3618 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3619 possible to try that as a scratch reg. This would require adding
3620 more code to make it work though. */
3621
3622 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3623 {
3624 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3625
3626 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3627 (temporarily, until we are committed to this instruction
3628 combination) does not work: for example, any call to nonzero_bits
3629 on the register (from a splitter in the MD file, for example)
3630 will get the old information, which is invalid.
3631
3632 Since nowadays we can create registers during combine just fine,
3633 we should just create a new one here, not reuse i2dest. */
3634
3635 /* First try to split using the original register as a
3636 scratch register. */
3637 parallel = gen_rtx_PARALLEL (VOIDmode,
3638 gen_rtvec (2, newpat,
3639 gen_rtx_CLOBBER (VOIDmode,
3640 i2dest)));
3641 m_split_insn = combine_split_insns (parallel, i3);
3642
3643 /* If that didn't work, try changing the mode of I2DEST if
3644 we can. */
3645 if (m_split_insn == 0
3646 && new_mode != GET_MODE (i2dest)
3647 && new_mode != VOIDmode
3648 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3649 {
3650 machine_mode old_mode = GET_MODE (i2dest);
3651 rtx ni2dest;
3652
3653 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3654 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3655 else
3656 {
3657 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3658 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3659 }
3660
3661 parallel = (gen_rtx_PARALLEL
3662 (VOIDmode,
3663 gen_rtvec (2, newpat,
3664 gen_rtx_CLOBBER (VOIDmode,
3665 ni2dest))));
3666 m_split_insn = combine_split_insns (parallel, i3);
3667
3668 if (m_split_insn == 0
3669 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3670 {
3671 struct undo *buf;
3672
3673 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3674 buf = undobuf.undos;
3675 undobuf.undos = buf->next;
3676 buf->next = undobuf.frees;
3677 undobuf.frees = buf;
3678 }
3679 }
3680
3681 i2scratch = m_split_insn != 0;
3682 }
3683
3684 /* If recog_for_combine has discarded clobbers, try to use them
3685 again for the split. */
3686 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3687 {
3688 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3689 m_split_insn = combine_split_insns (parallel, i3);
3690 }
3691
3692 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3693 {
3694 rtx m_split_pat = PATTERN (m_split_insn);
3695 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3696 if (insn_code_number >= 0)
3697 newpat = m_split_pat;
3698 }
3699 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3700 && (next_nonnote_nondebug_insn (i2) == i3
3701 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3702 {
3703 rtx i2set, i3set;
3704 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3705 newi2pat = PATTERN (m_split_insn);
3706
3707 i3set = single_set (NEXT_INSN (m_split_insn));
3708 i2set = single_set (m_split_insn);
3709
3710 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3711
3712 /* If I2 or I3 has multiple SETs, we won't know how to track
3713 register status, so don't use these insns. If I2's destination
3714 is used between I2 and I3, we also can't use these insns. */
3715
3716 if (i2_code_number >= 0 && i2set && i3set
3717 && (next_nonnote_nondebug_insn (i2) == i3
3718 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3719 insn_code_number = recog_for_combine (&newi3pat, i3,
3720 &new_i3_notes);
3721 if (insn_code_number >= 0)
3722 newpat = newi3pat;
3723
3724 /* It is possible that both insns now set the destination of I3.
3725 If so, we must show an extra use of it. */
3726
3727 if (insn_code_number >= 0)
3728 {
3729 rtx new_i3_dest = SET_DEST (i3set);
3730 rtx new_i2_dest = SET_DEST (i2set);
3731
3732 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3733 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3734 || GET_CODE (new_i3_dest) == SUBREG)
3735 new_i3_dest = XEXP (new_i3_dest, 0);
3736
3737 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3738 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3739 || GET_CODE (new_i2_dest) == SUBREG)
3740 new_i2_dest = XEXP (new_i2_dest, 0);
3741
3742 if (REG_P (new_i3_dest)
3743 && REG_P (new_i2_dest)
3744 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3745 && REGNO (new_i2_dest) < reg_n_sets_max)
3746 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3747 }
3748 }
3749
3750 /* If we can split it and use I2DEST, go ahead and see if that
3751 helps things be recognized. Verify that none of the registers
3752 are set between I2 and I3. */
3753 if (insn_code_number < 0
3754 && (split = find_split_point (&newpat, i3, false)) != 0
3755 && (!HAVE_cc0 || REG_P (i2dest))
3756 /* We need I2DEST in the proper mode. If it is a hard register
3757 or the only use of a pseudo, we can change its mode.
3758 Make sure we don't change a hard register to have a mode that
3759 isn't valid for it, or change the number of registers. */
3760 && (GET_MODE (*split) == GET_MODE (i2dest)
3761 || GET_MODE (*split) == VOIDmode
3762 || can_change_dest_mode (i2dest, added_sets_2,
3763 GET_MODE (*split)))
3764 && (next_nonnote_nondebug_insn (i2) == i3
3765 || !modified_between_p (*split, i2, i3))
3766 /* We can't overwrite I2DEST if its value is still used by
3767 NEWPAT. */
3768 && ! reg_referenced_p (i2dest, newpat))
3769 {
3770 rtx newdest = i2dest;
3771 enum rtx_code split_code = GET_CODE (*split);
3772 machine_mode split_mode = GET_MODE (*split);
3773 bool subst_done = false;
3774 newi2pat = NULL_RTX;
3775
3776 i2scratch = true;
3777
3778 /* *SPLIT may be part of I2SRC, so make sure we have the
3779 original expression around for later debug processing.
3780 We should not need I2SRC any more in other cases. */
3781 if (MAY_HAVE_DEBUG_BIND_INSNS)
3782 i2src = copy_rtx (i2src);
3783 else
3784 i2src = NULL;
3785
3786 /* Get NEWDEST as a register in the proper mode. We have already
3787 validated that we can do this. */
3788 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3789 {
3790 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3791 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3792 else
3793 {
3794 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3795 newdest = regno_reg_rtx[REGNO (i2dest)];
3796 }
3797 }
3798
3799 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3800 an ASHIFT. This can occur if it was inside a PLUS and hence
3801 appeared to be a memory address. This is a kludge. */
3802 if (split_code == MULT
3803 && CONST_INT_P (XEXP (*split, 1))
3804 && INTVAL (XEXP (*split, 1)) > 0
3805 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3806 {
3807 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3808 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3809 XEXP (*split, 0), i_rtx));
3810 /* Update split_code because we may not have a multiply
3811 anymore. */
3812 split_code = GET_CODE (*split);
3813 }
3814
3815 /* Similarly for (plus (mult FOO (const_int pow2))). */
3816 if (split_code == PLUS
3817 && GET_CODE (XEXP (*split, 0)) == MULT
3818 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3819 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3820 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3821 {
3822 rtx nsplit = XEXP (*split, 0);
3823 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3824 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3825 XEXP (nsplit, 0),
3826 i_rtx));
3827 /* Update split_code because we may not have a multiply
3828 anymore. */
3829 split_code = GET_CODE (*split);
3830 }
3831
3832 #ifdef INSN_SCHEDULING
3833 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3834 be written as a ZERO_EXTEND. */
3835 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3836 {
3837 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3838 what it really is. */
3839 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3840 == SIGN_EXTEND)
3841 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3842 SUBREG_REG (*split)));
3843 else
3844 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3845 SUBREG_REG (*split)));
3846 }
3847 #endif
3848
3849 /* Attempt to split binary operators using arithmetic identities. */
3850 if (BINARY_P (SET_SRC (newpat))
3851 && split_mode == GET_MODE (SET_SRC (newpat))
3852 && ! side_effects_p (SET_SRC (newpat)))
3853 {
3854 rtx setsrc = SET_SRC (newpat);
3855 machine_mode mode = GET_MODE (setsrc);
3856 enum rtx_code code = GET_CODE (setsrc);
3857 rtx src_op0 = XEXP (setsrc, 0);
3858 rtx src_op1 = XEXP (setsrc, 1);
3859
3860 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3861 if (rtx_equal_p (src_op0, src_op1))
3862 {
3863 newi2pat = gen_rtx_SET (newdest, src_op0);
3864 SUBST (XEXP (setsrc, 0), newdest);
3865 SUBST (XEXP (setsrc, 1), newdest);
3866 subst_done = true;
3867 }
3868 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3869 else if ((code == PLUS || code == MULT)
3870 && GET_CODE (src_op0) == code
3871 && GET_CODE (XEXP (src_op0, 0)) == code
3872 && (INTEGRAL_MODE_P (mode)
3873 || (FLOAT_MODE_P (mode)
3874 && flag_unsafe_math_optimizations)))
3875 {
3876 rtx p = XEXP (XEXP (src_op0, 0), 0);
3877 rtx q = XEXP (XEXP (src_op0, 0), 1);
3878 rtx r = XEXP (src_op0, 1);
3879 rtx s = src_op1;
3880
3881 /* Split both "((X op Y) op X) op Y" and
3882 "((X op Y) op Y) op X" as "T op T" where T is
3883 "X op Y". */
3884 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3885 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3886 {
3887 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3888 SUBST (XEXP (setsrc, 0), newdest);
3889 SUBST (XEXP (setsrc, 1), newdest);
3890 subst_done = true;
3891 }
3892 /* Split "((X op X) op Y) op Y)" as "T op T" where
3893 T is "X op Y". */
3894 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3895 {
3896 rtx tmp = simplify_gen_binary (code, mode, p, r);
3897 newi2pat = gen_rtx_SET (newdest, tmp);
3898 SUBST (XEXP (setsrc, 0), newdest);
3899 SUBST (XEXP (setsrc, 1), newdest);
3900 subst_done = true;
3901 }
3902 }
3903 }
3904
3905 if (!subst_done)
3906 {
3907 newi2pat = gen_rtx_SET (newdest, *split);
3908 SUBST (*split, newdest);
3909 }
3910
3911 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3912
3913 /* recog_for_combine might have added CLOBBERs to newi2pat.
3914 Make sure NEWPAT does not depend on the clobbered regs. */
3915 if (GET_CODE (newi2pat) == PARALLEL)
3916 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3917 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3918 {
3919 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3920 if (reg_overlap_mentioned_p (reg, newpat))
3921 {
3922 undo_all ();
3923 return 0;
3924 }
3925 }
3926
3927 /* If the split point was a MULT and we didn't have one before,
3928 don't use one now. */
3929 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3930 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3931 }
3932 }
3933
3934 /* Check for a case where we loaded from memory in a narrow mode and
3935 then sign extended it, but we need both registers. In that case,
3936 we have a PARALLEL with both loads from the same memory location.
3937 We can split this into a load from memory followed by a register-register
3938 copy. This saves at least one insn, more if register allocation can
3939 eliminate the copy.
3940
3941 We cannot do this if the destination of the first assignment is a
3942 condition code register or cc0. We eliminate this case by making sure
3943 the SET_DEST and SET_SRC have the same mode.
3944
3945 We cannot do this if the destination of the second assignment is
3946 a register that we have already assumed is zero-extended. Similarly
3947 for a SUBREG of such a register. */
3948
3949 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3950 && GET_CODE (newpat) == PARALLEL
3951 && XVECLEN (newpat, 0) == 2
3952 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3953 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3954 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3955 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3956 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3957 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3958 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3959 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3960 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3961 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3962 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3963 (REG_P (temp_expr)
3964 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3965 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3966 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3967 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3968 != GET_MODE_MASK (word_mode))))
3969 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3970 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3971 (REG_P (temp_expr)
3972 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3973 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3974 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3975 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3976 != GET_MODE_MASK (word_mode)))))
3977 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3978 SET_SRC (XVECEXP (newpat, 0, 1)))
3979 && ! find_reg_note (i3, REG_UNUSED,
3980 SET_DEST (XVECEXP (newpat, 0, 0))))
3981 {
3982 rtx ni2dest;
3983
3984 newi2pat = XVECEXP (newpat, 0, 0);
3985 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3986 newpat = XVECEXP (newpat, 0, 1);
3987 SUBST (SET_SRC (newpat),
3988 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3989 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3990
3991 if (i2_code_number >= 0)
3992 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3993
3994 if (insn_code_number >= 0)
3995 swap_i2i3 = 1;
3996 }
3997
3998 /* Similarly, check for a case where we have a PARALLEL of two independent
3999 SETs but we started with three insns. In this case, we can do the sets
4000 as two separate insns. This case occurs when some SET allows two
4001 other insns to combine, but the destination of that SET is still live.
4002
4003 Also do this if we started with two insns and (at least) one of the
4004 resulting sets is a noop; this noop will be deleted later. */
4005
4006 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4007 && GET_CODE (newpat) == PARALLEL
4008 && XVECLEN (newpat, 0) == 2
4009 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4010 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4011 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
4012 || set_noop_p (XVECEXP (newpat, 0, 1)))
4013 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4014 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4015 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4016 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4017 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4018 XVECEXP (newpat, 0, 0))
4019 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4020 XVECEXP (newpat, 0, 1))
4021 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4022 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4023 {
4024 rtx set0 = XVECEXP (newpat, 0, 0);
4025 rtx set1 = XVECEXP (newpat, 0, 1);
4026
4027 /* Normally, it doesn't matter which of the two is done first,
4028 but the one that references cc0 can't be the second, and
4029 one which uses any regs/memory set in between i2 and i3 can't
4030 be first. The PARALLEL might also have been pre-existing in i3,
4031 so we need to make sure that we won't wrongly hoist a SET to i2
4032 that would conflict with a death note present in there. */
4033 if (!modified_between_p (SET_SRC (set1), i2, i3)
4034 && !(REG_P (SET_DEST (set1))
4035 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4036 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4037 && find_reg_note (i2, REG_DEAD,
4038 SUBREG_REG (SET_DEST (set1))))
4039 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4040 /* If I3 is a jump, ensure that set0 is a jump so that
4041 we do not create invalid RTL. */
4042 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4043 )
4044 {
4045 newi2pat = set1;
4046 newpat = set0;
4047 }
4048 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4049 && !(REG_P (SET_DEST (set0))
4050 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4051 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4052 && find_reg_note (i2, REG_DEAD,
4053 SUBREG_REG (SET_DEST (set0))))
4054 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4055 /* If I3 is a jump, ensure that set1 is a jump so that
4056 we do not create invalid RTL. */
4057 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4058 )
4059 {
4060 newi2pat = set0;
4061 newpat = set1;
4062 }
4063 else
4064 {
4065 undo_all ();
4066 return 0;
4067 }
4068
4069 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4070
4071 if (i2_code_number >= 0)
4072 {
4073 /* recog_for_combine might have added CLOBBERs to newi2pat.
4074 Make sure NEWPAT does not depend on the clobbered regs. */
4075 if (GET_CODE (newi2pat) == PARALLEL)
4076 {
4077 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4078 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4079 {
4080 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4081 if (reg_overlap_mentioned_p (reg, newpat))
4082 {
4083 undo_all ();
4084 return 0;
4085 }
4086 }
4087 }
4088
4089 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4090 }
4091 }
4092
4093 /* If it still isn't recognized, fail and change things back the way they
4094 were. */
4095 if ((insn_code_number < 0
4096 /* Is the result a reasonable ASM_OPERANDS? */
4097 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4098 {
4099 undo_all ();
4100 return 0;
4101 }
4102
4103 /* If we had to change another insn, make sure it is valid also. */
4104 if (undobuf.other_insn)
4105 {
4106 CLEAR_HARD_REG_SET (newpat_used_regs);
4107
4108 other_pat = PATTERN (undobuf.other_insn);
4109 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4110 &new_other_notes);
4111
4112 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4113 {
4114 undo_all ();
4115 return 0;
4116 }
4117 }
4118
4119 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4120 they are adjacent to each other or not. */
4121 if (HAVE_cc0)
4122 {
4123 rtx_insn *p = prev_nonnote_insn (i3);
4124 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4125 && sets_cc0_p (newi2pat))
4126 {
4127 undo_all ();
4128 return 0;
4129 }
4130 }
4131
4132 /* Only allow this combination if insn_cost reports that the
4133 replacement instructions are cheaper than the originals. */
4134 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4135 {
4136 undo_all ();
4137 return 0;
4138 }
4139
4140 if (MAY_HAVE_DEBUG_BIND_INSNS)
4141 {
4142 struct undo *undo;
4143
4144 for (undo = undobuf.undos; undo; undo = undo->next)
4145 if (undo->kind == UNDO_MODE)
4146 {
4147 rtx reg = *undo->where.r;
4148 machine_mode new_mode = GET_MODE (reg);
4149 machine_mode old_mode = undo->old_contents.m;
4150
4151 /* Temporarily revert mode back. */
4152 adjust_reg_mode (reg, old_mode);
4153
4154 if (reg == i2dest && i2scratch)
4155 {
4156 /* If we used i2dest as a scratch register with a
4157 different mode, substitute it for the original
4158 i2src while its original mode is temporarily
4159 restored, and then clear i2scratch so that we don't
4160 do it again later. */
4161 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4162 this_basic_block);
4163 i2scratch = false;
4164 /* Put back the new mode. */
4165 adjust_reg_mode (reg, new_mode);
4166 }
4167 else
4168 {
4169 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4170 rtx_insn *first, *last;
4171
4172 if (reg == i2dest)
4173 {
4174 first = i2;
4175 last = last_combined_insn;
4176 }
4177 else
4178 {
4179 first = i3;
4180 last = undobuf.other_insn;
4181 gcc_assert (last);
4182 if (DF_INSN_LUID (last)
4183 < DF_INSN_LUID (last_combined_insn))
4184 last = last_combined_insn;
4185 }
4186
4187 /* We're dealing with a reg that changed mode but not
4188 meaning, so we want to turn it into a subreg for
4189 the new mode. However, because of REG sharing and
4190 because its mode had already changed, we have to do
4191 it in two steps. First, replace any debug uses of
4192 reg, with its original mode temporarily restored,
4193 with this copy we have created; then, replace the
4194 copy with the SUBREG of the original shared reg,
4195 once again changed to the new mode. */
4196 propagate_for_debug (first, last, reg, tempreg,
4197 this_basic_block);
4198 adjust_reg_mode (reg, new_mode);
4199 propagate_for_debug (first, last, tempreg,
4200 lowpart_subreg (old_mode, reg, new_mode),
4201 this_basic_block);
4202 }
4203 }
4204 }
4205
4206 /* If we will be able to accept this, we have made a
4207 change to the destination of I3. This requires us to
4208 do a few adjustments. */
4209
4210 if (changed_i3_dest)
4211 {
4212 PATTERN (i3) = newpat;
4213 adjust_for_new_dest (i3);
4214 }
4215
4216 /* We now know that we can do this combination. Merge the insns and
4217 update the status of registers and LOG_LINKS. */
4218
4219 if (undobuf.other_insn)
4220 {
4221 rtx note, next;
4222
4223 PATTERN (undobuf.other_insn) = other_pat;
4224
4225 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4226 ensure that they are still valid. Then add any non-duplicate
4227 notes added by recog_for_combine. */
4228 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4229 {
4230 next = XEXP (note, 1);
4231
4232 if ((REG_NOTE_KIND (note) == REG_DEAD
4233 && !reg_referenced_p (XEXP (note, 0),
4234 PATTERN (undobuf.other_insn)))
4235 ||(REG_NOTE_KIND (note) == REG_UNUSED
4236 && !reg_set_p (XEXP (note, 0),
4237 PATTERN (undobuf.other_insn)))
4238 /* Simply drop equal note since it may be no longer valid
4239 for other_insn. It may be possible to record that CC
4240 register is changed and only discard those notes, but
4241 in practice it's unnecessary complication and doesn't
4242 give any meaningful improvement.
4243
4244 See PR78559. */
4245 || REG_NOTE_KIND (note) == REG_EQUAL
4246 || REG_NOTE_KIND (note) == REG_EQUIV)
4247 remove_note (undobuf.other_insn, note);
4248 }
4249
4250 distribute_notes (new_other_notes, undobuf.other_insn,
4251 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4252 NULL_RTX);
4253 }
4254
4255 if (swap_i2i3)
4256 {
4257 rtx_insn *insn;
4258 struct insn_link *link;
4259 rtx ni2dest;
4260
4261 /* I3 now uses what used to be its destination and which is now
4262 I2's destination. This requires us to do a few adjustments. */
4263 PATTERN (i3) = newpat;
4264 adjust_for_new_dest (i3);
4265
4266 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4267 so we still will.
4268
4269 However, some later insn might be using I2's dest and have
4270 a LOG_LINK pointing at I3. We must remove this link.
4271 The simplest way to remove the link is to point it at I1,
4272 which we know will be a NOTE. */
4273
4274 /* newi2pat is usually a SET here; however, recog_for_combine might
4275 have added some clobbers. */
4276 if (GET_CODE (newi2pat) == PARALLEL)
4277 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4278 else
4279 ni2dest = SET_DEST (newi2pat);
4280
4281 for (insn = NEXT_INSN (i3);
4282 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4283 || insn != BB_HEAD (this_basic_block->next_bb));
4284 insn = NEXT_INSN (insn))
4285 {
4286 if (NONDEBUG_INSN_P (insn)
4287 && reg_referenced_p (ni2dest, PATTERN (insn)))
4288 {
4289 FOR_EACH_LOG_LINK (link, insn)
4290 if (link->insn == i3)
4291 link->insn = i1;
4292
4293 break;
4294 }
4295 }
4296 }
4297
4298 {
4299 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4300 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4301 rtx midnotes = 0;
4302 int from_luid;
4303 /* Compute which registers we expect to eliminate. newi2pat may be setting
4304 either i3dest or i2dest, so we must check it. */
4305 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4306 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4307 || !i2dest_killed
4308 ? 0 : i2dest);
4309 /* For i1, we need to compute both local elimination and global
4310 elimination information with respect to newi2pat because i1dest
4311 may be the same as i3dest, in which case newi2pat may be setting
4312 i1dest. Global information is used when distributing REG_DEAD
4313 note for i2 and i3, in which case it does matter if newi2pat sets
4314 i1dest or not.
4315
4316 Local information is used when distributing REG_DEAD note for i1,
4317 in which case it doesn't matter if newi2pat sets i1dest or not.
4318 See PR62151, if we have four insns combination:
4319 i0: r0 <- i0src
4320 i1: r1 <- i1src (using r0)
4321 REG_DEAD (r0)
4322 i2: r0 <- i2src (using r1)
4323 i3: r3 <- i3src (using r0)
4324 ix: using r0
4325 From i1's point of view, r0 is eliminated, no matter if it is set
4326 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4327 should be discarded.
4328
4329 Note local information only affects cases in forms like "I1->I2->I3",
4330 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4331 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4332 i0dest anyway. */
4333 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4334 || !i1dest_killed
4335 ? 0 : i1dest);
4336 rtx elim_i1 = (local_elim_i1 == 0
4337 || (newi2pat && reg_set_p (i1dest, newi2pat))
4338 ? 0 : i1dest);
4339 /* Same case as i1. */
4340 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4341 ? 0 : i0dest);
4342 rtx elim_i0 = (local_elim_i0 == 0
4343 || (newi2pat && reg_set_p (i0dest, newi2pat))
4344 ? 0 : i0dest);
4345
4346 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4347 clear them. */
4348 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4349 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4350 if (i1)
4351 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4352 if (i0)
4353 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4354
4355 /* Ensure that we do not have something that should not be shared but
4356 occurs multiple times in the new insns. Check this by first
4357 resetting all the `used' flags and then copying anything is shared. */
4358
4359 reset_used_flags (i3notes);
4360 reset_used_flags (i2notes);
4361 reset_used_flags (i1notes);
4362 reset_used_flags (i0notes);
4363 reset_used_flags (newpat);
4364 reset_used_flags (newi2pat);
4365 if (undobuf.other_insn)
4366 reset_used_flags (PATTERN (undobuf.other_insn));
4367
4368 i3notes = copy_rtx_if_shared (i3notes);
4369 i2notes = copy_rtx_if_shared (i2notes);
4370 i1notes = copy_rtx_if_shared (i1notes);
4371 i0notes = copy_rtx_if_shared (i0notes);
4372 newpat = copy_rtx_if_shared (newpat);
4373 newi2pat = copy_rtx_if_shared (newi2pat);
4374 if (undobuf.other_insn)
4375 reset_used_flags (PATTERN (undobuf.other_insn));
4376
4377 INSN_CODE (i3) = insn_code_number;
4378 PATTERN (i3) = newpat;
4379
4380 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4381 {
4382 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4383 link = XEXP (link, 1))
4384 {
4385 if (substed_i2)
4386 {
4387 /* I2SRC must still be meaningful at this point. Some
4388 splitting operations can invalidate I2SRC, but those
4389 operations do not apply to calls. */
4390 gcc_assert (i2src);
4391 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4392 i2dest, i2src);
4393 }
4394 if (substed_i1)
4395 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4396 i1dest, i1src);
4397 if (substed_i0)
4398 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4399 i0dest, i0src);
4400 }
4401 }
4402
4403 if (undobuf.other_insn)
4404 INSN_CODE (undobuf.other_insn) = other_code_number;
4405
4406 /* We had one special case above where I2 had more than one set and
4407 we replaced a destination of one of those sets with the destination
4408 of I3. In that case, we have to update LOG_LINKS of insns later
4409 in this basic block. Note that this (expensive) case is rare.
4410
4411 Also, in this case, we must pretend that all REG_NOTEs for I2
4412 actually came from I3, so that REG_UNUSED notes from I2 will be
4413 properly handled. */
4414
4415 if (i3_subst_into_i2)
4416 {
4417 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4418 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4419 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4420 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4421 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4422 && ! find_reg_note (i2, REG_UNUSED,
4423 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4424 for (temp_insn = NEXT_INSN (i2);
4425 temp_insn
4426 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4427 || BB_HEAD (this_basic_block) != temp_insn);
4428 temp_insn = NEXT_INSN (temp_insn))
4429 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4430 FOR_EACH_LOG_LINK (link, temp_insn)
4431 if (link->insn == i2)
4432 link->insn = i3;
4433
4434 if (i3notes)
4435 {
4436 rtx link = i3notes;
4437 while (XEXP (link, 1))
4438 link = XEXP (link, 1);
4439 XEXP (link, 1) = i2notes;
4440 }
4441 else
4442 i3notes = i2notes;
4443 i2notes = 0;
4444 }
4445
4446 LOG_LINKS (i3) = NULL;
4447 REG_NOTES (i3) = 0;
4448 LOG_LINKS (i2) = NULL;
4449 REG_NOTES (i2) = 0;
4450
4451 if (newi2pat)
4452 {
4453 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4454 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4455 this_basic_block);
4456 INSN_CODE (i2) = i2_code_number;
4457 PATTERN (i2) = newi2pat;
4458 }
4459 else
4460 {
4461 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4462 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4463 this_basic_block);
4464 SET_INSN_DELETED (i2);
4465 }
4466
4467 if (i1)
4468 {
4469 LOG_LINKS (i1) = NULL;
4470 REG_NOTES (i1) = 0;
4471 if (MAY_HAVE_DEBUG_BIND_INSNS)
4472 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4473 this_basic_block);
4474 SET_INSN_DELETED (i1);
4475 }
4476
4477 if (i0)
4478 {
4479 LOG_LINKS (i0) = NULL;
4480 REG_NOTES (i0) = 0;
4481 if (MAY_HAVE_DEBUG_BIND_INSNS)
4482 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4483 this_basic_block);
4484 SET_INSN_DELETED (i0);
4485 }
4486
4487 /* Get death notes for everything that is now used in either I3 or
4488 I2 and used to die in a previous insn. If we built two new
4489 patterns, move from I1 to I2 then I2 to I3 so that we get the
4490 proper movement on registers that I2 modifies. */
4491
4492 if (i0)
4493 from_luid = DF_INSN_LUID (i0);
4494 else if (i1)
4495 from_luid = DF_INSN_LUID (i1);
4496 else
4497 from_luid = DF_INSN_LUID (i2);
4498 if (newi2pat)
4499 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4500 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4501
4502 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4503 if (i3notes)
4504 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4505 elim_i2, elim_i1, elim_i0);
4506 if (i2notes)
4507 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4508 elim_i2, elim_i1, elim_i0);
4509 if (i1notes)
4510 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4511 elim_i2, local_elim_i1, local_elim_i0);
4512 if (i0notes)
4513 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4514 elim_i2, elim_i1, local_elim_i0);
4515 if (midnotes)
4516 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4517 elim_i2, elim_i1, elim_i0);
4518
4519 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4520 know these are REG_UNUSED and want them to go to the desired insn,
4521 so we always pass it as i3. */
4522
4523 if (newi2pat && new_i2_notes)
4524 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4525 NULL_RTX);
4526
4527 if (new_i3_notes)
4528 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4529 NULL_RTX);
4530
4531 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4532 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4533 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4534 in that case, it might delete I2. Similarly for I2 and I1.
4535 Show an additional death due to the REG_DEAD note we make here. If
4536 we discard it in distribute_notes, we will decrement it again. */
4537
4538 if (i3dest_killed)
4539 {
4540 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4541 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4542 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4543 elim_i1, elim_i0);
4544 else
4545 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4546 elim_i2, elim_i1, elim_i0);
4547 }
4548
4549 if (i2dest_in_i2src)
4550 {
4551 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4552 if (newi2pat && reg_set_p (i2dest, newi2pat))
4553 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4554 NULL_RTX, NULL_RTX);
4555 else
4556 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4557 NULL_RTX, NULL_RTX, NULL_RTX);
4558 }
4559
4560 if (i1dest_in_i1src)
4561 {
4562 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4563 if (newi2pat && reg_set_p (i1dest, newi2pat))
4564 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4565 NULL_RTX, NULL_RTX);
4566 else
4567 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4568 NULL_RTX, NULL_RTX, NULL_RTX);
4569 }
4570
4571 if (i0dest_in_i0src)
4572 {
4573 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4574 if (newi2pat && reg_set_p (i0dest, newi2pat))
4575 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4576 NULL_RTX, NULL_RTX);
4577 else
4578 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4579 NULL_RTX, NULL_RTX, NULL_RTX);
4580 }
4581
4582 distribute_links (i3links);
4583 distribute_links (i2links);
4584 distribute_links (i1links);
4585 distribute_links (i0links);
4586
4587 if (REG_P (i2dest))
4588 {
4589 struct insn_link *link;
4590 rtx_insn *i2_insn = 0;
4591 rtx i2_val = 0, set;
4592
4593 /* The insn that used to set this register doesn't exist, and
4594 this life of the register may not exist either. See if one of
4595 I3's links points to an insn that sets I2DEST. If it does,
4596 that is now the last known value for I2DEST. If we don't update
4597 this and I2 set the register to a value that depended on its old
4598 contents, we will get confused. If this insn is used, thing
4599 will be set correctly in combine_instructions. */
4600 FOR_EACH_LOG_LINK (link, i3)
4601 if ((set = single_set (link->insn)) != 0
4602 && rtx_equal_p (i2dest, SET_DEST (set)))
4603 i2_insn = link->insn, i2_val = SET_SRC (set);
4604
4605 record_value_for_reg (i2dest, i2_insn, i2_val);
4606
4607 /* If the reg formerly set in I2 died only once and that was in I3,
4608 zero its use count so it won't make `reload' do any work. */
4609 if (! added_sets_2
4610 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4611 && ! i2dest_in_i2src
4612 && REGNO (i2dest) < reg_n_sets_max)
4613 INC_REG_N_SETS (REGNO (i2dest), -1);
4614 }
4615
4616 if (i1 && REG_P (i1dest))
4617 {
4618 struct insn_link *link;
4619 rtx_insn *i1_insn = 0;
4620 rtx i1_val = 0, set;
4621
4622 FOR_EACH_LOG_LINK (link, i3)
4623 if ((set = single_set (link->insn)) != 0
4624 && rtx_equal_p (i1dest, SET_DEST (set)))
4625 i1_insn = link->insn, i1_val = SET_SRC (set);
4626
4627 record_value_for_reg (i1dest, i1_insn, i1_val);
4628
4629 if (! added_sets_1
4630 && ! i1dest_in_i1src
4631 && REGNO (i1dest) < reg_n_sets_max)
4632 INC_REG_N_SETS (REGNO (i1dest), -1);
4633 }
4634
4635 if (i0 && REG_P (i0dest))
4636 {
4637 struct insn_link *link;
4638 rtx_insn *i0_insn = 0;
4639 rtx i0_val = 0, set;
4640
4641 FOR_EACH_LOG_LINK (link, i3)
4642 if ((set = single_set (link->insn)) != 0
4643 && rtx_equal_p (i0dest, SET_DEST (set)))
4644 i0_insn = link->insn, i0_val = SET_SRC (set);
4645
4646 record_value_for_reg (i0dest, i0_insn, i0_val);
4647
4648 if (! added_sets_0
4649 && ! i0dest_in_i0src
4650 && REGNO (i0dest) < reg_n_sets_max)
4651 INC_REG_N_SETS (REGNO (i0dest), -1);
4652 }
4653
4654 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4655 been made to this insn. The order is important, because newi2pat
4656 can affect nonzero_bits of newpat. */
4657 if (newi2pat)
4658 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4659 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4660 }
4661
4662 if (undobuf.other_insn != NULL_RTX)
4663 {
4664 if (dump_file)
4665 {
4666 fprintf (dump_file, "modifying other_insn ");
4667 dump_insn_slim (dump_file, undobuf.other_insn);
4668 }
4669 df_insn_rescan (undobuf.other_insn);
4670 }
4671
4672 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4673 {
4674 if (dump_file)
4675 {
4676 fprintf (dump_file, "modifying insn i0 ");
4677 dump_insn_slim (dump_file, i0);
4678 }
4679 df_insn_rescan (i0);
4680 }
4681
4682 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4683 {
4684 if (dump_file)
4685 {
4686 fprintf (dump_file, "modifying insn i1 ");
4687 dump_insn_slim (dump_file, i1);
4688 }
4689 df_insn_rescan (i1);
4690 }
4691
4692 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4693 {
4694 if (dump_file)
4695 {
4696 fprintf (dump_file, "modifying insn i2 ");
4697 dump_insn_slim (dump_file, i2);
4698 }
4699 df_insn_rescan (i2);
4700 }
4701
4702 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4703 {
4704 if (dump_file)
4705 {
4706 fprintf (dump_file, "modifying insn i3 ");
4707 dump_insn_slim (dump_file, i3);
4708 }
4709 df_insn_rescan (i3);
4710 }
4711
4712 /* Set new_direct_jump_p if a new return or simple jump instruction
4713 has been created. Adjust the CFG accordingly. */
4714 if (returnjump_p (i3) || any_uncondjump_p (i3))
4715 {
4716 *new_direct_jump_p = 1;
4717 mark_jump_label (PATTERN (i3), i3, 0);
4718 update_cfg_for_uncondjump (i3);
4719 }
4720
4721 if (undobuf.other_insn != NULL_RTX
4722 && (returnjump_p (undobuf.other_insn)
4723 || any_uncondjump_p (undobuf.other_insn)))
4724 {
4725 *new_direct_jump_p = 1;
4726 update_cfg_for_uncondjump (undobuf.other_insn);
4727 }
4728
4729 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4730 && XEXP (PATTERN (i3), 0) == const1_rtx)
4731 {
4732 basic_block bb = BLOCK_FOR_INSN (i3);
4733 gcc_assert (bb);
4734 remove_edge (split_block (bb, i3));
4735 emit_barrier_after_bb (bb);
4736 *new_direct_jump_p = 1;
4737 }
4738
4739 if (undobuf.other_insn
4740 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4741 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4742 {
4743 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4744 gcc_assert (bb);
4745 remove_edge (split_block (bb, undobuf.other_insn));
4746 emit_barrier_after_bb (bb);
4747 *new_direct_jump_p = 1;
4748 }
4749
4750 /* A noop might also need cleaning up of CFG, if it comes from the
4751 simplification of a jump. */
4752 if (JUMP_P (i3)
4753 && GET_CODE (newpat) == SET
4754 && SET_SRC (newpat) == pc_rtx
4755 && SET_DEST (newpat) == pc_rtx)
4756 {
4757 *new_direct_jump_p = 1;
4758 update_cfg_for_uncondjump (i3);
4759 }
4760
4761 if (undobuf.other_insn != NULL_RTX
4762 && JUMP_P (undobuf.other_insn)
4763 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4764 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4765 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4766 {
4767 *new_direct_jump_p = 1;
4768 update_cfg_for_uncondjump (undobuf.other_insn);
4769 }
4770
4771 combine_successes++;
4772 undo_commit ();
4773
4774 rtx_insn *ret = newi2pat ? i2 : i3;
4775 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4776 ret = added_links_insn;
4777 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4778 ret = added_notes_insn;
4779
4780 return ret;
4781 }
4782 \f
4783 /* Get a marker for undoing to the current state. */
4784
4785 static void *
4786 get_undo_marker (void)
4787 {
4788 return undobuf.undos;
4789 }
4790
4791 /* Undo the modifications up to the marker. */
4792
4793 static void
4794 undo_to_marker (void *marker)
4795 {
4796 struct undo *undo, *next;
4797
4798 for (undo = undobuf.undos; undo != marker; undo = next)
4799 {
4800 gcc_assert (undo);
4801
4802 next = undo->next;
4803 switch (undo->kind)
4804 {
4805 case UNDO_RTX:
4806 *undo->where.r = undo->old_contents.r;
4807 break;
4808 case UNDO_INT:
4809 *undo->where.i = undo->old_contents.i;
4810 break;
4811 case UNDO_MODE:
4812 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4813 break;
4814 case UNDO_LINKS:
4815 *undo->where.l = undo->old_contents.l;
4816 break;
4817 default:
4818 gcc_unreachable ();
4819 }
4820
4821 undo->next = undobuf.frees;
4822 undobuf.frees = undo;
4823 }
4824
4825 undobuf.undos = (struct undo *) marker;
4826 }
4827
4828 /* Undo all the modifications recorded in undobuf. */
4829
4830 static void
4831 undo_all (void)
4832 {
4833 undo_to_marker (0);
4834 }
4835
4836 /* We've committed to accepting the changes we made. Move all
4837 of the undos to the free list. */
4838
4839 static void
4840 undo_commit (void)
4841 {
4842 struct undo *undo, *next;
4843
4844 for (undo = undobuf.undos; undo; undo = next)
4845 {
4846 next = undo->next;
4847 undo->next = undobuf.frees;
4848 undobuf.frees = undo;
4849 }
4850 undobuf.undos = 0;
4851 }
4852 \f
4853 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4854 where we have an arithmetic expression and return that point. LOC will
4855 be inside INSN.
4856
4857 try_combine will call this function to see if an insn can be split into
4858 two insns. */
4859
4860 static rtx *
4861 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4862 {
4863 rtx x = *loc;
4864 enum rtx_code code = GET_CODE (x);
4865 rtx *split;
4866 unsigned HOST_WIDE_INT len = 0;
4867 HOST_WIDE_INT pos = 0;
4868 int unsignedp = 0;
4869 rtx inner = NULL_RTX;
4870 scalar_int_mode mode, inner_mode;
4871
4872 /* First special-case some codes. */
4873 switch (code)
4874 {
4875 case SUBREG:
4876 #ifdef INSN_SCHEDULING
4877 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4878 point. */
4879 if (MEM_P (SUBREG_REG (x)))
4880 return loc;
4881 #endif
4882 return find_split_point (&SUBREG_REG (x), insn, false);
4883
4884 case MEM:
4885 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4886 using LO_SUM and HIGH. */
4887 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4888 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4889 {
4890 machine_mode address_mode = get_address_mode (x);
4891
4892 SUBST (XEXP (x, 0),
4893 gen_rtx_LO_SUM (address_mode,
4894 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4895 XEXP (x, 0)));
4896 return &XEXP (XEXP (x, 0), 0);
4897 }
4898
4899 /* If we have a PLUS whose second operand is a constant and the
4900 address is not valid, perhaps will can split it up using
4901 the machine-specific way to split large constants. We use
4902 the first pseudo-reg (one of the virtual regs) as a placeholder;
4903 it will not remain in the result. */
4904 if (GET_CODE (XEXP (x, 0)) == PLUS
4905 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4906 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4907 MEM_ADDR_SPACE (x)))
4908 {
4909 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4910 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4911 subst_insn);
4912
4913 /* This should have produced two insns, each of which sets our
4914 placeholder. If the source of the second is a valid address,
4915 we can make put both sources together and make a split point
4916 in the middle. */
4917
4918 if (seq
4919 && NEXT_INSN (seq) != NULL_RTX
4920 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4921 && NONJUMP_INSN_P (seq)
4922 && GET_CODE (PATTERN (seq)) == SET
4923 && SET_DEST (PATTERN (seq)) == reg
4924 && ! reg_mentioned_p (reg,
4925 SET_SRC (PATTERN (seq)))
4926 && NONJUMP_INSN_P (NEXT_INSN (seq))
4927 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4928 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4929 && memory_address_addr_space_p
4930 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4931 MEM_ADDR_SPACE (x)))
4932 {
4933 rtx src1 = SET_SRC (PATTERN (seq));
4934 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4935
4936 /* Replace the placeholder in SRC2 with SRC1. If we can
4937 find where in SRC2 it was placed, that can become our
4938 split point and we can replace this address with SRC2.
4939 Just try two obvious places. */
4940
4941 src2 = replace_rtx (src2, reg, src1);
4942 split = 0;
4943 if (XEXP (src2, 0) == src1)
4944 split = &XEXP (src2, 0);
4945 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4946 && XEXP (XEXP (src2, 0), 0) == src1)
4947 split = &XEXP (XEXP (src2, 0), 0);
4948
4949 if (split)
4950 {
4951 SUBST (XEXP (x, 0), src2);
4952 return split;
4953 }
4954 }
4955
4956 /* If that didn't work, perhaps the first operand is complex and
4957 needs to be computed separately, so make a split point there.
4958 This will occur on machines that just support REG + CONST
4959 and have a constant moved through some previous computation. */
4960
4961 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4962 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4963 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4964 return &XEXP (XEXP (x, 0), 0);
4965 }
4966
4967 /* If we have a PLUS whose first operand is complex, try computing it
4968 separately by making a split there. */
4969 if (GET_CODE (XEXP (x, 0)) == PLUS
4970 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4971 MEM_ADDR_SPACE (x))
4972 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4973 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4974 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4975 return &XEXP (XEXP (x, 0), 0);
4976 break;
4977
4978 case SET:
4979 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4980 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4981 we need to put the operand into a register. So split at that
4982 point. */
4983
4984 if (SET_DEST (x) == cc0_rtx
4985 && GET_CODE (SET_SRC (x)) != COMPARE
4986 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4987 && !OBJECT_P (SET_SRC (x))
4988 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4989 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4990 return &SET_SRC (x);
4991
4992 /* See if we can split SET_SRC as it stands. */
4993 split = find_split_point (&SET_SRC (x), insn, true);
4994 if (split && split != &SET_SRC (x))
4995 return split;
4996
4997 /* See if we can split SET_DEST as it stands. */
4998 split = find_split_point (&SET_DEST (x), insn, false);
4999 if (split && split != &SET_DEST (x))
5000 return split;
5001
5002 /* See if this is a bitfield assignment with everything constant. If
5003 so, this is an IOR of an AND, so split it into that. */
5004 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5005 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5006 &inner_mode)
5007 && HWI_COMPUTABLE_MODE_P (inner_mode)
5008 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5009 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5010 && CONST_INT_P (SET_SRC (x))
5011 && ((INTVAL (XEXP (SET_DEST (x), 1))
5012 + INTVAL (XEXP (SET_DEST (x), 2)))
5013 <= GET_MODE_PRECISION (inner_mode))
5014 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5015 {
5016 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5017 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5018 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5019 rtx dest = XEXP (SET_DEST (x), 0);
5020 unsigned HOST_WIDE_INT mask
5021 = (HOST_WIDE_INT_1U << len) - 1;
5022 rtx or_mask;
5023
5024 if (BITS_BIG_ENDIAN)
5025 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5026
5027 or_mask = gen_int_mode (src << pos, inner_mode);
5028 if (src == mask)
5029 SUBST (SET_SRC (x),
5030 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5031 else
5032 {
5033 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5034 SUBST (SET_SRC (x),
5035 simplify_gen_binary (IOR, inner_mode,
5036 simplify_gen_binary (AND, inner_mode,
5037 dest, negmask),
5038 or_mask));
5039 }
5040
5041 SUBST (SET_DEST (x), dest);
5042
5043 split = find_split_point (&SET_SRC (x), insn, true);
5044 if (split && split != &SET_SRC (x))
5045 return split;
5046 }
5047
5048 /* Otherwise, see if this is an operation that we can split into two.
5049 If so, try to split that. */
5050 code = GET_CODE (SET_SRC (x));
5051
5052 switch (code)
5053 {
5054 case AND:
5055 /* If we are AND'ing with a large constant that is only a single
5056 bit and the result is only being used in a context where we
5057 need to know if it is zero or nonzero, replace it with a bit
5058 extraction. This will avoid the large constant, which might
5059 have taken more than one insn to make. If the constant were
5060 not a valid argument to the AND but took only one insn to make,
5061 this is no worse, but if it took more than one insn, it will
5062 be better. */
5063
5064 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5065 && REG_P (XEXP (SET_SRC (x), 0))
5066 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5067 && REG_P (SET_DEST (x))
5068 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5069 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5070 && XEXP (*split, 0) == SET_DEST (x)
5071 && XEXP (*split, 1) == const0_rtx)
5072 {
5073 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5074 XEXP (SET_SRC (x), 0),
5075 pos, NULL_RTX, 1, 1, 0, 0);
5076 if (extraction != 0)
5077 {
5078 SUBST (SET_SRC (x), extraction);
5079 return find_split_point (loc, insn, false);
5080 }
5081 }
5082 break;
5083
5084 case NE:
5085 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5086 is known to be on, this can be converted into a NEG of a shift. */
5087 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5088 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5089 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5090 GET_MODE (XEXP (SET_SRC (x),
5091 0))))) >= 1))
5092 {
5093 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5094 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5095 SUBST (SET_SRC (x),
5096 gen_rtx_NEG (mode,
5097 gen_rtx_LSHIFTRT (mode,
5098 XEXP (SET_SRC (x), 0),
5099 pos_rtx)));
5100
5101 split = find_split_point (&SET_SRC (x), insn, true);
5102 if (split && split != &SET_SRC (x))
5103 return split;
5104 }
5105 break;
5106
5107 case SIGN_EXTEND:
5108 inner = XEXP (SET_SRC (x), 0);
5109
5110 /* We can't optimize if either mode is a partial integer
5111 mode as we don't know how many bits are significant
5112 in those modes. */
5113 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5114 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5115 break;
5116
5117 pos = 0;
5118 len = GET_MODE_PRECISION (inner_mode);
5119 unsignedp = 0;
5120 break;
5121
5122 case SIGN_EXTRACT:
5123 case ZERO_EXTRACT:
5124 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5125 &inner_mode)
5126 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5127 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5128 {
5129 inner = XEXP (SET_SRC (x), 0);
5130 len = INTVAL (XEXP (SET_SRC (x), 1));
5131 pos = INTVAL (XEXP (SET_SRC (x), 2));
5132
5133 if (BITS_BIG_ENDIAN)
5134 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5135 unsignedp = (code == ZERO_EXTRACT);
5136 }
5137 break;
5138
5139 default:
5140 break;
5141 }
5142
5143 if (len && pos >= 0
5144 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner))
5145 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5146 {
5147 /* For unsigned, we have a choice of a shift followed by an
5148 AND or two shifts. Use two shifts for field sizes where the
5149 constant might be too large. We assume here that we can
5150 always at least get 8-bit constants in an AND insn, which is
5151 true for every current RISC. */
5152
5153 if (unsignedp && len <= 8)
5154 {
5155 unsigned HOST_WIDE_INT mask
5156 = (HOST_WIDE_INT_1U << len) - 1;
5157 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5158 SUBST (SET_SRC (x),
5159 gen_rtx_AND (mode,
5160 gen_rtx_LSHIFTRT
5161 (mode, gen_lowpart (mode, inner), pos_rtx),
5162 gen_int_mode (mask, mode)));
5163
5164 split = find_split_point (&SET_SRC (x), insn, true);
5165 if (split && split != &SET_SRC (x))
5166 return split;
5167 }
5168 else
5169 {
5170 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5171 int right_bits = GET_MODE_PRECISION (mode) - len;
5172 SUBST (SET_SRC (x),
5173 gen_rtx_fmt_ee
5174 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5175 gen_rtx_ASHIFT (mode,
5176 gen_lowpart (mode, inner),
5177 gen_int_shift_amount (mode, left_bits)),
5178 gen_int_shift_amount (mode, right_bits)));
5179
5180 split = find_split_point (&SET_SRC (x), insn, true);
5181 if (split && split != &SET_SRC (x))
5182 return split;
5183 }
5184 }
5185
5186 /* See if this is a simple operation with a constant as the second
5187 operand. It might be that this constant is out of range and hence
5188 could be used as a split point. */
5189 if (BINARY_P (SET_SRC (x))
5190 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5191 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5192 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5193 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5194 return &XEXP (SET_SRC (x), 1);
5195
5196 /* Finally, see if this is a simple operation with its first operand
5197 not in a register. The operation might require this operand in a
5198 register, so return it as a split point. We can always do this
5199 because if the first operand were another operation, we would have
5200 already found it as a split point. */
5201 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5202 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5203 return &XEXP (SET_SRC (x), 0);
5204
5205 return 0;
5206
5207 case AND:
5208 case IOR:
5209 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5210 it is better to write this as (not (ior A B)) so we can split it.
5211 Similarly for IOR. */
5212 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5213 {
5214 SUBST (*loc,
5215 gen_rtx_NOT (GET_MODE (x),
5216 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5217 GET_MODE (x),
5218 XEXP (XEXP (x, 0), 0),
5219 XEXP (XEXP (x, 1), 0))));
5220 return find_split_point (loc, insn, set_src);
5221 }
5222
5223 /* Many RISC machines have a large set of logical insns. If the
5224 second operand is a NOT, put it first so we will try to split the
5225 other operand first. */
5226 if (GET_CODE (XEXP (x, 1)) == NOT)
5227 {
5228 rtx tem = XEXP (x, 0);
5229 SUBST (XEXP (x, 0), XEXP (x, 1));
5230 SUBST (XEXP (x, 1), tem);
5231 }
5232 break;
5233
5234 case PLUS:
5235 case MINUS:
5236 /* Canonicalization can produce (minus A (mult B C)), where C is a
5237 constant. It may be better to try splitting (plus (mult B -C) A)
5238 instead if this isn't a multiply by a power of two. */
5239 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5240 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5241 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5242 {
5243 machine_mode mode = GET_MODE (x);
5244 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5245 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5246 SUBST (*loc, gen_rtx_PLUS (mode,
5247 gen_rtx_MULT (mode,
5248 XEXP (XEXP (x, 1), 0),
5249 gen_int_mode (other_int,
5250 mode)),
5251 XEXP (x, 0)));
5252 return find_split_point (loc, insn, set_src);
5253 }
5254
5255 /* Split at a multiply-accumulate instruction. However if this is
5256 the SET_SRC, we likely do not have such an instruction and it's
5257 worthless to try this split. */
5258 if (!set_src
5259 && (GET_CODE (XEXP (x, 0)) == MULT
5260 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5261 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5262 return loc;
5263
5264 default:
5265 break;
5266 }
5267
5268 /* Otherwise, select our actions depending on our rtx class. */
5269 switch (GET_RTX_CLASS (code))
5270 {
5271 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5272 case RTX_TERNARY:
5273 split = find_split_point (&XEXP (x, 2), insn, false);
5274 if (split)
5275 return split;
5276 /* fall through */
5277 case RTX_BIN_ARITH:
5278 case RTX_COMM_ARITH:
5279 case RTX_COMPARE:
5280 case RTX_COMM_COMPARE:
5281 split = find_split_point (&XEXP (x, 1), insn, false);
5282 if (split)
5283 return split;
5284 /* fall through */
5285 case RTX_UNARY:
5286 /* Some machines have (and (shift ...) ...) insns. If X is not
5287 an AND, but XEXP (X, 0) is, use it as our split point. */
5288 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5289 return &XEXP (x, 0);
5290
5291 split = find_split_point (&XEXP (x, 0), insn, false);
5292 if (split)
5293 return split;
5294 return loc;
5295
5296 default:
5297 /* Otherwise, we don't have a split point. */
5298 return 0;
5299 }
5300 }
5301 \f
5302 /* Throughout X, replace FROM with TO, and return the result.
5303 The result is TO if X is FROM;
5304 otherwise the result is X, but its contents may have been modified.
5305 If they were modified, a record was made in undobuf so that
5306 undo_all will (among other things) return X to its original state.
5307
5308 If the number of changes necessary is too much to record to undo,
5309 the excess changes are not made, so the result is invalid.
5310 The changes already made can still be undone.
5311 undobuf.num_undo is incremented for such changes, so by testing that
5312 the caller can tell whether the result is valid.
5313
5314 `n_occurrences' is incremented each time FROM is replaced.
5315
5316 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5317
5318 IN_COND is nonzero if we are at the top level of a condition.
5319
5320 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5321 by copying if `n_occurrences' is nonzero. */
5322
5323 static rtx
5324 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5325 {
5326 enum rtx_code code = GET_CODE (x);
5327 machine_mode op0_mode = VOIDmode;
5328 const char *fmt;
5329 int len, i;
5330 rtx new_rtx;
5331
5332 /* Two expressions are equal if they are identical copies of a shared
5333 RTX or if they are both registers with the same register number
5334 and mode. */
5335
5336 #define COMBINE_RTX_EQUAL_P(X,Y) \
5337 ((X) == (Y) \
5338 || (REG_P (X) && REG_P (Y) \
5339 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5340
5341 /* Do not substitute into clobbers of regs -- this will never result in
5342 valid RTL. */
5343 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5344 return x;
5345
5346 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5347 {
5348 n_occurrences++;
5349 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5350 }
5351
5352 /* If X and FROM are the same register but different modes, they
5353 will not have been seen as equal above. However, the log links code
5354 will make a LOG_LINKS entry for that case. If we do nothing, we
5355 will try to rerecognize our original insn and, when it succeeds,
5356 we will delete the feeding insn, which is incorrect.
5357
5358 So force this insn not to match in this (rare) case. */
5359 if (! in_dest && code == REG && REG_P (from)
5360 && reg_overlap_mentioned_p (x, from))
5361 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5362
5363 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5364 of which may contain things that can be combined. */
5365 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5366 return x;
5367
5368 /* It is possible to have a subexpression appear twice in the insn.
5369 Suppose that FROM is a register that appears within TO.
5370 Then, after that subexpression has been scanned once by `subst',
5371 the second time it is scanned, TO may be found. If we were
5372 to scan TO here, we would find FROM within it and create a
5373 self-referent rtl structure which is completely wrong. */
5374 if (COMBINE_RTX_EQUAL_P (x, to))
5375 return to;
5376
5377 /* Parallel asm_operands need special attention because all of the
5378 inputs are shared across the arms. Furthermore, unsharing the
5379 rtl results in recognition failures. Failure to handle this case
5380 specially can result in circular rtl.
5381
5382 Solve this by doing a normal pass across the first entry of the
5383 parallel, and only processing the SET_DESTs of the subsequent
5384 entries. Ug. */
5385
5386 if (code == PARALLEL
5387 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5388 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5389 {
5390 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5391
5392 /* If this substitution failed, this whole thing fails. */
5393 if (GET_CODE (new_rtx) == CLOBBER
5394 && XEXP (new_rtx, 0) == const0_rtx)
5395 return new_rtx;
5396
5397 SUBST (XVECEXP (x, 0, 0), new_rtx);
5398
5399 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5400 {
5401 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5402
5403 if (!REG_P (dest)
5404 && GET_CODE (dest) != CC0
5405 && GET_CODE (dest) != PC)
5406 {
5407 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5408
5409 /* If this substitution failed, this whole thing fails. */
5410 if (GET_CODE (new_rtx) == CLOBBER
5411 && XEXP (new_rtx, 0) == const0_rtx)
5412 return new_rtx;
5413
5414 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5415 }
5416 }
5417 }
5418 else
5419 {
5420 len = GET_RTX_LENGTH (code);
5421 fmt = GET_RTX_FORMAT (code);
5422
5423 /* We don't need to process a SET_DEST that is a register, CC0,
5424 or PC, so set up to skip this common case. All other cases
5425 where we want to suppress replacing something inside a
5426 SET_SRC are handled via the IN_DEST operand. */
5427 if (code == SET
5428 && (REG_P (SET_DEST (x))
5429 || GET_CODE (SET_DEST (x)) == CC0
5430 || GET_CODE (SET_DEST (x)) == PC))
5431 fmt = "ie";
5432
5433 /* Trying to simplify the operands of a widening MULT is not likely
5434 to create RTL matching a machine insn. */
5435 if (code == MULT
5436 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5437 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5438 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5439 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5440 && REG_P (XEXP (XEXP (x, 0), 0))
5441 && REG_P (XEXP (XEXP (x, 1), 0))
5442 && from == to)
5443 return x;
5444
5445
5446 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5447 constant. */
5448 if (fmt[0] == 'e')
5449 op0_mode = GET_MODE (XEXP (x, 0));
5450
5451 for (i = 0; i < len; i++)
5452 {
5453 if (fmt[i] == 'E')
5454 {
5455 int j;
5456 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5457 {
5458 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5459 {
5460 new_rtx = (unique_copy && n_occurrences
5461 ? copy_rtx (to) : to);
5462 n_occurrences++;
5463 }
5464 else
5465 {
5466 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5467 unique_copy);
5468
5469 /* If this substitution failed, this whole thing
5470 fails. */
5471 if (GET_CODE (new_rtx) == CLOBBER
5472 && XEXP (new_rtx, 0) == const0_rtx)
5473 return new_rtx;
5474 }
5475
5476 SUBST (XVECEXP (x, i, j), new_rtx);
5477 }
5478 }
5479 else if (fmt[i] == 'e')
5480 {
5481 /* If this is a register being set, ignore it. */
5482 new_rtx = XEXP (x, i);
5483 if (in_dest
5484 && i == 0
5485 && (((code == SUBREG || code == ZERO_EXTRACT)
5486 && REG_P (new_rtx))
5487 || code == STRICT_LOW_PART))
5488 ;
5489
5490 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5491 {
5492 /* In general, don't install a subreg involving two
5493 modes not tieable. It can worsen register
5494 allocation, and can even make invalid reload
5495 insns, since the reg inside may need to be copied
5496 from in the outside mode, and that may be invalid
5497 if it is an fp reg copied in integer mode.
5498
5499 We allow two exceptions to this: It is valid if
5500 it is inside another SUBREG and the mode of that
5501 SUBREG and the mode of the inside of TO is
5502 tieable and it is valid if X is a SET that copies
5503 FROM to CC0. */
5504
5505 if (GET_CODE (to) == SUBREG
5506 && !targetm.modes_tieable_p (GET_MODE (to),
5507 GET_MODE (SUBREG_REG (to)))
5508 && ! (code == SUBREG
5509 && (targetm.modes_tieable_p
5510 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5511 && (!HAVE_cc0
5512 || (! (code == SET
5513 && i == 1
5514 && XEXP (x, 0) == cc0_rtx))))
5515 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5516
5517 if (code == SUBREG
5518 && REG_P (to)
5519 && REGNO (to) < FIRST_PSEUDO_REGISTER
5520 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5521 SUBREG_BYTE (x),
5522 GET_MODE (x)) < 0)
5523 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5524
5525 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5526 n_occurrences++;
5527 }
5528 else
5529 /* If we are in a SET_DEST, suppress most cases unless we
5530 have gone inside a MEM, in which case we want to
5531 simplify the address. We assume here that things that
5532 are actually part of the destination have their inner
5533 parts in the first expression. This is true for SUBREG,
5534 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5535 things aside from REG and MEM that should appear in a
5536 SET_DEST. */
5537 new_rtx = subst (XEXP (x, i), from, to,
5538 (((in_dest
5539 && (code == SUBREG || code == STRICT_LOW_PART
5540 || code == ZERO_EXTRACT))
5541 || code == SET)
5542 && i == 0),
5543 code == IF_THEN_ELSE && i == 0,
5544 unique_copy);
5545
5546 /* If we found that we will have to reject this combination,
5547 indicate that by returning the CLOBBER ourselves, rather than
5548 an expression containing it. This will speed things up as
5549 well as prevent accidents where two CLOBBERs are considered
5550 to be equal, thus producing an incorrect simplification. */
5551
5552 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5553 return new_rtx;
5554
5555 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5556 {
5557 machine_mode mode = GET_MODE (x);
5558
5559 x = simplify_subreg (GET_MODE (x), new_rtx,
5560 GET_MODE (SUBREG_REG (x)),
5561 SUBREG_BYTE (x));
5562 if (! x)
5563 x = gen_rtx_CLOBBER (mode, const0_rtx);
5564 }
5565 else if (CONST_SCALAR_INT_P (new_rtx)
5566 && GET_CODE (x) == ZERO_EXTEND)
5567 {
5568 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5569 new_rtx, GET_MODE (XEXP (x, 0)));
5570 gcc_assert (x);
5571 }
5572 else
5573 SUBST (XEXP (x, i), new_rtx);
5574 }
5575 }
5576 }
5577
5578 /* Check if we are loading something from the constant pool via float
5579 extension; in this case we would undo compress_float_constant
5580 optimization and degenerate constant load to an immediate value. */
5581 if (GET_CODE (x) == FLOAT_EXTEND
5582 && MEM_P (XEXP (x, 0))
5583 && MEM_READONLY_P (XEXP (x, 0)))
5584 {
5585 rtx tmp = avoid_constant_pool_reference (x);
5586 if (x != tmp)
5587 return x;
5588 }
5589
5590 /* Try to simplify X. If the simplification changed the code, it is likely
5591 that further simplification will help, so loop, but limit the number
5592 of repetitions that will be performed. */
5593
5594 for (i = 0; i < 4; i++)
5595 {
5596 /* If X is sufficiently simple, don't bother trying to do anything
5597 with it. */
5598 if (code != CONST_INT && code != REG && code != CLOBBER)
5599 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5600
5601 if (GET_CODE (x) == code)
5602 break;
5603
5604 code = GET_CODE (x);
5605
5606 /* We no longer know the original mode of operand 0 since we
5607 have changed the form of X) */
5608 op0_mode = VOIDmode;
5609 }
5610
5611 return x;
5612 }
5613 \f
5614 /* If X is a commutative operation whose operands are not in the canonical
5615 order, use substitutions to swap them. */
5616
5617 static void
5618 maybe_swap_commutative_operands (rtx x)
5619 {
5620 if (COMMUTATIVE_ARITH_P (x)
5621 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5622 {
5623 rtx temp = XEXP (x, 0);
5624 SUBST (XEXP (x, 0), XEXP (x, 1));
5625 SUBST (XEXP (x, 1), temp);
5626 }
5627 }
5628
5629 /* Simplify X, a piece of RTL. We just operate on the expression at the
5630 outer level; call `subst' to simplify recursively. Return the new
5631 expression.
5632
5633 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5634 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5635 of a condition. */
5636
5637 static rtx
5638 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5639 int in_cond)
5640 {
5641 enum rtx_code code = GET_CODE (x);
5642 machine_mode mode = GET_MODE (x);
5643 scalar_int_mode int_mode;
5644 rtx temp;
5645 int i;
5646
5647 /* If this is a commutative operation, put a constant last and a complex
5648 expression first. We don't need to do this for comparisons here. */
5649 maybe_swap_commutative_operands (x);
5650
5651 /* Try to fold this expression in case we have constants that weren't
5652 present before. */
5653 temp = 0;
5654 switch (GET_RTX_CLASS (code))
5655 {
5656 case RTX_UNARY:
5657 if (op0_mode == VOIDmode)
5658 op0_mode = GET_MODE (XEXP (x, 0));
5659 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5660 break;
5661 case RTX_COMPARE:
5662 case RTX_COMM_COMPARE:
5663 {
5664 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5665 if (cmp_mode == VOIDmode)
5666 {
5667 cmp_mode = GET_MODE (XEXP (x, 1));
5668 if (cmp_mode == VOIDmode)
5669 cmp_mode = op0_mode;
5670 }
5671 temp = simplify_relational_operation (code, mode, cmp_mode,
5672 XEXP (x, 0), XEXP (x, 1));
5673 }
5674 break;
5675 case RTX_COMM_ARITH:
5676 case RTX_BIN_ARITH:
5677 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5678 break;
5679 case RTX_BITFIELD_OPS:
5680 case RTX_TERNARY:
5681 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5682 XEXP (x, 1), XEXP (x, 2));
5683 break;
5684 default:
5685 break;
5686 }
5687
5688 if (temp)
5689 {
5690 x = temp;
5691 code = GET_CODE (temp);
5692 op0_mode = VOIDmode;
5693 mode = GET_MODE (temp);
5694 }
5695
5696 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5697 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5698 things. Check for cases where both arms are testing the same
5699 condition.
5700
5701 Don't do anything if all operands are very simple. */
5702
5703 if ((BINARY_P (x)
5704 && ((!OBJECT_P (XEXP (x, 0))
5705 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5706 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5707 || (!OBJECT_P (XEXP (x, 1))
5708 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5709 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5710 || (UNARY_P (x)
5711 && (!OBJECT_P (XEXP (x, 0))
5712 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5713 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5714 {
5715 rtx cond, true_rtx, false_rtx;
5716
5717 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5718 if (cond != 0
5719 /* If everything is a comparison, what we have is highly unlikely
5720 to be simpler, so don't use it. */
5721 && ! (COMPARISON_P (x)
5722 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5723 {
5724 rtx cop1 = const0_rtx;
5725 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5726
5727 if (cond_code == NE && COMPARISON_P (cond))
5728 return x;
5729
5730 /* Simplify the alternative arms; this may collapse the true and
5731 false arms to store-flag values. Be careful to use copy_rtx
5732 here since true_rtx or false_rtx might share RTL with x as a
5733 result of the if_then_else_cond call above. */
5734 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5735 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5736
5737 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5738 is unlikely to be simpler. */
5739 if (general_operand (true_rtx, VOIDmode)
5740 && general_operand (false_rtx, VOIDmode))
5741 {
5742 enum rtx_code reversed;
5743
5744 /* Restarting if we generate a store-flag expression will cause
5745 us to loop. Just drop through in this case. */
5746
5747 /* If the result values are STORE_FLAG_VALUE and zero, we can
5748 just make the comparison operation. */
5749 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5750 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5751 cond, cop1);
5752 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5753 && ((reversed = reversed_comparison_code_parts
5754 (cond_code, cond, cop1, NULL))
5755 != UNKNOWN))
5756 x = simplify_gen_relational (reversed, mode, VOIDmode,
5757 cond, cop1);
5758
5759 /* Likewise, we can make the negate of a comparison operation
5760 if the result values are - STORE_FLAG_VALUE and zero. */
5761 else if (CONST_INT_P (true_rtx)
5762 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5763 && false_rtx == const0_rtx)
5764 x = simplify_gen_unary (NEG, mode,
5765 simplify_gen_relational (cond_code,
5766 mode, VOIDmode,
5767 cond, cop1),
5768 mode);
5769 else if (CONST_INT_P (false_rtx)
5770 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5771 && true_rtx == const0_rtx
5772 && ((reversed = reversed_comparison_code_parts
5773 (cond_code, cond, cop1, NULL))
5774 != UNKNOWN))
5775 x = simplify_gen_unary (NEG, mode,
5776 simplify_gen_relational (reversed,
5777 mode, VOIDmode,
5778 cond, cop1),
5779 mode);
5780 else
5781 return gen_rtx_IF_THEN_ELSE (mode,
5782 simplify_gen_relational (cond_code,
5783 mode,
5784 VOIDmode,
5785 cond,
5786 cop1),
5787 true_rtx, false_rtx);
5788
5789 code = GET_CODE (x);
5790 op0_mode = VOIDmode;
5791 }
5792 }
5793 }
5794
5795 /* First see if we can apply the inverse distributive law. */
5796 if (code == PLUS || code == MINUS
5797 || code == AND || code == IOR || code == XOR)
5798 {
5799 x = apply_distributive_law (x);
5800 code = GET_CODE (x);
5801 op0_mode = VOIDmode;
5802 }
5803
5804 /* If CODE is an associative operation not otherwise handled, see if we
5805 can associate some operands. This can win if they are constants or
5806 if they are logically related (i.e. (a & b) & a). */
5807 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5808 || code == AND || code == IOR || code == XOR
5809 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5810 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5811 || (flag_associative_math && FLOAT_MODE_P (mode))))
5812 {
5813 if (GET_CODE (XEXP (x, 0)) == code)
5814 {
5815 rtx other = XEXP (XEXP (x, 0), 0);
5816 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5817 rtx inner_op1 = XEXP (x, 1);
5818 rtx inner;
5819
5820 /* Make sure we pass the constant operand if any as the second
5821 one if this is a commutative operation. */
5822 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5823 std::swap (inner_op0, inner_op1);
5824 inner = simplify_binary_operation (code == MINUS ? PLUS
5825 : code == DIV ? MULT
5826 : code,
5827 mode, inner_op0, inner_op1);
5828
5829 /* For commutative operations, try the other pair if that one
5830 didn't simplify. */
5831 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5832 {
5833 other = XEXP (XEXP (x, 0), 1);
5834 inner = simplify_binary_operation (code, mode,
5835 XEXP (XEXP (x, 0), 0),
5836 XEXP (x, 1));
5837 }
5838
5839 if (inner)
5840 return simplify_gen_binary (code, mode, other, inner);
5841 }
5842 }
5843
5844 /* A little bit of algebraic simplification here. */
5845 switch (code)
5846 {
5847 case MEM:
5848 /* Ensure that our address has any ASHIFTs converted to MULT in case
5849 address-recognizing predicates are called later. */
5850 temp = make_compound_operation (XEXP (x, 0), MEM);
5851 SUBST (XEXP (x, 0), temp);
5852 break;
5853
5854 case SUBREG:
5855 if (op0_mode == VOIDmode)
5856 op0_mode = GET_MODE (SUBREG_REG (x));
5857
5858 /* See if this can be moved to simplify_subreg. */
5859 if (CONSTANT_P (SUBREG_REG (x))
5860 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5861 /* Don't call gen_lowpart if the inner mode
5862 is VOIDmode and we cannot simplify it, as SUBREG without
5863 inner mode is invalid. */
5864 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5865 || gen_lowpart_common (mode, SUBREG_REG (x))))
5866 return gen_lowpart (mode, SUBREG_REG (x));
5867
5868 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5869 break;
5870 {
5871 rtx temp;
5872 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5873 SUBREG_BYTE (x));
5874 if (temp)
5875 return temp;
5876
5877 /* If op is known to have all lower bits zero, the result is zero. */
5878 scalar_int_mode int_mode, int_op0_mode;
5879 if (!in_dest
5880 && is_a <scalar_int_mode> (mode, &int_mode)
5881 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5882 && (GET_MODE_PRECISION (int_mode)
5883 < GET_MODE_PRECISION (int_op0_mode))
5884 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5885 SUBREG_BYTE (x))
5886 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5887 && (nonzero_bits (SUBREG_REG (x), int_op0_mode)
5888 & GET_MODE_MASK (int_mode)) == 0)
5889 return CONST0_RTX (int_mode);
5890 }
5891
5892 /* Don't change the mode of the MEM if that would change the meaning
5893 of the address. */
5894 if (MEM_P (SUBREG_REG (x))
5895 && (MEM_VOLATILE_P (SUBREG_REG (x))
5896 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5897 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5898 return gen_rtx_CLOBBER (mode, const0_rtx);
5899
5900 /* Note that we cannot do any narrowing for non-constants since
5901 we might have been counting on using the fact that some bits were
5902 zero. We now do this in the SET. */
5903
5904 break;
5905
5906 case NEG:
5907 temp = expand_compound_operation (XEXP (x, 0));
5908
5909 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5910 replaced by (lshiftrt X C). This will convert
5911 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5912
5913 if (GET_CODE (temp) == ASHIFTRT
5914 && CONST_INT_P (XEXP (temp, 1))
5915 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5916 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5917 INTVAL (XEXP (temp, 1)));
5918
5919 /* If X has only a single bit that might be nonzero, say, bit I, convert
5920 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5921 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5922 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5923 or a SUBREG of one since we'd be making the expression more
5924 complex if it was just a register. */
5925
5926 if (!REG_P (temp)
5927 && ! (GET_CODE (temp) == SUBREG
5928 && REG_P (SUBREG_REG (temp)))
5929 && is_a <scalar_int_mode> (mode, &int_mode)
5930 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5931 {
5932 rtx temp1 = simplify_shift_const
5933 (NULL_RTX, ASHIFTRT, int_mode,
5934 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5935 GET_MODE_PRECISION (int_mode) - 1 - i),
5936 GET_MODE_PRECISION (int_mode) - 1 - i);
5937
5938 /* If all we did was surround TEMP with the two shifts, we
5939 haven't improved anything, so don't use it. Otherwise,
5940 we are better off with TEMP1. */
5941 if (GET_CODE (temp1) != ASHIFTRT
5942 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5943 || XEXP (XEXP (temp1, 0), 0) != temp)
5944 return temp1;
5945 }
5946 break;
5947
5948 case TRUNCATE:
5949 /* We can't handle truncation to a partial integer mode here
5950 because we don't know the real bitsize of the partial
5951 integer mode. */
5952 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5953 break;
5954
5955 if (HWI_COMPUTABLE_MODE_P (mode))
5956 SUBST (XEXP (x, 0),
5957 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5958 GET_MODE_MASK (mode), 0));
5959
5960 /* We can truncate a constant value and return it. */
5961 if (CONST_INT_P (XEXP (x, 0)))
5962 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5963
5964 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5965 whose value is a comparison can be replaced with a subreg if
5966 STORE_FLAG_VALUE permits. */
5967 if (HWI_COMPUTABLE_MODE_P (mode)
5968 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5969 && (temp = get_last_value (XEXP (x, 0)))
5970 && COMPARISON_P (temp))
5971 return gen_lowpart (mode, XEXP (x, 0));
5972 break;
5973
5974 case CONST:
5975 /* (const (const X)) can become (const X). Do it this way rather than
5976 returning the inner CONST since CONST can be shared with a
5977 REG_EQUAL note. */
5978 if (GET_CODE (XEXP (x, 0)) == CONST)
5979 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5980 break;
5981
5982 case LO_SUM:
5983 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5984 can add in an offset. find_split_point will split this address up
5985 again if it doesn't match. */
5986 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5987 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5988 return XEXP (x, 1);
5989 break;
5990
5991 case PLUS:
5992 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5993 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5994 bit-field and can be replaced by either a sign_extend or a
5995 sign_extract. The `and' may be a zero_extend and the two
5996 <c>, -<c> constants may be reversed. */
5997 if (GET_CODE (XEXP (x, 0)) == XOR
5998 && is_a <scalar_int_mode> (mode, &int_mode)
5999 && CONST_INT_P (XEXP (x, 1))
6000 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6001 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6002 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6003 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6004 && HWI_COMPUTABLE_MODE_P (int_mode)
6005 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6006 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6007 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6008 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6009 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6010 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
6011 == (unsigned int) i + 1))))
6012 return simplify_shift_const
6013 (NULL_RTX, ASHIFTRT, int_mode,
6014 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6015 XEXP (XEXP (XEXP (x, 0), 0), 0),
6016 GET_MODE_PRECISION (int_mode) - (i + 1)),
6017 GET_MODE_PRECISION (int_mode) - (i + 1));
6018
6019 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6020 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6021 the bitsize of the mode - 1. This allows simplification of
6022 "a = (b & 8) == 0;" */
6023 if (XEXP (x, 1) == constm1_rtx
6024 && !REG_P (XEXP (x, 0))
6025 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6026 && REG_P (SUBREG_REG (XEXP (x, 0))))
6027 && is_a <scalar_int_mode> (mode, &int_mode)
6028 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6029 return simplify_shift_const
6030 (NULL_RTX, ASHIFTRT, int_mode,
6031 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6032 gen_rtx_XOR (int_mode, XEXP (x, 0),
6033 const1_rtx),
6034 GET_MODE_PRECISION (int_mode) - 1),
6035 GET_MODE_PRECISION (int_mode) - 1);
6036
6037 /* If we are adding two things that have no bits in common, convert
6038 the addition into an IOR. This will often be further simplified,
6039 for example in cases like ((a & 1) + (a & 2)), which can
6040 become a & 3. */
6041
6042 if (HWI_COMPUTABLE_MODE_P (mode)
6043 && (nonzero_bits (XEXP (x, 0), mode)
6044 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6045 {
6046 /* Try to simplify the expression further. */
6047 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6048 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6049
6050 /* If we could, great. If not, do not go ahead with the IOR
6051 replacement, since PLUS appears in many special purpose
6052 address arithmetic instructions. */
6053 if (GET_CODE (temp) != CLOBBER
6054 && (GET_CODE (temp) != IOR
6055 || ((XEXP (temp, 0) != XEXP (x, 0)
6056 || XEXP (temp, 1) != XEXP (x, 1))
6057 && (XEXP (temp, 0) != XEXP (x, 1)
6058 || XEXP (temp, 1) != XEXP (x, 0)))))
6059 return temp;
6060 }
6061
6062 /* Canonicalize x + x into x << 1. */
6063 if (GET_MODE_CLASS (mode) == MODE_INT
6064 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6065 && !side_effects_p (XEXP (x, 0)))
6066 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6067
6068 break;
6069
6070 case MINUS:
6071 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6072 (and <foo> (const_int pow2-1)) */
6073 if (is_a <scalar_int_mode> (mode, &int_mode)
6074 && GET_CODE (XEXP (x, 1)) == AND
6075 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6076 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6077 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6078 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6079 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6080 break;
6081
6082 case MULT:
6083 /* If we have (mult (plus A B) C), apply the distributive law and then
6084 the inverse distributive law to see if things simplify. This
6085 occurs mostly in addresses, often when unrolling loops. */
6086
6087 if (GET_CODE (XEXP (x, 0)) == PLUS)
6088 {
6089 rtx result = distribute_and_simplify_rtx (x, 0);
6090 if (result)
6091 return result;
6092 }
6093
6094 /* Try simplify a*(b/c) as (a*b)/c. */
6095 if (FLOAT_MODE_P (mode) && flag_associative_math
6096 && GET_CODE (XEXP (x, 0)) == DIV)
6097 {
6098 rtx tem = simplify_binary_operation (MULT, mode,
6099 XEXP (XEXP (x, 0), 0),
6100 XEXP (x, 1));
6101 if (tem)
6102 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6103 }
6104 break;
6105
6106 case UDIV:
6107 /* If this is a divide by a power of two, treat it as a shift if
6108 its first operand is a shift. */
6109 if (is_a <scalar_int_mode> (mode, &int_mode)
6110 && CONST_INT_P (XEXP (x, 1))
6111 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6112 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6113 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6114 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6115 || GET_CODE (XEXP (x, 0)) == ROTATE
6116 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6117 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6118 XEXP (x, 0), i);
6119 break;
6120
6121 case EQ: case NE:
6122 case GT: case GTU: case GE: case GEU:
6123 case LT: case LTU: case LE: case LEU:
6124 case UNEQ: case LTGT:
6125 case UNGT: case UNGE:
6126 case UNLT: case UNLE:
6127 case UNORDERED: case ORDERED:
6128 /* If the first operand is a condition code, we can't do anything
6129 with it. */
6130 if (GET_CODE (XEXP (x, 0)) == COMPARE
6131 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6132 && ! CC0_P (XEXP (x, 0))))
6133 {
6134 rtx op0 = XEXP (x, 0);
6135 rtx op1 = XEXP (x, 1);
6136 enum rtx_code new_code;
6137
6138 if (GET_CODE (op0) == COMPARE)
6139 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6140
6141 /* Simplify our comparison, if possible. */
6142 new_code = simplify_comparison (code, &op0, &op1);
6143
6144 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6145 if only the low-order bit is possibly nonzero in X (such as when
6146 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6147 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6148 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6149 (plus X 1).
6150
6151 Remove any ZERO_EXTRACT we made when thinking this was a
6152 comparison. It may now be simpler to use, e.g., an AND. If a
6153 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6154 the call to make_compound_operation in the SET case.
6155
6156 Don't apply these optimizations if the caller would
6157 prefer a comparison rather than a value.
6158 E.g., for the condition in an IF_THEN_ELSE most targets need
6159 an explicit comparison. */
6160
6161 if (in_cond)
6162 ;
6163
6164 else if (STORE_FLAG_VALUE == 1
6165 && new_code == NE
6166 && is_int_mode (mode, &int_mode)
6167 && op1 == const0_rtx
6168 && int_mode == GET_MODE (op0)
6169 && nonzero_bits (op0, int_mode) == 1)
6170 return gen_lowpart (int_mode,
6171 expand_compound_operation (op0));
6172
6173 else if (STORE_FLAG_VALUE == 1
6174 && new_code == NE
6175 && is_int_mode (mode, &int_mode)
6176 && op1 == const0_rtx
6177 && int_mode == GET_MODE (op0)
6178 && (num_sign_bit_copies (op0, int_mode)
6179 == GET_MODE_PRECISION (int_mode)))
6180 {
6181 op0 = expand_compound_operation (op0);
6182 return simplify_gen_unary (NEG, int_mode,
6183 gen_lowpart (int_mode, op0),
6184 int_mode);
6185 }
6186
6187 else if (STORE_FLAG_VALUE == 1
6188 && new_code == EQ
6189 && is_int_mode (mode, &int_mode)
6190 && op1 == const0_rtx
6191 && int_mode == GET_MODE (op0)
6192 && nonzero_bits (op0, int_mode) == 1)
6193 {
6194 op0 = expand_compound_operation (op0);
6195 return simplify_gen_binary (XOR, int_mode,
6196 gen_lowpart (int_mode, op0),
6197 const1_rtx);
6198 }
6199
6200 else if (STORE_FLAG_VALUE == 1
6201 && new_code == EQ
6202 && is_int_mode (mode, &int_mode)
6203 && op1 == const0_rtx
6204 && int_mode == GET_MODE (op0)
6205 && (num_sign_bit_copies (op0, int_mode)
6206 == GET_MODE_PRECISION (int_mode)))
6207 {
6208 op0 = expand_compound_operation (op0);
6209 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6210 }
6211
6212 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6213 those above. */
6214 if (in_cond)
6215 ;
6216
6217 else if (STORE_FLAG_VALUE == -1
6218 && new_code == NE
6219 && is_int_mode (mode, &int_mode)
6220 && op1 == const0_rtx
6221 && int_mode == GET_MODE (op0)
6222 && (num_sign_bit_copies (op0, int_mode)
6223 == GET_MODE_PRECISION (int_mode)))
6224 return gen_lowpart (int_mode, expand_compound_operation (op0));
6225
6226 else if (STORE_FLAG_VALUE == -1
6227 && new_code == NE
6228 && is_int_mode (mode, &int_mode)
6229 && op1 == const0_rtx
6230 && int_mode == GET_MODE (op0)
6231 && nonzero_bits (op0, int_mode) == 1)
6232 {
6233 op0 = expand_compound_operation (op0);
6234 return simplify_gen_unary (NEG, int_mode,
6235 gen_lowpart (int_mode, op0),
6236 int_mode);
6237 }
6238
6239 else if (STORE_FLAG_VALUE == -1
6240 && new_code == EQ
6241 && is_int_mode (mode, &int_mode)
6242 && op1 == const0_rtx
6243 && int_mode == GET_MODE (op0)
6244 && (num_sign_bit_copies (op0, int_mode)
6245 == GET_MODE_PRECISION (int_mode)))
6246 {
6247 op0 = expand_compound_operation (op0);
6248 return simplify_gen_unary (NOT, int_mode,
6249 gen_lowpart (int_mode, op0),
6250 int_mode);
6251 }
6252
6253 /* If X is 0/1, (eq X 0) is X-1. */
6254 else if (STORE_FLAG_VALUE == -1
6255 && new_code == EQ
6256 && is_int_mode (mode, &int_mode)
6257 && op1 == const0_rtx
6258 && int_mode == GET_MODE (op0)
6259 && nonzero_bits (op0, int_mode) == 1)
6260 {
6261 op0 = expand_compound_operation (op0);
6262 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6263 }
6264
6265 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6266 one bit that might be nonzero, we can convert (ne x 0) to
6267 (ashift x c) where C puts the bit in the sign bit. Remove any
6268 AND with STORE_FLAG_VALUE when we are done, since we are only
6269 going to test the sign bit. */
6270 if (new_code == NE
6271 && is_int_mode (mode, &int_mode)
6272 && HWI_COMPUTABLE_MODE_P (int_mode)
6273 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6274 && op1 == const0_rtx
6275 && int_mode == GET_MODE (op0)
6276 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6277 {
6278 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6279 expand_compound_operation (op0),
6280 GET_MODE_PRECISION (int_mode) - 1 - i);
6281 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6282 return XEXP (x, 0);
6283 else
6284 return x;
6285 }
6286
6287 /* If the code changed, return a whole new comparison.
6288 We also need to avoid using SUBST in cases where
6289 simplify_comparison has widened a comparison with a CONST_INT,
6290 since in that case the wider CONST_INT may fail the sanity
6291 checks in do_SUBST. */
6292 if (new_code != code
6293 || (CONST_INT_P (op1)
6294 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6295 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6296 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6297
6298 /* Otherwise, keep this operation, but maybe change its operands.
6299 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6300 SUBST (XEXP (x, 0), op0);
6301 SUBST (XEXP (x, 1), op1);
6302 }
6303 break;
6304
6305 case IF_THEN_ELSE:
6306 return simplify_if_then_else (x);
6307
6308 case ZERO_EXTRACT:
6309 case SIGN_EXTRACT:
6310 case ZERO_EXTEND:
6311 case SIGN_EXTEND:
6312 /* If we are processing SET_DEST, we are done. */
6313 if (in_dest)
6314 return x;
6315
6316 return expand_compound_operation (x);
6317
6318 case SET:
6319 return simplify_set (x);
6320
6321 case AND:
6322 case IOR:
6323 return simplify_logical (x);
6324
6325 case ASHIFT:
6326 case LSHIFTRT:
6327 case ASHIFTRT:
6328 case ROTATE:
6329 case ROTATERT:
6330 /* If this is a shift by a constant amount, simplify it. */
6331 if (CONST_INT_P (XEXP (x, 1)))
6332 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6333 INTVAL (XEXP (x, 1)));
6334
6335 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6336 SUBST (XEXP (x, 1),
6337 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6338 (HOST_WIDE_INT_1U
6339 << exact_log2 (GET_MODE_UNIT_BITSIZE
6340 (GET_MODE (x))))
6341 - 1,
6342 0));
6343 break;
6344
6345 default:
6346 break;
6347 }
6348
6349 return x;
6350 }
6351 \f
6352 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6353
6354 static rtx
6355 simplify_if_then_else (rtx x)
6356 {
6357 machine_mode mode = GET_MODE (x);
6358 rtx cond = XEXP (x, 0);
6359 rtx true_rtx = XEXP (x, 1);
6360 rtx false_rtx = XEXP (x, 2);
6361 enum rtx_code true_code = GET_CODE (cond);
6362 int comparison_p = COMPARISON_P (cond);
6363 rtx temp;
6364 int i;
6365 enum rtx_code false_code;
6366 rtx reversed;
6367 scalar_int_mode int_mode, inner_mode;
6368
6369 /* Simplify storing of the truth value. */
6370 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6371 return simplify_gen_relational (true_code, mode, VOIDmode,
6372 XEXP (cond, 0), XEXP (cond, 1));
6373
6374 /* Also when the truth value has to be reversed. */
6375 if (comparison_p
6376 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6377 && (reversed = reversed_comparison (cond, mode)))
6378 return reversed;
6379
6380 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6381 in it is being compared against certain values. Get the true and false
6382 comparisons and see if that says anything about the value of each arm. */
6383
6384 if (comparison_p
6385 && ((false_code = reversed_comparison_code (cond, NULL))
6386 != UNKNOWN)
6387 && REG_P (XEXP (cond, 0)))
6388 {
6389 HOST_WIDE_INT nzb;
6390 rtx from = XEXP (cond, 0);
6391 rtx true_val = XEXP (cond, 1);
6392 rtx false_val = true_val;
6393 int swapped = 0;
6394
6395 /* If FALSE_CODE is EQ, swap the codes and arms. */
6396
6397 if (false_code == EQ)
6398 {
6399 swapped = 1, true_code = EQ, false_code = NE;
6400 std::swap (true_rtx, false_rtx);
6401 }
6402
6403 scalar_int_mode from_mode;
6404 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6405 {
6406 /* If we are comparing against zero and the expression being
6407 tested has only a single bit that might be nonzero, that is
6408 its value when it is not equal to zero. Similarly if it is
6409 known to be -1 or 0. */
6410 if (true_code == EQ
6411 && true_val == const0_rtx
6412 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6413 {
6414 false_code = EQ;
6415 false_val = gen_int_mode (nzb, from_mode);
6416 }
6417 else if (true_code == EQ
6418 && true_val == const0_rtx
6419 && (num_sign_bit_copies (from, from_mode)
6420 == GET_MODE_PRECISION (from_mode)))
6421 {
6422 false_code = EQ;
6423 false_val = constm1_rtx;
6424 }
6425 }
6426
6427 /* Now simplify an arm if we know the value of the register in the
6428 branch and it is used in the arm. Be careful due to the potential
6429 of locally-shared RTL. */
6430
6431 if (reg_mentioned_p (from, true_rtx))
6432 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6433 from, true_val),
6434 pc_rtx, pc_rtx, 0, 0, 0);
6435 if (reg_mentioned_p (from, false_rtx))
6436 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6437 from, false_val),
6438 pc_rtx, pc_rtx, 0, 0, 0);
6439
6440 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6441 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6442
6443 true_rtx = XEXP (x, 1);
6444 false_rtx = XEXP (x, 2);
6445 true_code = GET_CODE (cond);
6446 }
6447
6448 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6449 reversed, do so to avoid needing two sets of patterns for
6450 subtract-and-branch insns. Similarly if we have a constant in the true
6451 arm, the false arm is the same as the first operand of the comparison, or
6452 the false arm is more complicated than the true arm. */
6453
6454 if (comparison_p
6455 && reversed_comparison_code (cond, NULL) != UNKNOWN
6456 && (true_rtx == pc_rtx
6457 || (CONSTANT_P (true_rtx)
6458 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6459 || true_rtx == const0_rtx
6460 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6461 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6462 && !OBJECT_P (false_rtx))
6463 || reg_mentioned_p (true_rtx, false_rtx)
6464 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6465 {
6466 true_code = reversed_comparison_code (cond, NULL);
6467 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6468 SUBST (XEXP (x, 1), false_rtx);
6469 SUBST (XEXP (x, 2), true_rtx);
6470
6471 std::swap (true_rtx, false_rtx);
6472 cond = XEXP (x, 0);
6473
6474 /* It is possible that the conditional has been simplified out. */
6475 true_code = GET_CODE (cond);
6476 comparison_p = COMPARISON_P (cond);
6477 }
6478
6479 /* If the two arms are identical, we don't need the comparison. */
6480
6481 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6482 return true_rtx;
6483
6484 /* Convert a == b ? b : a to "a". */
6485 if (true_code == EQ && ! side_effects_p (cond)
6486 && !HONOR_NANS (mode)
6487 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6488 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6489 return false_rtx;
6490 else if (true_code == NE && ! side_effects_p (cond)
6491 && !HONOR_NANS (mode)
6492 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6493 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6494 return true_rtx;
6495
6496 /* Look for cases where we have (abs x) or (neg (abs X)). */
6497
6498 if (GET_MODE_CLASS (mode) == MODE_INT
6499 && comparison_p
6500 && XEXP (cond, 1) == const0_rtx
6501 && GET_CODE (false_rtx) == NEG
6502 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6503 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6504 && ! side_effects_p (true_rtx))
6505 switch (true_code)
6506 {
6507 case GT:
6508 case GE:
6509 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6510 case LT:
6511 case LE:
6512 return
6513 simplify_gen_unary (NEG, mode,
6514 simplify_gen_unary (ABS, mode, true_rtx, mode),
6515 mode);
6516 default:
6517 break;
6518 }
6519
6520 /* Look for MIN or MAX. */
6521
6522 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6523 && comparison_p
6524 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6525 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6526 && ! side_effects_p (cond))
6527 switch (true_code)
6528 {
6529 case GE:
6530 case GT:
6531 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6532 case LE:
6533 case LT:
6534 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6535 case GEU:
6536 case GTU:
6537 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6538 case LEU:
6539 case LTU:
6540 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6541 default:
6542 break;
6543 }
6544
6545 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6546 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6547 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6548 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6549 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6550 neither 1 or -1, but it isn't worth checking for. */
6551
6552 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6553 && comparison_p
6554 && is_int_mode (mode, &int_mode)
6555 && ! side_effects_p (x))
6556 {
6557 rtx t = make_compound_operation (true_rtx, SET);
6558 rtx f = make_compound_operation (false_rtx, SET);
6559 rtx cond_op0 = XEXP (cond, 0);
6560 rtx cond_op1 = XEXP (cond, 1);
6561 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6562 scalar_int_mode m = int_mode;
6563 rtx z = 0, c1 = NULL_RTX;
6564
6565 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6566 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6567 || GET_CODE (t) == ASHIFT
6568 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6569 && rtx_equal_p (XEXP (t, 0), f))
6570 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6571
6572 /* If an identity-zero op is commutative, check whether there
6573 would be a match if we swapped the operands. */
6574 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6575 || GET_CODE (t) == XOR)
6576 && rtx_equal_p (XEXP (t, 1), f))
6577 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6578 else if (GET_CODE (t) == SIGN_EXTEND
6579 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6580 && (GET_CODE (XEXP (t, 0)) == PLUS
6581 || GET_CODE (XEXP (t, 0)) == MINUS
6582 || GET_CODE (XEXP (t, 0)) == IOR
6583 || GET_CODE (XEXP (t, 0)) == XOR
6584 || GET_CODE (XEXP (t, 0)) == ASHIFT
6585 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6586 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6587 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6588 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6589 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6590 && (num_sign_bit_copies (f, GET_MODE (f))
6591 > (unsigned int)
6592 (GET_MODE_PRECISION (int_mode)
6593 - GET_MODE_PRECISION (inner_mode))))
6594 {
6595 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6596 extend_op = SIGN_EXTEND;
6597 m = inner_mode;
6598 }
6599 else if (GET_CODE (t) == SIGN_EXTEND
6600 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6601 && (GET_CODE (XEXP (t, 0)) == PLUS
6602 || GET_CODE (XEXP (t, 0)) == IOR
6603 || GET_CODE (XEXP (t, 0)) == XOR)
6604 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6605 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6606 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6607 && (num_sign_bit_copies (f, GET_MODE (f))
6608 > (unsigned int)
6609 (GET_MODE_PRECISION (int_mode)
6610 - GET_MODE_PRECISION (inner_mode))))
6611 {
6612 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6613 extend_op = SIGN_EXTEND;
6614 m = inner_mode;
6615 }
6616 else if (GET_CODE (t) == ZERO_EXTEND
6617 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6618 && (GET_CODE (XEXP (t, 0)) == PLUS
6619 || GET_CODE (XEXP (t, 0)) == MINUS
6620 || GET_CODE (XEXP (t, 0)) == IOR
6621 || GET_CODE (XEXP (t, 0)) == XOR
6622 || GET_CODE (XEXP (t, 0)) == ASHIFT
6623 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6624 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6625 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6626 && HWI_COMPUTABLE_MODE_P (int_mode)
6627 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6628 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6629 && ((nonzero_bits (f, GET_MODE (f))
6630 & ~GET_MODE_MASK (inner_mode))
6631 == 0))
6632 {
6633 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6634 extend_op = ZERO_EXTEND;
6635 m = inner_mode;
6636 }
6637 else if (GET_CODE (t) == ZERO_EXTEND
6638 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6639 && (GET_CODE (XEXP (t, 0)) == PLUS
6640 || GET_CODE (XEXP (t, 0)) == IOR
6641 || GET_CODE (XEXP (t, 0)) == XOR)
6642 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6643 && HWI_COMPUTABLE_MODE_P (int_mode)
6644 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6645 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6646 && ((nonzero_bits (f, GET_MODE (f))
6647 & ~GET_MODE_MASK (inner_mode))
6648 == 0))
6649 {
6650 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6651 extend_op = ZERO_EXTEND;
6652 m = inner_mode;
6653 }
6654
6655 if (z)
6656 {
6657 machine_mode cm = m;
6658 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6659 && GET_MODE (c1) != VOIDmode)
6660 cm = GET_MODE (c1);
6661 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6662 cond_op0, cond_op1),
6663 pc_rtx, pc_rtx, 0, 0, 0);
6664 temp = simplify_gen_binary (MULT, cm, temp,
6665 simplify_gen_binary (MULT, cm, c1,
6666 const_true_rtx));
6667 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6668 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6669
6670 if (extend_op != UNKNOWN)
6671 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6672
6673 return temp;
6674 }
6675 }
6676
6677 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6678 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6679 negation of a single bit, we can convert this operation to a shift. We
6680 can actually do this more generally, but it doesn't seem worth it. */
6681
6682 if (true_code == NE
6683 && is_a <scalar_int_mode> (mode, &int_mode)
6684 && XEXP (cond, 1) == const0_rtx
6685 && false_rtx == const0_rtx
6686 && CONST_INT_P (true_rtx)
6687 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6688 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6689 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6690 == GET_MODE_PRECISION (int_mode))
6691 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6692 return
6693 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6694 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6695
6696 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6697 non-zero bit in A is C1. */
6698 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6699 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6700 && is_a <scalar_int_mode> (mode, &int_mode)
6701 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6702 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6703 == nonzero_bits (XEXP (cond, 0), inner_mode)
6704 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6705 {
6706 rtx val = XEXP (cond, 0);
6707 if (inner_mode == int_mode)
6708 return val;
6709 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6710 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6711 }
6712
6713 return x;
6714 }
6715 \f
6716 /* Simplify X, a SET expression. Return the new expression. */
6717
6718 static rtx
6719 simplify_set (rtx x)
6720 {
6721 rtx src = SET_SRC (x);
6722 rtx dest = SET_DEST (x);
6723 machine_mode mode
6724 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6725 rtx_insn *other_insn;
6726 rtx *cc_use;
6727 scalar_int_mode int_mode;
6728
6729 /* (set (pc) (return)) gets written as (return). */
6730 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6731 return src;
6732
6733 /* Now that we know for sure which bits of SRC we are using, see if we can
6734 simplify the expression for the object knowing that we only need the
6735 low-order bits. */
6736
6737 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6738 {
6739 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6740 SUBST (SET_SRC (x), src);
6741 }
6742
6743 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6744 the comparison result and try to simplify it unless we already have used
6745 undobuf.other_insn. */
6746 if ((GET_MODE_CLASS (mode) == MODE_CC
6747 || GET_CODE (src) == COMPARE
6748 || CC0_P (dest))
6749 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6750 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6751 && COMPARISON_P (*cc_use)
6752 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6753 {
6754 enum rtx_code old_code = GET_CODE (*cc_use);
6755 enum rtx_code new_code;
6756 rtx op0, op1, tmp;
6757 int other_changed = 0;
6758 rtx inner_compare = NULL_RTX;
6759 machine_mode compare_mode = GET_MODE (dest);
6760
6761 if (GET_CODE (src) == COMPARE)
6762 {
6763 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6764 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6765 {
6766 inner_compare = op0;
6767 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6768 }
6769 }
6770 else
6771 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6772
6773 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6774 op0, op1);
6775 if (!tmp)
6776 new_code = old_code;
6777 else if (!CONSTANT_P (tmp))
6778 {
6779 new_code = GET_CODE (tmp);
6780 op0 = XEXP (tmp, 0);
6781 op1 = XEXP (tmp, 1);
6782 }
6783 else
6784 {
6785 rtx pat = PATTERN (other_insn);
6786 undobuf.other_insn = other_insn;
6787 SUBST (*cc_use, tmp);
6788
6789 /* Attempt to simplify CC user. */
6790 if (GET_CODE (pat) == SET)
6791 {
6792 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6793 if (new_rtx != NULL_RTX)
6794 SUBST (SET_SRC (pat), new_rtx);
6795 }
6796
6797 /* Convert X into a no-op move. */
6798 SUBST (SET_DEST (x), pc_rtx);
6799 SUBST (SET_SRC (x), pc_rtx);
6800 return x;
6801 }
6802
6803 /* Simplify our comparison, if possible. */
6804 new_code = simplify_comparison (new_code, &op0, &op1);
6805
6806 #ifdef SELECT_CC_MODE
6807 /* If this machine has CC modes other than CCmode, check to see if we
6808 need to use a different CC mode here. */
6809 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6810 compare_mode = GET_MODE (op0);
6811 else if (inner_compare
6812 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6813 && new_code == old_code
6814 && op0 == XEXP (inner_compare, 0)
6815 && op1 == XEXP (inner_compare, 1))
6816 compare_mode = GET_MODE (inner_compare);
6817 else
6818 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6819
6820 /* If the mode changed, we have to change SET_DEST, the mode in the
6821 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6822 a hard register, just build new versions with the proper mode. If it
6823 is a pseudo, we lose unless it is only time we set the pseudo, in
6824 which case we can safely change its mode. */
6825 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6826 {
6827 if (can_change_dest_mode (dest, 0, compare_mode))
6828 {
6829 unsigned int regno = REGNO (dest);
6830 rtx new_dest;
6831
6832 if (regno < FIRST_PSEUDO_REGISTER)
6833 new_dest = gen_rtx_REG (compare_mode, regno);
6834 else
6835 {
6836 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6837 new_dest = regno_reg_rtx[regno];
6838 }
6839
6840 SUBST (SET_DEST (x), new_dest);
6841 SUBST (XEXP (*cc_use, 0), new_dest);
6842 other_changed = 1;
6843
6844 dest = new_dest;
6845 }
6846 }
6847 #endif /* SELECT_CC_MODE */
6848
6849 /* If the code changed, we have to build a new comparison in
6850 undobuf.other_insn. */
6851 if (new_code != old_code)
6852 {
6853 int other_changed_previously = other_changed;
6854 unsigned HOST_WIDE_INT mask;
6855 rtx old_cc_use = *cc_use;
6856
6857 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6858 dest, const0_rtx));
6859 other_changed = 1;
6860
6861 /* If the only change we made was to change an EQ into an NE or
6862 vice versa, OP0 has only one bit that might be nonzero, and OP1
6863 is zero, check if changing the user of the condition code will
6864 produce a valid insn. If it won't, we can keep the original code
6865 in that insn by surrounding our operation with an XOR. */
6866
6867 if (((old_code == NE && new_code == EQ)
6868 || (old_code == EQ && new_code == NE))
6869 && ! other_changed_previously && op1 == const0_rtx
6870 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6871 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6872 {
6873 rtx pat = PATTERN (other_insn), note = 0;
6874
6875 if ((recog_for_combine (&pat, other_insn, &note) < 0
6876 && ! check_asm_operands (pat)))
6877 {
6878 *cc_use = old_cc_use;
6879 other_changed = 0;
6880
6881 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6882 gen_int_mode (mask,
6883 GET_MODE (op0)));
6884 }
6885 }
6886 }
6887
6888 if (other_changed)
6889 undobuf.other_insn = other_insn;
6890
6891 /* Don't generate a compare of a CC with 0, just use that CC. */
6892 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6893 {
6894 SUBST (SET_SRC (x), op0);
6895 src = SET_SRC (x);
6896 }
6897 /* Otherwise, if we didn't previously have the same COMPARE we
6898 want, create it from scratch. */
6899 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6900 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6901 {
6902 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6903 src = SET_SRC (x);
6904 }
6905 }
6906 else
6907 {
6908 /* Get SET_SRC in a form where we have placed back any
6909 compound expressions. Then do the checks below. */
6910 src = make_compound_operation (src, SET);
6911 SUBST (SET_SRC (x), src);
6912 }
6913
6914 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6915 and X being a REG or (subreg (reg)), we may be able to convert this to
6916 (set (subreg:m2 x) (op)).
6917
6918 We can always do this if M1 is narrower than M2 because that means that
6919 we only care about the low bits of the result.
6920
6921 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6922 perform a narrower operation than requested since the high-order bits will
6923 be undefined. On machine where it is defined, this transformation is safe
6924 as long as M1 and M2 have the same number of words. */
6925
6926 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6927 && !OBJECT_P (SUBREG_REG (src))
6928 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6929 / UNITS_PER_WORD)
6930 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6931 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6932 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6933 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6934 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6935 GET_MODE (SUBREG_REG (src)),
6936 GET_MODE (src)))
6937 && (REG_P (dest)
6938 || (GET_CODE (dest) == SUBREG
6939 && REG_P (SUBREG_REG (dest)))))
6940 {
6941 SUBST (SET_DEST (x),
6942 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6943 dest));
6944 SUBST (SET_SRC (x), SUBREG_REG (src));
6945
6946 src = SET_SRC (x), dest = SET_DEST (x);
6947 }
6948
6949 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6950 in SRC. */
6951 if (dest == cc0_rtx
6952 && partial_subreg_p (src)
6953 && subreg_lowpart_p (src))
6954 {
6955 rtx inner = SUBREG_REG (src);
6956 machine_mode inner_mode = GET_MODE (inner);
6957
6958 /* Here we make sure that we don't have a sign bit on. */
6959 if (val_signbit_known_clear_p (GET_MODE (src),
6960 nonzero_bits (inner, inner_mode)))
6961 {
6962 SUBST (SET_SRC (x), inner);
6963 src = SET_SRC (x);
6964 }
6965 }
6966
6967 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6968 would require a paradoxical subreg. Replace the subreg with a
6969 zero_extend to avoid the reload that would otherwise be required.
6970 Don't do this unless we have a scalar integer mode, otherwise the
6971 transformation is incorrect. */
6972
6973 enum rtx_code extend_op;
6974 if (paradoxical_subreg_p (src)
6975 && MEM_P (SUBREG_REG (src))
6976 && SCALAR_INT_MODE_P (GET_MODE (src))
6977 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6978 {
6979 SUBST (SET_SRC (x),
6980 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6981
6982 src = SET_SRC (x);
6983 }
6984
6985 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6986 are comparing an item known to be 0 or -1 against 0, use a logical
6987 operation instead. Check for one of the arms being an IOR of the other
6988 arm with some value. We compute three terms to be IOR'ed together. In
6989 practice, at most two will be nonzero. Then we do the IOR's. */
6990
6991 if (GET_CODE (dest) != PC
6992 && GET_CODE (src) == IF_THEN_ELSE
6993 && is_int_mode (GET_MODE (src), &int_mode)
6994 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6995 && XEXP (XEXP (src, 0), 1) == const0_rtx
6996 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
6997 && (!HAVE_conditional_move
6998 || ! can_conditionally_move_p (int_mode))
6999 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7000 == GET_MODE_PRECISION (int_mode))
7001 && ! side_effects_p (src))
7002 {
7003 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7004 ? XEXP (src, 1) : XEXP (src, 2));
7005 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7006 ? XEXP (src, 2) : XEXP (src, 1));
7007 rtx term1 = const0_rtx, term2, term3;
7008
7009 if (GET_CODE (true_rtx) == IOR
7010 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7011 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7012 else if (GET_CODE (true_rtx) == IOR
7013 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7014 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7015 else if (GET_CODE (false_rtx) == IOR
7016 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7017 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7018 else if (GET_CODE (false_rtx) == IOR
7019 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7020 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7021
7022 term2 = simplify_gen_binary (AND, int_mode,
7023 XEXP (XEXP (src, 0), 0), true_rtx);
7024 term3 = simplify_gen_binary (AND, int_mode,
7025 simplify_gen_unary (NOT, int_mode,
7026 XEXP (XEXP (src, 0), 0),
7027 int_mode),
7028 false_rtx);
7029
7030 SUBST (SET_SRC (x),
7031 simplify_gen_binary (IOR, int_mode,
7032 simplify_gen_binary (IOR, int_mode,
7033 term1, term2),
7034 term3));
7035
7036 src = SET_SRC (x);
7037 }
7038
7039 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7040 whole thing fail. */
7041 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7042 return src;
7043 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7044 return dest;
7045 else
7046 /* Convert this into a field assignment operation, if possible. */
7047 return make_field_assignment (x);
7048 }
7049 \f
7050 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7051 result. */
7052
7053 static rtx
7054 simplify_logical (rtx x)
7055 {
7056 rtx op0 = XEXP (x, 0);
7057 rtx op1 = XEXP (x, 1);
7058 scalar_int_mode mode;
7059
7060 switch (GET_CODE (x))
7061 {
7062 case AND:
7063 /* We can call simplify_and_const_int only if we don't lose
7064 any (sign) bits when converting INTVAL (op1) to
7065 "unsigned HOST_WIDE_INT". */
7066 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7067 && CONST_INT_P (op1)
7068 && (HWI_COMPUTABLE_MODE_P (mode)
7069 || INTVAL (op1) > 0))
7070 {
7071 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7072 if (GET_CODE (x) != AND)
7073 return x;
7074
7075 op0 = XEXP (x, 0);
7076 op1 = XEXP (x, 1);
7077 }
7078
7079 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7080 apply the distributive law and then the inverse distributive
7081 law to see if things simplify. */
7082 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7083 {
7084 rtx result = distribute_and_simplify_rtx (x, 0);
7085 if (result)
7086 return result;
7087 }
7088 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7089 {
7090 rtx result = distribute_and_simplify_rtx (x, 1);
7091 if (result)
7092 return result;
7093 }
7094 break;
7095
7096 case IOR:
7097 /* If we have (ior (and A B) C), apply the distributive law and then
7098 the inverse distributive law to see if things simplify. */
7099
7100 if (GET_CODE (op0) == AND)
7101 {
7102 rtx result = distribute_and_simplify_rtx (x, 0);
7103 if (result)
7104 return result;
7105 }
7106
7107 if (GET_CODE (op1) == AND)
7108 {
7109 rtx result = distribute_and_simplify_rtx (x, 1);
7110 if (result)
7111 return result;
7112 }
7113 break;
7114
7115 default:
7116 gcc_unreachable ();
7117 }
7118
7119 return x;
7120 }
7121 \f
7122 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7123 operations" because they can be replaced with two more basic operations.
7124 ZERO_EXTEND is also considered "compound" because it can be replaced with
7125 an AND operation, which is simpler, though only one operation.
7126
7127 The function expand_compound_operation is called with an rtx expression
7128 and will convert it to the appropriate shifts and AND operations,
7129 simplifying at each stage.
7130
7131 The function make_compound_operation is called to convert an expression
7132 consisting of shifts and ANDs into the equivalent compound expression.
7133 It is the inverse of this function, loosely speaking. */
7134
7135 static rtx
7136 expand_compound_operation (rtx x)
7137 {
7138 unsigned HOST_WIDE_INT pos = 0, len;
7139 int unsignedp = 0;
7140 unsigned int modewidth;
7141 rtx tem;
7142 scalar_int_mode inner_mode;
7143
7144 switch (GET_CODE (x))
7145 {
7146 case ZERO_EXTEND:
7147 unsignedp = 1;
7148 /* FALLTHRU */
7149 case SIGN_EXTEND:
7150 /* We can't necessarily use a const_int for a multiword mode;
7151 it depends on implicitly extending the value.
7152 Since we don't know the right way to extend it,
7153 we can't tell whether the implicit way is right.
7154
7155 Even for a mode that is no wider than a const_int,
7156 we can't win, because we need to sign extend one of its bits through
7157 the rest of it, and we don't know which bit. */
7158 if (CONST_INT_P (XEXP (x, 0)))
7159 return x;
7160
7161 /* Reject modes that aren't scalar integers because turning vector
7162 or complex modes into shifts causes problems. */
7163 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7164 return x;
7165
7166 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7167 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7168 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7169 reloaded. If not for that, MEM's would very rarely be safe.
7170
7171 Reject modes bigger than a word, because we might not be able
7172 to reference a two-register group starting with an arbitrary register
7173 (and currently gen_lowpart might crash for a SUBREG). */
7174
7175 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7176 return x;
7177
7178 len = GET_MODE_PRECISION (inner_mode);
7179 /* If the inner object has VOIDmode (the only way this can happen
7180 is if it is an ASM_OPERANDS), we can't do anything since we don't
7181 know how much masking to do. */
7182 if (len == 0)
7183 return x;
7184
7185 break;
7186
7187 case ZERO_EXTRACT:
7188 unsignedp = 1;
7189
7190 /* fall through */
7191
7192 case SIGN_EXTRACT:
7193 /* If the operand is a CLOBBER, just return it. */
7194 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7195 return XEXP (x, 0);
7196
7197 if (!CONST_INT_P (XEXP (x, 1))
7198 || !CONST_INT_P (XEXP (x, 2)))
7199 return x;
7200
7201 /* Reject modes that aren't scalar integers because turning vector
7202 or complex modes into shifts causes problems. */
7203 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7204 return x;
7205
7206 len = INTVAL (XEXP (x, 1));
7207 pos = INTVAL (XEXP (x, 2));
7208
7209 /* This should stay within the object being extracted, fail otherwise. */
7210 if (len + pos > GET_MODE_PRECISION (inner_mode))
7211 return x;
7212
7213 if (BITS_BIG_ENDIAN)
7214 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7215
7216 break;
7217
7218 default:
7219 return x;
7220 }
7221
7222 /* We've rejected non-scalar operations by now. */
7223 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7224
7225 /* Convert sign extension to zero extension, if we know that the high
7226 bit is not set, as this is easier to optimize. It will be converted
7227 back to cheaper alternative in make_extraction. */
7228 if (GET_CODE (x) == SIGN_EXTEND
7229 && HWI_COMPUTABLE_MODE_P (mode)
7230 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7231 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7232 == 0))
7233 {
7234 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7235 rtx temp2 = expand_compound_operation (temp);
7236
7237 /* Make sure this is a profitable operation. */
7238 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7239 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7240 return temp2;
7241 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7242 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7243 return temp;
7244 else
7245 return x;
7246 }
7247
7248 /* We can optimize some special cases of ZERO_EXTEND. */
7249 if (GET_CODE (x) == ZERO_EXTEND)
7250 {
7251 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7252 know that the last value didn't have any inappropriate bits
7253 set. */
7254 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7255 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7256 && HWI_COMPUTABLE_MODE_P (mode)
7257 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7258 & ~GET_MODE_MASK (inner_mode)) == 0)
7259 return XEXP (XEXP (x, 0), 0);
7260
7261 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7262 if (GET_CODE (XEXP (x, 0)) == SUBREG
7263 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7264 && subreg_lowpart_p (XEXP (x, 0))
7265 && HWI_COMPUTABLE_MODE_P (mode)
7266 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7267 & ~GET_MODE_MASK (inner_mode)) == 0)
7268 return SUBREG_REG (XEXP (x, 0));
7269
7270 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7271 is a comparison and STORE_FLAG_VALUE permits. This is like
7272 the first case, but it works even when MODE is larger
7273 than HOST_WIDE_INT. */
7274 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7275 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7276 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7277 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7278 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7279 return XEXP (XEXP (x, 0), 0);
7280
7281 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7282 if (GET_CODE (XEXP (x, 0)) == SUBREG
7283 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7284 && subreg_lowpart_p (XEXP (x, 0))
7285 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7286 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7287 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7288 return SUBREG_REG (XEXP (x, 0));
7289
7290 }
7291
7292 /* If we reach here, we want to return a pair of shifts. The inner
7293 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7294 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7295 logical depending on the value of UNSIGNEDP.
7296
7297 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7298 converted into an AND of a shift.
7299
7300 We must check for the case where the left shift would have a negative
7301 count. This can happen in a case like (x >> 31) & 255 on machines
7302 that can't shift by a constant. On those machines, we would first
7303 combine the shift with the AND to produce a variable-position
7304 extraction. Then the constant of 31 would be substituted in
7305 to produce such a position. */
7306
7307 modewidth = GET_MODE_PRECISION (mode);
7308 if (modewidth >= pos + len)
7309 {
7310 tem = gen_lowpart (mode, XEXP (x, 0));
7311 if (!tem || GET_CODE (tem) == CLOBBER)
7312 return x;
7313 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7314 tem, modewidth - pos - len);
7315 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7316 mode, tem, modewidth - len);
7317 }
7318 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7319 tem = simplify_and_const_int (NULL_RTX, mode,
7320 simplify_shift_const (NULL_RTX, LSHIFTRT,
7321 mode, XEXP (x, 0),
7322 pos),
7323 (HOST_WIDE_INT_1U << len) - 1);
7324 else
7325 /* Any other cases we can't handle. */
7326 return x;
7327
7328 /* If we couldn't do this for some reason, return the original
7329 expression. */
7330 if (GET_CODE (tem) == CLOBBER)
7331 return x;
7332
7333 return tem;
7334 }
7335 \f
7336 /* X is a SET which contains an assignment of one object into
7337 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7338 or certain SUBREGS). If possible, convert it into a series of
7339 logical operations.
7340
7341 We half-heartedly support variable positions, but do not at all
7342 support variable lengths. */
7343
7344 static const_rtx
7345 expand_field_assignment (const_rtx x)
7346 {
7347 rtx inner;
7348 rtx pos; /* Always counts from low bit. */
7349 int len;
7350 rtx mask, cleared, masked;
7351 scalar_int_mode compute_mode;
7352
7353 /* Loop until we find something we can't simplify. */
7354 while (1)
7355 {
7356 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7357 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7358 {
7359 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7360 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7361 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7362 MAX_MODE_INT);
7363 }
7364 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7365 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7366 {
7367 inner = XEXP (SET_DEST (x), 0);
7368 len = INTVAL (XEXP (SET_DEST (x), 1));
7369 pos = XEXP (SET_DEST (x), 2);
7370
7371 /* A constant position should stay within the width of INNER. */
7372 if (CONST_INT_P (pos)
7373 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7374 break;
7375
7376 if (BITS_BIG_ENDIAN)
7377 {
7378 if (CONST_INT_P (pos))
7379 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7380 - INTVAL (pos));
7381 else if (GET_CODE (pos) == MINUS
7382 && CONST_INT_P (XEXP (pos, 1))
7383 && (INTVAL (XEXP (pos, 1))
7384 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7385 /* If position is ADJUST - X, new position is X. */
7386 pos = XEXP (pos, 0);
7387 else
7388 {
7389 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7390 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7391 gen_int_mode (prec - len,
7392 GET_MODE (pos)),
7393 pos);
7394 }
7395 }
7396 }
7397
7398 /* If the destination is a subreg that overwrites the whole of the inner
7399 register, we can move the subreg to the source. */
7400 else if (GET_CODE (SET_DEST (x)) == SUBREG
7401 /* We need SUBREGs to compute nonzero_bits properly. */
7402 && nonzero_sign_valid
7403 && !read_modify_subreg_p (SET_DEST (x)))
7404 {
7405 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7406 gen_lowpart
7407 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7408 SET_SRC (x)));
7409 continue;
7410 }
7411 else
7412 break;
7413
7414 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7415 inner = SUBREG_REG (inner);
7416
7417 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7418 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7419 {
7420 /* Don't do anything for vector or complex integral types. */
7421 if (! FLOAT_MODE_P (GET_MODE (inner)))
7422 break;
7423
7424 /* Try to find an integral mode to pun with. */
7425 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7426 .exists (&compute_mode))
7427 break;
7428
7429 inner = gen_lowpart (compute_mode, inner);
7430 }
7431
7432 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7433 if (len >= HOST_BITS_PER_WIDE_INT)
7434 break;
7435
7436 /* Don't try to compute in too wide unsupported modes. */
7437 if (!targetm.scalar_mode_supported_p (compute_mode))
7438 break;
7439
7440 /* Now compute the equivalent expression. Make a copy of INNER
7441 for the SET_DEST in case it is a MEM into which we will substitute;
7442 we don't want shared RTL in that case. */
7443 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7444 compute_mode);
7445 cleared = simplify_gen_binary (AND, compute_mode,
7446 simplify_gen_unary (NOT, compute_mode,
7447 simplify_gen_binary (ASHIFT,
7448 compute_mode,
7449 mask, pos),
7450 compute_mode),
7451 inner);
7452 masked = simplify_gen_binary (ASHIFT, compute_mode,
7453 simplify_gen_binary (
7454 AND, compute_mode,
7455 gen_lowpart (compute_mode, SET_SRC (x)),
7456 mask),
7457 pos);
7458
7459 x = gen_rtx_SET (copy_rtx (inner),
7460 simplify_gen_binary (IOR, compute_mode,
7461 cleared, masked));
7462 }
7463
7464 return x;
7465 }
7466 \f
7467 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7468 it is an RTX that represents the (variable) starting position; otherwise,
7469 POS is the (constant) starting bit position. Both are counted from the LSB.
7470
7471 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7472
7473 IN_DEST is nonzero if this is a reference in the destination of a SET.
7474 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7475 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7476 be used.
7477
7478 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7479 ZERO_EXTRACT should be built even for bits starting at bit 0.
7480
7481 MODE is the desired mode of the result (if IN_DEST == 0).
7482
7483 The result is an RTX for the extraction or NULL_RTX if the target
7484 can't handle it. */
7485
7486 static rtx
7487 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7488 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7489 int in_dest, int in_compare)
7490 {
7491 /* This mode describes the size of the storage area
7492 to fetch the overall value from. Within that, we
7493 ignore the POS lowest bits, etc. */
7494 machine_mode is_mode = GET_MODE (inner);
7495 machine_mode inner_mode;
7496 scalar_int_mode wanted_inner_mode;
7497 scalar_int_mode wanted_inner_reg_mode = word_mode;
7498 scalar_int_mode pos_mode = word_mode;
7499 machine_mode extraction_mode = word_mode;
7500 rtx new_rtx = 0;
7501 rtx orig_pos_rtx = pos_rtx;
7502 HOST_WIDE_INT orig_pos;
7503
7504 if (pos_rtx && CONST_INT_P (pos_rtx))
7505 pos = INTVAL (pos_rtx), pos_rtx = 0;
7506
7507 if (GET_CODE (inner) == SUBREG
7508 && subreg_lowpart_p (inner)
7509 && (paradoxical_subreg_p (inner)
7510 /* If trying or potentionally trying to extract
7511 bits outside of is_mode, don't look through
7512 non-paradoxical SUBREGs. See PR82192. */
7513 || (pos_rtx == NULL_RTX
7514 && pos + len <= GET_MODE_PRECISION (is_mode))))
7515 {
7516 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7517 consider just the QI as the memory to extract from.
7518 The subreg adds or removes high bits; its mode is
7519 irrelevant to the meaning of this extraction,
7520 since POS and LEN count from the lsb. */
7521 if (MEM_P (SUBREG_REG (inner)))
7522 is_mode = GET_MODE (SUBREG_REG (inner));
7523 inner = SUBREG_REG (inner);
7524 }
7525 else if (GET_CODE (inner) == ASHIFT
7526 && CONST_INT_P (XEXP (inner, 1))
7527 && pos_rtx == 0 && pos == 0
7528 && len > UINTVAL (XEXP (inner, 1)))
7529 {
7530 /* We're extracting the least significant bits of an rtx
7531 (ashift X (const_int C)), where LEN > C. Extract the
7532 least significant (LEN - C) bits of X, giving an rtx
7533 whose mode is MODE, then shift it left C times. */
7534 new_rtx = make_extraction (mode, XEXP (inner, 0),
7535 0, 0, len - INTVAL (XEXP (inner, 1)),
7536 unsignedp, in_dest, in_compare);
7537 if (new_rtx != 0)
7538 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7539 }
7540 else if (GET_CODE (inner) == TRUNCATE
7541 /* If trying or potentionally trying to extract
7542 bits outside of is_mode, don't look through
7543 TRUNCATE. See PR82192. */
7544 && pos_rtx == NULL_RTX
7545 && pos + len <= GET_MODE_PRECISION (is_mode))
7546 inner = XEXP (inner, 0);
7547
7548 inner_mode = GET_MODE (inner);
7549
7550 /* See if this can be done without an extraction. We never can if the
7551 width of the field is not the same as that of some integer mode. For
7552 registers, we can only avoid the extraction if the position is at the
7553 low-order bit and this is either not in the destination or we have the
7554 appropriate STRICT_LOW_PART operation available.
7555
7556 For MEM, we can avoid an extract if the field starts on an appropriate
7557 boundary and we can change the mode of the memory reference. */
7558
7559 scalar_int_mode tmode;
7560 if (int_mode_for_size (len, 1).exists (&tmode)
7561 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7562 && !MEM_P (inner)
7563 && (pos == 0 || REG_P (inner))
7564 && (inner_mode == tmode
7565 || !REG_P (inner)
7566 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7567 || reg_truncated_to_mode (tmode, inner))
7568 && (! in_dest
7569 || (REG_P (inner)
7570 && have_insn_for (STRICT_LOW_PART, tmode))))
7571 || (MEM_P (inner) && pos_rtx == 0
7572 && (pos
7573 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7574 : BITS_PER_UNIT)) == 0
7575 /* We can't do this if we are widening INNER_MODE (it
7576 may not be aligned, for one thing). */
7577 && !paradoxical_subreg_p (tmode, inner_mode)
7578 && (inner_mode == tmode
7579 || (! mode_dependent_address_p (XEXP (inner, 0),
7580 MEM_ADDR_SPACE (inner))
7581 && ! MEM_VOLATILE_P (inner))))))
7582 {
7583 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7584 field. If the original and current mode are the same, we need not
7585 adjust the offset. Otherwise, we do if bytes big endian.
7586
7587 If INNER is not a MEM, get a piece consisting of just the field
7588 of interest (in this case POS % BITS_PER_WORD must be 0). */
7589
7590 if (MEM_P (inner))
7591 {
7592 HOST_WIDE_INT offset;
7593
7594 /* POS counts from lsb, but make OFFSET count in memory order. */
7595 if (BYTES_BIG_ENDIAN)
7596 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7597 else
7598 offset = pos / BITS_PER_UNIT;
7599
7600 new_rtx = adjust_address_nv (inner, tmode, offset);
7601 }
7602 else if (REG_P (inner))
7603 {
7604 if (tmode != inner_mode)
7605 {
7606 /* We can't call gen_lowpart in a DEST since we
7607 always want a SUBREG (see below) and it would sometimes
7608 return a new hard register. */
7609 if (pos || in_dest)
7610 {
7611 poly_uint64 offset
7612 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7613
7614 /* Avoid creating invalid subregs, for example when
7615 simplifying (x>>32)&255. */
7616 if (!validate_subreg (tmode, inner_mode, inner, offset))
7617 return NULL_RTX;
7618
7619 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7620 }
7621 else
7622 new_rtx = gen_lowpart (tmode, inner);
7623 }
7624 else
7625 new_rtx = inner;
7626 }
7627 else
7628 new_rtx = force_to_mode (inner, tmode,
7629 len >= HOST_BITS_PER_WIDE_INT
7630 ? HOST_WIDE_INT_M1U
7631 : (HOST_WIDE_INT_1U << len) - 1, 0);
7632
7633 /* If this extraction is going into the destination of a SET,
7634 make a STRICT_LOW_PART unless we made a MEM. */
7635
7636 if (in_dest)
7637 return (MEM_P (new_rtx) ? new_rtx
7638 : (GET_CODE (new_rtx) != SUBREG
7639 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7640 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7641
7642 if (mode == tmode)
7643 return new_rtx;
7644
7645 if (CONST_SCALAR_INT_P (new_rtx))
7646 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7647 mode, new_rtx, tmode);
7648
7649 /* If we know that no extraneous bits are set, and that the high
7650 bit is not set, convert the extraction to the cheaper of
7651 sign and zero extension, that are equivalent in these cases. */
7652 if (flag_expensive_optimizations
7653 && (HWI_COMPUTABLE_MODE_P (tmode)
7654 && ((nonzero_bits (new_rtx, tmode)
7655 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7656 == 0)))
7657 {
7658 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7659 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7660
7661 /* Prefer ZERO_EXTENSION, since it gives more information to
7662 backends. */
7663 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7664 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7665 return temp;
7666 return temp1;
7667 }
7668
7669 /* Otherwise, sign- or zero-extend unless we already are in the
7670 proper mode. */
7671
7672 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7673 mode, new_rtx));
7674 }
7675
7676 /* Unless this is a COMPARE or we have a funny memory reference,
7677 don't do anything with zero-extending field extracts starting at
7678 the low-order bit since they are simple AND operations. */
7679 if (pos_rtx == 0 && pos == 0 && ! in_dest
7680 && ! in_compare && unsignedp)
7681 return 0;
7682
7683 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7684 if the position is not a constant and the length is not 1. In all
7685 other cases, we would only be going outside our object in cases when
7686 an original shift would have been undefined. */
7687 if (MEM_P (inner)
7688 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7689 || (pos_rtx != 0 && len != 1)))
7690 return 0;
7691
7692 enum extraction_pattern pattern = (in_dest ? EP_insv
7693 : unsignedp ? EP_extzv : EP_extv);
7694
7695 /* If INNER is not from memory, we want it to have the mode of a register
7696 extraction pattern's structure operand, or word_mode if there is no
7697 such pattern. The same applies to extraction_mode and pos_mode
7698 and their respective operands.
7699
7700 For memory, assume that the desired extraction_mode and pos_mode
7701 are the same as for a register operation, since at present we don't
7702 have named patterns for aligned memory structures. */
7703 struct extraction_insn insn;
7704 if (get_best_reg_extraction_insn (&insn, pattern,
7705 GET_MODE_BITSIZE (inner_mode), mode))
7706 {
7707 wanted_inner_reg_mode = insn.struct_mode.require ();
7708 pos_mode = insn.pos_mode;
7709 extraction_mode = insn.field_mode;
7710 }
7711
7712 /* Never narrow an object, since that might not be safe. */
7713
7714 if (mode != VOIDmode
7715 && partial_subreg_p (extraction_mode, mode))
7716 extraction_mode = mode;
7717
7718 if (!MEM_P (inner))
7719 wanted_inner_mode = wanted_inner_reg_mode;
7720 else
7721 {
7722 /* Be careful not to go beyond the extracted object and maintain the
7723 natural alignment of the memory. */
7724 wanted_inner_mode = smallest_int_mode_for_size (len);
7725 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7726 > GET_MODE_BITSIZE (wanted_inner_mode))
7727 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7728 }
7729
7730 orig_pos = pos;
7731
7732 if (BITS_BIG_ENDIAN)
7733 {
7734 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7735 BITS_BIG_ENDIAN style. If position is constant, compute new
7736 position. Otherwise, build subtraction.
7737 Note that POS is relative to the mode of the original argument.
7738 If it's a MEM we need to recompute POS relative to that.
7739 However, if we're extracting from (or inserting into) a register,
7740 we want to recompute POS relative to wanted_inner_mode. */
7741 int width = (MEM_P (inner)
7742 ? GET_MODE_BITSIZE (is_mode)
7743 : GET_MODE_BITSIZE (wanted_inner_mode));
7744
7745 if (pos_rtx == 0)
7746 pos = width - len - pos;
7747 else
7748 pos_rtx
7749 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7750 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7751 pos_rtx);
7752 /* POS may be less than 0 now, but we check for that below.
7753 Note that it can only be less than 0 if !MEM_P (inner). */
7754 }
7755
7756 /* If INNER has a wider mode, and this is a constant extraction, try to
7757 make it smaller and adjust the byte to point to the byte containing
7758 the value. */
7759 if (wanted_inner_mode != VOIDmode
7760 && inner_mode != wanted_inner_mode
7761 && ! pos_rtx
7762 && partial_subreg_p (wanted_inner_mode, is_mode)
7763 && MEM_P (inner)
7764 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7765 && ! MEM_VOLATILE_P (inner))
7766 {
7767 int offset = 0;
7768
7769 /* The computations below will be correct if the machine is big
7770 endian in both bits and bytes or little endian in bits and bytes.
7771 If it is mixed, we must adjust. */
7772
7773 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7774 adjust OFFSET to compensate. */
7775 if (BYTES_BIG_ENDIAN
7776 && paradoxical_subreg_p (is_mode, inner_mode))
7777 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7778
7779 /* We can now move to the desired byte. */
7780 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7781 * GET_MODE_SIZE (wanted_inner_mode);
7782 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7783
7784 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7785 && is_mode != wanted_inner_mode)
7786 offset = (GET_MODE_SIZE (is_mode)
7787 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7788
7789 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7790 }
7791
7792 /* If INNER is not memory, get it into the proper mode. If we are changing
7793 its mode, POS must be a constant and smaller than the size of the new
7794 mode. */
7795 else if (!MEM_P (inner))
7796 {
7797 /* On the LHS, don't create paradoxical subregs implicitely truncating
7798 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7799 if (in_dest
7800 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7801 wanted_inner_mode))
7802 return NULL_RTX;
7803
7804 if (GET_MODE (inner) != wanted_inner_mode
7805 && (pos_rtx != 0
7806 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7807 return NULL_RTX;
7808
7809 if (orig_pos < 0)
7810 return NULL_RTX;
7811
7812 inner = force_to_mode (inner, wanted_inner_mode,
7813 pos_rtx
7814 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7815 ? HOST_WIDE_INT_M1U
7816 : (((HOST_WIDE_INT_1U << len) - 1)
7817 << orig_pos),
7818 0);
7819 }
7820
7821 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7822 have to zero extend. Otherwise, we can just use a SUBREG.
7823
7824 We dealt with constant rtxes earlier, so pos_rtx cannot
7825 have VOIDmode at this point. */
7826 if (pos_rtx != 0
7827 && (GET_MODE_SIZE (pos_mode)
7828 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7829 {
7830 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7831 GET_MODE (pos_rtx));
7832
7833 /* If we know that no extraneous bits are set, and that the high
7834 bit is not set, convert extraction to cheaper one - either
7835 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7836 cases. */
7837 if (flag_expensive_optimizations
7838 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7839 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7840 & ~(((unsigned HOST_WIDE_INT)
7841 GET_MODE_MASK (GET_MODE (pos_rtx)))
7842 >> 1))
7843 == 0)))
7844 {
7845 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7846 GET_MODE (pos_rtx));
7847
7848 /* Prefer ZERO_EXTENSION, since it gives more information to
7849 backends. */
7850 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7851 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7852 temp = temp1;
7853 }
7854 pos_rtx = temp;
7855 }
7856
7857 /* Make POS_RTX unless we already have it and it is correct. If we don't
7858 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7859 be a CONST_INT. */
7860 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7861 pos_rtx = orig_pos_rtx;
7862
7863 else if (pos_rtx == 0)
7864 pos_rtx = GEN_INT (pos);
7865
7866 /* Make the required operation. See if we can use existing rtx. */
7867 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7868 extraction_mode, inner, GEN_INT (len), pos_rtx);
7869 if (! in_dest)
7870 new_rtx = gen_lowpart (mode, new_rtx);
7871
7872 return new_rtx;
7873 }
7874 \f
7875 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7876 can be commuted with any other operations in X. Return X without
7877 that shift if so. */
7878
7879 static rtx
7880 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7881 {
7882 enum rtx_code code = GET_CODE (x);
7883 rtx tem;
7884
7885 switch (code)
7886 {
7887 case ASHIFT:
7888 /* This is the shift itself. If it is wide enough, we will return
7889 either the value being shifted if the shift count is equal to
7890 COUNT or a shift for the difference. */
7891 if (CONST_INT_P (XEXP (x, 1))
7892 && INTVAL (XEXP (x, 1)) >= count)
7893 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7894 INTVAL (XEXP (x, 1)) - count);
7895 break;
7896
7897 case NEG: case NOT:
7898 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7899 return simplify_gen_unary (code, mode, tem, mode);
7900
7901 break;
7902
7903 case PLUS: case IOR: case XOR: case AND:
7904 /* If we can safely shift this constant and we find the inner shift,
7905 make a new operation. */
7906 if (CONST_INT_P (XEXP (x, 1))
7907 && (UINTVAL (XEXP (x, 1))
7908 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7909 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7910 {
7911 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7912 return simplify_gen_binary (code, mode, tem,
7913 gen_int_mode (val, mode));
7914 }
7915 break;
7916
7917 default:
7918 break;
7919 }
7920
7921 return 0;
7922 }
7923 \f
7924 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7925 level of the expression and MODE is its mode. IN_CODE is as for
7926 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7927 that should be used when recursing on operands of *X_PTR.
7928
7929 There are two possible actions:
7930
7931 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7932 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7933
7934 - Return a new rtx, which the caller returns directly. */
7935
7936 static rtx
7937 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
7938 enum rtx_code in_code,
7939 enum rtx_code *next_code_ptr)
7940 {
7941 rtx x = *x_ptr;
7942 enum rtx_code next_code = *next_code_ptr;
7943 enum rtx_code code = GET_CODE (x);
7944 int mode_width = GET_MODE_PRECISION (mode);
7945 rtx rhs, lhs;
7946 rtx new_rtx = 0;
7947 int i;
7948 rtx tem;
7949 scalar_int_mode inner_mode;
7950 bool equality_comparison = false;
7951
7952 if (in_code == EQ)
7953 {
7954 equality_comparison = true;
7955 in_code = COMPARE;
7956 }
7957
7958 /* Process depending on the code of this operation. If NEW is set
7959 nonzero, it will be returned. */
7960
7961 switch (code)
7962 {
7963 case ASHIFT:
7964 /* Convert shifts by constants into multiplications if inside
7965 an address. */
7966 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7967 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7968 && INTVAL (XEXP (x, 1)) >= 0)
7969 {
7970 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7971 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7972
7973 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7974 if (GET_CODE (new_rtx) == NEG)
7975 {
7976 new_rtx = XEXP (new_rtx, 0);
7977 multval = -multval;
7978 }
7979 multval = trunc_int_for_mode (multval, mode);
7980 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7981 }
7982 break;
7983
7984 case PLUS:
7985 lhs = XEXP (x, 0);
7986 rhs = XEXP (x, 1);
7987 lhs = make_compound_operation (lhs, next_code);
7988 rhs = make_compound_operation (rhs, next_code);
7989 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7990 {
7991 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7992 XEXP (lhs, 1));
7993 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7994 }
7995 else if (GET_CODE (lhs) == MULT
7996 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7997 {
7998 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7999 simplify_gen_unary (NEG, mode,
8000 XEXP (lhs, 1),
8001 mode));
8002 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8003 }
8004 else
8005 {
8006 SUBST (XEXP (x, 0), lhs);
8007 SUBST (XEXP (x, 1), rhs);
8008 }
8009 maybe_swap_commutative_operands (x);
8010 return x;
8011
8012 case MINUS:
8013 lhs = XEXP (x, 0);
8014 rhs = XEXP (x, 1);
8015 lhs = make_compound_operation (lhs, next_code);
8016 rhs = make_compound_operation (rhs, next_code);
8017 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8018 {
8019 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8020 XEXP (rhs, 1));
8021 return simplify_gen_binary (PLUS, mode, tem, lhs);
8022 }
8023 else if (GET_CODE (rhs) == MULT
8024 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8025 {
8026 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8027 simplify_gen_unary (NEG, mode,
8028 XEXP (rhs, 1),
8029 mode));
8030 return simplify_gen_binary (PLUS, mode, tem, lhs);
8031 }
8032 else
8033 {
8034 SUBST (XEXP (x, 0), lhs);
8035 SUBST (XEXP (x, 1), rhs);
8036 return x;
8037 }
8038
8039 case AND:
8040 /* If the second operand is not a constant, we can't do anything
8041 with it. */
8042 if (!CONST_INT_P (XEXP (x, 1)))
8043 break;
8044
8045 /* If the constant is a power of two minus one and the first operand
8046 is a logical right shift, make an extraction. */
8047 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8048 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8049 {
8050 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8051 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8052 i, 1, 0, in_code == COMPARE);
8053 }
8054
8055 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8056 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8057 && subreg_lowpart_p (XEXP (x, 0))
8058 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8059 &inner_mode)
8060 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8061 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8062 {
8063 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8064 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8065 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8066 XEXP (inner_x0, 1),
8067 i, 1, 0, in_code == COMPARE);
8068
8069 /* If we narrowed the mode when dropping the subreg, then we lose. */
8070 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8071 new_rtx = NULL;
8072
8073 /* If that didn't give anything, see if the AND simplifies on
8074 its own. */
8075 if (!new_rtx && i >= 0)
8076 {
8077 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8078 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8079 0, in_code == COMPARE);
8080 }
8081 }
8082 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8083 else if ((GET_CODE (XEXP (x, 0)) == XOR
8084 || GET_CODE (XEXP (x, 0)) == IOR)
8085 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8086 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8087 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8088 {
8089 /* Apply the distributive law, and then try to make extractions. */
8090 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8091 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8092 XEXP (x, 1)),
8093 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8094 XEXP (x, 1)));
8095 new_rtx = make_compound_operation (new_rtx, in_code);
8096 }
8097
8098 /* If we are have (and (rotate X C) M) and C is larger than the number
8099 of bits in M, this is an extraction. */
8100
8101 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8102 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8103 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8104 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8105 {
8106 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8107 new_rtx = make_extraction (mode, new_rtx,
8108 (GET_MODE_PRECISION (mode)
8109 - INTVAL (XEXP (XEXP (x, 0), 1))),
8110 NULL_RTX, i, 1, 0, in_code == COMPARE);
8111 }
8112
8113 /* On machines without logical shifts, if the operand of the AND is
8114 a logical shift and our mask turns off all the propagated sign
8115 bits, we can replace the logical shift with an arithmetic shift. */
8116 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8117 && !have_insn_for (LSHIFTRT, mode)
8118 && have_insn_for (ASHIFTRT, mode)
8119 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8120 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8121 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8122 && mode_width <= HOST_BITS_PER_WIDE_INT)
8123 {
8124 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8125
8126 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8127 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8128 SUBST (XEXP (x, 0),
8129 gen_rtx_ASHIFTRT (mode,
8130 make_compound_operation (XEXP (XEXP (x,
8131 0),
8132 0),
8133 next_code),
8134 XEXP (XEXP (x, 0), 1)));
8135 }
8136
8137 /* If the constant is one less than a power of two, this might be
8138 representable by an extraction even if no shift is present.
8139 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8140 we are in a COMPARE. */
8141 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8142 new_rtx = make_extraction (mode,
8143 make_compound_operation (XEXP (x, 0),
8144 next_code),
8145 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8146
8147 /* If we are in a comparison and this is an AND with a power of two,
8148 convert this into the appropriate bit extract. */
8149 else if (in_code == COMPARE
8150 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8151 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8152 new_rtx = make_extraction (mode,
8153 make_compound_operation (XEXP (x, 0),
8154 next_code),
8155 i, NULL_RTX, 1, 1, 0, 1);
8156
8157 /* If the one operand is a paradoxical subreg of a register or memory and
8158 the constant (limited to the smaller mode) has only zero bits where
8159 the sub expression has known zero bits, this can be expressed as
8160 a zero_extend. */
8161 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8162 {
8163 rtx sub;
8164
8165 sub = XEXP (XEXP (x, 0), 0);
8166 machine_mode sub_mode = GET_MODE (sub);
8167 if ((REG_P (sub) || MEM_P (sub))
8168 && GET_MODE_PRECISION (sub_mode) < mode_width)
8169 {
8170 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8171 unsigned HOST_WIDE_INT mask;
8172
8173 /* original AND constant with all the known zero bits set */
8174 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8175 if ((mask & mode_mask) == mode_mask)
8176 {
8177 new_rtx = make_compound_operation (sub, next_code);
8178 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8179 GET_MODE_PRECISION (sub_mode),
8180 1, 0, in_code == COMPARE);
8181 }
8182 }
8183 }
8184
8185 break;
8186
8187 case LSHIFTRT:
8188 /* If the sign bit is known to be zero, replace this with an
8189 arithmetic shift. */
8190 if (have_insn_for (ASHIFTRT, mode)
8191 && ! have_insn_for (LSHIFTRT, mode)
8192 && mode_width <= HOST_BITS_PER_WIDE_INT
8193 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8194 {
8195 new_rtx = gen_rtx_ASHIFTRT (mode,
8196 make_compound_operation (XEXP (x, 0),
8197 next_code),
8198 XEXP (x, 1));
8199 break;
8200 }
8201
8202 /* fall through */
8203
8204 case ASHIFTRT:
8205 lhs = XEXP (x, 0);
8206 rhs = XEXP (x, 1);
8207
8208 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8209 this is a SIGN_EXTRACT. */
8210 if (CONST_INT_P (rhs)
8211 && GET_CODE (lhs) == ASHIFT
8212 && CONST_INT_P (XEXP (lhs, 1))
8213 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8214 && INTVAL (XEXP (lhs, 1)) >= 0
8215 && INTVAL (rhs) < mode_width)
8216 {
8217 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8218 new_rtx = make_extraction (mode, new_rtx,
8219 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8220 NULL_RTX, mode_width - INTVAL (rhs),
8221 code == LSHIFTRT, 0, in_code == COMPARE);
8222 break;
8223 }
8224
8225 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8226 If so, try to merge the shifts into a SIGN_EXTEND. We could
8227 also do this for some cases of SIGN_EXTRACT, but it doesn't
8228 seem worth the effort; the case checked for occurs on Alpha. */
8229
8230 if (!OBJECT_P (lhs)
8231 && ! (GET_CODE (lhs) == SUBREG
8232 && (OBJECT_P (SUBREG_REG (lhs))))
8233 && CONST_INT_P (rhs)
8234 && INTVAL (rhs) >= 0
8235 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8236 && INTVAL (rhs) < mode_width
8237 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8238 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8239 next_code),
8240 0, NULL_RTX, mode_width - INTVAL (rhs),
8241 code == LSHIFTRT, 0, in_code == COMPARE);
8242
8243 break;
8244
8245 case SUBREG:
8246 /* Call ourselves recursively on the inner expression. If we are
8247 narrowing the object and it has a different RTL code from
8248 what it originally did, do this SUBREG as a force_to_mode. */
8249 {
8250 rtx inner = SUBREG_REG (x), simplified;
8251 enum rtx_code subreg_code = in_code;
8252
8253 /* If the SUBREG is masking of a logical right shift,
8254 make an extraction. */
8255 if (GET_CODE (inner) == LSHIFTRT
8256 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8257 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8258 && CONST_INT_P (XEXP (inner, 1))
8259 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8260 && subreg_lowpart_p (x))
8261 {
8262 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8263 int width = GET_MODE_PRECISION (inner_mode)
8264 - INTVAL (XEXP (inner, 1));
8265 if (width > mode_width)
8266 width = mode_width;
8267 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8268 width, 1, 0, in_code == COMPARE);
8269 break;
8270 }
8271
8272 /* If in_code is COMPARE, it isn't always safe to pass it through
8273 to the recursive make_compound_operation call. */
8274 if (subreg_code == COMPARE
8275 && (!subreg_lowpart_p (x)
8276 || GET_CODE (inner) == SUBREG
8277 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8278 is (const_int 0), rather than
8279 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8280 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8281 for non-equality comparisons against 0 is not equivalent
8282 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8283 || (GET_CODE (inner) == AND
8284 && CONST_INT_P (XEXP (inner, 1))
8285 && partial_subreg_p (x)
8286 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8287 >= GET_MODE_BITSIZE (mode) - 1)))
8288 subreg_code = SET;
8289
8290 tem = make_compound_operation (inner, subreg_code);
8291
8292 simplified
8293 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8294 if (simplified)
8295 tem = simplified;
8296
8297 if (GET_CODE (tem) != GET_CODE (inner)
8298 && partial_subreg_p (x)
8299 && subreg_lowpart_p (x))
8300 {
8301 rtx newer
8302 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8303
8304 /* If we have something other than a SUBREG, we might have
8305 done an expansion, so rerun ourselves. */
8306 if (GET_CODE (newer) != SUBREG)
8307 newer = make_compound_operation (newer, in_code);
8308
8309 /* force_to_mode can expand compounds. If it just re-expanded
8310 the compound, use gen_lowpart to convert to the desired
8311 mode. */
8312 if (rtx_equal_p (newer, x)
8313 /* Likewise if it re-expanded the compound only partially.
8314 This happens for SUBREG of ZERO_EXTRACT if they extract
8315 the same number of bits. */
8316 || (GET_CODE (newer) == SUBREG
8317 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8318 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8319 && GET_CODE (inner) == AND
8320 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8321 return gen_lowpart (GET_MODE (x), tem);
8322
8323 return newer;
8324 }
8325
8326 if (simplified)
8327 return tem;
8328 }
8329 break;
8330
8331 default:
8332 break;
8333 }
8334
8335 if (new_rtx)
8336 *x_ptr = gen_lowpart (mode, new_rtx);
8337 *next_code_ptr = next_code;
8338 return NULL_RTX;
8339 }
8340
8341 /* Look at the expression rooted at X. Look for expressions
8342 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8343 Form these expressions.
8344
8345 Return the new rtx, usually just X.
8346
8347 Also, for machines like the VAX that don't have logical shift insns,
8348 try to convert logical to arithmetic shift operations in cases where
8349 they are equivalent. This undoes the canonicalizations to logical
8350 shifts done elsewhere.
8351
8352 We try, as much as possible, to re-use rtl expressions to save memory.
8353
8354 IN_CODE says what kind of expression we are processing. Normally, it is
8355 SET. In a memory address it is MEM. When processing the arguments of
8356 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8357 precisely it is an equality comparison against zero. */
8358
8359 rtx
8360 make_compound_operation (rtx x, enum rtx_code in_code)
8361 {
8362 enum rtx_code code = GET_CODE (x);
8363 const char *fmt;
8364 int i, j;
8365 enum rtx_code next_code;
8366 rtx new_rtx, tem;
8367
8368 /* Select the code to be used in recursive calls. Once we are inside an
8369 address, we stay there. If we have a comparison, set to COMPARE,
8370 but once inside, go back to our default of SET. */
8371
8372 next_code = (code == MEM ? MEM
8373 : ((code == COMPARE || COMPARISON_P (x))
8374 && XEXP (x, 1) == const0_rtx) ? COMPARE
8375 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8376
8377 scalar_int_mode mode;
8378 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8379 {
8380 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8381 &next_code);
8382 if (new_rtx)
8383 return new_rtx;
8384 code = GET_CODE (x);
8385 }
8386
8387 /* Now recursively process each operand of this operation. We need to
8388 handle ZERO_EXTEND specially so that we don't lose track of the
8389 inner mode. */
8390 if (code == ZERO_EXTEND)
8391 {
8392 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8393 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8394 new_rtx, GET_MODE (XEXP (x, 0)));
8395 if (tem)
8396 return tem;
8397 SUBST (XEXP (x, 0), new_rtx);
8398 return x;
8399 }
8400
8401 fmt = GET_RTX_FORMAT (code);
8402 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8403 if (fmt[i] == 'e')
8404 {
8405 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8406 SUBST (XEXP (x, i), new_rtx);
8407 }
8408 else if (fmt[i] == 'E')
8409 for (j = 0; j < XVECLEN (x, i); j++)
8410 {
8411 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8412 SUBST (XVECEXP (x, i, j), new_rtx);
8413 }
8414
8415 maybe_swap_commutative_operands (x);
8416 return x;
8417 }
8418 \f
8419 /* Given M see if it is a value that would select a field of bits
8420 within an item, but not the entire word. Return -1 if not.
8421 Otherwise, return the starting position of the field, where 0 is the
8422 low-order bit.
8423
8424 *PLEN is set to the length of the field. */
8425
8426 static int
8427 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8428 {
8429 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8430 int pos = m ? ctz_hwi (m) : -1;
8431 int len = 0;
8432
8433 if (pos >= 0)
8434 /* Now shift off the low-order zero bits and see if we have a
8435 power of two minus 1. */
8436 len = exact_log2 ((m >> pos) + 1);
8437
8438 if (len <= 0)
8439 pos = -1;
8440
8441 *plen = len;
8442 return pos;
8443 }
8444 \f
8445 /* If X refers to a register that equals REG in value, replace these
8446 references with REG. */
8447 static rtx
8448 canon_reg_for_combine (rtx x, rtx reg)
8449 {
8450 rtx op0, op1, op2;
8451 const char *fmt;
8452 int i;
8453 bool copied;
8454
8455 enum rtx_code code = GET_CODE (x);
8456 switch (GET_RTX_CLASS (code))
8457 {
8458 case RTX_UNARY:
8459 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8460 if (op0 != XEXP (x, 0))
8461 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8462 GET_MODE (reg));
8463 break;
8464
8465 case RTX_BIN_ARITH:
8466 case RTX_COMM_ARITH:
8467 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8468 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8469 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8470 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8471 break;
8472
8473 case RTX_COMPARE:
8474 case RTX_COMM_COMPARE:
8475 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8476 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8477 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8478 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8479 GET_MODE (op0), op0, op1);
8480 break;
8481
8482 case RTX_TERNARY:
8483 case RTX_BITFIELD_OPS:
8484 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8485 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8486 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8487 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8488 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8489 GET_MODE (op0), op0, op1, op2);
8490 /* FALLTHRU */
8491
8492 case RTX_OBJ:
8493 if (REG_P (x))
8494 {
8495 if (rtx_equal_p (get_last_value (reg), x)
8496 || rtx_equal_p (reg, get_last_value (x)))
8497 return reg;
8498 else
8499 break;
8500 }
8501
8502 /* fall through */
8503
8504 default:
8505 fmt = GET_RTX_FORMAT (code);
8506 copied = false;
8507 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8508 if (fmt[i] == 'e')
8509 {
8510 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8511 if (op != XEXP (x, i))
8512 {
8513 if (!copied)
8514 {
8515 copied = true;
8516 x = copy_rtx (x);
8517 }
8518 XEXP (x, i) = op;
8519 }
8520 }
8521 else if (fmt[i] == 'E')
8522 {
8523 int j;
8524 for (j = 0; j < XVECLEN (x, i); j++)
8525 {
8526 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8527 if (op != XVECEXP (x, i, j))
8528 {
8529 if (!copied)
8530 {
8531 copied = true;
8532 x = copy_rtx (x);
8533 }
8534 XVECEXP (x, i, j) = op;
8535 }
8536 }
8537 }
8538
8539 break;
8540 }
8541
8542 return x;
8543 }
8544
8545 /* Return X converted to MODE. If the value is already truncated to
8546 MODE we can just return a subreg even though in the general case we
8547 would need an explicit truncation. */
8548
8549 static rtx
8550 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8551 {
8552 if (!CONST_INT_P (x)
8553 && partial_subreg_p (mode, GET_MODE (x))
8554 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8555 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8556 {
8557 /* Bit-cast X into an integer mode. */
8558 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8559 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8560 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8561 x, GET_MODE (x));
8562 }
8563
8564 return gen_lowpart (mode, x);
8565 }
8566
8567 /* See if X can be simplified knowing that we will only refer to it in
8568 MODE and will only refer to those bits that are nonzero in MASK.
8569 If other bits are being computed or if masking operations are done
8570 that select a superset of the bits in MASK, they can sometimes be
8571 ignored.
8572
8573 Return a possibly simplified expression, but always convert X to
8574 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8575
8576 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8577 are all off in X. This is used when X will be complemented, by either
8578 NOT, NEG, or XOR. */
8579
8580 static rtx
8581 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8582 int just_select)
8583 {
8584 enum rtx_code code = GET_CODE (x);
8585 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8586 machine_mode op_mode;
8587 unsigned HOST_WIDE_INT nonzero;
8588
8589 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8590 code below will do the wrong thing since the mode of such an
8591 expression is VOIDmode.
8592
8593 Also do nothing if X is a CLOBBER; this can happen if X was
8594 the return value from a call to gen_lowpart. */
8595 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8596 return x;
8597
8598 /* We want to perform the operation in its present mode unless we know
8599 that the operation is valid in MODE, in which case we do the operation
8600 in MODE. */
8601 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8602 && have_insn_for (code, mode))
8603 ? mode : GET_MODE (x));
8604
8605 /* It is not valid to do a right-shift in a narrower mode
8606 than the one it came in with. */
8607 if ((code == LSHIFTRT || code == ASHIFTRT)
8608 && partial_subreg_p (mode, GET_MODE (x)))
8609 op_mode = GET_MODE (x);
8610
8611 /* Truncate MASK to fit OP_MODE. */
8612 if (op_mode)
8613 mask &= GET_MODE_MASK (op_mode);
8614
8615 /* Determine what bits of X are guaranteed to be (non)zero. */
8616 nonzero = nonzero_bits (x, mode);
8617
8618 /* If none of the bits in X are needed, return a zero. */
8619 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8620 x = const0_rtx;
8621
8622 /* If X is a CONST_INT, return a new one. Do this here since the
8623 test below will fail. */
8624 if (CONST_INT_P (x))
8625 {
8626 if (SCALAR_INT_MODE_P (mode))
8627 return gen_int_mode (INTVAL (x) & mask, mode);
8628 else
8629 {
8630 x = GEN_INT (INTVAL (x) & mask);
8631 return gen_lowpart_common (mode, x);
8632 }
8633 }
8634
8635 /* If X is narrower than MODE and we want all the bits in X's mode, just
8636 get X in the proper mode. */
8637 if (paradoxical_subreg_p (mode, GET_MODE (x))
8638 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8639 return gen_lowpart (mode, x);
8640
8641 /* We can ignore the effect of a SUBREG if it narrows the mode or
8642 if the constant masks to zero all the bits the mode doesn't have. */
8643 if (GET_CODE (x) == SUBREG
8644 && subreg_lowpart_p (x)
8645 && (partial_subreg_p (x)
8646 || (mask
8647 & GET_MODE_MASK (GET_MODE (x))
8648 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8649 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8650
8651 scalar_int_mode int_mode, xmode;
8652 if (is_a <scalar_int_mode> (mode, &int_mode)
8653 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8654 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8655 integer too. */
8656 return force_int_to_mode (x, int_mode, xmode,
8657 as_a <scalar_int_mode> (op_mode),
8658 mask, just_select);
8659
8660 return gen_lowpart_or_truncate (mode, x);
8661 }
8662
8663 /* Subroutine of force_to_mode that handles cases in which both X and
8664 the result are scalar integers. MODE is the mode of the result,
8665 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8666 is preferred for simplified versions of X. The other arguments
8667 are as for force_to_mode. */
8668
8669 static rtx
8670 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8671 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8672 int just_select)
8673 {
8674 enum rtx_code code = GET_CODE (x);
8675 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8676 unsigned HOST_WIDE_INT fuller_mask;
8677 rtx op0, op1, temp;
8678
8679 /* When we have an arithmetic operation, or a shift whose count we
8680 do not know, we need to assume that all bits up to the highest-order
8681 bit in MASK will be needed. This is how we form such a mask. */
8682 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8683 fuller_mask = HOST_WIDE_INT_M1U;
8684 else
8685 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8686 - 1);
8687
8688 switch (code)
8689 {
8690 case CLOBBER:
8691 /* If X is a (clobber (const_int)), return it since we know we are
8692 generating something that won't match. */
8693 return x;
8694
8695 case SIGN_EXTEND:
8696 case ZERO_EXTEND:
8697 case ZERO_EXTRACT:
8698 case SIGN_EXTRACT:
8699 x = expand_compound_operation (x);
8700 if (GET_CODE (x) != code)
8701 return force_to_mode (x, mode, mask, next_select);
8702 break;
8703
8704 case TRUNCATE:
8705 /* Similarly for a truncate. */
8706 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8707
8708 case AND:
8709 /* If this is an AND with a constant, convert it into an AND
8710 whose constant is the AND of that constant with MASK. If it
8711 remains an AND of MASK, delete it since it is redundant. */
8712
8713 if (CONST_INT_P (XEXP (x, 1)))
8714 {
8715 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8716 mask & INTVAL (XEXP (x, 1)));
8717 xmode = op_mode;
8718
8719 /* If X is still an AND, see if it is an AND with a mask that
8720 is just some low-order bits. If so, and it is MASK, we don't
8721 need it. */
8722
8723 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8724 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8725 x = XEXP (x, 0);
8726
8727 /* If it remains an AND, try making another AND with the bits
8728 in the mode mask that aren't in MASK turned on. If the
8729 constant in the AND is wide enough, this might make a
8730 cheaper constant. */
8731
8732 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8733 && GET_MODE_MASK (xmode) != mask
8734 && HWI_COMPUTABLE_MODE_P (xmode))
8735 {
8736 unsigned HOST_WIDE_INT cval
8737 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8738 rtx y;
8739
8740 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8741 gen_int_mode (cval, xmode));
8742 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8743 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8744 x = y;
8745 }
8746
8747 break;
8748 }
8749
8750 goto binop;
8751
8752 case PLUS:
8753 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8754 low-order bits (as in an alignment operation) and FOO is already
8755 aligned to that boundary, mask C1 to that boundary as well.
8756 This may eliminate that PLUS and, later, the AND. */
8757
8758 {
8759 unsigned int width = GET_MODE_PRECISION (mode);
8760 unsigned HOST_WIDE_INT smask = mask;
8761
8762 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8763 number, sign extend it. */
8764
8765 if (width < HOST_BITS_PER_WIDE_INT
8766 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8767 smask |= HOST_WIDE_INT_M1U << width;
8768
8769 if (CONST_INT_P (XEXP (x, 1))
8770 && pow2p_hwi (- smask)
8771 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8772 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8773 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8774 (INTVAL (XEXP (x, 1)) & smask)),
8775 mode, smask, next_select);
8776 }
8777
8778 /* fall through */
8779
8780 case MULT:
8781 /* Substituting into the operands of a widening MULT is not likely to
8782 create RTL matching a machine insn. */
8783 if (code == MULT
8784 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8785 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8786 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8787 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8788 && REG_P (XEXP (XEXP (x, 0), 0))
8789 && REG_P (XEXP (XEXP (x, 1), 0)))
8790 return gen_lowpart_or_truncate (mode, x);
8791
8792 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8793 most significant bit in MASK since carries from those bits will
8794 affect the bits we are interested in. */
8795 mask = fuller_mask;
8796 goto binop;
8797
8798 case MINUS:
8799 /* If X is (minus C Y) where C's least set bit is larger than any bit
8800 in the mask, then we may replace with (neg Y). */
8801 if (CONST_INT_P (XEXP (x, 0))
8802 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8803 {
8804 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8805 return force_to_mode (x, mode, mask, next_select);
8806 }
8807
8808 /* Similarly, if C contains every bit in the fuller_mask, then we may
8809 replace with (not Y). */
8810 if (CONST_INT_P (XEXP (x, 0))
8811 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8812 {
8813 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8814 return force_to_mode (x, mode, mask, next_select);
8815 }
8816
8817 mask = fuller_mask;
8818 goto binop;
8819
8820 case IOR:
8821 case XOR:
8822 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8823 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8824 operation which may be a bitfield extraction. Ensure that the
8825 constant we form is not wider than the mode of X. */
8826
8827 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8828 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8829 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8830 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8831 && CONST_INT_P (XEXP (x, 1))
8832 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8833 + floor_log2 (INTVAL (XEXP (x, 1))))
8834 < GET_MODE_PRECISION (xmode))
8835 && (UINTVAL (XEXP (x, 1))
8836 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8837 {
8838 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8839 << INTVAL (XEXP (XEXP (x, 0), 1)),
8840 xmode);
8841 temp = simplify_gen_binary (GET_CODE (x), xmode,
8842 XEXP (XEXP (x, 0), 0), temp);
8843 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8844 XEXP (XEXP (x, 0), 1));
8845 return force_to_mode (x, mode, mask, next_select);
8846 }
8847
8848 binop:
8849 /* For most binary operations, just propagate into the operation and
8850 change the mode if we have an operation of that mode. */
8851
8852 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8853 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8854
8855 /* If we ended up truncating both operands, truncate the result of the
8856 operation instead. */
8857 if (GET_CODE (op0) == TRUNCATE
8858 && GET_CODE (op1) == TRUNCATE)
8859 {
8860 op0 = XEXP (op0, 0);
8861 op1 = XEXP (op1, 0);
8862 }
8863
8864 op0 = gen_lowpart_or_truncate (op_mode, op0);
8865 op1 = gen_lowpart_or_truncate (op_mode, op1);
8866
8867 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8868 {
8869 x = simplify_gen_binary (code, op_mode, op0, op1);
8870 xmode = op_mode;
8871 }
8872 break;
8873
8874 case ASHIFT:
8875 /* For left shifts, do the same, but just for the first operand.
8876 However, we cannot do anything with shifts where we cannot
8877 guarantee that the counts are smaller than the size of the mode
8878 because such a count will have a different meaning in a
8879 wider mode. */
8880
8881 if (! (CONST_INT_P (XEXP (x, 1))
8882 && INTVAL (XEXP (x, 1)) >= 0
8883 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8884 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8885 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8886 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8887 break;
8888
8889 /* If the shift count is a constant and we can do arithmetic in
8890 the mode of the shift, refine which bits we need. Otherwise, use the
8891 conservative form of the mask. */
8892 if (CONST_INT_P (XEXP (x, 1))
8893 && INTVAL (XEXP (x, 1)) >= 0
8894 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8895 && HWI_COMPUTABLE_MODE_P (op_mode))
8896 mask >>= INTVAL (XEXP (x, 1));
8897 else
8898 mask = fuller_mask;
8899
8900 op0 = gen_lowpart_or_truncate (op_mode,
8901 force_to_mode (XEXP (x, 0), op_mode,
8902 mask, next_select));
8903
8904 if (op_mode != xmode || op0 != XEXP (x, 0))
8905 {
8906 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8907 xmode = op_mode;
8908 }
8909 break;
8910
8911 case LSHIFTRT:
8912 /* Here we can only do something if the shift count is a constant,
8913 this shift constant is valid for the host, and we can do arithmetic
8914 in OP_MODE. */
8915
8916 if (CONST_INT_P (XEXP (x, 1))
8917 && INTVAL (XEXP (x, 1)) >= 0
8918 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8919 && HWI_COMPUTABLE_MODE_P (op_mode))
8920 {
8921 rtx inner = XEXP (x, 0);
8922 unsigned HOST_WIDE_INT inner_mask;
8923
8924 /* Select the mask of the bits we need for the shift operand. */
8925 inner_mask = mask << INTVAL (XEXP (x, 1));
8926
8927 /* We can only change the mode of the shift if we can do arithmetic
8928 in the mode of the shift and INNER_MASK is no wider than the
8929 width of X's mode. */
8930 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
8931 op_mode = xmode;
8932
8933 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8934
8935 if (xmode != op_mode || inner != XEXP (x, 0))
8936 {
8937 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8938 xmode = op_mode;
8939 }
8940 }
8941
8942 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8943 shift and AND produces only copies of the sign bit (C2 is one less
8944 than a power of two), we can do this with just a shift. */
8945
8946 if (GET_CODE (x) == LSHIFTRT
8947 && CONST_INT_P (XEXP (x, 1))
8948 /* The shift puts one of the sign bit copies in the least significant
8949 bit. */
8950 && ((INTVAL (XEXP (x, 1))
8951 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8952 >= GET_MODE_PRECISION (xmode))
8953 && pow2p_hwi (mask + 1)
8954 /* Number of bits left after the shift must be more than the mask
8955 needs. */
8956 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8957 <= GET_MODE_PRECISION (xmode))
8958 /* Must be more sign bit copies than the mask needs. */
8959 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8960 >= exact_log2 (mask + 1)))
8961 {
8962 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
8963 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
8964 gen_int_shift_amount (xmode, nbits));
8965 }
8966 goto shiftrt;
8967
8968 case ASHIFTRT:
8969 /* If we are just looking for the sign bit, we don't need this shift at
8970 all, even if it has a variable count. */
8971 if (val_signbit_p (xmode, mask))
8972 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8973
8974 /* If this is a shift by a constant, get a mask that contains those bits
8975 that are not copies of the sign bit. We then have two cases: If
8976 MASK only includes those bits, this can be a logical shift, which may
8977 allow simplifications. If MASK is a single-bit field not within
8978 those bits, we are requesting a copy of the sign bit and hence can
8979 shift the sign bit to the appropriate location. */
8980
8981 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8982 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8983 {
8984 unsigned HOST_WIDE_INT nonzero;
8985 int i;
8986
8987 /* If the considered data is wider than HOST_WIDE_INT, we can't
8988 represent a mask for all its bits in a single scalar.
8989 But we only care about the lower bits, so calculate these. */
8990
8991 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
8992 {
8993 nonzero = HOST_WIDE_INT_M1U;
8994
8995 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8996 is the number of bits a full-width mask would have set.
8997 We need only shift if these are fewer than nonzero can
8998 hold. If not, we must keep all bits set in nonzero. */
8999
9000 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9001 < HOST_BITS_PER_WIDE_INT)
9002 nonzero >>= INTVAL (XEXP (x, 1))
9003 + HOST_BITS_PER_WIDE_INT
9004 - GET_MODE_PRECISION (xmode);
9005 }
9006 else
9007 {
9008 nonzero = GET_MODE_MASK (xmode);
9009 nonzero >>= INTVAL (XEXP (x, 1));
9010 }
9011
9012 if ((mask & ~nonzero) == 0)
9013 {
9014 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9015 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9016 if (GET_CODE (x) != ASHIFTRT)
9017 return force_to_mode (x, mode, mask, next_select);
9018 }
9019
9020 else if ((i = exact_log2 (mask)) >= 0)
9021 {
9022 x = simplify_shift_const
9023 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9024 GET_MODE_PRECISION (xmode) - 1 - i);
9025
9026 if (GET_CODE (x) != ASHIFTRT)
9027 return force_to_mode (x, mode, mask, next_select);
9028 }
9029 }
9030
9031 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9032 even if the shift count isn't a constant. */
9033 if (mask == 1)
9034 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9035
9036 shiftrt:
9037
9038 /* If this is a zero- or sign-extension operation that just affects bits
9039 we don't care about, remove it. Be sure the call above returned
9040 something that is still a shift. */
9041
9042 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9043 && CONST_INT_P (XEXP (x, 1))
9044 && INTVAL (XEXP (x, 1)) >= 0
9045 && (INTVAL (XEXP (x, 1))
9046 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9047 && GET_CODE (XEXP (x, 0)) == ASHIFT
9048 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9049 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9050 next_select);
9051
9052 break;
9053
9054 case ROTATE:
9055 case ROTATERT:
9056 /* If the shift count is constant and we can do computations
9057 in the mode of X, compute where the bits we care about are.
9058 Otherwise, we can't do anything. Don't change the mode of
9059 the shift or propagate MODE into the shift, though. */
9060 if (CONST_INT_P (XEXP (x, 1))
9061 && INTVAL (XEXP (x, 1)) >= 0)
9062 {
9063 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9064 xmode, gen_int_mode (mask, xmode),
9065 XEXP (x, 1));
9066 if (temp && CONST_INT_P (temp))
9067 x = simplify_gen_binary (code, xmode,
9068 force_to_mode (XEXP (x, 0), xmode,
9069 INTVAL (temp), next_select),
9070 XEXP (x, 1));
9071 }
9072 break;
9073
9074 case NEG:
9075 /* If we just want the low-order bit, the NEG isn't needed since it
9076 won't change the low-order bit. */
9077 if (mask == 1)
9078 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9079
9080 /* We need any bits less significant than the most significant bit in
9081 MASK since carries from those bits will affect the bits we are
9082 interested in. */
9083 mask = fuller_mask;
9084 goto unop;
9085
9086 case NOT:
9087 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9088 same as the XOR case above. Ensure that the constant we form is not
9089 wider than the mode of X. */
9090
9091 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9092 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9093 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9094 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9095 < GET_MODE_PRECISION (xmode))
9096 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9097 {
9098 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9099 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9100 x = simplify_gen_binary (LSHIFTRT, xmode,
9101 temp, XEXP (XEXP (x, 0), 1));
9102
9103 return force_to_mode (x, mode, mask, next_select);
9104 }
9105
9106 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9107 use the full mask inside the NOT. */
9108 mask = fuller_mask;
9109
9110 unop:
9111 op0 = gen_lowpart_or_truncate (op_mode,
9112 force_to_mode (XEXP (x, 0), mode, mask,
9113 next_select));
9114 if (op_mode != xmode || op0 != XEXP (x, 0))
9115 {
9116 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9117 xmode = op_mode;
9118 }
9119 break;
9120
9121 case NE:
9122 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9123 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9124 which is equal to STORE_FLAG_VALUE. */
9125 if ((mask & ~STORE_FLAG_VALUE) == 0
9126 && XEXP (x, 1) == const0_rtx
9127 && GET_MODE (XEXP (x, 0)) == mode
9128 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9129 && (nonzero_bits (XEXP (x, 0), mode)
9130 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9131 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9132
9133 break;
9134
9135 case IF_THEN_ELSE:
9136 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9137 written in a narrower mode. We play it safe and do not do so. */
9138
9139 op0 = gen_lowpart_or_truncate (xmode,
9140 force_to_mode (XEXP (x, 1), mode,
9141 mask, next_select));
9142 op1 = gen_lowpart_or_truncate (xmode,
9143 force_to_mode (XEXP (x, 2), mode,
9144 mask, next_select));
9145 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9146 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9147 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9148 op0, op1);
9149 break;
9150
9151 default:
9152 break;
9153 }
9154
9155 /* Ensure we return a value of the proper mode. */
9156 return gen_lowpart_or_truncate (mode, x);
9157 }
9158 \f
9159 /* Return nonzero if X is an expression that has one of two values depending on
9160 whether some other value is zero or nonzero. In that case, we return the
9161 value that is being tested, *PTRUE is set to the value if the rtx being
9162 returned has a nonzero value, and *PFALSE is set to the other alternative.
9163
9164 If we return zero, we set *PTRUE and *PFALSE to X. */
9165
9166 static rtx
9167 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9168 {
9169 machine_mode mode = GET_MODE (x);
9170 enum rtx_code code = GET_CODE (x);
9171 rtx cond0, cond1, true0, true1, false0, false1;
9172 unsigned HOST_WIDE_INT nz;
9173 scalar_int_mode int_mode;
9174
9175 /* If we are comparing a value against zero, we are done. */
9176 if ((code == NE || code == EQ)
9177 && XEXP (x, 1) == const0_rtx)
9178 {
9179 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9180 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9181 return XEXP (x, 0);
9182 }
9183
9184 /* If this is a unary operation whose operand has one of two values, apply
9185 our opcode to compute those values. */
9186 else if (UNARY_P (x)
9187 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9188 {
9189 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9190 *pfalse = simplify_gen_unary (code, mode, false0,
9191 GET_MODE (XEXP (x, 0)));
9192 return cond0;
9193 }
9194
9195 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9196 make can't possibly match and would suppress other optimizations. */
9197 else if (code == COMPARE)
9198 ;
9199
9200 /* If this is a binary operation, see if either side has only one of two
9201 values. If either one does or if both do and they are conditional on
9202 the same value, compute the new true and false values. */
9203 else if (BINARY_P (x))
9204 {
9205 rtx op0 = XEXP (x, 0);
9206 rtx op1 = XEXP (x, 1);
9207 cond0 = if_then_else_cond (op0, &true0, &false0);
9208 cond1 = if_then_else_cond (op1, &true1, &false1);
9209
9210 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9211 && (REG_P (op0) || REG_P (op1)))
9212 {
9213 /* Try to enable a simplification by undoing work done by
9214 if_then_else_cond if it converted a REG into something more
9215 complex. */
9216 if (REG_P (op0))
9217 {
9218 cond0 = 0;
9219 true0 = false0 = op0;
9220 }
9221 else
9222 {
9223 cond1 = 0;
9224 true1 = false1 = op1;
9225 }
9226 }
9227
9228 if ((cond0 != 0 || cond1 != 0)
9229 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9230 {
9231 /* If if_then_else_cond returned zero, then true/false are the
9232 same rtl. We must copy one of them to prevent invalid rtl
9233 sharing. */
9234 if (cond0 == 0)
9235 true0 = copy_rtx (true0);
9236 else if (cond1 == 0)
9237 true1 = copy_rtx (true1);
9238
9239 if (COMPARISON_P (x))
9240 {
9241 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9242 true0, true1);
9243 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9244 false0, false1);
9245 }
9246 else
9247 {
9248 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9249 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9250 }
9251
9252 return cond0 ? cond0 : cond1;
9253 }
9254
9255 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9256 operands is zero when the other is nonzero, and vice-versa,
9257 and STORE_FLAG_VALUE is 1 or -1. */
9258
9259 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9260 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9261 || code == UMAX)
9262 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9263 {
9264 rtx op0 = XEXP (XEXP (x, 0), 1);
9265 rtx op1 = XEXP (XEXP (x, 1), 1);
9266
9267 cond0 = XEXP (XEXP (x, 0), 0);
9268 cond1 = XEXP (XEXP (x, 1), 0);
9269
9270 if (COMPARISON_P (cond0)
9271 && COMPARISON_P (cond1)
9272 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9273 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9274 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9275 || ((swap_condition (GET_CODE (cond0))
9276 == reversed_comparison_code (cond1, NULL))
9277 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9278 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9279 && ! side_effects_p (x))
9280 {
9281 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9282 *pfalse = simplify_gen_binary (MULT, mode,
9283 (code == MINUS
9284 ? simplify_gen_unary (NEG, mode,
9285 op1, mode)
9286 : op1),
9287 const_true_rtx);
9288 return cond0;
9289 }
9290 }
9291
9292 /* Similarly for MULT, AND and UMIN, except that for these the result
9293 is always zero. */
9294 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9295 && (code == MULT || code == AND || code == UMIN)
9296 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9297 {
9298 cond0 = XEXP (XEXP (x, 0), 0);
9299 cond1 = XEXP (XEXP (x, 1), 0);
9300
9301 if (COMPARISON_P (cond0)
9302 && COMPARISON_P (cond1)
9303 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9304 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9305 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9306 || ((swap_condition (GET_CODE (cond0))
9307 == reversed_comparison_code (cond1, NULL))
9308 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9309 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9310 && ! side_effects_p (x))
9311 {
9312 *ptrue = *pfalse = const0_rtx;
9313 return cond0;
9314 }
9315 }
9316 }
9317
9318 else if (code == IF_THEN_ELSE)
9319 {
9320 /* If we have IF_THEN_ELSE already, extract the condition and
9321 canonicalize it if it is NE or EQ. */
9322 cond0 = XEXP (x, 0);
9323 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9324 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9325 return XEXP (cond0, 0);
9326 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9327 {
9328 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9329 return XEXP (cond0, 0);
9330 }
9331 else
9332 return cond0;
9333 }
9334
9335 /* If X is a SUBREG, we can narrow both the true and false values
9336 if the inner expression, if there is a condition. */
9337 else if (code == SUBREG
9338 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9339 &false0)) != 0)
9340 {
9341 true0 = simplify_gen_subreg (mode, true0,
9342 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9343 false0 = simplify_gen_subreg (mode, false0,
9344 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9345 if (true0 && false0)
9346 {
9347 *ptrue = true0;
9348 *pfalse = false0;
9349 return cond0;
9350 }
9351 }
9352
9353 /* If X is a constant, this isn't special and will cause confusions
9354 if we treat it as such. Likewise if it is equivalent to a constant. */
9355 else if (CONSTANT_P (x)
9356 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9357 ;
9358
9359 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9360 will be least confusing to the rest of the compiler. */
9361 else if (mode == BImode)
9362 {
9363 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9364 return x;
9365 }
9366
9367 /* If X is known to be either 0 or -1, those are the true and
9368 false values when testing X. */
9369 else if (x == constm1_rtx || x == const0_rtx
9370 || (is_a <scalar_int_mode> (mode, &int_mode)
9371 && (num_sign_bit_copies (x, int_mode)
9372 == GET_MODE_PRECISION (int_mode))))
9373 {
9374 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9375 return x;
9376 }
9377
9378 /* Likewise for 0 or a single bit. */
9379 else if (HWI_COMPUTABLE_MODE_P (mode)
9380 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9381 {
9382 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9383 return x;
9384 }
9385
9386 /* Otherwise fail; show no condition with true and false values the same. */
9387 *ptrue = *pfalse = x;
9388 return 0;
9389 }
9390 \f
9391 /* Return the value of expression X given the fact that condition COND
9392 is known to be true when applied to REG as its first operand and VAL
9393 as its second. X is known to not be shared and so can be modified in
9394 place.
9395
9396 We only handle the simplest cases, and specifically those cases that
9397 arise with IF_THEN_ELSE expressions. */
9398
9399 static rtx
9400 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9401 {
9402 enum rtx_code code = GET_CODE (x);
9403 const char *fmt;
9404 int i, j;
9405
9406 if (side_effects_p (x))
9407 return x;
9408
9409 /* If either operand of the condition is a floating point value,
9410 then we have to avoid collapsing an EQ comparison. */
9411 if (cond == EQ
9412 && rtx_equal_p (x, reg)
9413 && ! FLOAT_MODE_P (GET_MODE (x))
9414 && ! FLOAT_MODE_P (GET_MODE (val)))
9415 return val;
9416
9417 if (cond == UNEQ && rtx_equal_p (x, reg))
9418 return val;
9419
9420 /* If X is (abs REG) and we know something about REG's relationship
9421 with zero, we may be able to simplify this. */
9422
9423 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9424 switch (cond)
9425 {
9426 case GE: case GT: case EQ:
9427 return XEXP (x, 0);
9428 case LT: case LE:
9429 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9430 XEXP (x, 0),
9431 GET_MODE (XEXP (x, 0)));
9432 default:
9433 break;
9434 }
9435
9436 /* The only other cases we handle are MIN, MAX, and comparisons if the
9437 operands are the same as REG and VAL. */
9438
9439 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9440 {
9441 if (rtx_equal_p (XEXP (x, 0), val))
9442 {
9443 std::swap (val, reg);
9444 cond = swap_condition (cond);
9445 }
9446
9447 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9448 {
9449 if (COMPARISON_P (x))
9450 {
9451 if (comparison_dominates_p (cond, code))
9452 return const_true_rtx;
9453
9454 code = reversed_comparison_code (x, NULL);
9455 if (code != UNKNOWN
9456 && comparison_dominates_p (cond, code))
9457 return const0_rtx;
9458 else
9459 return x;
9460 }
9461 else if (code == SMAX || code == SMIN
9462 || code == UMIN || code == UMAX)
9463 {
9464 int unsignedp = (code == UMIN || code == UMAX);
9465
9466 /* Do not reverse the condition when it is NE or EQ.
9467 This is because we cannot conclude anything about
9468 the value of 'SMAX (x, y)' when x is not equal to y,
9469 but we can when x equals y. */
9470 if ((code == SMAX || code == UMAX)
9471 && ! (cond == EQ || cond == NE))
9472 cond = reverse_condition (cond);
9473
9474 switch (cond)
9475 {
9476 case GE: case GT:
9477 return unsignedp ? x : XEXP (x, 1);
9478 case LE: case LT:
9479 return unsignedp ? x : XEXP (x, 0);
9480 case GEU: case GTU:
9481 return unsignedp ? XEXP (x, 1) : x;
9482 case LEU: case LTU:
9483 return unsignedp ? XEXP (x, 0) : x;
9484 default:
9485 break;
9486 }
9487 }
9488 }
9489 }
9490 else if (code == SUBREG)
9491 {
9492 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9493 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9494
9495 if (SUBREG_REG (x) != r)
9496 {
9497 /* We must simplify subreg here, before we lose track of the
9498 original inner_mode. */
9499 new_rtx = simplify_subreg (GET_MODE (x), r,
9500 inner_mode, SUBREG_BYTE (x));
9501 if (new_rtx)
9502 return new_rtx;
9503 else
9504 SUBST (SUBREG_REG (x), r);
9505 }
9506
9507 return x;
9508 }
9509 /* We don't have to handle SIGN_EXTEND here, because even in the
9510 case of replacing something with a modeless CONST_INT, a
9511 CONST_INT is already (supposed to be) a valid sign extension for
9512 its narrower mode, which implies it's already properly
9513 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9514 story is different. */
9515 else if (code == ZERO_EXTEND)
9516 {
9517 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9518 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9519
9520 if (XEXP (x, 0) != r)
9521 {
9522 /* We must simplify the zero_extend here, before we lose
9523 track of the original inner_mode. */
9524 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9525 r, inner_mode);
9526 if (new_rtx)
9527 return new_rtx;
9528 else
9529 SUBST (XEXP (x, 0), r);
9530 }
9531
9532 return x;
9533 }
9534
9535 fmt = GET_RTX_FORMAT (code);
9536 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9537 {
9538 if (fmt[i] == 'e')
9539 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9540 else if (fmt[i] == 'E')
9541 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9542 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9543 cond, reg, val));
9544 }
9545
9546 return x;
9547 }
9548 \f
9549 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9550 assignment as a field assignment. */
9551
9552 static int
9553 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9554 {
9555 if (widen_x && GET_MODE (x) != GET_MODE (y))
9556 {
9557 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9558 return 0;
9559 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9560 return 0;
9561 x = adjust_address_nv (x, GET_MODE (y),
9562 byte_lowpart_offset (GET_MODE (y),
9563 GET_MODE (x)));
9564 }
9565
9566 if (x == y || rtx_equal_p (x, y))
9567 return 1;
9568
9569 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9570 return 0;
9571
9572 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9573 Note that all SUBREGs of MEM are paradoxical; otherwise they
9574 would have been rewritten. */
9575 if (MEM_P (x) && GET_CODE (y) == SUBREG
9576 && MEM_P (SUBREG_REG (y))
9577 && rtx_equal_p (SUBREG_REG (y),
9578 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9579 return 1;
9580
9581 if (MEM_P (y) && GET_CODE (x) == SUBREG
9582 && MEM_P (SUBREG_REG (x))
9583 && rtx_equal_p (SUBREG_REG (x),
9584 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9585 return 1;
9586
9587 /* We used to see if get_last_value of X and Y were the same but that's
9588 not correct. In one direction, we'll cause the assignment to have
9589 the wrong destination and in the case, we'll import a register into this
9590 insn that might have already have been dead. So fail if none of the
9591 above cases are true. */
9592 return 0;
9593 }
9594 \f
9595 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9596 Return that assignment if so.
9597
9598 We only handle the most common cases. */
9599
9600 static rtx
9601 make_field_assignment (rtx x)
9602 {
9603 rtx dest = SET_DEST (x);
9604 rtx src = SET_SRC (x);
9605 rtx assign;
9606 rtx rhs, lhs;
9607 HOST_WIDE_INT c1;
9608 HOST_WIDE_INT pos;
9609 unsigned HOST_WIDE_INT len;
9610 rtx other;
9611
9612 /* All the rules in this function are specific to scalar integers. */
9613 scalar_int_mode mode;
9614 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9615 return x;
9616
9617 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9618 a clear of a one-bit field. We will have changed it to
9619 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9620 for a SUBREG. */
9621
9622 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9623 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9624 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9625 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9626 {
9627 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9628 1, 1, 1, 0);
9629 if (assign != 0)
9630 return gen_rtx_SET (assign, const0_rtx);
9631 return x;
9632 }
9633
9634 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9635 && subreg_lowpart_p (XEXP (src, 0))
9636 && partial_subreg_p (XEXP (src, 0))
9637 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9638 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9639 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9640 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9641 {
9642 assign = make_extraction (VOIDmode, dest, 0,
9643 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9644 1, 1, 1, 0);
9645 if (assign != 0)
9646 return gen_rtx_SET (assign, const0_rtx);
9647 return x;
9648 }
9649
9650 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9651 one-bit field. */
9652 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9653 && XEXP (XEXP (src, 0), 0) == const1_rtx
9654 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9655 {
9656 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9657 1, 1, 1, 0);
9658 if (assign != 0)
9659 return gen_rtx_SET (assign, const1_rtx);
9660 return x;
9661 }
9662
9663 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9664 SRC is an AND with all bits of that field set, then we can discard
9665 the AND. */
9666 if (GET_CODE (dest) == ZERO_EXTRACT
9667 && CONST_INT_P (XEXP (dest, 1))
9668 && GET_CODE (src) == AND
9669 && CONST_INT_P (XEXP (src, 1)))
9670 {
9671 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9672 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9673 unsigned HOST_WIDE_INT ze_mask;
9674
9675 if (width >= HOST_BITS_PER_WIDE_INT)
9676 ze_mask = -1;
9677 else
9678 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9679
9680 /* Complete overlap. We can remove the source AND. */
9681 if ((and_mask & ze_mask) == ze_mask)
9682 return gen_rtx_SET (dest, XEXP (src, 0));
9683
9684 /* Partial overlap. We can reduce the source AND. */
9685 if ((and_mask & ze_mask) != and_mask)
9686 {
9687 src = gen_rtx_AND (mode, XEXP (src, 0),
9688 gen_int_mode (and_mask & ze_mask, mode));
9689 return gen_rtx_SET (dest, src);
9690 }
9691 }
9692
9693 /* The other case we handle is assignments into a constant-position
9694 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9695 a mask that has all one bits except for a group of zero bits and
9696 OTHER is known to have zeros where C1 has ones, this is such an
9697 assignment. Compute the position and length from C1. Shift OTHER
9698 to the appropriate position, force it to the required mode, and
9699 make the extraction. Check for the AND in both operands. */
9700
9701 /* One or more SUBREGs might obscure the constant-position field
9702 assignment. The first one we are likely to encounter is an outer
9703 narrowing SUBREG, which we can just strip for the purposes of
9704 identifying the constant-field assignment. */
9705 scalar_int_mode src_mode = mode;
9706 if (GET_CODE (src) == SUBREG
9707 && subreg_lowpart_p (src)
9708 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9709 src = SUBREG_REG (src);
9710
9711 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9712 return x;
9713
9714 rhs = expand_compound_operation (XEXP (src, 0));
9715 lhs = expand_compound_operation (XEXP (src, 1));
9716
9717 if (GET_CODE (rhs) == AND
9718 && CONST_INT_P (XEXP (rhs, 1))
9719 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9720 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9721 /* The second SUBREG that might get in the way is a paradoxical
9722 SUBREG around the first operand of the AND. We want to
9723 pretend the operand is as wide as the destination here. We
9724 do this by adjusting the MEM to wider mode for the sole
9725 purpose of the call to rtx_equal_for_field_assignment_p. Also
9726 note this trick only works for MEMs. */
9727 else if (GET_CODE (rhs) == AND
9728 && paradoxical_subreg_p (XEXP (rhs, 0))
9729 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9730 && CONST_INT_P (XEXP (rhs, 1))
9731 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9732 dest, true))
9733 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9734 else if (GET_CODE (lhs) == AND
9735 && CONST_INT_P (XEXP (lhs, 1))
9736 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9737 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9738 /* The second SUBREG that might get in the way is a paradoxical
9739 SUBREG around the first operand of the AND. We want to
9740 pretend the operand is as wide as the destination here. We
9741 do this by adjusting the MEM to wider mode for the sole
9742 purpose of the call to rtx_equal_for_field_assignment_p. Also
9743 note this trick only works for MEMs. */
9744 else if (GET_CODE (lhs) == AND
9745 && paradoxical_subreg_p (XEXP (lhs, 0))
9746 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9747 && CONST_INT_P (XEXP (lhs, 1))
9748 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9749 dest, true))
9750 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9751 else
9752 return x;
9753
9754 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9755 if (pos < 0
9756 || pos + len > GET_MODE_PRECISION (mode)
9757 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9758 || (c1 & nonzero_bits (other, mode)) != 0)
9759 return x;
9760
9761 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9762 if (assign == 0)
9763 return x;
9764
9765 /* The mode to use for the source is the mode of the assignment, or of
9766 what is inside a possible STRICT_LOW_PART. */
9767 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9768 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9769
9770 /* Shift OTHER right POS places and make it the source, restricting it
9771 to the proper length and mode. */
9772
9773 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9774 src_mode, other, pos),
9775 dest);
9776 src = force_to_mode (src, new_mode,
9777 len >= HOST_BITS_PER_WIDE_INT
9778 ? HOST_WIDE_INT_M1U
9779 : (HOST_WIDE_INT_1U << len) - 1,
9780 0);
9781
9782 /* If SRC is masked by an AND that does not make a difference in
9783 the value being stored, strip it. */
9784 if (GET_CODE (assign) == ZERO_EXTRACT
9785 && CONST_INT_P (XEXP (assign, 1))
9786 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9787 && GET_CODE (src) == AND
9788 && CONST_INT_P (XEXP (src, 1))
9789 && UINTVAL (XEXP (src, 1))
9790 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9791 src = XEXP (src, 0);
9792
9793 return gen_rtx_SET (assign, src);
9794 }
9795 \f
9796 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9797 if so. */
9798
9799 static rtx
9800 apply_distributive_law (rtx x)
9801 {
9802 enum rtx_code code = GET_CODE (x);
9803 enum rtx_code inner_code;
9804 rtx lhs, rhs, other;
9805 rtx tem;
9806
9807 /* Distributivity is not true for floating point as it can change the
9808 value. So we don't do it unless -funsafe-math-optimizations. */
9809 if (FLOAT_MODE_P (GET_MODE (x))
9810 && ! flag_unsafe_math_optimizations)
9811 return x;
9812
9813 /* The outer operation can only be one of the following: */
9814 if (code != IOR && code != AND && code != XOR
9815 && code != PLUS && code != MINUS)
9816 return x;
9817
9818 lhs = XEXP (x, 0);
9819 rhs = XEXP (x, 1);
9820
9821 /* If either operand is a primitive we can't do anything, so get out
9822 fast. */
9823 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9824 return x;
9825
9826 lhs = expand_compound_operation (lhs);
9827 rhs = expand_compound_operation (rhs);
9828 inner_code = GET_CODE (lhs);
9829 if (inner_code != GET_CODE (rhs))
9830 return x;
9831
9832 /* See if the inner and outer operations distribute. */
9833 switch (inner_code)
9834 {
9835 case LSHIFTRT:
9836 case ASHIFTRT:
9837 case AND:
9838 case IOR:
9839 /* These all distribute except over PLUS. */
9840 if (code == PLUS || code == MINUS)
9841 return x;
9842 break;
9843
9844 case MULT:
9845 if (code != PLUS && code != MINUS)
9846 return x;
9847 break;
9848
9849 case ASHIFT:
9850 /* This is also a multiply, so it distributes over everything. */
9851 break;
9852
9853 /* This used to handle SUBREG, but this turned out to be counter-
9854 productive, since (subreg (op ...)) usually is not handled by
9855 insn patterns, and this "optimization" therefore transformed
9856 recognizable patterns into unrecognizable ones. Therefore the
9857 SUBREG case was removed from here.
9858
9859 It is possible that distributing SUBREG over arithmetic operations
9860 leads to an intermediate result than can then be optimized further,
9861 e.g. by moving the outer SUBREG to the other side of a SET as done
9862 in simplify_set. This seems to have been the original intent of
9863 handling SUBREGs here.
9864
9865 However, with current GCC this does not appear to actually happen,
9866 at least on major platforms. If some case is found where removing
9867 the SUBREG case here prevents follow-on optimizations, distributing
9868 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9869
9870 default:
9871 return x;
9872 }
9873
9874 /* Set LHS and RHS to the inner operands (A and B in the example
9875 above) and set OTHER to the common operand (C in the example).
9876 There is only one way to do this unless the inner operation is
9877 commutative. */
9878 if (COMMUTATIVE_ARITH_P (lhs)
9879 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9880 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9881 else if (COMMUTATIVE_ARITH_P (lhs)
9882 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9883 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9884 else if (COMMUTATIVE_ARITH_P (lhs)
9885 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9886 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9887 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9888 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9889 else
9890 return x;
9891
9892 /* Form the new inner operation, seeing if it simplifies first. */
9893 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9894
9895 /* There is one exception to the general way of distributing:
9896 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9897 if (code == XOR && inner_code == IOR)
9898 {
9899 inner_code = AND;
9900 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9901 }
9902
9903 /* We may be able to continuing distributing the result, so call
9904 ourselves recursively on the inner operation before forming the
9905 outer operation, which we return. */
9906 return simplify_gen_binary (inner_code, GET_MODE (x),
9907 apply_distributive_law (tem), other);
9908 }
9909
9910 /* See if X is of the form (* (+ A B) C), and if so convert to
9911 (+ (* A C) (* B C)) and try to simplify.
9912
9913 Most of the time, this results in no change. However, if some of
9914 the operands are the same or inverses of each other, simplifications
9915 will result.
9916
9917 For example, (and (ior A B) (not B)) can occur as the result of
9918 expanding a bit field assignment. When we apply the distributive
9919 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9920 which then simplifies to (and (A (not B))).
9921
9922 Note that no checks happen on the validity of applying the inverse
9923 distributive law. This is pointless since we can do it in the
9924 few places where this routine is called.
9925
9926 N is the index of the term that is decomposed (the arithmetic operation,
9927 i.e. (+ A B) in the first example above). !N is the index of the term that
9928 is distributed, i.e. of C in the first example above. */
9929 static rtx
9930 distribute_and_simplify_rtx (rtx x, int n)
9931 {
9932 machine_mode mode;
9933 enum rtx_code outer_code, inner_code;
9934 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9935
9936 /* Distributivity is not true for floating point as it can change the
9937 value. So we don't do it unless -funsafe-math-optimizations. */
9938 if (FLOAT_MODE_P (GET_MODE (x))
9939 && ! flag_unsafe_math_optimizations)
9940 return NULL_RTX;
9941
9942 decomposed = XEXP (x, n);
9943 if (!ARITHMETIC_P (decomposed))
9944 return NULL_RTX;
9945
9946 mode = GET_MODE (x);
9947 outer_code = GET_CODE (x);
9948 distributed = XEXP (x, !n);
9949
9950 inner_code = GET_CODE (decomposed);
9951 inner_op0 = XEXP (decomposed, 0);
9952 inner_op1 = XEXP (decomposed, 1);
9953
9954 /* Special case (and (xor B C) (not A)), which is equivalent to
9955 (xor (ior A B) (ior A C)) */
9956 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9957 {
9958 distributed = XEXP (distributed, 0);
9959 outer_code = IOR;
9960 }
9961
9962 if (n == 0)
9963 {
9964 /* Distribute the second term. */
9965 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9966 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9967 }
9968 else
9969 {
9970 /* Distribute the first term. */
9971 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9972 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9973 }
9974
9975 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9976 new_op0, new_op1));
9977 if (GET_CODE (tmp) != outer_code
9978 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9979 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9980 return tmp;
9981
9982 return NULL_RTX;
9983 }
9984 \f
9985 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9986 in MODE. Return an equivalent form, if different from (and VAROP
9987 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9988
9989 static rtx
9990 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
9991 unsigned HOST_WIDE_INT constop)
9992 {
9993 unsigned HOST_WIDE_INT nonzero;
9994 unsigned HOST_WIDE_INT orig_constop;
9995 rtx orig_varop;
9996 int i;
9997
9998 orig_varop = varop;
9999 orig_constop = constop;
10000 if (GET_CODE (varop) == CLOBBER)
10001 return NULL_RTX;
10002
10003 /* Simplify VAROP knowing that we will be only looking at some of the
10004 bits in it.
10005
10006 Note by passing in CONSTOP, we guarantee that the bits not set in
10007 CONSTOP are not significant and will never be examined. We must
10008 ensure that is the case by explicitly masking out those bits
10009 before returning. */
10010 varop = force_to_mode (varop, mode, constop, 0);
10011
10012 /* If VAROP is a CLOBBER, we will fail so return it. */
10013 if (GET_CODE (varop) == CLOBBER)
10014 return varop;
10015
10016 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10017 to VAROP and return the new constant. */
10018 if (CONST_INT_P (varop))
10019 return gen_int_mode (INTVAL (varop) & constop, mode);
10020
10021 /* See what bits may be nonzero in VAROP. Unlike the general case of
10022 a call to nonzero_bits, here we don't care about bits outside
10023 MODE. */
10024
10025 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10026
10027 /* Turn off all bits in the constant that are known to already be zero.
10028 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10029 which is tested below. */
10030
10031 constop &= nonzero;
10032
10033 /* If we don't have any bits left, return zero. */
10034 if (constop == 0)
10035 return const0_rtx;
10036
10037 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10038 a power of two, we can replace this with an ASHIFT. */
10039 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10040 && (i = exact_log2 (constop)) >= 0)
10041 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10042
10043 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10044 or XOR, then try to apply the distributive law. This may eliminate
10045 operations if either branch can be simplified because of the AND.
10046 It may also make some cases more complex, but those cases probably
10047 won't match a pattern either with or without this. */
10048
10049 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10050 {
10051 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10052 return
10053 gen_lowpart
10054 (mode,
10055 apply_distributive_law
10056 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10057 simplify_and_const_int (NULL_RTX, varop_mode,
10058 XEXP (varop, 0),
10059 constop),
10060 simplify_and_const_int (NULL_RTX, varop_mode,
10061 XEXP (varop, 1),
10062 constop))));
10063 }
10064
10065 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10066 the AND and see if one of the operands simplifies to zero. If so, we
10067 may eliminate it. */
10068
10069 if (GET_CODE (varop) == PLUS
10070 && pow2p_hwi (constop + 1))
10071 {
10072 rtx o0, o1;
10073
10074 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10075 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10076 if (o0 == const0_rtx)
10077 return o1;
10078 if (o1 == const0_rtx)
10079 return o0;
10080 }
10081
10082 /* Make a SUBREG if necessary. If we can't make it, fail. */
10083 varop = gen_lowpart (mode, varop);
10084 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10085 return NULL_RTX;
10086
10087 /* If we are only masking insignificant bits, return VAROP. */
10088 if (constop == nonzero)
10089 return varop;
10090
10091 if (varop == orig_varop && constop == orig_constop)
10092 return NULL_RTX;
10093
10094 /* Otherwise, return an AND. */
10095 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10096 }
10097
10098
10099 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10100 in MODE.
10101
10102 Return an equivalent form, if different from X. Otherwise, return X. If
10103 X is zero, we are to always construct the equivalent form. */
10104
10105 static rtx
10106 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10107 unsigned HOST_WIDE_INT constop)
10108 {
10109 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10110 if (tem)
10111 return tem;
10112
10113 if (!x)
10114 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10115 gen_int_mode (constop, mode));
10116 if (GET_MODE (x) != mode)
10117 x = gen_lowpart (mode, x);
10118 return x;
10119 }
10120 \f
10121 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10122 We don't care about bits outside of those defined in MODE.
10123
10124 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10125 a shift, AND, or zero_extract, we can do better. */
10126
10127 static rtx
10128 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10129 scalar_int_mode mode,
10130 unsigned HOST_WIDE_INT *nonzero)
10131 {
10132 rtx tem;
10133 reg_stat_type *rsp;
10134
10135 /* If X is a register whose nonzero bits value is current, use it.
10136 Otherwise, if X is a register whose value we can find, use that
10137 value. Otherwise, use the previously-computed global nonzero bits
10138 for this register. */
10139
10140 rsp = &reg_stat[REGNO (x)];
10141 if (rsp->last_set_value != 0
10142 && (rsp->last_set_mode == mode
10143 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10144 && GET_MODE_CLASS (mode) == MODE_INT))
10145 && ((rsp->last_set_label >= label_tick_ebb_start
10146 && rsp->last_set_label < label_tick)
10147 || (rsp->last_set_label == label_tick
10148 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10149 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10150 && REGNO (x) < reg_n_sets_max
10151 && REG_N_SETS (REGNO (x)) == 1
10152 && !REGNO_REG_SET_P
10153 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10154 REGNO (x)))))
10155 {
10156 /* Note that, even if the precision of last_set_mode is lower than that
10157 of mode, record_value_for_reg invoked nonzero_bits on the register
10158 with nonzero_bits_mode (because last_set_mode is necessarily integral
10159 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10160 are all valid, hence in mode too since nonzero_bits_mode is defined
10161 to the largest HWI_COMPUTABLE_MODE_P mode. */
10162 *nonzero &= rsp->last_set_nonzero_bits;
10163 return NULL;
10164 }
10165
10166 tem = get_last_value (x);
10167 if (tem)
10168 {
10169 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10170 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10171
10172 return tem;
10173 }
10174
10175 if (nonzero_sign_valid && rsp->nonzero_bits)
10176 {
10177 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10178
10179 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10180 /* We don't know anything about the upper bits. */
10181 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10182
10183 *nonzero &= mask;
10184 }
10185
10186 return NULL;
10187 }
10188
10189 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10190 end of X that are known to be equal to the sign bit. X will be used
10191 in mode MODE; the returned value will always be between 1 and the
10192 number of bits in MODE. */
10193
10194 static rtx
10195 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10196 scalar_int_mode mode,
10197 unsigned int *result)
10198 {
10199 rtx tem;
10200 reg_stat_type *rsp;
10201
10202 rsp = &reg_stat[REGNO (x)];
10203 if (rsp->last_set_value != 0
10204 && rsp->last_set_mode == mode
10205 && ((rsp->last_set_label >= label_tick_ebb_start
10206 && rsp->last_set_label < label_tick)
10207 || (rsp->last_set_label == label_tick
10208 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10209 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10210 && REGNO (x) < reg_n_sets_max
10211 && REG_N_SETS (REGNO (x)) == 1
10212 && !REGNO_REG_SET_P
10213 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10214 REGNO (x)))))
10215 {
10216 *result = rsp->last_set_sign_bit_copies;
10217 return NULL;
10218 }
10219
10220 tem = get_last_value (x);
10221 if (tem != 0)
10222 return tem;
10223
10224 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10225 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10226 *result = rsp->sign_bit_copies;
10227
10228 return NULL;
10229 }
10230 \f
10231 /* Return the number of "extended" bits there are in X, when interpreted
10232 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10233 unsigned quantities, this is the number of high-order zero bits.
10234 For signed quantities, this is the number of copies of the sign bit
10235 minus 1. In both case, this function returns the number of "spare"
10236 bits. For example, if two quantities for which this function returns
10237 at least 1 are added, the addition is known not to overflow.
10238
10239 This function will always return 0 unless called during combine, which
10240 implies that it must be called from a define_split. */
10241
10242 unsigned int
10243 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10244 {
10245 if (nonzero_sign_valid == 0)
10246 return 0;
10247
10248 scalar_int_mode int_mode;
10249 return (unsignedp
10250 ? (is_a <scalar_int_mode> (mode, &int_mode)
10251 && HWI_COMPUTABLE_MODE_P (int_mode)
10252 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10253 - floor_log2 (nonzero_bits (x, int_mode)))
10254 : 0)
10255 : num_sign_bit_copies (x, mode) - 1);
10256 }
10257
10258 /* This function is called from `simplify_shift_const' to merge two
10259 outer operations. Specifically, we have already found that we need
10260 to perform operation *POP0 with constant *PCONST0 at the outermost
10261 position. We would now like to also perform OP1 with constant CONST1
10262 (with *POP0 being done last).
10263
10264 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10265 the resulting operation. *PCOMP_P is set to 1 if we would need to
10266 complement the innermost operand, otherwise it is unchanged.
10267
10268 MODE is the mode in which the operation will be done. No bits outside
10269 the width of this mode matter. It is assumed that the width of this mode
10270 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10271
10272 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10273 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10274 result is simply *PCONST0.
10275
10276 If the resulting operation cannot be expressed as one operation, we
10277 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10278
10279 static int
10280 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10281 {
10282 enum rtx_code op0 = *pop0;
10283 HOST_WIDE_INT const0 = *pconst0;
10284
10285 const0 &= GET_MODE_MASK (mode);
10286 const1 &= GET_MODE_MASK (mode);
10287
10288 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10289 if (op0 == AND)
10290 const1 &= const0;
10291
10292 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10293 if OP0 is SET. */
10294
10295 if (op1 == UNKNOWN || op0 == SET)
10296 return 1;
10297
10298 else if (op0 == UNKNOWN)
10299 op0 = op1, const0 = const1;
10300
10301 else if (op0 == op1)
10302 {
10303 switch (op0)
10304 {
10305 case AND:
10306 const0 &= const1;
10307 break;
10308 case IOR:
10309 const0 |= const1;
10310 break;
10311 case XOR:
10312 const0 ^= const1;
10313 break;
10314 case PLUS:
10315 const0 += const1;
10316 break;
10317 case NEG:
10318 op0 = UNKNOWN;
10319 break;
10320 default:
10321 break;
10322 }
10323 }
10324
10325 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10326 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10327 return 0;
10328
10329 /* If the two constants aren't the same, we can't do anything. The
10330 remaining six cases can all be done. */
10331 else if (const0 != const1)
10332 return 0;
10333
10334 else
10335 switch (op0)
10336 {
10337 case IOR:
10338 if (op1 == AND)
10339 /* (a & b) | b == b */
10340 op0 = SET;
10341 else /* op1 == XOR */
10342 /* (a ^ b) | b == a | b */
10343 {;}
10344 break;
10345
10346 case XOR:
10347 if (op1 == AND)
10348 /* (a & b) ^ b == (~a) & b */
10349 op0 = AND, *pcomp_p = 1;
10350 else /* op1 == IOR */
10351 /* (a | b) ^ b == a & ~b */
10352 op0 = AND, const0 = ~const0;
10353 break;
10354
10355 case AND:
10356 if (op1 == IOR)
10357 /* (a | b) & b == b */
10358 op0 = SET;
10359 else /* op1 == XOR */
10360 /* (a ^ b) & b) == (~a) & b */
10361 *pcomp_p = 1;
10362 break;
10363 default:
10364 break;
10365 }
10366
10367 /* Check for NO-OP cases. */
10368 const0 &= GET_MODE_MASK (mode);
10369 if (const0 == 0
10370 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10371 op0 = UNKNOWN;
10372 else if (const0 == 0 && op0 == AND)
10373 op0 = SET;
10374 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10375 && op0 == AND)
10376 op0 = UNKNOWN;
10377
10378 *pop0 = op0;
10379
10380 /* ??? Slightly redundant with the above mask, but not entirely.
10381 Moving this above means we'd have to sign-extend the mode mask
10382 for the final test. */
10383 if (op0 != UNKNOWN && op0 != NEG)
10384 *pconst0 = trunc_int_for_mode (const0, mode);
10385
10386 return 1;
10387 }
10388 \f
10389 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10390 the shift in. The original shift operation CODE is performed on OP in
10391 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10392 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10393 result of the shift is subject to operation OUTER_CODE with operand
10394 OUTER_CONST. */
10395
10396 static scalar_int_mode
10397 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10398 scalar_int_mode orig_mode, scalar_int_mode mode,
10399 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10400 {
10401 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10402
10403 /* In general we can't perform in wider mode for right shift and rotate. */
10404 switch (code)
10405 {
10406 case ASHIFTRT:
10407 /* We can still widen if the bits brought in from the left are identical
10408 to the sign bit of ORIG_MODE. */
10409 if (num_sign_bit_copies (op, mode)
10410 > (unsigned) (GET_MODE_PRECISION (mode)
10411 - GET_MODE_PRECISION (orig_mode)))
10412 return mode;
10413 return orig_mode;
10414
10415 case LSHIFTRT:
10416 /* Similarly here but with zero bits. */
10417 if (HWI_COMPUTABLE_MODE_P (mode)
10418 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10419 return mode;
10420
10421 /* We can also widen if the bits brought in will be masked off. This
10422 operation is performed in ORIG_MODE. */
10423 if (outer_code == AND)
10424 {
10425 int care_bits = low_bitmask_len (orig_mode, outer_const);
10426
10427 if (care_bits >= 0
10428 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10429 return mode;
10430 }
10431 /* fall through */
10432
10433 case ROTATE:
10434 return orig_mode;
10435
10436 case ROTATERT:
10437 gcc_unreachable ();
10438
10439 default:
10440 return mode;
10441 }
10442 }
10443
10444 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10445 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10446 if we cannot simplify it. Otherwise, return a simplified value.
10447
10448 The shift is normally computed in the widest mode we find in VAROP, as
10449 long as it isn't a different number of words than RESULT_MODE. Exceptions
10450 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10451
10452 static rtx
10453 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10454 rtx varop, int orig_count)
10455 {
10456 enum rtx_code orig_code = code;
10457 rtx orig_varop = varop;
10458 int count, log2;
10459 machine_mode mode = result_mode;
10460 machine_mode shift_mode;
10461 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10462 unsigned int mode_words
10463 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10464 /* We form (outer_op (code varop count) (outer_const)). */
10465 enum rtx_code outer_op = UNKNOWN;
10466 HOST_WIDE_INT outer_const = 0;
10467 int complement_p = 0;
10468 rtx new_rtx, x;
10469
10470 /* Make sure and truncate the "natural" shift on the way in. We don't
10471 want to do this inside the loop as it makes it more difficult to
10472 combine shifts. */
10473 if (SHIFT_COUNT_TRUNCATED)
10474 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10475
10476 /* If we were given an invalid count, don't do anything except exactly
10477 what was requested. */
10478
10479 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10480 return NULL_RTX;
10481
10482 count = orig_count;
10483
10484 /* Unless one of the branches of the `if' in this loop does a `continue',
10485 we will `break' the loop after the `if'. */
10486
10487 while (count != 0)
10488 {
10489 /* If we have an operand of (clobber (const_int 0)), fail. */
10490 if (GET_CODE (varop) == CLOBBER)
10491 return NULL_RTX;
10492
10493 /* Convert ROTATERT to ROTATE. */
10494 if (code == ROTATERT)
10495 {
10496 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10497 code = ROTATE;
10498 count = bitsize - count;
10499 }
10500
10501 shift_mode = result_mode;
10502 if (shift_mode != mode)
10503 {
10504 /* We only change the modes of scalar shifts. */
10505 int_mode = as_a <scalar_int_mode> (mode);
10506 int_result_mode = as_a <scalar_int_mode> (result_mode);
10507 shift_mode = try_widen_shift_mode (code, varop, count,
10508 int_result_mode, int_mode,
10509 outer_op, outer_const);
10510 }
10511
10512 scalar_int_mode shift_unit_mode
10513 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10514
10515 /* Handle cases where the count is greater than the size of the mode
10516 minus 1. For ASHIFT, use the size minus one as the count (this can
10517 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10518 take the count modulo the size. For other shifts, the result is
10519 zero.
10520
10521 Since these shifts are being produced by the compiler by combining
10522 multiple operations, each of which are defined, we know what the
10523 result is supposed to be. */
10524
10525 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10526 {
10527 if (code == ASHIFTRT)
10528 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10529 else if (code == ROTATE || code == ROTATERT)
10530 count %= GET_MODE_PRECISION (shift_unit_mode);
10531 else
10532 {
10533 /* We can't simply return zero because there may be an
10534 outer op. */
10535 varop = const0_rtx;
10536 count = 0;
10537 break;
10538 }
10539 }
10540
10541 /* If we discovered we had to complement VAROP, leave. Making a NOT
10542 here would cause an infinite loop. */
10543 if (complement_p)
10544 break;
10545
10546 if (shift_mode == shift_unit_mode)
10547 {
10548 /* An arithmetic right shift of a quantity known to be -1 or 0
10549 is a no-op. */
10550 if (code == ASHIFTRT
10551 && (num_sign_bit_copies (varop, shift_unit_mode)
10552 == GET_MODE_PRECISION (shift_unit_mode)))
10553 {
10554 count = 0;
10555 break;
10556 }
10557
10558 /* If we are doing an arithmetic right shift and discarding all but
10559 the sign bit copies, this is equivalent to doing a shift by the
10560 bitsize minus one. Convert it into that shift because it will
10561 often allow other simplifications. */
10562
10563 if (code == ASHIFTRT
10564 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10565 >= GET_MODE_PRECISION (shift_unit_mode)))
10566 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10567
10568 /* We simplify the tests below and elsewhere by converting
10569 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10570 `make_compound_operation' will convert it to an ASHIFTRT for
10571 those machines (such as VAX) that don't have an LSHIFTRT. */
10572 if (code == ASHIFTRT
10573 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10574 && val_signbit_known_clear_p (shift_unit_mode,
10575 nonzero_bits (varop,
10576 shift_unit_mode)))
10577 code = LSHIFTRT;
10578
10579 if (((code == LSHIFTRT
10580 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10581 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10582 || (code == ASHIFT
10583 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10584 && !((nonzero_bits (varop, shift_unit_mode) << count)
10585 & GET_MODE_MASK (shift_unit_mode))))
10586 && !side_effects_p (varop))
10587 varop = const0_rtx;
10588 }
10589
10590 switch (GET_CODE (varop))
10591 {
10592 case SIGN_EXTEND:
10593 case ZERO_EXTEND:
10594 case SIGN_EXTRACT:
10595 case ZERO_EXTRACT:
10596 new_rtx = expand_compound_operation (varop);
10597 if (new_rtx != varop)
10598 {
10599 varop = new_rtx;
10600 continue;
10601 }
10602 break;
10603
10604 case MEM:
10605 /* The following rules apply only to scalars. */
10606 if (shift_mode != shift_unit_mode)
10607 break;
10608 int_mode = as_a <scalar_int_mode> (mode);
10609
10610 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10611 minus the width of a smaller mode, we can do this with a
10612 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10613 if ((code == ASHIFTRT || code == LSHIFTRT)
10614 && ! mode_dependent_address_p (XEXP (varop, 0),
10615 MEM_ADDR_SPACE (varop))
10616 && ! MEM_VOLATILE_P (varop)
10617 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10618 .exists (&tmode)))
10619 {
10620 new_rtx = adjust_address_nv (varop, tmode,
10621 BYTES_BIG_ENDIAN ? 0
10622 : count / BITS_PER_UNIT);
10623
10624 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10625 : ZERO_EXTEND, int_mode, new_rtx);
10626 count = 0;
10627 continue;
10628 }
10629 break;
10630
10631 case SUBREG:
10632 /* The following rules apply only to scalars. */
10633 if (shift_mode != shift_unit_mode)
10634 break;
10635 int_mode = as_a <scalar_int_mode> (mode);
10636 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10637
10638 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10639 the same number of words as what we've seen so far. Then store
10640 the widest mode in MODE. */
10641 if (subreg_lowpart_p (varop)
10642 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10643 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10644 && (unsigned int) ((GET_MODE_SIZE (inner_mode)
10645 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10646 == mode_words
10647 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10648 {
10649 varop = SUBREG_REG (varop);
10650 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10651 mode = inner_mode;
10652 continue;
10653 }
10654 break;
10655
10656 case MULT:
10657 /* Some machines use MULT instead of ASHIFT because MULT
10658 is cheaper. But it is still better on those machines to
10659 merge two shifts into one. */
10660 if (CONST_INT_P (XEXP (varop, 1))
10661 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10662 {
10663 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10664 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10665 XEXP (varop, 0), log2_rtx);
10666 continue;
10667 }
10668 break;
10669
10670 case UDIV:
10671 /* Similar, for when divides are cheaper. */
10672 if (CONST_INT_P (XEXP (varop, 1))
10673 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10674 {
10675 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10676 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10677 XEXP (varop, 0), log2_rtx);
10678 continue;
10679 }
10680 break;
10681
10682 case ASHIFTRT:
10683 /* If we are extracting just the sign bit of an arithmetic
10684 right shift, that shift is not needed. However, the sign
10685 bit of a wider mode may be different from what would be
10686 interpreted as the sign bit in a narrower mode, so, if
10687 the result is narrower, don't discard the shift. */
10688 if (code == LSHIFTRT
10689 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10690 && (GET_MODE_UNIT_BITSIZE (result_mode)
10691 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10692 {
10693 varop = XEXP (varop, 0);
10694 continue;
10695 }
10696
10697 /* fall through */
10698
10699 case LSHIFTRT:
10700 case ASHIFT:
10701 case ROTATE:
10702 /* The following rules apply only to scalars. */
10703 if (shift_mode != shift_unit_mode)
10704 break;
10705 int_mode = as_a <scalar_int_mode> (mode);
10706 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10707 int_result_mode = as_a <scalar_int_mode> (result_mode);
10708
10709 /* Here we have two nested shifts. The result is usually the
10710 AND of a new shift with a mask. We compute the result below. */
10711 if (CONST_INT_P (XEXP (varop, 1))
10712 && INTVAL (XEXP (varop, 1)) >= 0
10713 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10714 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10715 && HWI_COMPUTABLE_MODE_P (int_mode))
10716 {
10717 enum rtx_code first_code = GET_CODE (varop);
10718 unsigned int first_count = INTVAL (XEXP (varop, 1));
10719 unsigned HOST_WIDE_INT mask;
10720 rtx mask_rtx;
10721
10722 /* We have one common special case. We can't do any merging if
10723 the inner code is an ASHIFTRT of a smaller mode. However, if
10724 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10725 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10726 we can convert it to
10727 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10728 This simplifies certain SIGN_EXTEND operations. */
10729 if (code == ASHIFT && first_code == ASHIFTRT
10730 && count == (GET_MODE_PRECISION (int_result_mode)
10731 - GET_MODE_PRECISION (int_varop_mode)))
10732 {
10733 /* C3 has the low-order C1 bits zero. */
10734
10735 mask = GET_MODE_MASK (int_mode)
10736 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10737
10738 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10739 XEXP (varop, 0), mask);
10740 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10741 int_result_mode, varop, count);
10742 count = first_count;
10743 code = ASHIFTRT;
10744 continue;
10745 }
10746
10747 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10748 than C1 high-order bits equal to the sign bit, we can convert
10749 this to either an ASHIFT or an ASHIFTRT depending on the
10750 two counts.
10751
10752 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10753
10754 if (code == ASHIFTRT && first_code == ASHIFT
10755 && int_varop_mode == shift_unit_mode
10756 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10757 > first_count))
10758 {
10759 varop = XEXP (varop, 0);
10760 count -= first_count;
10761 if (count < 0)
10762 {
10763 count = -count;
10764 code = ASHIFT;
10765 }
10766
10767 continue;
10768 }
10769
10770 /* There are some cases we can't do. If CODE is ASHIFTRT,
10771 we can only do this if FIRST_CODE is also ASHIFTRT.
10772
10773 We can't do the case when CODE is ROTATE and FIRST_CODE is
10774 ASHIFTRT.
10775
10776 If the mode of this shift is not the mode of the outer shift,
10777 we can't do this if either shift is a right shift or ROTATE.
10778
10779 Finally, we can't do any of these if the mode is too wide
10780 unless the codes are the same.
10781
10782 Handle the case where the shift codes are the same
10783 first. */
10784
10785 if (code == first_code)
10786 {
10787 if (int_varop_mode != int_result_mode
10788 && (code == ASHIFTRT || code == LSHIFTRT
10789 || code == ROTATE))
10790 break;
10791
10792 count += first_count;
10793 varop = XEXP (varop, 0);
10794 continue;
10795 }
10796
10797 if (code == ASHIFTRT
10798 || (code == ROTATE && first_code == ASHIFTRT)
10799 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10800 || (int_varop_mode != int_result_mode
10801 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10802 || first_code == ROTATE
10803 || code == ROTATE)))
10804 break;
10805
10806 /* To compute the mask to apply after the shift, shift the
10807 nonzero bits of the inner shift the same way the
10808 outer shift will. */
10809
10810 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10811 int_result_mode);
10812 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10813 mask_rtx
10814 = simplify_const_binary_operation (code, int_result_mode,
10815 mask_rtx, count_rtx);
10816
10817 /* Give up if we can't compute an outer operation to use. */
10818 if (mask_rtx == 0
10819 || !CONST_INT_P (mask_rtx)
10820 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10821 INTVAL (mask_rtx),
10822 int_result_mode, &complement_p))
10823 break;
10824
10825 /* If the shifts are in the same direction, we add the
10826 counts. Otherwise, we subtract them. */
10827 if ((code == ASHIFTRT || code == LSHIFTRT)
10828 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10829 count += first_count;
10830 else
10831 count -= first_count;
10832
10833 /* If COUNT is positive, the new shift is usually CODE,
10834 except for the two exceptions below, in which case it is
10835 FIRST_CODE. If the count is negative, FIRST_CODE should
10836 always be used */
10837 if (count > 0
10838 && ((first_code == ROTATE && code == ASHIFT)
10839 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10840 code = first_code;
10841 else if (count < 0)
10842 code = first_code, count = -count;
10843
10844 varop = XEXP (varop, 0);
10845 continue;
10846 }
10847
10848 /* If we have (A << B << C) for any shift, we can convert this to
10849 (A << C << B). This wins if A is a constant. Only try this if
10850 B is not a constant. */
10851
10852 else if (GET_CODE (varop) == code
10853 && CONST_INT_P (XEXP (varop, 0))
10854 && !CONST_INT_P (XEXP (varop, 1)))
10855 {
10856 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10857 sure the result will be masked. See PR70222. */
10858 if (code == LSHIFTRT
10859 && int_mode != int_result_mode
10860 && !merge_outer_ops (&outer_op, &outer_const, AND,
10861 GET_MODE_MASK (int_result_mode)
10862 >> orig_count, int_result_mode,
10863 &complement_p))
10864 break;
10865 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10866 up outer sign extension (often left and right shift) is
10867 hardly more efficient than the original. See PR70429. */
10868 if (code == ASHIFTRT && int_mode != int_result_mode)
10869 break;
10870
10871 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10872 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10873 XEXP (varop, 0),
10874 count_rtx);
10875 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10876 count = 0;
10877 continue;
10878 }
10879 break;
10880
10881 case NOT:
10882 /* The following rules apply only to scalars. */
10883 if (shift_mode != shift_unit_mode)
10884 break;
10885
10886 /* Make this fit the case below. */
10887 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10888 continue;
10889
10890 case IOR:
10891 case AND:
10892 case XOR:
10893 /* The following rules apply only to scalars. */
10894 if (shift_mode != shift_unit_mode)
10895 break;
10896 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10897 int_result_mode = as_a <scalar_int_mode> (result_mode);
10898
10899 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10900 with C the size of VAROP - 1 and the shift is logical if
10901 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10902 we have an (le X 0) operation. If we have an arithmetic shift
10903 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10904 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10905
10906 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10907 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10908 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10909 && (code == LSHIFTRT || code == ASHIFTRT)
10910 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10911 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10912 {
10913 count = 0;
10914 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10915 const0_rtx);
10916
10917 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10918 varop = gen_rtx_NEG (int_varop_mode, varop);
10919
10920 continue;
10921 }
10922
10923 /* If we have (shift (logical)), move the logical to the outside
10924 to allow it to possibly combine with another logical and the
10925 shift to combine with another shift. This also canonicalizes to
10926 what a ZERO_EXTRACT looks like. Also, some machines have
10927 (and (shift)) insns. */
10928
10929 if (CONST_INT_P (XEXP (varop, 1))
10930 /* We can't do this if we have (ashiftrt (xor)) and the
10931 constant has its sign bit set in shift_unit_mode with
10932 shift_unit_mode wider than result_mode. */
10933 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10934 && int_result_mode != shift_unit_mode
10935 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10936 shift_unit_mode) < 0)
10937 && (new_rtx = simplify_const_binary_operation
10938 (code, int_result_mode,
10939 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
10940 gen_int_shift_amount (int_result_mode, count))) != 0
10941 && CONST_INT_P (new_rtx)
10942 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10943 INTVAL (new_rtx), int_result_mode,
10944 &complement_p))
10945 {
10946 varop = XEXP (varop, 0);
10947 continue;
10948 }
10949
10950 /* If we can't do that, try to simplify the shift in each arm of the
10951 logical expression, make a new logical expression, and apply
10952 the inverse distributive law. This also can't be done for
10953 (ashiftrt (xor)) where we've widened the shift and the constant
10954 changes the sign bit. */
10955 if (CONST_INT_P (XEXP (varop, 1))
10956 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10957 && int_result_mode != shift_unit_mode
10958 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10959 shift_unit_mode) < 0))
10960 {
10961 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10962 XEXP (varop, 0), count);
10963 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10964 XEXP (varop, 1), count);
10965
10966 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
10967 lhs, rhs);
10968 varop = apply_distributive_law (varop);
10969
10970 count = 0;
10971 continue;
10972 }
10973 break;
10974
10975 case EQ:
10976 /* The following rules apply only to scalars. */
10977 if (shift_mode != shift_unit_mode)
10978 break;
10979 int_result_mode = as_a <scalar_int_mode> (result_mode);
10980
10981 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10982 says that the sign bit can be tested, FOO has mode MODE, C is
10983 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10984 that may be nonzero. */
10985 if (code == LSHIFTRT
10986 && XEXP (varop, 1) == const0_rtx
10987 && GET_MODE (XEXP (varop, 0)) == int_result_mode
10988 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
10989 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10990 && STORE_FLAG_VALUE == -1
10991 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
10992 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
10993 int_result_mode, &complement_p))
10994 {
10995 varop = XEXP (varop, 0);
10996 count = 0;
10997 continue;
10998 }
10999 break;
11000
11001 case NEG:
11002 /* The following rules apply only to scalars. */
11003 if (shift_mode != shift_unit_mode)
11004 break;
11005 int_result_mode = as_a <scalar_int_mode> (result_mode);
11006
11007 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11008 than the number of bits in the mode is equivalent to A. */
11009 if (code == LSHIFTRT
11010 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11011 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11012 {
11013 varop = XEXP (varop, 0);
11014 count = 0;
11015 continue;
11016 }
11017
11018 /* NEG commutes with ASHIFT since it is multiplication. Move the
11019 NEG outside to allow shifts to combine. */
11020 if (code == ASHIFT
11021 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11022 int_result_mode, &complement_p))
11023 {
11024 varop = XEXP (varop, 0);
11025 continue;
11026 }
11027 break;
11028
11029 case PLUS:
11030 /* The following rules apply only to scalars. */
11031 if (shift_mode != shift_unit_mode)
11032 break;
11033 int_result_mode = as_a <scalar_int_mode> (result_mode);
11034
11035 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11036 is one less than the number of bits in the mode is
11037 equivalent to (xor A 1). */
11038 if (code == LSHIFTRT
11039 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11040 && XEXP (varop, 1) == constm1_rtx
11041 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11042 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11043 int_result_mode, &complement_p))
11044 {
11045 count = 0;
11046 varop = XEXP (varop, 0);
11047 continue;
11048 }
11049
11050 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11051 that might be nonzero in BAR are those being shifted out and those
11052 bits are known zero in FOO, we can replace the PLUS with FOO.
11053 Similarly in the other operand order. This code occurs when
11054 we are computing the size of a variable-size array. */
11055
11056 if ((code == ASHIFTRT || code == LSHIFTRT)
11057 && count < HOST_BITS_PER_WIDE_INT
11058 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11059 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11060 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11061 {
11062 varop = XEXP (varop, 0);
11063 continue;
11064 }
11065 else if ((code == ASHIFTRT || code == LSHIFTRT)
11066 && count < HOST_BITS_PER_WIDE_INT
11067 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11068 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11069 >> count) == 0
11070 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11071 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11072 {
11073 varop = XEXP (varop, 1);
11074 continue;
11075 }
11076
11077 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11078 if (code == ASHIFT
11079 && CONST_INT_P (XEXP (varop, 1))
11080 && (new_rtx = simplify_const_binary_operation
11081 (ASHIFT, int_result_mode,
11082 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11083 gen_int_shift_amount (int_result_mode, count))) != 0
11084 && CONST_INT_P (new_rtx)
11085 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11086 INTVAL (new_rtx), int_result_mode,
11087 &complement_p))
11088 {
11089 varop = XEXP (varop, 0);
11090 continue;
11091 }
11092
11093 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11094 signbit', and attempt to change the PLUS to an XOR and move it to
11095 the outer operation as is done above in the AND/IOR/XOR case
11096 leg for shift(logical). See details in logical handling above
11097 for reasoning in doing so. */
11098 if (code == LSHIFTRT
11099 && CONST_INT_P (XEXP (varop, 1))
11100 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11101 && (new_rtx = simplify_const_binary_operation
11102 (code, int_result_mode,
11103 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11104 gen_int_shift_amount (int_result_mode, count))) != 0
11105 && CONST_INT_P (new_rtx)
11106 && merge_outer_ops (&outer_op, &outer_const, XOR,
11107 INTVAL (new_rtx), int_result_mode,
11108 &complement_p))
11109 {
11110 varop = XEXP (varop, 0);
11111 continue;
11112 }
11113
11114 break;
11115
11116 case MINUS:
11117 /* The following rules apply only to scalars. */
11118 if (shift_mode != shift_unit_mode)
11119 break;
11120 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11121
11122 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11123 with C the size of VAROP - 1 and the shift is logical if
11124 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11125 we have a (gt X 0) operation. If the shift is arithmetic with
11126 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11127 we have a (neg (gt X 0)) operation. */
11128
11129 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11130 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11131 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11132 && (code == LSHIFTRT || code == ASHIFTRT)
11133 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11134 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11135 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11136 {
11137 count = 0;
11138 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11139 const0_rtx);
11140
11141 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11142 varop = gen_rtx_NEG (int_varop_mode, varop);
11143
11144 continue;
11145 }
11146 break;
11147
11148 case TRUNCATE:
11149 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11150 if the truncate does not affect the value. */
11151 if (code == LSHIFTRT
11152 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11153 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11154 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11155 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11156 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11157 {
11158 rtx varop_inner = XEXP (varop, 0);
11159 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11160 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11161 new_count);
11162 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11163 XEXP (varop_inner, 0),
11164 new_count_rtx);
11165 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11166 count = 0;
11167 continue;
11168 }
11169 break;
11170
11171 default:
11172 break;
11173 }
11174
11175 break;
11176 }
11177
11178 shift_mode = result_mode;
11179 if (shift_mode != mode)
11180 {
11181 /* We only change the modes of scalar shifts. */
11182 int_mode = as_a <scalar_int_mode> (mode);
11183 int_result_mode = as_a <scalar_int_mode> (result_mode);
11184 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11185 int_mode, outer_op, outer_const);
11186 }
11187
11188 /* We have now finished analyzing the shift. The result should be
11189 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11190 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11191 to the result of the shift. OUTER_CONST is the relevant constant,
11192 but we must turn off all bits turned off in the shift. */
11193
11194 if (outer_op == UNKNOWN
11195 && orig_code == code && orig_count == count
11196 && varop == orig_varop
11197 && shift_mode == GET_MODE (varop))
11198 return NULL_RTX;
11199
11200 /* Make a SUBREG if necessary. If we can't make it, fail. */
11201 varop = gen_lowpart (shift_mode, varop);
11202 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11203 return NULL_RTX;
11204
11205 /* If we have an outer operation and we just made a shift, it is
11206 possible that we could have simplified the shift were it not
11207 for the outer operation. So try to do the simplification
11208 recursively. */
11209
11210 if (outer_op != UNKNOWN)
11211 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11212 else
11213 x = NULL_RTX;
11214
11215 if (x == NULL_RTX)
11216 x = simplify_gen_binary (code, shift_mode, varop,
11217 gen_int_shift_amount (shift_mode, count));
11218
11219 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11220 turn off all the bits that the shift would have turned off. */
11221 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11222 /* We only change the modes of scalar shifts. */
11223 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11224 x, GET_MODE_MASK (result_mode) >> orig_count);
11225
11226 /* Do the remainder of the processing in RESULT_MODE. */
11227 x = gen_lowpart_or_truncate (result_mode, x);
11228
11229 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11230 operation. */
11231 if (complement_p)
11232 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11233
11234 if (outer_op != UNKNOWN)
11235 {
11236 int_result_mode = as_a <scalar_int_mode> (result_mode);
11237
11238 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11239 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11240 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11241
11242 if (outer_op == AND)
11243 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11244 else if (outer_op == SET)
11245 {
11246 /* This means that we have determined that the result is
11247 equivalent to a constant. This should be rare. */
11248 if (!side_effects_p (x))
11249 x = GEN_INT (outer_const);
11250 }
11251 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11252 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11253 else
11254 x = simplify_gen_binary (outer_op, int_result_mode, x,
11255 GEN_INT (outer_const));
11256 }
11257
11258 return x;
11259 }
11260
11261 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11262 The result of the shift is RESULT_MODE. If we cannot simplify it,
11263 return X or, if it is NULL, synthesize the expression with
11264 simplify_gen_binary. Otherwise, return a simplified value.
11265
11266 The shift is normally computed in the widest mode we find in VAROP, as
11267 long as it isn't a different number of words than RESULT_MODE. Exceptions
11268 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11269
11270 static rtx
11271 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11272 rtx varop, int count)
11273 {
11274 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11275 if (tem)
11276 return tem;
11277
11278 if (!x)
11279 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11280 gen_int_shift_amount (GET_MODE (varop), count));
11281 if (GET_MODE (x) != result_mode)
11282 x = gen_lowpart (result_mode, x);
11283 return x;
11284 }
11285
11286 \f
11287 /* A subroutine of recog_for_combine. See there for arguments and
11288 return value. */
11289
11290 static int
11291 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11292 {
11293 rtx pat = *pnewpat;
11294 rtx pat_without_clobbers;
11295 int insn_code_number;
11296 int num_clobbers_to_add = 0;
11297 int i;
11298 rtx notes = NULL_RTX;
11299 rtx old_notes, old_pat;
11300 int old_icode;
11301
11302 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11303 we use to indicate that something didn't match. If we find such a
11304 thing, force rejection. */
11305 if (GET_CODE (pat) == PARALLEL)
11306 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11307 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11308 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11309 return -1;
11310
11311 old_pat = PATTERN (insn);
11312 old_notes = REG_NOTES (insn);
11313 PATTERN (insn) = pat;
11314 REG_NOTES (insn) = NULL_RTX;
11315
11316 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11317 if (dump_file && (dump_flags & TDF_DETAILS))
11318 {
11319 if (insn_code_number < 0)
11320 fputs ("Failed to match this instruction:\n", dump_file);
11321 else
11322 fputs ("Successfully matched this instruction:\n", dump_file);
11323 print_rtl_single (dump_file, pat);
11324 }
11325
11326 /* If it isn't, there is the possibility that we previously had an insn
11327 that clobbered some register as a side effect, but the combined
11328 insn doesn't need to do that. So try once more without the clobbers
11329 unless this represents an ASM insn. */
11330
11331 if (insn_code_number < 0 && ! check_asm_operands (pat)
11332 && GET_CODE (pat) == PARALLEL)
11333 {
11334 int pos;
11335
11336 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11337 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11338 {
11339 if (i != pos)
11340 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11341 pos++;
11342 }
11343
11344 SUBST_INT (XVECLEN (pat, 0), pos);
11345
11346 if (pos == 1)
11347 pat = XVECEXP (pat, 0, 0);
11348
11349 PATTERN (insn) = pat;
11350 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11351 if (dump_file && (dump_flags & TDF_DETAILS))
11352 {
11353 if (insn_code_number < 0)
11354 fputs ("Failed to match this instruction:\n", dump_file);
11355 else
11356 fputs ("Successfully matched this instruction:\n", dump_file);
11357 print_rtl_single (dump_file, pat);
11358 }
11359 }
11360
11361 pat_without_clobbers = pat;
11362
11363 PATTERN (insn) = old_pat;
11364 REG_NOTES (insn) = old_notes;
11365
11366 /* Recognize all noop sets, these will be killed by followup pass. */
11367 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11368 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11369
11370 /* If we had any clobbers to add, make a new pattern than contains
11371 them. Then check to make sure that all of them are dead. */
11372 if (num_clobbers_to_add)
11373 {
11374 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11375 rtvec_alloc (GET_CODE (pat) == PARALLEL
11376 ? (XVECLEN (pat, 0)
11377 + num_clobbers_to_add)
11378 : num_clobbers_to_add + 1));
11379
11380 if (GET_CODE (pat) == PARALLEL)
11381 for (i = 0; i < XVECLEN (pat, 0); i++)
11382 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11383 else
11384 XVECEXP (newpat, 0, 0) = pat;
11385
11386 add_clobbers (newpat, insn_code_number);
11387
11388 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11389 i < XVECLEN (newpat, 0); i++)
11390 {
11391 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11392 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11393 return -1;
11394 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11395 {
11396 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11397 notes = alloc_reg_note (REG_UNUSED,
11398 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11399 }
11400 }
11401 pat = newpat;
11402 }
11403
11404 if (insn_code_number >= 0
11405 && insn_code_number != NOOP_MOVE_INSN_CODE)
11406 {
11407 old_pat = PATTERN (insn);
11408 old_notes = REG_NOTES (insn);
11409 old_icode = INSN_CODE (insn);
11410 PATTERN (insn) = pat;
11411 REG_NOTES (insn) = notes;
11412 INSN_CODE (insn) = insn_code_number;
11413
11414 /* Allow targets to reject combined insn. */
11415 if (!targetm.legitimate_combined_insn (insn))
11416 {
11417 if (dump_file && (dump_flags & TDF_DETAILS))
11418 fputs ("Instruction not appropriate for target.",
11419 dump_file);
11420
11421 /* Callers expect recog_for_combine to strip
11422 clobbers from the pattern on failure. */
11423 pat = pat_without_clobbers;
11424 notes = NULL_RTX;
11425
11426 insn_code_number = -1;
11427 }
11428
11429 PATTERN (insn) = old_pat;
11430 REG_NOTES (insn) = old_notes;
11431 INSN_CODE (insn) = old_icode;
11432 }
11433
11434 *pnewpat = pat;
11435 *pnotes = notes;
11436
11437 return insn_code_number;
11438 }
11439
11440 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11441 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11442 Return whether anything was so changed. */
11443
11444 static bool
11445 change_zero_ext (rtx pat)
11446 {
11447 bool changed = false;
11448 rtx *src = &SET_SRC (pat);
11449
11450 subrtx_ptr_iterator::array_type array;
11451 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11452 {
11453 rtx x = **iter;
11454 scalar_int_mode mode, inner_mode;
11455 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11456 continue;
11457 int size;
11458
11459 if (GET_CODE (x) == ZERO_EXTRACT
11460 && CONST_INT_P (XEXP (x, 1))
11461 && CONST_INT_P (XEXP (x, 2))
11462 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11463 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11464 {
11465 size = INTVAL (XEXP (x, 1));
11466
11467 int start = INTVAL (XEXP (x, 2));
11468 if (BITS_BIG_ENDIAN)
11469 start = GET_MODE_PRECISION (inner_mode) - size - start;
11470
11471 if (start != 0)
11472 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11473 gen_int_shift_amount (inner_mode, start));
11474 else
11475 x = XEXP (x, 0);
11476 if (mode != inner_mode)
11477 x = gen_lowpart_SUBREG (mode, x);
11478 }
11479 else if (GET_CODE (x) == ZERO_EXTEND
11480 && GET_CODE (XEXP (x, 0)) == SUBREG
11481 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11482 && !paradoxical_subreg_p (XEXP (x, 0))
11483 && subreg_lowpart_p (XEXP (x, 0)))
11484 {
11485 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11486 size = GET_MODE_PRECISION (inner_mode);
11487 x = SUBREG_REG (XEXP (x, 0));
11488 if (GET_MODE (x) != mode)
11489 x = gen_lowpart_SUBREG (mode, x);
11490 }
11491 else if (GET_CODE (x) == ZERO_EXTEND
11492 && REG_P (XEXP (x, 0))
11493 && HARD_REGISTER_P (XEXP (x, 0))
11494 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11495 {
11496 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11497 size = GET_MODE_PRECISION (inner_mode);
11498 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11499 }
11500 else
11501 continue;
11502
11503 if (!(GET_CODE (x) == LSHIFTRT
11504 && CONST_INT_P (XEXP (x, 1))
11505 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11506 {
11507 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11508 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11509 }
11510
11511 SUBST (**iter, x);
11512 changed = true;
11513 }
11514
11515 if (changed)
11516 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11517 maybe_swap_commutative_operands (**iter);
11518
11519 rtx *dst = &SET_DEST (pat);
11520 scalar_int_mode mode;
11521 if (GET_CODE (*dst) == ZERO_EXTRACT
11522 && REG_P (XEXP (*dst, 0))
11523 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11524 && CONST_INT_P (XEXP (*dst, 1))
11525 && CONST_INT_P (XEXP (*dst, 2)))
11526 {
11527 rtx reg = XEXP (*dst, 0);
11528 int width = INTVAL (XEXP (*dst, 1));
11529 int offset = INTVAL (XEXP (*dst, 2));
11530 int reg_width = GET_MODE_PRECISION (mode);
11531 if (BITS_BIG_ENDIAN)
11532 offset = reg_width - width - offset;
11533
11534 rtx x, y, z, w;
11535 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11536 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11537 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11538 if (offset)
11539 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11540 else
11541 y = SET_SRC (pat);
11542 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11543 w = gen_rtx_IOR (mode, x, z);
11544 SUBST (SET_DEST (pat), reg);
11545 SUBST (SET_SRC (pat), w);
11546
11547 changed = true;
11548 }
11549
11550 return changed;
11551 }
11552
11553 /* Like recog, but we receive the address of a pointer to a new pattern.
11554 We try to match the rtx that the pointer points to.
11555 If that fails, we may try to modify or replace the pattern,
11556 storing the replacement into the same pointer object.
11557
11558 Modifications include deletion or addition of CLOBBERs. If the
11559 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11560 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11561 (and undo if that fails).
11562
11563 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11564 the CLOBBERs are placed.
11565
11566 The value is the final insn code from the pattern ultimately matched,
11567 or -1. */
11568
11569 static int
11570 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11571 {
11572 rtx pat = *pnewpat;
11573 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11574 if (insn_code_number >= 0 || check_asm_operands (pat))
11575 return insn_code_number;
11576
11577 void *marker = get_undo_marker ();
11578 bool changed = false;
11579
11580 if (GET_CODE (pat) == SET)
11581 changed = change_zero_ext (pat);
11582 else if (GET_CODE (pat) == PARALLEL)
11583 {
11584 int i;
11585 for (i = 0; i < XVECLEN (pat, 0); i++)
11586 {
11587 rtx set = XVECEXP (pat, 0, i);
11588 if (GET_CODE (set) == SET)
11589 changed |= change_zero_ext (set);
11590 }
11591 }
11592
11593 if (changed)
11594 {
11595 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11596
11597 if (insn_code_number < 0)
11598 undo_to_marker (marker);
11599 }
11600
11601 return insn_code_number;
11602 }
11603 \f
11604 /* Like gen_lowpart_general but for use by combine. In combine it
11605 is not possible to create any new pseudoregs. However, it is
11606 safe to create invalid memory addresses, because combine will
11607 try to recognize them and all they will do is make the combine
11608 attempt fail.
11609
11610 If for some reason this cannot do its job, an rtx
11611 (clobber (const_int 0)) is returned.
11612 An insn containing that will not be recognized. */
11613
11614 static rtx
11615 gen_lowpart_for_combine (machine_mode omode, rtx x)
11616 {
11617 machine_mode imode = GET_MODE (x);
11618 unsigned int osize = GET_MODE_SIZE (omode);
11619 unsigned int isize = GET_MODE_SIZE (imode);
11620 rtx result;
11621
11622 if (omode == imode)
11623 return x;
11624
11625 /* We can only support MODE being wider than a word if X is a
11626 constant integer or has a mode the same size. */
11627 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11628 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11629 goto fail;
11630
11631 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11632 won't know what to do. So we will strip off the SUBREG here and
11633 process normally. */
11634 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11635 {
11636 x = SUBREG_REG (x);
11637
11638 /* For use in case we fall down into the address adjustments
11639 further below, we need to adjust the known mode and size of
11640 x; imode and isize, since we just adjusted x. */
11641 imode = GET_MODE (x);
11642
11643 if (imode == omode)
11644 return x;
11645
11646 isize = GET_MODE_SIZE (imode);
11647 }
11648
11649 result = gen_lowpart_common (omode, x);
11650
11651 if (result)
11652 return result;
11653
11654 if (MEM_P (x))
11655 {
11656 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11657 address. */
11658 if (MEM_VOLATILE_P (x)
11659 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11660 goto fail;
11661
11662 /* If we want to refer to something bigger than the original memref,
11663 generate a paradoxical subreg instead. That will force a reload
11664 of the original memref X. */
11665 if (paradoxical_subreg_p (omode, imode))
11666 return gen_rtx_SUBREG (omode, x, 0);
11667
11668 poly_int64 offset = byte_lowpart_offset (omode, imode);
11669 return adjust_address_nv (x, omode, offset);
11670 }
11671
11672 /* If X is a comparison operator, rewrite it in a new mode. This
11673 probably won't match, but may allow further simplifications. */
11674 else if (COMPARISON_P (x))
11675 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11676
11677 /* If we couldn't simplify X any other way, just enclose it in a
11678 SUBREG. Normally, this SUBREG won't match, but some patterns may
11679 include an explicit SUBREG or we may simplify it further in combine. */
11680 else
11681 {
11682 rtx res;
11683
11684 if (imode == VOIDmode)
11685 {
11686 imode = int_mode_for_mode (omode).require ();
11687 x = gen_lowpart_common (imode, x);
11688 if (x == NULL)
11689 goto fail;
11690 }
11691 res = lowpart_subreg (omode, x, imode);
11692 if (res)
11693 return res;
11694 }
11695
11696 fail:
11697 return gen_rtx_CLOBBER (omode, const0_rtx);
11698 }
11699 \f
11700 /* Try to simplify a comparison between OP0 and a constant OP1,
11701 where CODE is the comparison code that will be tested, into a
11702 (CODE OP0 const0_rtx) form.
11703
11704 The result is a possibly different comparison code to use.
11705 *POP1 may be updated. */
11706
11707 static enum rtx_code
11708 simplify_compare_const (enum rtx_code code, machine_mode mode,
11709 rtx op0, rtx *pop1)
11710 {
11711 scalar_int_mode int_mode;
11712 HOST_WIDE_INT const_op = INTVAL (*pop1);
11713
11714 /* Get the constant we are comparing against and turn off all bits
11715 not on in our mode. */
11716 if (mode != VOIDmode)
11717 const_op = trunc_int_for_mode (const_op, mode);
11718
11719 /* If we are comparing against a constant power of two and the value
11720 being compared can only have that single bit nonzero (e.g., it was
11721 `and'ed with that bit), we can replace this with a comparison
11722 with zero. */
11723 if (const_op
11724 && (code == EQ || code == NE || code == GE || code == GEU
11725 || code == LT || code == LTU)
11726 && is_a <scalar_int_mode> (mode, &int_mode)
11727 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11728 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11729 && (nonzero_bits (op0, int_mode)
11730 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11731 {
11732 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11733 const_op = 0;
11734 }
11735
11736 /* Similarly, if we are comparing a value known to be either -1 or
11737 0 with -1, change it to the opposite comparison against zero. */
11738 if (const_op == -1
11739 && (code == EQ || code == NE || code == GT || code == LE
11740 || code == GEU || code == LTU)
11741 && is_a <scalar_int_mode> (mode, &int_mode)
11742 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11743 {
11744 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11745 const_op = 0;
11746 }
11747
11748 /* Do some canonicalizations based on the comparison code. We prefer
11749 comparisons against zero and then prefer equality comparisons.
11750 If we can reduce the size of a constant, we will do that too. */
11751 switch (code)
11752 {
11753 case LT:
11754 /* < C is equivalent to <= (C - 1) */
11755 if (const_op > 0)
11756 {
11757 const_op -= 1;
11758 code = LE;
11759 /* ... fall through to LE case below. */
11760 gcc_fallthrough ();
11761 }
11762 else
11763 break;
11764
11765 case LE:
11766 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11767 if (const_op < 0)
11768 {
11769 const_op += 1;
11770 code = LT;
11771 }
11772
11773 /* If we are doing a <= 0 comparison on a value known to have
11774 a zero sign bit, we can replace this with == 0. */
11775 else if (const_op == 0
11776 && is_a <scalar_int_mode> (mode, &int_mode)
11777 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11778 && (nonzero_bits (op0, int_mode)
11779 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11780 == 0)
11781 code = EQ;
11782 break;
11783
11784 case GE:
11785 /* >= C is equivalent to > (C - 1). */
11786 if (const_op > 0)
11787 {
11788 const_op -= 1;
11789 code = GT;
11790 /* ... fall through to GT below. */
11791 gcc_fallthrough ();
11792 }
11793 else
11794 break;
11795
11796 case GT:
11797 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11798 if (const_op < 0)
11799 {
11800 const_op += 1;
11801 code = GE;
11802 }
11803
11804 /* If we are doing a > 0 comparison on a value known to have
11805 a zero sign bit, we can replace this with != 0. */
11806 else if (const_op == 0
11807 && is_a <scalar_int_mode> (mode, &int_mode)
11808 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11809 && (nonzero_bits (op0, int_mode)
11810 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11811 == 0)
11812 code = NE;
11813 break;
11814
11815 case LTU:
11816 /* < C is equivalent to <= (C - 1). */
11817 if (const_op > 0)
11818 {
11819 const_op -= 1;
11820 code = LEU;
11821 /* ... fall through ... */
11822 gcc_fallthrough ();
11823 }
11824 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11825 else if (is_a <scalar_int_mode> (mode, &int_mode)
11826 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11827 && ((unsigned HOST_WIDE_INT) const_op
11828 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11829 {
11830 const_op = 0;
11831 code = GE;
11832 break;
11833 }
11834 else
11835 break;
11836
11837 case LEU:
11838 /* unsigned <= 0 is equivalent to == 0 */
11839 if (const_op == 0)
11840 code = EQ;
11841 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11842 else if (is_a <scalar_int_mode> (mode, &int_mode)
11843 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11844 && ((unsigned HOST_WIDE_INT) const_op
11845 == ((HOST_WIDE_INT_1U
11846 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11847 {
11848 const_op = 0;
11849 code = GE;
11850 }
11851 break;
11852
11853 case GEU:
11854 /* >= C is equivalent to > (C - 1). */
11855 if (const_op > 1)
11856 {
11857 const_op -= 1;
11858 code = GTU;
11859 /* ... fall through ... */
11860 gcc_fallthrough ();
11861 }
11862
11863 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11864 else if (is_a <scalar_int_mode> (mode, &int_mode)
11865 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11866 && ((unsigned HOST_WIDE_INT) const_op
11867 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11868 {
11869 const_op = 0;
11870 code = LT;
11871 break;
11872 }
11873 else
11874 break;
11875
11876 case GTU:
11877 /* unsigned > 0 is equivalent to != 0 */
11878 if (const_op == 0)
11879 code = NE;
11880 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11881 else if (is_a <scalar_int_mode> (mode, &int_mode)
11882 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11883 && ((unsigned HOST_WIDE_INT) const_op
11884 == (HOST_WIDE_INT_1U
11885 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
11886 {
11887 const_op = 0;
11888 code = LT;
11889 }
11890 break;
11891
11892 default:
11893 break;
11894 }
11895
11896 *pop1 = GEN_INT (const_op);
11897 return code;
11898 }
11899 \f
11900 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11901 comparison code that will be tested.
11902
11903 The result is a possibly different comparison code to use. *POP0 and
11904 *POP1 may be updated.
11905
11906 It is possible that we might detect that a comparison is either always
11907 true or always false. However, we do not perform general constant
11908 folding in combine, so this knowledge isn't useful. Such tautologies
11909 should have been detected earlier. Hence we ignore all such cases. */
11910
11911 static enum rtx_code
11912 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11913 {
11914 rtx op0 = *pop0;
11915 rtx op1 = *pop1;
11916 rtx tem, tem1;
11917 int i;
11918 scalar_int_mode mode, inner_mode, tmode;
11919 opt_scalar_int_mode tmode_iter;
11920
11921 /* Try a few ways of applying the same transformation to both operands. */
11922 while (1)
11923 {
11924 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11925 so check specially. */
11926 if (!WORD_REGISTER_OPERATIONS
11927 && code != GTU && code != GEU && code != LTU && code != LEU
11928 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11929 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11930 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11931 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11932 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11933 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
11934 && (is_a <scalar_int_mode>
11935 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
11936 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
11937 && CONST_INT_P (XEXP (op0, 1))
11938 && XEXP (op0, 1) == XEXP (op1, 1)
11939 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11940 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11941 && (INTVAL (XEXP (op0, 1))
11942 == (GET_MODE_PRECISION (mode)
11943 - GET_MODE_PRECISION (inner_mode))))
11944 {
11945 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11946 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11947 }
11948
11949 /* If both operands are the same constant shift, see if we can ignore the
11950 shift. We can if the shift is a rotate or if the bits shifted out of
11951 this shift are known to be zero for both inputs and if the type of
11952 comparison is compatible with the shift. */
11953 if (GET_CODE (op0) == GET_CODE (op1)
11954 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11955 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11956 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11957 && (code != GT && code != LT && code != GE && code != LE))
11958 || (GET_CODE (op0) == ASHIFTRT
11959 && (code != GTU && code != LTU
11960 && code != GEU && code != LEU)))
11961 && CONST_INT_P (XEXP (op0, 1))
11962 && INTVAL (XEXP (op0, 1)) >= 0
11963 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11964 && XEXP (op0, 1) == XEXP (op1, 1))
11965 {
11966 machine_mode mode = GET_MODE (op0);
11967 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11968 int shift_count = INTVAL (XEXP (op0, 1));
11969
11970 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11971 mask &= (mask >> shift_count) << shift_count;
11972 else if (GET_CODE (op0) == ASHIFT)
11973 mask = (mask & (mask << shift_count)) >> shift_count;
11974
11975 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11976 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11977 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11978 else
11979 break;
11980 }
11981
11982 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11983 SUBREGs are of the same mode, and, in both cases, the AND would
11984 be redundant if the comparison was done in the narrower mode,
11985 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11986 and the operand's possibly nonzero bits are 0xffffff01; in that case
11987 if we only care about QImode, we don't need the AND). This case
11988 occurs if the output mode of an scc insn is not SImode and
11989 STORE_FLAG_VALUE == 1 (e.g., the 386).
11990
11991 Similarly, check for a case where the AND's are ZERO_EXTEND
11992 operations from some narrower mode even though a SUBREG is not
11993 present. */
11994
11995 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11996 && CONST_INT_P (XEXP (op0, 1))
11997 && CONST_INT_P (XEXP (op1, 1)))
11998 {
11999 rtx inner_op0 = XEXP (op0, 0);
12000 rtx inner_op1 = XEXP (op1, 0);
12001 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12002 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12003 int changed = 0;
12004
12005 if (paradoxical_subreg_p (inner_op0)
12006 && GET_CODE (inner_op1) == SUBREG
12007 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12008 && (GET_MODE (SUBREG_REG (inner_op0))
12009 == GET_MODE (SUBREG_REG (inner_op1)))
12010 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12011 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12012 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12013 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12014 {
12015 op0 = SUBREG_REG (inner_op0);
12016 op1 = SUBREG_REG (inner_op1);
12017
12018 /* The resulting comparison is always unsigned since we masked
12019 off the original sign bit. */
12020 code = unsigned_condition (code);
12021
12022 changed = 1;
12023 }
12024
12025 else if (c0 == c1)
12026 FOR_EACH_MODE_UNTIL (tmode,
12027 as_a <scalar_int_mode> (GET_MODE (op0)))
12028 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12029 {
12030 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12031 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12032 code = unsigned_condition (code);
12033 changed = 1;
12034 break;
12035 }
12036
12037 if (! changed)
12038 break;
12039 }
12040
12041 /* If both operands are NOT, we can strip off the outer operation
12042 and adjust the comparison code for swapped operands; similarly for
12043 NEG, except that this must be an equality comparison. */
12044 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12045 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12046 && (code == EQ || code == NE)))
12047 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12048
12049 else
12050 break;
12051 }
12052
12053 /* If the first operand is a constant, swap the operands and adjust the
12054 comparison code appropriately, but don't do this if the second operand
12055 is already a constant integer. */
12056 if (swap_commutative_operands_p (op0, op1))
12057 {
12058 std::swap (op0, op1);
12059 code = swap_condition (code);
12060 }
12061
12062 /* We now enter a loop during which we will try to simplify the comparison.
12063 For the most part, we only are concerned with comparisons with zero,
12064 but some things may really be comparisons with zero but not start
12065 out looking that way. */
12066
12067 while (CONST_INT_P (op1))
12068 {
12069 machine_mode raw_mode = GET_MODE (op0);
12070 scalar_int_mode int_mode;
12071 int equality_comparison_p;
12072 int sign_bit_comparison_p;
12073 int unsigned_comparison_p;
12074 HOST_WIDE_INT const_op;
12075
12076 /* We only want to handle integral modes. This catches VOIDmode,
12077 CCmode, and the floating-point modes. An exception is that we
12078 can handle VOIDmode if OP0 is a COMPARE or a comparison
12079 operation. */
12080
12081 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12082 && ! (raw_mode == VOIDmode
12083 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12084 break;
12085
12086 /* Try to simplify the compare to constant, possibly changing the
12087 comparison op, and/or changing op1 to zero. */
12088 code = simplify_compare_const (code, raw_mode, op0, &op1);
12089 const_op = INTVAL (op1);
12090
12091 /* Compute some predicates to simplify code below. */
12092
12093 equality_comparison_p = (code == EQ || code == NE);
12094 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12095 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12096 || code == GEU);
12097
12098 /* If this is a sign bit comparison and we can do arithmetic in
12099 MODE, say that we will only be needing the sign bit of OP0. */
12100 if (sign_bit_comparison_p
12101 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12102 && HWI_COMPUTABLE_MODE_P (int_mode))
12103 op0 = force_to_mode (op0, int_mode,
12104 HOST_WIDE_INT_1U
12105 << (GET_MODE_PRECISION (int_mode) - 1),
12106 0);
12107
12108 if (COMPARISON_P (op0))
12109 {
12110 /* We can't do anything if OP0 is a condition code value, rather
12111 than an actual data value. */
12112 if (const_op != 0
12113 || CC0_P (XEXP (op0, 0))
12114 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12115 break;
12116
12117 /* Get the two operands being compared. */
12118 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12119 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12120 else
12121 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12122
12123 /* Check for the cases where we simply want the result of the
12124 earlier test or the opposite of that result. */
12125 if (code == NE || code == EQ
12126 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12127 && (code == LT || code == GE)))
12128 {
12129 enum rtx_code new_code;
12130 if (code == LT || code == NE)
12131 new_code = GET_CODE (op0);
12132 else
12133 new_code = reversed_comparison_code (op0, NULL);
12134
12135 if (new_code != UNKNOWN)
12136 {
12137 code = new_code;
12138 op0 = tem;
12139 op1 = tem1;
12140 continue;
12141 }
12142 }
12143 break;
12144 }
12145
12146 if (raw_mode == VOIDmode)
12147 break;
12148 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12149
12150 /* Now try cases based on the opcode of OP0. If none of the cases
12151 does a "continue", we exit this loop immediately after the
12152 switch. */
12153
12154 unsigned int mode_width = GET_MODE_PRECISION (mode);
12155 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12156 switch (GET_CODE (op0))
12157 {
12158 case ZERO_EXTRACT:
12159 /* If we are extracting a single bit from a variable position in
12160 a constant that has only a single bit set and are comparing it
12161 with zero, we can convert this into an equality comparison
12162 between the position and the location of the single bit. */
12163 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12164 have already reduced the shift count modulo the word size. */
12165 if (!SHIFT_COUNT_TRUNCATED
12166 && CONST_INT_P (XEXP (op0, 0))
12167 && XEXP (op0, 1) == const1_rtx
12168 && equality_comparison_p && const_op == 0
12169 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12170 {
12171 if (BITS_BIG_ENDIAN)
12172 i = BITS_PER_WORD - 1 - i;
12173
12174 op0 = XEXP (op0, 2);
12175 op1 = GEN_INT (i);
12176 const_op = i;
12177
12178 /* Result is nonzero iff shift count is equal to I. */
12179 code = reverse_condition (code);
12180 continue;
12181 }
12182
12183 /* fall through */
12184
12185 case SIGN_EXTRACT:
12186 tem = expand_compound_operation (op0);
12187 if (tem != op0)
12188 {
12189 op0 = tem;
12190 continue;
12191 }
12192 break;
12193
12194 case NOT:
12195 /* If testing for equality, we can take the NOT of the constant. */
12196 if (equality_comparison_p
12197 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12198 {
12199 op0 = XEXP (op0, 0);
12200 op1 = tem;
12201 continue;
12202 }
12203
12204 /* If just looking at the sign bit, reverse the sense of the
12205 comparison. */
12206 if (sign_bit_comparison_p)
12207 {
12208 op0 = XEXP (op0, 0);
12209 code = (code == GE ? LT : GE);
12210 continue;
12211 }
12212 break;
12213
12214 case NEG:
12215 /* If testing for equality, we can take the NEG of the constant. */
12216 if (equality_comparison_p
12217 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12218 {
12219 op0 = XEXP (op0, 0);
12220 op1 = tem;
12221 continue;
12222 }
12223
12224 /* The remaining cases only apply to comparisons with zero. */
12225 if (const_op != 0)
12226 break;
12227
12228 /* When X is ABS or is known positive,
12229 (neg X) is < 0 if and only if X != 0. */
12230
12231 if (sign_bit_comparison_p
12232 && (GET_CODE (XEXP (op0, 0)) == ABS
12233 || (mode_width <= HOST_BITS_PER_WIDE_INT
12234 && (nonzero_bits (XEXP (op0, 0), mode)
12235 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12236 == 0)))
12237 {
12238 op0 = XEXP (op0, 0);
12239 code = (code == LT ? NE : EQ);
12240 continue;
12241 }
12242
12243 /* If we have NEG of something whose two high-order bits are the
12244 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12245 if (num_sign_bit_copies (op0, mode) >= 2)
12246 {
12247 op0 = XEXP (op0, 0);
12248 code = swap_condition (code);
12249 continue;
12250 }
12251 break;
12252
12253 case ROTATE:
12254 /* If we are testing equality and our count is a constant, we
12255 can perform the inverse operation on our RHS. */
12256 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12257 && (tem = simplify_binary_operation (ROTATERT, mode,
12258 op1, XEXP (op0, 1))) != 0)
12259 {
12260 op0 = XEXP (op0, 0);
12261 op1 = tem;
12262 continue;
12263 }
12264
12265 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12266 a particular bit. Convert it to an AND of a constant of that
12267 bit. This will be converted into a ZERO_EXTRACT. */
12268 if (const_op == 0 && sign_bit_comparison_p
12269 && CONST_INT_P (XEXP (op0, 1))
12270 && mode_width <= HOST_BITS_PER_WIDE_INT)
12271 {
12272 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12273 (HOST_WIDE_INT_1U
12274 << (mode_width - 1
12275 - INTVAL (XEXP (op0, 1)))));
12276 code = (code == LT ? NE : EQ);
12277 continue;
12278 }
12279
12280 /* Fall through. */
12281
12282 case ABS:
12283 /* ABS is ignorable inside an equality comparison with zero. */
12284 if (const_op == 0 && equality_comparison_p)
12285 {
12286 op0 = XEXP (op0, 0);
12287 continue;
12288 }
12289 break;
12290
12291 case SIGN_EXTEND:
12292 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12293 (compare FOO CONST) if CONST fits in FOO's mode and we
12294 are either testing inequality or have an unsigned
12295 comparison with ZERO_EXTEND or a signed comparison with
12296 SIGN_EXTEND. But don't do it if we don't have a compare
12297 insn of the given mode, since we'd have to revert it
12298 later on, and then we wouldn't know whether to sign- or
12299 zero-extend. */
12300 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12301 && ! unsigned_comparison_p
12302 && HWI_COMPUTABLE_MODE_P (mode)
12303 && trunc_int_for_mode (const_op, mode) == const_op
12304 && have_insn_for (COMPARE, mode))
12305 {
12306 op0 = XEXP (op0, 0);
12307 continue;
12308 }
12309 break;
12310
12311 case SUBREG:
12312 /* Check for the case where we are comparing A - C1 with C2, that is
12313
12314 (subreg:MODE (plus (A) (-C1))) op (C2)
12315
12316 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12317 comparison in the wider mode. One of the following two conditions
12318 must be true in order for this to be valid:
12319
12320 1. The mode extension results in the same bit pattern being added
12321 on both sides and the comparison is equality or unsigned. As
12322 C2 has been truncated to fit in MODE, the pattern can only be
12323 all 0s or all 1s.
12324
12325 2. The mode extension results in the sign bit being copied on
12326 each side.
12327
12328 The difficulty here is that we have predicates for A but not for
12329 (A - C1) so we need to check that C1 is within proper bounds so
12330 as to perturbate A as little as possible. */
12331
12332 if (mode_width <= HOST_BITS_PER_WIDE_INT
12333 && subreg_lowpart_p (op0)
12334 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12335 &inner_mode)
12336 && GET_MODE_PRECISION (inner_mode) > mode_width
12337 && GET_CODE (SUBREG_REG (op0)) == PLUS
12338 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12339 {
12340 rtx a = XEXP (SUBREG_REG (op0), 0);
12341 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12342
12343 if ((c1 > 0
12344 && (unsigned HOST_WIDE_INT) c1
12345 < HOST_WIDE_INT_1U << (mode_width - 1)
12346 && (equality_comparison_p || unsigned_comparison_p)
12347 /* (A - C1) zero-extends if it is positive and sign-extends
12348 if it is negative, C2 both zero- and sign-extends. */
12349 && (((nonzero_bits (a, inner_mode)
12350 & ~GET_MODE_MASK (mode)) == 0
12351 && const_op >= 0)
12352 /* (A - C1) sign-extends if it is positive and 1-extends
12353 if it is negative, C2 both sign- and 1-extends. */
12354 || (num_sign_bit_copies (a, inner_mode)
12355 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12356 - mode_width)
12357 && const_op < 0)))
12358 || ((unsigned HOST_WIDE_INT) c1
12359 < HOST_WIDE_INT_1U << (mode_width - 2)
12360 /* (A - C1) always sign-extends, like C2. */
12361 && num_sign_bit_copies (a, inner_mode)
12362 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12363 - (mode_width - 1))))
12364 {
12365 op0 = SUBREG_REG (op0);
12366 continue;
12367 }
12368 }
12369
12370 /* If the inner mode is narrower and we are extracting the low part,
12371 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12372 if (paradoxical_subreg_p (op0))
12373 ;
12374 else if (subreg_lowpart_p (op0)
12375 && GET_MODE_CLASS (mode) == MODE_INT
12376 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12377 && (code == NE || code == EQ)
12378 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12379 && !paradoxical_subreg_p (op0)
12380 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12381 & ~GET_MODE_MASK (mode)) == 0)
12382 {
12383 /* Remove outer subregs that don't do anything. */
12384 tem = gen_lowpart (inner_mode, op1);
12385
12386 if ((nonzero_bits (tem, inner_mode)
12387 & ~GET_MODE_MASK (mode)) == 0)
12388 {
12389 op0 = SUBREG_REG (op0);
12390 op1 = tem;
12391 continue;
12392 }
12393 break;
12394 }
12395 else
12396 break;
12397
12398 /* FALLTHROUGH */
12399
12400 case ZERO_EXTEND:
12401 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12402 && (unsigned_comparison_p || equality_comparison_p)
12403 && HWI_COMPUTABLE_MODE_P (mode)
12404 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12405 && const_op >= 0
12406 && have_insn_for (COMPARE, mode))
12407 {
12408 op0 = XEXP (op0, 0);
12409 continue;
12410 }
12411 break;
12412
12413 case PLUS:
12414 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12415 this for equality comparisons due to pathological cases involving
12416 overflows. */
12417 if (equality_comparison_p
12418 && (tem = simplify_binary_operation (MINUS, mode,
12419 op1, XEXP (op0, 1))) != 0)
12420 {
12421 op0 = XEXP (op0, 0);
12422 op1 = tem;
12423 continue;
12424 }
12425
12426 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12427 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12428 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12429 {
12430 op0 = XEXP (XEXP (op0, 0), 0);
12431 code = (code == LT ? EQ : NE);
12432 continue;
12433 }
12434 break;
12435
12436 case MINUS:
12437 /* We used to optimize signed comparisons against zero, but that
12438 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12439 arrive here as equality comparisons, or (GEU, LTU) are
12440 optimized away. No need to special-case them. */
12441
12442 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12443 (eq B (minus A C)), whichever simplifies. We can only do
12444 this for equality comparisons due to pathological cases involving
12445 overflows. */
12446 if (equality_comparison_p
12447 && (tem = simplify_binary_operation (PLUS, mode,
12448 XEXP (op0, 1), op1)) != 0)
12449 {
12450 op0 = XEXP (op0, 0);
12451 op1 = tem;
12452 continue;
12453 }
12454
12455 if (equality_comparison_p
12456 && (tem = simplify_binary_operation (MINUS, mode,
12457 XEXP (op0, 0), op1)) != 0)
12458 {
12459 op0 = XEXP (op0, 1);
12460 op1 = tem;
12461 continue;
12462 }
12463
12464 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12465 of bits in X minus 1, is one iff X > 0. */
12466 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12467 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12468 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12469 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12470 {
12471 op0 = XEXP (op0, 1);
12472 code = (code == GE ? LE : GT);
12473 continue;
12474 }
12475 break;
12476
12477 case XOR:
12478 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12479 if C is zero or B is a constant. */
12480 if (equality_comparison_p
12481 && (tem = simplify_binary_operation (XOR, mode,
12482 XEXP (op0, 1), op1)) != 0)
12483 {
12484 op0 = XEXP (op0, 0);
12485 op1 = tem;
12486 continue;
12487 }
12488 break;
12489
12490
12491 case IOR:
12492 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12493 iff X <= 0. */
12494 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12495 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12496 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12497 {
12498 op0 = XEXP (op0, 1);
12499 code = (code == GE ? GT : LE);
12500 continue;
12501 }
12502 break;
12503
12504 case AND:
12505 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12506 will be converted to a ZERO_EXTRACT later. */
12507 if (const_op == 0 && equality_comparison_p
12508 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12509 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12510 {
12511 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12512 XEXP (XEXP (op0, 0), 1));
12513 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12514 continue;
12515 }
12516
12517 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12518 zero and X is a comparison and C1 and C2 describe only bits set
12519 in STORE_FLAG_VALUE, we can compare with X. */
12520 if (const_op == 0 && equality_comparison_p
12521 && mode_width <= HOST_BITS_PER_WIDE_INT
12522 && CONST_INT_P (XEXP (op0, 1))
12523 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12524 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12525 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12526 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12527 {
12528 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12529 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12530 if ((~STORE_FLAG_VALUE & mask) == 0
12531 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12532 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12533 && COMPARISON_P (tem))))
12534 {
12535 op0 = XEXP (XEXP (op0, 0), 0);
12536 continue;
12537 }
12538 }
12539
12540 /* If we are doing an equality comparison of an AND of a bit equal
12541 to the sign bit, replace this with a LT or GE comparison of
12542 the underlying value. */
12543 if (equality_comparison_p
12544 && const_op == 0
12545 && CONST_INT_P (XEXP (op0, 1))
12546 && mode_width <= HOST_BITS_PER_WIDE_INT
12547 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12548 == HOST_WIDE_INT_1U << (mode_width - 1)))
12549 {
12550 op0 = XEXP (op0, 0);
12551 code = (code == EQ ? GE : LT);
12552 continue;
12553 }
12554
12555 /* If this AND operation is really a ZERO_EXTEND from a narrower
12556 mode, the constant fits within that mode, and this is either an
12557 equality or unsigned comparison, try to do this comparison in
12558 the narrower mode.
12559
12560 Note that in:
12561
12562 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12563 -> (ne:DI (reg:SI 4) (const_int 0))
12564
12565 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12566 known to hold a value of the required mode the
12567 transformation is invalid. */
12568 if ((equality_comparison_p || unsigned_comparison_p)
12569 && CONST_INT_P (XEXP (op0, 1))
12570 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12571 & GET_MODE_MASK (mode))
12572 + 1)) >= 0
12573 && const_op >> i == 0
12574 && int_mode_for_size (i, 1).exists (&tmode))
12575 {
12576 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12577 continue;
12578 }
12579
12580 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12581 fits in both M1 and M2 and the SUBREG is either paradoxical
12582 or represents the low part, permute the SUBREG and the AND
12583 and try again. */
12584 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12585 && CONST_INT_P (XEXP (op0, 1)))
12586 {
12587 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12588 /* Require an integral mode, to avoid creating something like
12589 (AND:SF ...). */
12590 if ((is_a <scalar_int_mode>
12591 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12592 /* It is unsafe to commute the AND into the SUBREG if the
12593 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12594 not defined. As originally written the upper bits
12595 have a defined value due to the AND operation.
12596 However, if we commute the AND inside the SUBREG then
12597 they no longer have defined values and the meaning of
12598 the code has been changed.
12599 Also C1 should not change value in the smaller mode,
12600 see PR67028 (a positive C1 can become negative in the
12601 smaller mode, so that the AND does no longer mask the
12602 upper bits). */
12603 && ((WORD_REGISTER_OPERATIONS
12604 && mode_width > GET_MODE_PRECISION (tmode)
12605 && mode_width <= BITS_PER_WORD
12606 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12607 || (mode_width <= GET_MODE_PRECISION (tmode)
12608 && subreg_lowpart_p (XEXP (op0, 0))))
12609 && mode_width <= HOST_BITS_PER_WIDE_INT
12610 && HWI_COMPUTABLE_MODE_P (tmode)
12611 && (c1 & ~mask) == 0
12612 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12613 && c1 != mask
12614 && c1 != GET_MODE_MASK (tmode))
12615 {
12616 op0 = simplify_gen_binary (AND, tmode,
12617 SUBREG_REG (XEXP (op0, 0)),
12618 gen_int_mode (c1, tmode));
12619 op0 = gen_lowpart (mode, op0);
12620 continue;
12621 }
12622 }
12623
12624 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12625 if (const_op == 0 && equality_comparison_p
12626 && XEXP (op0, 1) == const1_rtx
12627 && GET_CODE (XEXP (op0, 0)) == NOT)
12628 {
12629 op0 = simplify_and_const_int (NULL_RTX, mode,
12630 XEXP (XEXP (op0, 0), 0), 1);
12631 code = (code == NE ? EQ : NE);
12632 continue;
12633 }
12634
12635 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12636 (eq (and (lshiftrt X) 1) 0).
12637 Also handle the case where (not X) is expressed using xor. */
12638 if (const_op == 0 && equality_comparison_p
12639 && XEXP (op0, 1) == const1_rtx
12640 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12641 {
12642 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12643 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12644
12645 if (GET_CODE (shift_op) == NOT
12646 || (GET_CODE (shift_op) == XOR
12647 && CONST_INT_P (XEXP (shift_op, 1))
12648 && CONST_INT_P (shift_count)
12649 && HWI_COMPUTABLE_MODE_P (mode)
12650 && (UINTVAL (XEXP (shift_op, 1))
12651 == HOST_WIDE_INT_1U
12652 << INTVAL (shift_count))))
12653 {
12654 op0
12655 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12656 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12657 code = (code == NE ? EQ : NE);
12658 continue;
12659 }
12660 }
12661 break;
12662
12663 case ASHIFT:
12664 /* If we have (compare (ashift FOO N) (const_int C)) and
12665 the high order N bits of FOO (N+1 if an inequality comparison)
12666 are known to be zero, we can do this by comparing FOO with C
12667 shifted right N bits so long as the low-order N bits of C are
12668 zero. */
12669 if (CONST_INT_P (XEXP (op0, 1))
12670 && INTVAL (XEXP (op0, 1)) >= 0
12671 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12672 < HOST_BITS_PER_WIDE_INT)
12673 && (((unsigned HOST_WIDE_INT) const_op
12674 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12675 - 1)) == 0)
12676 && mode_width <= HOST_BITS_PER_WIDE_INT
12677 && (nonzero_bits (XEXP (op0, 0), mode)
12678 & ~(mask >> (INTVAL (XEXP (op0, 1))
12679 + ! equality_comparison_p))) == 0)
12680 {
12681 /* We must perform a logical shift, not an arithmetic one,
12682 as we want the top N bits of C to be zero. */
12683 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12684
12685 temp >>= INTVAL (XEXP (op0, 1));
12686 op1 = gen_int_mode (temp, mode);
12687 op0 = XEXP (op0, 0);
12688 continue;
12689 }
12690
12691 /* If we are doing a sign bit comparison, it means we are testing
12692 a particular bit. Convert it to the appropriate AND. */
12693 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12694 && mode_width <= HOST_BITS_PER_WIDE_INT)
12695 {
12696 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12697 (HOST_WIDE_INT_1U
12698 << (mode_width - 1
12699 - INTVAL (XEXP (op0, 1)))));
12700 code = (code == LT ? NE : EQ);
12701 continue;
12702 }
12703
12704 /* If this an equality comparison with zero and we are shifting
12705 the low bit to the sign bit, we can convert this to an AND of the
12706 low-order bit. */
12707 if (const_op == 0 && equality_comparison_p
12708 && CONST_INT_P (XEXP (op0, 1))
12709 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12710 {
12711 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12712 continue;
12713 }
12714 break;
12715
12716 case ASHIFTRT:
12717 /* If this is an equality comparison with zero, we can do this
12718 as a logical shift, which might be much simpler. */
12719 if (equality_comparison_p && const_op == 0
12720 && CONST_INT_P (XEXP (op0, 1)))
12721 {
12722 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12723 XEXP (op0, 0),
12724 INTVAL (XEXP (op0, 1)));
12725 continue;
12726 }
12727
12728 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12729 do the comparison in a narrower mode. */
12730 if (! unsigned_comparison_p
12731 && CONST_INT_P (XEXP (op0, 1))
12732 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12733 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12734 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12735 .exists (&tmode))
12736 && (((unsigned HOST_WIDE_INT) const_op
12737 + (GET_MODE_MASK (tmode) >> 1) + 1)
12738 <= GET_MODE_MASK (tmode)))
12739 {
12740 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12741 continue;
12742 }
12743
12744 /* Likewise if OP0 is a PLUS of a sign extension with a
12745 constant, which is usually represented with the PLUS
12746 between the shifts. */
12747 if (! unsigned_comparison_p
12748 && CONST_INT_P (XEXP (op0, 1))
12749 && GET_CODE (XEXP (op0, 0)) == PLUS
12750 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12751 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12752 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12753 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12754 .exists (&tmode))
12755 && (((unsigned HOST_WIDE_INT) const_op
12756 + (GET_MODE_MASK (tmode) >> 1) + 1)
12757 <= GET_MODE_MASK (tmode)))
12758 {
12759 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12760 rtx add_const = XEXP (XEXP (op0, 0), 1);
12761 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12762 add_const, XEXP (op0, 1));
12763
12764 op0 = simplify_gen_binary (PLUS, tmode,
12765 gen_lowpart (tmode, inner),
12766 new_const);
12767 continue;
12768 }
12769
12770 /* FALLTHROUGH */
12771 case LSHIFTRT:
12772 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12773 the low order N bits of FOO are known to be zero, we can do this
12774 by comparing FOO with C shifted left N bits so long as no
12775 overflow occurs. Even if the low order N bits of FOO aren't known
12776 to be zero, if the comparison is >= or < we can use the same
12777 optimization and for > or <= by setting all the low
12778 order N bits in the comparison constant. */
12779 if (CONST_INT_P (XEXP (op0, 1))
12780 && INTVAL (XEXP (op0, 1)) > 0
12781 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12782 && mode_width <= HOST_BITS_PER_WIDE_INT
12783 && (((unsigned HOST_WIDE_INT) const_op
12784 + (GET_CODE (op0) != LSHIFTRT
12785 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12786 + 1)
12787 : 0))
12788 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12789 {
12790 unsigned HOST_WIDE_INT low_bits
12791 = (nonzero_bits (XEXP (op0, 0), mode)
12792 & ((HOST_WIDE_INT_1U
12793 << INTVAL (XEXP (op0, 1))) - 1));
12794 if (low_bits == 0 || !equality_comparison_p)
12795 {
12796 /* If the shift was logical, then we must make the condition
12797 unsigned. */
12798 if (GET_CODE (op0) == LSHIFTRT)
12799 code = unsigned_condition (code);
12800
12801 const_op = (unsigned HOST_WIDE_INT) const_op
12802 << INTVAL (XEXP (op0, 1));
12803 if (low_bits != 0
12804 && (code == GT || code == GTU
12805 || code == LE || code == LEU))
12806 const_op
12807 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12808 op1 = GEN_INT (const_op);
12809 op0 = XEXP (op0, 0);
12810 continue;
12811 }
12812 }
12813
12814 /* If we are using this shift to extract just the sign bit, we
12815 can replace this with an LT or GE comparison. */
12816 if (const_op == 0
12817 && (equality_comparison_p || sign_bit_comparison_p)
12818 && CONST_INT_P (XEXP (op0, 1))
12819 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12820 {
12821 op0 = XEXP (op0, 0);
12822 code = (code == NE || code == GT ? LT : GE);
12823 continue;
12824 }
12825 break;
12826
12827 default:
12828 break;
12829 }
12830
12831 break;
12832 }
12833
12834 /* Now make any compound operations involved in this comparison. Then,
12835 check for an outmost SUBREG on OP0 that is not doing anything or is
12836 paradoxical. The latter transformation must only be performed when
12837 it is known that the "extra" bits will be the same in op0 and op1 or
12838 that they don't matter. There are three cases to consider:
12839
12840 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12841 care bits and we can assume they have any convenient value. So
12842 making the transformation is safe.
12843
12844 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12845 In this case the upper bits of op0 are undefined. We should not make
12846 the simplification in that case as we do not know the contents of
12847 those bits.
12848
12849 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12850 In that case we know those bits are zeros or ones. We must also be
12851 sure that they are the same as the upper bits of op1.
12852
12853 We can never remove a SUBREG for a non-equality comparison because
12854 the sign bit is in a different place in the underlying object. */
12855
12856 rtx_code op0_mco_code = SET;
12857 if (op1 == const0_rtx)
12858 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12859
12860 op0 = make_compound_operation (op0, op0_mco_code);
12861 op1 = make_compound_operation (op1, SET);
12862
12863 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12864 && is_int_mode (GET_MODE (op0), &mode)
12865 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12866 && (code == NE || code == EQ))
12867 {
12868 if (paradoxical_subreg_p (op0))
12869 {
12870 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12871 implemented. */
12872 if (REG_P (SUBREG_REG (op0)))
12873 {
12874 op0 = SUBREG_REG (op0);
12875 op1 = gen_lowpart (inner_mode, op1);
12876 }
12877 }
12878 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12879 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12880 & ~GET_MODE_MASK (mode)) == 0)
12881 {
12882 tem = gen_lowpart (inner_mode, op1);
12883
12884 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
12885 op0 = SUBREG_REG (op0), op1 = tem;
12886 }
12887 }
12888
12889 /* We now do the opposite procedure: Some machines don't have compare
12890 insns in all modes. If OP0's mode is an integer mode smaller than a
12891 word and we can't do a compare in that mode, see if there is a larger
12892 mode for which we can do the compare. There are a number of cases in
12893 which we can use the wider mode. */
12894
12895 if (is_int_mode (GET_MODE (op0), &mode)
12896 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12897 && ! have_insn_for (COMPARE, mode))
12898 FOR_EACH_WIDER_MODE (tmode_iter, mode)
12899 {
12900 tmode = tmode_iter.require ();
12901 if (!HWI_COMPUTABLE_MODE_P (tmode))
12902 break;
12903 if (have_insn_for (COMPARE, tmode))
12904 {
12905 int zero_extended;
12906
12907 /* If this is a test for negative, we can make an explicit
12908 test of the sign bit. Test this first so we can use
12909 a paradoxical subreg to extend OP0. */
12910
12911 if (op1 == const0_rtx && (code == LT || code == GE)
12912 && HWI_COMPUTABLE_MODE_P (mode))
12913 {
12914 unsigned HOST_WIDE_INT sign
12915 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12916 op0 = simplify_gen_binary (AND, tmode,
12917 gen_lowpart (tmode, op0),
12918 gen_int_mode (sign, tmode));
12919 code = (code == LT) ? NE : EQ;
12920 break;
12921 }
12922
12923 /* If the only nonzero bits in OP0 and OP1 are those in the
12924 narrower mode and this is an equality or unsigned comparison,
12925 we can use the wider mode. Similarly for sign-extended
12926 values, in which case it is true for all comparisons. */
12927 zero_extended = ((code == EQ || code == NE
12928 || code == GEU || code == GTU
12929 || code == LEU || code == LTU)
12930 && (nonzero_bits (op0, tmode)
12931 & ~GET_MODE_MASK (mode)) == 0
12932 && ((CONST_INT_P (op1)
12933 || (nonzero_bits (op1, tmode)
12934 & ~GET_MODE_MASK (mode)) == 0)));
12935
12936 if (zero_extended
12937 || ((num_sign_bit_copies (op0, tmode)
12938 > (unsigned int) (GET_MODE_PRECISION (tmode)
12939 - GET_MODE_PRECISION (mode)))
12940 && (num_sign_bit_copies (op1, tmode)
12941 > (unsigned int) (GET_MODE_PRECISION (tmode)
12942 - GET_MODE_PRECISION (mode)))))
12943 {
12944 /* If OP0 is an AND and we don't have an AND in MODE either,
12945 make a new AND in the proper mode. */
12946 if (GET_CODE (op0) == AND
12947 && !have_insn_for (AND, mode))
12948 op0 = simplify_gen_binary (AND, tmode,
12949 gen_lowpart (tmode,
12950 XEXP (op0, 0)),
12951 gen_lowpart (tmode,
12952 XEXP (op0, 1)));
12953 else
12954 {
12955 if (zero_extended)
12956 {
12957 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
12958 op0, mode);
12959 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
12960 op1, mode);
12961 }
12962 else
12963 {
12964 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
12965 op0, mode);
12966 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
12967 op1, mode);
12968 }
12969 break;
12970 }
12971 }
12972 }
12973 }
12974
12975 /* We may have changed the comparison operands. Re-canonicalize. */
12976 if (swap_commutative_operands_p (op0, op1))
12977 {
12978 std::swap (op0, op1);
12979 code = swap_condition (code);
12980 }
12981
12982 /* If this machine only supports a subset of valid comparisons, see if we
12983 can convert an unsupported one into a supported one. */
12984 target_canonicalize_comparison (&code, &op0, &op1, 0);
12985
12986 *pop0 = op0;
12987 *pop1 = op1;
12988
12989 return code;
12990 }
12991 \f
12992 /* Utility function for record_value_for_reg. Count number of
12993 rtxs in X. */
12994 static int
12995 count_rtxs (rtx x)
12996 {
12997 enum rtx_code code = GET_CODE (x);
12998 const char *fmt;
12999 int i, j, ret = 1;
13000
13001 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13002 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13003 {
13004 rtx x0 = XEXP (x, 0);
13005 rtx x1 = XEXP (x, 1);
13006
13007 if (x0 == x1)
13008 return 1 + 2 * count_rtxs (x0);
13009
13010 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13011 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13012 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13013 return 2 + 2 * count_rtxs (x0)
13014 + count_rtxs (x == XEXP (x1, 0)
13015 ? XEXP (x1, 1) : XEXP (x1, 0));
13016
13017 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13018 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13019 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13020 return 2 + 2 * count_rtxs (x1)
13021 + count_rtxs (x == XEXP (x0, 0)
13022 ? XEXP (x0, 1) : XEXP (x0, 0));
13023 }
13024
13025 fmt = GET_RTX_FORMAT (code);
13026 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13027 if (fmt[i] == 'e')
13028 ret += count_rtxs (XEXP (x, i));
13029 else if (fmt[i] == 'E')
13030 for (j = 0; j < XVECLEN (x, i); j++)
13031 ret += count_rtxs (XVECEXP (x, i, j));
13032
13033 return ret;
13034 }
13035 \f
13036 /* Utility function for following routine. Called when X is part of a value
13037 being stored into last_set_value. Sets last_set_table_tick
13038 for each register mentioned. Similar to mention_regs in cse.c */
13039
13040 static void
13041 update_table_tick (rtx x)
13042 {
13043 enum rtx_code code = GET_CODE (x);
13044 const char *fmt = GET_RTX_FORMAT (code);
13045 int i, j;
13046
13047 if (code == REG)
13048 {
13049 unsigned int regno = REGNO (x);
13050 unsigned int endregno = END_REGNO (x);
13051 unsigned int r;
13052
13053 for (r = regno; r < endregno; r++)
13054 {
13055 reg_stat_type *rsp = &reg_stat[r];
13056 rsp->last_set_table_tick = label_tick;
13057 }
13058
13059 return;
13060 }
13061
13062 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13063 if (fmt[i] == 'e')
13064 {
13065 /* Check for identical subexpressions. If x contains
13066 identical subexpression we only have to traverse one of
13067 them. */
13068 if (i == 0 && ARITHMETIC_P (x))
13069 {
13070 /* Note that at this point x1 has already been
13071 processed. */
13072 rtx x0 = XEXP (x, 0);
13073 rtx x1 = XEXP (x, 1);
13074
13075 /* If x0 and x1 are identical then there is no need to
13076 process x0. */
13077 if (x0 == x1)
13078 break;
13079
13080 /* If x0 is identical to a subexpression of x1 then while
13081 processing x1, x0 has already been processed. Thus we
13082 are done with x. */
13083 if (ARITHMETIC_P (x1)
13084 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13085 break;
13086
13087 /* If x1 is identical to a subexpression of x0 then we
13088 still have to process the rest of x0. */
13089 if (ARITHMETIC_P (x0)
13090 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13091 {
13092 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13093 break;
13094 }
13095 }
13096
13097 update_table_tick (XEXP (x, i));
13098 }
13099 else if (fmt[i] == 'E')
13100 for (j = 0; j < XVECLEN (x, i); j++)
13101 update_table_tick (XVECEXP (x, i, j));
13102 }
13103
13104 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13105 are saying that the register is clobbered and we no longer know its
13106 value. If INSN is zero, don't update reg_stat[].last_set; this is
13107 only permitted with VALUE also zero and is used to invalidate the
13108 register. */
13109
13110 static void
13111 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13112 {
13113 unsigned int regno = REGNO (reg);
13114 unsigned int endregno = END_REGNO (reg);
13115 unsigned int i;
13116 reg_stat_type *rsp;
13117
13118 /* If VALUE contains REG and we have a previous value for REG, substitute
13119 the previous value. */
13120 if (value && insn && reg_overlap_mentioned_p (reg, value))
13121 {
13122 rtx tem;
13123
13124 /* Set things up so get_last_value is allowed to see anything set up to
13125 our insn. */
13126 subst_low_luid = DF_INSN_LUID (insn);
13127 tem = get_last_value (reg);
13128
13129 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13130 it isn't going to be useful and will take a lot of time to process,
13131 so just use the CLOBBER. */
13132
13133 if (tem)
13134 {
13135 if (ARITHMETIC_P (tem)
13136 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13137 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13138 tem = XEXP (tem, 0);
13139 else if (count_occurrences (value, reg, 1) >= 2)
13140 {
13141 /* If there are two or more occurrences of REG in VALUE,
13142 prevent the value from growing too much. */
13143 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13144 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13145 }
13146
13147 value = replace_rtx (copy_rtx (value), reg, tem);
13148 }
13149 }
13150
13151 /* For each register modified, show we don't know its value, that
13152 we don't know about its bitwise content, that its value has been
13153 updated, and that we don't know the location of the death of the
13154 register. */
13155 for (i = regno; i < endregno; i++)
13156 {
13157 rsp = &reg_stat[i];
13158
13159 if (insn)
13160 rsp->last_set = insn;
13161
13162 rsp->last_set_value = 0;
13163 rsp->last_set_mode = VOIDmode;
13164 rsp->last_set_nonzero_bits = 0;
13165 rsp->last_set_sign_bit_copies = 0;
13166 rsp->last_death = 0;
13167 rsp->truncated_to_mode = VOIDmode;
13168 }
13169
13170 /* Mark registers that are being referenced in this value. */
13171 if (value)
13172 update_table_tick (value);
13173
13174 /* Now update the status of each register being set.
13175 If someone is using this register in this block, set this register
13176 to invalid since we will get confused between the two lives in this
13177 basic block. This makes using this register always invalid. In cse, we
13178 scan the table to invalidate all entries using this register, but this
13179 is too much work for us. */
13180
13181 for (i = regno; i < endregno; i++)
13182 {
13183 rsp = &reg_stat[i];
13184 rsp->last_set_label = label_tick;
13185 if (!insn
13186 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13187 rsp->last_set_invalid = 1;
13188 else
13189 rsp->last_set_invalid = 0;
13190 }
13191
13192 /* The value being assigned might refer to X (like in "x++;"). In that
13193 case, we must replace it with (clobber (const_int 0)) to prevent
13194 infinite loops. */
13195 rsp = &reg_stat[regno];
13196 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13197 {
13198 value = copy_rtx (value);
13199 if (!get_last_value_validate (&value, insn, label_tick, 1))
13200 value = 0;
13201 }
13202
13203 /* For the main register being modified, update the value, the mode, the
13204 nonzero bits, and the number of sign bit copies. */
13205
13206 rsp->last_set_value = value;
13207
13208 if (value)
13209 {
13210 machine_mode mode = GET_MODE (reg);
13211 subst_low_luid = DF_INSN_LUID (insn);
13212 rsp->last_set_mode = mode;
13213 if (GET_MODE_CLASS (mode) == MODE_INT
13214 && HWI_COMPUTABLE_MODE_P (mode))
13215 mode = nonzero_bits_mode;
13216 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13217 rsp->last_set_sign_bit_copies
13218 = num_sign_bit_copies (value, GET_MODE (reg));
13219 }
13220 }
13221
13222 /* Called via note_stores from record_dead_and_set_regs to handle one
13223 SET or CLOBBER in an insn. DATA is the instruction in which the
13224 set is occurring. */
13225
13226 static void
13227 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13228 {
13229 rtx_insn *record_dead_insn = (rtx_insn *) data;
13230
13231 if (GET_CODE (dest) == SUBREG)
13232 dest = SUBREG_REG (dest);
13233
13234 if (!record_dead_insn)
13235 {
13236 if (REG_P (dest))
13237 record_value_for_reg (dest, NULL, NULL_RTX);
13238 return;
13239 }
13240
13241 if (REG_P (dest))
13242 {
13243 /* If we are setting the whole register, we know its value. Otherwise
13244 show that we don't know the value. We can handle SUBREG in
13245 some cases. */
13246 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13247 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13248 else if (GET_CODE (setter) == SET
13249 && GET_CODE (SET_DEST (setter)) == SUBREG
13250 && SUBREG_REG (SET_DEST (setter)) == dest
13251 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13252 && subreg_lowpart_p (SET_DEST (setter)))
13253 record_value_for_reg (dest, record_dead_insn,
13254 gen_lowpart (GET_MODE (dest),
13255 SET_SRC (setter)));
13256 else
13257 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13258 }
13259 else if (MEM_P (dest)
13260 /* Ignore pushes, they clobber nothing. */
13261 && ! push_operand (dest, GET_MODE (dest)))
13262 mem_last_set = DF_INSN_LUID (record_dead_insn);
13263 }
13264
13265 /* Update the records of when each REG was most recently set or killed
13266 for the things done by INSN. This is the last thing done in processing
13267 INSN in the combiner loop.
13268
13269 We update reg_stat[], in particular fields last_set, last_set_value,
13270 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13271 last_death, and also the similar information mem_last_set (which insn
13272 most recently modified memory) and last_call_luid (which insn was the
13273 most recent subroutine call). */
13274
13275 static void
13276 record_dead_and_set_regs (rtx_insn *insn)
13277 {
13278 rtx link;
13279 unsigned int i;
13280
13281 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13282 {
13283 if (REG_NOTE_KIND (link) == REG_DEAD
13284 && REG_P (XEXP (link, 0)))
13285 {
13286 unsigned int regno = REGNO (XEXP (link, 0));
13287 unsigned int endregno = END_REGNO (XEXP (link, 0));
13288
13289 for (i = regno; i < endregno; i++)
13290 {
13291 reg_stat_type *rsp;
13292
13293 rsp = &reg_stat[i];
13294 rsp->last_death = insn;
13295 }
13296 }
13297 else if (REG_NOTE_KIND (link) == REG_INC)
13298 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13299 }
13300
13301 if (CALL_P (insn))
13302 {
13303 hard_reg_set_iterator hrsi;
13304 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13305 {
13306 reg_stat_type *rsp;
13307
13308 rsp = &reg_stat[i];
13309 rsp->last_set_invalid = 1;
13310 rsp->last_set = insn;
13311 rsp->last_set_value = 0;
13312 rsp->last_set_mode = VOIDmode;
13313 rsp->last_set_nonzero_bits = 0;
13314 rsp->last_set_sign_bit_copies = 0;
13315 rsp->last_death = 0;
13316 rsp->truncated_to_mode = VOIDmode;
13317 }
13318
13319 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13320
13321 /* We can't combine into a call pattern. Remember, though, that
13322 the return value register is set at this LUID. We could
13323 still replace a register with the return value from the
13324 wrong subroutine call! */
13325 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13326 }
13327 else
13328 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13329 }
13330
13331 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13332 register present in the SUBREG, so for each such SUBREG go back and
13333 adjust nonzero and sign bit information of the registers that are
13334 known to have some zero/sign bits set.
13335
13336 This is needed because when combine blows the SUBREGs away, the
13337 information on zero/sign bits is lost and further combines can be
13338 missed because of that. */
13339
13340 static void
13341 record_promoted_value (rtx_insn *insn, rtx subreg)
13342 {
13343 struct insn_link *links;
13344 rtx set;
13345 unsigned int regno = REGNO (SUBREG_REG (subreg));
13346 machine_mode mode = GET_MODE (subreg);
13347
13348 if (!HWI_COMPUTABLE_MODE_P (mode))
13349 return;
13350
13351 for (links = LOG_LINKS (insn); links;)
13352 {
13353 reg_stat_type *rsp;
13354
13355 insn = links->insn;
13356 set = single_set (insn);
13357
13358 if (! set || !REG_P (SET_DEST (set))
13359 || REGNO (SET_DEST (set)) != regno
13360 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13361 {
13362 links = links->next;
13363 continue;
13364 }
13365
13366 rsp = &reg_stat[regno];
13367 if (rsp->last_set == insn)
13368 {
13369 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13370 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13371 }
13372
13373 if (REG_P (SET_SRC (set)))
13374 {
13375 regno = REGNO (SET_SRC (set));
13376 links = LOG_LINKS (insn);
13377 }
13378 else
13379 break;
13380 }
13381 }
13382
13383 /* Check if X, a register, is known to contain a value already
13384 truncated to MODE. In this case we can use a subreg to refer to
13385 the truncated value even though in the generic case we would need
13386 an explicit truncation. */
13387
13388 static bool
13389 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13390 {
13391 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13392 machine_mode truncated = rsp->truncated_to_mode;
13393
13394 if (truncated == 0
13395 || rsp->truncation_label < label_tick_ebb_start)
13396 return false;
13397 if (!partial_subreg_p (mode, truncated))
13398 return true;
13399 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13400 return true;
13401 return false;
13402 }
13403
13404 /* If X is a hard reg or a subreg record the mode that the register is
13405 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13406 able to turn a truncate into a subreg using this information. Return true
13407 if traversing X is complete. */
13408
13409 static bool
13410 record_truncated_value (rtx x)
13411 {
13412 machine_mode truncated_mode;
13413 reg_stat_type *rsp;
13414
13415 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13416 {
13417 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13418 truncated_mode = GET_MODE (x);
13419
13420 if (!partial_subreg_p (truncated_mode, original_mode))
13421 return true;
13422
13423 truncated_mode = GET_MODE (x);
13424 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13425 return true;
13426
13427 x = SUBREG_REG (x);
13428 }
13429 /* ??? For hard-regs we now record everything. We might be able to
13430 optimize this using last_set_mode. */
13431 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13432 truncated_mode = GET_MODE (x);
13433 else
13434 return false;
13435
13436 rsp = &reg_stat[REGNO (x)];
13437 if (rsp->truncated_to_mode == 0
13438 || rsp->truncation_label < label_tick_ebb_start
13439 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13440 {
13441 rsp->truncated_to_mode = truncated_mode;
13442 rsp->truncation_label = label_tick;
13443 }
13444
13445 return true;
13446 }
13447
13448 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13449 the modes they are used in. This can help truning TRUNCATEs into
13450 SUBREGs. */
13451
13452 static void
13453 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13454 {
13455 subrtx_var_iterator::array_type array;
13456 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13457 if (record_truncated_value (*iter))
13458 iter.skip_subrtxes ();
13459 }
13460
13461 /* Scan X for promoted SUBREGs. For each one found,
13462 note what it implies to the registers used in it. */
13463
13464 static void
13465 check_promoted_subreg (rtx_insn *insn, rtx x)
13466 {
13467 if (GET_CODE (x) == SUBREG
13468 && SUBREG_PROMOTED_VAR_P (x)
13469 && REG_P (SUBREG_REG (x)))
13470 record_promoted_value (insn, x);
13471 else
13472 {
13473 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13474 int i, j;
13475
13476 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13477 switch (format[i])
13478 {
13479 case 'e':
13480 check_promoted_subreg (insn, XEXP (x, i));
13481 break;
13482 case 'V':
13483 case 'E':
13484 if (XVEC (x, i) != 0)
13485 for (j = 0; j < XVECLEN (x, i); j++)
13486 check_promoted_subreg (insn, XVECEXP (x, i, j));
13487 break;
13488 }
13489 }
13490 }
13491 \f
13492 /* Verify that all the registers and memory references mentioned in *LOC are
13493 still valid. *LOC was part of a value set in INSN when label_tick was
13494 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13495 the invalid references with (clobber (const_int 0)) and return 1. This
13496 replacement is useful because we often can get useful information about
13497 the form of a value (e.g., if it was produced by a shift that always
13498 produces -1 or 0) even though we don't know exactly what registers it
13499 was produced from. */
13500
13501 static int
13502 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13503 {
13504 rtx x = *loc;
13505 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13506 int len = GET_RTX_LENGTH (GET_CODE (x));
13507 int i, j;
13508
13509 if (REG_P (x))
13510 {
13511 unsigned int regno = REGNO (x);
13512 unsigned int endregno = END_REGNO (x);
13513 unsigned int j;
13514
13515 for (j = regno; j < endregno; j++)
13516 {
13517 reg_stat_type *rsp = &reg_stat[j];
13518 if (rsp->last_set_invalid
13519 /* If this is a pseudo-register that was only set once and not
13520 live at the beginning of the function, it is always valid. */
13521 || (! (regno >= FIRST_PSEUDO_REGISTER
13522 && regno < reg_n_sets_max
13523 && REG_N_SETS (regno) == 1
13524 && (!REGNO_REG_SET_P
13525 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13526 regno)))
13527 && rsp->last_set_label > tick))
13528 {
13529 if (replace)
13530 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13531 return replace;
13532 }
13533 }
13534
13535 return 1;
13536 }
13537 /* If this is a memory reference, make sure that there were no stores after
13538 it that might have clobbered the value. We don't have alias info, so we
13539 assume any store invalidates it. Moreover, we only have local UIDs, so
13540 we also assume that there were stores in the intervening basic blocks. */
13541 else if (MEM_P (x) && !MEM_READONLY_P (x)
13542 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13543 {
13544 if (replace)
13545 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13546 return replace;
13547 }
13548
13549 for (i = 0; i < len; i++)
13550 {
13551 if (fmt[i] == 'e')
13552 {
13553 /* Check for identical subexpressions. If x contains
13554 identical subexpression we only have to traverse one of
13555 them. */
13556 if (i == 1 && ARITHMETIC_P (x))
13557 {
13558 /* Note that at this point x0 has already been checked
13559 and found valid. */
13560 rtx x0 = XEXP (x, 0);
13561 rtx x1 = XEXP (x, 1);
13562
13563 /* If x0 and x1 are identical then x is also valid. */
13564 if (x0 == x1)
13565 return 1;
13566
13567 /* If x1 is identical to a subexpression of x0 then
13568 while checking x0, x1 has already been checked. Thus
13569 it is valid and so as x. */
13570 if (ARITHMETIC_P (x0)
13571 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13572 return 1;
13573
13574 /* If x0 is identical to a subexpression of x1 then x is
13575 valid iff the rest of x1 is valid. */
13576 if (ARITHMETIC_P (x1)
13577 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13578 return
13579 get_last_value_validate (&XEXP (x1,
13580 x0 == XEXP (x1, 0) ? 1 : 0),
13581 insn, tick, replace);
13582 }
13583
13584 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13585 replace) == 0)
13586 return 0;
13587 }
13588 else if (fmt[i] == 'E')
13589 for (j = 0; j < XVECLEN (x, i); j++)
13590 if (get_last_value_validate (&XVECEXP (x, i, j),
13591 insn, tick, replace) == 0)
13592 return 0;
13593 }
13594
13595 /* If we haven't found a reason for it to be invalid, it is valid. */
13596 return 1;
13597 }
13598
13599 /* Get the last value assigned to X, if known. Some registers
13600 in the value may be replaced with (clobber (const_int 0)) if their value
13601 is known longer known reliably. */
13602
13603 static rtx
13604 get_last_value (const_rtx x)
13605 {
13606 unsigned int regno;
13607 rtx value;
13608 reg_stat_type *rsp;
13609
13610 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13611 then convert it to the desired mode. If this is a paradoxical SUBREG,
13612 we cannot predict what values the "extra" bits might have. */
13613 if (GET_CODE (x) == SUBREG
13614 && subreg_lowpart_p (x)
13615 && !paradoxical_subreg_p (x)
13616 && (value = get_last_value (SUBREG_REG (x))) != 0)
13617 return gen_lowpart (GET_MODE (x), value);
13618
13619 if (!REG_P (x))
13620 return 0;
13621
13622 regno = REGNO (x);
13623 rsp = &reg_stat[regno];
13624 value = rsp->last_set_value;
13625
13626 /* If we don't have a value, or if it isn't for this basic block and
13627 it's either a hard register, set more than once, or it's a live
13628 at the beginning of the function, return 0.
13629
13630 Because if it's not live at the beginning of the function then the reg
13631 is always set before being used (is never used without being set).
13632 And, if it's set only once, and it's always set before use, then all
13633 uses must have the same last value, even if it's not from this basic
13634 block. */
13635
13636 if (value == 0
13637 || (rsp->last_set_label < label_tick_ebb_start
13638 && (regno < FIRST_PSEUDO_REGISTER
13639 || regno >= reg_n_sets_max
13640 || REG_N_SETS (regno) != 1
13641 || REGNO_REG_SET_P
13642 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13643 return 0;
13644
13645 /* If the value was set in a later insn than the ones we are processing,
13646 we can't use it even if the register was only set once. */
13647 if (rsp->last_set_label == label_tick
13648 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13649 return 0;
13650
13651 /* If fewer bits were set than what we are asked for now, we cannot use
13652 the value. */
13653 if (GET_MODE_PRECISION (rsp->last_set_mode)
13654 < GET_MODE_PRECISION (GET_MODE (x)))
13655 return 0;
13656
13657 /* If the value has all its registers valid, return it. */
13658 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13659 return value;
13660
13661 /* Otherwise, make a copy and replace any invalid register with
13662 (clobber (const_int 0)). If that fails for some reason, return 0. */
13663
13664 value = copy_rtx (value);
13665 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13666 return value;
13667
13668 return 0;
13669 }
13670 \f
13671 /* Define three variables used for communication between the following
13672 routines. */
13673
13674 static unsigned int reg_dead_regno, reg_dead_endregno;
13675 static int reg_dead_flag;
13676
13677 /* Function called via note_stores from reg_dead_at_p.
13678
13679 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13680 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13681
13682 static void
13683 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13684 {
13685 unsigned int regno, endregno;
13686
13687 if (!REG_P (dest))
13688 return;
13689
13690 regno = REGNO (dest);
13691 endregno = END_REGNO (dest);
13692 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13693 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13694 }
13695
13696 /* Return nonzero if REG is known to be dead at INSN.
13697
13698 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13699 referencing REG, it is dead. If we hit a SET referencing REG, it is
13700 live. Otherwise, see if it is live or dead at the start of the basic
13701 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13702 must be assumed to be always live. */
13703
13704 static int
13705 reg_dead_at_p (rtx reg, rtx_insn *insn)
13706 {
13707 basic_block block;
13708 unsigned int i;
13709
13710 /* Set variables for reg_dead_at_p_1. */
13711 reg_dead_regno = REGNO (reg);
13712 reg_dead_endregno = END_REGNO (reg);
13713
13714 reg_dead_flag = 0;
13715
13716 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13717 we allow the machine description to decide whether use-and-clobber
13718 patterns are OK. */
13719 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13720 {
13721 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13722 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13723 return 0;
13724 }
13725
13726 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13727 beginning of basic block. */
13728 block = BLOCK_FOR_INSN (insn);
13729 for (;;)
13730 {
13731 if (INSN_P (insn))
13732 {
13733 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13734 return 1;
13735
13736 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13737 if (reg_dead_flag)
13738 return reg_dead_flag == 1 ? 1 : 0;
13739
13740 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13741 return 1;
13742 }
13743
13744 if (insn == BB_HEAD (block))
13745 break;
13746
13747 insn = PREV_INSN (insn);
13748 }
13749
13750 /* Look at live-in sets for the basic block that we were in. */
13751 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13752 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13753 return 0;
13754
13755 return 1;
13756 }
13757 \f
13758 /* Note hard registers in X that are used. */
13759
13760 static void
13761 mark_used_regs_combine (rtx x)
13762 {
13763 RTX_CODE code = GET_CODE (x);
13764 unsigned int regno;
13765 int i;
13766
13767 switch (code)
13768 {
13769 case LABEL_REF:
13770 case SYMBOL_REF:
13771 case CONST:
13772 CASE_CONST_ANY:
13773 case PC:
13774 case ADDR_VEC:
13775 case ADDR_DIFF_VEC:
13776 case ASM_INPUT:
13777 /* CC0 must die in the insn after it is set, so we don't need to take
13778 special note of it here. */
13779 case CC0:
13780 return;
13781
13782 case CLOBBER:
13783 /* If we are clobbering a MEM, mark any hard registers inside the
13784 address as used. */
13785 if (MEM_P (XEXP (x, 0)))
13786 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13787 return;
13788
13789 case REG:
13790 regno = REGNO (x);
13791 /* A hard reg in a wide mode may really be multiple registers.
13792 If so, mark all of them just like the first. */
13793 if (regno < FIRST_PSEUDO_REGISTER)
13794 {
13795 /* None of this applies to the stack, frame or arg pointers. */
13796 if (regno == STACK_POINTER_REGNUM
13797 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13798 && regno == HARD_FRAME_POINTER_REGNUM)
13799 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13800 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13801 || regno == FRAME_POINTER_REGNUM)
13802 return;
13803
13804 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13805 }
13806 return;
13807
13808 case SET:
13809 {
13810 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13811 the address. */
13812 rtx testreg = SET_DEST (x);
13813
13814 while (GET_CODE (testreg) == SUBREG
13815 || GET_CODE (testreg) == ZERO_EXTRACT
13816 || GET_CODE (testreg) == STRICT_LOW_PART)
13817 testreg = XEXP (testreg, 0);
13818
13819 if (MEM_P (testreg))
13820 mark_used_regs_combine (XEXP (testreg, 0));
13821
13822 mark_used_regs_combine (SET_SRC (x));
13823 }
13824 return;
13825
13826 default:
13827 break;
13828 }
13829
13830 /* Recursively scan the operands of this expression. */
13831
13832 {
13833 const char *fmt = GET_RTX_FORMAT (code);
13834
13835 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13836 {
13837 if (fmt[i] == 'e')
13838 mark_used_regs_combine (XEXP (x, i));
13839 else if (fmt[i] == 'E')
13840 {
13841 int j;
13842
13843 for (j = 0; j < XVECLEN (x, i); j++)
13844 mark_used_regs_combine (XVECEXP (x, i, j));
13845 }
13846 }
13847 }
13848 }
13849 \f
13850 /* Remove register number REGNO from the dead registers list of INSN.
13851
13852 Return the note used to record the death, if there was one. */
13853
13854 rtx
13855 remove_death (unsigned int regno, rtx_insn *insn)
13856 {
13857 rtx note = find_regno_note (insn, REG_DEAD, regno);
13858
13859 if (note)
13860 remove_note (insn, note);
13861
13862 return note;
13863 }
13864
13865 /* For each register (hardware or pseudo) used within expression X, if its
13866 death is in an instruction with luid between FROM_LUID (inclusive) and
13867 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13868 list headed by PNOTES.
13869
13870 That said, don't move registers killed by maybe_kill_insn.
13871
13872 This is done when X is being merged by combination into TO_INSN. These
13873 notes will then be distributed as needed. */
13874
13875 static void
13876 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13877 rtx *pnotes)
13878 {
13879 const char *fmt;
13880 int len, i;
13881 enum rtx_code code = GET_CODE (x);
13882
13883 if (code == REG)
13884 {
13885 unsigned int regno = REGNO (x);
13886 rtx_insn *where_dead = reg_stat[regno].last_death;
13887
13888 /* If we do not know where the register died, it may still die between
13889 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
13890 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
13891 {
13892 rtx_insn *insn = prev_real_insn (to_insn);
13893 while (insn
13894 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
13895 && DF_INSN_LUID (insn) >= from_luid)
13896 {
13897 if (dead_or_set_regno_p (insn, regno))
13898 {
13899 if (find_regno_note (insn, REG_DEAD, regno))
13900 where_dead = insn;
13901 break;
13902 }
13903
13904 insn = prev_real_insn (insn);
13905 }
13906 }
13907
13908 /* Don't move the register if it gets killed in between from and to. */
13909 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13910 && ! reg_referenced_p (x, maybe_kill_insn))
13911 return;
13912
13913 if (where_dead
13914 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13915 && DF_INSN_LUID (where_dead) >= from_luid
13916 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13917 {
13918 rtx note = remove_death (regno, where_dead);
13919
13920 /* It is possible for the call above to return 0. This can occur
13921 when last_death points to I2 or I1 that we combined with.
13922 In that case make a new note.
13923
13924 We must also check for the case where X is a hard register
13925 and NOTE is a death note for a range of hard registers
13926 including X. In that case, we must put REG_DEAD notes for
13927 the remaining registers in place of NOTE. */
13928
13929 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13930 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
13931 {
13932 unsigned int deadregno = REGNO (XEXP (note, 0));
13933 unsigned int deadend = END_REGNO (XEXP (note, 0));
13934 unsigned int ourend = END_REGNO (x);
13935 unsigned int i;
13936
13937 for (i = deadregno; i < deadend; i++)
13938 if (i < regno || i >= ourend)
13939 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13940 }
13941
13942 /* If we didn't find any note, or if we found a REG_DEAD note that
13943 covers only part of the given reg, and we have a multi-reg hard
13944 register, then to be safe we must check for REG_DEAD notes
13945 for each register other than the first. They could have
13946 their own REG_DEAD notes lying around. */
13947 else if ((note == 0
13948 || (note != 0
13949 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
13950 GET_MODE (x))))
13951 && regno < FIRST_PSEUDO_REGISTER
13952 && REG_NREGS (x) > 1)
13953 {
13954 unsigned int ourend = END_REGNO (x);
13955 unsigned int i, offset;
13956 rtx oldnotes = 0;
13957
13958 if (note)
13959 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
13960 else
13961 offset = 1;
13962
13963 for (i = regno + offset; i < ourend; i++)
13964 move_deaths (regno_reg_rtx[i],
13965 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13966 }
13967
13968 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13969 {
13970 XEXP (note, 1) = *pnotes;
13971 *pnotes = note;
13972 }
13973 else
13974 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13975 }
13976
13977 return;
13978 }
13979
13980 else if (GET_CODE (x) == SET)
13981 {
13982 rtx dest = SET_DEST (x);
13983
13984 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13985
13986 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13987 that accesses one word of a multi-word item, some
13988 piece of everything register in the expression is used by
13989 this insn, so remove any old death. */
13990 /* ??? So why do we test for equality of the sizes? */
13991
13992 if (GET_CODE (dest) == ZERO_EXTRACT
13993 || GET_CODE (dest) == STRICT_LOW_PART
13994 || (GET_CODE (dest) == SUBREG
13995 && !read_modify_subreg_p (dest)))
13996 {
13997 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13998 return;
13999 }
14000
14001 /* If this is some other SUBREG, we know it replaces the entire
14002 value, so use that as the destination. */
14003 if (GET_CODE (dest) == SUBREG)
14004 dest = SUBREG_REG (dest);
14005
14006 /* If this is a MEM, adjust deaths of anything used in the address.
14007 For a REG (the only other possibility), the entire value is
14008 being replaced so the old value is not used in this insn. */
14009
14010 if (MEM_P (dest))
14011 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14012 to_insn, pnotes);
14013 return;
14014 }
14015
14016 else if (GET_CODE (x) == CLOBBER)
14017 return;
14018
14019 len = GET_RTX_LENGTH (code);
14020 fmt = GET_RTX_FORMAT (code);
14021
14022 for (i = 0; i < len; i++)
14023 {
14024 if (fmt[i] == 'E')
14025 {
14026 int j;
14027 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14028 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14029 to_insn, pnotes);
14030 }
14031 else if (fmt[i] == 'e')
14032 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14033 }
14034 }
14035 \f
14036 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14037 pattern of an insn. X must be a REG. */
14038
14039 static int
14040 reg_bitfield_target_p (rtx x, rtx body)
14041 {
14042 int i;
14043
14044 if (GET_CODE (body) == SET)
14045 {
14046 rtx dest = SET_DEST (body);
14047 rtx target;
14048 unsigned int regno, tregno, endregno, endtregno;
14049
14050 if (GET_CODE (dest) == ZERO_EXTRACT)
14051 target = XEXP (dest, 0);
14052 else if (GET_CODE (dest) == STRICT_LOW_PART)
14053 target = SUBREG_REG (XEXP (dest, 0));
14054 else
14055 return 0;
14056
14057 if (GET_CODE (target) == SUBREG)
14058 target = SUBREG_REG (target);
14059
14060 if (!REG_P (target))
14061 return 0;
14062
14063 tregno = REGNO (target), regno = REGNO (x);
14064 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14065 return target == x;
14066
14067 endtregno = end_hard_regno (GET_MODE (target), tregno);
14068 endregno = end_hard_regno (GET_MODE (x), regno);
14069
14070 return endregno > tregno && regno < endtregno;
14071 }
14072
14073 else if (GET_CODE (body) == PARALLEL)
14074 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14075 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14076 return 1;
14077
14078 return 0;
14079 }
14080 \f
14081 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14082 as appropriate. I3 and I2 are the insns resulting from the combination
14083 insns including FROM (I2 may be zero).
14084
14085 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14086 not need REG_DEAD notes because they are being substituted for. This
14087 saves searching in the most common cases.
14088
14089 Each note in the list is either ignored or placed on some insns, depending
14090 on the type of note. */
14091
14092 static void
14093 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14094 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14095 {
14096 rtx note, next_note;
14097 rtx tem_note;
14098 rtx_insn *tem_insn;
14099
14100 for (note = notes; note; note = next_note)
14101 {
14102 rtx_insn *place = 0, *place2 = 0;
14103
14104 next_note = XEXP (note, 1);
14105 switch (REG_NOTE_KIND (note))
14106 {
14107 case REG_BR_PROB:
14108 case REG_BR_PRED:
14109 /* Doesn't matter much where we put this, as long as it's somewhere.
14110 It is preferable to keep these notes on branches, which is most
14111 likely to be i3. */
14112 place = i3;
14113 break;
14114
14115 case REG_NON_LOCAL_GOTO:
14116 if (JUMP_P (i3))
14117 place = i3;
14118 else
14119 {
14120 gcc_assert (i2 && JUMP_P (i2));
14121 place = i2;
14122 }
14123 break;
14124
14125 case REG_EH_REGION:
14126 /* These notes must remain with the call or trapping instruction. */
14127 if (CALL_P (i3))
14128 place = i3;
14129 else if (i2 && CALL_P (i2))
14130 place = i2;
14131 else
14132 {
14133 gcc_assert (cfun->can_throw_non_call_exceptions);
14134 if (may_trap_p (i3))
14135 place = i3;
14136 else if (i2 && may_trap_p (i2))
14137 place = i2;
14138 /* ??? Otherwise assume we've combined things such that we
14139 can now prove that the instructions can't trap. Drop the
14140 note in this case. */
14141 }
14142 break;
14143
14144 case REG_ARGS_SIZE:
14145 /* ??? How to distribute between i3-i1. Assume i3 contains the
14146 entire adjustment. Assert i3 contains at least some adjust. */
14147 if (!noop_move_p (i3))
14148 {
14149 poly_int64 old_size, args_size = get_args_size (note);
14150 /* fixup_args_size_notes looks at REG_NORETURN note,
14151 so ensure the note is placed there first. */
14152 if (CALL_P (i3))
14153 {
14154 rtx *np;
14155 for (np = &next_note; *np; np = &XEXP (*np, 1))
14156 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14157 {
14158 rtx n = *np;
14159 *np = XEXP (n, 1);
14160 XEXP (n, 1) = REG_NOTES (i3);
14161 REG_NOTES (i3) = n;
14162 break;
14163 }
14164 }
14165 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14166 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14167 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14168 gcc_assert (maybe_ne (old_size, args_size)
14169 || (CALL_P (i3)
14170 && !ACCUMULATE_OUTGOING_ARGS
14171 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14172 }
14173 break;
14174
14175 case REG_NORETURN:
14176 case REG_SETJMP:
14177 case REG_TM:
14178 case REG_CALL_DECL:
14179 case REG_CALL_NOCF_CHECK:
14180 /* These notes must remain with the call. It should not be
14181 possible for both I2 and I3 to be a call. */
14182 if (CALL_P (i3))
14183 place = i3;
14184 else
14185 {
14186 gcc_assert (i2 && CALL_P (i2));
14187 place = i2;
14188 }
14189 break;
14190
14191 case REG_UNUSED:
14192 /* Any clobbers for i3 may still exist, and so we must process
14193 REG_UNUSED notes from that insn.
14194
14195 Any clobbers from i2 or i1 can only exist if they were added by
14196 recog_for_combine. In that case, recog_for_combine created the
14197 necessary REG_UNUSED notes. Trying to keep any original
14198 REG_UNUSED notes from these insns can cause incorrect output
14199 if it is for the same register as the original i3 dest.
14200 In that case, we will notice that the register is set in i3,
14201 and then add a REG_UNUSED note for the destination of i3, which
14202 is wrong. However, it is possible to have REG_UNUSED notes from
14203 i2 or i1 for register which were both used and clobbered, so
14204 we keep notes from i2 or i1 if they will turn into REG_DEAD
14205 notes. */
14206
14207 /* If this register is set or clobbered in I3, put the note there
14208 unless there is one already. */
14209 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14210 {
14211 if (from_insn != i3)
14212 break;
14213
14214 if (! (REG_P (XEXP (note, 0))
14215 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14216 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14217 place = i3;
14218 }
14219 /* Otherwise, if this register is used by I3, then this register
14220 now dies here, so we must put a REG_DEAD note here unless there
14221 is one already. */
14222 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14223 && ! (REG_P (XEXP (note, 0))
14224 ? find_regno_note (i3, REG_DEAD,
14225 REGNO (XEXP (note, 0)))
14226 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14227 {
14228 PUT_REG_NOTE_KIND (note, REG_DEAD);
14229 place = i3;
14230 }
14231
14232 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14233 but we can't tell which at this point. We must reset any
14234 expectations we had about the value that was previously
14235 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14236 and, if appropriate, restore its previous value, but we
14237 don't have enough information for that at this point. */
14238 else
14239 {
14240 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14241
14242 /* Otherwise, if this register is now referenced in i2
14243 then the register used to be modified in one of the
14244 original insns. If it was i3 (say, in an unused
14245 parallel), it's now completely gone, so the note can
14246 be discarded. But if it was modified in i2, i1 or i0
14247 and we still reference it in i2, then we're
14248 referencing the previous value, and since the
14249 register was modified and REG_UNUSED, we know that
14250 the previous value is now dead. So, if we only
14251 reference the register in i2, we change the note to
14252 REG_DEAD, to reflect the previous value. However, if
14253 we're also setting or clobbering the register as
14254 scratch, we know (because the register was not
14255 referenced in i3) that it's unused, just as it was
14256 unused before, and we place the note in i2. */
14257 if (from_insn != i3 && i2 && INSN_P (i2)
14258 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14259 {
14260 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14261 PUT_REG_NOTE_KIND (note, REG_DEAD);
14262 if (! (REG_P (XEXP (note, 0))
14263 ? find_regno_note (i2, REG_NOTE_KIND (note),
14264 REGNO (XEXP (note, 0)))
14265 : find_reg_note (i2, REG_NOTE_KIND (note),
14266 XEXP (note, 0))))
14267 place = i2;
14268 }
14269 }
14270
14271 break;
14272
14273 case REG_EQUAL:
14274 case REG_EQUIV:
14275 case REG_NOALIAS:
14276 /* These notes say something about results of an insn. We can
14277 only support them if they used to be on I3 in which case they
14278 remain on I3. Otherwise they are ignored.
14279
14280 If the note refers to an expression that is not a constant, we
14281 must also ignore the note since we cannot tell whether the
14282 equivalence is still true. It might be possible to do
14283 slightly better than this (we only have a problem if I2DEST
14284 or I1DEST is present in the expression), but it doesn't
14285 seem worth the trouble. */
14286
14287 if (from_insn == i3
14288 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14289 place = i3;
14290 break;
14291
14292 case REG_INC:
14293 /* These notes say something about how a register is used. They must
14294 be present on any use of the register in I2 or I3. */
14295 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14296 place = i3;
14297
14298 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14299 {
14300 if (place)
14301 place2 = i2;
14302 else
14303 place = i2;
14304 }
14305 break;
14306
14307 case REG_LABEL_TARGET:
14308 case REG_LABEL_OPERAND:
14309 /* This can show up in several ways -- either directly in the
14310 pattern, or hidden off in the constant pool with (or without?)
14311 a REG_EQUAL note. */
14312 /* ??? Ignore the without-reg_equal-note problem for now. */
14313 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14314 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14315 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14316 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14317 place = i3;
14318
14319 if (i2
14320 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14321 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14322 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14323 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14324 {
14325 if (place)
14326 place2 = i2;
14327 else
14328 place = i2;
14329 }
14330
14331 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14332 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14333 there. */
14334 if (place && JUMP_P (place)
14335 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14336 && (JUMP_LABEL (place) == NULL
14337 || JUMP_LABEL (place) == XEXP (note, 0)))
14338 {
14339 rtx label = JUMP_LABEL (place);
14340
14341 if (!label)
14342 JUMP_LABEL (place) = XEXP (note, 0);
14343 else if (LABEL_P (label))
14344 LABEL_NUSES (label)--;
14345 }
14346
14347 if (place2 && JUMP_P (place2)
14348 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14349 && (JUMP_LABEL (place2) == NULL
14350 || JUMP_LABEL (place2) == XEXP (note, 0)))
14351 {
14352 rtx label = JUMP_LABEL (place2);
14353
14354 if (!label)
14355 JUMP_LABEL (place2) = XEXP (note, 0);
14356 else if (LABEL_P (label))
14357 LABEL_NUSES (label)--;
14358 place2 = 0;
14359 }
14360 break;
14361
14362 case REG_NONNEG:
14363 /* This note says something about the value of a register prior
14364 to the execution of an insn. It is too much trouble to see
14365 if the note is still correct in all situations. It is better
14366 to simply delete it. */
14367 break;
14368
14369 case REG_DEAD:
14370 /* If we replaced the right hand side of FROM_INSN with a
14371 REG_EQUAL note, the original use of the dying register
14372 will not have been combined into I3 and I2. In such cases,
14373 FROM_INSN is guaranteed to be the first of the combined
14374 instructions, so we simply need to search back before
14375 FROM_INSN for the previous use or set of this register,
14376 then alter the notes there appropriately.
14377
14378 If the register is used as an input in I3, it dies there.
14379 Similarly for I2, if it is nonzero and adjacent to I3.
14380
14381 If the register is not used as an input in either I3 or I2
14382 and it is not one of the registers we were supposed to eliminate,
14383 there are two possibilities. We might have a non-adjacent I2
14384 or we might have somehow eliminated an additional register
14385 from a computation. For example, we might have had A & B where
14386 we discover that B will always be zero. In this case we will
14387 eliminate the reference to A.
14388
14389 In both cases, we must search to see if we can find a previous
14390 use of A and put the death note there. */
14391
14392 if (from_insn
14393 && from_insn == i2mod
14394 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14395 tem_insn = from_insn;
14396 else
14397 {
14398 if (from_insn
14399 && CALL_P (from_insn)
14400 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14401 place = from_insn;
14402 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14403 {
14404 /* If the new I2 sets the same register that is marked
14405 dead in the note, we do not in general know where to
14406 put the note. One important case we _can_ handle is
14407 when the note comes from I3. */
14408 if (from_insn == i3)
14409 place = i3;
14410 else
14411 break;
14412 }
14413 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14414 place = i3;
14415 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14416 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14417 place = i2;
14418 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14419 && !(i2mod
14420 && reg_overlap_mentioned_p (XEXP (note, 0),
14421 i2mod_old_rhs)))
14422 || rtx_equal_p (XEXP (note, 0), elim_i1)
14423 || rtx_equal_p (XEXP (note, 0), elim_i0))
14424 break;
14425 tem_insn = i3;
14426 }
14427
14428 if (place == 0)
14429 {
14430 basic_block bb = this_basic_block;
14431
14432 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14433 {
14434 if (!NONDEBUG_INSN_P (tem_insn))
14435 {
14436 if (tem_insn == BB_HEAD (bb))
14437 break;
14438 continue;
14439 }
14440
14441 /* If the register is being set at TEM_INSN, see if that is all
14442 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14443 into a REG_UNUSED note instead. Don't delete sets to
14444 global register vars. */
14445 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14446 || !global_regs[REGNO (XEXP (note, 0))])
14447 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14448 {
14449 rtx set = single_set (tem_insn);
14450 rtx inner_dest = 0;
14451 rtx_insn *cc0_setter = NULL;
14452
14453 if (set != 0)
14454 for (inner_dest = SET_DEST (set);
14455 (GET_CODE (inner_dest) == STRICT_LOW_PART
14456 || GET_CODE (inner_dest) == SUBREG
14457 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14458 inner_dest = XEXP (inner_dest, 0))
14459 ;
14460
14461 /* Verify that it was the set, and not a clobber that
14462 modified the register.
14463
14464 CC0 targets must be careful to maintain setter/user
14465 pairs. If we cannot delete the setter due to side
14466 effects, mark the user with an UNUSED note instead
14467 of deleting it. */
14468
14469 if (set != 0 && ! side_effects_p (SET_SRC (set))
14470 && rtx_equal_p (XEXP (note, 0), inner_dest)
14471 && (!HAVE_cc0
14472 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14473 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14474 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14475 {
14476 /* Move the notes and links of TEM_INSN elsewhere.
14477 This might delete other dead insns recursively.
14478 First set the pattern to something that won't use
14479 any register. */
14480 rtx old_notes = REG_NOTES (tem_insn);
14481
14482 PATTERN (tem_insn) = pc_rtx;
14483 REG_NOTES (tem_insn) = NULL;
14484
14485 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14486 NULL_RTX, NULL_RTX, NULL_RTX);
14487 distribute_links (LOG_LINKS (tem_insn));
14488
14489 unsigned int regno = REGNO (XEXP (note, 0));
14490 reg_stat_type *rsp = &reg_stat[regno];
14491 if (rsp->last_set == tem_insn)
14492 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14493
14494 SET_INSN_DELETED (tem_insn);
14495 if (tem_insn == i2)
14496 i2 = NULL;
14497
14498 /* Delete the setter too. */
14499 if (cc0_setter)
14500 {
14501 PATTERN (cc0_setter) = pc_rtx;
14502 old_notes = REG_NOTES (cc0_setter);
14503 REG_NOTES (cc0_setter) = NULL;
14504
14505 distribute_notes (old_notes, cc0_setter,
14506 cc0_setter, NULL,
14507 NULL_RTX, NULL_RTX, NULL_RTX);
14508 distribute_links (LOG_LINKS (cc0_setter));
14509
14510 SET_INSN_DELETED (cc0_setter);
14511 if (cc0_setter == i2)
14512 i2 = NULL;
14513 }
14514 }
14515 else
14516 {
14517 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14518
14519 /* If there isn't already a REG_UNUSED note, put one
14520 here. Do not place a REG_DEAD note, even if
14521 the register is also used here; that would not
14522 match the algorithm used in lifetime analysis
14523 and can cause the consistency check in the
14524 scheduler to fail. */
14525 if (! find_regno_note (tem_insn, REG_UNUSED,
14526 REGNO (XEXP (note, 0))))
14527 place = tem_insn;
14528 break;
14529 }
14530 }
14531 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14532 || (CALL_P (tem_insn)
14533 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14534 {
14535 place = tem_insn;
14536
14537 /* If we are doing a 3->2 combination, and we have a
14538 register which formerly died in i3 and was not used
14539 by i2, which now no longer dies in i3 and is used in
14540 i2 but does not die in i2, and place is between i2
14541 and i3, then we may need to move a link from place to
14542 i2. */
14543 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14544 && from_insn
14545 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14546 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14547 {
14548 struct insn_link *links = LOG_LINKS (place);
14549 LOG_LINKS (place) = NULL;
14550 distribute_links (links);
14551 }
14552 break;
14553 }
14554
14555 if (tem_insn == BB_HEAD (bb))
14556 break;
14557 }
14558
14559 }
14560
14561 /* If the register is set or already dead at PLACE, we needn't do
14562 anything with this note if it is still a REG_DEAD note.
14563 We check here if it is set at all, not if is it totally replaced,
14564 which is what `dead_or_set_p' checks, so also check for it being
14565 set partially. */
14566
14567 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14568 {
14569 unsigned int regno = REGNO (XEXP (note, 0));
14570 reg_stat_type *rsp = &reg_stat[regno];
14571
14572 if (dead_or_set_p (place, XEXP (note, 0))
14573 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14574 {
14575 /* Unless the register previously died in PLACE, clear
14576 last_death. [I no longer understand why this is
14577 being done.] */
14578 if (rsp->last_death != place)
14579 rsp->last_death = 0;
14580 place = 0;
14581 }
14582 else
14583 rsp->last_death = place;
14584
14585 /* If this is a death note for a hard reg that is occupying
14586 multiple registers, ensure that we are still using all
14587 parts of the object. If we find a piece of the object
14588 that is unused, we must arrange for an appropriate REG_DEAD
14589 note to be added for it. However, we can't just emit a USE
14590 and tag the note to it, since the register might actually
14591 be dead; so we recourse, and the recursive call then finds
14592 the previous insn that used this register. */
14593
14594 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14595 {
14596 unsigned int endregno = END_REGNO (XEXP (note, 0));
14597 bool all_used = true;
14598 unsigned int i;
14599
14600 for (i = regno; i < endregno; i++)
14601 if ((! refers_to_regno_p (i, PATTERN (place))
14602 && ! find_regno_fusage (place, USE, i))
14603 || dead_or_set_regno_p (place, i))
14604 {
14605 all_used = false;
14606 break;
14607 }
14608
14609 if (! all_used)
14610 {
14611 /* Put only REG_DEAD notes for pieces that are
14612 not already dead or set. */
14613
14614 for (i = regno; i < endregno;
14615 i += hard_regno_nregs (i, reg_raw_mode[i]))
14616 {
14617 rtx piece = regno_reg_rtx[i];
14618 basic_block bb = this_basic_block;
14619
14620 if (! dead_or_set_p (place, piece)
14621 && ! reg_bitfield_target_p (piece,
14622 PATTERN (place)))
14623 {
14624 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14625 NULL_RTX);
14626
14627 distribute_notes (new_note, place, place,
14628 NULL, NULL_RTX, NULL_RTX,
14629 NULL_RTX);
14630 }
14631 else if (! refers_to_regno_p (i, PATTERN (place))
14632 && ! find_regno_fusage (place, USE, i))
14633 for (tem_insn = PREV_INSN (place); ;
14634 tem_insn = PREV_INSN (tem_insn))
14635 {
14636 if (!NONDEBUG_INSN_P (tem_insn))
14637 {
14638 if (tem_insn == BB_HEAD (bb))
14639 break;
14640 continue;
14641 }
14642 if (dead_or_set_p (tem_insn, piece)
14643 || reg_bitfield_target_p (piece,
14644 PATTERN (tem_insn)))
14645 {
14646 add_reg_note (tem_insn, REG_UNUSED, piece);
14647 break;
14648 }
14649 }
14650 }
14651
14652 place = 0;
14653 }
14654 }
14655 }
14656 break;
14657
14658 default:
14659 /* Any other notes should not be present at this point in the
14660 compilation. */
14661 gcc_unreachable ();
14662 }
14663
14664 if (place)
14665 {
14666 XEXP (note, 1) = REG_NOTES (place);
14667 REG_NOTES (place) = note;
14668
14669 /* Set added_notes_insn to the earliest insn we added a note to. */
14670 if (added_notes_insn == 0
14671 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14672 added_notes_insn = place;
14673 }
14674
14675 if (place2)
14676 {
14677 add_shallow_copy_of_reg_note (place2, note);
14678
14679 /* Set added_notes_insn to the earliest insn we added a note to. */
14680 if (added_notes_insn == 0
14681 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14682 added_notes_insn = place2;
14683 }
14684 }
14685 }
14686 \f
14687 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14688 I3, I2, and I1 to new locations. This is also called to add a link
14689 pointing at I3 when I3's destination is changed. */
14690
14691 static void
14692 distribute_links (struct insn_link *links)
14693 {
14694 struct insn_link *link, *next_link;
14695
14696 for (link = links; link; link = next_link)
14697 {
14698 rtx_insn *place = 0;
14699 rtx_insn *insn;
14700 rtx set, reg;
14701
14702 next_link = link->next;
14703
14704 /* If the insn that this link points to is a NOTE, ignore it. */
14705 if (NOTE_P (link->insn))
14706 continue;
14707
14708 set = 0;
14709 rtx pat = PATTERN (link->insn);
14710 if (GET_CODE (pat) == SET)
14711 set = pat;
14712 else if (GET_CODE (pat) == PARALLEL)
14713 {
14714 int i;
14715 for (i = 0; i < XVECLEN (pat, 0); i++)
14716 {
14717 set = XVECEXP (pat, 0, i);
14718 if (GET_CODE (set) != SET)
14719 continue;
14720
14721 reg = SET_DEST (set);
14722 while (GET_CODE (reg) == ZERO_EXTRACT
14723 || GET_CODE (reg) == STRICT_LOW_PART
14724 || GET_CODE (reg) == SUBREG)
14725 reg = XEXP (reg, 0);
14726
14727 if (!REG_P (reg))
14728 continue;
14729
14730 if (REGNO (reg) == link->regno)
14731 break;
14732 }
14733 if (i == XVECLEN (pat, 0))
14734 continue;
14735 }
14736 else
14737 continue;
14738
14739 reg = SET_DEST (set);
14740
14741 while (GET_CODE (reg) == ZERO_EXTRACT
14742 || GET_CODE (reg) == STRICT_LOW_PART
14743 || GET_CODE (reg) == SUBREG)
14744 reg = XEXP (reg, 0);
14745
14746 /* A LOG_LINK is defined as being placed on the first insn that uses
14747 a register and points to the insn that sets the register. Start
14748 searching at the next insn after the target of the link and stop
14749 when we reach a set of the register or the end of the basic block.
14750
14751 Note that this correctly handles the link that used to point from
14752 I3 to I2. Also note that not much searching is typically done here
14753 since most links don't point very far away. */
14754
14755 for (insn = NEXT_INSN (link->insn);
14756 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14757 || BB_HEAD (this_basic_block->next_bb) != insn));
14758 insn = NEXT_INSN (insn))
14759 if (DEBUG_INSN_P (insn))
14760 continue;
14761 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14762 {
14763 if (reg_referenced_p (reg, PATTERN (insn)))
14764 place = insn;
14765 break;
14766 }
14767 else if (CALL_P (insn)
14768 && find_reg_fusage (insn, USE, reg))
14769 {
14770 place = insn;
14771 break;
14772 }
14773 else if (INSN_P (insn) && reg_set_p (reg, insn))
14774 break;
14775
14776 /* If we found a place to put the link, place it there unless there
14777 is already a link to the same insn as LINK at that point. */
14778
14779 if (place)
14780 {
14781 struct insn_link *link2;
14782
14783 FOR_EACH_LOG_LINK (link2, place)
14784 if (link2->insn == link->insn && link2->regno == link->regno)
14785 break;
14786
14787 if (link2 == NULL)
14788 {
14789 link->next = LOG_LINKS (place);
14790 LOG_LINKS (place) = link;
14791
14792 /* Set added_links_insn to the earliest insn we added a
14793 link to. */
14794 if (added_links_insn == 0
14795 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14796 added_links_insn = place;
14797 }
14798 }
14799 }
14800 }
14801 \f
14802 /* Check for any register or memory mentioned in EQUIV that is not
14803 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14804 of EXPR where some registers may have been replaced by constants. */
14805
14806 static bool
14807 unmentioned_reg_p (rtx equiv, rtx expr)
14808 {
14809 subrtx_iterator::array_type array;
14810 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14811 {
14812 const_rtx x = *iter;
14813 if ((REG_P (x) || MEM_P (x))
14814 && !reg_mentioned_p (x, expr))
14815 return true;
14816 }
14817 return false;
14818 }
14819 \f
14820 DEBUG_FUNCTION void
14821 dump_combine_stats (FILE *file)
14822 {
14823 fprintf
14824 (file,
14825 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14826 combine_attempts, combine_merges, combine_extras, combine_successes);
14827 }
14828
14829 void
14830 dump_combine_total_stats (FILE *file)
14831 {
14832 fprintf
14833 (file,
14834 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14835 total_attempts, total_merges, total_extras, total_successes);
14836 }
14837 \f
14838 /* Try combining insns through substitution. */
14839 static unsigned int
14840 rest_of_handle_combine (void)
14841 {
14842 int rebuild_jump_labels_after_combine;
14843
14844 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14845 df_note_add_problem ();
14846 df_analyze ();
14847
14848 regstat_init_n_sets_and_refs ();
14849 reg_n_sets_max = max_reg_num ();
14850
14851 rebuild_jump_labels_after_combine
14852 = combine_instructions (get_insns (), max_reg_num ());
14853
14854 /* Combining insns may have turned an indirect jump into a
14855 direct jump. Rebuild the JUMP_LABEL fields of jumping
14856 instructions. */
14857 if (rebuild_jump_labels_after_combine)
14858 {
14859 if (dom_info_available_p (CDI_DOMINATORS))
14860 free_dominance_info (CDI_DOMINATORS);
14861 timevar_push (TV_JUMP);
14862 rebuild_jump_labels (get_insns ());
14863 cleanup_cfg (0);
14864 timevar_pop (TV_JUMP);
14865 }
14866
14867 regstat_free_n_sets_and_refs ();
14868 return 0;
14869 }
14870
14871 namespace {
14872
14873 const pass_data pass_data_combine =
14874 {
14875 RTL_PASS, /* type */
14876 "combine", /* name */
14877 OPTGROUP_NONE, /* optinfo_flags */
14878 TV_COMBINE, /* tv_id */
14879 PROP_cfglayout, /* properties_required */
14880 0, /* properties_provided */
14881 0, /* properties_destroyed */
14882 0, /* todo_flags_start */
14883 TODO_df_finish, /* todo_flags_finish */
14884 };
14885
14886 class pass_combine : public rtl_opt_pass
14887 {
14888 public:
14889 pass_combine (gcc::context *ctxt)
14890 : rtl_opt_pass (pass_data_combine, ctxt)
14891 {}
14892
14893 /* opt_pass methods: */
14894 virtual bool gate (function *) { return (optimize > 0); }
14895 virtual unsigned int execute (function *)
14896 {
14897 return rest_of_handle_combine ();
14898 }
14899
14900 }; // class pass_combine
14901
14902 } // anon namespace
14903
14904 rtl_opt_pass *
14905 make_pass_combine (gcc::context *ctxt)
14906 {
14907 return new pass_combine (ctxt);
14908 }