]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/combine.c
PR c++/61339 - add mismatch between struct and class [-Wmismatched-tags] to non-bugs
[thirdparty/gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "expr.h"
103 #include "params.h"
104 #include "tree-pass.h"
105 #include "valtrack.h"
106 #include "rtl-iter.h"
107 #include "print-rtl.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx_insn *i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145 \f
146 struct reg_stat_type {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx_insn *last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx_insn *last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 };
254
255
256 static vec<reg_stat_type> reg_stat;
257
258 /* One plus the highest pseudo for which we track REG_N_SETS.
259 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
260 but during combine_split_insns new pseudos can be created. As we don't have
261 updated DF information in that case, it is hard to initialize the array
262 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
263 so instead of growing the arrays, just assume all newly created pseudos
264 during combine might be set multiple times. */
265
266 static unsigned int reg_n_sets_max;
267
268 /* Record the luid of the last insn that invalidated memory
269 (anything that writes memory, and subroutine calls, but not pushes). */
270
271 static int mem_last_set;
272
273 /* Record the luid of the last CALL_INSN
274 so we can tell whether a potential combination crosses any calls. */
275
276 static int last_call_luid;
277
278 /* When `subst' is called, this is the insn that is being modified
279 (by combining in a previous insn). The PATTERN of this insn
280 is still the old pattern partially modified and it should not be
281 looked at, but this may be used to examine the successors of the insn
282 to judge whether a simplification is valid. */
283
284 static rtx_insn *subst_insn;
285
286 /* This is the lowest LUID that `subst' is currently dealing with.
287 get_last_value will not return a value if the register was set at or
288 after this LUID. If not for this mechanism, we could get confused if
289 I2 or I1 in try_combine were an insn that used the old value of a register
290 to obtain a new value. In that case, we might erroneously get the
291 new value of the register when we wanted the old one. */
292
293 static int subst_low_luid;
294
295 /* This contains any hard registers that are used in newpat; reg_dead_at_p
296 must consider all these registers to be always live. */
297
298 static HARD_REG_SET newpat_used_regs;
299
300 /* This is an insn to which a LOG_LINKS entry has been added. If this
301 insn is the earlier than I2 or I3, combine should rescan starting at
302 that location. */
303
304 static rtx_insn *added_links_insn;
305
306 /* And similarly, for notes. */
307
308 static rtx_insn *added_notes_insn;
309
310 /* Basic block in which we are performing combines. */
311 static basic_block this_basic_block;
312 static bool optimize_this_for_speed_p;
313
314 \f
315 /* Length of the currently allocated uid_insn_cost array. */
316
317 static int max_uid_known;
318
319 /* The following array records the insn_cost for every insn
320 in the instruction stream. */
321
322 static int *uid_insn_cost;
323
324 /* The following array records the LOG_LINKS for every insn in the
325 instruction stream as struct insn_link pointers. */
326
327 struct insn_link {
328 rtx_insn *insn;
329 unsigned int regno;
330 struct insn_link *next;
331 };
332
333 static struct insn_link **uid_log_links;
334
335 static inline int
336 insn_uid_check (const_rtx insn)
337 {
338 int uid = INSN_UID (insn);
339 gcc_checking_assert (uid <= max_uid_known);
340 return uid;
341 }
342
343 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
344 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
345
346 #define FOR_EACH_LOG_LINK(L, INSN) \
347 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
348
349 /* Links for LOG_LINKS are allocated from this obstack. */
350
351 static struct obstack insn_link_obstack;
352
353 /* Allocate a link. */
354
355 static inline struct insn_link *
356 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
357 {
358 struct insn_link *l
359 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
360 sizeof (struct insn_link));
361 l->insn = insn;
362 l->regno = regno;
363 l->next = next;
364 return l;
365 }
366
367 /* Incremented for each basic block. */
368
369 static int label_tick;
370
371 /* Reset to label_tick for each extended basic block in scanning order. */
372
373 static int label_tick_ebb_start;
374
375 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
376 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
377
378 static scalar_int_mode nonzero_bits_mode;
379
380 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
381 be safely used. It is zero while computing them and after combine has
382 completed. This former test prevents propagating values based on
383 previously set values, which can be incorrect if a variable is modified
384 in a loop. */
385
386 static int nonzero_sign_valid;
387
388 \f
389 /* Record one modification to rtl structure
390 to be undone by storing old_contents into *where. */
391
392 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
393
394 struct undo
395 {
396 struct undo *next;
397 enum undo_kind kind;
398 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
399 union { rtx *r; int *i; struct insn_link **l; } where;
400 };
401
402 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
403 num_undo says how many are currently recorded.
404
405 other_insn is nonzero if we have modified some other insn in the process
406 of working on subst_insn. It must be verified too. */
407
408 struct undobuf
409 {
410 struct undo *undos;
411 struct undo *frees;
412 rtx_insn *other_insn;
413 };
414
415 static struct undobuf undobuf;
416
417 /* Number of times the pseudo being substituted for
418 was found and replaced. */
419
420 static int n_occurrences;
421
422 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
423 scalar_int_mode,
424 unsigned HOST_WIDE_INT *);
425 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
426 scalar_int_mode,
427 unsigned int *);
428 static void do_SUBST (rtx *, rtx);
429 static void do_SUBST_INT (int *, int);
430 static void init_reg_last (void);
431 static void setup_incoming_promotions (rtx_insn *);
432 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
433 static int cant_combine_insn_p (rtx_insn *);
434 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 rtx_insn *, rtx_insn *, rtx *, rtx *);
436 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
437 static int contains_muldiv (rtx);
438 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
439 int *, rtx_insn *);
440 static void undo_all (void);
441 static void undo_commit (void);
442 static rtx *find_split_point (rtx *, rtx_insn *, bool);
443 static rtx subst (rtx, rtx, rtx, int, int, int);
444 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
445 static rtx simplify_if_then_else (rtx);
446 static rtx simplify_set (rtx);
447 static rtx simplify_logical (rtx);
448 static rtx expand_compound_operation (rtx);
449 static const_rtx expand_field_assignment (const_rtx);
450 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
451 rtx, unsigned HOST_WIDE_INT, int, int, int);
452 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
453 unsigned HOST_WIDE_INT *);
454 static rtx canon_reg_for_combine (rtx, rtx);
455 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
456 scalar_int_mode, unsigned HOST_WIDE_INT, int);
457 static rtx force_to_mode (rtx, machine_mode,
458 unsigned HOST_WIDE_INT, int);
459 static rtx if_then_else_cond (rtx, rtx *, rtx *);
460 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
461 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
462 static rtx make_field_assignment (rtx);
463 static rtx apply_distributive_law (rtx);
464 static rtx distribute_and_simplify_rtx (rtx, int);
465 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
466 unsigned HOST_WIDE_INT);
467 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
468 unsigned HOST_WIDE_INT);
469 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
470 HOST_WIDE_INT, machine_mode, int *);
471 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
472 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
473 int);
474 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
475 static rtx gen_lowpart_for_combine (machine_mode, rtx);
476 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
477 rtx, rtx *);
478 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
479 static void update_table_tick (rtx);
480 static void record_value_for_reg (rtx, rtx_insn *, rtx);
481 static void check_promoted_subreg (rtx_insn *, rtx);
482 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
483 static void record_dead_and_set_regs (rtx_insn *);
484 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
485 static rtx get_last_value (const_rtx);
486 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
487 static int reg_dead_at_p (rtx, rtx_insn *);
488 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
489 static int reg_bitfield_target_p (rtx, rtx);
490 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
491 static void distribute_links (struct insn_link *);
492 static void mark_used_regs_combine (rtx);
493 static void record_promoted_value (rtx_insn *, rtx);
494 static bool unmentioned_reg_p (rtx, rtx);
495 static void record_truncated_values (rtx *, void *);
496 static bool reg_truncated_to_mode (machine_mode, const_rtx);
497 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
498 \f
499
500 /* It is not safe to use ordinary gen_lowpart in combine.
501 See comments in gen_lowpart_for_combine. */
502 #undef RTL_HOOKS_GEN_LOWPART
503 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
504
505 /* Our implementation of gen_lowpart never emits a new pseudo. */
506 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
507 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
508
509 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
510 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
511
512 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
513 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
514
515 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
516 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
517
518 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
519
520 \f
521 /* Convenience wrapper for the canonicalize_comparison target hook.
522 Target hooks cannot use enum rtx_code. */
523 static inline void
524 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
525 bool op0_preserve_value)
526 {
527 int code_int = (int)*code;
528 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
529 *code = (enum rtx_code)code_int;
530 }
531
532 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
533 PATTERN cannot be split. Otherwise, it returns an insn sequence.
534 This is a wrapper around split_insns which ensures that the
535 reg_stat vector is made larger if the splitter creates a new
536 register. */
537
538 static rtx_insn *
539 combine_split_insns (rtx pattern, rtx_insn *insn)
540 {
541 rtx_insn *ret;
542 unsigned int nregs;
543
544 ret = split_insns (pattern, insn);
545 nregs = max_reg_num ();
546 if (nregs > reg_stat.length ())
547 reg_stat.safe_grow_cleared (nregs);
548 return ret;
549 }
550
551 /* This is used by find_single_use to locate an rtx in LOC that
552 contains exactly one use of DEST, which is typically either a REG
553 or CC0. It returns a pointer to the innermost rtx expression
554 containing DEST. Appearances of DEST that are being used to
555 totally replace it are not counted. */
556
557 static rtx *
558 find_single_use_1 (rtx dest, rtx *loc)
559 {
560 rtx x = *loc;
561 enum rtx_code code = GET_CODE (x);
562 rtx *result = NULL;
563 rtx *this_result;
564 int i;
565 const char *fmt;
566
567 switch (code)
568 {
569 case CONST:
570 case LABEL_REF:
571 case SYMBOL_REF:
572 CASE_CONST_ANY:
573 case CLOBBER:
574 case CLOBBER_HIGH:
575 return 0;
576
577 case SET:
578 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
579 of a REG that occupies all of the REG, the insn uses DEST if
580 it is mentioned in the destination or the source. Otherwise, we
581 need just check the source. */
582 if (GET_CODE (SET_DEST (x)) != CC0
583 && GET_CODE (SET_DEST (x)) != PC
584 && !REG_P (SET_DEST (x))
585 && ! (GET_CODE (SET_DEST (x)) == SUBREG
586 && REG_P (SUBREG_REG (SET_DEST (x)))
587 && !read_modify_subreg_p (SET_DEST (x))))
588 break;
589
590 return find_single_use_1 (dest, &SET_SRC (x));
591
592 case MEM:
593 case SUBREG:
594 return find_single_use_1 (dest, &XEXP (x, 0));
595
596 default:
597 break;
598 }
599
600 /* If it wasn't one of the common cases above, check each expression and
601 vector of this code. Look for a unique usage of DEST. */
602
603 fmt = GET_RTX_FORMAT (code);
604 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
605 {
606 if (fmt[i] == 'e')
607 {
608 if (dest == XEXP (x, i)
609 || (REG_P (dest) && REG_P (XEXP (x, i))
610 && REGNO (dest) == REGNO (XEXP (x, i))))
611 this_result = loc;
612 else
613 this_result = find_single_use_1 (dest, &XEXP (x, i));
614
615 if (result == NULL)
616 result = this_result;
617 else if (this_result)
618 /* Duplicate usage. */
619 return NULL;
620 }
621 else if (fmt[i] == 'E')
622 {
623 int j;
624
625 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
626 {
627 if (XVECEXP (x, i, j) == dest
628 || (REG_P (dest)
629 && REG_P (XVECEXP (x, i, j))
630 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
631 this_result = loc;
632 else
633 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
634
635 if (result == NULL)
636 result = this_result;
637 else if (this_result)
638 return NULL;
639 }
640 }
641 }
642
643 return result;
644 }
645
646
647 /* See if DEST, produced in INSN, is used only a single time in the
648 sequel. If so, return a pointer to the innermost rtx expression in which
649 it is used.
650
651 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
652
653 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
654 care about REG_DEAD notes or LOG_LINKS.
655
656 Otherwise, we find the single use by finding an insn that has a
657 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
658 only referenced once in that insn, we know that it must be the first
659 and last insn referencing DEST. */
660
661 static rtx *
662 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
663 {
664 basic_block bb;
665 rtx_insn *next;
666 rtx *result;
667 struct insn_link *link;
668
669 if (dest == cc0_rtx)
670 {
671 next = NEXT_INSN (insn);
672 if (next == 0
673 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
674 return 0;
675
676 result = find_single_use_1 (dest, &PATTERN (next));
677 if (result && ploc)
678 *ploc = next;
679 return result;
680 }
681
682 if (!REG_P (dest))
683 return 0;
684
685 bb = BLOCK_FOR_INSN (insn);
686 for (next = NEXT_INSN (insn);
687 next && BLOCK_FOR_INSN (next) == bb;
688 next = NEXT_INSN (next))
689 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
690 {
691 FOR_EACH_LOG_LINK (link, next)
692 if (link->insn == insn && link->regno == REGNO (dest))
693 break;
694
695 if (link)
696 {
697 result = find_single_use_1 (dest, &PATTERN (next));
698 if (ploc)
699 *ploc = next;
700 return result;
701 }
702 }
703
704 return 0;
705 }
706 \f
707 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
708 insn. The substitution can be undone by undo_all. If INTO is already
709 set to NEWVAL, do not record this change. Because computing NEWVAL might
710 also call SUBST, we have to compute it before we put anything into
711 the undo table. */
712
713 static void
714 do_SUBST (rtx *into, rtx newval)
715 {
716 struct undo *buf;
717 rtx oldval = *into;
718
719 if (oldval == newval)
720 return;
721
722 /* We'd like to catch as many invalid transformations here as
723 possible. Unfortunately, there are way too many mode changes
724 that are perfectly valid, so we'd waste too much effort for
725 little gain doing the checks here. Focus on catching invalid
726 transformations involving integer constants. */
727 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
728 && CONST_INT_P (newval))
729 {
730 /* Sanity check that we're replacing oldval with a CONST_INT
731 that is a valid sign-extension for the original mode. */
732 gcc_assert (INTVAL (newval)
733 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
734
735 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
736 CONST_INT is not valid, because after the replacement, the
737 original mode would be gone. Unfortunately, we can't tell
738 when do_SUBST is called to replace the operand thereof, so we
739 perform this test on oldval instead, checking whether an
740 invalid replacement took place before we got here. */
741 gcc_assert (!(GET_CODE (oldval) == SUBREG
742 && CONST_INT_P (SUBREG_REG (oldval))));
743 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
744 && CONST_INT_P (XEXP (oldval, 0))));
745 }
746
747 if (undobuf.frees)
748 buf = undobuf.frees, undobuf.frees = buf->next;
749 else
750 buf = XNEW (struct undo);
751
752 buf->kind = UNDO_RTX;
753 buf->where.r = into;
754 buf->old_contents.r = oldval;
755 *into = newval;
756
757 buf->next = undobuf.undos, undobuf.undos = buf;
758 }
759
760 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
761
762 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
763 for the value of a HOST_WIDE_INT value (including CONST_INT) is
764 not safe. */
765
766 static void
767 do_SUBST_INT (int *into, int newval)
768 {
769 struct undo *buf;
770 int oldval = *into;
771
772 if (oldval == newval)
773 return;
774
775 if (undobuf.frees)
776 buf = undobuf.frees, undobuf.frees = buf->next;
777 else
778 buf = XNEW (struct undo);
779
780 buf->kind = UNDO_INT;
781 buf->where.i = into;
782 buf->old_contents.i = oldval;
783 *into = newval;
784
785 buf->next = undobuf.undos, undobuf.undos = buf;
786 }
787
788 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
789
790 /* Similar to SUBST, but just substitute the mode. This is used when
791 changing the mode of a pseudo-register, so that any other
792 references to the entry in the regno_reg_rtx array will change as
793 well. */
794
795 static void
796 do_SUBST_MODE (rtx *into, machine_mode newval)
797 {
798 struct undo *buf;
799 machine_mode oldval = GET_MODE (*into);
800
801 if (oldval == newval)
802 return;
803
804 if (undobuf.frees)
805 buf = undobuf.frees, undobuf.frees = buf->next;
806 else
807 buf = XNEW (struct undo);
808
809 buf->kind = UNDO_MODE;
810 buf->where.r = into;
811 buf->old_contents.m = oldval;
812 adjust_reg_mode (*into, newval);
813
814 buf->next = undobuf.undos, undobuf.undos = buf;
815 }
816
817 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
818
819 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
820
821 static void
822 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
823 {
824 struct undo *buf;
825 struct insn_link * oldval = *into;
826
827 if (oldval == newval)
828 return;
829
830 if (undobuf.frees)
831 buf = undobuf.frees, undobuf.frees = buf->next;
832 else
833 buf = XNEW (struct undo);
834
835 buf->kind = UNDO_LINKS;
836 buf->where.l = into;
837 buf->old_contents.l = oldval;
838 *into = newval;
839
840 buf->next = undobuf.undos, undobuf.undos = buf;
841 }
842
843 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
844 \f
845 /* Subroutine of try_combine. Determine whether the replacement patterns
846 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
847 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
848 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
849 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
850 of all the instructions can be estimated and the replacements are more
851 expensive than the original sequence. */
852
853 static bool
854 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
855 rtx newpat, rtx newi2pat, rtx newotherpat)
856 {
857 int i0_cost, i1_cost, i2_cost, i3_cost;
858 int new_i2_cost, new_i3_cost;
859 int old_cost, new_cost;
860
861 /* Lookup the original insn_costs. */
862 i2_cost = INSN_COST (i2);
863 i3_cost = INSN_COST (i3);
864
865 if (i1)
866 {
867 i1_cost = INSN_COST (i1);
868 if (i0)
869 {
870 i0_cost = INSN_COST (i0);
871 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
872 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
873 }
874 else
875 {
876 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
877 ? i1_cost + i2_cost + i3_cost : 0);
878 i0_cost = 0;
879 }
880 }
881 else
882 {
883 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
884 i1_cost = i0_cost = 0;
885 }
886
887 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
888 correct that. */
889 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
890 old_cost -= i1_cost;
891
892
893 /* Calculate the replacement insn_costs. */
894 rtx tmp = PATTERN (i3);
895 PATTERN (i3) = newpat;
896 int tmpi = INSN_CODE (i3);
897 INSN_CODE (i3) = -1;
898 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
899 PATTERN (i3) = tmp;
900 INSN_CODE (i3) = tmpi;
901 if (newi2pat)
902 {
903 tmp = PATTERN (i2);
904 PATTERN (i2) = newi2pat;
905 tmpi = INSN_CODE (i2);
906 INSN_CODE (i2) = -1;
907 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
908 PATTERN (i2) = tmp;
909 INSN_CODE (i2) = tmpi;
910 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
911 ? new_i2_cost + new_i3_cost : 0;
912 }
913 else
914 {
915 new_cost = new_i3_cost;
916 new_i2_cost = 0;
917 }
918
919 if (undobuf.other_insn)
920 {
921 int old_other_cost, new_other_cost;
922
923 old_other_cost = INSN_COST (undobuf.other_insn);
924 tmp = PATTERN (undobuf.other_insn);
925 PATTERN (undobuf.other_insn) = newotherpat;
926 tmpi = INSN_CODE (undobuf.other_insn);
927 INSN_CODE (undobuf.other_insn) = -1;
928 new_other_cost = insn_cost (undobuf.other_insn,
929 optimize_this_for_speed_p);
930 PATTERN (undobuf.other_insn) = tmp;
931 INSN_CODE (undobuf.other_insn) = tmpi;
932 if (old_other_cost > 0 && new_other_cost > 0)
933 {
934 old_cost += old_other_cost;
935 new_cost += new_other_cost;
936 }
937 else
938 old_cost = 0;
939 }
940
941 /* Disallow this combination if both new_cost and old_cost are greater than
942 zero, and new_cost is greater than old cost. */
943 int reject = old_cost > 0 && new_cost > old_cost;
944
945 if (dump_file)
946 {
947 fprintf (dump_file, "%s combination of insns ",
948 reject ? "rejecting" : "allowing");
949 if (i0)
950 fprintf (dump_file, "%d, ", INSN_UID (i0));
951 if (i1 && INSN_UID (i1) != INSN_UID (i2))
952 fprintf (dump_file, "%d, ", INSN_UID (i1));
953 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
954
955 fprintf (dump_file, "original costs ");
956 if (i0)
957 fprintf (dump_file, "%d + ", i0_cost);
958 if (i1 && INSN_UID (i1) != INSN_UID (i2))
959 fprintf (dump_file, "%d + ", i1_cost);
960 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
961
962 if (newi2pat)
963 fprintf (dump_file, "replacement costs %d + %d = %d\n",
964 new_i2_cost, new_i3_cost, new_cost);
965 else
966 fprintf (dump_file, "replacement cost %d\n", new_cost);
967 }
968
969 if (reject)
970 return false;
971
972 /* Update the uid_insn_cost array with the replacement costs. */
973 INSN_COST (i2) = new_i2_cost;
974 INSN_COST (i3) = new_i3_cost;
975 if (i1)
976 {
977 INSN_COST (i1) = 0;
978 if (i0)
979 INSN_COST (i0) = 0;
980 }
981
982 return true;
983 }
984
985
986 /* Delete any insns that copy a register to itself.
987 Return true if the CFG was changed. */
988
989 static bool
990 delete_noop_moves (void)
991 {
992 rtx_insn *insn, *next;
993 basic_block bb;
994
995 bool edges_deleted = false;
996
997 FOR_EACH_BB_FN (bb, cfun)
998 {
999 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
1000 {
1001 next = NEXT_INSN (insn);
1002 if (INSN_P (insn) && noop_move_p (insn))
1003 {
1004 if (dump_file)
1005 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1006
1007 edges_deleted |= delete_insn_and_edges (insn);
1008 }
1009 }
1010 }
1011
1012 return edges_deleted;
1013 }
1014
1015 \f
1016 /* Return false if we do not want to (or cannot) combine DEF. */
1017 static bool
1018 can_combine_def_p (df_ref def)
1019 {
1020 /* Do not consider if it is pre/post modification in MEM. */
1021 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1022 return false;
1023
1024 unsigned int regno = DF_REF_REGNO (def);
1025
1026 /* Do not combine frame pointer adjustments. */
1027 if ((regno == FRAME_POINTER_REGNUM
1028 && (!reload_completed || frame_pointer_needed))
1029 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1030 && regno == HARD_FRAME_POINTER_REGNUM
1031 && (!reload_completed || frame_pointer_needed))
1032 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1033 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1034 return false;
1035
1036 return true;
1037 }
1038
1039 /* Return false if we do not want to (or cannot) combine USE. */
1040 static bool
1041 can_combine_use_p (df_ref use)
1042 {
1043 /* Do not consider the usage of the stack pointer by function call. */
1044 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1045 return false;
1046
1047 return true;
1048 }
1049
1050 /* Fill in log links field for all insns. */
1051
1052 static void
1053 create_log_links (void)
1054 {
1055 basic_block bb;
1056 rtx_insn **next_use;
1057 rtx_insn *insn;
1058 df_ref def, use;
1059
1060 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1061
1062 /* Pass through each block from the end, recording the uses of each
1063 register and establishing log links when def is encountered.
1064 Note that we do not clear next_use array in order to save time,
1065 so we have to test whether the use is in the same basic block as def.
1066
1067 There are a few cases below when we do not consider the definition or
1068 usage -- these are taken from original flow.c did. Don't ask me why it is
1069 done this way; I don't know and if it works, I don't want to know. */
1070
1071 FOR_EACH_BB_FN (bb, cfun)
1072 {
1073 FOR_BB_INSNS_REVERSE (bb, insn)
1074 {
1075 if (!NONDEBUG_INSN_P (insn))
1076 continue;
1077
1078 /* Log links are created only once. */
1079 gcc_assert (!LOG_LINKS (insn));
1080
1081 FOR_EACH_INSN_DEF (def, insn)
1082 {
1083 unsigned int regno = DF_REF_REGNO (def);
1084 rtx_insn *use_insn;
1085
1086 if (!next_use[regno])
1087 continue;
1088
1089 if (!can_combine_def_p (def))
1090 continue;
1091
1092 use_insn = next_use[regno];
1093 next_use[regno] = NULL;
1094
1095 if (BLOCK_FOR_INSN (use_insn) != bb)
1096 continue;
1097
1098 /* flow.c claimed:
1099
1100 We don't build a LOG_LINK for hard registers contained
1101 in ASM_OPERANDs. If these registers get replaced,
1102 we might wind up changing the semantics of the insn,
1103 even if reload can make what appear to be valid
1104 assignments later. */
1105 if (regno < FIRST_PSEUDO_REGISTER
1106 && asm_noperands (PATTERN (use_insn)) >= 0)
1107 continue;
1108
1109 /* Don't add duplicate links between instructions. */
1110 struct insn_link *links;
1111 FOR_EACH_LOG_LINK (links, use_insn)
1112 if (insn == links->insn && regno == links->regno)
1113 break;
1114
1115 if (!links)
1116 LOG_LINKS (use_insn)
1117 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1118 }
1119
1120 FOR_EACH_INSN_USE (use, insn)
1121 if (can_combine_use_p (use))
1122 next_use[DF_REF_REGNO (use)] = insn;
1123 }
1124 }
1125
1126 free (next_use);
1127 }
1128
1129 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1130 true if we found a LOG_LINK that proves that A feeds B. This only works
1131 if there are no instructions between A and B which could have a link
1132 depending on A, since in that case we would not record a link for B.
1133 We also check the implicit dependency created by a cc0 setter/user
1134 pair. */
1135
1136 static bool
1137 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1138 {
1139 struct insn_link *links;
1140 FOR_EACH_LOG_LINK (links, b)
1141 if (links->insn == a)
1142 return true;
1143 if (HAVE_cc0 && sets_cc0_p (a))
1144 return true;
1145 return false;
1146 }
1147 \f
1148 /* Main entry point for combiner. F is the first insn of the function.
1149 NREGS is the first unused pseudo-reg number.
1150
1151 Return nonzero if the CFG was changed (e.g. if the combiner has
1152 turned an indirect jump instruction into a direct jump). */
1153 static int
1154 combine_instructions (rtx_insn *f, unsigned int nregs)
1155 {
1156 rtx_insn *insn, *next;
1157 rtx_insn *prev;
1158 struct insn_link *links, *nextlinks;
1159 rtx_insn *first;
1160 basic_block last_bb;
1161
1162 int new_direct_jump_p = 0;
1163
1164 for (first = f; first && !NONDEBUG_INSN_P (first); )
1165 first = NEXT_INSN (first);
1166 if (!first)
1167 return 0;
1168
1169 combine_attempts = 0;
1170 combine_merges = 0;
1171 combine_extras = 0;
1172 combine_successes = 0;
1173
1174 rtl_hooks = combine_rtl_hooks;
1175
1176 reg_stat.safe_grow_cleared (nregs);
1177
1178 init_recog_no_volatile ();
1179
1180 /* Allocate array for insn info. */
1181 max_uid_known = get_max_uid ();
1182 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1183 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1184 gcc_obstack_init (&insn_link_obstack);
1185
1186 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1187
1188 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1189 problems when, for example, we have j <<= 1 in a loop. */
1190
1191 nonzero_sign_valid = 0;
1192 label_tick = label_tick_ebb_start = 1;
1193
1194 /* Scan all SETs and see if we can deduce anything about what
1195 bits are known to be zero for some registers and how many copies
1196 of the sign bit are known to exist for those registers.
1197
1198 Also set any known values so that we can use it while searching
1199 for what bits are known to be set. */
1200
1201 setup_incoming_promotions (first);
1202 /* Allow the entry block and the first block to fall into the same EBB.
1203 Conceptually the incoming promotions are assigned to the entry block. */
1204 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1205
1206 create_log_links ();
1207 FOR_EACH_BB_FN (this_basic_block, cfun)
1208 {
1209 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1210 last_call_luid = 0;
1211 mem_last_set = -1;
1212
1213 label_tick++;
1214 if (!single_pred_p (this_basic_block)
1215 || single_pred (this_basic_block) != last_bb)
1216 label_tick_ebb_start = label_tick;
1217 last_bb = this_basic_block;
1218
1219 FOR_BB_INSNS (this_basic_block, insn)
1220 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1221 {
1222 rtx links;
1223
1224 subst_low_luid = DF_INSN_LUID (insn);
1225 subst_insn = insn;
1226
1227 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1228 insn);
1229 record_dead_and_set_regs (insn);
1230
1231 if (AUTO_INC_DEC)
1232 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1233 if (REG_NOTE_KIND (links) == REG_INC)
1234 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1235 insn);
1236
1237 /* Record the current insn_cost of this instruction. */
1238 if (NONJUMP_INSN_P (insn))
1239 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1240 if (dump_file)
1241 {
1242 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1243 dump_insn_slim (dump_file, insn);
1244 }
1245 }
1246 }
1247
1248 nonzero_sign_valid = 1;
1249
1250 /* Now scan all the insns in forward order. */
1251 label_tick = label_tick_ebb_start = 1;
1252 init_reg_last ();
1253 setup_incoming_promotions (first);
1254 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1255 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1256
1257 FOR_EACH_BB_FN (this_basic_block, cfun)
1258 {
1259 rtx_insn *last_combined_insn = NULL;
1260
1261 /* Ignore instruction combination in basic blocks that are going to
1262 be removed as unreachable anyway. See PR82386. */
1263 if (EDGE_COUNT (this_basic_block->preds) == 0)
1264 continue;
1265
1266 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1267 last_call_luid = 0;
1268 mem_last_set = -1;
1269
1270 label_tick++;
1271 if (!single_pred_p (this_basic_block)
1272 || single_pred (this_basic_block) != last_bb)
1273 label_tick_ebb_start = label_tick;
1274 last_bb = this_basic_block;
1275
1276 rtl_profile_for_bb (this_basic_block);
1277 for (insn = BB_HEAD (this_basic_block);
1278 insn != NEXT_INSN (BB_END (this_basic_block));
1279 insn = next ? next : NEXT_INSN (insn))
1280 {
1281 next = 0;
1282 if (!NONDEBUG_INSN_P (insn))
1283 continue;
1284
1285 while (last_combined_insn
1286 && (!NONDEBUG_INSN_P (last_combined_insn)
1287 || last_combined_insn->deleted ()))
1288 last_combined_insn = PREV_INSN (last_combined_insn);
1289 if (last_combined_insn == NULL_RTX
1290 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1291 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1292 last_combined_insn = insn;
1293
1294 /* See if we know about function return values before this
1295 insn based upon SUBREG flags. */
1296 check_promoted_subreg (insn, PATTERN (insn));
1297
1298 /* See if we can find hardregs and subreg of pseudos in
1299 narrower modes. This could help turning TRUNCATEs
1300 into SUBREGs. */
1301 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1302
1303 /* Try this insn with each insn it links back to. */
1304
1305 FOR_EACH_LOG_LINK (links, insn)
1306 if ((next = try_combine (insn, links->insn, NULL,
1307 NULL, &new_direct_jump_p,
1308 last_combined_insn)) != 0)
1309 {
1310 statistics_counter_event (cfun, "two-insn combine", 1);
1311 goto retry;
1312 }
1313
1314 /* Try each sequence of three linked insns ending with this one. */
1315
1316 if (max_combine >= 3)
1317 FOR_EACH_LOG_LINK (links, insn)
1318 {
1319 rtx_insn *link = links->insn;
1320
1321 /* If the linked insn has been replaced by a note, then there
1322 is no point in pursuing this chain any further. */
1323 if (NOTE_P (link))
1324 continue;
1325
1326 FOR_EACH_LOG_LINK (nextlinks, link)
1327 if ((next = try_combine (insn, link, nextlinks->insn,
1328 NULL, &new_direct_jump_p,
1329 last_combined_insn)) != 0)
1330 {
1331 statistics_counter_event (cfun, "three-insn combine", 1);
1332 goto retry;
1333 }
1334 }
1335
1336 /* Try to combine a jump insn that uses CC0
1337 with a preceding insn that sets CC0, and maybe with its
1338 logical predecessor as well.
1339 This is how we make decrement-and-branch insns.
1340 We need this special code because data flow connections
1341 via CC0 do not get entered in LOG_LINKS. */
1342
1343 if (HAVE_cc0
1344 && JUMP_P (insn)
1345 && (prev = prev_nonnote_insn (insn)) != 0
1346 && NONJUMP_INSN_P (prev)
1347 && sets_cc0_p (PATTERN (prev)))
1348 {
1349 if ((next = try_combine (insn, prev, NULL, NULL,
1350 &new_direct_jump_p,
1351 last_combined_insn)) != 0)
1352 goto retry;
1353
1354 FOR_EACH_LOG_LINK (nextlinks, prev)
1355 if ((next = try_combine (insn, prev, nextlinks->insn,
1356 NULL, &new_direct_jump_p,
1357 last_combined_insn)) != 0)
1358 goto retry;
1359 }
1360
1361 /* Do the same for an insn that explicitly references CC0. */
1362 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1363 && (prev = prev_nonnote_insn (insn)) != 0
1364 && NONJUMP_INSN_P (prev)
1365 && sets_cc0_p (PATTERN (prev))
1366 && GET_CODE (PATTERN (insn)) == SET
1367 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1368 {
1369 if ((next = try_combine (insn, prev, NULL, NULL,
1370 &new_direct_jump_p,
1371 last_combined_insn)) != 0)
1372 goto retry;
1373
1374 FOR_EACH_LOG_LINK (nextlinks, prev)
1375 if ((next = try_combine (insn, prev, nextlinks->insn,
1376 NULL, &new_direct_jump_p,
1377 last_combined_insn)) != 0)
1378 goto retry;
1379 }
1380
1381 /* Finally, see if any of the insns that this insn links to
1382 explicitly references CC0. If so, try this insn, that insn,
1383 and its predecessor if it sets CC0. */
1384 if (HAVE_cc0)
1385 {
1386 FOR_EACH_LOG_LINK (links, insn)
1387 if (NONJUMP_INSN_P (links->insn)
1388 && GET_CODE (PATTERN (links->insn)) == SET
1389 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1390 && (prev = prev_nonnote_insn (links->insn)) != 0
1391 && NONJUMP_INSN_P (prev)
1392 && sets_cc0_p (PATTERN (prev))
1393 && (next = try_combine (insn, links->insn,
1394 prev, NULL, &new_direct_jump_p,
1395 last_combined_insn)) != 0)
1396 goto retry;
1397 }
1398
1399 /* Try combining an insn with two different insns whose results it
1400 uses. */
1401 if (max_combine >= 3)
1402 FOR_EACH_LOG_LINK (links, insn)
1403 for (nextlinks = links->next; nextlinks;
1404 nextlinks = nextlinks->next)
1405 if ((next = try_combine (insn, links->insn,
1406 nextlinks->insn, NULL,
1407 &new_direct_jump_p,
1408 last_combined_insn)) != 0)
1409
1410 {
1411 statistics_counter_event (cfun, "three-insn combine", 1);
1412 goto retry;
1413 }
1414
1415 /* Try four-instruction combinations. */
1416 if (max_combine >= 4)
1417 FOR_EACH_LOG_LINK (links, insn)
1418 {
1419 struct insn_link *next1;
1420 rtx_insn *link = links->insn;
1421
1422 /* If the linked insn has been replaced by a note, then there
1423 is no point in pursuing this chain any further. */
1424 if (NOTE_P (link))
1425 continue;
1426
1427 FOR_EACH_LOG_LINK (next1, link)
1428 {
1429 rtx_insn *link1 = next1->insn;
1430 if (NOTE_P (link1))
1431 continue;
1432 /* I0 -> I1 -> I2 -> I3. */
1433 FOR_EACH_LOG_LINK (nextlinks, link1)
1434 if ((next = try_combine (insn, link, link1,
1435 nextlinks->insn,
1436 &new_direct_jump_p,
1437 last_combined_insn)) != 0)
1438 {
1439 statistics_counter_event (cfun, "four-insn combine", 1);
1440 goto retry;
1441 }
1442 /* I0, I1 -> I2, I2 -> I3. */
1443 for (nextlinks = next1->next; nextlinks;
1444 nextlinks = nextlinks->next)
1445 if ((next = try_combine (insn, link, link1,
1446 nextlinks->insn,
1447 &new_direct_jump_p,
1448 last_combined_insn)) != 0)
1449 {
1450 statistics_counter_event (cfun, "four-insn combine", 1);
1451 goto retry;
1452 }
1453 }
1454
1455 for (next1 = links->next; next1; next1 = next1->next)
1456 {
1457 rtx_insn *link1 = next1->insn;
1458 if (NOTE_P (link1))
1459 continue;
1460 /* I0 -> I2; I1, I2 -> I3. */
1461 FOR_EACH_LOG_LINK (nextlinks, link)
1462 if ((next = try_combine (insn, link, link1,
1463 nextlinks->insn,
1464 &new_direct_jump_p,
1465 last_combined_insn)) != 0)
1466 {
1467 statistics_counter_event (cfun, "four-insn combine", 1);
1468 goto retry;
1469 }
1470 /* I0 -> I1; I1, I2 -> I3. */
1471 FOR_EACH_LOG_LINK (nextlinks, link1)
1472 if ((next = try_combine (insn, link, link1,
1473 nextlinks->insn,
1474 &new_direct_jump_p,
1475 last_combined_insn)) != 0)
1476 {
1477 statistics_counter_event (cfun, "four-insn combine", 1);
1478 goto retry;
1479 }
1480 }
1481 }
1482
1483 /* Try this insn with each REG_EQUAL note it links back to. */
1484 FOR_EACH_LOG_LINK (links, insn)
1485 {
1486 rtx set, note;
1487 rtx_insn *temp = links->insn;
1488 if ((set = single_set (temp)) != 0
1489 && (note = find_reg_equal_equiv_note (temp)) != 0
1490 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1491 /* Avoid using a register that may already been marked
1492 dead by an earlier instruction. */
1493 && ! unmentioned_reg_p (note, SET_SRC (set))
1494 && (GET_MODE (note) == VOIDmode
1495 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1496 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1497 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1498 || (GET_MODE (XEXP (SET_DEST (set), 0))
1499 == GET_MODE (note))))))
1500 {
1501 /* Temporarily replace the set's source with the
1502 contents of the REG_EQUAL note. The insn will
1503 be deleted or recognized by try_combine. */
1504 rtx orig_src = SET_SRC (set);
1505 rtx orig_dest = SET_DEST (set);
1506 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1507 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1508 SET_SRC (set) = note;
1509 i2mod = temp;
1510 i2mod_old_rhs = copy_rtx (orig_src);
1511 i2mod_new_rhs = copy_rtx (note);
1512 next = try_combine (insn, i2mod, NULL, NULL,
1513 &new_direct_jump_p,
1514 last_combined_insn);
1515 i2mod = NULL;
1516 if (next)
1517 {
1518 statistics_counter_event (cfun, "insn-with-note combine", 1);
1519 goto retry;
1520 }
1521 SET_SRC (set) = orig_src;
1522 SET_DEST (set) = orig_dest;
1523 }
1524 }
1525
1526 if (!NOTE_P (insn))
1527 record_dead_and_set_regs (insn);
1528
1529 retry:
1530 ;
1531 }
1532 }
1533
1534 default_rtl_profile ();
1535 clear_bb_flags ();
1536 new_direct_jump_p |= purge_all_dead_edges ();
1537 new_direct_jump_p |= delete_noop_moves ();
1538
1539 /* Clean up. */
1540 obstack_free (&insn_link_obstack, NULL);
1541 free (uid_log_links);
1542 free (uid_insn_cost);
1543 reg_stat.release ();
1544
1545 {
1546 struct undo *undo, *next;
1547 for (undo = undobuf.frees; undo; undo = next)
1548 {
1549 next = undo->next;
1550 free (undo);
1551 }
1552 undobuf.frees = 0;
1553 }
1554
1555 total_attempts += combine_attempts;
1556 total_merges += combine_merges;
1557 total_extras += combine_extras;
1558 total_successes += combine_successes;
1559
1560 nonzero_sign_valid = 0;
1561 rtl_hooks = general_rtl_hooks;
1562
1563 /* Make recognizer allow volatile MEMs again. */
1564 init_recog ();
1565
1566 return new_direct_jump_p;
1567 }
1568
1569 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1570
1571 static void
1572 init_reg_last (void)
1573 {
1574 unsigned int i;
1575 reg_stat_type *p;
1576
1577 FOR_EACH_VEC_ELT (reg_stat, i, p)
1578 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1579 }
1580 \f
1581 /* Set up any promoted values for incoming argument registers. */
1582
1583 static void
1584 setup_incoming_promotions (rtx_insn *first)
1585 {
1586 tree arg;
1587 bool strictly_local = false;
1588
1589 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1590 arg = DECL_CHAIN (arg))
1591 {
1592 rtx x, reg = DECL_INCOMING_RTL (arg);
1593 int uns1, uns3;
1594 machine_mode mode1, mode2, mode3, mode4;
1595
1596 /* Only continue if the incoming argument is in a register. */
1597 if (!REG_P (reg))
1598 continue;
1599
1600 /* Determine, if possible, whether all call sites of the current
1601 function lie within the current compilation unit. (This does
1602 take into account the exporting of a function via taking its
1603 address, and so forth.) */
1604 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1605
1606 /* The mode and signedness of the argument before any promotions happen
1607 (equal to the mode of the pseudo holding it at that stage). */
1608 mode1 = TYPE_MODE (TREE_TYPE (arg));
1609 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1610
1611 /* The mode and signedness of the argument after any source language and
1612 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1613 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1614 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1615
1616 /* The mode and signedness of the argument as it is actually passed,
1617 see assign_parm_setup_reg in function.c. */
1618 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1619 TREE_TYPE (cfun->decl), 0);
1620
1621 /* The mode of the register in which the argument is being passed. */
1622 mode4 = GET_MODE (reg);
1623
1624 /* Eliminate sign extensions in the callee when:
1625 (a) A mode promotion has occurred; */
1626 if (mode1 == mode3)
1627 continue;
1628 /* (b) The mode of the register is the same as the mode of
1629 the argument as it is passed; */
1630 if (mode3 != mode4)
1631 continue;
1632 /* (c) There's no language level extension; */
1633 if (mode1 == mode2)
1634 ;
1635 /* (c.1) All callers are from the current compilation unit. If that's
1636 the case we don't have to rely on an ABI, we only have to know
1637 what we're generating right now, and we know that we will do the
1638 mode1 to mode2 promotion with the given sign. */
1639 else if (!strictly_local)
1640 continue;
1641 /* (c.2) The combination of the two promotions is useful. This is
1642 true when the signs match, or if the first promotion is unsigned.
1643 In the later case, (sign_extend (zero_extend x)) is the same as
1644 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1645 else if (uns1)
1646 uns3 = true;
1647 else if (uns3)
1648 continue;
1649
1650 /* Record that the value was promoted from mode1 to mode3,
1651 so that any sign extension at the head of the current
1652 function may be eliminated. */
1653 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1654 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1655 record_value_for_reg (reg, first, x);
1656 }
1657 }
1658
1659 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1660 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1661 because some machines (maybe most) will actually do the sign-extension and
1662 this is the conservative approach.
1663
1664 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1665 kludge. */
1666
1667 static rtx
1668 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1669 {
1670 scalar_int_mode int_mode;
1671 if (CONST_INT_P (src)
1672 && is_a <scalar_int_mode> (mode, &int_mode)
1673 && GET_MODE_PRECISION (int_mode) < prec
1674 && INTVAL (src) > 0
1675 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1676 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1677
1678 return src;
1679 }
1680
1681 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1682 and SET. */
1683
1684 static void
1685 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1686 rtx x)
1687 {
1688 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1689 unsigned HOST_WIDE_INT bits = 0;
1690 rtx reg_equal = NULL, src = SET_SRC (set);
1691 unsigned int num = 0;
1692
1693 if (reg_equal_note)
1694 reg_equal = XEXP (reg_equal_note, 0);
1695
1696 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1697 {
1698 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1699 if (reg_equal)
1700 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1701 }
1702
1703 /* Don't call nonzero_bits if it cannot change anything. */
1704 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1705 {
1706 machine_mode mode = GET_MODE (x);
1707 if (GET_MODE_CLASS (mode) == MODE_INT
1708 && HWI_COMPUTABLE_MODE_P (mode))
1709 mode = nonzero_bits_mode;
1710 bits = nonzero_bits (src, mode);
1711 if (reg_equal && bits)
1712 bits &= nonzero_bits (reg_equal, mode);
1713 rsp->nonzero_bits |= bits;
1714 }
1715
1716 /* Don't call num_sign_bit_copies if it cannot change anything. */
1717 if (rsp->sign_bit_copies != 1)
1718 {
1719 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1720 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1721 {
1722 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1723 if (num == 0 || numeq > num)
1724 num = numeq;
1725 }
1726 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1727 rsp->sign_bit_copies = num;
1728 }
1729 }
1730
1731 /* Called via note_stores. If X is a pseudo that is narrower than
1732 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1733
1734 If we are setting only a portion of X and we can't figure out what
1735 portion, assume all bits will be used since we don't know what will
1736 be happening.
1737
1738 Similarly, set how many bits of X are known to be copies of the sign bit
1739 at all locations in the function. This is the smallest number implied
1740 by any set of X. */
1741
1742 static void
1743 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1744 {
1745 rtx_insn *insn = (rtx_insn *) data;
1746 scalar_int_mode mode;
1747
1748 if (REG_P (x)
1749 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1750 /* If this register is undefined at the start of the file, we can't
1751 say what its contents were. */
1752 && ! REGNO_REG_SET_P
1753 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1754 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1755 && HWI_COMPUTABLE_MODE_P (mode))
1756 {
1757 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1758
1759 if (set == 0 || GET_CODE (set) == CLOBBER)
1760 {
1761 rsp->nonzero_bits = GET_MODE_MASK (mode);
1762 rsp->sign_bit_copies = 1;
1763 return;
1764 }
1765
1766 /* Should not happen as we only using pseduo registers. */
1767 gcc_assert (GET_CODE (set) != CLOBBER_HIGH);
1768
1769 /* If this register is being initialized using itself, and the
1770 register is uninitialized in this basic block, and there are
1771 no LOG_LINKS which set the register, then part of the
1772 register is uninitialized. In that case we can't assume
1773 anything about the number of nonzero bits.
1774
1775 ??? We could do better if we checked this in
1776 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1777 could avoid making assumptions about the insn which initially
1778 sets the register, while still using the information in other
1779 insns. We would have to be careful to check every insn
1780 involved in the combination. */
1781
1782 if (insn
1783 && reg_referenced_p (x, PATTERN (insn))
1784 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1785 REGNO (x)))
1786 {
1787 struct insn_link *link;
1788
1789 FOR_EACH_LOG_LINK (link, insn)
1790 if (dead_or_set_p (link->insn, x))
1791 break;
1792 if (!link)
1793 {
1794 rsp->nonzero_bits = GET_MODE_MASK (mode);
1795 rsp->sign_bit_copies = 1;
1796 return;
1797 }
1798 }
1799
1800 /* If this is a complex assignment, see if we can convert it into a
1801 simple assignment. */
1802 set = expand_field_assignment (set);
1803
1804 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1805 set what we know about X. */
1806
1807 if (SET_DEST (set) == x
1808 || (paradoxical_subreg_p (SET_DEST (set))
1809 && SUBREG_REG (SET_DEST (set)) == x))
1810 update_rsp_from_reg_equal (rsp, insn, set, x);
1811 else
1812 {
1813 rsp->nonzero_bits = GET_MODE_MASK (mode);
1814 rsp->sign_bit_copies = 1;
1815 }
1816 }
1817 }
1818 \f
1819 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1820 optionally insns that were previously combined into I3 or that will be
1821 combined into the merger of INSN and I3. The order is PRED, PRED2,
1822 INSN, SUCC, SUCC2, I3.
1823
1824 Return 0 if the combination is not allowed for any reason.
1825
1826 If the combination is allowed, *PDEST will be set to the single
1827 destination of INSN and *PSRC to the single source, and this function
1828 will return 1. */
1829
1830 static int
1831 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1832 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1833 rtx *pdest, rtx *psrc)
1834 {
1835 int i;
1836 const_rtx set = 0;
1837 rtx src, dest;
1838 rtx_insn *p;
1839 rtx link;
1840 bool all_adjacent = true;
1841 int (*is_volatile_p) (const_rtx);
1842
1843 if (succ)
1844 {
1845 if (succ2)
1846 {
1847 if (next_active_insn (succ2) != i3)
1848 all_adjacent = false;
1849 if (next_active_insn (succ) != succ2)
1850 all_adjacent = false;
1851 }
1852 else if (next_active_insn (succ) != i3)
1853 all_adjacent = false;
1854 if (next_active_insn (insn) != succ)
1855 all_adjacent = false;
1856 }
1857 else if (next_active_insn (insn) != i3)
1858 all_adjacent = false;
1859
1860 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1861 or a PARALLEL consisting of such a SET and CLOBBERs.
1862
1863 If INSN has CLOBBER parallel parts, ignore them for our processing.
1864 By definition, these happen during the execution of the insn. When it
1865 is merged with another insn, all bets are off. If they are, in fact,
1866 needed and aren't also supplied in I3, they may be added by
1867 recog_for_combine. Otherwise, it won't match.
1868
1869 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1870 note.
1871
1872 Get the source and destination of INSN. If more than one, can't
1873 combine. */
1874
1875 if (GET_CODE (PATTERN (insn)) == SET)
1876 set = PATTERN (insn);
1877 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1878 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1879 {
1880 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1881 {
1882 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1883
1884 switch (GET_CODE (elt))
1885 {
1886 /* This is important to combine floating point insns
1887 for the SH4 port. */
1888 case USE:
1889 /* Combining an isolated USE doesn't make sense.
1890 We depend here on combinable_i3pat to reject them. */
1891 /* The code below this loop only verifies that the inputs of
1892 the SET in INSN do not change. We call reg_set_between_p
1893 to verify that the REG in the USE does not change between
1894 I3 and INSN.
1895 If the USE in INSN was for a pseudo register, the matching
1896 insn pattern will likely match any register; combining this
1897 with any other USE would only be safe if we knew that the
1898 used registers have identical values, or if there was
1899 something to tell them apart, e.g. different modes. For
1900 now, we forgo such complicated tests and simply disallow
1901 combining of USES of pseudo registers with any other USE. */
1902 if (REG_P (XEXP (elt, 0))
1903 && GET_CODE (PATTERN (i3)) == PARALLEL)
1904 {
1905 rtx i3pat = PATTERN (i3);
1906 int i = XVECLEN (i3pat, 0) - 1;
1907 unsigned int regno = REGNO (XEXP (elt, 0));
1908
1909 do
1910 {
1911 rtx i3elt = XVECEXP (i3pat, 0, i);
1912
1913 if (GET_CODE (i3elt) == USE
1914 && REG_P (XEXP (i3elt, 0))
1915 && (REGNO (XEXP (i3elt, 0)) == regno
1916 ? reg_set_between_p (XEXP (elt, 0),
1917 PREV_INSN (insn), i3)
1918 : regno >= FIRST_PSEUDO_REGISTER))
1919 return 0;
1920 }
1921 while (--i >= 0);
1922 }
1923 break;
1924
1925 /* We can ignore CLOBBERs. */
1926 case CLOBBER:
1927 case CLOBBER_HIGH:
1928 break;
1929
1930 case SET:
1931 /* Ignore SETs whose result isn't used but not those that
1932 have side-effects. */
1933 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1934 && insn_nothrow_p (insn)
1935 && !side_effects_p (elt))
1936 break;
1937
1938 /* If we have already found a SET, this is a second one and
1939 so we cannot combine with this insn. */
1940 if (set)
1941 return 0;
1942
1943 set = elt;
1944 break;
1945
1946 default:
1947 /* Anything else means we can't combine. */
1948 return 0;
1949 }
1950 }
1951
1952 if (set == 0
1953 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1954 so don't do anything with it. */
1955 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1956 return 0;
1957 }
1958 else
1959 return 0;
1960
1961 if (set == 0)
1962 return 0;
1963
1964 /* The simplification in expand_field_assignment may call back to
1965 get_last_value, so set safe guard here. */
1966 subst_low_luid = DF_INSN_LUID (insn);
1967
1968 set = expand_field_assignment (set);
1969 src = SET_SRC (set), dest = SET_DEST (set);
1970
1971 /* Do not eliminate user-specified register if it is in an
1972 asm input because we may break the register asm usage defined
1973 in GCC manual if allow to do so.
1974 Be aware that this may cover more cases than we expect but this
1975 should be harmless. */
1976 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1977 && extract_asm_operands (PATTERN (i3)))
1978 return 0;
1979
1980 /* Don't eliminate a store in the stack pointer. */
1981 if (dest == stack_pointer_rtx
1982 /* Don't combine with an insn that sets a register to itself if it has
1983 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1984 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1985 /* Can't merge an ASM_OPERANDS. */
1986 || GET_CODE (src) == ASM_OPERANDS
1987 /* Can't merge a function call. */
1988 || GET_CODE (src) == CALL
1989 /* Don't eliminate a function call argument. */
1990 || (CALL_P (i3)
1991 && (find_reg_fusage (i3, USE, dest)
1992 || (REG_P (dest)
1993 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1994 && global_regs[REGNO (dest)])))
1995 /* Don't substitute into an incremented register. */
1996 || FIND_REG_INC_NOTE (i3, dest)
1997 || (succ && FIND_REG_INC_NOTE (succ, dest))
1998 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1999 /* Don't substitute into a non-local goto, this confuses CFG. */
2000 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
2001 /* Make sure that DEST is not used after INSN but before SUCC, or
2002 after SUCC and before SUCC2, or after SUCC2 but before I3. */
2003 || (!all_adjacent
2004 && ((succ2
2005 && (reg_used_between_p (dest, succ2, i3)
2006 || reg_used_between_p (dest, succ, succ2)))
2007 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
2008 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
2009 || (succ
2010 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
2011 that case SUCC is not in the insn stream, so use SUCC2
2012 instead for this test. */
2013 && reg_used_between_p (dest, insn,
2014 succ2
2015 && INSN_UID (succ) == INSN_UID (succ2)
2016 ? succ2 : succ))))
2017 /* Make sure that the value that is to be substituted for the register
2018 does not use any registers whose values alter in between. However,
2019 If the insns are adjacent, a use can't cross a set even though we
2020 think it might (this can happen for a sequence of insns each setting
2021 the same destination; last_set of that register might point to
2022 a NOTE). If INSN has a REG_EQUIV note, the register is always
2023 equivalent to the memory so the substitution is valid even if there
2024 are intervening stores. Also, don't move a volatile asm or
2025 UNSPEC_VOLATILE across any other insns. */
2026 || (! all_adjacent
2027 && (((!MEM_P (src)
2028 || ! find_reg_note (insn, REG_EQUIV, src))
2029 && modified_between_p (src, insn, i3))
2030 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2031 || GET_CODE (src) == UNSPEC_VOLATILE))
2032 /* Don't combine across a CALL_INSN, because that would possibly
2033 change whether the life span of some REGs crosses calls or not,
2034 and it is a pain to update that information.
2035 Exception: if source is a constant, moving it later can't hurt.
2036 Accept that as a special case. */
2037 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2038 return 0;
2039
2040 /* DEST must either be a REG or CC0. */
2041 if (REG_P (dest))
2042 {
2043 /* If register alignment is being enforced for multi-word items in all
2044 cases except for parameters, it is possible to have a register copy
2045 insn referencing a hard register that is not allowed to contain the
2046 mode being copied and which would not be valid as an operand of most
2047 insns. Eliminate this problem by not combining with such an insn.
2048
2049 Also, on some machines we don't want to extend the life of a hard
2050 register. */
2051
2052 if (REG_P (src)
2053 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2054 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2055 /* Don't extend the life of a hard register unless it is
2056 user variable (if we have few registers) or it can't
2057 fit into the desired register (meaning something special
2058 is going on).
2059 Also avoid substituting a return register into I3, because
2060 reload can't handle a conflict with constraints of other
2061 inputs. */
2062 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2063 && !targetm.hard_regno_mode_ok (REGNO (src),
2064 GET_MODE (src)))))
2065 return 0;
2066 }
2067 else if (GET_CODE (dest) != CC0)
2068 return 0;
2069
2070
2071 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2072 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2073 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2074 {
2075 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2076
2077 /* If the clobber represents an earlyclobber operand, we must not
2078 substitute an expression containing the clobbered register.
2079 As we do not analyze the constraint strings here, we have to
2080 make the conservative assumption. However, if the register is
2081 a fixed hard reg, the clobber cannot represent any operand;
2082 we leave it up to the machine description to either accept or
2083 reject use-and-clobber patterns. */
2084 if (!REG_P (reg)
2085 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2086 || !fixed_regs[REGNO (reg)])
2087 if (reg_overlap_mentioned_p (reg, src))
2088 return 0;
2089 }
2090
2091 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2092 or not), reject, unless nothing volatile comes between it and I3 */
2093
2094 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2095 {
2096 /* Make sure neither succ nor succ2 contains a volatile reference. */
2097 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2098 return 0;
2099 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2100 return 0;
2101 /* We'll check insns between INSN and I3 below. */
2102 }
2103
2104 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2105 to be an explicit register variable, and was chosen for a reason. */
2106
2107 if (GET_CODE (src) == ASM_OPERANDS
2108 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2109 return 0;
2110
2111 /* If INSN contains volatile references (specifically volatile MEMs),
2112 we cannot combine across any other volatile references.
2113 Even if INSN doesn't contain volatile references, any intervening
2114 volatile insn might affect machine state. */
2115
2116 is_volatile_p = volatile_refs_p (PATTERN (insn))
2117 ? volatile_refs_p
2118 : volatile_insn_p;
2119
2120 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2121 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2122 return 0;
2123
2124 /* If INSN contains an autoincrement or autodecrement, make sure that
2125 register is not used between there and I3, and not already used in
2126 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2127 Also insist that I3 not be a jump; if it were one
2128 and the incremented register were spilled, we would lose. */
2129
2130 if (AUTO_INC_DEC)
2131 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2132 if (REG_NOTE_KIND (link) == REG_INC
2133 && (JUMP_P (i3)
2134 || reg_used_between_p (XEXP (link, 0), insn, i3)
2135 || (pred != NULL_RTX
2136 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2137 || (pred2 != NULL_RTX
2138 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2139 || (succ != NULL_RTX
2140 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2141 || (succ2 != NULL_RTX
2142 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2143 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2144 return 0;
2145
2146 /* Don't combine an insn that follows a CC0-setting insn.
2147 An insn that uses CC0 must not be separated from the one that sets it.
2148 We do, however, allow I2 to follow a CC0-setting insn if that insn
2149 is passed as I1; in that case it will be deleted also.
2150 We also allow combining in this case if all the insns are adjacent
2151 because that would leave the two CC0 insns adjacent as well.
2152 It would be more logical to test whether CC0 occurs inside I1 or I2,
2153 but that would be much slower, and this ought to be equivalent. */
2154
2155 if (HAVE_cc0)
2156 {
2157 p = prev_nonnote_insn (insn);
2158 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2159 && ! all_adjacent)
2160 return 0;
2161 }
2162
2163 /* If we get here, we have passed all the tests and the combination is
2164 to be allowed. */
2165
2166 *pdest = dest;
2167 *psrc = src;
2168
2169 return 1;
2170 }
2171 \f
2172 /* LOC is the location within I3 that contains its pattern or the component
2173 of a PARALLEL of the pattern. We validate that it is valid for combining.
2174
2175 One problem is if I3 modifies its output, as opposed to replacing it
2176 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2177 doing so would produce an insn that is not equivalent to the original insns.
2178
2179 Consider:
2180
2181 (set (reg:DI 101) (reg:DI 100))
2182 (set (subreg:SI (reg:DI 101) 0) <foo>)
2183
2184 This is NOT equivalent to:
2185
2186 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2187 (set (reg:DI 101) (reg:DI 100))])
2188
2189 Not only does this modify 100 (in which case it might still be valid
2190 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2191
2192 We can also run into a problem if I2 sets a register that I1
2193 uses and I1 gets directly substituted into I3 (not via I2). In that
2194 case, we would be getting the wrong value of I2DEST into I3, so we
2195 must reject the combination. This case occurs when I2 and I1 both
2196 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2197 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2198 of a SET must prevent combination from occurring. The same situation
2199 can occur for I0, in which case I0_NOT_IN_SRC is set.
2200
2201 Before doing the above check, we first try to expand a field assignment
2202 into a set of logical operations.
2203
2204 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2205 we place a register that is both set and used within I3. If more than one
2206 such register is detected, we fail.
2207
2208 Return 1 if the combination is valid, zero otherwise. */
2209
2210 static int
2211 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2212 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2213 {
2214 rtx x = *loc;
2215
2216 if (GET_CODE (x) == SET)
2217 {
2218 rtx set = x ;
2219 rtx dest = SET_DEST (set);
2220 rtx src = SET_SRC (set);
2221 rtx inner_dest = dest;
2222 rtx subdest;
2223
2224 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2225 || GET_CODE (inner_dest) == SUBREG
2226 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2227 inner_dest = XEXP (inner_dest, 0);
2228
2229 /* Check for the case where I3 modifies its output, as discussed
2230 above. We don't want to prevent pseudos from being combined
2231 into the address of a MEM, so only prevent the combination if
2232 i1 or i2 set the same MEM. */
2233 if ((inner_dest != dest &&
2234 (!MEM_P (inner_dest)
2235 || rtx_equal_p (i2dest, inner_dest)
2236 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2237 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2238 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2239 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2240 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2241
2242 /* This is the same test done in can_combine_p except we can't test
2243 all_adjacent; we don't have to, since this instruction will stay
2244 in place, thus we are not considering increasing the lifetime of
2245 INNER_DEST.
2246
2247 Also, if this insn sets a function argument, combining it with
2248 something that might need a spill could clobber a previous
2249 function argument; the all_adjacent test in can_combine_p also
2250 checks this; here, we do a more specific test for this case. */
2251
2252 || (REG_P (inner_dest)
2253 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2254 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2255 GET_MODE (inner_dest)))
2256 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2257 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2258 return 0;
2259
2260 /* If DEST is used in I3, it is being killed in this insn, so
2261 record that for later. We have to consider paradoxical
2262 subregs here, since they kill the whole register, but we
2263 ignore partial subregs, STRICT_LOW_PART, etc.
2264 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2265 STACK_POINTER_REGNUM, since these are always considered to be
2266 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2267 subdest = dest;
2268 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2269 subdest = SUBREG_REG (subdest);
2270 if (pi3dest_killed
2271 && REG_P (subdest)
2272 && reg_referenced_p (subdest, PATTERN (i3))
2273 && REGNO (subdest) != FRAME_POINTER_REGNUM
2274 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2275 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2276 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2277 || (REGNO (subdest) != ARG_POINTER_REGNUM
2278 || ! fixed_regs [REGNO (subdest)]))
2279 && REGNO (subdest) != STACK_POINTER_REGNUM)
2280 {
2281 if (*pi3dest_killed)
2282 return 0;
2283
2284 *pi3dest_killed = subdest;
2285 }
2286 }
2287
2288 else if (GET_CODE (x) == PARALLEL)
2289 {
2290 int i;
2291
2292 for (i = 0; i < XVECLEN (x, 0); i++)
2293 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2294 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2295 return 0;
2296 }
2297
2298 return 1;
2299 }
2300 \f
2301 /* Return 1 if X is an arithmetic expression that contains a multiplication
2302 and division. We don't count multiplications by powers of two here. */
2303
2304 static int
2305 contains_muldiv (rtx x)
2306 {
2307 switch (GET_CODE (x))
2308 {
2309 case MOD: case DIV: case UMOD: case UDIV:
2310 return 1;
2311
2312 case MULT:
2313 return ! (CONST_INT_P (XEXP (x, 1))
2314 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2315 default:
2316 if (BINARY_P (x))
2317 return contains_muldiv (XEXP (x, 0))
2318 || contains_muldiv (XEXP (x, 1));
2319
2320 if (UNARY_P (x))
2321 return contains_muldiv (XEXP (x, 0));
2322
2323 return 0;
2324 }
2325 }
2326 \f
2327 /* Determine whether INSN can be used in a combination. Return nonzero if
2328 not. This is used in try_combine to detect early some cases where we
2329 can't perform combinations. */
2330
2331 static int
2332 cant_combine_insn_p (rtx_insn *insn)
2333 {
2334 rtx set;
2335 rtx src, dest;
2336
2337 /* If this isn't really an insn, we can't do anything.
2338 This can occur when flow deletes an insn that it has merged into an
2339 auto-increment address. */
2340 if (!NONDEBUG_INSN_P (insn))
2341 return 1;
2342
2343 /* Never combine loads and stores involving hard regs that are likely
2344 to be spilled. The register allocator can usually handle such
2345 reg-reg moves by tying. If we allow the combiner to make
2346 substitutions of likely-spilled regs, reload might die.
2347 As an exception, we allow combinations involving fixed regs; these are
2348 not available to the register allocator so there's no risk involved. */
2349
2350 set = single_set (insn);
2351 if (! set)
2352 return 0;
2353 src = SET_SRC (set);
2354 dest = SET_DEST (set);
2355 if (GET_CODE (src) == SUBREG)
2356 src = SUBREG_REG (src);
2357 if (GET_CODE (dest) == SUBREG)
2358 dest = SUBREG_REG (dest);
2359 if (REG_P (src) && REG_P (dest)
2360 && ((HARD_REGISTER_P (src)
2361 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2362 #ifdef LEAF_REGISTERS
2363 && ! LEAF_REGISTERS [REGNO (src)])
2364 #else
2365 )
2366 #endif
2367 || (HARD_REGISTER_P (dest)
2368 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2369 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2370 return 1;
2371
2372 return 0;
2373 }
2374
2375 struct likely_spilled_retval_info
2376 {
2377 unsigned regno, nregs;
2378 unsigned mask;
2379 };
2380
2381 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2382 hard registers that are known to be written to / clobbered in full. */
2383 static void
2384 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2385 {
2386 struct likely_spilled_retval_info *const info =
2387 (struct likely_spilled_retval_info *) data;
2388 unsigned regno, nregs;
2389 unsigned new_mask;
2390
2391 if (!REG_P (XEXP (set, 0)))
2392 return;
2393 regno = REGNO (x);
2394 if (regno >= info->regno + info->nregs)
2395 return;
2396 nregs = REG_NREGS (x);
2397 if (regno + nregs <= info->regno)
2398 return;
2399 new_mask = (2U << (nregs - 1)) - 1;
2400 if (regno < info->regno)
2401 new_mask >>= info->regno - regno;
2402 else
2403 new_mask <<= regno - info->regno;
2404 info->mask &= ~new_mask;
2405 }
2406
2407 /* Return nonzero iff part of the return value is live during INSN, and
2408 it is likely spilled. This can happen when more than one insn is needed
2409 to copy the return value, e.g. when we consider to combine into the
2410 second copy insn for a complex value. */
2411
2412 static int
2413 likely_spilled_retval_p (rtx_insn *insn)
2414 {
2415 rtx_insn *use = BB_END (this_basic_block);
2416 rtx reg;
2417 rtx_insn *p;
2418 unsigned regno, nregs;
2419 /* We assume here that no machine mode needs more than
2420 32 hard registers when the value overlaps with a register
2421 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2422 unsigned mask;
2423 struct likely_spilled_retval_info info;
2424
2425 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2426 return 0;
2427 reg = XEXP (PATTERN (use), 0);
2428 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2429 return 0;
2430 regno = REGNO (reg);
2431 nregs = REG_NREGS (reg);
2432 if (nregs == 1)
2433 return 0;
2434 mask = (2U << (nregs - 1)) - 1;
2435
2436 /* Disregard parts of the return value that are set later. */
2437 info.regno = regno;
2438 info.nregs = nregs;
2439 info.mask = mask;
2440 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2441 if (INSN_P (p))
2442 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2443 mask = info.mask;
2444
2445 /* Check if any of the (probably) live return value registers is
2446 likely spilled. */
2447 nregs --;
2448 do
2449 {
2450 if ((mask & 1 << nregs)
2451 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2452 return 1;
2453 } while (nregs--);
2454 return 0;
2455 }
2456
2457 /* Adjust INSN after we made a change to its destination.
2458
2459 Changing the destination can invalidate notes that say something about
2460 the results of the insn and a LOG_LINK pointing to the insn. */
2461
2462 static void
2463 adjust_for_new_dest (rtx_insn *insn)
2464 {
2465 /* For notes, be conservative and simply remove them. */
2466 remove_reg_equal_equiv_notes (insn);
2467
2468 /* The new insn will have a destination that was previously the destination
2469 of an insn just above it. Call distribute_links to make a LOG_LINK from
2470 the next use of that destination. */
2471
2472 rtx set = single_set (insn);
2473 gcc_assert (set);
2474
2475 rtx reg = SET_DEST (set);
2476
2477 while (GET_CODE (reg) == ZERO_EXTRACT
2478 || GET_CODE (reg) == STRICT_LOW_PART
2479 || GET_CODE (reg) == SUBREG)
2480 reg = XEXP (reg, 0);
2481 gcc_assert (REG_P (reg));
2482
2483 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2484
2485 df_insn_rescan (insn);
2486 }
2487
2488 /* Return TRUE if combine can reuse reg X in mode MODE.
2489 ADDED_SETS is nonzero if the original set is still required. */
2490 static bool
2491 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2492 {
2493 unsigned int regno;
2494
2495 if (!REG_P (x))
2496 return false;
2497
2498 /* Don't change between modes with different underlying register sizes,
2499 since this could lead to invalid subregs. */
2500 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2501 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2502 return false;
2503
2504 regno = REGNO (x);
2505 /* Allow hard registers if the new mode is legal, and occupies no more
2506 registers than the old mode. */
2507 if (regno < FIRST_PSEUDO_REGISTER)
2508 return (targetm.hard_regno_mode_ok (regno, mode)
2509 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2510
2511 /* Or a pseudo that is only used once. */
2512 return (regno < reg_n_sets_max
2513 && REG_N_SETS (regno) == 1
2514 && !added_sets
2515 && !REG_USERVAR_P (x));
2516 }
2517
2518
2519 /* Check whether X, the destination of a set, refers to part of
2520 the register specified by REG. */
2521
2522 static bool
2523 reg_subword_p (rtx x, rtx reg)
2524 {
2525 /* Check that reg is an integer mode register. */
2526 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2527 return false;
2528
2529 if (GET_CODE (x) == STRICT_LOW_PART
2530 || GET_CODE (x) == ZERO_EXTRACT)
2531 x = XEXP (x, 0);
2532
2533 return GET_CODE (x) == SUBREG
2534 && SUBREG_REG (x) == reg
2535 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2536 }
2537
2538 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2539 Note that the INSN should be deleted *after* removing dead edges, so
2540 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2541 but not for a (set (pc) (label_ref FOO)). */
2542
2543 static void
2544 update_cfg_for_uncondjump (rtx_insn *insn)
2545 {
2546 basic_block bb = BLOCK_FOR_INSN (insn);
2547 gcc_assert (BB_END (bb) == insn);
2548
2549 purge_dead_edges (bb);
2550
2551 delete_insn (insn);
2552 if (EDGE_COUNT (bb->succs) == 1)
2553 {
2554 rtx_insn *insn;
2555
2556 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2557
2558 /* Remove barriers from the footer if there are any. */
2559 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2560 if (BARRIER_P (insn))
2561 {
2562 if (PREV_INSN (insn))
2563 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2564 else
2565 BB_FOOTER (bb) = NEXT_INSN (insn);
2566 if (NEXT_INSN (insn))
2567 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2568 }
2569 else if (LABEL_P (insn))
2570 break;
2571 }
2572 }
2573
2574 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2575 by an arbitrary number of CLOBBERs. */
2576 static bool
2577 is_parallel_of_n_reg_sets (rtx pat, int n)
2578 {
2579 if (GET_CODE (pat) != PARALLEL)
2580 return false;
2581
2582 int len = XVECLEN (pat, 0);
2583 if (len < n)
2584 return false;
2585
2586 int i;
2587 for (i = 0; i < n; i++)
2588 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2589 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2590 return false;
2591 for ( ; i < len; i++)
2592 switch (GET_CODE (XVECEXP (pat, 0, i)))
2593 {
2594 case CLOBBER:
2595 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2596 return false;
2597 break;
2598 case CLOBBER_HIGH:
2599 break;
2600 default:
2601 return false;
2602 }
2603 return true;
2604 }
2605
2606 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2607 CLOBBERs), can be split into individual SETs in that order, without
2608 changing semantics. */
2609 static bool
2610 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2611 {
2612 if (!insn_nothrow_p (insn))
2613 return false;
2614
2615 rtx pat = PATTERN (insn);
2616
2617 int i, j;
2618 for (i = 0; i < n; i++)
2619 {
2620 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2621 return false;
2622
2623 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2624
2625 for (j = i + 1; j < n; j++)
2626 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2627 return false;
2628 }
2629
2630 return true;
2631 }
2632
2633 /* Return whether X is just a single set, with the source
2634 a general_operand. */
2635 static bool
2636 is_just_move (rtx x)
2637 {
2638 if (INSN_P (x))
2639 x = PATTERN (x);
2640
2641 return (GET_CODE (x) == SET && general_operand (SET_SRC (x), VOIDmode));
2642 }
2643
2644 /* Callback function to count autoincs. */
2645
2646 static int
2647 count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
2648 {
2649 (*((int *) arg))++;
2650
2651 return 0;
2652 }
2653
2654 /* Try to combine the insns I0, I1 and I2 into I3.
2655 Here I0, I1 and I2 appear earlier than I3.
2656 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2657 I3.
2658
2659 If we are combining more than two insns and the resulting insn is not
2660 recognized, try splitting it into two insns. If that happens, I2 and I3
2661 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2662 Otherwise, I0, I1 and I2 are pseudo-deleted.
2663
2664 Return 0 if the combination does not work. Then nothing is changed.
2665 If we did the combination, return the insn at which combine should
2666 resume scanning.
2667
2668 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2669 new direct jump instruction.
2670
2671 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2672 been I3 passed to an earlier try_combine within the same basic
2673 block. */
2674
2675 static rtx_insn *
2676 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2677 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2678 {
2679 /* New patterns for I3 and I2, respectively. */
2680 rtx newpat, newi2pat = 0;
2681 rtvec newpat_vec_with_clobbers = 0;
2682 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2683 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2684 dead. */
2685 int added_sets_0, added_sets_1, added_sets_2;
2686 /* Total number of SETs to put into I3. */
2687 int total_sets;
2688 /* Nonzero if I2's or I1's body now appears in I3. */
2689 int i2_is_used = 0, i1_is_used = 0;
2690 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2691 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2692 /* Contains I3 if the destination of I3 is used in its source, which means
2693 that the old life of I3 is being killed. If that usage is placed into
2694 I2 and not in I3, a REG_DEAD note must be made. */
2695 rtx i3dest_killed = 0;
2696 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2697 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2698 /* Copy of SET_SRC of I1 and I0, if needed. */
2699 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2700 /* Set if I2DEST was reused as a scratch register. */
2701 bool i2scratch = false;
2702 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2703 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2704 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2705 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2706 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2707 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2708 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2709 /* Notes that must be added to REG_NOTES in I3 and I2. */
2710 rtx new_i3_notes, new_i2_notes;
2711 /* Notes that we substituted I3 into I2 instead of the normal case. */
2712 int i3_subst_into_i2 = 0;
2713 /* Notes that I1, I2 or I3 is a MULT operation. */
2714 int have_mult = 0;
2715 int swap_i2i3 = 0;
2716 int split_i2i3 = 0;
2717 int changed_i3_dest = 0;
2718 bool i2_was_move = false, i3_was_move = false;
2719 int n_auto_inc = 0;
2720
2721 int maxreg;
2722 rtx_insn *temp_insn;
2723 rtx temp_expr;
2724 struct insn_link *link;
2725 rtx other_pat = 0;
2726 rtx new_other_notes;
2727 int i;
2728 scalar_int_mode dest_mode, temp_mode;
2729
2730 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2731 never be). */
2732 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2733 return 0;
2734
2735 /* Only try four-insn combinations when there's high likelihood of
2736 success. Look for simple insns, such as loads of constants or
2737 binary operations involving a constant. */
2738 if (i0)
2739 {
2740 int i;
2741 int ngood = 0;
2742 int nshift = 0;
2743 rtx set0, set3;
2744
2745 if (!flag_expensive_optimizations)
2746 return 0;
2747
2748 for (i = 0; i < 4; i++)
2749 {
2750 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2751 rtx set = single_set (insn);
2752 rtx src;
2753 if (!set)
2754 continue;
2755 src = SET_SRC (set);
2756 if (CONSTANT_P (src))
2757 {
2758 ngood += 2;
2759 break;
2760 }
2761 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2762 ngood++;
2763 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2764 || GET_CODE (src) == LSHIFTRT)
2765 nshift++;
2766 }
2767
2768 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2769 are likely manipulating its value. Ideally we'll be able to combine
2770 all four insns into a bitfield insertion of some kind.
2771
2772 Note the source in I0 might be inside a sign/zero extension and the
2773 memory modes in I0 and I3 might be different. So extract the address
2774 from the destination of I3 and search for it in the source of I0.
2775
2776 In the event that there's a match but the source/dest do not actually
2777 refer to the same memory, the worst that happens is we try some
2778 combinations that we wouldn't have otherwise. */
2779 if ((set0 = single_set (i0))
2780 /* Ensure the source of SET0 is a MEM, possibly buried inside
2781 an extension. */
2782 && (GET_CODE (SET_SRC (set0)) == MEM
2783 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2784 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2785 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2786 && (set3 = single_set (i3))
2787 /* Ensure the destination of SET3 is a MEM. */
2788 && GET_CODE (SET_DEST (set3)) == MEM
2789 /* Would it be better to extract the base address for the MEM
2790 in SET3 and look for that? I don't have cases where it matters
2791 but I could envision such cases. */
2792 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2793 ngood += 2;
2794
2795 if (ngood < 2 && nshift < 2)
2796 return 0;
2797 }
2798
2799 /* Exit early if one of the insns involved can't be used for
2800 combinations. */
2801 if (CALL_P (i2)
2802 || (i1 && CALL_P (i1))
2803 || (i0 && CALL_P (i0))
2804 || cant_combine_insn_p (i3)
2805 || cant_combine_insn_p (i2)
2806 || (i1 && cant_combine_insn_p (i1))
2807 || (i0 && cant_combine_insn_p (i0))
2808 || likely_spilled_retval_p (i3))
2809 return 0;
2810
2811 combine_attempts++;
2812 undobuf.other_insn = 0;
2813
2814 /* Reset the hard register usage information. */
2815 CLEAR_HARD_REG_SET (newpat_used_regs);
2816
2817 if (dump_file && (dump_flags & TDF_DETAILS))
2818 {
2819 if (i0)
2820 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2821 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2822 else if (i1)
2823 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2824 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2825 else
2826 fprintf (dump_file, "\nTrying %d -> %d:\n",
2827 INSN_UID (i2), INSN_UID (i3));
2828
2829 if (i0)
2830 dump_insn_slim (dump_file, i0);
2831 if (i1)
2832 dump_insn_slim (dump_file, i1);
2833 dump_insn_slim (dump_file, i2);
2834 dump_insn_slim (dump_file, i3);
2835 }
2836
2837 /* If multiple insns feed into one of I2 or I3, they can be in any
2838 order. To simplify the code below, reorder them in sequence. */
2839 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2840 std::swap (i0, i2);
2841 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2842 std::swap (i0, i1);
2843 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2844 std::swap (i1, i2);
2845
2846 added_links_insn = 0;
2847 added_notes_insn = 0;
2848
2849 /* First check for one important special case that the code below will
2850 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2851 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2852 we may be able to replace that destination with the destination of I3.
2853 This occurs in the common code where we compute both a quotient and
2854 remainder into a structure, in which case we want to do the computation
2855 directly into the structure to avoid register-register copies.
2856
2857 Note that this case handles both multiple sets in I2 and also cases
2858 where I2 has a number of CLOBBERs inside the PARALLEL.
2859
2860 We make very conservative checks below and only try to handle the
2861 most common cases of this. For example, we only handle the case
2862 where I2 and I3 are adjacent to avoid making difficult register
2863 usage tests. */
2864
2865 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2866 && REG_P (SET_SRC (PATTERN (i3)))
2867 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2868 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2869 && GET_CODE (PATTERN (i2)) == PARALLEL
2870 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2871 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2872 below would need to check what is inside (and reg_overlap_mentioned_p
2873 doesn't support those codes anyway). Don't allow those destinations;
2874 the resulting insn isn't likely to be recognized anyway. */
2875 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2876 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2877 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2878 SET_DEST (PATTERN (i3)))
2879 && next_active_insn (i2) == i3)
2880 {
2881 rtx p2 = PATTERN (i2);
2882
2883 /* Make sure that the destination of I3,
2884 which we are going to substitute into one output of I2,
2885 is not used within another output of I2. We must avoid making this:
2886 (parallel [(set (mem (reg 69)) ...)
2887 (set (reg 69) ...)])
2888 which is not well-defined as to order of actions.
2889 (Besides, reload can't handle output reloads for this.)
2890
2891 The problem can also happen if the dest of I3 is a memory ref,
2892 if another dest in I2 is an indirect memory ref.
2893
2894 Neither can this PARALLEL be an asm. We do not allow combining
2895 that usually (see can_combine_p), so do not here either. */
2896 bool ok = true;
2897 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2898 {
2899 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2900 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER
2901 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER_HIGH)
2902 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2903 SET_DEST (XVECEXP (p2, 0, i))))
2904 ok = false;
2905 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2906 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2907 ok = false;
2908 }
2909
2910 if (ok)
2911 for (i = 0; i < XVECLEN (p2, 0); i++)
2912 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2913 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2914 {
2915 combine_merges++;
2916
2917 subst_insn = i3;
2918 subst_low_luid = DF_INSN_LUID (i2);
2919
2920 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2921 i2src = SET_SRC (XVECEXP (p2, 0, i));
2922 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2923 i2dest_killed = dead_or_set_p (i2, i2dest);
2924
2925 /* Replace the dest in I2 with our dest and make the resulting
2926 insn the new pattern for I3. Then skip to where we validate
2927 the pattern. Everything was set up above. */
2928 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2929 newpat = p2;
2930 i3_subst_into_i2 = 1;
2931 goto validate_replacement;
2932 }
2933 }
2934
2935 /* If I2 is setting a pseudo to a constant and I3 is setting some
2936 sub-part of it to another constant, merge them by making a new
2937 constant. */
2938 if (i1 == 0
2939 && (temp_expr = single_set (i2)) != 0
2940 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2941 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2942 && GET_CODE (PATTERN (i3)) == SET
2943 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2944 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2945 {
2946 rtx dest = SET_DEST (PATTERN (i3));
2947 rtx temp_dest = SET_DEST (temp_expr);
2948 int offset = -1;
2949 int width = 0;
2950
2951 if (GET_CODE (dest) == ZERO_EXTRACT)
2952 {
2953 if (CONST_INT_P (XEXP (dest, 1))
2954 && CONST_INT_P (XEXP (dest, 2))
2955 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2956 &dest_mode))
2957 {
2958 width = INTVAL (XEXP (dest, 1));
2959 offset = INTVAL (XEXP (dest, 2));
2960 dest = XEXP (dest, 0);
2961 if (BITS_BIG_ENDIAN)
2962 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2963 }
2964 }
2965 else
2966 {
2967 if (GET_CODE (dest) == STRICT_LOW_PART)
2968 dest = XEXP (dest, 0);
2969 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2970 {
2971 width = GET_MODE_PRECISION (dest_mode);
2972 offset = 0;
2973 }
2974 }
2975
2976 if (offset >= 0)
2977 {
2978 /* If this is the low part, we're done. */
2979 if (subreg_lowpart_p (dest))
2980 ;
2981 /* Handle the case where inner is twice the size of outer. */
2982 else if (GET_MODE_PRECISION (temp_mode)
2983 == 2 * GET_MODE_PRECISION (dest_mode))
2984 offset += GET_MODE_PRECISION (dest_mode);
2985 /* Otherwise give up for now. */
2986 else
2987 offset = -1;
2988 }
2989
2990 if (offset >= 0)
2991 {
2992 rtx inner = SET_SRC (PATTERN (i3));
2993 rtx outer = SET_SRC (temp_expr);
2994
2995 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2996 rtx_mode_t (inner, dest_mode),
2997 offset, width);
2998
2999 combine_merges++;
3000 subst_insn = i3;
3001 subst_low_luid = DF_INSN_LUID (i2);
3002 added_sets_2 = added_sets_1 = added_sets_0 = 0;
3003 i2dest = temp_dest;
3004 i2dest_killed = dead_or_set_p (i2, i2dest);
3005
3006 /* Replace the source in I2 with the new constant and make the
3007 resulting insn the new pattern for I3. Then skip to where we
3008 validate the pattern. Everything was set up above. */
3009 SUBST (SET_SRC (temp_expr),
3010 immed_wide_int_const (o, temp_mode));
3011
3012 newpat = PATTERN (i2);
3013
3014 /* The dest of I3 has been replaced with the dest of I2. */
3015 changed_i3_dest = 1;
3016 goto validate_replacement;
3017 }
3018 }
3019
3020 /* If we have no I1 and I2 looks like:
3021 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
3022 (set Y OP)])
3023 make up a dummy I1 that is
3024 (set Y OP)
3025 and change I2 to be
3026 (set (reg:CC X) (compare:CC Y (const_int 0)))
3027
3028 (We can ignore any trailing CLOBBERs.)
3029
3030 This undoes a previous combination and allows us to match a branch-and-
3031 decrement insn. */
3032
3033 if (!HAVE_cc0 && i1 == 0
3034 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3035 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
3036 == MODE_CC)
3037 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
3038 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
3039 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
3040 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
3041 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3042 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3043 {
3044 /* We make I1 with the same INSN_UID as I2. This gives it
3045 the same DF_INSN_LUID for value tracking. Our fake I1 will
3046 never appear in the insn stream so giving it the same INSN_UID
3047 as I2 will not cause a problem. */
3048
3049 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3050 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3051 -1, NULL_RTX);
3052 INSN_UID (i1) = INSN_UID (i2);
3053
3054 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3055 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3056 SET_DEST (PATTERN (i1)));
3057 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3058 SUBST_LINK (LOG_LINKS (i2),
3059 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3060 }
3061
3062 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3063 make those two SETs separate I1 and I2 insns, and make an I0 that is
3064 the original I1. */
3065 if (!HAVE_cc0 && i0 == 0
3066 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3067 && can_split_parallel_of_n_reg_sets (i2, 2)
3068 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3069 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3070 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3071 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3072 {
3073 /* If there is no I1, there is no I0 either. */
3074 i0 = i1;
3075
3076 /* We make I1 with the same INSN_UID as I2. This gives it
3077 the same DF_INSN_LUID for value tracking. Our fake I1 will
3078 never appear in the insn stream so giving it the same INSN_UID
3079 as I2 will not cause a problem. */
3080
3081 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3082 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3083 -1, NULL_RTX);
3084 INSN_UID (i1) = INSN_UID (i2);
3085
3086 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3087 }
3088
3089 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3090 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3091 {
3092 if (dump_file && (dump_flags & TDF_DETAILS))
3093 fprintf (dump_file, "Can't combine i2 into i3\n");
3094 undo_all ();
3095 return 0;
3096 }
3097 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3098 {
3099 if (dump_file && (dump_flags & TDF_DETAILS))
3100 fprintf (dump_file, "Can't combine i1 into i3\n");
3101 undo_all ();
3102 return 0;
3103 }
3104 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3105 {
3106 if (dump_file && (dump_flags & TDF_DETAILS))
3107 fprintf (dump_file, "Can't combine i0 into i3\n");
3108 undo_all ();
3109 return 0;
3110 }
3111
3112 /* Record whether i2 and i3 are trivial moves. */
3113 i2_was_move = is_just_move (i2);
3114 i3_was_move = is_just_move (i3);
3115
3116 /* Record whether I2DEST is used in I2SRC and similarly for the other
3117 cases. Knowing this will help in register status updating below. */
3118 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3119 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3120 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3121 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3122 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3123 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3124 i2dest_killed = dead_or_set_p (i2, i2dest);
3125 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3126 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3127
3128 /* For the earlier insns, determine which of the subsequent ones they
3129 feed. */
3130 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3131 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3132 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3133 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3134 && reg_overlap_mentioned_p (i0dest, i2src))));
3135
3136 /* Ensure that I3's pattern can be the destination of combines. */
3137 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3138 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3139 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3140 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3141 &i3dest_killed))
3142 {
3143 undo_all ();
3144 return 0;
3145 }
3146
3147 /* See if any of the insns is a MULT operation. Unless one is, we will
3148 reject a combination that is, since it must be slower. Be conservative
3149 here. */
3150 if (GET_CODE (i2src) == MULT
3151 || (i1 != 0 && GET_CODE (i1src) == MULT)
3152 || (i0 != 0 && GET_CODE (i0src) == MULT)
3153 || (GET_CODE (PATTERN (i3)) == SET
3154 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3155 have_mult = 1;
3156
3157 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3158 We used to do this EXCEPT in one case: I3 has a post-inc in an
3159 output operand. However, that exception can give rise to insns like
3160 mov r3,(r3)+
3161 which is a famous insn on the PDP-11 where the value of r3 used as the
3162 source was model-dependent. Avoid this sort of thing. */
3163
3164 #if 0
3165 if (!(GET_CODE (PATTERN (i3)) == SET
3166 && REG_P (SET_SRC (PATTERN (i3)))
3167 && MEM_P (SET_DEST (PATTERN (i3)))
3168 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3169 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3170 /* It's not the exception. */
3171 #endif
3172 if (AUTO_INC_DEC)
3173 {
3174 rtx link;
3175 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3176 if (REG_NOTE_KIND (link) == REG_INC
3177 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3178 || (i1 != 0
3179 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3180 {
3181 undo_all ();
3182 return 0;
3183 }
3184 }
3185
3186 /* See if the SETs in I1 or I2 need to be kept around in the merged
3187 instruction: whenever the value set there is still needed past I3.
3188 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3189
3190 For the SET in I1, we have two cases: if I1 and I2 independently feed
3191 into I3, the set in I1 needs to be kept around unless I1DEST dies
3192 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3193 in I1 needs to be kept around unless I1DEST dies or is set in either
3194 I2 or I3. The same considerations apply to I0. */
3195
3196 added_sets_2 = !dead_or_set_p (i3, i2dest);
3197
3198 if (i1)
3199 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3200 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3201 else
3202 added_sets_1 = 0;
3203
3204 if (i0)
3205 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3206 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3207 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3208 && dead_or_set_p (i2, i0dest)));
3209 else
3210 added_sets_0 = 0;
3211
3212 /* We are about to copy insns for the case where they need to be kept
3213 around. Check that they can be copied in the merged instruction. */
3214
3215 if (targetm.cannot_copy_insn_p
3216 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3217 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3218 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3219 {
3220 undo_all ();
3221 return 0;
3222 }
3223
3224 /* Count how many auto_inc expressions there were in the original insns;
3225 we need to have the same number in the resulting patterns. */
3226
3227 if (i0)
3228 for_each_inc_dec (PATTERN (i0), count_auto_inc, &n_auto_inc);
3229 if (i1)
3230 for_each_inc_dec (PATTERN (i1), count_auto_inc, &n_auto_inc);
3231 for_each_inc_dec (PATTERN (i2), count_auto_inc, &n_auto_inc);
3232 for_each_inc_dec (PATTERN (i3), count_auto_inc, &n_auto_inc);
3233
3234 /* If the set in I2 needs to be kept around, we must make a copy of
3235 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3236 PATTERN (I2), we are only substituting for the original I1DEST, not into
3237 an already-substituted copy. This also prevents making self-referential
3238 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3239 I2DEST. */
3240
3241 if (added_sets_2)
3242 {
3243 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3244 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3245 else
3246 i2pat = copy_rtx (PATTERN (i2));
3247 }
3248
3249 if (added_sets_1)
3250 {
3251 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3252 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3253 else
3254 i1pat = copy_rtx (PATTERN (i1));
3255 }
3256
3257 if (added_sets_0)
3258 {
3259 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3260 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3261 else
3262 i0pat = copy_rtx (PATTERN (i0));
3263 }
3264
3265 combine_merges++;
3266
3267 /* Substitute in the latest insn for the regs set by the earlier ones. */
3268
3269 maxreg = max_reg_num ();
3270
3271 subst_insn = i3;
3272
3273 /* Many machines that don't use CC0 have insns that can both perform an
3274 arithmetic operation and set the condition code. These operations will
3275 be represented as a PARALLEL with the first element of the vector
3276 being a COMPARE of an arithmetic operation with the constant zero.
3277 The second element of the vector will set some pseudo to the result
3278 of the same arithmetic operation. If we simplify the COMPARE, we won't
3279 match such a pattern and so will generate an extra insn. Here we test
3280 for this case, where both the comparison and the operation result are
3281 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3282 I2SRC. Later we will make the PARALLEL that contains I2. */
3283
3284 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3285 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3286 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3287 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3288 {
3289 rtx newpat_dest;
3290 rtx *cc_use_loc = NULL;
3291 rtx_insn *cc_use_insn = NULL;
3292 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3293 machine_mode compare_mode, orig_compare_mode;
3294 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3295 scalar_int_mode mode;
3296
3297 newpat = PATTERN (i3);
3298 newpat_dest = SET_DEST (newpat);
3299 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3300
3301 if (undobuf.other_insn == 0
3302 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3303 &cc_use_insn)))
3304 {
3305 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3306 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3307 compare_code = simplify_compare_const (compare_code, mode,
3308 op0, &op1);
3309 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3310 }
3311
3312 /* Do the rest only if op1 is const0_rtx, which may be the
3313 result of simplification. */
3314 if (op1 == const0_rtx)
3315 {
3316 /* If a single use of the CC is found, prepare to modify it
3317 when SELECT_CC_MODE returns a new CC-class mode, or when
3318 the above simplify_compare_const() returned a new comparison
3319 operator. undobuf.other_insn is assigned the CC use insn
3320 when modifying it. */
3321 if (cc_use_loc)
3322 {
3323 #ifdef SELECT_CC_MODE
3324 machine_mode new_mode
3325 = SELECT_CC_MODE (compare_code, op0, op1);
3326 if (new_mode != orig_compare_mode
3327 && can_change_dest_mode (SET_DEST (newpat),
3328 added_sets_2, new_mode))
3329 {
3330 unsigned int regno = REGNO (newpat_dest);
3331 compare_mode = new_mode;
3332 if (regno < FIRST_PSEUDO_REGISTER)
3333 newpat_dest = gen_rtx_REG (compare_mode, regno);
3334 else
3335 {
3336 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3337 newpat_dest = regno_reg_rtx[regno];
3338 }
3339 }
3340 #endif
3341 /* Cases for modifying the CC-using comparison. */
3342 if (compare_code != orig_compare_code
3343 /* ??? Do we need to verify the zero rtx? */
3344 && XEXP (*cc_use_loc, 1) == const0_rtx)
3345 {
3346 /* Replace cc_use_loc with entire new RTX. */
3347 SUBST (*cc_use_loc,
3348 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3349 newpat_dest, const0_rtx));
3350 undobuf.other_insn = cc_use_insn;
3351 }
3352 else if (compare_mode != orig_compare_mode)
3353 {
3354 /* Just replace the CC reg with a new mode. */
3355 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3356 undobuf.other_insn = cc_use_insn;
3357 }
3358 }
3359
3360 /* Now we modify the current newpat:
3361 First, SET_DEST(newpat) is updated if the CC mode has been
3362 altered. For targets without SELECT_CC_MODE, this should be
3363 optimized away. */
3364 if (compare_mode != orig_compare_mode)
3365 SUBST (SET_DEST (newpat), newpat_dest);
3366 /* This is always done to propagate i2src into newpat. */
3367 SUBST (SET_SRC (newpat),
3368 gen_rtx_COMPARE (compare_mode, op0, op1));
3369 /* Create new version of i2pat if needed; the below PARALLEL
3370 creation needs this to work correctly. */
3371 if (! rtx_equal_p (i2src, op0))
3372 i2pat = gen_rtx_SET (i2dest, op0);
3373 i2_is_used = 1;
3374 }
3375 }
3376
3377 if (i2_is_used == 0)
3378 {
3379 /* It is possible that the source of I2 or I1 may be performing
3380 an unneeded operation, such as a ZERO_EXTEND of something
3381 that is known to have the high part zero. Handle that case
3382 by letting subst look at the inner insns.
3383
3384 Another way to do this would be to have a function that tries
3385 to simplify a single insn instead of merging two or more
3386 insns. We don't do this because of the potential of infinite
3387 loops and because of the potential extra memory required.
3388 However, doing it the way we are is a bit of a kludge and
3389 doesn't catch all cases.
3390
3391 But only do this if -fexpensive-optimizations since it slows
3392 things down and doesn't usually win.
3393
3394 This is not done in the COMPARE case above because the
3395 unmodified I2PAT is used in the PARALLEL and so a pattern
3396 with a modified I2SRC would not match. */
3397
3398 if (flag_expensive_optimizations)
3399 {
3400 /* Pass pc_rtx so no substitutions are done, just
3401 simplifications. */
3402 if (i1)
3403 {
3404 subst_low_luid = DF_INSN_LUID (i1);
3405 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3406 }
3407
3408 subst_low_luid = DF_INSN_LUID (i2);
3409 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3410 }
3411
3412 n_occurrences = 0; /* `subst' counts here */
3413 subst_low_luid = DF_INSN_LUID (i2);
3414
3415 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3416 copy of I2SRC each time we substitute it, in order to avoid creating
3417 self-referential RTL when we will be substituting I1SRC for I1DEST
3418 later. Likewise if I0 feeds into I2, either directly or indirectly
3419 through I1, and I0DEST is in I0SRC. */
3420 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3421 (i1_feeds_i2_n && i1dest_in_i1src)
3422 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3423 && i0dest_in_i0src));
3424 substed_i2 = 1;
3425
3426 /* Record whether I2's body now appears within I3's body. */
3427 i2_is_used = n_occurrences;
3428 }
3429
3430 /* If we already got a failure, don't try to do more. Otherwise, try to
3431 substitute I1 if we have it. */
3432
3433 if (i1 && GET_CODE (newpat) != CLOBBER)
3434 {
3435 /* Before we can do this substitution, we must redo the test done
3436 above (see detailed comments there) that ensures I1DEST isn't
3437 mentioned in any SETs in NEWPAT that are field assignments. */
3438 if (!combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3439 0, 0, 0))
3440 {
3441 undo_all ();
3442 return 0;
3443 }
3444
3445 n_occurrences = 0;
3446 subst_low_luid = DF_INSN_LUID (i1);
3447
3448 /* If the following substitution will modify I1SRC, make a copy of it
3449 for the case where it is substituted for I1DEST in I2PAT later. */
3450 if (added_sets_2 && i1_feeds_i2_n)
3451 i1src_copy = copy_rtx (i1src);
3452
3453 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3454 copy of I1SRC each time we substitute it, in order to avoid creating
3455 self-referential RTL when we will be substituting I0SRC for I0DEST
3456 later. */
3457 newpat = subst (newpat, i1dest, i1src, 0, 0,
3458 i0_feeds_i1_n && i0dest_in_i0src);
3459 substed_i1 = 1;
3460
3461 /* Record whether I1's body now appears within I3's body. */
3462 i1_is_used = n_occurrences;
3463 }
3464
3465 /* Likewise for I0 if we have it. */
3466
3467 if (i0 && GET_CODE (newpat) != CLOBBER)
3468 {
3469 if (!combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3470 0, 0, 0))
3471 {
3472 undo_all ();
3473 return 0;
3474 }
3475
3476 /* If the following substitution will modify I0SRC, make a copy of it
3477 for the case where it is substituted for I0DEST in I1PAT later. */
3478 if (added_sets_1 && i0_feeds_i1_n)
3479 i0src_copy = copy_rtx (i0src);
3480 /* And a copy for I0DEST in I2PAT substitution. */
3481 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3482 || (i0_feeds_i2_n)))
3483 i0src_copy2 = copy_rtx (i0src);
3484
3485 n_occurrences = 0;
3486 subst_low_luid = DF_INSN_LUID (i0);
3487 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3488 substed_i0 = 1;
3489 }
3490
3491 if (n_auto_inc)
3492 {
3493 int new_n_auto_inc = 0;
3494 for_each_inc_dec (newpat, count_auto_inc, &new_n_auto_inc);
3495
3496 if (n_auto_inc != new_n_auto_inc)
3497 {
3498 if (dump_file && (dump_flags & TDF_DETAILS))
3499 fprintf (dump_file, "Number of auto_inc expressions changed\n");
3500 undo_all ();
3501 return 0;
3502 }
3503 }
3504
3505 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3506 to count all the ways that I2SRC and I1SRC can be used. */
3507 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3508 && i2_is_used + added_sets_2 > 1)
3509 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3510 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3511 > 1))
3512 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3513 && (n_occurrences + added_sets_0
3514 + (added_sets_1 && i0_feeds_i1_n)
3515 + (added_sets_2 && i0_feeds_i2_n)
3516 > 1))
3517 /* Fail if we tried to make a new register. */
3518 || max_reg_num () != maxreg
3519 /* Fail if we couldn't do something and have a CLOBBER. */
3520 || GET_CODE (newpat) == CLOBBER
3521 /* Fail if this new pattern is a MULT and we didn't have one before
3522 at the outer level. */
3523 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3524 && ! have_mult))
3525 {
3526 undo_all ();
3527 return 0;
3528 }
3529
3530 /* If the actions of the earlier insns must be kept
3531 in addition to substituting them into the latest one,
3532 we must make a new PARALLEL for the latest insn
3533 to hold additional the SETs. */
3534
3535 if (added_sets_0 || added_sets_1 || added_sets_2)
3536 {
3537 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3538 combine_extras++;
3539
3540 if (GET_CODE (newpat) == PARALLEL)
3541 {
3542 rtvec old = XVEC (newpat, 0);
3543 total_sets = XVECLEN (newpat, 0) + extra_sets;
3544 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3545 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3546 sizeof (old->elem[0]) * old->num_elem);
3547 }
3548 else
3549 {
3550 rtx old = newpat;
3551 total_sets = 1 + extra_sets;
3552 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3553 XVECEXP (newpat, 0, 0) = old;
3554 }
3555
3556 if (added_sets_0)
3557 XVECEXP (newpat, 0, --total_sets) = i0pat;
3558
3559 if (added_sets_1)
3560 {
3561 rtx t = i1pat;
3562 if (i0_feeds_i1_n)
3563 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3564
3565 XVECEXP (newpat, 0, --total_sets) = t;
3566 }
3567 if (added_sets_2)
3568 {
3569 rtx t = i2pat;
3570 if (i1_feeds_i2_n)
3571 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3572 i0_feeds_i1_n && i0dest_in_i0src);
3573 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3574 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3575
3576 XVECEXP (newpat, 0, --total_sets) = t;
3577 }
3578 }
3579
3580 validate_replacement:
3581
3582 /* Note which hard regs this insn has as inputs. */
3583 mark_used_regs_combine (newpat);
3584
3585 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3586 consider splitting this pattern, we might need these clobbers. */
3587 if (i1 && GET_CODE (newpat) == PARALLEL
3588 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3589 {
3590 int len = XVECLEN (newpat, 0);
3591
3592 newpat_vec_with_clobbers = rtvec_alloc (len);
3593 for (i = 0; i < len; i++)
3594 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3595 }
3596
3597 /* We have recognized nothing yet. */
3598 insn_code_number = -1;
3599
3600 /* See if this is a PARALLEL of two SETs where one SET's destination is
3601 a register that is unused and this isn't marked as an instruction that
3602 might trap in an EH region. In that case, we just need the other SET.
3603 We prefer this over the PARALLEL.
3604
3605 This can occur when simplifying a divmod insn. We *must* test for this
3606 case here because the code below that splits two independent SETs doesn't
3607 handle this case correctly when it updates the register status.
3608
3609 It's pointless doing this if we originally had two sets, one from
3610 i3, and one from i2. Combining then splitting the parallel results
3611 in the original i2 again plus an invalid insn (which we delete).
3612 The net effect is only to move instructions around, which makes
3613 debug info less accurate.
3614
3615 If the remaining SET came from I2 its destination should not be used
3616 between I2 and I3. See PR82024. */
3617
3618 if (!(added_sets_2 && i1 == 0)
3619 && is_parallel_of_n_reg_sets (newpat, 2)
3620 && asm_noperands (newpat) < 0)
3621 {
3622 rtx set0 = XVECEXP (newpat, 0, 0);
3623 rtx set1 = XVECEXP (newpat, 0, 1);
3624 rtx oldpat = newpat;
3625
3626 if (((REG_P (SET_DEST (set1))
3627 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3628 || (GET_CODE (SET_DEST (set1)) == SUBREG
3629 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3630 && insn_nothrow_p (i3)
3631 && !side_effects_p (SET_SRC (set1)))
3632 {
3633 newpat = set0;
3634 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3635 }
3636
3637 else if (((REG_P (SET_DEST (set0))
3638 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3639 || (GET_CODE (SET_DEST (set0)) == SUBREG
3640 && find_reg_note (i3, REG_UNUSED,
3641 SUBREG_REG (SET_DEST (set0)))))
3642 && insn_nothrow_p (i3)
3643 && !side_effects_p (SET_SRC (set0)))
3644 {
3645 rtx dest = SET_DEST (set1);
3646 if (GET_CODE (dest) == SUBREG)
3647 dest = SUBREG_REG (dest);
3648 if (!reg_used_between_p (dest, i2, i3))
3649 {
3650 newpat = set1;
3651 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3652
3653 if (insn_code_number >= 0)
3654 changed_i3_dest = 1;
3655 }
3656 }
3657
3658 if (insn_code_number < 0)
3659 newpat = oldpat;
3660 }
3661
3662 /* Is the result of combination a valid instruction? */
3663 if (insn_code_number < 0)
3664 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3665
3666 /* If we were combining three insns and the result is a simple SET
3667 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3668 insns. There are two ways to do this. It can be split using a
3669 machine-specific method (like when you have an addition of a large
3670 constant) or by combine in the function find_split_point. */
3671
3672 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3673 && asm_noperands (newpat) < 0)
3674 {
3675 rtx parallel, *split;
3676 rtx_insn *m_split_insn;
3677
3678 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3679 use I2DEST as a scratch register will help. In the latter case,
3680 convert I2DEST to the mode of the source of NEWPAT if we can. */
3681
3682 m_split_insn = combine_split_insns (newpat, i3);
3683
3684 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3685 inputs of NEWPAT. */
3686
3687 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3688 possible to try that as a scratch reg. This would require adding
3689 more code to make it work though. */
3690
3691 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3692 {
3693 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3694
3695 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3696 (temporarily, until we are committed to this instruction
3697 combination) does not work: for example, any call to nonzero_bits
3698 on the register (from a splitter in the MD file, for example)
3699 will get the old information, which is invalid.
3700
3701 Since nowadays we can create registers during combine just fine,
3702 we should just create a new one here, not reuse i2dest. */
3703
3704 /* First try to split using the original register as a
3705 scratch register. */
3706 parallel = gen_rtx_PARALLEL (VOIDmode,
3707 gen_rtvec (2, newpat,
3708 gen_rtx_CLOBBER (VOIDmode,
3709 i2dest)));
3710 m_split_insn = combine_split_insns (parallel, i3);
3711
3712 /* If that didn't work, try changing the mode of I2DEST if
3713 we can. */
3714 if (m_split_insn == 0
3715 && new_mode != GET_MODE (i2dest)
3716 && new_mode != VOIDmode
3717 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3718 {
3719 machine_mode old_mode = GET_MODE (i2dest);
3720 rtx ni2dest;
3721
3722 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3723 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3724 else
3725 {
3726 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3727 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3728 }
3729
3730 parallel = (gen_rtx_PARALLEL
3731 (VOIDmode,
3732 gen_rtvec (2, newpat,
3733 gen_rtx_CLOBBER (VOIDmode,
3734 ni2dest))));
3735 m_split_insn = combine_split_insns (parallel, i3);
3736
3737 if (m_split_insn == 0
3738 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3739 {
3740 struct undo *buf;
3741
3742 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3743 buf = undobuf.undos;
3744 undobuf.undos = buf->next;
3745 buf->next = undobuf.frees;
3746 undobuf.frees = buf;
3747 }
3748 }
3749
3750 i2scratch = m_split_insn != 0;
3751 }
3752
3753 /* If recog_for_combine has discarded clobbers, try to use them
3754 again for the split. */
3755 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3756 {
3757 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3758 m_split_insn = combine_split_insns (parallel, i3);
3759 }
3760
3761 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3762 {
3763 rtx m_split_pat = PATTERN (m_split_insn);
3764 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3765 if (insn_code_number >= 0)
3766 newpat = m_split_pat;
3767 }
3768 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3769 && (next_nonnote_nondebug_insn (i2) == i3
3770 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3771 {
3772 rtx i2set, i3set;
3773 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3774 newi2pat = PATTERN (m_split_insn);
3775
3776 i3set = single_set (NEXT_INSN (m_split_insn));
3777 i2set = single_set (m_split_insn);
3778
3779 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3780
3781 /* If I2 or I3 has multiple SETs, we won't know how to track
3782 register status, so don't use these insns. If I2's destination
3783 is used between I2 and I3, we also can't use these insns. */
3784
3785 if (i2_code_number >= 0 && i2set && i3set
3786 && (next_nonnote_nondebug_insn (i2) == i3
3787 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3788 insn_code_number = recog_for_combine (&newi3pat, i3,
3789 &new_i3_notes);
3790 if (insn_code_number >= 0)
3791 newpat = newi3pat;
3792
3793 /* It is possible that both insns now set the destination of I3.
3794 If so, we must show an extra use of it. */
3795
3796 if (insn_code_number >= 0)
3797 {
3798 rtx new_i3_dest = SET_DEST (i3set);
3799 rtx new_i2_dest = SET_DEST (i2set);
3800
3801 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3802 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3803 || GET_CODE (new_i3_dest) == SUBREG)
3804 new_i3_dest = XEXP (new_i3_dest, 0);
3805
3806 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3807 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3808 || GET_CODE (new_i2_dest) == SUBREG)
3809 new_i2_dest = XEXP (new_i2_dest, 0);
3810
3811 if (REG_P (new_i3_dest)
3812 && REG_P (new_i2_dest)
3813 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3814 && REGNO (new_i2_dest) < reg_n_sets_max)
3815 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3816 }
3817 }
3818
3819 /* If we can split it and use I2DEST, go ahead and see if that
3820 helps things be recognized. Verify that none of the registers
3821 are set between I2 and I3. */
3822 if (insn_code_number < 0
3823 && (split = find_split_point (&newpat, i3, false)) != 0
3824 && (!HAVE_cc0 || REG_P (i2dest))
3825 /* We need I2DEST in the proper mode. If it is a hard register
3826 or the only use of a pseudo, we can change its mode.
3827 Make sure we don't change a hard register to have a mode that
3828 isn't valid for it, or change the number of registers. */
3829 && (GET_MODE (*split) == GET_MODE (i2dest)
3830 || GET_MODE (*split) == VOIDmode
3831 || can_change_dest_mode (i2dest, added_sets_2,
3832 GET_MODE (*split)))
3833 && (next_nonnote_nondebug_insn (i2) == i3
3834 || !modified_between_p (*split, i2, i3))
3835 /* We can't overwrite I2DEST if its value is still used by
3836 NEWPAT. */
3837 && ! reg_referenced_p (i2dest, newpat))
3838 {
3839 rtx newdest = i2dest;
3840 enum rtx_code split_code = GET_CODE (*split);
3841 machine_mode split_mode = GET_MODE (*split);
3842 bool subst_done = false;
3843 newi2pat = NULL_RTX;
3844
3845 i2scratch = true;
3846
3847 /* *SPLIT may be part of I2SRC, so make sure we have the
3848 original expression around for later debug processing.
3849 We should not need I2SRC any more in other cases. */
3850 if (MAY_HAVE_DEBUG_BIND_INSNS)
3851 i2src = copy_rtx (i2src);
3852 else
3853 i2src = NULL;
3854
3855 /* Get NEWDEST as a register in the proper mode. We have already
3856 validated that we can do this. */
3857 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3858 {
3859 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3860 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3861 else
3862 {
3863 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3864 newdest = regno_reg_rtx[REGNO (i2dest)];
3865 }
3866 }
3867
3868 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3869 an ASHIFT. This can occur if it was inside a PLUS and hence
3870 appeared to be a memory address. This is a kludge. */
3871 if (split_code == MULT
3872 && CONST_INT_P (XEXP (*split, 1))
3873 && INTVAL (XEXP (*split, 1)) > 0
3874 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3875 {
3876 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3877 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3878 XEXP (*split, 0), i_rtx));
3879 /* Update split_code because we may not have a multiply
3880 anymore. */
3881 split_code = GET_CODE (*split);
3882 }
3883
3884 /* Similarly for (plus (mult FOO (const_int pow2))). */
3885 if (split_code == PLUS
3886 && GET_CODE (XEXP (*split, 0)) == MULT
3887 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3888 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3889 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3890 {
3891 rtx nsplit = XEXP (*split, 0);
3892 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3893 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3894 XEXP (nsplit, 0),
3895 i_rtx));
3896 /* Update split_code because we may not have a multiply
3897 anymore. */
3898 split_code = GET_CODE (*split);
3899 }
3900
3901 #ifdef INSN_SCHEDULING
3902 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3903 be written as a ZERO_EXTEND. */
3904 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3905 {
3906 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3907 what it really is. */
3908 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3909 == SIGN_EXTEND)
3910 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3911 SUBREG_REG (*split)));
3912 else
3913 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3914 SUBREG_REG (*split)));
3915 }
3916 #endif
3917
3918 /* Attempt to split binary operators using arithmetic identities. */
3919 if (BINARY_P (SET_SRC (newpat))
3920 && split_mode == GET_MODE (SET_SRC (newpat))
3921 && ! side_effects_p (SET_SRC (newpat)))
3922 {
3923 rtx setsrc = SET_SRC (newpat);
3924 machine_mode mode = GET_MODE (setsrc);
3925 enum rtx_code code = GET_CODE (setsrc);
3926 rtx src_op0 = XEXP (setsrc, 0);
3927 rtx src_op1 = XEXP (setsrc, 1);
3928
3929 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3930 if (rtx_equal_p (src_op0, src_op1))
3931 {
3932 newi2pat = gen_rtx_SET (newdest, src_op0);
3933 SUBST (XEXP (setsrc, 0), newdest);
3934 SUBST (XEXP (setsrc, 1), newdest);
3935 subst_done = true;
3936 }
3937 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3938 else if ((code == PLUS || code == MULT)
3939 && GET_CODE (src_op0) == code
3940 && GET_CODE (XEXP (src_op0, 0)) == code
3941 && (INTEGRAL_MODE_P (mode)
3942 || (FLOAT_MODE_P (mode)
3943 && flag_unsafe_math_optimizations)))
3944 {
3945 rtx p = XEXP (XEXP (src_op0, 0), 0);
3946 rtx q = XEXP (XEXP (src_op0, 0), 1);
3947 rtx r = XEXP (src_op0, 1);
3948 rtx s = src_op1;
3949
3950 /* Split both "((X op Y) op X) op Y" and
3951 "((X op Y) op Y) op X" as "T op T" where T is
3952 "X op Y". */
3953 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3954 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3955 {
3956 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3957 SUBST (XEXP (setsrc, 0), newdest);
3958 SUBST (XEXP (setsrc, 1), newdest);
3959 subst_done = true;
3960 }
3961 /* Split "((X op X) op Y) op Y)" as "T op T" where
3962 T is "X op Y". */
3963 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3964 {
3965 rtx tmp = simplify_gen_binary (code, mode, p, r);
3966 newi2pat = gen_rtx_SET (newdest, tmp);
3967 SUBST (XEXP (setsrc, 0), newdest);
3968 SUBST (XEXP (setsrc, 1), newdest);
3969 subst_done = true;
3970 }
3971 }
3972 }
3973
3974 if (!subst_done)
3975 {
3976 newi2pat = gen_rtx_SET (newdest, *split);
3977 SUBST (*split, newdest);
3978 }
3979
3980 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3981
3982 /* recog_for_combine might have added CLOBBERs to newi2pat.
3983 Make sure NEWPAT does not depend on the clobbered regs. */
3984 if (GET_CODE (newi2pat) == PARALLEL)
3985 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3986 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3987 {
3988 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3989 if (reg_overlap_mentioned_p (reg, newpat))
3990 {
3991 undo_all ();
3992 return 0;
3993 }
3994 }
3995
3996 /* If the split point was a MULT and we didn't have one before,
3997 don't use one now. */
3998 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3999 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4000 }
4001 }
4002
4003 /* Check for a case where we loaded from memory in a narrow mode and
4004 then sign extended it, but we need both registers. In that case,
4005 we have a PARALLEL with both loads from the same memory location.
4006 We can split this into a load from memory followed by a register-register
4007 copy. This saves at least one insn, more if register allocation can
4008 eliminate the copy.
4009
4010 We cannot do this if the destination of the first assignment is a
4011 condition code register or cc0. We eliminate this case by making sure
4012 the SET_DEST and SET_SRC have the same mode.
4013
4014 We cannot do this if the destination of the second assignment is
4015 a register that we have already assumed is zero-extended. Similarly
4016 for a SUBREG of such a register. */
4017
4018 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
4019 && GET_CODE (newpat) == PARALLEL
4020 && XVECLEN (newpat, 0) == 2
4021 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4022 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
4023 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
4024 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
4025 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4026 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
4027 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
4028 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
4029 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4030 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4031 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
4032 (REG_P (temp_expr)
4033 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4034 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4035 BITS_PER_WORD)
4036 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4037 HOST_BITS_PER_INT)
4038 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4039 != GET_MODE_MASK (word_mode))))
4040 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
4041 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
4042 (REG_P (temp_expr)
4043 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4044 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4045 BITS_PER_WORD)
4046 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4047 HOST_BITS_PER_INT)
4048 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4049 != GET_MODE_MASK (word_mode)))))
4050 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4051 SET_SRC (XVECEXP (newpat, 0, 1)))
4052 && ! find_reg_note (i3, REG_UNUSED,
4053 SET_DEST (XVECEXP (newpat, 0, 0))))
4054 {
4055 rtx ni2dest;
4056
4057 newi2pat = XVECEXP (newpat, 0, 0);
4058 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
4059 newpat = XVECEXP (newpat, 0, 1);
4060 SUBST (SET_SRC (newpat),
4061 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
4062 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4063
4064 if (i2_code_number >= 0)
4065 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4066
4067 if (insn_code_number >= 0)
4068 swap_i2i3 = 1;
4069 }
4070
4071 /* Similarly, check for a case where we have a PARALLEL of two independent
4072 SETs but we started with three insns. In this case, we can do the sets
4073 as two separate insns. This case occurs when some SET allows two
4074 other insns to combine, but the destination of that SET is still live.
4075
4076 Also do this if we started with two insns and (at least) one of the
4077 resulting sets is a noop; this noop will be deleted later.
4078
4079 Also do this if we started with two insns neither of which was a simple
4080 move. */
4081
4082 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4083 && GET_CODE (newpat) == PARALLEL
4084 && XVECLEN (newpat, 0) == 2
4085 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4086 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4087 && (i1
4088 || set_noop_p (XVECEXP (newpat, 0, 0))
4089 || set_noop_p (XVECEXP (newpat, 0, 1))
4090 || (!i2_was_move && !i3_was_move))
4091 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4092 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4093 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4094 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4095 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4096 XVECEXP (newpat, 0, 0))
4097 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4098 XVECEXP (newpat, 0, 1))
4099 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4100 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4101 {
4102 rtx set0 = XVECEXP (newpat, 0, 0);
4103 rtx set1 = XVECEXP (newpat, 0, 1);
4104
4105 /* Normally, it doesn't matter which of the two is done first,
4106 but the one that references cc0 can't be the second, and
4107 one which uses any regs/memory set in between i2 and i3 can't
4108 be first. The PARALLEL might also have been pre-existing in i3,
4109 so we need to make sure that we won't wrongly hoist a SET to i2
4110 that would conflict with a death note present in there, or would
4111 have its dest modified between i2 and i3. */
4112 if (!modified_between_p (SET_SRC (set1), i2, i3)
4113 && !(REG_P (SET_DEST (set1))
4114 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4115 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4116 && find_reg_note (i2, REG_DEAD,
4117 SUBREG_REG (SET_DEST (set1))))
4118 && !modified_between_p (SET_DEST (set1), i2, i3)
4119 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4120 /* If I3 is a jump, ensure that set0 is a jump so that
4121 we do not create invalid RTL. */
4122 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4123 )
4124 {
4125 newi2pat = set1;
4126 newpat = set0;
4127 }
4128 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4129 && !(REG_P (SET_DEST (set0))
4130 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4131 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4132 && find_reg_note (i2, REG_DEAD,
4133 SUBREG_REG (SET_DEST (set0))))
4134 && !modified_between_p (SET_DEST (set0), i2, i3)
4135 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4136 /* If I3 is a jump, ensure that set1 is a jump so that
4137 we do not create invalid RTL. */
4138 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4139 )
4140 {
4141 newi2pat = set0;
4142 newpat = set1;
4143 }
4144 else
4145 {
4146 undo_all ();
4147 return 0;
4148 }
4149
4150 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4151
4152 if (i2_code_number >= 0)
4153 {
4154 /* recog_for_combine might have added CLOBBERs to newi2pat.
4155 Make sure NEWPAT does not depend on the clobbered regs. */
4156 if (GET_CODE (newi2pat) == PARALLEL)
4157 {
4158 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4159 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4160 {
4161 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4162 if (reg_overlap_mentioned_p (reg, newpat))
4163 {
4164 undo_all ();
4165 return 0;
4166 }
4167 }
4168 }
4169
4170 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4171
4172 if (insn_code_number >= 0)
4173 split_i2i3 = 1;
4174 }
4175 }
4176
4177 /* If it still isn't recognized, fail and change things back the way they
4178 were. */
4179 if ((insn_code_number < 0
4180 /* Is the result a reasonable ASM_OPERANDS? */
4181 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4182 {
4183 undo_all ();
4184 return 0;
4185 }
4186
4187 /* If we had to change another insn, make sure it is valid also. */
4188 if (undobuf.other_insn)
4189 {
4190 CLEAR_HARD_REG_SET (newpat_used_regs);
4191
4192 other_pat = PATTERN (undobuf.other_insn);
4193 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4194 &new_other_notes);
4195
4196 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4197 {
4198 undo_all ();
4199 return 0;
4200 }
4201 }
4202
4203 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4204 they are adjacent to each other or not. */
4205 if (HAVE_cc0)
4206 {
4207 rtx_insn *p = prev_nonnote_insn (i3);
4208 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4209 && sets_cc0_p (newi2pat))
4210 {
4211 undo_all ();
4212 return 0;
4213 }
4214 }
4215
4216 /* Only allow this combination if insn_cost reports that the
4217 replacement instructions are cheaper than the originals. */
4218 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4219 {
4220 undo_all ();
4221 return 0;
4222 }
4223
4224 if (MAY_HAVE_DEBUG_BIND_INSNS)
4225 {
4226 struct undo *undo;
4227
4228 for (undo = undobuf.undos; undo; undo = undo->next)
4229 if (undo->kind == UNDO_MODE)
4230 {
4231 rtx reg = *undo->where.r;
4232 machine_mode new_mode = GET_MODE (reg);
4233 machine_mode old_mode = undo->old_contents.m;
4234
4235 /* Temporarily revert mode back. */
4236 adjust_reg_mode (reg, old_mode);
4237
4238 if (reg == i2dest && i2scratch)
4239 {
4240 /* If we used i2dest as a scratch register with a
4241 different mode, substitute it for the original
4242 i2src while its original mode is temporarily
4243 restored, and then clear i2scratch so that we don't
4244 do it again later. */
4245 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4246 this_basic_block);
4247 i2scratch = false;
4248 /* Put back the new mode. */
4249 adjust_reg_mode (reg, new_mode);
4250 }
4251 else
4252 {
4253 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4254 rtx_insn *first, *last;
4255
4256 if (reg == i2dest)
4257 {
4258 first = i2;
4259 last = last_combined_insn;
4260 }
4261 else
4262 {
4263 first = i3;
4264 last = undobuf.other_insn;
4265 gcc_assert (last);
4266 if (DF_INSN_LUID (last)
4267 < DF_INSN_LUID (last_combined_insn))
4268 last = last_combined_insn;
4269 }
4270
4271 /* We're dealing with a reg that changed mode but not
4272 meaning, so we want to turn it into a subreg for
4273 the new mode. However, because of REG sharing and
4274 because its mode had already changed, we have to do
4275 it in two steps. First, replace any debug uses of
4276 reg, with its original mode temporarily restored,
4277 with this copy we have created; then, replace the
4278 copy with the SUBREG of the original shared reg,
4279 once again changed to the new mode. */
4280 propagate_for_debug (first, last, reg, tempreg,
4281 this_basic_block);
4282 adjust_reg_mode (reg, new_mode);
4283 propagate_for_debug (first, last, tempreg,
4284 lowpart_subreg (old_mode, reg, new_mode),
4285 this_basic_block);
4286 }
4287 }
4288 }
4289
4290 /* If we will be able to accept this, we have made a
4291 change to the destination of I3. This requires us to
4292 do a few adjustments. */
4293
4294 if (changed_i3_dest)
4295 {
4296 PATTERN (i3) = newpat;
4297 adjust_for_new_dest (i3);
4298 }
4299
4300 /* We now know that we can do this combination. Merge the insns and
4301 update the status of registers and LOG_LINKS. */
4302
4303 if (undobuf.other_insn)
4304 {
4305 rtx note, next;
4306
4307 PATTERN (undobuf.other_insn) = other_pat;
4308
4309 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4310 ensure that they are still valid. Then add any non-duplicate
4311 notes added by recog_for_combine. */
4312 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4313 {
4314 next = XEXP (note, 1);
4315
4316 if ((REG_NOTE_KIND (note) == REG_DEAD
4317 && !reg_referenced_p (XEXP (note, 0),
4318 PATTERN (undobuf.other_insn)))
4319 ||(REG_NOTE_KIND (note) == REG_UNUSED
4320 && !reg_set_p (XEXP (note, 0),
4321 PATTERN (undobuf.other_insn)))
4322 /* Simply drop equal note since it may be no longer valid
4323 for other_insn. It may be possible to record that CC
4324 register is changed and only discard those notes, but
4325 in practice it's unnecessary complication and doesn't
4326 give any meaningful improvement.
4327
4328 See PR78559. */
4329 || REG_NOTE_KIND (note) == REG_EQUAL
4330 || REG_NOTE_KIND (note) == REG_EQUIV)
4331 remove_note (undobuf.other_insn, note);
4332 }
4333
4334 distribute_notes (new_other_notes, undobuf.other_insn,
4335 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4336 NULL_RTX);
4337 }
4338
4339 if (swap_i2i3)
4340 {
4341 /* I3 now uses what used to be its destination and which is now
4342 I2's destination. This requires us to do a few adjustments. */
4343 PATTERN (i3) = newpat;
4344 adjust_for_new_dest (i3);
4345 }
4346
4347 if (swap_i2i3 || split_i2i3)
4348 {
4349 /* We might need a LOG_LINK from I3 to I2. But then we used to
4350 have one, so we still will.
4351
4352 However, some later insn might be using I2's dest and have
4353 a LOG_LINK pointing at I3. We should change it to point at
4354 I2 instead. */
4355
4356 /* newi2pat is usually a SET here; however, recog_for_combine might
4357 have added some clobbers. */
4358 rtx x = newi2pat;
4359 if (GET_CODE (x) == PARALLEL)
4360 x = XVECEXP (newi2pat, 0, 0);
4361
4362 /* It can only be a SET of a REG or of a SUBREG of a REG. */
4363 unsigned int regno = reg_or_subregno (SET_DEST (x));
4364
4365 bool done = false;
4366 for (rtx_insn *insn = NEXT_INSN (i3);
4367 !done
4368 && insn
4369 && NONDEBUG_INSN_P (insn)
4370 && BLOCK_FOR_INSN (insn) == this_basic_block;
4371 insn = NEXT_INSN (insn))
4372 {
4373 struct insn_link *link;
4374 FOR_EACH_LOG_LINK (link, insn)
4375 if (link->insn == i3 && link->regno == regno)
4376 {
4377 link->insn = i2;
4378 done = true;
4379 break;
4380 }
4381 }
4382 }
4383
4384 {
4385 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4386 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4387 rtx midnotes = 0;
4388 int from_luid;
4389 /* Compute which registers we expect to eliminate. newi2pat may be setting
4390 either i3dest or i2dest, so we must check it. */
4391 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4392 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4393 || !i2dest_killed
4394 ? 0 : i2dest);
4395 /* For i1, we need to compute both local elimination and global
4396 elimination information with respect to newi2pat because i1dest
4397 may be the same as i3dest, in which case newi2pat may be setting
4398 i1dest. Global information is used when distributing REG_DEAD
4399 note for i2 and i3, in which case it does matter if newi2pat sets
4400 i1dest or not.
4401
4402 Local information is used when distributing REG_DEAD note for i1,
4403 in which case it doesn't matter if newi2pat sets i1dest or not.
4404 See PR62151, if we have four insns combination:
4405 i0: r0 <- i0src
4406 i1: r1 <- i1src (using r0)
4407 REG_DEAD (r0)
4408 i2: r0 <- i2src (using r1)
4409 i3: r3 <- i3src (using r0)
4410 ix: using r0
4411 From i1's point of view, r0 is eliminated, no matter if it is set
4412 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4413 should be discarded.
4414
4415 Note local information only affects cases in forms like "I1->I2->I3",
4416 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4417 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4418 i0dest anyway. */
4419 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4420 || !i1dest_killed
4421 ? 0 : i1dest);
4422 rtx elim_i1 = (local_elim_i1 == 0
4423 || (newi2pat && reg_set_p (i1dest, newi2pat))
4424 ? 0 : i1dest);
4425 /* Same case as i1. */
4426 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4427 ? 0 : i0dest);
4428 rtx elim_i0 = (local_elim_i0 == 0
4429 || (newi2pat && reg_set_p (i0dest, newi2pat))
4430 ? 0 : i0dest);
4431
4432 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4433 clear them. */
4434 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4435 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4436 if (i1)
4437 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4438 if (i0)
4439 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4440
4441 /* Ensure that we do not have something that should not be shared but
4442 occurs multiple times in the new insns. Check this by first
4443 resetting all the `used' flags and then copying anything is shared. */
4444
4445 reset_used_flags (i3notes);
4446 reset_used_flags (i2notes);
4447 reset_used_flags (i1notes);
4448 reset_used_flags (i0notes);
4449 reset_used_flags (newpat);
4450 reset_used_flags (newi2pat);
4451 if (undobuf.other_insn)
4452 reset_used_flags (PATTERN (undobuf.other_insn));
4453
4454 i3notes = copy_rtx_if_shared (i3notes);
4455 i2notes = copy_rtx_if_shared (i2notes);
4456 i1notes = copy_rtx_if_shared (i1notes);
4457 i0notes = copy_rtx_if_shared (i0notes);
4458 newpat = copy_rtx_if_shared (newpat);
4459 newi2pat = copy_rtx_if_shared (newi2pat);
4460 if (undobuf.other_insn)
4461 reset_used_flags (PATTERN (undobuf.other_insn));
4462
4463 INSN_CODE (i3) = insn_code_number;
4464 PATTERN (i3) = newpat;
4465
4466 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4467 {
4468 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4469 link = XEXP (link, 1))
4470 {
4471 if (substed_i2)
4472 {
4473 /* I2SRC must still be meaningful at this point. Some
4474 splitting operations can invalidate I2SRC, but those
4475 operations do not apply to calls. */
4476 gcc_assert (i2src);
4477 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4478 i2dest, i2src);
4479 }
4480 if (substed_i1)
4481 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4482 i1dest, i1src);
4483 if (substed_i0)
4484 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4485 i0dest, i0src);
4486 }
4487 }
4488
4489 if (undobuf.other_insn)
4490 INSN_CODE (undobuf.other_insn) = other_code_number;
4491
4492 /* We had one special case above where I2 had more than one set and
4493 we replaced a destination of one of those sets with the destination
4494 of I3. In that case, we have to update LOG_LINKS of insns later
4495 in this basic block. Note that this (expensive) case is rare.
4496
4497 Also, in this case, we must pretend that all REG_NOTEs for I2
4498 actually came from I3, so that REG_UNUSED notes from I2 will be
4499 properly handled. */
4500
4501 if (i3_subst_into_i2)
4502 {
4503 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4504 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4505 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4506 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4507 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4508 && ! find_reg_note (i2, REG_UNUSED,
4509 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4510 for (temp_insn = NEXT_INSN (i2);
4511 temp_insn
4512 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4513 || BB_HEAD (this_basic_block) != temp_insn);
4514 temp_insn = NEXT_INSN (temp_insn))
4515 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4516 FOR_EACH_LOG_LINK (link, temp_insn)
4517 if (link->insn == i2)
4518 link->insn = i3;
4519
4520 if (i3notes)
4521 {
4522 rtx link = i3notes;
4523 while (XEXP (link, 1))
4524 link = XEXP (link, 1);
4525 XEXP (link, 1) = i2notes;
4526 }
4527 else
4528 i3notes = i2notes;
4529 i2notes = 0;
4530 }
4531
4532 LOG_LINKS (i3) = NULL;
4533 REG_NOTES (i3) = 0;
4534 LOG_LINKS (i2) = NULL;
4535 REG_NOTES (i2) = 0;
4536
4537 if (newi2pat)
4538 {
4539 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4540 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4541 this_basic_block);
4542 INSN_CODE (i2) = i2_code_number;
4543 PATTERN (i2) = newi2pat;
4544 }
4545 else
4546 {
4547 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4548 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4549 this_basic_block);
4550 SET_INSN_DELETED (i2);
4551 }
4552
4553 if (i1)
4554 {
4555 LOG_LINKS (i1) = NULL;
4556 REG_NOTES (i1) = 0;
4557 if (MAY_HAVE_DEBUG_BIND_INSNS)
4558 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4559 this_basic_block);
4560 SET_INSN_DELETED (i1);
4561 }
4562
4563 if (i0)
4564 {
4565 LOG_LINKS (i0) = NULL;
4566 REG_NOTES (i0) = 0;
4567 if (MAY_HAVE_DEBUG_BIND_INSNS)
4568 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4569 this_basic_block);
4570 SET_INSN_DELETED (i0);
4571 }
4572
4573 /* Get death notes for everything that is now used in either I3 or
4574 I2 and used to die in a previous insn. If we built two new
4575 patterns, move from I1 to I2 then I2 to I3 so that we get the
4576 proper movement on registers that I2 modifies. */
4577
4578 if (i0)
4579 from_luid = DF_INSN_LUID (i0);
4580 else if (i1)
4581 from_luid = DF_INSN_LUID (i1);
4582 else
4583 from_luid = DF_INSN_LUID (i2);
4584 if (newi2pat)
4585 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4586 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4587
4588 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4589 if (i3notes)
4590 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4591 elim_i2, elim_i1, elim_i0);
4592 if (i2notes)
4593 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4594 elim_i2, elim_i1, elim_i0);
4595 if (i1notes)
4596 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4597 elim_i2, local_elim_i1, local_elim_i0);
4598 if (i0notes)
4599 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4600 elim_i2, elim_i1, local_elim_i0);
4601 if (midnotes)
4602 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4603 elim_i2, elim_i1, elim_i0);
4604
4605 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4606 know these are REG_UNUSED and want them to go to the desired insn,
4607 so we always pass it as i3. */
4608
4609 if (newi2pat && new_i2_notes)
4610 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4611 NULL_RTX);
4612
4613 if (new_i3_notes)
4614 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4615 NULL_RTX);
4616
4617 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4618 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4619 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4620 in that case, it might delete I2. Similarly for I2 and I1.
4621 Show an additional death due to the REG_DEAD note we make here. If
4622 we discard it in distribute_notes, we will decrement it again. */
4623
4624 if (i3dest_killed)
4625 {
4626 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4627 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4628 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4629 elim_i1, elim_i0);
4630 else
4631 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4632 elim_i2, elim_i1, elim_i0);
4633 }
4634
4635 if (i2dest_in_i2src)
4636 {
4637 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4638 if (newi2pat && reg_set_p (i2dest, newi2pat))
4639 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4640 NULL_RTX, NULL_RTX);
4641 else
4642 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4643 NULL_RTX, NULL_RTX, NULL_RTX);
4644 }
4645
4646 if (i1dest_in_i1src)
4647 {
4648 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4649 if (newi2pat && reg_set_p (i1dest, newi2pat))
4650 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4651 NULL_RTX, NULL_RTX);
4652 else
4653 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4654 NULL_RTX, NULL_RTX, NULL_RTX);
4655 }
4656
4657 if (i0dest_in_i0src)
4658 {
4659 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4660 if (newi2pat && reg_set_p (i0dest, newi2pat))
4661 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4662 NULL_RTX, NULL_RTX);
4663 else
4664 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4665 NULL_RTX, NULL_RTX, NULL_RTX);
4666 }
4667
4668 distribute_links (i3links);
4669 distribute_links (i2links);
4670 distribute_links (i1links);
4671 distribute_links (i0links);
4672
4673 if (REG_P (i2dest))
4674 {
4675 struct insn_link *link;
4676 rtx_insn *i2_insn = 0;
4677 rtx i2_val = 0, set;
4678
4679 /* The insn that used to set this register doesn't exist, and
4680 this life of the register may not exist either. See if one of
4681 I3's links points to an insn that sets I2DEST. If it does,
4682 that is now the last known value for I2DEST. If we don't update
4683 this and I2 set the register to a value that depended on its old
4684 contents, we will get confused. If this insn is used, thing
4685 will be set correctly in combine_instructions. */
4686 FOR_EACH_LOG_LINK (link, i3)
4687 if ((set = single_set (link->insn)) != 0
4688 && rtx_equal_p (i2dest, SET_DEST (set)))
4689 i2_insn = link->insn, i2_val = SET_SRC (set);
4690
4691 record_value_for_reg (i2dest, i2_insn, i2_val);
4692
4693 /* If the reg formerly set in I2 died only once and that was in I3,
4694 zero its use count so it won't make `reload' do any work. */
4695 if (! added_sets_2
4696 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4697 && ! i2dest_in_i2src
4698 && REGNO (i2dest) < reg_n_sets_max)
4699 INC_REG_N_SETS (REGNO (i2dest), -1);
4700 }
4701
4702 if (i1 && REG_P (i1dest))
4703 {
4704 struct insn_link *link;
4705 rtx_insn *i1_insn = 0;
4706 rtx i1_val = 0, set;
4707
4708 FOR_EACH_LOG_LINK (link, i3)
4709 if ((set = single_set (link->insn)) != 0
4710 && rtx_equal_p (i1dest, SET_DEST (set)))
4711 i1_insn = link->insn, i1_val = SET_SRC (set);
4712
4713 record_value_for_reg (i1dest, i1_insn, i1_val);
4714
4715 if (! added_sets_1
4716 && ! i1dest_in_i1src
4717 && REGNO (i1dest) < reg_n_sets_max)
4718 INC_REG_N_SETS (REGNO (i1dest), -1);
4719 }
4720
4721 if (i0 && REG_P (i0dest))
4722 {
4723 struct insn_link *link;
4724 rtx_insn *i0_insn = 0;
4725 rtx i0_val = 0, set;
4726
4727 FOR_EACH_LOG_LINK (link, i3)
4728 if ((set = single_set (link->insn)) != 0
4729 && rtx_equal_p (i0dest, SET_DEST (set)))
4730 i0_insn = link->insn, i0_val = SET_SRC (set);
4731
4732 record_value_for_reg (i0dest, i0_insn, i0_val);
4733
4734 if (! added_sets_0
4735 && ! i0dest_in_i0src
4736 && REGNO (i0dest) < reg_n_sets_max)
4737 INC_REG_N_SETS (REGNO (i0dest), -1);
4738 }
4739
4740 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4741 been made to this insn. The order is important, because newi2pat
4742 can affect nonzero_bits of newpat. */
4743 if (newi2pat)
4744 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4745 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4746 }
4747
4748 if (undobuf.other_insn != NULL_RTX)
4749 {
4750 if (dump_file)
4751 {
4752 fprintf (dump_file, "modifying other_insn ");
4753 dump_insn_slim (dump_file, undobuf.other_insn);
4754 }
4755 df_insn_rescan (undobuf.other_insn);
4756 }
4757
4758 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4759 {
4760 if (dump_file)
4761 {
4762 fprintf (dump_file, "modifying insn i0 ");
4763 dump_insn_slim (dump_file, i0);
4764 }
4765 df_insn_rescan (i0);
4766 }
4767
4768 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4769 {
4770 if (dump_file)
4771 {
4772 fprintf (dump_file, "modifying insn i1 ");
4773 dump_insn_slim (dump_file, i1);
4774 }
4775 df_insn_rescan (i1);
4776 }
4777
4778 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4779 {
4780 if (dump_file)
4781 {
4782 fprintf (dump_file, "modifying insn i2 ");
4783 dump_insn_slim (dump_file, i2);
4784 }
4785 df_insn_rescan (i2);
4786 }
4787
4788 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4789 {
4790 if (dump_file)
4791 {
4792 fprintf (dump_file, "modifying insn i3 ");
4793 dump_insn_slim (dump_file, i3);
4794 }
4795 df_insn_rescan (i3);
4796 }
4797
4798 /* Set new_direct_jump_p if a new return or simple jump instruction
4799 has been created. Adjust the CFG accordingly. */
4800 if (returnjump_p (i3) || any_uncondjump_p (i3))
4801 {
4802 *new_direct_jump_p = 1;
4803 mark_jump_label (PATTERN (i3), i3, 0);
4804 update_cfg_for_uncondjump (i3);
4805 }
4806
4807 if (undobuf.other_insn != NULL_RTX
4808 && (returnjump_p (undobuf.other_insn)
4809 || any_uncondjump_p (undobuf.other_insn)))
4810 {
4811 *new_direct_jump_p = 1;
4812 update_cfg_for_uncondjump (undobuf.other_insn);
4813 }
4814
4815 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4816 && XEXP (PATTERN (i3), 0) == const1_rtx)
4817 {
4818 basic_block bb = BLOCK_FOR_INSN (i3);
4819 gcc_assert (bb);
4820 remove_edge (split_block (bb, i3));
4821 emit_barrier_after_bb (bb);
4822 *new_direct_jump_p = 1;
4823 }
4824
4825 if (undobuf.other_insn
4826 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4827 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4828 {
4829 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4830 gcc_assert (bb);
4831 remove_edge (split_block (bb, undobuf.other_insn));
4832 emit_barrier_after_bb (bb);
4833 *new_direct_jump_p = 1;
4834 }
4835
4836 /* A noop might also need cleaning up of CFG, if it comes from the
4837 simplification of a jump. */
4838 if (JUMP_P (i3)
4839 && GET_CODE (newpat) == SET
4840 && SET_SRC (newpat) == pc_rtx
4841 && SET_DEST (newpat) == pc_rtx)
4842 {
4843 *new_direct_jump_p = 1;
4844 update_cfg_for_uncondjump (i3);
4845 }
4846
4847 if (undobuf.other_insn != NULL_RTX
4848 && JUMP_P (undobuf.other_insn)
4849 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4850 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4851 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4852 {
4853 *new_direct_jump_p = 1;
4854 update_cfg_for_uncondjump (undobuf.other_insn);
4855 }
4856
4857 combine_successes++;
4858 undo_commit ();
4859
4860 rtx_insn *ret = newi2pat ? i2 : i3;
4861 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4862 ret = added_links_insn;
4863 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4864 ret = added_notes_insn;
4865
4866 return ret;
4867 }
4868 \f
4869 /* Get a marker for undoing to the current state. */
4870
4871 static void *
4872 get_undo_marker (void)
4873 {
4874 return undobuf.undos;
4875 }
4876
4877 /* Undo the modifications up to the marker. */
4878
4879 static void
4880 undo_to_marker (void *marker)
4881 {
4882 struct undo *undo, *next;
4883
4884 for (undo = undobuf.undos; undo != marker; undo = next)
4885 {
4886 gcc_assert (undo);
4887
4888 next = undo->next;
4889 switch (undo->kind)
4890 {
4891 case UNDO_RTX:
4892 *undo->where.r = undo->old_contents.r;
4893 break;
4894 case UNDO_INT:
4895 *undo->where.i = undo->old_contents.i;
4896 break;
4897 case UNDO_MODE:
4898 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4899 break;
4900 case UNDO_LINKS:
4901 *undo->where.l = undo->old_contents.l;
4902 break;
4903 default:
4904 gcc_unreachable ();
4905 }
4906
4907 undo->next = undobuf.frees;
4908 undobuf.frees = undo;
4909 }
4910
4911 undobuf.undos = (struct undo *) marker;
4912 }
4913
4914 /* Undo all the modifications recorded in undobuf. */
4915
4916 static void
4917 undo_all (void)
4918 {
4919 undo_to_marker (0);
4920 }
4921
4922 /* We've committed to accepting the changes we made. Move all
4923 of the undos to the free list. */
4924
4925 static void
4926 undo_commit (void)
4927 {
4928 struct undo *undo, *next;
4929
4930 for (undo = undobuf.undos; undo; undo = next)
4931 {
4932 next = undo->next;
4933 undo->next = undobuf.frees;
4934 undobuf.frees = undo;
4935 }
4936 undobuf.undos = 0;
4937 }
4938 \f
4939 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4940 where we have an arithmetic expression and return that point. LOC will
4941 be inside INSN.
4942
4943 try_combine will call this function to see if an insn can be split into
4944 two insns. */
4945
4946 static rtx *
4947 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4948 {
4949 rtx x = *loc;
4950 enum rtx_code code = GET_CODE (x);
4951 rtx *split;
4952 unsigned HOST_WIDE_INT len = 0;
4953 HOST_WIDE_INT pos = 0;
4954 int unsignedp = 0;
4955 rtx inner = NULL_RTX;
4956 scalar_int_mode mode, inner_mode;
4957
4958 /* First special-case some codes. */
4959 switch (code)
4960 {
4961 case SUBREG:
4962 #ifdef INSN_SCHEDULING
4963 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4964 point. */
4965 if (MEM_P (SUBREG_REG (x)))
4966 return loc;
4967 #endif
4968 return find_split_point (&SUBREG_REG (x), insn, false);
4969
4970 case MEM:
4971 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4972 using LO_SUM and HIGH. */
4973 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4974 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4975 {
4976 machine_mode address_mode = get_address_mode (x);
4977
4978 SUBST (XEXP (x, 0),
4979 gen_rtx_LO_SUM (address_mode,
4980 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4981 XEXP (x, 0)));
4982 return &XEXP (XEXP (x, 0), 0);
4983 }
4984
4985 /* If we have a PLUS whose second operand is a constant and the
4986 address is not valid, perhaps we can split it up using
4987 the machine-specific way to split large constants. We use
4988 the first pseudo-reg (one of the virtual regs) as a placeholder;
4989 it will not remain in the result. */
4990 if (GET_CODE (XEXP (x, 0)) == PLUS
4991 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4992 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4993 MEM_ADDR_SPACE (x)))
4994 {
4995 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4996 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4997 subst_insn);
4998
4999 /* This should have produced two insns, each of which sets our
5000 placeholder. If the source of the second is a valid address,
5001 we can put both sources together and make a split point
5002 in the middle. */
5003
5004 if (seq
5005 && NEXT_INSN (seq) != NULL_RTX
5006 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
5007 && NONJUMP_INSN_P (seq)
5008 && GET_CODE (PATTERN (seq)) == SET
5009 && SET_DEST (PATTERN (seq)) == reg
5010 && ! reg_mentioned_p (reg,
5011 SET_SRC (PATTERN (seq)))
5012 && NONJUMP_INSN_P (NEXT_INSN (seq))
5013 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
5014 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
5015 && memory_address_addr_space_p
5016 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
5017 MEM_ADDR_SPACE (x)))
5018 {
5019 rtx src1 = SET_SRC (PATTERN (seq));
5020 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
5021
5022 /* Replace the placeholder in SRC2 with SRC1. If we can
5023 find where in SRC2 it was placed, that can become our
5024 split point and we can replace this address with SRC2.
5025 Just try two obvious places. */
5026
5027 src2 = replace_rtx (src2, reg, src1);
5028 split = 0;
5029 if (XEXP (src2, 0) == src1)
5030 split = &XEXP (src2, 0);
5031 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
5032 && XEXP (XEXP (src2, 0), 0) == src1)
5033 split = &XEXP (XEXP (src2, 0), 0);
5034
5035 if (split)
5036 {
5037 SUBST (XEXP (x, 0), src2);
5038 return split;
5039 }
5040 }
5041
5042 /* If that didn't work and we have a nested plus, like:
5043 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
5044 is valid address, try to split (REG1 * CONST1). */
5045 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5046 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5047 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5048 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
5049 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5050 0), 0)))))
5051 {
5052 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
5053 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
5054 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5055 MEM_ADDR_SPACE (x)))
5056 {
5057 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5058 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
5059 }
5060 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5061 }
5062 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5063 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5064 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5065 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
5066 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5067 0), 1)))))
5068 {
5069 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
5070 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
5071 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5072 MEM_ADDR_SPACE (x)))
5073 {
5074 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5075 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
5076 }
5077 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5078 }
5079
5080 /* If that didn't work, perhaps the first operand is complex and
5081 needs to be computed separately, so make a split point there.
5082 This will occur on machines that just support REG + CONST
5083 and have a constant moved through some previous computation. */
5084 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
5085 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5086 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5087 return &XEXP (XEXP (x, 0), 0);
5088 }
5089
5090 /* If we have a PLUS whose first operand is complex, try computing it
5091 separately by making a split there. */
5092 if (GET_CODE (XEXP (x, 0)) == PLUS
5093 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5094 MEM_ADDR_SPACE (x))
5095 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
5096 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5097 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5098 return &XEXP (XEXP (x, 0), 0);
5099 break;
5100
5101 case SET:
5102 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5103 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5104 we need to put the operand into a register. So split at that
5105 point. */
5106
5107 if (SET_DEST (x) == cc0_rtx
5108 && GET_CODE (SET_SRC (x)) != COMPARE
5109 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
5110 && !OBJECT_P (SET_SRC (x))
5111 && ! (GET_CODE (SET_SRC (x)) == SUBREG
5112 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5113 return &SET_SRC (x);
5114
5115 /* See if we can split SET_SRC as it stands. */
5116 split = find_split_point (&SET_SRC (x), insn, true);
5117 if (split && split != &SET_SRC (x))
5118 return split;
5119
5120 /* See if we can split SET_DEST as it stands. */
5121 split = find_split_point (&SET_DEST (x), insn, false);
5122 if (split && split != &SET_DEST (x))
5123 return split;
5124
5125 /* See if this is a bitfield assignment with everything constant. If
5126 so, this is an IOR of an AND, so split it into that. */
5127 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5128 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5129 &inner_mode)
5130 && HWI_COMPUTABLE_MODE_P (inner_mode)
5131 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5132 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5133 && CONST_INT_P (SET_SRC (x))
5134 && ((INTVAL (XEXP (SET_DEST (x), 1))
5135 + INTVAL (XEXP (SET_DEST (x), 2)))
5136 <= GET_MODE_PRECISION (inner_mode))
5137 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5138 {
5139 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5140 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5141 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5142 rtx dest = XEXP (SET_DEST (x), 0);
5143 unsigned HOST_WIDE_INT mask
5144 = (HOST_WIDE_INT_1U << len) - 1;
5145 rtx or_mask;
5146
5147 if (BITS_BIG_ENDIAN)
5148 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5149
5150 or_mask = gen_int_mode (src << pos, inner_mode);
5151 if (src == mask)
5152 SUBST (SET_SRC (x),
5153 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5154 else
5155 {
5156 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5157 SUBST (SET_SRC (x),
5158 simplify_gen_binary (IOR, inner_mode,
5159 simplify_gen_binary (AND, inner_mode,
5160 dest, negmask),
5161 or_mask));
5162 }
5163
5164 SUBST (SET_DEST (x), dest);
5165
5166 split = find_split_point (&SET_SRC (x), insn, true);
5167 if (split && split != &SET_SRC (x))
5168 return split;
5169 }
5170
5171 /* Otherwise, see if this is an operation that we can split into two.
5172 If so, try to split that. */
5173 code = GET_CODE (SET_SRC (x));
5174
5175 switch (code)
5176 {
5177 case AND:
5178 /* If we are AND'ing with a large constant that is only a single
5179 bit and the result is only being used in a context where we
5180 need to know if it is zero or nonzero, replace it with a bit
5181 extraction. This will avoid the large constant, which might
5182 have taken more than one insn to make. If the constant were
5183 not a valid argument to the AND but took only one insn to make,
5184 this is no worse, but if it took more than one insn, it will
5185 be better. */
5186
5187 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5188 && REG_P (XEXP (SET_SRC (x), 0))
5189 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5190 && REG_P (SET_DEST (x))
5191 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5192 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5193 && XEXP (*split, 0) == SET_DEST (x)
5194 && XEXP (*split, 1) == const0_rtx)
5195 {
5196 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5197 XEXP (SET_SRC (x), 0),
5198 pos, NULL_RTX, 1, 1, 0, 0);
5199 if (extraction != 0)
5200 {
5201 SUBST (SET_SRC (x), extraction);
5202 return find_split_point (loc, insn, false);
5203 }
5204 }
5205 break;
5206
5207 case NE:
5208 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5209 is known to be on, this can be converted into a NEG of a shift. */
5210 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5211 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5212 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5213 GET_MODE (XEXP (SET_SRC (x),
5214 0))))) >= 1))
5215 {
5216 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5217 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5218 SUBST (SET_SRC (x),
5219 gen_rtx_NEG (mode,
5220 gen_rtx_LSHIFTRT (mode,
5221 XEXP (SET_SRC (x), 0),
5222 pos_rtx)));
5223
5224 split = find_split_point (&SET_SRC (x), insn, true);
5225 if (split && split != &SET_SRC (x))
5226 return split;
5227 }
5228 break;
5229
5230 case SIGN_EXTEND:
5231 inner = XEXP (SET_SRC (x), 0);
5232
5233 /* We can't optimize if either mode is a partial integer
5234 mode as we don't know how many bits are significant
5235 in those modes. */
5236 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5237 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5238 break;
5239
5240 pos = 0;
5241 len = GET_MODE_PRECISION (inner_mode);
5242 unsignedp = 0;
5243 break;
5244
5245 case SIGN_EXTRACT:
5246 case ZERO_EXTRACT:
5247 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5248 &inner_mode)
5249 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5250 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5251 {
5252 inner = XEXP (SET_SRC (x), 0);
5253 len = INTVAL (XEXP (SET_SRC (x), 1));
5254 pos = INTVAL (XEXP (SET_SRC (x), 2));
5255
5256 if (BITS_BIG_ENDIAN)
5257 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5258 unsignedp = (code == ZERO_EXTRACT);
5259 }
5260 break;
5261
5262 default:
5263 break;
5264 }
5265
5266 if (len
5267 && known_subrange_p (pos, len,
5268 0, GET_MODE_PRECISION (GET_MODE (inner)))
5269 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5270 {
5271 /* For unsigned, we have a choice of a shift followed by an
5272 AND or two shifts. Use two shifts for field sizes where the
5273 constant might be too large. We assume here that we can
5274 always at least get 8-bit constants in an AND insn, which is
5275 true for every current RISC. */
5276
5277 if (unsignedp && len <= 8)
5278 {
5279 unsigned HOST_WIDE_INT mask
5280 = (HOST_WIDE_INT_1U << len) - 1;
5281 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5282 SUBST (SET_SRC (x),
5283 gen_rtx_AND (mode,
5284 gen_rtx_LSHIFTRT
5285 (mode, gen_lowpart (mode, inner), pos_rtx),
5286 gen_int_mode (mask, mode)));
5287
5288 split = find_split_point (&SET_SRC (x), insn, true);
5289 if (split && split != &SET_SRC (x))
5290 return split;
5291 }
5292 else
5293 {
5294 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5295 int right_bits = GET_MODE_PRECISION (mode) - len;
5296 SUBST (SET_SRC (x),
5297 gen_rtx_fmt_ee
5298 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5299 gen_rtx_ASHIFT (mode,
5300 gen_lowpart (mode, inner),
5301 gen_int_shift_amount (mode, left_bits)),
5302 gen_int_shift_amount (mode, right_bits)));
5303
5304 split = find_split_point (&SET_SRC (x), insn, true);
5305 if (split && split != &SET_SRC (x))
5306 return split;
5307 }
5308 }
5309
5310 /* See if this is a simple operation with a constant as the second
5311 operand. It might be that this constant is out of range and hence
5312 could be used as a split point. */
5313 if (BINARY_P (SET_SRC (x))
5314 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5315 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5316 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5317 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5318 return &XEXP (SET_SRC (x), 1);
5319
5320 /* Finally, see if this is a simple operation with its first operand
5321 not in a register. The operation might require this operand in a
5322 register, so return it as a split point. We can always do this
5323 because if the first operand were another operation, we would have
5324 already found it as a split point. */
5325 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5326 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5327 return &XEXP (SET_SRC (x), 0);
5328
5329 return 0;
5330
5331 case AND:
5332 case IOR:
5333 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5334 it is better to write this as (not (ior A B)) so we can split it.
5335 Similarly for IOR. */
5336 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5337 {
5338 SUBST (*loc,
5339 gen_rtx_NOT (GET_MODE (x),
5340 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5341 GET_MODE (x),
5342 XEXP (XEXP (x, 0), 0),
5343 XEXP (XEXP (x, 1), 0))));
5344 return find_split_point (loc, insn, set_src);
5345 }
5346
5347 /* Many RISC machines have a large set of logical insns. If the
5348 second operand is a NOT, put it first so we will try to split the
5349 other operand first. */
5350 if (GET_CODE (XEXP (x, 1)) == NOT)
5351 {
5352 rtx tem = XEXP (x, 0);
5353 SUBST (XEXP (x, 0), XEXP (x, 1));
5354 SUBST (XEXP (x, 1), tem);
5355 }
5356 break;
5357
5358 case PLUS:
5359 case MINUS:
5360 /* Canonicalization can produce (minus A (mult B C)), where C is a
5361 constant. It may be better to try splitting (plus (mult B -C) A)
5362 instead if this isn't a multiply by a power of two. */
5363 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5364 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5365 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5366 {
5367 machine_mode mode = GET_MODE (x);
5368 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5369 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5370 SUBST (*loc, gen_rtx_PLUS (mode,
5371 gen_rtx_MULT (mode,
5372 XEXP (XEXP (x, 1), 0),
5373 gen_int_mode (other_int,
5374 mode)),
5375 XEXP (x, 0)));
5376 return find_split_point (loc, insn, set_src);
5377 }
5378
5379 /* Split at a multiply-accumulate instruction. However if this is
5380 the SET_SRC, we likely do not have such an instruction and it's
5381 worthless to try this split. */
5382 if (!set_src
5383 && (GET_CODE (XEXP (x, 0)) == MULT
5384 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5385 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5386 return loc;
5387
5388 default:
5389 break;
5390 }
5391
5392 /* Otherwise, select our actions depending on our rtx class. */
5393 switch (GET_RTX_CLASS (code))
5394 {
5395 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5396 case RTX_TERNARY:
5397 split = find_split_point (&XEXP (x, 2), insn, false);
5398 if (split)
5399 return split;
5400 /* fall through */
5401 case RTX_BIN_ARITH:
5402 case RTX_COMM_ARITH:
5403 case RTX_COMPARE:
5404 case RTX_COMM_COMPARE:
5405 split = find_split_point (&XEXP (x, 1), insn, false);
5406 if (split)
5407 return split;
5408 /* fall through */
5409 case RTX_UNARY:
5410 /* Some machines have (and (shift ...) ...) insns. If X is not
5411 an AND, but XEXP (X, 0) is, use it as our split point. */
5412 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5413 return &XEXP (x, 0);
5414
5415 split = find_split_point (&XEXP (x, 0), insn, false);
5416 if (split)
5417 return split;
5418 return loc;
5419
5420 default:
5421 /* Otherwise, we don't have a split point. */
5422 return 0;
5423 }
5424 }
5425 \f
5426 /* Throughout X, replace FROM with TO, and return the result.
5427 The result is TO if X is FROM;
5428 otherwise the result is X, but its contents may have been modified.
5429 If they were modified, a record was made in undobuf so that
5430 undo_all will (among other things) return X to its original state.
5431
5432 If the number of changes necessary is too much to record to undo,
5433 the excess changes are not made, so the result is invalid.
5434 The changes already made can still be undone.
5435 undobuf.num_undo is incremented for such changes, so by testing that
5436 the caller can tell whether the result is valid.
5437
5438 `n_occurrences' is incremented each time FROM is replaced.
5439
5440 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5441
5442 IN_COND is nonzero if we are at the top level of a condition.
5443
5444 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5445 by copying if `n_occurrences' is nonzero. */
5446
5447 static rtx
5448 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5449 {
5450 enum rtx_code code = GET_CODE (x);
5451 machine_mode op0_mode = VOIDmode;
5452 const char *fmt;
5453 int len, i;
5454 rtx new_rtx;
5455
5456 /* Two expressions are equal if they are identical copies of a shared
5457 RTX or if they are both registers with the same register number
5458 and mode. */
5459
5460 #define COMBINE_RTX_EQUAL_P(X,Y) \
5461 ((X) == (Y) \
5462 || (REG_P (X) && REG_P (Y) \
5463 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5464
5465 /* Do not substitute into clobbers of regs -- this will never result in
5466 valid RTL. */
5467 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5468 return x;
5469
5470 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5471 {
5472 n_occurrences++;
5473 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5474 }
5475
5476 /* If X and FROM are the same register but different modes, they
5477 will not have been seen as equal above. However, the log links code
5478 will make a LOG_LINKS entry for that case. If we do nothing, we
5479 will try to rerecognize our original insn and, when it succeeds,
5480 we will delete the feeding insn, which is incorrect.
5481
5482 So force this insn not to match in this (rare) case. */
5483 if (! in_dest && code == REG && REG_P (from)
5484 && reg_overlap_mentioned_p (x, from))
5485 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5486
5487 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5488 of which may contain things that can be combined. */
5489 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5490 return x;
5491
5492 /* It is possible to have a subexpression appear twice in the insn.
5493 Suppose that FROM is a register that appears within TO.
5494 Then, after that subexpression has been scanned once by `subst',
5495 the second time it is scanned, TO may be found. If we were
5496 to scan TO here, we would find FROM within it and create a
5497 self-referent rtl structure which is completely wrong. */
5498 if (COMBINE_RTX_EQUAL_P (x, to))
5499 return to;
5500
5501 /* Parallel asm_operands need special attention because all of the
5502 inputs are shared across the arms. Furthermore, unsharing the
5503 rtl results in recognition failures. Failure to handle this case
5504 specially can result in circular rtl.
5505
5506 Solve this by doing a normal pass across the first entry of the
5507 parallel, and only processing the SET_DESTs of the subsequent
5508 entries. Ug. */
5509
5510 if (code == PARALLEL
5511 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5512 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5513 {
5514 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5515
5516 /* If this substitution failed, this whole thing fails. */
5517 if (GET_CODE (new_rtx) == CLOBBER
5518 && XEXP (new_rtx, 0) == const0_rtx)
5519 return new_rtx;
5520
5521 SUBST (XVECEXP (x, 0, 0), new_rtx);
5522
5523 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5524 {
5525 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5526
5527 if (!REG_P (dest)
5528 && GET_CODE (dest) != CC0
5529 && GET_CODE (dest) != PC)
5530 {
5531 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5532
5533 /* If this substitution failed, this whole thing fails. */
5534 if (GET_CODE (new_rtx) == CLOBBER
5535 && XEXP (new_rtx, 0) == const0_rtx)
5536 return new_rtx;
5537
5538 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5539 }
5540 }
5541 }
5542 else
5543 {
5544 len = GET_RTX_LENGTH (code);
5545 fmt = GET_RTX_FORMAT (code);
5546
5547 /* We don't need to process a SET_DEST that is a register, CC0,
5548 or PC, so set up to skip this common case. All other cases
5549 where we want to suppress replacing something inside a
5550 SET_SRC are handled via the IN_DEST operand. */
5551 if (code == SET
5552 && (REG_P (SET_DEST (x))
5553 || GET_CODE (SET_DEST (x)) == CC0
5554 || GET_CODE (SET_DEST (x)) == PC))
5555 fmt = "ie";
5556
5557 /* Trying to simplify the operands of a widening MULT is not likely
5558 to create RTL matching a machine insn. */
5559 if (code == MULT
5560 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5561 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5562 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5563 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5564 && REG_P (XEXP (XEXP (x, 0), 0))
5565 && REG_P (XEXP (XEXP (x, 1), 0))
5566 && from == to)
5567 return x;
5568
5569
5570 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5571 constant. */
5572 if (fmt[0] == 'e')
5573 op0_mode = GET_MODE (XEXP (x, 0));
5574
5575 for (i = 0; i < len; i++)
5576 {
5577 if (fmt[i] == 'E')
5578 {
5579 int j;
5580 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5581 {
5582 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5583 {
5584 new_rtx = (unique_copy && n_occurrences
5585 ? copy_rtx (to) : to);
5586 n_occurrences++;
5587 }
5588 else
5589 {
5590 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5591 unique_copy);
5592
5593 /* If this substitution failed, this whole thing
5594 fails. */
5595 if (GET_CODE (new_rtx) == CLOBBER
5596 && XEXP (new_rtx, 0) == const0_rtx)
5597 return new_rtx;
5598 }
5599
5600 SUBST (XVECEXP (x, i, j), new_rtx);
5601 }
5602 }
5603 else if (fmt[i] == 'e')
5604 {
5605 /* If this is a register being set, ignore it. */
5606 new_rtx = XEXP (x, i);
5607 if (in_dest
5608 && i == 0
5609 && (((code == SUBREG || code == ZERO_EXTRACT)
5610 && REG_P (new_rtx))
5611 || code == STRICT_LOW_PART))
5612 ;
5613
5614 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5615 {
5616 /* In general, don't install a subreg involving two
5617 modes not tieable. It can worsen register
5618 allocation, and can even make invalid reload
5619 insns, since the reg inside may need to be copied
5620 from in the outside mode, and that may be invalid
5621 if it is an fp reg copied in integer mode.
5622
5623 We allow two exceptions to this: It is valid if
5624 it is inside another SUBREG and the mode of that
5625 SUBREG and the mode of the inside of TO is
5626 tieable and it is valid if X is a SET that copies
5627 FROM to CC0. */
5628
5629 if (GET_CODE (to) == SUBREG
5630 && !targetm.modes_tieable_p (GET_MODE (to),
5631 GET_MODE (SUBREG_REG (to)))
5632 && ! (code == SUBREG
5633 && (targetm.modes_tieable_p
5634 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5635 && (!HAVE_cc0
5636 || (! (code == SET
5637 && i == 1
5638 && XEXP (x, 0) == cc0_rtx))))
5639 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5640
5641 if (code == SUBREG
5642 && REG_P (to)
5643 && REGNO (to) < FIRST_PSEUDO_REGISTER
5644 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5645 SUBREG_BYTE (x),
5646 GET_MODE (x)) < 0)
5647 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5648
5649 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5650 n_occurrences++;
5651 }
5652 else
5653 /* If we are in a SET_DEST, suppress most cases unless we
5654 have gone inside a MEM, in which case we want to
5655 simplify the address. We assume here that things that
5656 are actually part of the destination have their inner
5657 parts in the first expression. This is true for SUBREG,
5658 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5659 things aside from REG and MEM that should appear in a
5660 SET_DEST. */
5661 new_rtx = subst (XEXP (x, i), from, to,
5662 (((in_dest
5663 && (code == SUBREG || code == STRICT_LOW_PART
5664 || code == ZERO_EXTRACT))
5665 || code == SET)
5666 && i == 0),
5667 code == IF_THEN_ELSE && i == 0,
5668 unique_copy);
5669
5670 /* If we found that we will have to reject this combination,
5671 indicate that by returning the CLOBBER ourselves, rather than
5672 an expression containing it. This will speed things up as
5673 well as prevent accidents where two CLOBBERs are considered
5674 to be equal, thus producing an incorrect simplification. */
5675
5676 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5677 return new_rtx;
5678
5679 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5680 {
5681 machine_mode mode = GET_MODE (x);
5682
5683 x = simplify_subreg (GET_MODE (x), new_rtx,
5684 GET_MODE (SUBREG_REG (x)),
5685 SUBREG_BYTE (x));
5686 if (! x)
5687 x = gen_rtx_CLOBBER (mode, const0_rtx);
5688 }
5689 else if (CONST_SCALAR_INT_P (new_rtx)
5690 && (GET_CODE (x) == ZERO_EXTEND
5691 || GET_CODE (x) == FLOAT
5692 || GET_CODE (x) == UNSIGNED_FLOAT))
5693 {
5694 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5695 new_rtx,
5696 GET_MODE (XEXP (x, 0)));
5697 if (!x)
5698 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5699 }
5700 else
5701 SUBST (XEXP (x, i), new_rtx);
5702 }
5703 }
5704 }
5705
5706 /* Check if we are loading something from the constant pool via float
5707 extension; in this case we would undo compress_float_constant
5708 optimization and degenerate constant load to an immediate value. */
5709 if (GET_CODE (x) == FLOAT_EXTEND
5710 && MEM_P (XEXP (x, 0))
5711 && MEM_READONLY_P (XEXP (x, 0)))
5712 {
5713 rtx tmp = avoid_constant_pool_reference (x);
5714 if (x != tmp)
5715 return x;
5716 }
5717
5718 /* Try to simplify X. If the simplification changed the code, it is likely
5719 that further simplification will help, so loop, but limit the number
5720 of repetitions that will be performed. */
5721
5722 for (i = 0; i < 4; i++)
5723 {
5724 /* If X is sufficiently simple, don't bother trying to do anything
5725 with it. */
5726 if (code != CONST_INT && code != REG && code != CLOBBER)
5727 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5728
5729 if (GET_CODE (x) == code)
5730 break;
5731
5732 code = GET_CODE (x);
5733
5734 /* We no longer know the original mode of operand 0 since we
5735 have changed the form of X) */
5736 op0_mode = VOIDmode;
5737 }
5738
5739 return x;
5740 }
5741 \f
5742 /* If X is a commutative operation whose operands are not in the canonical
5743 order, use substitutions to swap them. */
5744
5745 static void
5746 maybe_swap_commutative_operands (rtx x)
5747 {
5748 if (COMMUTATIVE_ARITH_P (x)
5749 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5750 {
5751 rtx temp = XEXP (x, 0);
5752 SUBST (XEXP (x, 0), XEXP (x, 1));
5753 SUBST (XEXP (x, 1), temp);
5754 }
5755 }
5756
5757 /* Simplify X, a piece of RTL. We just operate on the expression at the
5758 outer level; call `subst' to simplify recursively. Return the new
5759 expression.
5760
5761 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5762 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5763 of a condition. */
5764
5765 static rtx
5766 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5767 int in_cond)
5768 {
5769 enum rtx_code code = GET_CODE (x);
5770 machine_mode mode = GET_MODE (x);
5771 scalar_int_mode int_mode;
5772 rtx temp;
5773 int i;
5774
5775 /* If this is a commutative operation, put a constant last and a complex
5776 expression first. We don't need to do this for comparisons here. */
5777 maybe_swap_commutative_operands (x);
5778
5779 /* Try to fold this expression in case we have constants that weren't
5780 present before. */
5781 temp = 0;
5782 switch (GET_RTX_CLASS (code))
5783 {
5784 case RTX_UNARY:
5785 if (op0_mode == VOIDmode)
5786 op0_mode = GET_MODE (XEXP (x, 0));
5787 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5788 break;
5789 case RTX_COMPARE:
5790 case RTX_COMM_COMPARE:
5791 {
5792 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5793 if (cmp_mode == VOIDmode)
5794 {
5795 cmp_mode = GET_MODE (XEXP (x, 1));
5796 if (cmp_mode == VOIDmode)
5797 cmp_mode = op0_mode;
5798 }
5799 temp = simplify_relational_operation (code, mode, cmp_mode,
5800 XEXP (x, 0), XEXP (x, 1));
5801 }
5802 break;
5803 case RTX_COMM_ARITH:
5804 case RTX_BIN_ARITH:
5805 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5806 break;
5807 case RTX_BITFIELD_OPS:
5808 case RTX_TERNARY:
5809 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5810 XEXP (x, 1), XEXP (x, 2));
5811 break;
5812 default:
5813 break;
5814 }
5815
5816 if (temp)
5817 {
5818 x = temp;
5819 code = GET_CODE (temp);
5820 op0_mode = VOIDmode;
5821 mode = GET_MODE (temp);
5822 }
5823
5824 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5825 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5826 things. Check for cases where both arms are testing the same
5827 condition.
5828
5829 Don't do anything if all operands are very simple. */
5830
5831 if ((BINARY_P (x)
5832 && ((!OBJECT_P (XEXP (x, 0))
5833 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5834 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5835 || (!OBJECT_P (XEXP (x, 1))
5836 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5837 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5838 || (UNARY_P (x)
5839 && (!OBJECT_P (XEXP (x, 0))
5840 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5841 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5842 {
5843 rtx cond, true_rtx, false_rtx;
5844
5845 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5846 if (cond != 0
5847 /* If everything is a comparison, what we have is highly unlikely
5848 to be simpler, so don't use it. */
5849 && ! (COMPARISON_P (x)
5850 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5851 /* Similarly, if we end up with one of the expressions the same
5852 as the original, it is certainly not simpler. */
5853 && ! rtx_equal_p (x, true_rtx)
5854 && ! rtx_equal_p (x, false_rtx))
5855 {
5856 rtx cop1 = const0_rtx;
5857 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5858
5859 if (cond_code == NE && COMPARISON_P (cond))
5860 return x;
5861
5862 /* Simplify the alternative arms; this may collapse the true and
5863 false arms to store-flag values. Be careful to use copy_rtx
5864 here since true_rtx or false_rtx might share RTL with x as a
5865 result of the if_then_else_cond call above. */
5866 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5867 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5868
5869 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5870 is unlikely to be simpler. */
5871 if (general_operand (true_rtx, VOIDmode)
5872 && general_operand (false_rtx, VOIDmode))
5873 {
5874 enum rtx_code reversed;
5875
5876 /* Restarting if we generate a store-flag expression will cause
5877 us to loop. Just drop through in this case. */
5878
5879 /* If the result values are STORE_FLAG_VALUE and zero, we can
5880 just make the comparison operation. */
5881 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5882 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5883 cond, cop1);
5884 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5885 && ((reversed = reversed_comparison_code_parts
5886 (cond_code, cond, cop1, NULL))
5887 != UNKNOWN))
5888 x = simplify_gen_relational (reversed, mode, VOIDmode,
5889 cond, cop1);
5890
5891 /* Likewise, we can make the negate of a comparison operation
5892 if the result values are - STORE_FLAG_VALUE and zero. */
5893 else if (CONST_INT_P (true_rtx)
5894 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5895 && false_rtx == const0_rtx)
5896 x = simplify_gen_unary (NEG, mode,
5897 simplify_gen_relational (cond_code,
5898 mode, VOIDmode,
5899 cond, cop1),
5900 mode);
5901 else if (CONST_INT_P (false_rtx)
5902 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5903 && true_rtx == const0_rtx
5904 && ((reversed = reversed_comparison_code_parts
5905 (cond_code, cond, cop1, NULL))
5906 != UNKNOWN))
5907 x = simplify_gen_unary (NEG, mode,
5908 simplify_gen_relational (reversed,
5909 mode, VOIDmode,
5910 cond, cop1),
5911 mode);
5912
5913 code = GET_CODE (x);
5914 op0_mode = VOIDmode;
5915 }
5916 }
5917 }
5918
5919 /* First see if we can apply the inverse distributive law. */
5920 if (code == PLUS || code == MINUS
5921 || code == AND || code == IOR || code == XOR)
5922 {
5923 x = apply_distributive_law (x);
5924 code = GET_CODE (x);
5925 op0_mode = VOIDmode;
5926 }
5927
5928 /* If CODE is an associative operation not otherwise handled, see if we
5929 can associate some operands. This can win if they are constants or
5930 if they are logically related (i.e. (a & b) & a). */
5931 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5932 || code == AND || code == IOR || code == XOR
5933 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5934 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5935 || (flag_associative_math && FLOAT_MODE_P (mode))))
5936 {
5937 if (GET_CODE (XEXP (x, 0)) == code)
5938 {
5939 rtx other = XEXP (XEXP (x, 0), 0);
5940 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5941 rtx inner_op1 = XEXP (x, 1);
5942 rtx inner;
5943
5944 /* Make sure we pass the constant operand if any as the second
5945 one if this is a commutative operation. */
5946 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5947 std::swap (inner_op0, inner_op1);
5948 inner = simplify_binary_operation (code == MINUS ? PLUS
5949 : code == DIV ? MULT
5950 : code,
5951 mode, inner_op0, inner_op1);
5952
5953 /* For commutative operations, try the other pair if that one
5954 didn't simplify. */
5955 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5956 {
5957 other = XEXP (XEXP (x, 0), 1);
5958 inner = simplify_binary_operation (code, mode,
5959 XEXP (XEXP (x, 0), 0),
5960 XEXP (x, 1));
5961 }
5962
5963 if (inner)
5964 return simplify_gen_binary (code, mode, other, inner);
5965 }
5966 }
5967
5968 /* A little bit of algebraic simplification here. */
5969 switch (code)
5970 {
5971 case MEM:
5972 /* Ensure that our address has any ASHIFTs converted to MULT in case
5973 address-recognizing predicates are called later. */
5974 temp = make_compound_operation (XEXP (x, 0), MEM);
5975 SUBST (XEXP (x, 0), temp);
5976 break;
5977
5978 case SUBREG:
5979 if (op0_mode == VOIDmode)
5980 op0_mode = GET_MODE (SUBREG_REG (x));
5981
5982 /* See if this can be moved to simplify_subreg. */
5983 if (CONSTANT_P (SUBREG_REG (x))
5984 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5985 /* Don't call gen_lowpart if the inner mode
5986 is VOIDmode and we cannot simplify it, as SUBREG without
5987 inner mode is invalid. */
5988 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5989 || gen_lowpart_common (mode, SUBREG_REG (x))))
5990 return gen_lowpart (mode, SUBREG_REG (x));
5991
5992 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5993 break;
5994 {
5995 rtx temp;
5996 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5997 SUBREG_BYTE (x));
5998 if (temp)
5999 return temp;
6000
6001 /* If op is known to have all lower bits zero, the result is zero. */
6002 scalar_int_mode int_mode, int_op0_mode;
6003 if (!in_dest
6004 && is_a <scalar_int_mode> (mode, &int_mode)
6005 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
6006 && (GET_MODE_PRECISION (int_mode)
6007 < GET_MODE_PRECISION (int_op0_mode))
6008 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
6009 SUBREG_BYTE (x))
6010 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
6011 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
6012 & GET_MODE_MASK (int_mode)) == 0)
6013 && !side_effects_p (SUBREG_REG (x)))
6014 return CONST0_RTX (int_mode);
6015 }
6016
6017 /* Don't change the mode of the MEM if that would change the meaning
6018 of the address. */
6019 if (MEM_P (SUBREG_REG (x))
6020 && (MEM_VOLATILE_P (SUBREG_REG (x))
6021 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
6022 MEM_ADDR_SPACE (SUBREG_REG (x)))))
6023 return gen_rtx_CLOBBER (mode, const0_rtx);
6024
6025 /* Note that we cannot do any narrowing for non-constants since
6026 we might have been counting on using the fact that some bits were
6027 zero. We now do this in the SET. */
6028
6029 break;
6030
6031 case NEG:
6032 temp = expand_compound_operation (XEXP (x, 0));
6033
6034 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
6035 replaced by (lshiftrt X C). This will convert
6036 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
6037
6038 if (GET_CODE (temp) == ASHIFTRT
6039 && CONST_INT_P (XEXP (temp, 1))
6040 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
6041 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
6042 INTVAL (XEXP (temp, 1)));
6043
6044 /* If X has only a single bit that might be nonzero, say, bit I, convert
6045 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
6046 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
6047 (sign_extract X 1 Y). But only do this if TEMP isn't a register
6048 or a SUBREG of one since we'd be making the expression more
6049 complex if it was just a register. */
6050
6051 if (!REG_P (temp)
6052 && ! (GET_CODE (temp) == SUBREG
6053 && REG_P (SUBREG_REG (temp)))
6054 && is_a <scalar_int_mode> (mode, &int_mode)
6055 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
6056 {
6057 rtx temp1 = simplify_shift_const
6058 (NULL_RTX, ASHIFTRT, int_mode,
6059 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
6060 GET_MODE_PRECISION (int_mode) - 1 - i),
6061 GET_MODE_PRECISION (int_mode) - 1 - i);
6062
6063 /* If all we did was surround TEMP with the two shifts, we
6064 haven't improved anything, so don't use it. Otherwise,
6065 we are better off with TEMP1. */
6066 if (GET_CODE (temp1) != ASHIFTRT
6067 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
6068 || XEXP (XEXP (temp1, 0), 0) != temp)
6069 return temp1;
6070 }
6071 break;
6072
6073 case TRUNCATE:
6074 /* We can't handle truncation to a partial integer mode here
6075 because we don't know the real bitsize of the partial
6076 integer mode. */
6077 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6078 break;
6079
6080 if (HWI_COMPUTABLE_MODE_P (mode))
6081 SUBST (XEXP (x, 0),
6082 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6083 GET_MODE_MASK (mode), 0));
6084
6085 /* We can truncate a constant value and return it. */
6086 {
6087 poly_int64 c;
6088 if (poly_int_rtx_p (XEXP (x, 0), &c))
6089 return gen_int_mode (c, mode);
6090 }
6091
6092 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
6093 whose value is a comparison can be replaced with a subreg if
6094 STORE_FLAG_VALUE permits. */
6095 if (HWI_COMPUTABLE_MODE_P (mode)
6096 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6097 && (temp = get_last_value (XEXP (x, 0)))
6098 && COMPARISON_P (temp))
6099 return gen_lowpart (mode, XEXP (x, 0));
6100 break;
6101
6102 case CONST:
6103 /* (const (const X)) can become (const X). Do it this way rather than
6104 returning the inner CONST since CONST can be shared with a
6105 REG_EQUAL note. */
6106 if (GET_CODE (XEXP (x, 0)) == CONST)
6107 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6108 break;
6109
6110 case LO_SUM:
6111 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6112 can add in an offset. find_split_point will split this address up
6113 again if it doesn't match. */
6114 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6115 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6116 return XEXP (x, 1);
6117 break;
6118
6119 case PLUS:
6120 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6121 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6122 bit-field and can be replaced by either a sign_extend or a
6123 sign_extract. The `and' may be a zero_extend and the two
6124 <c>, -<c> constants may be reversed. */
6125 if (GET_CODE (XEXP (x, 0)) == XOR
6126 && is_a <scalar_int_mode> (mode, &int_mode)
6127 && CONST_INT_P (XEXP (x, 1))
6128 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6129 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6130 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6131 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6132 && HWI_COMPUTABLE_MODE_P (int_mode)
6133 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6134 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6135 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6136 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6137 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6138 && known_eq ((GET_MODE_PRECISION
6139 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6140 (unsigned int) i + 1))))
6141 return simplify_shift_const
6142 (NULL_RTX, ASHIFTRT, int_mode,
6143 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6144 XEXP (XEXP (XEXP (x, 0), 0), 0),
6145 GET_MODE_PRECISION (int_mode) - (i + 1)),
6146 GET_MODE_PRECISION (int_mode) - (i + 1));
6147
6148 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6149 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6150 the bitsize of the mode - 1. This allows simplification of
6151 "a = (b & 8) == 0;" */
6152 if (XEXP (x, 1) == constm1_rtx
6153 && !REG_P (XEXP (x, 0))
6154 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6155 && REG_P (SUBREG_REG (XEXP (x, 0))))
6156 && is_a <scalar_int_mode> (mode, &int_mode)
6157 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6158 return simplify_shift_const
6159 (NULL_RTX, ASHIFTRT, int_mode,
6160 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6161 gen_rtx_XOR (int_mode, XEXP (x, 0),
6162 const1_rtx),
6163 GET_MODE_PRECISION (int_mode) - 1),
6164 GET_MODE_PRECISION (int_mode) - 1);
6165
6166 /* If we are adding two things that have no bits in common, convert
6167 the addition into an IOR. This will often be further simplified,
6168 for example in cases like ((a & 1) + (a & 2)), which can
6169 become a & 3. */
6170
6171 if (HWI_COMPUTABLE_MODE_P (mode)
6172 && (nonzero_bits (XEXP (x, 0), mode)
6173 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6174 {
6175 /* Try to simplify the expression further. */
6176 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6177 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6178
6179 /* If we could, great. If not, do not go ahead with the IOR
6180 replacement, since PLUS appears in many special purpose
6181 address arithmetic instructions. */
6182 if (GET_CODE (temp) != CLOBBER
6183 && (GET_CODE (temp) != IOR
6184 || ((XEXP (temp, 0) != XEXP (x, 0)
6185 || XEXP (temp, 1) != XEXP (x, 1))
6186 && (XEXP (temp, 0) != XEXP (x, 1)
6187 || XEXP (temp, 1) != XEXP (x, 0)))))
6188 return temp;
6189 }
6190
6191 /* Canonicalize x + x into x << 1. */
6192 if (GET_MODE_CLASS (mode) == MODE_INT
6193 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6194 && !side_effects_p (XEXP (x, 0)))
6195 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6196
6197 break;
6198
6199 case MINUS:
6200 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6201 (and <foo> (const_int pow2-1)) */
6202 if (is_a <scalar_int_mode> (mode, &int_mode)
6203 && GET_CODE (XEXP (x, 1)) == AND
6204 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6205 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6206 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6207 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6208 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6209 break;
6210
6211 case MULT:
6212 /* If we have (mult (plus A B) C), apply the distributive law and then
6213 the inverse distributive law to see if things simplify. This
6214 occurs mostly in addresses, often when unrolling loops. */
6215
6216 if (GET_CODE (XEXP (x, 0)) == PLUS)
6217 {
6218 rtx result = distribute_and_simplify_rtx (x, 0);
6219 if (result)
6220 return result;
6221 }
6222
6223 /* Try simplify a*(b/c) as (a*b)/c. */
6224 if (FLOAT_MODE_P (mode) && flag_associative_math
6225 && GET_CODE (XEXP (x, 0)) == DIV)
6226 {
6227 rtx tem = simplify_binary_operation (MULT, mode,
6228 XEXP (XEXP (x, 0), 0),
6229 XEXP (x, 1));
6230 if (tem)
6231 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6232 }
6233 break;
6234
6235 case UDIV:
6236 /* If this is a divide by a power of two, treat it as a shift if
6237 its first operand is a shift. */
6238 if (is_a <scalar_int_mode> (mode, &int_mode)
6239 && CONST_INT_P (XEXP (x, 1))
6240 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6241 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6242 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6243 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6244 || GET_CODE (XEXP (x, 0)) == ROTATE
6245 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6246 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6247 XEXP (x, 0), i);
6248 break;
6249
6250 case EQ: case NE:
6251 case GT: case GTU: case GE: case GEU:
6252 case LT: case LTU: case LE: case LEU:
6253 case UNEQ: case LTGT:
6254 case UNGT: case UNGE:
6255 case UNLT: case UNLE:
6256 case UNORDERED: case ORDERED:
6257 /* If the first operand is a condition code, we can't do anything
6258 with it. */
6259 if (GET_CODE (XEXP (x, 0)) == COMPARE
6260 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6261 && ! CC0_P (XEXP (x, 0))))
6262 {
6263 rtx op0 = XEXP (x, 0);
6264 rtx op1 = XEXP (x, 1);
6265 enum rtx_code new_code;
6266
6267 if (GET_CODE (op0) == COMPARE)
6268 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6269
6270 /* Simplify our comparison, if possible. */
6271 new_code = simplify_comparison (code, &op0, &op1);
6272
6273 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6274 if only the low-order bit is possibly nonzero in X (such as when
6275 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6276 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6277 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6278 (plus X 1).
6279
6280 Remove any ZERO_EXTRACT we made when thinking this was a
6281 comparison. It may now be simpler to use, e.g., an AND. If a
6282 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6283 the call to make_compound_operation in the SET case.
6284
6285 Don't apply these optimizations if the caller would
6286 prefer a comparison rather than a value.
6287 E.g., for the condition in an IF_THEN_ELSE most targets need
6288 an explicit comparison. */
6289
6290 if (in_cond)
6291 ;
6292
6293 else if (STORE_FLAG_VALUE == 1
6294 && new_code == NE
6295 && is_int_mode (mode, &int_mode)
6296 && op1 == const0_rtx
6297 && int_mode == GET_MODE (op0)
6298 && nonzero_bits (op0, int_mode) == 1)
6299 return gen_lowpart (int_mode,
6300 expand_compound_operation (op0));
6301
6302 else if (STORE_FLAG_VALUE == 1
6303 && new_code == NE
6304 && is_int_mode (mode, &int_mode)
6305 && op1 == const0_rtx
6306 && int_mode == GET_MODE (op0)
6307 && (num_sign_bit_copies (op0, int_mode)
6308 == GET_MODE_PRECISION (int_mode)))
6309 {
6310 op0 = expand_compound_operation (op0);
6311 return simplify_gen_unary (NEG, int_mode,
6312 gen_lowpart (int_mode, op0),
6313 int_mode);
6314 }
6315
6316 else if (STORE_FLAG_VALUE == 1
6317 && new_code == EQ
6318 && is_int_mode (mode, &int_mode)
6319 && op1 == const0_rtx
6320 && int_mode == GET_MODE (op0)
6321 && nonzero_bits (op0, int_mode) == 1)
6322 {
6323 op0 = expand_compound_operation (op0);
6324 return simplify_gen_binary (XOR, int_mode,
6325 gen_lowpart (int_mode, op0),
6326 const1_rtx);
6327 }
6328
6329 else if (STORE_FLAG_VALUE == 1
6330 && new_code == EQ
6331 && is_int_mode (mode, &int_mode)
6332 && op1 == const0_rtx
6333 && int_mode == GET_MODE (op0)
6334 && (num_sign_bit_copies (op0, int_mode)
6335 == GET_MODE_PRECISION (int_mode)))
6336 {
6337 op0 = expand_compound_operation (op0);
6338 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6339 }
6340
6341 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6342 those above. */
6343 if (in_cond)
6344 ;
6345
6346 else if (STORE_FLAG_VALUE == -1
6347 && new_code == NE
6348 && is_int_mode (mode, &int_mode)
6349 && op1 == const0_rtx
6350 && int_mode == GET_MODE (op0)
6351 && (num_sign_bit_copies (op0, int_mode)
6352 == GET_MODE_PRECISION (int_mode)))
6353 return gen_lowpart (int_mode, expand_compound_operation (op0));
6354
6355 else if (STORE_FLAG_VALUE == -1
6356 && new_code == NE
6357 && is_int_mode (mode, &int_mode)
6358 && op1 == const0_rtx
6359 && int_mode == GET_MODE (op0)
6360 && nonzero_bits (op0, int_mode) == 1)
6361 {
6362 op0 = expand_compound_operation (op0);
6363 return simplify_gen_unary (NEG, int_mode,
6364 gen_lowpart (int_mode, op0),
6365 int_mode);
6366 }
6367
6368 else if (STORE_FLAG_VALUE == -1
6369 && new_code == EQ
6370 && is_int_mode (mode, &int_mode)
6371 && op1 == const0_rtx
6372 && int_mode == GET_MODE (op0)
6373 && (num_sign_bit_copies (op0, int_mode)
6374 == GET_MODE_PRECISION (int_mode)))
6375 {
6376 op0 = expand_compound_operation (op0);
6377 return simplify_gen_unary (NOT, int_mode,
6378 gen_lowpart (int_mode, op0),
6379 int_mode);
6380 }
6381
6382 /* If X is 0/1, (eq X 0) is X-1. */
6383 else if (STORE_FLAG_VALUE == -1
6384 && new_code == EQ
6385 && is_int_mode (mode, &int_mode)
6386 && op1 == const0_rtx
6387 && int_mode == GET_MODE (op0)
6388 && nonzero_bits (op0, int_mode) == 1)
6389 {
6390 op0 = expand_compound_operation (op0);
6391 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6392 }
6393
6394 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6395 one bit that might be nonzero, we can convert (ne x 0) to
6396 (ashift x c) where C puts the bit in the sign bit. Remove any
6397 AND with STORE_FLAG_VALUE when we are done, since we are only
6398 going to test the sign bit. */
6399 if (new_code == NE
6400 && is_int_mode (mode, &int_mode)
6401 && HWI_COMPUTABLE_MODE_P (int_mode)
6402 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6403 && op1 == const0_rtx
6404 && int_mode == GET_MODE (op0)
6405 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6406 {
6407 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6408 expand_compound_operation (op0),
6409 GET_MODE_PRECISION (int_mode) - 1 - i);
6410 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6411 return XEXP (x, 0);
6412 else
6413 return x;
6414 }
6415
6416 /* If the code changed, return a whole new comparison.
6417 We also need to avoid using SUBST in cases where
6418 simplify_comparison has widened a comparison with a CONST_INT,
6419 since in that case the wider CONST_INT may fail the sanity
6420 checks in do_SUBST. */
6421 if (new_code != code
6422 || (CONST_INT_P (op1)
6423 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6424 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6425 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6426
6427 /* Otherwise, keep this operation, but maybe change its operands.
6428 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6429 SUBST (XEXP (x, 0), op0);
6430 SUBST (XEXP (x, 1), op1);
6431 }
6432 break;
6433
6434 case IF_THEN_ELSE:
6435 return simplify_if_then_else (x);
6436
6437 case ZERO_EXTRACT:
6438 case SIGN_EXTRACT:
6439 case ZERO_EXTEND:
6440 case SIGN_EXTEND:
6441 /* If we are processing SET_DEST, we are done. */
6442 if (in_dest)
6443 return x;
6444
6445 return expand_compound_operation (x);
6446
6447 case SET:
6448 return simplify_set (x);
6449
6450 case AND:
6451 case IOR:
6452 return simplify_logical (x);
6453
6454 case ASHIFT:
6455 case LSHIFTRT:
6456 case ASHIFTRT:
6457 case ROTATE:
6458 case ROTATERT:
6459 /* If this is a shift by a constant amount, simplify it. */
6460 if (CONST_INT_P (XEXP (x, 1)))
6461 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6462 INTVAL (XEXP (x, 1)));
6463
6464 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6465 SUBST (XEXP (x, 1),
6466 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6467 (HOST_WIDE_INT_1U
6468 << exact_log2 (GET_MODE_UNIT_BITSIZE
6469 (GET_MODE (x))))
6470 - 1,
6471 0));
6472 break;
6473
6474 default:
6475 break;
6476 }
6477
6478 return x;
6479 }
6480 \f
6481 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6482
6483 static rtx
6484 simplify_if_then_else (rtx x)
6485 {
6486 machine_mode mode = GET_MODE (x);
6487 rtx cond = XEXP (x, 0);
6488 rtx true_rtx = XEXP (x, 1);
6489 rtx false_rtx = XEXP (x, 2);
6490 enum rtx_code true_code = GET_CODE (cond);
6491 int comparison_p = COMPARISON_P (cond);
6492 rtx temp;
6493 int i;
6494 enum rtx_code false_code;
6495 rtx reversed;
6496 scalar_int_mode int_mode, inner_mode;
6497
6498 /* Simplify storing of the truth value. */
6499 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6500 return simplify_gen_relational (true_code, mode, VOIDmode,
6501 XEXP (cond, 0), XEXP (cond, 1));
6502
6503 /* Also when the truth value has to be reversed. */
6504 if (comparison_p
6505 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6506 && (reversed = reversed_comparison (cond, mode)))
6507 return reversed;
6508
6509 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6510 in it is being compared against certain values. Get the true and false
6511 comparisons and see if that says anything about the value of each arm. */
6512
6513 if (comparison_p
6514 && ((false_code = reversed_comparison_code (cond, NULL))
6515 != UNKNOWN)
6516 && REG_P (XEXP (cond, 0)))
6517 {
6518 HOST_WIDE_INT nzb;
6519 rtx from = XEXP (cond, 0);
6520 rtx true_val = XEXP (cond, 1);
6521 rtx false_val = true_val;
6522 int swapped = 0;
6523
6524 /* If FALSE_CODE is EQ, swap the codes and arms. */
6525
6526 if (false_code == EQ)
6527 {
6528 swapped = 1, true_code = EQ, false_code = NE;
6529 std::swap (true_rtx, false_rtx);
6530 }
6531
6532 scalar_int_mode from_mode;
6533 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6534 {
6535 /* If we are comparing against zero and the expression being
6536 tested has only a single bit that might be nonzero, that is
6537 its value when it is not equal to zero. Similarly if it is
6538 known to be -1 or 0. */
6539 if (true_code == EQ
6540 && true_val == const0_rtx
6541 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6542 {
6543 false_code = EQ;
6544 false_val = gen_int_mode (nzb, from_mode);
6545 }
6546 else if (true_code == EQ
6547 && true_val == const0_rtx
6548 && (num_sign_bit_copies (from, from_mode)
6549 == GET_MODE_PRECISION (from_mode)))
6550 {
6551 false_code = EQ;
6552 false_val = constm1_rtx;
6553 }
6554 }
6555
6556 /* Now simplify an arm if we know the value of the register in the
6557 branch and it is used in the arm. Be careful due to the potential
6558 of locally-shared RTL. */
6559
6560 if (reg_mentioned_p (from, true_rtx))
6561 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6562 from, true_val),
6563 pc_rtx, pc_rtx, 0, 0, 0);
6564 if (reg_mentioned_p (from, false_rtx))
6565 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6566 from, false_val),
6567 pc_rtx, pc_rtx, 0, 0, 0);
6568
6569 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6570 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6571
6572 true_rtx = XEXP (x, 1);
6573 false_rtx = XEXP (x, 2);
6574 true_code = GET_CODE (cond);
6575 }
6576
6577 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6578 reversed, do so to avoid needing two sets of patterns for
6579 subtract-and-branch insns. Similarly if we have a constant in the true
6580 arm, the false arm is the same as the first operand of the comparison, or
6581 the false arm is more complicated than the true arm. */
6582
6583 if (comparison_p
6584 && reversed_comparison_code (cond, NULL) != UNKNOWN
6585 && (true_rtx == pc_rtx
6586 || (CONSTANT_P (true_rtx)
6587 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6588 || true_rtx == const0_rtx
6589 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6590 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6591 && !OBJECT_P (false_rtx))
6592 || reg_mentioned_p (true_rtx, false_rtx)
6593 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6594 {
6595 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6596 SUBST (XEXP (x, 1), false_rtx);
6597 SUBST (XEXP (x, 2), true_rtx);
6598
6599 std::swap (true_rtx, false_rtx);
6600 cond = XEXP (x, 0);
6601
6602 /* It is possible that the conditional has been simplified out. */
6603 true_code = GET_CODE (cond);
6604 comparison_p = COMPARISON_P (cond);
6605 }
6606
6607 /* If the two arms are identical, we don't need the comparison. */
6608
6609 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6610 return true_rtx;
6611
6612 /* Convert a == b ? b : a to "a". */
6613 if (true_code == EQ && ! side_effects_p (cond)
6614 && !HONOR_NANS (mode)
6615 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6616 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6617 return false_rtx;
6618 else if (true_code == NE && ! side_effects_p (cond)
6619 && !HONOR_NANS (mode)
6620 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6621 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6622 return true_rtx;
6623
6624 /* Look for cases where we have (abs x) or (neg (abs X)). */
6625
6626 if (GET_MODE_CLASS (mode) == MODE_INT
6627 && comparison_p
6628 && XEXP (cond, 1) == const0_rtx
6629 && GET_CODE (false_rtx) == NEG
6630 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6631 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6632 && ! side_effects_p (true_rtx))
6633 switch (true_code)
6634 {
6635 case GT:
6636 case GE:
6637 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6638 case LT:
6639 case LE:
6640 return
6641 simplify_gen_unary (NEG, mode,
6642 simplify_gen_unary (ABS, mode, true_rtx, mode),
6643 mode);
6644 default:
6645 break;
6646 }
6647
6648 /* Look for MIN or MAX. */
6649
6650 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6651 && comparison_p
6652 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6653 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6654 && ! side_effects_p (cond))
6655 switch (true_code)
6656 {
6657 case GE:
6658 case GT:
6659 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6660 case LE:
6661 case LT:
6662 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6663 case GEU:
6664 case GTU:
6665 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6666 case LEU:
6667 case LTU:
6668 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6669 default:
6670 break;
6671 }
6672
6673 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6674 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6675 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6676 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6677 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6678 neither 1 or -1, but it isn't worth checking for. */
6679
6680 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6681 && comparison_p
6682 && is_int_mode (mode, &int_mode)
6683 && ! side_effects_p (x))
6684 {
6685 rtx t = make_compound_operation (true_rtx, SET);
6686 rtx f = make_compound_operation (false_rtx, SET);
6687 rtx cond_op0 = XEXP (cond, 0);
6688 rtx cond_op1 = XEXP (cond, 1);
6689 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6690 scalar_int_mode m = int_mode;
6691 rtx z = 0, c1 = NULL_RTX;
6692
6693 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6694 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6695 || GET_CODE (t) == ASHIFT
6696 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6697 && rtx_equal_p (XEXP (t, 0), f))
6698 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6699
6700 /* If an identity-zero op is commutative, check whether there
6701 would be a match if we swapped the operands. */
6702 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6703 || GET_CODE (t) == XOR)
6704 && rtx_equal_p (XEXP (t, 1), f))
6705 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6706 else if (GET_CODE (t) == SIGN_EXTEND
6707 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6708 && (GET_CODE (XEXP (t, 0)) == PLUS
6709 || GET_CODE (XEXP (t, 0)) == MINUS
6710 || GET_CODE (XEXP (t, 0)) == IOR
6711 || GET_CODE (XEXP (t, 0)) == XOR
6712 || GET_CODE (XEXP (t, 0)) == ASHIFT
6713 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6714 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6715 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6716 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6717 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6718 && (num_sign_bit_copies (f, GET_MODE (f))
6719 > (unsigned int)
6720 (GET_MODE_PRECISION (int_mode)
6721 - GET_MODE_PRECISION (inner_mode))))
6722 {
6723 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6724 extend_op = SIGN_EXTEND;
6725 m = inner_mode;
6726 }
6727 else if (GET_CODE (t) == SIGN_EXTEND
6728 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6729 && (GET_CODE (XEXP (t, 0)) == PLUS
6730 || GET_CODE (XEXP (t, 0)) == IOR
6731 || GET_CODE (XEXP (t, 0)) == XOR)
6732 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6733 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6734 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6735 && (num_sign_bit_copies (f, GET_MODE (f))
6736 > (unsigned int)
6737 (GET_MODE_PRECISION (int_mode)
6738 - GET_MODE_PRECISION (inner_mode))))
6739 {
6740 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6741 extend_op = SIGN_EXTEND;
6742 m = inner_mode;
6743 }
6744 else if (GET_CODE (t) == ZERO_EXTEND
6745 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6746 && (GET_CODE (XEXP (t, 0)) == PLUS
6747 || GET_CODE (XEXP (t, 0)) == MINUS
6748 || GET_CODE (XEXP (t, 0)) == IOR
6749 || GET_CODE (XEXP (t, 0)) == XOR
6750 || GET_CODE (XEXP (t, 0)) == ASHIFT
6751 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6752 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6753 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6754 && HWI_COMPUTABLE_MODE_P (int_mode)
6755 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6756 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6757 && ((nonzero_bits (f, GET_MODE (f))
6758 & ~GET_MODE_MASK (inner_mode))
6759 == 0))
6760 {
6761 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6762 extend_op = ZERO_EXTEND;
6763 m = inner_mode;
6764 }
6765 else if (GET_CODE (t) == ZERO_EXTEND
6766 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6767 && (GET_CODE (XEXP (t, 0)) == PLUS
6768 || GET_CODE (XEXP (t, 0)) == IOR
6769 || GET_CODE (XEXP (t, 0)) == XOR)
6770 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6771 && HWI_COMPUTABLE_MODE_P (int_mode)
6772 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6773 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6774 && ((nonzero_bits (f, GET_MODE (f))
6775 & ~GET_MODE_MASK (inner_mode))
6776 == 0))
6777 {
6778 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6779 extend_op = ZERO_EXTEND;
6780 m = inner_mode;
6781 }
6782
6783 if (z)
6784 {
6785 machine_mode cm = m;
6786 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6787 && GET_MODE (c1) != VOIDmode)
6788 cm = GET_MODE (c1);
6789 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6790 cond_op0, cond_op1),
6791 pc_rtx, pc_rtx, 0, 0, 0);
6792 temp = simplify_gen_binary (MULT, cm, temp,
6793 simplify_gen_binary (MULT, cm, c1,
6794 const_true_rtx));
6795 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6796 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6797
6798 if (extend_op != UNKNOWN)
6799 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6800
6801 return temp;
6802 }
6803 }
6804
6805 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6806 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6807 negation of a single bit, we can convert this operation to a shift. We
6808 can actually do this more generally, but it doesn't seem worth it. */
6809
6810 if (true_code == NE
6811 && is_a <scalar_int_mode> (mode, &int_mode)
6812 && XEXP (cond, 1) == const0_rtx
6813 && false_rtx == const0_rtx
6814 && CONST_INT_P (true_rtx)
6815 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6816 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6817 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6818 == GET_MODE_PRECISION (int_mode))
6819 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6820 return
6821 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6822 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6823
6824 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6825 non-zero bit in A is C1. */
6826 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6827 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6828 && is_a <scalar_int_mode> (mode, &int_mode)
6829 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6830 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6831 == nonzero_bits (XEXP (cond, 0), inner_mode)
6832 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6833 {
6834 rtx val = XEXP (cond, 0);
6835 if (inner_mode == int_mode)
6836 return val;
6837 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6838 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6839 }
6840
6841 return x;
6842 }
6843 \f
6844 /* Simplify X, a SET expression. Return the new expression. */
6845
6846 static rtx
6847 simplify_set (rtx x)
6848 {
6849 rtx src = SET_SRC (x);
6850 rtx dest = SET_DEST (x);
6851 machine_mode mode
6852 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6853 rtx_insn *other_insn;
6854 rtx *cc_use;
6855 scalar_int_mode int_mode;
6856
6857 /* (set (pc) (return)) gets written as (return). */
6858 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6859 return src;
6860
6861 /* Now that we know for sure which bits of SRC we are using, see if we can
6862 simplify the expression for the object knowing that we only need the
6863 low-order bits. */
6864
6865 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6866 {
6867 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6868 SUBST (SET_SRC (x), src);
6869 }
6870
6871 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6872 the comparison result and try to simplify it unless we already have used
6873 undobuf.other_insn. */
6874 if ((GET_MODE_CLASS (mode) == MODE_CC
6875 || GET_CODE (src) == COMPARE
6876 || CC0_P (dest))
6877 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6878 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6879 && COMPARISON_P (*cc_use)
6880 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6881 {
6882 enum rtx_code old_code = GET_CODE (*cc_use);
6883 enum rtx_code new_code;
6884 rtx op0, op1, tmp;
6885 int other_changed = 0;
6886 rtx inner_compare = NULL_RTX;
6887 machine_mode compare_mode = GET_MODE (dest);
6888
6889 if (GET_CODE (src) == COMPARE)
6890 {
6891 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6892 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6893 {
6894 inner_compare = op0;
6895 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6896 }
6897 }
6898 else
6899 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6900
6901 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6902 op0, op1);
6903 if (!tmp)
6904 new_code = old_code;
6905 else if (!CONSTANT_P (tmp))
6906 {
6907 new_code = GET_CODE (tmp);
6908 op0 = XEXP (tmp, 0);
6909 op1 = XEXP (tmp, 1);
6910 }
6911 else
6912 {
6913 rtx pat = PATTERN (other_insn);
6914 undobuf.other_insn = other_insn;
6915 SUBST (*cc_use, tmp);
6916
6917 /* Attempt to simplify CC user. */
6918 if (GET_CODE (pat) == SET)
6919 {
6920 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6921 if (new_rtx != NULL_RTX)
6922 SUBST (SET_SRC (pat), new_rtx);
6923 }
6924
6925 /* Convert X into a no-op move. */
6926 SUBST (SET_DEST (x), pc_rtx);
6927 SUBST (SET_SRC (x), pc_rtx);
6928 return x;
6929 }
6930
6931 /* Simplify our comparison, if possible. */
6932 new_code = simplify_comparison (new_code, &op0, &op1);
6933
6934 #ifdef SELECT_CC_MODE
6935 /* If this machine has CC modes other than CCmode, check to see if we
6936 need to use a different CC mode here. */
6937 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6938 compare_mode = GET_MODE (op0);
6939 else if (inner_compare
6940 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6941 && new_code == old_code
6942 && op0 == XEXP (inner_compare, 0)
6943 && op1 == XEXP (inner_compare, 1))
6944 compare_mode = GET_MODE (inner_compare);
6945 else
6946 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6947
6948 /* If the mode changed, we have to change SET_DEST, the mode in the
6949 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6950 a hard register, just build new versions with the proper mode. If it
6951 is a pseudo, we lose unless it is only time we set the pseudo, in
6952 which case we can safely change its mode. */
6953 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6954 {
6955 if (can_change_dest_mode (dest, 0, compare_mode))
6956 {
6957 unsigned int regno = REGNO (dest);
6958 rtx new_dest;
6959
6960 if (regno < FIRST_PSEUDO_REGISTER)
6961 new_dest = gen_rtx_REG (compare_mode, regno);
6962 else
6963 {
6964 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6965 new_dest = regno_reg_rtx[regno];
6966 }
6967
6968 SUBST (SET_DEST (x), new_dest);
6969 SUBST (XEXP (*cc_use, 0), new_dest);
6970 other_changed = 1;
6971
6972 dest = new_dest;
6973 }
6974 }
6975 #endif /* SELECT_CC_MODE */
6976
6977 /* If the code changed, we have to build a new comparison in
6978 undobuf.other_insn. */
6979 if (new_code != old_code)
6980 {
6981 int other_changed_previously = other_changed;
6982 unsigned HOST_WIDE_INT mask;
6983 rtx old_cc_use = *cc_use;
6984
6985 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6986 dest, const0_rtx));
6987 other_changed = 1;
6988
6989 /* If the only change we made was to change an EQ into an NE or
6990 vice versa, OP0 has only one bit that might be nonzero, and OP1
6991 is zero, check if changing the user of the condition code will
6992 produce a valid insn. If it won't, we can keep the original code
6993 in that insn by surrounding our operation with an XOR. */
6994
6995 if (((old_code == NE && new_code == EQ)
6996 || (old_code == EQ && new_code == NE))
6997 && ! other_changed_previously && op1 == const0_rtx
6998 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6999 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
7000 {
7001 rtx pat = PATTERN (other_insn), note = 0;
7002
7003 if ((recog_for_combine (&pat, other_insn, &note) < 0
7004 && ! check_asm_operands (pat)))
7005 {
7006 *cc_use = old_cc_use;
7007 other_changed = 0;
7008
7009 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
7010 gen_int_mode (mask,
7011 GET_MODE (op0)));
7012 }
7013 }
7014 }
7015
7016 if (other_changed)
7017 undobuf.other_insn = other_insn;
7018
7019 /* Don't generate a compare of a CC with 0, just use that CC. */
7020 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
7021 {
7022 SUBST (SET_SRC (x), op0);
7023 src = SET_SRC (x);
7024 }
7025 /* Otherwise, if we didn't previously have the same COMPARE we
7026 want, create it from scratch. */
7027 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
7028 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
7029 {
7030 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
7031 src = SET_SRC (x);
7032 }
7033 }
7034 else
7035 {
7036 /* Get SET_SRC in a form where we have placed back any
7037 compound expressions. Then do the checks below. */
7038 src = make_compound_operation (src, SET);
7039 SUBST (SET_SRC (x), src);
7040 }
7041
7042 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
7043 and X being a REG or (subreg (reg)), we may be able to convert this to
7044 (set (subreg:m2 x) (op)).
7045
7046 We can always do this if M1 is narrower than M2 because that means that
7047 we only care about the low bits of the result.
7048
7049 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
7050 perform a narrower operation than requested since the high-order bits will
7051 be undefined. On machine where it is defined, this transformation is safe
7052 as long as M1 and M2 have the same number of words. */
7053
7054 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
7055 && !OBJECT_P (SUBREG_REG (src))
7056 && (known_equal_after_align_up
7057 (GET_MODE_SIZE (GET_MODE (src)),
7058 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
7059 UNITS_PER_WORD))
7060 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
7061 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
7062 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
7063 GET_MODE (SUBREG_REG (src)),
7064 GET_MODE (src)))
7065 && (REG_P (dest)
7066 || (GET_CODE (dest) == SUBREG
7067 && REG_P (SUBREG_REG (dest)))))
7068 {
7069 SUBST (SET_DEST (x),
7070 gen_lowpart (GET_MODE (SUBREG_REG (src)),
7071 dest));
7072 SUBST (SET_SRC (x), SUBREG_REG (src));
7073
7074 src = SET_SRC (x), dest = SET_DEST (x);
7075 }
7076
7077 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
7078 in SRC. */
7079 if (dest == cc0_rtx
7080 && partial_subreg_p (src)
7081 && subreg_lowpart_p (src))
7082 {
7083 rtx inner = SUBREG_REG (src);
7084 machine_mode inner_mode = GET_MODE (inner);
7085
7086 /* Here we make sure that we don't have a sign bit on. */
7087 if (val_signbit_known_clear_p (GET_MODE (src),
7088 nonzero_bits (inner, inner_mode)))
7089 {
7090 SUBST (SET_SRC (x), inner);
7091 src = SET_SRC (x);
7092 }
7093 }
7094
7095 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7096 would require a paradoxical subreg. Replace the subreg with a
7097 zero_extend to avoid the reload that would otherwise be required.
7098 Don't do this unless we have a scalar integer mode, otherwise the
7099 transformation is incorrect. */
7100
7101 enum rtx_code extend_op;
7102 if (paradoxical_subreg_p (src)
7103 && MEM_P (SUBREG_REG (src))
7104 && SCALAR_INT_MODE_P (GET_MODE (src))
7105 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7106 {
7107 SUBST (SET_SRC (x),
7108 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7109
7110 src = SET_SRC (x);
7111 }
7112
7113 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7114 are comparing an item known to be 0 or -1 against 0, use a logical
7115 operation instead. Check for one of the arms being an IOR of the other
7116 arm with some value. We compute three terms to be IOR'ed together. In
7117 practice, at most two will be nonzero. Then we do the IOR's. */
7118
7119 if (GET_CODE (dest) != PC
7120 && GET_CODE (src) == IF_THEN_ELSE
7121 && is_int_mode (GET_MODE (src), &int_mode)
7122 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7123 && XEXP (XEXP (src, 0), 1) == const0_rtx
7124 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7125 && (!HAVE_conditional_move
7126 || ! can_conditionally_move_p (int_mode))
7127 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7128 == GET_MODE_PRECISION (int_mode))
7129 && ! side_effects_p (src))
7130 {
7131 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7132 ? XEXP (src, 1) : XEXP (src, 2));
7133 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7134 ? XEXP (src, 2) : XEXP (src, 1));
7135 rtx term1 = const0_rtx, term2, term3;
7136
7137 if (GET_CODE (true_rtx) == IOR
7138 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7139 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7140 else if (GET_CODE (true_rtx) == IOR
7141 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7142 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7143 else if (GET_CODE (false_rtx) == IOR
7144 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7145 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7146 else if (GET_CODE (false_rtx) == IOR
7147 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7148 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7149
7150 term2 = simplify_gen_binary (AND, int_mode,
7151 XEXP (XEXP (src, 0), 0), true_rtx);
7152 term3 = simplify_gen_binary (AND, int_mode,
7153 simplify_gen_unary (NOT, int_mode,
7154 XEXP (XEXP (src, 0), 0),
7155 int_mode),
7156 false_rtx);
7157
7158 SUBST (SET_SRC (x),
7159 simplify_gen_binary (IOR, int_mode,
7160 simplify_gen_binary (IOR, int_mode,
7161 term1, term2),
7162 term3));
7163
7164 src = SET_SRC (x);
7165 }
7166
7167 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7168 whole thing fail. */
7169 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7170 return src;
7171 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7172 return dest;
7173 else
7174 /* Convert this into a field assignment operation, if possible. */
7175 return make_field_assignment (x);
7176 }
7177 \f
7178 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7179 result. */
7180
7181 static rtx
7182 simplify_logical (rtx x)
7183 {
7184 rtx op0 = XEXP (x, 0);
7185 rtx op1 = XEXP (x, 1);
7186 scalar_int_mode mode;
7187
7188 switch (GET_CODE (x))
7189 {
7190 case AND:
7191 /* We can call simplify_and_const_int only if we don't lose
7192 any (sign) bits when converting INTVAL (op1) to
7193 "unsigned HOST_WIDE_INT". */
7194 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7195 && CONST_INT_P (op1)
7196 && (HWI_COMPUTABLE_MODE_P (mode)
7197 || INTVAL (op1) > 0))
7198 {
7199 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7200 if (GET_CODE (x) != AND)
7201 return x;
7202
7203 op0 = XEXP (x, 0);
7204 op1 = XEXP (x, 1);
7205 }
7206
7207 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7208 apply the distributive law and then the inverse distributive
7209 law to see if things simplify. */
7210 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7211 {
7212 rtx result = distribute_and_simplify_rtx (x, 0);
7213 if (result)
7214 return result;
7215 }
7216 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7217 {
7218 rtx result = distribute_and_simplify_rtx (x, 1);
7219 if (result)
7220 return result;
7221 }
7222 break;
7223
7224 case IOR:
7225 /* If we have (ior (and A B) C), apply the distributive law and then
7226 the inverse distributive law to see if things simplify. */
7227
7228 if (GET_CODE (op0) == AND)
7229 {
7230 rtx result = distribute_and_simplify_rtx (x, 0);
7231 if (result)
7232 return result;
7233 }
7234
7235 if (GET_CODE (op1) == AND)
7236 {
7237 rtx result = distribute_and_simplify_rtx (x, 1);
7238 if (result)
7239 return result;
7240 }
7241 break;
7242
7243 default:
7244 gcc_unreachable ();
7245 }
7246
7247 return x;
7248 }
7249 \f
7250 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7251 operations" because they can be replaced with two more basic operations.
7252 ZERO_EXTEND is also considered "compound" because it can be replaced with
7253 an AND operation, which is simpler, though only one operation.
7254
7255 The function expand_compound_operation is called with an rtx expression
7256 and will convert it to the appropriate shifts and AND operations,
7257 simplifying at each stage.
7258
7259 The function make_compound_operation is called to convert an expression
7260 consisting of shifts and ANDs into the equivalent compound expression.
7261 It is the inverse of this function, loosely speaking. */
7262
7263 static rtx
7264 expand_compound_operation (rtx x)
7265 {
7266 unsigned HOST_WIDE_INT pos = 0, len;
7267 int unsignedp = 0;
7268 unsigned int modewidth;
7269 rtx tem;
7270 scalar_int_mode inner_mode;
7271
7272 switch (GET_CODE (x))
7273 {
7274 case ZERO_EXTEND:
7275 unsignedp = 1;
7276 /* FALLTHRU */
7277 case SIGN_EXTEND:
7278 /* We can't necessarily use a const_int for a multiword mode;
7279 it depends on implicitly extending the value.
7280 Since we don't know the right way to extend it,
7281 we can't tell whether the implicit way is right.
7282
7283 Even for a mode that is no wider than a const_int,
7284 we can't win, because we need to sign extend one of its bits through
7285 the rest of it, and we don't know which bit. */
7286 if (CONST_INT_P (XEXP (x, 0)))
7287 return x;
7288
7289 /* Reject modes that aren't scalar integers because turning vector
7290 or complex modes into shifts causes problems. */
7291 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7292 return x;
7293
7294 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7295 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7296 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7297 reloaded. If not for that, MEM's would very rarely be safe.
7298
7299 Reject modes bigger than a word, because we might not be able
7300 to reference a two-register group starting with an arbitrary register
7301 (and currently gen_lowpart might crash for a SUBREG). */
7302
7303 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7304 return x;
7305
7306 len = GET_MODE_PRECISION (inner_mode);
7307 /* If the inner object has VOIDmode (the only way this can happen
7308 is if it is an ASM_OPERANDS), we can't do anything since we don't
7309 know how much masking to do. */
7310 if (len == 0)
7311 return x;
7312
7313 break;
7314
7315 case ZERO_EXTRACT:
7316 unsignedp = 1;
7317
7318 /* fall through */
7319
7320 case SIGN_EXTRACT:
7321 /* If the operand is a CLOBBER, just return it. */
7322 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7323 return XEXP (x, 0);
7324
7325 if (!CONST_INT_P (XEXP (x, 1))
7326 || !CONST_INT_P (XEXP (x, 2)))
7327 return x;
7328
7329 /* Reject modes that aren't scalar integers because turning vector
7330 or complex modes into shifts causes problems. */
7331 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7332 return x;
7333
7334 len = INTVAL (XEXP (x, 1));
7335 pos = INTVAL (XEXP (x, 2));
7336
7337 /* This should stay within the object being extracted, fail otherwise. */
7338 if (len + pos > GET_MODE_PRECISION (inner_mode))
7339 return x;
7340
7341 if (BITS_BIG_ENDIAN)
7342 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7343
7344 break;
7345
7346 default:
7347 return x;
7348 }
7349
7350 /* We've rejected non-scalar operations by now. */
7351 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7352
7353 /* Convert sign extension to zero extension, if we know that the high
7354 bit is not set, as this is easier to optimize. It will be converted
7355 back to cheaper alternative in make_extraction. */
7356 if (GET_CODE (x) == SIGN_EXTEND
7357 && HWI_COMPUTABLE_MODE_P (mode)
7358 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7359 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7360 == 0))
7361 {
7362 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7363 rtx temp2 = expand_compound_operation (temp);
7364
7365 /* Make sure this is a profitable operation. */
7366 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7367 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7368 return temp2;
7369 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7370 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7371 return temp;
7372 else
7373 return x;
7374 }
7375
7376 /* We can optimize some special cases of ZERO_EXTEND. */
7377 if (GET_CODE (x) == ZERO_EXTEND)
7378 {
7379 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7380 know that the last value didn't have any inappropriate bits
7381 set. */
7382 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7383 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7384 && HWI_COMPUTABLE_MODE_P (mode)
7385 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7386 & ~GET_MODE_MASK (inner_mode)) == 0)
7387 return XEXP (XEXP (x, 0), 0);
7388
7389 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7390 if (GET_CODE (XEXP (x, 0)) == SUBREG
7391 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7392 && subreg_lowpart_p (XEXP (x, 0))
7393 && HWI_COMPUTABLE_MODE_P (mode)
7394 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7395 & ~GET_MODE_MASK (inner_mode)) == 0)
7396 return SUBREG_REG (XEXP (x, 0));
7397
7398 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7399 is a comparison and STORE_FLAG_VALUE permits. This is like
7400 the first case, but it works even when MODE is larger
7401 than HOST_WIDE_INT. */
7402 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7403 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7404 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7405 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7406 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7407 return XEXP (XEXP (x, 0), 0);
7408
7409 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7410 if (GET_CODE (XEXP (x, 0)) == SUBREG
7411 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7412 && subreg_lowpart_p (XEXP (x, 0))
7413 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7414 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7415 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7416 return SUBREG_REG (XEXP (x, 0));
7417
7418 }
7419
7420 /* If we reach here, we want to return a pair of shifts. The inner
7421 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7422 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7423 logical depending on the value of UNSIGNEDP.
7424
7425 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7426 converted into an AND of a shift.
7427
7428 We must check for the case where the left shift would have a negative
7429 count. This can happen in a case like (x >> 31) & 255 on machines
7430 that can't shift by a constant. On those machines, we would first
7431 combine the shift with the AND to produce a variable-position
7432 extraction. Then the constant of 31 would be substituted in
7433 to produce such a position. */
7434
7435 modewidth = GET_MODE_PRECISION (mode);
7436 if (modewidth >= pos + len)
7437 {
7438 tem = gen_lowpart (mode, XEXP (x, 0));
7439 if (!tem || GET_CODE (tem) == CLOBBER)
7440 return x;
7441 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7442 tem, modewidth - pos - len);
7443 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7444 mode, tem, modewidth - len);
7445 }
7446 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7447 tem = simplify_and_const_int (NULL_RTX, mode,
7448 simplify_shift_const (NULL_RTX, LSHIFTRT,
7449 mode, XEXP (x, 0),
7450 pos),
7451 (HOST_WIDE_INT_1U << len) - 1);
7452 else
7453 /* Any other cases we can't handle. */
7454 return x;
7455
7456 /* If we couldn't do this for some reason, return the original
7457 expression. */
7458 if (GET_CODE (tem) == CLOBBER)
7459 return x;
7460
7461 return tem;
7462 }
7463 \f
7464 /* X is a SET which contains an assignment of one object into
7465 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7466 or certain SUBREGS). If possible, convert it into a series of
7467 logical operations.
7468
7469 We half-heartedly support variable positions, but do not at all
7470 support variable lengths. */
7471
7472 static const_rtx
7473 expand_field_assignment (const_rtx x)
7474 {
7475 rtx inner;
7476 rtx pos; /* Always counts from low bit. */
7477 int len, inner_len;
7478 rtx mask, cleared, masked;
7479 scalar_int_mode compute_mode;
7480
7481 /* Loop until we find something we can't simplify. */
7482 while (1)
7483 {
7484 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7485 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7486 {
7487 rtx x0 = XEXP (SET_DEST (x), 0);
7488 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7489 break;
7490 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7491 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7492 MAX_MODE_INT);
7493 }
7494 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7495 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7496 {
7497 inner = XEXP (SET_DEST (x), 0);
7498 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7499 break;
7500
7501 len = INTVAL (XEXP (SET_DEST (x), 1));
7502 pos = XEXP (SET_DEST (x), 2);
7503
7504 /* A constant position should stay within the width of INNER. */
7505 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7506 break;
7507
7508 if (BITS_BIG_ENDIAN)
7509 {
7510 if (CONST_INT_P (pos))
7511 pos = GEN_INT (inner_len - len - INTVAL (pos));
7512 else if (GET_CODE (pos) == MINUS
7513 && CONST_INT_P (XEXP (pos, 1))
7514 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7515 /* If position is ADJUST - X, new position is X. */
7516 pos = XEXP (pos, 0);
7517 else
7518 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7519 gen_int_mode (inner_len - len,
7520 GET_MODE (pos)),
7521 pos);
7522 }
7523 }
7524
7525 /* If the destination is a subreg that overwrites the whole of the inner
7526 register, we can move the subreg to the source. */
7527 else if (GET_CODE (SET_DEST (x)) == SUBREG
7528 /* We need SUBREGs to compute nonzero_bits properly. */
7529 && nonzero_sign_valid
7530 && !read_modify_subreg_p (SET_DEST (x)))
7531 {
7532 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7533 gen_lowpart
7534 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7535 SET_SRC (x)));
7536 continue;
7537 }
7538 else
7539 break;
7540
7541 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7542 inner = SUBREG_REG (inner);
7543
7544 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7545 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7546 {
7547 /* Don't do anything for vector or complex integral types. */
7548 if (! FLOAT_MODE_P (GET_MODE (inner)))
7549 break;
7550
7551 /* Try to find an integral mode to pun with. */
7552 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7553 .exists (&compute_mode))
7554 break;
7555
7556 inner = gen_lowpart (compute_mode, inner);
7557 }
7558
7559 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7560 if (len >= HOST_BITS_PER_WIDE_INT)
7561 break;
7562
7563 /* Don't try to compute in too wide unsupported modes. */
7564 if (!targetm.scalar_mode_supported_p (compute_mode))
7565 break;
7566
7567 /* Now compute the equivalent expression. Make a copy of INNER
7568 for the SET_DEST in case it is a MEM into which we will substitute;
7569 we don't want shared RTL in that case. */
7570 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7571 compute_mode);
7572 cleared = simplify_gen_binary (AND, compute_mode,
7573 simplify_gen_unary (NOT, compute_mode,
7574 simplify_gen_binary (ASHIFT,
7575 compute_mode,
7576 mask, pos),
7577 compute_mode),
7578 inner);
7579 masked = simplify_gen_binary (ASHIFT, compute_mode,
7580 simplify_gen_binary (
7581 AND, compute_mode,
7582 gen_lowpart (compute_mode, SET_SRC (x)),
7583 mask),
7584 pos);
7585
7586 x = gen_rtx_SET (copy_rtx (inner),
7587 simplify_gen_binary (IOR, compute_mode,
7588 cleared, masked));
7589 }
7590
7591 return x;
7592 }
7593 \f
7594 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7595 it is an RTX that represents the (variable) starting position; otherwise,
7596 POS is the (constant) starting bit position. Both are counted from the LSB.
7597
7598 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7599
7600 IN_DEST is nonzero if this is a reference in the destination of a SET.
7601 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7602 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7603 be used.
7604
7605 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7606 ZERO_EXTRACT should be built even for bits starting at bit 0.
7607
7608 MODE is the desired mode of the result (if IN_DEST == 0).
7609
7610 The result is an RTX for the extraction or NULL_RTX if the target
7611 can't handle it. */
7612
7613 static rtx
7614 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7615 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7616 int in_dest, int in_compare)
7617 {
7618 /* This mode describes the size of the storage area
7619 to fetch the overall value from. Within that, we
7620 ignore the POS lowest bits, etc. */
7621 machine_mode is_mode = GET_MODE (inner);
7622 machine_mode inner_mode;
7623 scalar_int_mode wanted_inner_mode;
7624 scalar_int_mode wanted_inner_reg_mode = word_mode;
7625 scalar_int_mode pos_mode = word_mode;
7626 machine_mode extraction_mode = word_mode;
7627 rtx new_rtx = 0;
7628 rtx orig_pos_rtx = pos_rtx;
7629 HOST_WIDE_INT orig_pos;
7630
7631 if (pos_rtx && CONST_INT_P (pos_rtx))
7632 pos = INTVAL (pos_rtx), pos_rtx = 0;
7633
7634 if (GET_CODE (inner) == SUBREG
7635 && subreg_lowpart_p (inner)
7636 && (paradoxical_subreg_p (inner)
7637 /* If trying or potentionally trying to extract
7638 bits outside of is_mode, don't look through
7639 non-paradoxical SUBREGs. See PR82192. */
7640 || (pos_rtx == NULL_RTX
7641 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7642 {
7643 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7644 consider just the QI as the memory to extract from.
7645 The subreg adds or removes high bits; its mode is
7646 irrelevant to the meaning of this extraction,
7647 since POS and LEN count from the lsb. */
7648 if (MEM_P (SUBREG_REG (inner)))
7649 is_mode = GET_MODE (SUBREG_REG (inner));
7650 inner = SUBREG_REG (inner);
7651 }
7652 else if (GET_CODE (inner) == ASHIFT
7653 && CONST_INT_P (XEXP (inner, 1))
7654 && pos_rtx == 0 && pos == 0
7655 && len > UINTVAL (XEXP (inner, 1)))
7656 {
7657 /* We're extracting the least significant bits of an rtx
7658 (ashift X (const_int C)), where LEN > C. Extract the
7659 least significant (LEN - C) bits of X, giving an rtx
7660 whose mode is MODE, then shift it left C times. */
7661 new_rtx = make_extraction (mode, XEXP (inner, 0),
7662 0, 0, len - INTVAL (XEXP (inner, 1)),
7663 unsignedp, in_dest, in_compare);
7664 if (new_rtx != 0)
7665 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7666 }
7667 else if (GET_CODE (inner) == TRUNCATE
7668 /* If trying or potentionally trying to extract
7669 bits outside of is_mode, don't look through
7670 TRUNCATE. See PR82192. */
7671 && pos_rtx == NULL_RTX
7672 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7673 inner = XEXP (inner, 0);
7674
7675 inner_mode = GET_MODE (inner);
7676
7677 /* See if this can be done without an extraction. We never can if the
7678 width of the field is not the same as that of some integer mode. For
7679 registers, we can only avoid the extraction if the position is at the
7680 low-order bit and this is either not in the destination or we have the
7681 appropriate STRICT_LOW_PART operation available.
7682
7683 For MEM, we can avoid an extract if the field starts on an appropriate
7684 boundary and we can change the mode of the memory reference. */
7685
7686 scalar_int_mode tmode;
7687 if (int_mode_for_size (len, 1).exists (&tmode)
7688 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7689 && !MEM_P (inner)
7690 && (pos == 0 || REG_P (inner))
7691 && (inner_mode == tmode
7692 || !REG_P (inner)
7693 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7694 || reg_truncated_to_mode (tmode, inner))
7695 && (! in_dest
7696 || (REG_P (inner)
7697 && have_insn_for (STRICT_LOW_PART, tmode))))
7698 || (MEM_P (inner) && pos_rtx == 0
7699 && (pos
7700 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7701 : BITS_PER_UNIT)) == 0
7702 /* We can't do this if we are widening INNER_MODE (it
7703 may not be aligned, for one thing). */
7704 && !paradoxical_subreg_p (tmode, inner_mode)
7705 && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7706 && (inner_mode == tmode
7707 || (! mode_dependent_address_p (XEXP (inner, 0),
7708 MEM_ADDR_SPACE (inner))
7709 && ! MEM_VOLATILE_P (inner))))))
7710 {
7711 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7712 field. If the original and current mode are the same, we need not
7713 adjust the offset. Otherwise, we do if bytes big endian.
7714
7715 If INNER is not a MEM, get a piece consisting of just the field
7716 of interest (in this case POS % BITS_PER_WORD must be 0). */
7717
7718 if (MEM_P (inner))
7719 {
7720 poly_int64 offset;
7721
7722 /* POS counts from lsb, but make OFFSET count in memory order. */
7723 if (BYTES_BIG_ENDIAN)
7724 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7725 - len - pos);
7726 else
7727 offset = pos / BITS_PER_UNIT;
7728
7729 new_rtx = adjust_address_nv (inner, tmode, offset);
7730 }
7731 else if (REG_P (inner))
7732 {
7733 if (tmode != inner_mode)
7734 {
7735 /* We can't call gen_lowpart in a DEST since we
7736 always want a SUBREG (see below) and it would sometimes
7737 return a new hard register. */
7738 if (pos || in_dest)
7739 {
7740 poly_uint64 offset
7741 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7742
7743 /* Avoid creating invalid subregs, for example when
7744 simplifying (x>>32)&255. */
7745 if (!validate_subreg (tmode, inner_mode, inner, offset))
7746 return NULL_RTX;
7747
7748 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7749 }
7750 else
7751 new_rtx = gen_lowpart (tmode, inner);
7752 }
7753 else
7754 new_rtx = inner;
7755 }
7756 else
7757 new_rtx = force_to_mode (inner, tmode,
7758 len >= HOST_BITS_PER_WIDE_INT
7759 ? HOST_WIDE_INT_M1U
7760 : (HOST_WIDE_INT_1U << len) - 1, 0);
7761
7762 /* If this extraction is going into the destination of a SET,
7763 make a STRICT_LOW_PART unless we made a MEM. */
7764
7765 if (in_dest)
7766 return (MEM_P (new_rtx) ? new_rtx
7767 : (GET_CODE (new_rtx) != SUBREG
7768 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7769 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7770
7771 if (mode == tmode)
7772 return new_rtx;
7773
7774 if (CONST_SCALAR_INT_P (new_rtx))
7775 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7776 mode, new_rtx, tmode);
7777
7778 /* If we know that no extraneous bits are set, and that the high
7779 bit is not set, convert the extraction to the cheaper of
7780 sign and zero extension, that are equivalent in these cases. */
7781 if (flag_expensive_optimizations
7782 && (HWI_COMPUTABLE_MODE_P (tmode)
7783 && ((nonzero_bits (new_rtx, tmode)
7784 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7785 == 0)))
7786 {
7787 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7788 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7789
7790 /* Prefer ZERO_EXTENSION, since it gives more information to
7791 backends. */
7792 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7793 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7794 return temp;
7795 return temp1;
7796 }
7797
7798 /* Otherwise, sign- or zero-extend unless we already are in the
7799 proper mode. */
7800
7801 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7802 mode, new_rtx));
7803 }
7804
7805 /* Unless this is a COMPARE or we have a funny memory reference,
7806 don't do anything with zero-extending field extracts starting at
7807 the low-order bit since they are simple AND operations. */
7808 if (pos_rtx == 0 && pos == 0 && ! in_dest
7809 && ! in_compare && unsignedp)
7810 return 0;
7811
7812 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7813 if the position is not a constant and the length is not 1. In all
7814 other cases, we would only be going outside our object in cases when
7815 an original shift would have been undefined. */
7816 if (MEM_P (inner)
7817 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7818 || (pos_rtx != 0 && len != 1)))
7819 return 0;
7820
7821 enum extraction_pattern pattern = (in_dest ? EP_insv
7822 : unsignedp ? EP_extzv : EP_extv);
7823
7824 /* If INNER is not from memory, we want it to have the mode of a register
7825 extraction pattern's structure operand, or word_mode if there is no
7826 such pattern. The same applies to extraction_mode and pos_mode
7827 and their respective operands.
7828
7829 For memory, assume that the desired extraction_mode and pos_mode
7830 are the same as for a register operation, since at present we don't
7831 have named patterns for aligned memory structures. */
7832 class extraction_insn insn;
7833 unsigned int inner_size;
7834 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7835 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7836 {
7837 wanted_inner_reg_mode = insn.struct_mode.require ();
7838 pos_mode = insn.pos_mode;
7839 extraction_mode = insn.field_mode;
7840 }
7841
7842 /* Never narrow an object, since that might not be safe. */
7843
7844 if (mode != VOIDmode
7845 && partial_subreg_p (extraction_mode, mode))
7846 extraction_mode = mode;
7847
7848 /* Punt if len is too large for extraction_mode. */
7849 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7850 return NULL_RTX;
7851
7852 if (!MEM_P (inner))
7853 wanted_inner_mode = wanted_inner_reg_mode;
7854 else
7855 {
7856 /* Be careful not to go beyond the extracted object and maintain the
7857 natural alignment of the memory. */
7858 wanted_inner_mode = smallest_int_mode_for_size (len);
7859 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7860 > GET_MODE_BITSIZE (wanted_inner_mode))
7861 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7862 }
7863
7864 orig_pos = pos;
7865
7866 if (BITS_BIG_ENDIAN)
7867 {
7868 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7869 BITS_BIG_ENDIAN style. If position is constant, compute new
7870 position. Otherwise, build subtraction.
7871 Note that POS is relative to the mode of the original argument.
7872 If it's a MEM we need to recompute POS relative to that.
7873 However, if we're extracting from (or inserting into) a register,
7874 we want to recompute POS relative to wanted_inner_mode. */
7875 int width;
7876 if (!MEM_P (inner))
7877 width = GET_MODE_BITSIZE (wanted_inner_mode);
7878 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7879 return NULL_RTX;
7880
7881 if (pos_rtx == 0)
7882 pos = width - len - pos;
7883 else
7884 pos_rtx
7885 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7886 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7887 pos_rtx);
7888 /* POS may be less than 0 now, but we check for that below.
7889 Note that it can only be less than 0 if !MEM_P (inner). */
7890 }
7891
7892 /* If INNER has a wider mode, and this is a constant extraction, try to
7893 make it smaller and adjust the byte to point to the byte containing
7894 the value. */
7895 if (wanted_inner_mode != VOIDmode
7896 && inner_mode != wanted_inner_mode
7897 && ! pos_rtx
7898 && partial_subreg_p (wanted_inner_mode, is_mode)
7899 && MEM_P (inner)
7900 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7901 && ! MEM_VOLATILE_P (inner))
7902 {
7903 poly_int64 offset = 0;
7904
7905 /* The computations below will be correct if the machine is big
7906 endian in both bits and bytes or little endian in bits and bytes.
7907 If it is mixed, we must adjust. */
7908
7909 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7910 adjust OFFSET to compensate. */
7911 if (BYTES_BIG_ENDIAN
7912 && paradoxical_subreg_p (is_mode, inner_mode))
7913 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7914
7915 /* We can now move to the desired byte. */
7916 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7917 * GET_MODE_SIZE (wanted_inner_mode);
7918 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7919
7920 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7921 && is_mode != wanted_inner_mode)
7922 offset = (GET_MODE_SIZE (is_mode)
7923 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7924
7925 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7926 }
7927
7928 /* If INNER is not memory, get it into the proper mode. If we are changing
7929 its mode, POS must be a constant and smaller than the size of the new
7930 mode. */
7931 else if (!MEM_P (inner))
7932 {
7933 /* On the LHS, don't create paradoxical subregs implicitely truncating
7934 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7935 if (in_dest
7936 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7937 wanted_inner_mode))
7938 return NULL_RTX;
7939
7940 if (GET_MODE (inner) != wanted_inner_mode
7941 && (pos_rtx != 0
7942 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7943 return NULL_RTX;
7944
7945 if (orig_pos < 0)
7946 return NULL_RTX;
7947
7948 inner = force_to_mode (inner, wanted_inner_mode,
7949 pos_rtx
7950 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7951 ? HOST_WIDE_INT_M1U
7952 : (((HOST_WIDE_INT_1U << len) - 1)
7953 << orig_pos),
7954 0);
7955 }
7956
7957 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7958 have to zero extend. Otherwise, we can just use a SUBREG.
7959
7960 We dealt with constant rtxes earlier, so pos_rtx cannot
7961 have VOIDmode at this point. */
7962 if (pos_rtx != 0
7963 && (GET_MODE_SIZE (pos_mode)
7964 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7965 {
7966 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7967 GET_MODE (pos_rtx));
7968
7969 /* If we know that no extraneous bits are set, and that the high
7970 bit is not set, convert extraction to cheaper one - either
7971 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7972 cases. */
7973 if (flag_expensive_optimizations
7974 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7975 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7976 & ~(((unsigned HOST_WIDE_INT)
7977 GET_MODE_MASK (GET_MODE (pos_rtx)))
7978 >> 1))
7979 == 0)))
7980 {
7981 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7982 GET_MODE (pos_rtx));
7983
7984 /* Prefer ZERO_EXTENSION, since it gives more information to
7985 backends. */
7986 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7987 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7988 temp = temp1;
7989 }
7990 pos_rtx = temp;
7991 }
7992
7993 /* Make POS_RTX unless we already have it and it is correct. If we don't
7994 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7995 be a CONST_INT. */
7996 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7997 pos_rtx = orig_pos_rtx;
7998
7999 else if (pos_rtx == 0)
8000 pos_rtx = GEN_INT (pos);
8001
8002 /* Make the required operation. See if we can use existing rtx. */
8003 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
8004 extraction_mode, inner, GEN_INT (len), pos_rtx);
8005 if (! in_dest)
8006 new_rtx = gen_lowpart (mode, new_rtx);
8007
8008 return new_rtx;
8009 }
8010 \f
8011 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
8012 can be commuted with any other operations in X. Return X without
8013 that shift if so. */
8014
8015 static rtx
8016 extract_left_shift (scalar_int_mode mode, rtx x, int count)
8017 {
8018 enum rtx_code code = GET_CODE (x);
8019 rtx tem;
8020
8021 switch (code)
8022 {
8023 case ASHIFT:
8024 /* This is the shift itself. If it is wide enough, we will return
8025 either the value being shifted if the shift count is equal to
8026 COUNT or a shift for the difference. */
8027 if (CONST_INT_P (XEXP (x, 1))
8028 && INTVAL (XEXP (x, 1)) >= count)
8029 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
8030 INTVAL (XEXP (x, 1)) - count);
8031 break;
8032
8033 case NEG: case NOT:
8034 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8035 return simplify_gen_unary (code, mode, tem, mode);
8036
8037 break;
8038
8039 case PLUS: case IOR: case XOR: case AND:
8040 /* If we can safely shift this constant and we find the inner shift,
8041 make a new operation. */
8042 if (CONST_INT_P (XEXP (x, 1))
8043 && (UINTVAL (XEXP (x, 1))
8044 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
8045 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8046 {
8047 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
8048 return simplify_gen_binary (code, mode, tem,
8049 gen_int_mode (val, mode));
8050 }
8051 break;
8052
8053 default:
8054 break;
8055 }
8056
8057 return 0;
8058 }
8059 \f
8060 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
8061 level of the expression and MODE is its mode. IN_CODE is as for
8062 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
8063 that should be used when recursing on operands of *X_PTR.
8064
8065 There are two possible actions:
8066
8067 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
8068 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
8069
8070 - Return a new rtx, which the caller returns directly. */
8071
8072 static rtx
8073 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
8074 enum rtx_code in_code,
8075 enum rtx_code *next_code_ptr)
8076 {
8077 rtx x = *x_ptr;
8078 enum rtx_code next_code = *next_code_ptr;
8079 enum rtx_code code = GET_CODE (x);
8080 int mode_width = GET_MODE_PRECISION (mode);
8081 rtx rhs, lhs;
8082 rtx new_rtx = 0;
8083 int i;
8084 rtx tem;
8085 scalar_int_mode inner_mode;
8086 bool equality_comparison = false;
8087
8088 if (in_code == EQ)
8089 {
8090 equality_comparison = true;
8091 in_code = COMPARE;
8092 }
8093
8094 /* Process depending on the code of this operation. If NEW is set
8095 nonzero, it will be returned. */
8096
8097 switch (code)
8098 {
8099 case ASHIFT:
8100 /* Convert shifts by constants into multiplications if inside
8101 an address. */
8102 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8103 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8104 && INTVAL (XEXP (x, 1)) >= 0)
8105 {
8106 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8107 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8108
8109 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8110 if (GET_CODE (new_rtx) == NEG)
8111 {
8112 new_rtx = XEXP (new_rtx, 0);
8113 multval = -multval;
8114 }
8115 multval = trunc_int_for_mode (multval, mode);
8116 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8117 }
8118 break;
8119
8120 case PLUS:
8121 lhs = XEXP (x, 0);
8122 rhs = XEXP (x, 1);
8123 lhs = make_compound_operation (lhs, next_code);
8124 rhs = make_compound_operation (rhs, next_code);
8125 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8126 {
8127 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8128 XEXP (lhs, 1));
8129 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8130 }
8131 else if (GET_CODE (lhs) == MULT
8132 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8133 {
8134 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8135 simplify_gen_unary (NEG, mode,
8136 XEXP (lhs, 1),
8137 mode));
8138 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8139 }
8140 else
8141 {
8142 SUBST (XEXP (x, 0), lhs);
8143 SUBST (XEXP (x, 1), rhs);
8144 }
8145 maybe_swap_commutative_operands (x);
8146 return x;
8147
8148 case MINUS:
8149 lhs = XEXP (x, 0);
8150 rhs = XEXP (x, 1);
8151 lhs = make_compound_operation (lhs, next_code);
8152 rhs = make_compound_operation (rhs, next_code);
8153 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8154 {
8155 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8156 XEXP (rhs, 1));
8157 return simplify_gen_binary (PLUS, mode, tem, lhs);
8158 }
8159 else if (GET_CODE (rhs) == MULT
8160 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8161 {
8162 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8163 simplify_gen_unary (NEG, mode,
8164 XEXP (rhs, 1),
8165 mode));
8166 return simplify_gen_binary (PLUS, mode, tem, lhs);
8167 }
8168 else
8169 {
8170 SUBST (XEXP (x, 0), lhs);
8171 SUBST (XEXP (x, 1), rhs);
8172 return x;
8173 }
8174
8175 case AND:
8176 /* If the second operand is not a constant, we can't do anything
8177 with it. */
8178 if (!CONST_INT_P (XEXP (x, 1)))
8179 break;
8180
8181 /* If the constant is a power of two minus one and the first operand
8182 is a logical right shift, make an extraction. */
8183 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8184 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8185 {
8186 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8187 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8188 i, 1, 0, in_code == COMPARE);
8189 }
8190
8191 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8192 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8193 && subreg_lowpart_p (XEXP (x, 0))
8194 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8195 &inner_mode)
8196 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8197 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8198 {
8199 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8200 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8201 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8202 XEXP (inner_x0, 1),
8203 i, 1, 0, in_code == COMPARE);
8204
8205 /* If we narrowed the mode when dropping the subreg, then we lose. */
8206 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8207 new_rtx = NULL;
8208
8209 /* If that didn't give anything, see if the AND simplifies on
8210 its own. */
8211 if (!new_rtx && i >= 0)
8212 {
8213 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8214 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8215 0, in_code == COMPARE);
8216 }
8217 }
8218 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8219 else if ((GET_CODE (XEXP (x, 0)) == XOR
8220 || GET_CODE (XEXP (x, 0)) == IOR)
8221 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8222 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8223 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8224 {
8225 /* Apply the distributive law, and then try to make extractions. */
8226 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8227 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8228 XEXP (x, 1)),
8229 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8230 XEXP (x, 1)));
8231 new_rtx = make_compound_operation (new_rtx, in_code);
8232 }
8233
8234 /* If we are have (and (rotate X C) M) and C is larger than the number
8235 of bits in M, this is an extraction. */
8236
8237 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8238 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8239 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8240 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8241 {
8242 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8243 new_rtx = make_extraction (mode, new_rtx,
8244 (GET_MODE_PRECISION (mode)
8245 - INTVAL (XEXP (XEXP (x, 0), 1))),
8246 NULL_RTX, i, 1, 0, in_code == COMPARE);
8247 }
8248
8249 /* On machines without logical shifts, if the operand of the AND is
8250 a logical shift and our mask turns off all the propagated sign
8251 bits, we can replace the logical shift with an arithmetic shift. */
8252 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8253 && !have_insn_for (LSHIFTRT, mode)
8254 && have_insn_for (ASHIFTRT, mode)
8255 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8256 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8257 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8258 && mode_width <= HOST_BITS_PER_WIDE_INT)
8259 {
8260 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8261
8262 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8263 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8264 SUBST (XEXP (x, 0),
8265 gen_rtx_ASHIFTRT (mode,
8266 make_compound_operation (XEXP (XEXP (x,
8267 0),
8268 0),
8269 next_code),
8270 XEXP (XEXP (x, 0), 1)));
8271 }
8272
8273 /* If the constant is one less than a power of two, this might be
8274 representable by an extraction even if no shift is present.
8275 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8276 we are in a COMPARE. */
8277 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8278 new_rtx = make_extraction (mode,
8279 make_compound_operation (XEXP (x, 0),
8280 next_code),
8281 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8282
8283 /* If we are in a comparison and this is an AND with a power of two,
8284 convert this into the appropriate bit extract. */
8285 else if (in_code == COMPARE
8286 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8287 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8288 new_rtx = make_extraction (mode,
8289 make_compound_operation (XEXP (x, 0),
8290 next_code),
8291 i, NULL_RTX, 1, 1, 0, 1);
8292
8293 /* If the one operand is a paradoxical subreg of a register or memory and
8294 the constant (limited to the smaller mode) has only zero bits where
8295 the sub expression has known zero bits, this can be expressed as
8296 a zero_extend. */
8297 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8298 {
8299 rtx sub;
8300
8301 sub = XEXP (XEXP (x, 0), 0);
8302 machine_mode sub_mode = GET_MODE (sub);
8303 int sub_width;
8304 if ((REG_P (sub) || MEM_P (sub))
8305 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8306 && sub_width < mode_width)
8307 {
8308 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8309 unsigned HOST_WIDE_INT mask;
8310
8311 /* original AND constant with all the known zero bits set */
8312 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8313 if ((mask & mode_mask) == mode_mask)
8314 {
8315 new_rtx = make_compound_operation (sub, next_code);
8316 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8317 1, 0, in_code == COMPARE);
8318 }
8319 }
8320 }
8321
8322 break;
8323
8324 case LSHIFTRT:
8325 /* If the sign bit is known to be zero, replace this with an
8326 arithmetic shift. */
8327 if (have_insn_for (ASHIFTRT, mode)
8328 && ! have_insn_for (LSHIFTRT, mode)
8329 && mode_width <= HOST_BITS_PER_WIDE_INT
8330 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8331 {
8332 new_rtx = gen_rtx_ASHIFTRT (mode,
8333 make_compound_operation (XEXP (x, 0),
8334 next_code),
8335 XEXP (x, 1));
8336 break;
8337 }
8338
8339 /* fall through */
8340
8341 case ASHIFTRT:
8342 lhs = XEXP (x, 0);
8343 rhs = XEXP (x, 1);
8344
8345 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8346 this is a SIGN_EXTRACT. */
8347 if (CONST_INT_P (rhs)
8348 && GET_CODE (lhs) == ASHIFT
8349 && CONST_INT_P (XEXP (lhs, 1))
8350 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8351 && INTVAL (XEXP (lhs, 1)) >= 0
8352 && INTVAL (rhs) < mode_width)
8353 {
8354 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8355 new_rtx = make_extraction (mode, new_rtx,
8356 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8357 NULL_RTX, mode_width - INTVAL (rhs),
8358 code == LSHIFTRT, 0, in_code == COMPARE);
8359 break;
8360 }
8361
8362 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8363 If so, try to merge the shifts into a SIGN_EXTEND. We could
8364 also do this for some cases of SIGN_EXTRACT, but it doesn't
8365 seem worth the effort; the case checked for occurs on Alpha. */
8366
8367 if (!OBJECT_P (lhs)
8368 && ! (GET_CODE (lhs) == SUBREG
8369 && (OBJECT_P (SUBREG_REG (lhs))))
8370 && CONST_INT_P (rhs)
8371 && INTVAL (rhs) >= 0
8372 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8373 && INTVAL (rhs) < mode_width
8374 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8375 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8376 next_code),
8377 0, NULL_RTX, mode_width - INTVAL (rhs),
8378 code == LSHIFTRT, 0, in_code == COMPARE);
8379
8380 break;
8381
8382 case SUBREG:
8383 /* Call ourselves recursively on the inner expression. If we are
8384 narrowing the object and it has a different RTL code from
8385 what it originally did, do this SUBREG as a force_to_mode. */
8386 {
8387 rtx inner = SUBREG_REG (x), simplified;
8388 enum rtx_code subreg_code = in_code;
8389
8390 /* If the SUBREG is masking of a logical right shift,
8391 make an extraction. */
8392 if (GET_CODE (inner) == LSHIFTRT
8393 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8394 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8395 && CONST_INT_P (XEXP (inner, 1))
8396 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8397 && subreg_lowpart_p (x))
8398 {
8399 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8400 int width = GET_MODE_PRECISION (inner_mode)
8401 - INTVAL (XEXP (inner, 1));
8402 if (width > mode_width)
8403 width = mode_width;
8404 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8405 width, 1, 0, in_code == COMPARE);
8406 break;
8407 }
8408
8409 /* If in_code is COMPARE, it isn't always safe to pass it through
8410 to the recursive make_compound_operation call. */
8411 if (subreg_code == COMPARE
8412 && (!subreg_lowpart_p (x)
8413 || GET_CODE (inner) == SUBREG
8414 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8415 is (const_int 0), rather than
8416 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8417 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8418 for non-equality comparisons against 0 is not equivalent
8419 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8420 || (GET_CODE (inner) == AND
8421 && CONST_INT_P (XEXP (inner, 1))
8422 && partial_subreg_p (x)
8423 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8424 >= GET_MODE_BITSIZE (mode) - 1)))
8425 subreg_code = SET;
8426
8427 tem = make_compound_operation (inner, subreg_code);
8428
8429 simplified
8430 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8431 if (simplified)
8432 tem = simplified;
8433
8434 if (GET_CODE (tem) != GET_CODE (inner)
8435 && partial_subreg_p (x)
8436 && subreg_lowpart_p (x))
8437 {
8438 rtx newer
8439 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8440
8441 /* If we have something other than a SUBREG, we might have
8442 done an expansion, so rerun ourselves. */
8443 if (GET_CODE (newer) != SUBREG)
8444 newer = make_compound_operation (newer, in_code);
8445
8446 /* force_to_mode can expand compounds. If it just re-expanded
8447 the compound, use gen_lowpart to convert to the desired
8448 mode. */
8449 if (rtx_equal_p (newer, x)
8450 /* Likewise if it re-expanded the compound only partially.
8451 This happens for SUBREG of ZERO_EXTRACT if they extract
8452 the same number of bits. */
8453 || (GET_CODE (newer) == SUBREG
8454 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8455 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8456 && GET_CODE (inner) == AND
8457 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8458 return gen_lowpart (GET_MODE (x), tem);
8459
8460 return newer;
8461 }
8462
8463 if (simplified)
8464 return tem;
8465 }
8466 break;
8467
8468 default:
8469 break;
8470 }
8471
8472 if (new_rtx)
8473 *x_ptr = gen_lowpart (mode, new_rtx);
8474 *next_code_ptr = next_code;
8475 return NULL_RTX;
8476 }
8477
8478 /* Look at the expression rooted at X. Look for expressions
8479 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8480 Form these expressions.
8481
8482 Return the new rtx, usually just X.
8483
8484 Also, for machines like the VAX that don't have logical shift insns,
8485 try to convert logical to arithmetic shift operations in cases where
8486 they are equivalent. This undoes the canonicalizations to logical
8487 shifts done elsewhere.
8488
8489 We try, as much as possible, to re-use rtl expressions to save memory.
8490
8491 IN_CODE says what kind of expression we are processing. Normally, it is
8492 SET. In a memory address it is MEM. When processing the arguments of
8493 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8494 precisely it is an equality comparison against zero. */
8495
8496 rtx
8497 make_compound_operation (rtx x, enum rtx_code in_code)
8498 {
8499 enum rtx_code code = GET_CODE (x);
8500 const char *fmt;
8501 int i, j;
8502 enum rtx_code next_code;
8503 rtx new_rtx, tem;
8504
8505 /* Select the code to be used in recursive calls. Once we are inside an
8506 address, we stay there. If we have a comparison, set to COMPARE,
8507 but once inside, go back to our default of SET. */
8508
8509 next_code = (code == MEM ? MEM
8510 : ((code == COMPARE || COMPARISON_P (x))
8511 && XEXP (x, 1) == const0_rtx) ? COMPARE
8512 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8513
8514 scalar_int_mode mode;
8515 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8516 {
8517 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8518 &next_code);
8519 if (new_rtx)
8520 return new_rtx;
8521 code = GET_CODE (x);
8522 }
8523
8524 /* Now recursively process each operand of this operation. We need to
8525 handle ZERO_EXTEND specially so that we don't lose track of the
8526 inner mode. */
8527 if (code == ZERO_EXTEND)
8528 {
8529 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8530 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8531 new_rtx, GET_MODE (XEXP (x, 0)));
8532 if (tem)
8533 return tem;
8534 SUBST (XEXP (x, 0), new_rtx);
8535 return x;
8536 }
8537
8538 fmt = GET_RTX_FORMAT (code);
8539 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8540 if (fmt[i] == 'e')
8541 {
8542 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8543 SUBST (XEXP (x, i), new_rtx);
8544 }
8545 else if (fmt[i] == 'E')
8546 for (j = 0; j < XVECLEN (x, i); j++)
8547 {
8548 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8549 SUBST (XVECEXP (x, i, j), new_rtx);
8550 }
8551
8552 maybe_swap_commutative_operands (x);
8553 return x;
8554 }
8555 \f
8556 /* Given M see if it is a value that would select a field of bits
8557 within an item, but not the entire word. Return -1 if not.
8558 Otherwise, return the starting position of the field, where 0 is the
8559 low-order bit.
8560
8561 *PLEN is set to the length of the field. */
8562
8563 static int
8564 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8565 {
8566 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8567 int pos = m ? ctz_hwi (m) : -1;
8568 int len = 0;
8569
8570 if (pos >= 0)
8571 /* Now shift off the low-order zero bits and see if we have a
8572 power of two minus 1. */
8573 len = exact_log2 ((m >> pos) + 1);
8574
8575 if (len <= 0)
8576 pos = -1;
8577
8578 *plen = len;
8579 return pos;
8580 }
8581 \f
8582 /* If X refers to a register that equals REG in value, replace these
8583 references with REG. */
8584 static rtx
8585 canon_reg_for_combine (rtx x, rtx reg)
8586 {
8587 rtx op0, op1, op2;
8588 const char *fmt;
8589 int i;
8590 bool copied;
8591
8592 enum rtx_code code = GET_CODE (x);
8593 switch (GET_RTX_CLASS (code))
8594 {
8595 case RTX_UNARY:
8596 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8597 if (op0 != XEXP (x, 0))
8598 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8599 GET_MODE (reg));
8600 break;
8601
8602 case RTX_BIN_ARITH:
8603 case RTX_COMM_ARITH:
8604 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8605 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8606 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8607 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8608 break;
8609
8610 case RTX_COMPARE:
8611 case RTX_COMM_COMPARE:
8612 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8613 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8614 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8615 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8616 GET_MODE (op0), op0, op1);
8617 break;
8618
8619 case RTX_TERNARY:
8620 case RTX_BITFIELD_OPS:
8621 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8622 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8623 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8624 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8625 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8626 GET_MODE (op0), op0, op1, op2);
8627 /* FALLTHRU */
8628
8629 case RTX_OBJ:
8630 if (REG_P (x))
8631 {
8632 if (rtx_equal_p (get_last_value (reg), x)
8633 || rtx_equal_p (reg, get_last_value (x)))
8634 return reg;
8635 else
8636 break;
8637 }
8638
8639 /* fall through */
8640
8641 default:
8642 fmt = GET_RTX_FORMAT (code);
8643 copied = false;
8644 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8645 if (fmt[i] == 'e')
8646 {
8647 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8648 if (op != XEXP (x, i))
8649 {
8650 if (!copied)
8651 {
8652 copied = true;
8653 x = copy_rtx (x);
8654 }
8655 XEXP (x, i) = op;
8656 }
8657 }
8658 else if (fmt[i] == 'E')
8659 {
8660 int j;
8661 for (j = 0; j < XVECLEN (x, i); j++)
8662 {
8663 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8664 if (op != XVECEXP (x, i, j))
8665 {
8666 if (!copied)
8667 {
8668 copied = true;
8669 x = copy_rtx (x);
8670 }
8671 XVECEXP (x, i, j) = op;
8672 }
8673 }
8674 }
8675
8676 break;
8677 }
8678
8679 return x;
8680 }
8681
8682 /* Return X converted to MODE. If the value is already truncated to
8683 MODE we can just return a subreg even though in the general case we
8684 would need an explicit truncation. */
8685
8686 static rtx
8687 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8688 {
8689 if (!CONST_INT_P (x)
8690 && partial_subreg_p (mode, GET_MODE (x))
8691 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8692 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8693 {
8694 /* Bit-cast X into an integer mode. */
8695 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8696 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8697 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8698 x, GET_MODE (x));
8699 }
8700
8701 return gen_lowpart (mode, x);
8702 }
8703
8704 /* See if X can be simplified knowing that we will only refer to it in
8705 MODE and will only refer to those bits that are nonzero in MASK.
8706 If other bits are being computed or if masking operations are done
8707 that select a superset of the bits in MASK, they can sometimes be
8708 ignored.
8709
8710 Return a possibly simplified expression, but always convert X to
8711 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8712
8713 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8714 are all off in X. This is used when X will be complemented, by either
8715 NOT, NEG, or XOR. */
8716
8717 static rtx
8718 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8719 int just_select)
8720 {
8721 enum rtx_code code = GET_CODE (x);
8722 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8723 machine_mode op_mode;
8724 unsigned HOST_WIDE_INT nonzero;
8725
8726 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8727 code below will do the wrong thing since the mode of such an
8728 expression is VOIDmode.
8729
8730 Also do nothing if X is a CLOBBER; this can happen if X was
8731 the return value from a call to gen_lowpart. */
8732 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8733 return x;
8734
8735 /* We want to perform the operation in its present mode unless we know
8736 that the operation is valid in MODE, in which case we do the operation
8737 in MODE. */
8738 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8739 && have_insn_for (code, mode))
8740 ? mode : GET_MODE (x));
8741
8742 /* It is not valid to do a right-shift in a narrower mode
8743 than the one it came in with. */
8744 if ((code == LSHIFTRT || code == ASHIFTRT)
8745 && partial_subreg_p (mode, GET_MODE (x)))
8746 op_mode = GET_MODE (x);
8747
8748 /* Truncate MASK to fit OP_MODE. */
8749 if (op_mode)
8750 mask &= GET_MODE_MASK (op_mode);
8751
8752 /* Determine what bits of X are guaranteed to be (non)zero. */
8753 nonzero = nonzero_bits (x, mode);
8754
8755 /* If none of the bits in X are needed, return a zero. */
8756 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8757 x = const0_rtx;
8758
8759 /* If X is a CONST_INT, return a new one. Do this here since the
8760 test below will fail. */
8761 if (CONST_INT_P (x))
8762 {
8763 if (SCALAR_INT_MODE_P (mode))
8764 return gen_int_mode (INTVAL (x) & mask, mode);
8765 else
8766 {
8767 x = GEN_INT (INTVAL (x) & mask);
8768 return gen_lowpart_common (mode, x);
8769 }
8770 }
8771
8772 /* If X is narrower than MODE and we want all the bits in X's mode, just
8773 get X in the proper mode. */
8774 if (paradoxical_subreg_p (mode, GET_MODE (x))
8775 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8776 return gen_lowpart (mode, x);
8777
8778 /* We can ignore the effect of a SUBREG if it narrows the mode or
8779 if the constant masks to zero all the bits the mode doesn't have. */
8780 if (GET_CODE (x) == SUBREG
8781 && subreg_lowpart_p (x)
8782 && (partial_subreg_p (x)
8783 || (mask
8784 & GET_MODE_MASK (GET_MODE (x))
8785 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8786 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8787
8788 scalar_int_mode int_mode, xmode;
8789 if (is_a <scalar_int_mode> (mode, &int_mode)
8790 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8791 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8792 integer too. */
8793 return force_int_to_mode (x, int_mode, xmode,
8794 as_a <scalar_int_mode> (op_mode),
8795 mask, just_select);
8796
8797 return gen_lowpart_or_truncate (mode, x);
8798 }
8799
8800 /* Subroutine of force_to_mode that handles cases in which both X and
8801 the result are scalar integers. MODE is the mode of the result,
8802 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8803 is preferred for simplified versions of X. The other arguments
8804 are as for force_to_mode. */
8805
8806 static rtx
8807 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8808 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8809 int just_select)
8810 {
8811 enum rtx_code code = GET_CODE (x);
8812 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8813 unsigned HOST_WIDE_INT fuller_mask;
8814 rtx op0, op1, temp;
8815 poly_int64 const_op0;
8816
8817 /* When we have an arithmetic operation, or a shift whose count we
8818 do not know, we need to assume that all bits up to the highest-order
8819 bit in MASK will be needed. This is how we form such a mask. */
8820 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8821 fuller_mask = HOST_WIDE_INT_M1U;
8822 else
8823 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8824 - 1);
8825
8826 switch (code)
8827 {
8828 case CLOBBER:
8829 /* If X is a (clobber (const_int)), return it since we know we are
8830 generating something that won't match. */
8831 return x;
8832
8833 case SIGN_EXTEND:
8834 case ZERO_EXTEND:
8835 case ZERO_EXTRACT:
8836 case SIGN_EXTRACT:
8837 x = expand_compound_operation (x);
8838 if (GET_CODE (x) != code)
8839 return force_to_mode (x, mode, mask, next_select);
8840 break;
8841
8842 case TRUNCATE:
8843 /* Similarly for a truncate. */
8844 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8845
8846 case AND:
8847 /* If this is an AND with a constant, convert it into an AND
8848 whose constant is the AND of that constant with MASK. If it
8849 remains an AND of MASK, delete it since it is redundant. */
8850
8851 if (CONST_INT_P (XEXP (x, 1)))
8852 {
8853 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8854 mask & INTVAL (XEXP (x, 1)));
8855 xmode = op_mode;
8856
8857 /* If X is still an AND, see if it is an AND with a mask that
8858 is just some low-order bits. If so, and it is MASK, we don't
8859 need it. */
8860
8861 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8862 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8863 x = XEXP (x, 0);
8864
8865 /* If it remains an AND, try making another AND with the bits
8866 in the mode mask that aren't in MASK turned on. If the
8867 constant in the AND is wide enough, this might make a
8868 cheaper constant. */
8869
8870 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8871 && GET_MODE_MASK (xmode) != mask
8872 && HWI_COMPUTABLE_MODE_P (xmode))
8873 {
8874 unsigned HOST_WIDE_INT cval
8875 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8876 rtx y;
8877
8878 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8879 gen_int_mode (cval, xmode));
8880 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8881 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8882 x = y;
8883 }
8884
8885 break;
8886 }
8887
8888 goto binop;
8889
8890 case PLUS:
8891 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8892 low-order bits (as in an alignment operation) and FOO is already
8893 aligned to that boundary, mask C1 to that boundary as well.
8894 This may eliminate that PLUS and, later, the AND. */
8895
8896 {
8897 unsigned int width = GET_MODE_PRECISION (mode);
8898 unsigned HOST_WIDE_INT smask = mask;
8899
8900 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8901 number, sign extend it. */
8902
8903 if (width < HOST_BITS_PER_WIDE_INT
8904 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8905 smask |= HOST_WIDE_INT_M1U << width;
8906
8907 if (CONST_INT_P (XEXP (x, 1))
8908 && pow2p_hwi (- smask)
8909 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8910 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8911 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8912 (INTVAL (XEXP (x, 1)) & smask)),
8913 mode, smask, next_select);
8914 }
8915
8916 /* fall through */
8917
8918 case MULT:
8919 /* Substituting into the operands of a widening MULT is not likely to
8920 create RTL matching a machine insn. */
8921 if (code == MULT
8922 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8923 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8924 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8925 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8926 && REG_P (XEXP (XEXP (x, 0), 0))
8927 && REG_P (XEXP (XEXP (x, 1), 0)))
8928 return gen_lowpart_or_truncate (mode, x);
8929
8930 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8931 most significant bit in MASK since carries from those bits will
8932 affect the bits we are interested in. */
8933 mask = fuller_mask;
8934 goto binop;
8935
8936 case MINUS:
8937 /* If X is (minus C Y) where C's least set bit is larger than any bit
8938 in the mask, then we may replace with (neg Y). */
8939 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8940 && known_alignment (poly_uint64 (const_op0)) > mask)
8941 {
8942 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8943 return force_to_mode (x, mode, mask, next_select);
8944 }
8945
8946 /* Similarly, if C contains every bit in the fuller_mask, then we may
8947 replace with (not Y). */
8948 if (CONST_INT_P (XEXP (x, 0))
8949 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8950 {
8951 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8952 return force_to_mode (x, mode, mask, next_select);
8953 }
8954
8955 mask = fuller_mask;
8956 goto binop;
8957
8958 case IOR:
8959 case XOR:
8960 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8961 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8962 operation which may be a bitfield extraction. Ensure that the
8963 constant we form is not wider than the mode of X. */
8964
8965 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8966 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8967 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8968 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8969 && CONST_INT_P (XEXP (x, 1))
8970 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8971 + floor_log2 (INTVAL (XEXP (x, 1))))
8972 < GET_MODE_PRECISION (xmode))
8973 && (UINTVAL (XEXP (x, 1))
8974 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8975 {
8976 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8977 << INTVAL (XEXP (XEXP (x, 0), 1)),
8978 xmode);
8979 temp = simplify_gen_binary (GET_CODE (x), xmode,
8980 XEXP (XEXP (x, 0), 0), temp);
8981 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8982 XEXP (XEXP (x, 0), 1));
8983 return force_to_mode (x, mode, mask, next_select);
8984 }
8985
8986 binop:
8987 /* For most binary operations, just propagate into the operation and
8988 change the mode if we have an operation of that mode. */
8989
8990 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8991 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8992
8993 /* If we ended up truncating both operands, truncate the result of the
8994 operation instead. */
8995 if (GET_CODE (op0) == TRUNCATE
8996 && GET_CODE (op1) == TRUNCATE)
8997 {
8998 op0 = XEXP (op0, 0);
8999 op1 = XEXP (op1, 0);
9000 }
9001
9002 op0 = gen_lowpart_or_truncate (op_mode, op0);
9003 op1 = gen_lowpart_or_truncate (op_mode, op1);
9004
9005 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
9006 {
9007 x = simplify_gen_binary (code, op_mode, op0, op1);
9008 xmode = op_mode;
9009 }
9010 break;
9011
9012 case ASHIFT:
9013 /* For left shifts, do the same, but just for the first operand.
9014 However, we cannot do anything with shifts where we cannot
9015 guarantee that the counts are smaller than the size of the mode
9016 because such a count will have a different meaning in a
9017 wider mode. */
9018
9019 if (! (CONST_INT_P (XEXP (x, 1))
9020 && INTVAL (XEXP (x, 1)) >= 0
9021 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
9022 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
9023 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
9024 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
9025 break;
9026
9027 /* If the shift count is a constant and we can do arithmetic in
9028 the mode of the shift, refine which bits we need. Otherwise, use the
9029 conservative form of the mask. */
9030 if (CONST_INT_P (XEXP (x, 1))
9031 && INTVAL (XEXP (x, 1)) >= 0
9032 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
9033 && HWI_COMPUTABLE_MODE_P (op_mode))
9034 mask >>= INTVAL (XEXP (x, 1));
9035 else
9036 mask = fuller_mask;
9037
9038 op0 = gen_lowpart_or_truncate (op_mode,
9039 force_to_mode (XEXP (x, 0), mode,
9040 mask, next_select));
9041
9042 if (op_mode != xmode || op0 != XEXP (x, 0))
9043 {
9044 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
9045 xmode = op_mode;
9046 }
9047 break;
9048
9049 case LSHIFTRT:
9050 /* Here we can only do something if the shift count is a constant,
9051 this shift constant is valid for the host, and we can do arithmetic
9052 in OP_MODE. */
9053
9054 if (CONST_INT_P (XEXP (x, 1))
9055 && INTVAL (XEXP (x, 1)) >= 0
9056 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
9057 && HWI_COMPUTABLE_MODE_P (op_mode))
9058 {
9059 rtx inner = XEXP (x, 0);
9060 unsigned HOST_WIDE_INT inner_mask;
9061
9062 /* Select the mask of the bits we need for the shift operand. */
9063 inner_mask = mask << INTVAL (XEXP (x, 1));
9064
9065 /* We can only change the mode of the shift if we can do arithmetic
9066 in the mode of the shift and INNER_MASK is no wider than the
9067 width of X's mode. */
9068 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
9069 op_mode = xmode;
9070
9071 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
9072
9073 if (xmode != op_mode || inner != XEXP (x, 0))
9074 {
9075 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
9076 xmode = op_mode;
9077 }
9078 }
9079
9080 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9081 shift and AND produces only copies of the sign bit (C2 is one less
9082 than a power of two), we can do this with just a shift. */
9083
9084 if (GET_CODE (x) == LSHIFTRT
9085 && CONST_INT_P (XEXP (x, 1))
9086 /* The shift puts one of the sign bit copies in the least significant
9087 bit. */
9088 && ((INTVAL (XEXP (x, 1))
9089 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9090 >= GET_MODE_PRECISION (xmode))
9091 && pow2p_hwi (mask + 1)
9092 /* Number of bits left after the shift must be more than the mask
9093 needs. */
9094 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
9095 <= GET_MODE_PRECISION (xmode))
9096 /* Must be more sign bit copies than the mask needs. */
9097 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9098 >= exact_log2 (mask + 1)))
9099 {
9100 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9101 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9102 gen_int_shift_amount (xmode, nbits));
9103 }
9104 goto shiftrt;
9105
9106 case ASHIFTRT:
9107 /* If we are just looking for the sign bit, we don't need this shift at
9108 all, even if it has a variable count. */
9109 if (val_signbit_p (xmode, mask))
9110 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9111
9112 /* If this is a shift by a constant, get a mask that contains those bits
9113 that are not copies of the sign bit. We then have two cases: If
9114 MASK only includes those bits, this can be a logical shift, which may
9115 allow simplifications. If MASK is a single-bit field not within
9116 those bits, we are requesting a copy of the sign bit and hence can
9117 shift the sign bit to the appropriate location. */
9118
9119 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9120 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9121 {
9122 unsigned HOST_WIDE_INT nonzero;
9123 int i;
9124
9125 /* If the considered data is wider than HOST_WIDE_INT, we can't
9126 represent a mask for all its bits in a single scalar.
9127 But we only care about the lower bits, so calculate these. */
9128
9129 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9130 {
9131 nonzero = HOST_WIDE_INT_M1U;
9132
9133 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9134 is the number of bits a full-width mask would have set.
9135 We need only shift if these are fewer than nonzero can
9136 hold. If not, we must keep all bits set in nonzero. */
9137
9138 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9139 < HOST_BITS_PER_WIDE_INT)
9140 nonzero >>= INTVAL (XEXP (x, 1))
9141 + HOST_BITS_PER_WIDE_INT
9142 - GET_MODE_PRECISION (xmode);
9143 }
9144 else
9145 {
9146 nonzero = GET_MODE_MASK (xmode);
9147 nonzero >>= INTVAL (XEXP (x, 1));
9148 }
9149
9150 if ((mask & ~nonzero) == 0)
9151 {
9152 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9153 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9154 if (GET_CODE (x) != ASHIFTRT)
9155 return force_to_mode (x, mode, mask, next_select);
9156 }
9157
9158 else if ((i = exact_log2 (mask)) >= 0)
9159 {
9160 x = simplify_shift_const
9161 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9162 GET_MODE_PRECISION (xmode) - 1 - i);
9163
9164 if (GET_CODE (x) != ASHIFTRT)
9165 return force_to_mode (x, mode, mask, next_select);
9166 }
9167 }
9168
9169 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9170 even if the shift count isn't a constant. */
9171 if (mask == 1)
9172 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9173
9174 shiftrt:
9175
9176 /* If this is a zero- or sign-extension operation that just affects bits
9177 we don't care about, remove it. Be sure the call above returned
9178 something that is still a shift. */
9179
9180 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9181 && CONST_INT_P (XEXP (x, 1))
9182 && INTVAL (XEXP (x, 1)) >= 0
9183 && (INTVAL (XEXP (x, 1))
9184 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9185 && GET_CODE (XEXP (x, 0)) == ASHIFT
9186 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9187 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9188 next_select);
9189
9190 break;
9191
9192 case ROTATE:
9193 case ROTATERT:
9194 /* If the shift count is constant and we can do computations
9195 in the mode of X, compute where the bits we care about are.
9196 Otherwise, we can't do anything. Don't change the mode of
9197 the shift or propagate MODE into the shift, though. */
9198 if (CONST_INT_P (XEXP (x, 1))
9199 && INTVAL (XEXP (x, 1)) >= 0)
9200 {
9201 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9202 xmode, gen_int_mode (mask, xmode),
9203 XEXP (x, 1));
9204 if (temp && CONST_INT_P (temp))
9205 x = simplify_gen_binary (code, xmode,
9206 force_to_mode (XEXP (x, 0), xmode,
9207 INTVAL (temp), next_select),
9208 XEXP (x, 1));
9209 }
9210 break;
9211
9212 case NEG:
9213 /* If we just want the low-order bit, the NEG isn't needed since it
9214 won't change the low-order bit. */
9215 if (mask == 1)
9216 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9217
9218 /* We need any bits less significant than the most significant bit in
9219 MASK since carries from those bits will affect the bits we are
9220 interested in. */
9221 mask = fuller_mask;
9222 goto unop;
9223
9224 case NOT:
9225 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9226 same as the XOR case above. Ensure that the constant we form is not
9227 wider than the mode of X. */
9228
9229 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9230 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9231 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9232 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9233 < GET_MODE_PRECISION (xmode))
9234 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9235 {
9236 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9237 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9238 x = simplify_gen_binary (LSHIFTRT, xmode,
9239 temp, XEXP (XEXP (x, 0), 1));
9240
9241 return force_to_mode (x, mode, mask, next_select);
9242 }
9243
9244 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9245 use the full mask inside the NOT. */
9246 mask = fuller_mask;
9247
9248 unop:
9249 op0 = gen_lowpart_or_truncate (op_mode,
9250 force_to_mode (XEXP (x, 0), mode, mask,
9251 next_select));
9252 if (op_mode != xmode || op0 != XEXP (x, 0))
9253 {
9254 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9255 xmode = op_mode;
9256 }
9257 break;
9258
9259 case NE:
9260 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9261 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9262 which is equal to STORE_FLAG_VALUE. */
9263 if ((mask & ~STORE_FLAG_VALUE) == 0
9264 && XEXP (x, 1) == const0_rtx
9265 && GET_MODE (XEXP (x, 0)) == mode
9266 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9267 && (nonzero_bits (XEXP (x, 0), mode)
9268 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9269 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9270
9271 break;
9272
9273 case IF_THEN_ELSE:
9274 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9275 written in a narrower mode. We play it safe and do not do so. */
9276
9277 op0 = gen_lowpart_or_truncate (xmode,
9278 force_to_mode (XEXP (x, 1), mode,
9279 mask, next_select));
9280 op1 = gen_lowpart_or_truncate (xmode,
9281 force_to_mode (XEXP (x, 2), mode,
9282 mask, next_select));
9283 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9284 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9285 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9286 op0, op1);
9287 break;
9288
9289 default:
9290 break;
9291 }
9292
9293 /* Ensure we return a value of the proper mode. */
9294 return gen_lowpart_or_truncate (mode, x);
9295 }
9296 \f
9297 /* Return nonzero if X is an expression that has one of two values depending on
9298 whether some other value is zero or nonzero. In that case, we return the
9299 value that is being tested, *PTRUE is set to the value if the rtx being
9300 returned has a nonzero value, and *PFALSE is set to the other alternative.
9301
9302 If we return zero, we set *PTRUE and *PFALSE to X. */
9303
9304 static rtx
9305 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9306 {
9307 machine_mode mode = GET_MODE (x);
9308 enum rtx_code code = GET_CODE (x);
9309 rtx cond0, cond1, true0, true1, false0, false1;
9310 unsigned HOST_WIDE_INT nz;
9311 scalar_int_mode int_mode;
9312
9313 /* If we are comparing a value against zero, we are done. */
9314 if ((code == NE || code == EQ)
9315 && XEXP (x, 1) == const0_rtx)
9316 {
9317 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9318 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9319 return XEXP (x, 0);
9320 }
9321
9322 /* If this is a unary operation whose operand has one of two values, apply
9323 our opcode to compute those values. */
9324 else if (UNARY_P (x)
9325 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9326 {
9327 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9328 *pfalse = simplify_gen_unary (code, mode, false0,
9329 GET_MODE (XEXP (x, 0)));
9330 return cond0;
9331 }
9332
9333 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9334 make can't possibly match and would suppress other optimizations. */
9335 else if (code == COMPARE)
9336 ;
9337
9338 /* If this is a binary operation, see if either side has only one of two
9339 values. If either one does or if both do and they are conditional on
9340 the same value, compute the new true and false values. */
9341 else if (BINARY_P (x))
9342 {
9343 rtx op0 = XEXP (x, 0);
9344 rtx op1 = XEXP (x, 1);
9345 cond0 = if_then_else_cond (op0, &true0, &false0);
9346 cond1 = if_then_else_cond (op1, &true1, &false1);
9347
9348 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9349 && (REG_P (op0) || REG_P (op1)))
9350 {
9351 /* Try to enable a simplification by undoing work done by
9352 if_then_else_cond if it converted a REG into something more
9353 complex. */
9354 if (REG_P (op0))
9355 {
9356 cond0 = 0;
9357 true0 = false0 = op0;
9358 }
9359 else
9360 {
9361 cond1 = 0;
9362 true1 = false1 = op1;
9363 }
9364 }
9365
9366 if ((cond0 != 0 || cond1 != 0)
9367 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9368 {
9369 /* If if_then_else_cond returned zero, then true/false are the
9370 same rtl. We must copy one of them to prevent invalid rtl
9371 sharing. */
9372 if (cond0 == 0)
9373 true0 = copy_rtx (true0);
9374 else if (cond1 == 0)
9375 true1 = copy_rtx (true1);
9376
9377 if (COMPARISON_P (x))
9378 {
9379 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9380 true0, true1);
9381 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9382 false0, false1);
9383 }
9384 else
9385 {
9386 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9387 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9388 }
9389
9390 return cond0 ? cond0 : cond1;
9391 }
9392
9393 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9394 operands is zero when the other is nonzero, and vice-versa,
9395 and STORE_FLAG_VALUE is 1 or -1. */
9396
9397 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9398 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9399 || code == UMAX)
9400 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9401 {
9402 rtx op0 = XEXP (XEXP (x, 0), 1);
9403 rtx op1 = XEXP (XEXP (x, 1), 1);
9404
9405 cond0 = XEXP (XEXP (x, 0), 0);
9406 cond1 = XEXP (XEXP (x, 1), 0);
9407
9408 if (COMPARISON_P (cond0)
9409 && COMPARISON_P (cond1)
9410 && SCALAR_INT_MODE_P (mode)
9411 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9412 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9413 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9414 || ((swap_condition (GET_CODE (cond0))
9415 == reversed_comparison_code (cond1, NULL))
9416 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9417 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9418 && ! side_effects_p (x))
9419 {
9420 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9421 *pfalse = simplify_gen_binary (MULT, mode,
9422 (code == MINUS
9423 ? simplify_gen_unary (NEG, mode,
9424 op1, mode)
9425 : op1),
9426 const_true_rtx);
9427 return cond0;
9428 }
9429 }
9430
9431 /* Similarly for MULT, AND and UMIN, except that for these the result
9432 is always zero. */
9433 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9434 && (code == MULT || code == AND || code == UMIN)
9435 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9436 {
9437 cond0 = XEXP (XEXP (x, 0), 0);
9438 cond1 = XEXP (XEXP (x, 1), 0);
9439
9440 if (COMPARISON_P (cond0)
9441 && COMPARISON_P (cond1)
9442 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9443 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9444 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9445 || ((swap_condition (GET_CODE (cond0))
9446 == reversed_comparison_code (cond1, NULL))
9447 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9448 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9449 && ! side_effects_p (x))
9450 {
9451 *ptrue = *pfalse = const0_rtx;
9452 return cond0;
9453 }
9454 }
9455 }
9456
9457 else if (code == IF_THEN_ELSE)
9458 {
9459 /* If we have IF_THEN_ELSE already, extract the condition and
9460 canonicalize it if it is NE or EQ. */
9461 cond0 = XEXP (x, 0);
9462 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9463 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9464 return XEXP (cond0, 0);
9465 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9466 {
9467 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9468 return XEXP (cond0, 0);
9469 }
9470 else
9471 return cond0;
9472 }
9473
9474 /* If X is a SUBREG, we can narrow both the true and false values
9475 if the inner expression, if there is a condition. */
9476 else if (code == SUBREG
9477 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9478 &false0)) != 0)
9479 {
9480 true0 = simplify_gen_subreg (mode, true0,
9481 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9482 false0 = simplify_gen_subreg (mode, false0,
9483 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9484 if (true0 && false0)
9485 {
9486 *ptrue = true0;
9487 *pfalse = false0;
9488 return cond0;
9489 }
9490 }
9491
9492 /* If X is a constant, this isn't special and will cause confusions
9493 if we treat it as such. Likewise if it is equivalent to a constant. */
9494 else if (CONSTANT_P (x)
9495 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9496 ;
9497
9498 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9499 will be least confusing to the rest of the compiler. */
9500 else if (mode == BImode)
9501 {
9502 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9503 return x;
9504 }
9505
9506 /* If X is known to be either 0 or -1, those are the true and
9507 false values when testing X. */
9508 else if (x == constm1_rtx || x == const0_rtx
9509 || (is_a <scalar_int_mode> (mode, &int_mode)
9510 && (num_sign_bit_copies (x, int_mode)
9511 == GET_MODE_PRECISION (int_mode))))
9512 {
9513 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9514 return x;
9515 }
9516
9517 /* Likewise for 0 or a single bit. */
9518 else if (HWI_COMPUTABLE_MODE_P (mode)
9519 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9520 {
9521 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9522 return x;
9523 }
9524
9525 /* Otherwise fail; show no condition with true and false values the same. */
9526 *ptrue = *pfalse = x;
9527 return 0;
9528 }
9529 \f
9530 /* Return the value of expression X given the fact that condition COND
9531 is known to be true when applied to REG as its first operand and VAL
9532 as its second. X is known to not be shared and so can be modified in
9533 place.
9534
9535 We only handle the simplest cases, and specifically those cases that
9536 arise with IF_THEN_ELSE expressions. */
9537
9538 static rtx
9539 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9540 {
9541 enum rtx_code code = GET_CODE (x);
9542 const char *fmt;
9543 int i, j;
9544
9545 if (side_effects_p (x))
9546 return x;
9547
9548 /* If either operand of the condition is a floating point value,
9549 then we have to avoid collapsing an EQ comparison. */
9550 if (cond == EQ
9551 && rtx_equal_p (x, reg)
9552 && ! FLOAT_MODE_P (GET_MODE (x))
9553 && ! FLOAT_MODE_P (GET_MODE (val)))
9554 return val;
9555
9556 if (cond == UNEQ && rtx_equal_p (x, reg))
9557 return val;
9558
9559 /* If X is (abs REG) and we know something about REG's relationship
9560 with zero, we may be able to simplify this. */
9561
9562 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9563 switch (cond)
9564 {
9565 case GE: case GT: case EQ:
9566 return XEXP (x, 0);
9567 case LT: case LE:
9568 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9569 XEXP (x, 0),
9570 GET_MODE (XEXP (x, 0)));
9571 default:
9572 break;
9573 }
9574
9575 /* The only other cases we handle are MIN, MAX, and comparisons if the
9576 operands are the same as REG and VAL. */
9577
9578 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9579 {
9580 if (rtx_equal_p (XEXP (x, 0), val))
9581 {
9582 std::swap (val, reg);
9583 cond = swap_condition (cond);
9584 }
9585
9586 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9587 {
9588 if (COMPARISON_P (x))
9589 {
9590 if (comparison_dominates_p (cond, code))
9591 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9592
9593 code = reversed_comparison_code (x, NULL);
9594 if (code != UNKNOWN
9595 && comparison_dominates_p (cond, code))
9596 return CONST0_RTX (GET_MODE (x));
9597 else
9598 return x;
9599 }
9600 else if (code == SMAX || code == SMIN
9601 || code == UMIN || code == UMAX)
9602 {
9603 int unsignedp = (code == UMIN || code == UMAX);
9604
9605 /* Do not reverse the condition when it is NE or EQ.
9606 This is because we cannot conclude anything about
9607 the value of 'SMAX (x, y)' when x is not equal to y,
9608 but we can when x equals y. */
9609 if ((code == SMAX || code == UMAX)
9610 && ! (cond == EQ || cond == NE))
9611 cond = reverse_condition (cond);
9612
9613 switch (cond)
9614 {
9615 case GE: case GT:
9616 return unsignedp ? x : XEXP (x, 1);
9617 case LE: case LT:
9618 return unsignedp ? x : XEXP (x, 0);
9619 case GEU: case GTU:
9620 return unsignedp ? XEXP (x, 1) : x;
9621 case LEU: case LTU:
9622 return unsignedp ? XEXP (x, 0) : x;
9623 default:
9624 break;
9625 }
9626 }
9627 }
9628 }
9629 else if (code == SUBREG)
9630 {
9631 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9632 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9633
9634 if (SUBREG_REG (x) != r)
9635 {
9636 /* We must simplify subreg here, before we lose track of the
9637 original inner_mode. */
9638 new_rtx = simplify_subreg (GET_MODE (x), r,
9639 inner_mode, SUBREG_BYTE (x));
9640 if (new_rtx)
9641 return new_rtx;
9642 else
9643 SUBST (SUBREG_REG (x), r);
9644 }
9645
9646 return x;
9647 }
9648 /* We don't have to handle SIGN_EXTEND here, because even in the
9649 case of replacing something with a modeless CONST_INT, a
9650 CONST_INT is already (supposed to be) a valid sign extension for
9651 its narrower mode, which implies it's already properly
9652 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9653 story is different. */
9654 else if (code == ZERO_EXTEND)
9655 {
9656 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9657 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9658
9659 if (XEXP (x, 0) != r)
9660 {
9661 /* We must simplify the zero_extend here, before we lose
9662 track of the original inner_mode. */
9663 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9664 r, inner_mode);
9665 if (new_rtx)
9666 return new_rtx;
9667 else
9668 SUBST (XEXP (x, 0), r);
9669 }
9670
9671 return x;
9672 }
9673
9674 fmt = GET_RTX_FORMAT (code);
9675 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9676 {
9677 if (fmt[i] == 'e')
9678 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9679 else if (fmt[i] == 'E')
9680 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9681 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9682 cond, reg, val));
9683 }
9684
9685 return x;
9686 }
9687 \f
9688 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9689 assignment as a field assignment. */
9690
9691 static int
9692 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9693 {
9694 if (widen_x && GET_MODE (x) != GET_MODE (y))
9695 {
9696 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9697 return 0;
9698 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9699 return 0;
9700 x = adjust_address_nv (x, GET_MODE (y),
9701 byte_lowpart_offset (GET_MODE (y),
9702 GET_MODE (x)));
9703 }
9704
9705 if (x == y || rtx_equal_p (x, y))
9706 return 1;
9707
9708 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9709 return 0;
9710
9711 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9712 Note that all SUBREGs of MEM are paradoxical; otherwise they
9713 would have been rewritten. */
9714 if (MEM_P (x) && GET_CODE (y) == SUBREG
9715 && MEM_P (SUBREG_REG (y))
9716 && rtx_equal_p (SUBREG_REG (y),
9717 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9718 return 1;
9719
9720 if (MEM_P (y) && GET_CODE (x) == SUBREG
9721 && MEM_P (SUBREG_REG (x))
9722 && rtx_equal_p (SUBREG_REG (x),
9723 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9724 return 1;
9725
9726 /* We used to see if get_last_value of X and Y were the same but that's
9727 not correct. In one direction, we'll cause the assignment to have
9728 the wrong destination and in the case, we'll import a register into this
9729 insn that might have already have been dead. So fail if none of the
9730 above cases are true. */
9731 return 0;
9732 }
9733 \f
9734 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9735 Return that assignment if so.
9736
9737 We only handle the most common cases. */
9738
9739 static rtx
9740 make_field_assignment (rtx x)
9741 {
9742 rtx dest = SET_DEST (x);
9743 rtx src = SET_SRC (x);
9744 rtx assign;
9745 rtx rhs, lhs;
9746 HOST_WIDE_INT c1;
9747 HOST_WIDE_INT pos;
9748 unsigned HOST_WIDE_INT len;
9749 rtx other;
9750
9751 /* All the rules in this function are specific to scalar integers. */
9752 scalar_int_mode mode;
9753 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9754 return x;
9755
9756 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9757 a clear of a one-bit field. We will have changed it to
9758 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9759 for a SUBREG. */
9760
9761 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9762 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9763 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9764 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9765 {
9766 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9767 1, 1, 1, 0);
9768 if (assign != 0)
9769 return gen_rtx_SET (assign, const0_rtx);
9770 return x;
9771 }
9772
9773 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9774 && subreg_lowpart_p (XEXP (src, 0))
9775 && partial_subreg_p (XEXP (src, 0))
9776 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9777 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9778 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9779 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9780 {
9781 assign = make_extraction (VOIDmode, dest, 0,
9782 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9783 1, 1, 1, 0);
9784 if (assign != 0)
9785 return gen_rtx_SET (assign, const0_rtx);
9786 return x;
9787 }
9788
9789 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9790 one-bit field. */
9791 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9792 && XEXP (XEXP (src, 0), 0) == const1_rtx
9793 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9794 {
9795 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9796 1, 1, 1, 0);
9797 if (assign != 0)
9798 return gen_rtx_SET (assign, const1_rtx);
9799 return x;
9800 }
9801
9802 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9803 SRC is an AND with all bits of that field set, then we can discard
9804 the AND. */
9805 if (GET_CODE (dest) == ZERO_EXTRACT
9806 && CONST_INT_P (XEXP (dest, 1))
9807 && GET_CODE (src) == AND
9808 && CONST_INT_P (XEXP (src, 1)))
9809 {
9810 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9811 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9812 unsigned HOST_WIDE_INT ze_mask;
9813
9814 if (width >= HOST_BITS_PER_WIDE_INT)
9815 ze_mask = -1;
9816 else
9817 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9818
9819 /* Complete overlap. We can remove the source AND. */
9820 if ((and_mask & ze_mask) == ze_mask)
9821 return gen_rtx_SET (dest, XEXP (src, 0));
9822
9823 /* Partial overlap. We can reduce the source AND. */
9824 if ((and_mask & ze_mask) != and_mask)
9825 {
9826 src = gen_rtx_AND (mode, XEXP (src, 0),
9827 gen_int_mode (and_mask & ze_mask, mode));
9828 return gen_rtx_SET (dest, src);
9829 }
9830 }
9831
9832 /* The other case we handle is assignments into a constant-position
9833 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9834 a mask that has all one bits except for a group of zero bits and
9835 OTHER is known to have zeros where C1 has ones, this is such an
9836 assignment. Compute the position and length from C1. Shift OTHER
9837 to the appropriate position, force it to the required mode, and
9838 make the extraction. Check for the AND in both operands. */
9839
9840 /* One or more SUBREGs might obscure the constant-position field
9841 assignment. The first one we are likely to encounter is an outer
9842 narrowing SUBREG, which we can just strip for the purposes of
9843 identifying the constant-field assignment. */
9844 scalar_int_mode src_mode = mode;
9845 if (GET_CODE (src) == SUBREG
9846 && subreg_lowpart_p (src)
9847 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9848 src = SUBREG_REG (src);
9849
9850 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9851 return x;
9852
9853 rhs = expand_compound_operation (XEXP (src, 0));
9854 lhs = expand_compound_operation (XEXP (src, 1));
9855
9856 if (GET_CODE (rhs) == AND
9857 && CONST_INT_P (XEXP (rhs, 1))
9858 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9859 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9860 /* The second SUBREG that might get in the way is a paradoxical
9861 SUBREG around the first operand of the AND. We want to
9862 pretend the operand is as wide as the destination here. We
9863 do this by adjusting the MEM to wider mode for the sole
9864 purpose of the call to rtx_equal_for_field_assignment_p. Also
9865 note this trick only works for MEMs. */
9866 else if (GET_CODE (rhs) == AND
9867 && paradoxical_subreg_p (XEXP (rhs, 0))
9868 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9869 && CONST_INT_P (XEXP (rhs, 1))
9870 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9871 dest, true))
9872 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9873 else if (GET_CODE (lhs) == AND
9874 && CONST_INT_P (XEXP (lhs, 1))
9875 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9876 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9877 /* The second SUBREG that might get in the way is a paradoxical
9878 SUBREG around the first operand of the AND. We want to
9879 pretend the operand is as wide as the destination here. We
9880 do this by adjusting the MEM to wider mode for the sole
9881 purpose of the call to rtx_equal_for_field_assignment_p. Also
9882 note this trick only works for MEMs. */
9883 else if (GET_CODE (lhs) == AND
9884 && paradoxical_subreg_p (XEXP (lhs, 0))
9885 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9886 && CONST_INT_P (XEXP (lhs, 1))
9887 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9888 dest, true))
9889 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9890 else
9891 return x;
9892
9893 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9894 if (pos < 0
9895 || pos + len > GET_MODE_PRECISION (mode)
9896 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9897 || (c1 & nonzero_bits (other, mode)) != 0)
9898 return x;
9899
9900 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9901 if (assign == 0)
9902 return x;
9903
9904 /* The mode to use for the source is the mode of the assignment, or of
9905 what is inside a possible STRICT_LOW_PART. */
9906 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9907 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9908
9909 /* Shift OTHER right POS places and make it the source, restricting it
9910 to the proper length and mode. */
9911
9912 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9913 src_mode, other, pos),
9914 dest);
9915 src = force_to_mode (src, new_mode,
9916 len >= HOST_BITS_PER_WIDE_INT
9917 ? HOST_WIDE_INT_M1U
9918 : (HOST_WIDE_INT_1U << len) - 1,
9919 0);
9920
9921 /* If SRC is masked by an AND that does not make a difference in
9922 the value being stored, strip it. */
9923 if (GET_CODE (assign) == ZERO_EXTRACT
9924 && CONST_INT_P (XEXP (assign, 1))
9925 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9926 && GET_CODE (src) == AND
9927 && CONST_INT_P (XEXP (src, 1))
9928 && UINTVAL (XEXP (src, 1))
9929 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9930 src = XEXP (src, 0);
9931
9932 return gen_rtx_SET (assign, src);
9933 }
9934 \f
9935 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9936 if so. */
9937
9938 static rtx
9939 apply_distributive_law (rtx x)
9940 {
9941 enum rtx_code code = GET_CODE (x);
9942 enum rtx_code inner_code;
9943 rtx lhs, rhs, other;
9944 rtx tem;
9945
9946 /* Distributivity is not true for floating point as it can change the
9947 value. So we don't do it unless -funsafe-math-optimizations. */
9948 if (FLOAT_MODE_P (GET_MODE (x))
9949 && ! flag_unsafe_math_optimizations)
9950 return x;
9951
9952 /* The outer operation can only be one of the following: */
9953 if (code != IOR && code != AND && code != XOR
9954 && code != PLUS && code != MINUS)
9955 return x;
9956
9957 lhs = XEXP (x, 0);
9958 rhs = XEXP (x, 1);
9959
9960 /* If either operand is a primitive we can't do anything, so get out
9961 fast. */
9962 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9963 return x;
9964
9965 lhs = expand_compound_operation (lhs);
9966 rhs = expand_compound_operation (rhs);
9967 inner_code = GET_CODE (lhs);
9968 if (inner_code != GET_CODE (rhs))
9969 return x;
9970
9971 /* See if the inner and outer operations distribute. */
9972 switch (inner_code)
9973 {
9974 case LSHIFTRT:
9975 case ASHIFTRT:
9976 case AND:
9977 case IOR:
9978 /* These all distribute except over PLUS. */
9979 if (code == PLUS || code == MINUS)
9980 return x;
9981 break;
9982
9983 case MULT:
9984 if (code != PLUS && code != MINUS)
9985 return x;
9986 break;
9987
9988 case ASHIFT:
9989 /* This is also a multiply, so it distributes over everything. */
9990 break;
9991
9992 /* This used to handle SUBREG, but this turned out to be counter-
9993 productive, since (subreg (op ...)) usually is not handled by
9994 insn patterns, and this "optimization" therefore transformed
9995 recognizable patterns into unrecognizable ones. Therefore the
9996 SUBREG case was removed from here.
9997
9998 It is possible that distributing SUBREG over arithmetic operations
9999 leads to an intermediate result than can then be optimized further,
10000 e.g. by moving the outer SUBREG to the other side of a SET as done
10001 in simplify_set. This seems to have been the original intent of
10002 handling SUBREGs here.
10003
10004 However, with current GCC this does not appear to actually happen,
10005 at least on major platforms. If some case is found where removing
10006 the SUBREG case here prevents follow-on optimizations, distributing
10007 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
10008
10009 default:
10010 return x;
10011 }
10012
10013 /* Set LHS and RHS to the inner operands (A and B in the example
10014 above) and set OTHER to the common operand (C in the example).
10015 There is only one way to do this unless the inner operation is
10016 commutative. */
10017 if (COMMUTATIVE_ARITH_P (lhs)
10018 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
10019 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
10020 else if (COMMUTATIVE_ARITH_P (lhs)
10021 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
10022 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
10023 else if (COMMUTATIVE_ARITH_P (lhs)
10024 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
10025 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
10026 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
10027 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
10028 else
10029 return x;
10030
10031 /* Form the new inner operation, seeing if it simplifies first. */
10032 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
10033
10034 /* There is one exception to the general way of distributing:
10035 (a | c) ^ (b | c) -> (a ^ b) & ~c */
10036 if (code == XOR && inner_code == IOR)
10037 {
10038 inner_code = AND;
10039 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
10040 }
10041
10042 /* We may be able to continuing distributing the result, so call
10043 ourselves recursively on the inner operation before forming the
10044 outer operation, which we return. */
10045 return simplify_gen_binary (inner_code, GET_MODE (x),
10046 apply_distributive_law (tem), other);
10047 }
10048
10049 /* See if X is of the form (* (+ A B) C), and if so convert to
10050 (+ (* A C) (* B C)) and try to simplify.
10051
10052 Most of the time, this results in no change. However, if some of
10053 the operands are the same or inverses of each other, simplifications
10054 will result.
10055
10056 For example, (and (ior A B) (not B)) can occur as the result of
10057 expanding a bit field assignment. When we apply the distributive
10058 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
10059 which then simplifies to (and (A (not B))).
10060
10061 Note that no checks happen on the validity of applying the inverse
10062 distributive law. This is pointless since we can do it in the
10063 few places where this routine is called.
10064
10065 N is the index of the term that is decomposed (the arithmetic operation,
10066 i.e. (+ A B) in the first example above). !N is the index of the term that
10067 is distributed, i.e. of C in the first example above. */
10068 static rtx
10069 distribute_and_simplify_rtx (rtx x, int n)
10070 {
10071 machine_mode mode;
10072 enum rtx_code outer_code, inner_code;
10073 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
10074
10075 /* Distributivity is not true for floating point as it can change the
10076 value. So we don't do it unless -funsafe-math-optimizations. */
10077 if (FLOAT_MODE_P (GET_MODE (x))
10078 && ! flag_unsafe_math_optimizations)
10079 return NULL_RTX;
10080
10081 decomposed = XEXP (x, n);
10082 if (!ARITHMETIC_P (decomposed))
10083 return NULL_RTX;
10084
10085 mode = GET_MODE (x);
10086 outer_code = GET_CODE (x);
10087 distributed = XEXP (x, !n);
10088
10089 inner_code = GET_CODE (decomposed);
10090 inner_op0 = XEXP (decomposed, 0);
10091 inner_op1 = XEXP (decomposed, 1);
10092
10093 /* Special case (and (xor B C) (not A)), which is equivalent to
10094 (xor (ior A B) (ior A C)) */
10095 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10096 {
10097 distributed = XEXP (distributed, 0);
10098 outer_code = IOR;
10099 }
10100
10101 if (n == 0)
10102 {
10103 /* Distribute the second term. */
10104 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10105 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10106 }
10107 else
10108 {
10109 /* Distribute the first term. */
10110 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10111 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10112 }
10113
10114 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10115 new_op0, new_op1));
10116 if (GET_CODE (tmp) != outer_code
10117 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10118 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10119 return tmp;
10120
10121 return NULL_RTX;
10122 }
10123 \f
10124 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10125 in MODE. Return an equivalent form, if different from (and VAROP
10126 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10127
10128 static rtx
10129 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10130 unsigned HOST_WIDE_INT constop)
10131 {
10132 unsigned HOST_WIDE_INT nonzero;
10133 unsigned HOST_WIDE_INT orig_constop;
10134 rtx orig_varop;
10135 int i;
10136
10137 orig_varop = varop;
10138 orig_constop = constop;
10139 if (GET_CODE (varop) == CLOBBER)
10140 return NULL_RTX;
10141
10142 /* Simplify VAROP knowing that we will be only looking at some of the
10143 bits in it.
10144
10145 Note by passing in CONSTOP, we guarantee that the bits not set in
10146 CONSTOP are not significant and will never be examined. We must
10147 ensure that is the case by explicitly masking out those bits
10148 before returning. */
10149 varop = force_to_mode (varop, mode, constop, 0);
10150
10151 /* If VAROP is a CLOBBER, we will fail so return it. */
10152 if (GET_CODE (varop) == CLOBBER)
10153 return varop;
10154
10155 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10156 to VAROP and return the new constant. */
10157 if (CONST_INT_P (varop))
10158 return gen_int_mode (INTVAL (varop) & constop, mode);
10159
10160 /* See what bits may be nonzero in VAROP. Unlike the general case of
10161 a call to nonzero_bits, here we don't care about bits outside
10162 MODE. */
10163
10164 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10165
10166 /* Turn off all bits in the constant that are known to already be zero.
10167 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10168 which is tested below. */
10169
10170 constop &= nonzero;
10171
10172 /* If we don't have any bits left, return zero. */
10173 if (constop == 0)
10174 return const0_rtx;
10175
10176 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10177 a power of two, we can replace this with an ASHIFT. */
10178 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10179 && (i = exact_log2 (constop)) >= 0)
10180 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10181
10182 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10183 or XOR, then try to apply the distributive law. This may eliminate
10184 operations if either branch can be simplified because of the AND.
10185 It may also make some cases more complex, but those cases probably
10186 won't match a pattern either with or without this. */
10187
10188 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10189 {
10190 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10191 return
10192 gen_lowpart
10193 (mode,
10194 apply_distributive_law
10195 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10196 simplify_and_const_int (NULL_RTX, varop_mode,
10197 XEXP (varop, 0),
10198 constop),
10199 simplify_and_const_int (NULL_RTX, varop_mode,
10200 XEXP (varop, 1),
10201 constop))));
10202 }
10203
10204 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10205 the AND and see if one of the operands simplifies to zero. If so, we
10206 may eliminate it. */
10207
10208 if (GET_CODE (varop) == PLUS
10209 && pow2p_hwi (constop + 1))
10210 {
10211 rtx o0, o1;
10212
10213 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10214 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10215 if (o0 == const0_rtx)
10216 return o1;
10217 if (o1 == const0_rtx)
10218 return o0;
10219 }
10220
10221 /* Make a SUBREG if necessary. If we can't make it, fail. */
10222 varop = gen_lowpart (mode, varop);
10223 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10224 return NULL_RTX;
10225
10226 /* If we are only masking insignificant bits, return VAROP. */
10227 if (constop == nonzero)
10228 return varop;
10229
10230 if (varop == orig_varop && constop == orig_constop)
10231 return NULL_RTX;
10232
10233 /* Otherwise, return an AND. */
10234 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10235 }
10236
10237
10238 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10239 in MODE.
10240
10241 Return an equivalent form, if different from X. Otherwise, return X. If
10242 X is zero, we are to always construct the equivalent form. */
10243
10244 static rtx
10245 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10246 unsigned HOST_WIDE_INT constop)
10247 {
10248 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10249 if (tem)
10250 return tem;
10251
10252 if (!x)
10253 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10254 gen_int_mode (constop, mode));
10255 if (GET_MODE (x) != mode)
10256 x = gen_lowpart (mode, x);
10257 return x;
10258 }
10259 \f
10260 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10261 We don't care about bits outside of those defined in MODE.
10262 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10263
10264 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10265 a shift, AND, or zero_extract, we can do better. */
10266
10267 static rtx
10268 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10269 scalar_int_mode mode,
10270 unsigned HOST_WIDE_INT *nonzero)
10271 {
10272 rtx tem;
10273 reg_stat_type *rsp;
10274
10275 /* If X is a register whose nonzero bits value is current, use it.
10276 Otherwise, if X is a register whose value we can find, use that
10277 value. Otherwise, use the previously-computed global nonzero bits
10278 for this register. */
10279
10280 rsp = &reg_stat[REGNO (x)];
10281 if (rsp->last_set_value != 0
10282 && (rsp->last_set_mode == mode
10283 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10284 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10285 && GET_MODE_CLASS (mode) == MODE_INT))
10286 && ((rsp->last_set_label >= label_tick_ebb_start
10287 && rsp->last_set_label < label_tick)
10288 || (rsp->last_set_label == label_tick
10289 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10290 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10291 && REGNO (x) < reg_n_sets_max
10292 && REG_N_SETS (REGNO (x)) == 1
10293 && !REGNO_REG_SET_P
10294 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10295 REGNO (x)))))
10296 {
10297 /* Note that, even if the precision of last_set_mode is lower than that
10298 of mode, record_value_for_reg invoked nonzero_bits on the register
10299 with nonzero_bits_mode (because last_set_mode is necessarily integral
10300 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10301 are all valid, hence in mode too since nonzero_bits_mode is defined
10302 to the largest HWI_COMPUTABLE_MODE_P mode. */
10303 *nonzero &= rsp->last_set_nonzero_bits;
10304 return NULL;
10305 }
10306
10307 tem = get_last_value (x);
10308 if (tem)
10309 {
10310 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10311 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10312
10313 return tem;
10314 }
10315
10316 if (nonzero_sign_valid && rsp->nonzero_bits)
10317 {
10318 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10319
10320 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10321 /* We don't know anything about the upper bits. */
10322 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10323
10324 *nonzero &= mask;
10325 }
10326
10327 return NULL;
10328 }
10329
10330 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10331 end of X that are known to be equal to the sign bit. X will be used
10332 in mode MODE; the returned value will always be between 1 and the
10333 number of bits in MODE. */
10334
10335 static rtx
10336 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10337 scalar_int_mode mode,
10338 unsigned int *result)
10339 {
10340 rtx tem;
10341 reg_stat_type *rsp;
10342
10343 rsp = &reg_stat[REGNO (x)];
10344 if (rsp->last_set_value != 0
10345 && rsp->last_set_mode == mode
10346 && ((rsp->last_set_label >= label_tick_ebb_start
10347 && rsp->last_set_label < label_tick)
10348 || (rsp->last_set_label == label_tick
10349 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10350 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10351 && REGNO (x) < reg_n_sets_max
10352 && REG_N_SETS (REGNO (x)) == 1
10353 && !REGNO_REG_SET_P
10354 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10355 REGNO (x)))))
10356 {
10357 *result = rsp->last_set_sign_bit_copies;
10358 return NULL;
10359 }
10360
10361 tem = get_last_value (x);
10362 if (tem != 0)
10363 return tem;
10364
10365 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10366 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10367 *result = rsp->sign_bit_copies;
10368
10369 return NULL;
10370 }
10371 \f
10372 /* Return the number of "extended" bits there are in X, when interpreted
10373 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10374 unsigned quantities, this is the number of high-order zero bits.
10375 For signed quantities, this is the number of copies of the sign bit
10376 minus 1. In both case, this function returns the number of "spare"
10377 bits. For example, if two quantities for which this function returns
10378 at least 1 are added, the addition is known not to overflow.
10379
10380 This function will always return 0 unless called during combine, which
10381 implies that it must be called from a define_split. */
10382
10383 unsigned int
10384 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10385 {
10386 if (nonzero_sign_valid == 0)
10387 return 0;
10388
10389 scalar_int_mode int_mode;
10390 return (unsignedp
10391 ? (is_a <scalar_int_mode> (mode, &int_mode)
10392 && HWI_COMPUTABLE_MODE_P (int_mode)
10393 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10394 - floor_log2 (nonzero_bits (x, int_mode)))
10395 : 0)
10396 : num_sign_bit_copies (x, mode) - 1);
10397 }
10398
10399 /* This function is called from `simplify_shift_const' to merge two
10400 outer operations. Specifically, we have already found that we need
10401 to perform operation *POP0 with constant *PCONST0 at the outermost
10402 position. We would now like to also perform OP1 with constant CONST1
10403 (with *POP0 being done last).
10404
10405 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10406 the resulting operation. *PCOMP_P is set to 1 if we would need to
10407 complement the innermost operand, otherwise it is unchanged.
10408
10409 MODE is the mode in which the operation will be done. No bits outside
10410 the width of this mode matter. It is assumed that the width of this mode
10411 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10412
10413 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10414 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10415 result is simply *PCONST0.
10416
10417 If the resulting operation cannot be expressed as one operation, we
10418 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10419
10420 static int
10421 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10422 {
10423 enum rtx_code op0 = *pop0;
10424 HOST_WIDE_INT const0 = *pconst0;
10425
10426 const0 &= GET_MODE_MASK (mode);
10427 const1 &= GET_MODE_MASK (mode);
10428
10429 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10430 if (op0 == AND)
10431 const1 &= const0;
10432
10433 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10434 if OP0 is SET. */
10435
10436 if (op1 == UNKNOWN || op0 == SET)
10437 return 1;
10438
10439 else if (op0 == UNKNOWN)
10440 op0 = op1, const0 = const1;
10441
10442 else if (op0 == op1)
10443 {
10444 switch (op0)
10445 {
10446 case AND:
10447 const0 &= const1;
10448 break;
10449 case IOR:
10450 const0 |= const1;
10451 break;
10452 case XOR:
10453 const0 ^= const1;
10454 break;
10455 case PLUS:
10456 const0 += const1;
10457 break;
10458 case NEG:
10459 op0 = UNKNOWN;
10460 break;
10461 default:
10462 break;
10463 }
10464 }
10465
10466 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10467 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10468 return 0;
10469
10470 /* If the two constants aren't the same, we can't do anything. The
10471 remaining six cases can all be done. */
10472 else if (const0 != const1)
10473 return 0;
10474
10475 else
10476 switch (op0)
10477 {
10478 case IOR:
10479 if (op1 == AND)
10480 /* (a & b) | b == b */
10481 op0 = SET;
10482 else /* op1 == XOR */
10483 /* (a ^ b) | b == a | b */
10484 {;}
10485 break;
10486
10487 case XOR:
10488 if (op1 == AND)
10489 /* (a & b) ^ b == (~a) & b */
10490 op0 = AND, *pcomp_p = 1;
10491 else /* op1 == IOR */
10492 /* (a | b) ^ b == a & ~b */
10493 op0 = AND, const0 = ~const0;
10494 break;
10495
10496 case AND:
10497 if (op1 == IOR)
10498 /* (a | b) & b == b */
10499 op0 = SET;
10500 else /* op1 == XOR */
10501 /* (a ^ b) & b) == (~a) & b */
10502 *pcomp_p = 1;
10503 break;
10504 default:
10505 break;
10506 }
10507
10508 /* Check for NO-OP cases. */
10509 const0 &= GET_MODE_MASK (mode);
10510 if (const0 == 0
10511 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10512 op0 = UNKNOWN;
10513 else if (const0 == 0 && op0 == AND)
10514 op0 = SET;
10515 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10516 && op0 == AND)
10517 op0 = UNKNOWN;
10518
10519 *pop0 = op0;
10520
10521 /* ??? Slightly redundant with the above mask, but not entirely.
10522 Moving this above means we'd have to sign-extend the mode mask
10523 for the final test. */
10524 if (op0 != UNKNOWN && op0 != NEG)
10525 *pconst0 = trunc_int_for_mode (const0, mode);
10526
10527 return 1;
10528 }
10529 \f
10530 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10531 the shift in. The original shift operation CODE is performed on OP in
10532 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10533 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10534 result of the shift is subject to operation OUTER_CODE with operand
10535 OUTER_CONST. */
10536
10537 static scalar_int_mode
10538 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10539 scalar_int_mode orig_mode, scalar_int_mode mode,
10540 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10541 {
10542 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10543
10544 /* In general we can't perform in wider mode for right shift and rotate. */
10545 switch (code)
10546 {
10547 case ASHIFTRT:
10548 /* We can still widen if the bits brought in from the left are identical
10549 to the sign bit of ORIG_MODE. */
10550 if (num_sign_bit_copies (op, mode)
10551 > (unsigned) (GET_MODE_PRECISION (mode)
10552 - GET_MODE_PRECISION (orig_mode)))
10553 return mode;
10554 return orig_mode;
10555
10556 case LSHIFTRT:
10557 /* Similarly here but with zero bits. */
10558 if (HWI_COMPUTABLE_MODE_P (mode)
10559 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10560 return mode;
10561
10562 /* We can also widen if the bits brought in will be masked off. This
10563 operation is performed in ORIG_MODE. */
10564 if (outer_code == AND)
10565 {
10566 int care_bits = low_bitmask_len (orig_mode, outer_const);
10567
10568 if (care_bits >= 0
10569 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10570 return mode;
10571 }
10572 /* fall through */
10573
10574 case ROTATE:
10575 return orig_mode;
10576
10577 case ROTATERT:
10578 gcc_unreachable ();
10579
10580 default:
10581 return mode;
10582 }
10583 }
10584
10585 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10586 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10587 if we cannot simplify it. Otherwise, return a simplified value.
10588
10589 The shift is normally computed in the widest mode we find in VAROP, as
10590 long as it isn't a different number of words than RESULT_MODE. Exceptions
10591 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10592
10593 static rtx
10594 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10595 rtx varop, int orig_count)
10596 {
10597 enum rtx_code orig_code = code;
10598 rtx orig_varop = varop;
10599 int count, log2;
10600 machine_mode mode = result_mode;
10601 machine_mode shift_mode;
10602 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10603 /* We form (outer_op (code varop count) (outer_const)). */
10604 enum rtx_code outer_op = UNKNOWN;
10605 HOST_WIDE_INT outer_const = 0;
10606 int complement_p = 0;
10607 rtx new_rtx, x;
10608
10609 /* Make sure and truncate the "natural" shift on the way in. We don't
10610 want to do this inside the loop as it makes it more difficult to
10611 combine shifts. */
10612 if (SHIFT_COUNT_TRUNCATED)
10613 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10614
10615 /* If we were given an invalid count, don't do anything except exactly
10616 what was requested. */
10617
10618 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10619 return NULL_RTX;
10620
10621 count = orig_count;
10622
10623 /* Unless one of the branches of the `if' in this loop does a `continue',
10624 we will `break' the loop after the `if'. */
10625
10626 while (count != 0)
10627 {
10628 /* If we have an operand of (clobber (const_int 0)), fail. */
10629 if (GET_CODE (varop) == CLOBBER)
10630 return NULL_RTX;
10631
10632 /* Convert ROTATERT to ROTATE. */
10633 if (code == ROTATERT)
10634 {
10635 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10636 code = ROTATE;
10637 count = bitsize - count;
10638 }
10639
10640 shift_mode = result_mode;
10641 if (shift_mode != mode)
10642 {
10643 /* We only change the modes of scalar shifts. */
10644 int_mode = as_a <scalar_int_mode> (mode);
10645 int_result_mode = as_a <scalar_int_mode> (result_mode);
10646 shift_mode = try_widen_shift_mode (code, varop, count,
10647 int_result_mode, int_mode,
10648 outer_op, outer_const);
10649 }
10650
10651 scalar_int_mode shift_unit_mode
10652 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10653
10654 /* Handle cases where the count is greater than the size of the mode
10655 minus 1. For ASHIFT, use the size minus one as the count (this can
10656 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10657 take the count modulo the size. For other shifts, the result is
10658 zero.
10659
10660 Since these shifts are being produced by the compiler by combining
10661 multiple operations, each of which are defined, we know what the
10662 result is supposed to be. */
10663
10664 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10665 {
10666 if (code == ASHIFTRT)
10667 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10668 else if (code == ROTATE || code == ROTATERT)
10669 count %= GET_MODE_PRECISION (shift_unit_mode);
10670 else
10671 {
10672 /* We can't simply return zero because there may be an
10673 outer op. */
10674 varop = const0_rtx;
10675 count = 0;
10676 break;
10677 }
10678 }
10679
10680 /* If we discovered we had to complement VAROP, leave. Making a NOT
10681 here would cause an infinite loop. */
10682 if (complement_p)
10683 break;
10684
10685 if (shift_mode == shift_unit_mode)
10686 {
10687 /* An arithmetic right shift of a quantity known to be -1 or 0
10688 is a no-op. */
10689 if (code == ASHIFTRT
10690 && (num_sign_bit_copies (varop, shift_unit_mode)
10691 == GET_MODE_PRECISION (shift_unit_mode)))
10692 {
10693 count = 0;
10694 break;
10695 }
10696
10697 /* If we are doing an arithmetic right shift and discarding all but
10698 the sign bit copies, this is equivalent to doing a shift by the
10699 bitsize minus one. Convert it into that shift because it will
10700 often allow other simplifications. */
10701
10702 if (code == ASHIFTRT
10703 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10704 >= GET_MODE_PRECISION (shift_unit_mode)))
10705 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10706
10707 /* We simplify the tests below and elsewhere by converting
10708 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10709 `make_compound_operation' will convert it to an ASHIFTRT for
10710 those machines (such as VAX) that don't have an LSHIFTRT. */
10711 if (code == ASHIFTRT
10712 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10713 && val_signbit_known_clear_p (shift_unit_mode,
10714 nonzero_bits (varop,
10715 shift_unit_mode)))
10716 code = LSHIFTRT;
10717
10718 if (((code == LSHIFTRT
10719 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10720 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10721 || (code == ASHIFT
10722 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10723 && !((nonzero_bits (varop, shift_unit_mode) << count)
10724 & GET_MODE_MASK (shift_unit_mode))))
10725 && !side_effects_p (varop))
10726 varop = const0_rtx;
10727 }
10728
10729 switch (GET_CODE (varop))
10730 {
10731 case SIGN_EXTEND:
10732 case ZERO_EXTEND:
10733 case SIGN_EXTRACT:
10734 case ZERO_EXTRACT:
10735 new_rtx = expand_compound_operation (varop);
10736 if (new_rtx != varop)
10737 {
10738 varop = new_rtx;
10739 continue;
10740 }
10741 break;
10742
10743 case MEM:
10744 /* The following rules apply only to scalars. */
10745 if (shift_mode != shift_unit_mode)
10746 break;
10747 int_mode = as_a <scalar_int_mode> (mode);
10748
10749 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10750 minus the width of a smaller mode, we can do this with a
10751 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10752 if ((code == ASHIFTRT || code == LSHIFTRT)
10753 && ! mode_dependent_address_p (XEXP (varop, 0),
10754 MEM_ADDR_SPACE (varop))
10755 && ! MEM_VOLATILE_P (varop)
10756 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10757 .exists (&tmode)))
10758 {
10759 new_rtx = adjust_address_nv (varop, tmode,
10760 BYTES_BIG_ENDIAN ? 0
10761 : count / BITS_PER_UNIT);
10762
10763 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10764 : ZERO_EXTEND, int_mode, new_rtx);
10765 count = 0;
10766 continue;
10767 }
10768 break;
10769
10770 case SUBREG:
10771 /* The following rules apply only to scalars. */
10772 if (shift_mode != shift_unit_mode)
10773 break;
10774 int_mode = as_a <scalar_int_mode> (mode);
10775 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10776
10777 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10778 the same number of words as what we've seen so far. Then store
10779 the widest mode in MODE. */
10780 if (subreg_lowpart_p (varop)
10781 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10782 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10783 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10784 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10785 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10786 {
10787 varop = SUBREG_REG (varop);
10788 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10789 mode = inner_mode;
10790 continue;
10791 }
10792 break;
10793
10794 case MULT:
10795 /* Some machines use MULT instead of ASHIFT because MULT
10796 is cheaper. But it is still better on those machines to
10797 merge two shifts into one. */
10798 if (CONST_INT_P (XEXP (varop, 1))
10799 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10800 {
10801 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10802 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10803 XEXP (varop, 0), log2_rtx);
10804 continue;
10805 }
10806 break;
10807
10808 case UDIV:
10809 /* Similar, for when divides are cheaper. */
10810 if (CONST_INT_P (XEXP (varop, 1))
10811 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10812 {
10813 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10814 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10815 XEXP (varop, 0), log2_rtx);
10816 continue;
10817 }
10818 break;
10819
10820 case ASHIFTRT:
10821 /* If we are extracting just the sign bit of an arithmetic
10822 right shift, that shift is not needed. However, the sign
10823 bit of a wider mode may be different from what would be
10824 interpreted as the sign bit in a narrower mode, so, if
10825 the result is narrower, don't discard the shift. */
10826 if (code == LSHIFTRT
10827 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10828 && (GET_MODE_UNIT_BITSIZE (result_mode)
10829 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10830 {
10831 varop = XEXP (varop, 0);
10832 continue;
10833 }
10834
10835 /* fall through */
10836
10837 case LSHIFTRT:
10838 case ASHIFT:
10839 case ROTATE:
10840 /* The following rules apply only to scalars. */
10841 if (shift_mode != shift_unit_mode)
10842 break;
10843 int_mode = as_a <scalar_int_mode> (mode);
10844 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10845 int_result_mode = as_a <scalar_int_mode> (result_mode);
10846
10847 /* Here we have two nested shifts. The result is usually the
10848 AND of a new shift with a mask. We compute the result below. */
10849 if (CONST_INT_P (XEXP (varop, 1))
10850 && INTVAL (XEXP (varop, 1)) >= 0
10851 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10852 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10853 && HWI_COMPUTABLE_MODE_P (int_mode))
10854 {
10855 enum rtx_code first_code = GET_CODE (varop);
10856 unsigned int first_count = INTVAL (XEXP (varop, 1));
10857 unsigned HOST_WIDE_INT mask;
10858 rtx mask_rtx;
10859
10860 /* We have one common special case. We can't do any merging if
10861 the inner code is an ASHIFTRT of a smaller mode. However, if
10862 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10863 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10864 we can convert it to
10865 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10866 This simplifies certain SIGN_EXTEND operations. */
10867 if (code == ASHIFT && first_code == ASHIFTRT
10868 && count == (GET_MODE_PRECISION (int_result_mode)
10869 - GET_MODE_PRECISION (int_varop_mode)))
10870 {
10871 /* C3 has the low-order C1 bits zero. */
10872
10873 mask = GET_MODE_MASK (int_mode)
10874 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10875
10876 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10877 XEXP (varop, 0), mask);
10878 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10879 int_result_mode, varop, count);
10880 count = first_count;
10881 code = ASHIFTRT;
10882 continue;
10883 }
10884
10885 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10886 than C1 high-order bits equal to the sign bit, we can convert
10887 this to either an ASHIFT or an ASHIFTRT depending on the
10888 two counts.
10889
10890 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10891
10892 if (code == ASHIFTRT && first_code == ASHIFT
10893 && int_varop_mode == shift_unit_mode
10894 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10895 > first_count))
10896 {
10897 varop = XEXP (varop, 0);
10898 count -= first_count;
10899 if (count < 0)
10900 {
10901 count = -count;
10902 code = ASHIFT;
10903 }
10904
10905 continue;
10906 }
10907
10908 /* There are some cases we can't do. If CODE is ASHIFTRT,
10909 we can only do this if FIRST_CODE is also ASHIFTRT.
10910
10911 We can't do the case when CODE is ROTATE and FIRST_CODE is
10912 ASHIFTRT.
10913
10914 If the mode of this shift is not the mode of the outer shift,
10915 we can't do this if either shift is a right shift or ROTATE.
10916
10917 Finally, we can't do any of these if the mode is too wide
10918 unless the codes are the same.
10919
10920 Handle the case where the shift codes are the same
10921 first. */
10922
10923 if (code == first_code)
10924 {
10925 if (int_varop_mode != int_result_mode
10926 && (code == ASHIFTRT || code == LSHIFTRT
10927 || code == ROTATE))
10928 break;
10929
10930 count += first_count;
10931 varop = XEXP (varop, 0);
10932 continue;
10933 }
10934
10935 if (code == ASHIFTRT
10936 || (code == ROTATE && first_code == ASHIFTRT)
10937 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10938 || (int_varop_mode != int_result_mode
10939 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10940 || first_code == ROTATE
10941 || code == ROTATE)))
10942 break;
10943
10944 /* To compute the mask to apply after the shift, shift the
10945 nonzero bits of the inner shift the same way the
10946 outer shift will. */
10947
10948 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10949 int_result_mode);
10950 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10951 mask_rtx
10952 = simplify_const_binary_operation (code, int_result_mode,
10953 mask_rtx, count_rtx);
10954
10955 /* Give up if we can't compute an outer operation to use. */
10956 if (mask_rtx == 0
10957 || !CONST_INT_P (mask_rtx)
10958 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10959 INTVAL (mask_rtx),
10960 int_result_mode, &complement_p))
10961 break;
10962
10963 /* If the shifts are in the same direction, we add the
10964 counts. Otherwise, we subtract them. */
10965 if ((code == ASHIFTRT || code == LSHIFTRT)
10966 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10967 count += first_count;
10968 else
10969 count -= first_count;
10970
10971 /* If COUNT is positive, the new shift is usually CODE,
10972 except for the two exceptions below, in which case it is
10973 FIRST_CODE. If the count is negative, FIRST_CODE should
10974 always be used */
10975 if (count > 0
10976 && ((first_code == ROTATE && code == ASHIFT)
10977 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10978 code = first_code;
10979 else if (count < 0)
10980 code = first_code, count = -count;
10981
10982 varop = XEXP (varop, 0);
10983 continue;
10984 }
10985
10986 /* If we have (A << B << C) for any shift, we can convert this to
10987 (A << C << B). This wins if A is a constant. Only try this if
10988 B is not a constant. */
10989
10990 else if (GET_CODE (varop) == code
10991 && CONST_INT_P (XEXP (varop, 0))
10992 && !CONST_INT_P (XEXP (varop, 1)))
10993 {
10994 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10995 sure the result will be masked. See PR70222. */
10996 if (code == LSHIFTRT
10997 && int_mode != int_result_mode
10998 && !merge_outer_ops (&outer_op, &outer_const, AND,
10999 GET_MODE_MASK (int_result_mode)
11000 >> orig_count, int_result_mode,
11001 &complement_p))
11002 break;
11003 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
11004 up outer sign extension (often left and right shift) is
11005 hardly more efficient than the original. See PR70429. */
11006 if (code == ASHIFTRT && int_mode != int_result_mode)
11007 break;
11008
11009 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
11010 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
11011 XEXP (varop, 0),
11012 count_rtx);
11013 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
11014 count = 0;
11015 continue;
11016 }
11017 break;
11018
11019 case NOT:
11020 /* The following rules apply only to scalars. */
11021 if (shift_mode != shift_unit_mode)
11022 break;
11023
11024 /* Make this fit the case below. */
11025 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
11026 continue;
11027
11028 case IOR:
11029 case AND:
11030 case XOR:
11031 /* The following rules apply only to scalars. */
11032 if (shift_mode != shift_unit_mode)
11033 break;
11034 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11035 int_result_mode = as_a <scalar_int_mode> (result_mode);
11036
11037 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
11038 with C the size of VAROP - 1 and the shift is logical if
11039 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11040 we have an (le X 0) operation. If we have an arithmetic shift
11041 and STORE_FLAG_VALUE is 1 or we have a logical shift with
11042 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
11043
11044 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
11045 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
11046 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11047 && (code == LSHIFTRT || code == ASHIFTRT)
11048 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11049 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11050 {
11051 count = 0;
11052 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
11053 const0_rtx);
11054
11055 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11056 varop = gen_rtx_NEG (int_varop_mode, varop);
11057
11058 continue;
11059 }
11060
11061 /* If we have (shift (logical)), move the logical to the outside
11062 to allow it to possibly combine with another logical and the
11063 shift to combine with another shift. This also canonicalizes to
11064 what a ZERO_EXTRACT looks like. Also, some machines have
11065 (and (shift)) insns. */
11066
11067 if (CONST_INT_P (XEXP (varop, 1))
11068 /* We can't do this if we have (ashiftrt (xor)) and the
11069 constant has its sign bit set in shift_unit_mode with
11070 shift_unit_mode wider than result_mode. */
11071 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11072 && int_result_mode != shift_unit_mode
11073 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11074 shift_unit_mode) < 0)
11075 && (new_rtx = simplify_const_binary_operation
11076 (code, int_result_mode,
11077 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11078 gen_int_shift_amount (int_result_mode, count))) != 0
11079 && CONST_INT_P (new_rtx)
11080 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
11081 INTVAL (new_rtx), int_result_mode,
11082 &complement_p))
11083 {
11084 varop = XEXP (varop, 0);
11085 continue;
11086 }
11087
11088 /* If we can't do that, try to simplify the shift in each arm of the
11089 logical expression, make a new logical expression, and apply
11090 the inverse distributive law. This also can't be done for
11091 (ashiftrt (xor)) where we've widened the shift and the constant
11092 changes the sign bit. */
11093 if (CONST_INT_P (XEXP (varop, 1))
11094 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11095 && int_result_mode != shift_unit_mode
11096 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11097 shift_unit_mode) < 0))
11098 {
11099 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11100 XEXP (varop, 0), count);
11101 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11102 XEXP (varop, 1), count);
11103
11104 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11105 lhs, rhs);
11106 varop = apply_distributive_law (varop);
11107
11108 count = 0;
11109 continue;
11110 }
11111 break;
11112
11113 case EQ:
11114 /* The following rules apply only to scalars. */
11115 if (shift_mode != shift_unit_mode)
11116 break;
11117 int_result_mode = as_a <scalar_int_mode> (result_mode);
11118
11119 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11120 says that the sign bit can be tested, FOO has mode MODE, C is
11121 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11122 that may be nonzero. */
11123 if (code == LSHIFTRT
11124 && XEXP (varop, 1) == const0_rtx
11125 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11126 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11127 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11128 && STORE_FLAG_VALUE == -1
11129 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11130 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11131 int_result_mode, &complement_p))
11132 {
11133 varop = XEXP (varop, 0);
11134 count = 0;
11135 continue;
11136 }
11137 break;
11138
11139 case NEG:
11140 /* The following rules apply only to scalars. */
11141 if (shift_mode != shift_unit_mode)
11142 break;
11143 int_result_mode = as_a <scalar_int_mode> (result_mode);
11144
11145 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11146 than the number of bits in the mode is equivalent to A. */
11147 if (code == LSHIFTRT
11148 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11149 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11150 {
11151 varop = XEXP (varop, 0);
11152 count = 0;
11153 continue;
11154 }
11155
11156 /* NEG commutes with ASHIFT since it is multiplication. Move the
11157 NEG outside to allow shifts to combine. */
11158 if (code == ASHIFT
11159 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11160 int_result_mode, &complement_p))
11161 {
11162 varop = XEXP (varop, 0);
11163 continue;
11164 }
11165 break;
11166
11167 case PLUS:
11168 /* The following rules apply only to scalars. */
11169 if (shift_mode != shift_unit_mode)
11170 break;
11171 int_result_mode = as_a <scalar_int_mode> (result_mode);
11172
11173 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11174 is one less than the number of bits in the mode is
11175 equivalent to (xor A 1). */
11176 if (code == LSHIFTRT
11177 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11178 && XEXP (varop, 1) == constm1_rtx
11179 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11180 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11181 int_result_mode, &complement_p))
11182 {
11183 count = 0;
11184 varop = XEXP (varop, 0);
11185 continue;
11186 }
11187
11188 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11189 that might be nonzero in BAR are those being shifted out and those
11190 bits are known zero in FOO, we can replace the PLUS with FOO.
11191 Similarly in the other operand order. This code occurs when
11192 we are computing the size of a variable-size array. */
11193
11194 if ((code == ASHIFTRT || code == LSHIFTRT)
11195 && count < HOST_BITS_PER_WIDE_INT
11196 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11197 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11198 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11199 {
11200 varop = XEXP (varop, 0);
11201 continue;
11202 }
11203 else if ((code == ASHIFTRT || code == LSHIFTRT)
11204 && count < HOST_BITS_PER_WIDE_INT
11205 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11206 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11207 >> count) == 0
11208 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11209 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11210 {
11211 varop = XEXP (varop, 1);
11212 continue;
11213 }
11214
11215 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11216 if (code == ASHIFT
11217 && CONST_INT_P (XEXP (varop, 1))
11218 && (new_rtx = simplify_const_binary_operation
11219 (ASHIFT, int_result_mode,
11220 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11221 gen_int_shift_amount (int_result_mode, count))) != 0
11222 && CONST_INT_P (new_rtx)
11223 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11224 INTVAL (new_rtx), int_result_mode,
11225 &complement_p))
11226 {
11227 varop = XEXP (varop, 0);
11228 continue;
11229 }
11230
11231 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11232 signbit', and attempt to change the PLUS to an XOR and move it to
11233 the outer operation as is done above in the AND/IOR/XOR case
11234 leg for shift(logical). See details in logical handling above
11235 for reasoning in doing so. */
11236 if (code == LSHIFTRT
11237 && CONST_INT_P (XEXP (varop, 1))
11238 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11239 && (new_rtx = simplify_const_binary_operation
11240 (code, int_result_mode,
11241 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11242 gen_int_shift_amount (int_result_mode, count))) != 0
11243 && CONST_INT_P (new_rtx)
11244 && merge_outer_ops (&outer_op, &outer_const, XOR,
11245 INTVAL (new_rtx), int_result_mode,
11246 &complement_p))
11247 {
11248 varop = XEXP (varop, 0);
11249 continue;
11250 }
11251
11252 break;
11253
11254 case MINUS:
11255 /* The following rules apply only to scalars. */
11256 if (shift_mode != shift_unit_mode)
11257 break;
11258 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11259
11260 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11261 with C the size of VAROP - 1 and the shift is logical if
11262 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11263 we have a (gt X 0) operation. If the shift is arithmetic with
11264 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11265 we have a (neg (gt X 0)) operation. */
11266
11267 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11268 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11269 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11270 && (code == LSHIFTRT || code == ASHIFTRT)
11271 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11272 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11273 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11274 {
11275 count = 0;
11276 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11277 const0_rtx);
11278
11279 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11280 varop = gen_rtx_NEG (int_varop_mode, varop);
11281
11282 continue;
11283 }
11284 break;
11285
11286 case TRUNCATE:
11287 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11288 if the truncate does not affect the value. */
11289 if (code == LSHIFTRT
11290 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11291 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11292 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11293 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11294 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11295 {
11296 rtx varop_inner = XEXP (varop, 0);
11297 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11298 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11299 new_count);
11300 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11301 XEXP (varop_inner, 0),
11302 new_count_rtx);
11303 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11304 count = 0;
11305 continue;
11306 }
11307 break;
11308
11309 default:
11310 break;
11311 }
11312
11313 break;
11314 }
11315
11316 shift_mode = result_mode;
11317 if (shift_mode != mode)
11318 {
11319 /* We only change the modes of scalar shifts. */
11320 int_mode = as_a <scalar_int_mode> (mode);
11321 int_result_mode = as_a <scalar_int_mode> (result_mode);
11322 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11323 int_mode, outer_op, outer_const);
11324 }
11325
11326 /* We have now finished analyzing the shift. The result should be
11327 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11328 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11329 to the result of the shift. OUTER_CONST is the relevant constant,
11330 but we must turn off all bits turned off in the shift. */
11331
11332 if (outer_op == UNKNOWN
11333 && orig_code == code && orig_count == count
11334 && varop == orig_varop
11335 && shift_mode == GET_MODE (varop))
11336 return NULL_RTX;
11337
11338 /* Make a SUBREG if necessary. If we can't make it, fail. */
11339 varop = gen_lowpart (shift_mode, varop);
11340 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11341 return NULL_RTX;
11342
11343 /* If we have an outer operation and we just made a shift, it is
11344 possible that we could have simplified the shift were it not
11345 for the outer operation. So try to do the simplification
11346 recursively. */
11347
11348 if (outer_op != UNKNOWN)
11349 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11350 else
11351 x = NULL_RTX;
11352
11353 if (x == NULL_RTX)
11354 x = simplify_gen_binary (code, shift_mode, varop,
11355 gen_int_shift_amount (shift_mode, count));
11356
11357 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11358 turn off all the bits that the shift would have turned off. */
11359 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11360 /* We only change the modes of scalar shifts. */
11361 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11362 x, GET_MODE_MASK (result_mode) >> orig_count);
11363
11364 /* Do the remainder of the processing in RESULT_MODE. */
11365 x = gen_lowpart_or_truncate (result_mode, x);
11366
11367 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11368 operation. */
11369 if (complement_p)
11370 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11371
11372 if (outer_op != UNKNOWN)
11373 {
11374 int_result_mode = as_a <scalar_int_mode> (result_mode);
11375
11376 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11377 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11378 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11379
11380 if (outer_op == AND)
11381 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11382 else if (outer_op == SET)
11383 {
11384 /* This means that we have determined that the result is
11385 equivalent to a constant. This should be rare. */
11386 if (!side_effects_p (x))
11387 x = GEN_INT (outer_const);
11388 }
11389 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11390 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11391 else
11392 x = simplify_gen_binary (outer_op, int_result_mode, x,
11393 GEN_INT (outer_const));
11394 }
11395
11396 return x;
11397 }
11398
11399 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11400 The result of the shift is RESULT_MODE. If we cannot simplify it,
11401 return X or, if it is NULL, synthesize the expression with
11402 simplify_gen_binary. Otherwise, return a simplified value.
11403
11404 The shift is normally computed in the widest mode we find in VAROP, as
11405 long as it isn't a different number of words than RESULT_MODE. Exceptions
11406 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11407
11408 static rtx
11409 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11410 rtx varop, int count)
11411 {
11412 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11413 if (tem)
11414 return tem;
11415
11416 if (!x)
11417 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11418 gen_int_shift_amount (GET_MODE (varop), count));
11419 if (GET_MODE (x) != result_mode)
11420 x = gen_lowpart (result_mode, x);
11421 return x;
11422 }
11423
11424 \f
11425 /* A subroutine of recog_for_combine. See there for arguments and
11426 return value. */
11427
11428 static int
11429 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11430 {
11431 rtx pat = *pnewpat;
11432 rtx pat_without_clobbers;
11433 int insn_code_number;
11434 int num_clobbers_to_add = 0;
11435 int i;
11436 rtx notes = NULL_RTX;
11437 rtx old_notes, old_pat;
11438 int old_icode;
11439
11440 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11441 we use to indicate that something didn't match. If we find such a
11442 thing, force rejection. */
11443 if (GET_CODE (pat) == PARALLEL)
11444 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11445 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11446 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11447 return -1;
11448
11449 old_pat = PATTERN (insn);
11450 old_notes = REG_NOTES (insn);
11451 PATTERN (insn) = pat;
11452 REG_NOTES (insn) = NULL_RTX;
11453
11454 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11455 if (dump_file && (dump_flags & TDF_DETAILS))
11456 {
11457 if (insn_code_number < 0)
11458 fputs ("Failed to match this instruction:\n", dump_file);
11459 else
11460 fputs ("Successfully matched this instruction:\n", dump_file);
11461 print_rtl_single (dump_file, pat);
11462 }
11463
11464 /* If it isn't, there is the possibility that we previously had an insn
11465 that clobbered some register as a side effect, but the combined
11466 insn doesn't need to do that. So try once more without the clobbers
11467 unless this represents an ASM insn. */
11468
11469 if (insn_code_number < 0 && ! check_asm_operands (pat)
11470 && GET_CODE (pat) == PARALLEL)
11471 {
11472 int pos;
11473
11474 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11475 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11476 {
11477 if (i != pos)
11478 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11479 pos++;
11480 }
11481
11482 SUBST_INT (XVECLEN (pat, 0), pos);
11483
11484 if (pos == 1)
11485 pat = XVECEXP (pat, 0, 0);
11486
11487 PATTERN (insn) = pat;
11488 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11489 if (dump_file && (dump_flags & TDF_DETAILS))
11490 {
11491 if (insn_code_number < 0)
11492 fputs ("Failed to match this instruction:\n", dump_file);
11493 else
11494 fputs ("Successfully matched this instruction:\n", dump_file);
11495 print_rtl_single (dump_file, pat);
11496 }
11497 }
11498
11499 pat_without_clobbers = pat;
11500
11501 PATTERN (insn) = old_pat;
11502 REG_NOTES (insn) = old_notes;
11503
11504 /* Recognize all noop sets, these will be killed by followup pass. */
11505 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11506 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11507
11508 /* If we had any clobbers to add, make a new pattern than contains
11509 them. Then check to make sure that all of them are dead. */
11510 if (num_clobbers_to_add)
11511 {
11512 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11513 rtvec_alloc (GET_CODE (pat) == PARALLEL
11514 ? (XVECLEN (pat, 0)
11515 + num_clobbers_to_add)
11516 : num_clobbers_to_add + 1));
11517
11518 if (GET_CODE (pat) == PARALLEL)
11519 for (i = 0; i < XVECLEN (pat, 0); i++)
11520 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11521 else
11522 XVECEXP (newpat, 0, 0) = pat;
11523
11524 add_clobbers (newpat, insn_code_number);
11525
11526 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11527 i < XVECLEN (newpat, 0); i++)
11528 {
11529 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11530 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11531 return -1;
11532 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11533 {
11534 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11535 notes = alloc_reg_note (REG_UNUSED,
11536 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11537 }
11538 }
11539 pat = newpat;
11540 }
11541
11542 if (insn_code_number >= 0
11543 && insn_code_number != NOOP_MOVE_INSN_CODE)
11544 {
11545 old_pat = PATTERN (insn);
11546 old_notes = REG_NOTES (insn);
11547 old_icode = INSN_CODE (insn);
11548 PATTERN (insn) = pat;
11549 REG_NOTES (insn) = notes;
11550 INSN_CODE (insn) = insn_code_number;
11551
11552 /* Allow targets to reject combined insn. */
11553 if (!targetm.legitimate_combined_insn (insn))
11554 {
11555 if (dump_file && (dump_flags & TDF_DETAILS))
11556 fputs ("Instruction not appropriate for target.",
11557 dump_file);
11558
11559 /* Callers expect recog_for_combine to strip
11560 clobbers from the pattern on failure. */
11561 pat = pat_without_clobbers;
11562 notes = NULL_RTX;
11563
11564 insn_code_number = -1;
11565 }
11566
11567 PATTERN (insn) = old_pat;
11568 REG_NOTES (insn) = old_notes;
11569 INSN_CODE (insn) = old_icode;
11570 }
11571
11572 *pnewpat = pat;
11573 *pnotes = notes;
11574
11575 return insn_code_number;
11576 }
11577
11578 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11579 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11580 Return whether anything was so changed. */
11581
11582 static bool
11583 change_zero_ext (rtx pat)
11584 {
11585 bool changed = false;
11586 rtx *src = &SET_SRC (pat);
11587
11588 subrtx_ptr_iterator::array_type array;
11589 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11590 {
11591 rtx x = **iter;
11592 scalar_int_mode mode, inner_mode;
11593 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11594 continue;
11595 int size;
11596
11597 if (GET_CODE (x) == ZERO_EXTRACT
11598 && CONST_INT_P (XEXP (x, 1))
11599 && CONST_INT_P (XEXP (x, 2))
11600 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11601 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11602 {
11603 size = INTVAL (XEXP (x, 1));
11604
11605 int start = INTVAL (XEXP (x, 2));
11606 if (BITS_BIG_ENDIAN)
11607 start = GET_MODE_PRECISION (inner_mode) - size - start;
11608
11609 if (start != 0)
11610 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11611 gen_int_shift_amount (inner_mode, start));
11612 else
11613 x = XEXP (x, 0);
11614
11615 if (mode != inner_mode)
11616 {
11617 if (REG_P (x) && HARD_REGISTER_P (x)
11618 && !can_change_dest_mode (x, 0, mode))
11619 continue;
11620
11621 x = gen_lowpart_SUBREG (mode, x);
11622 }
11623 }
11624 else if (GET_CODE (x) == ZERO_EXTEND
11625 && GET_CODE (XEXP (x, 0)) == SUBREG
11626 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11627 && !paradoxical_subreg_p (XEXP (x, 0))
11628 && subreg_lowpart_p (XEXP (x, 0)))
11629 {
11630 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11631 size = GET_MODE_PRECISION (inner_mode);
11632 x = SUBREG_REG (XEXP (x, 0));
11633 if (GET_MODE (x) != mode)
11634 {
11635 if (REG_P (x) && HARD_REGISTER_P (x)
11636 && !can_change_dest_mode (x, 0, mode))
11637 continue;
11638
11639 x = gen_lowpart_SUBREG (mode, x);
11640 }
11641 }
11642 else if (GET_CODE (x) == ZERO_EXTEND
11643 && REG_P (XEXP (x, 0))
11644 && HARD_REGISTER_P (XEXP (x, 0))
11645 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11646 {
11647 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11648 size = GET_MODE_PRECISION (inner_mode);
11649 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11650 }
11651 else
11652 continue;
11653
11654 if (!(GET_CODE (x) == LSHIFTRT
11655 && CONST_INT_P (XEXP (x, 1))
11656 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11657 {
11658 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11659 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11660 }
11661
11662 SUBST (**iter, x);
11663 changed = true;
11664 }
11665
11666 if (changed)
11667 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11668 maybe_swap_commutative_operands (**iter);
11669
11670 rtx *dst = &SET_DEST (pat);
11671 scalar_int_mode mode;
11672 if (GET_CODE (*dst) == ZERO_EXTRACT
11673 && REG_P (XEXP (*dst, 0))
11674 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11675 && CONST_INT_P (XEXP (*dst, 1))
11676 && CONST_INT_P (XEXP (*dst, 2)))
11677 {
11678 rtx reg = XEXP (*dst, 0);
11679 int width = INTVAL (XEXP (*dst, 1));
11680 int offset = INTVAL (XEXP (*dst, 2));
11681 int reg_width = GET_MODE_PRECISION (mode);
11682 if (BITS_BIG_ENDIAN)
11683 offset = reg_width - width - offset;
11684
11685 rtx x, y, z, w;
11686 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11687 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11688 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11689 if (offset)
11690 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11691 else
11692 y = SET_SRC (pat);
11693 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11694 w = gen_rtx_IOR (mode, x, z);
11695 SUBST (SET_DEST (pat), reg);
11696 SUBST (SET_SRC (pat), w);
11697
11698 changed = true;
11699 }
11700
11701 return changed;
11702 }
11703
11704 /* Like recog, but we receive the address of a pointer to a new pattern.
11705 We try to match the rtx that the pointer points to.
11706 If that fails, we may try to modify or replace the pattern,
11707 storing the replacement into the same pointer object.
11708
11709 Modifications include deletion or addition of CLOBBERs. If the
11710 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11711 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11712 (and undo if that fails).
11713
11714 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11715 the CLOBBERs are placed.
11716
11717 The value is the final insn code from the pattern ultimately matched,
11718 or -1. */
11719
11720 static int
11721 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11722 {
11723 rtx pat = *pnewpat;
11724 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11725 if (insn_code_number >= 0 || check_asm_operands (pat))
11726 return insn_code_number;
11727
11728 void *marker = get_undo_marker ();
11729 bool changed = false;
11730
11731 if (GET_CODE (pat) == SET)
11732 changed = change_zero_ext (pat);
11733 else if (GET_CODE (pat) == PARALLEL)
11734 {
11735 int i;
11736 for (i = 0; i < XVECLEN (pat, 0); i++)
11737 {
11738 rtx set = XVECEXP (pat, 0, i);
11739 if (GET_CODE (set) == SET)
11740 changed |= change_zero_ext (set);
11741 }
11742 }
11743
11744 if (changed)
11745 {
11746 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11747
11748 if (insn_code_number < 0)
11749 undo_to_marker (marker);
11750 }
11751
11752 return insn_code_number;
11753 }
11754 \f
11755 /* Like gen_lowpart_general but for use by combine. In combine it
11756 is not possible to create any new pseudoregs. However, it is
11757 safe to create invalid memory addresses, because combine will
11758 try to recognize them and all they will do is make the combine
11759 attempt fail.
11760
11761 If for some reason this cannot do its job, an rtx
11762 (clobber (const_int 0)) is returned.
11763 An insn containing that will not be recognized. */
11764
11765 static rtx
11766 gen_lowpart_for_combine (machine_mode omode, rtx x)
11767 {
11768 machine_mode imode = GET_MODE (x);
11769 rtx result;
11770
11771 if (omode == imode)
11772 return x;
11773
11774 /* We can only support MODE being wider than a word if X is a
11775 constant integer or has a mode the same size. */
11776 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11777 && ! (CONST_SCALAR_INT_P (x)
11778 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11779 goto fail;
11780
11781 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11782 won't know what to do. So we will strip off the SUBREG here and
11783 process normally. */
11784 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11785 {
11786 x = SUBREG_REG (x);
11787
11788 /* For use in case we fall down into the address adjustments
11789 further below, we need to adjust the known mode and size of
11790 x; imode and isize, since we just adjusted x. */
11791 imode = GET_MODE (x);
11792
11793 if (imode == omode)
11794 return x;
11795 }
11796
11797 result = gen_lowpart_common (omode, x);
11798
11799 if (result)
11800 return result;
11801
11802 if (MEM_P (x))
11803 {
11804 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11805 address. */
11806 if (MEM_VOLATILE_P (x)
11807 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11808 goto fail;
11809
11810 /* If we want to refer to something bigger than the original memref,
11811 generate a paradoxical subreg instead. That will force a reload
11812 of the original memref X. */
11813 if (paradoxical_subreg_p (omode, imode))
11814 return gen_rtx_SUBREG (omode, x, 0);
11815
11816 poly_int64 offset = byte_lowpart_offset (omode, imode);
11817 return adjust_address_nv (x, omode, offset);
11818 }
11819
11820 /* If X is a comparison operator, rewrite it in a new mode. This
11821 probably won't match, but may allow further simplifications. */
11822 else if (COMPARISON_P (x))
11823 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11824
11825 /* If we couldn't simplify X any other way, just enclose it in a
11826 SUBREG. Normally, this SUBREG won't match, but some patterns may
11827 include an explicit SUBREG or we may simplify it further in combine. */
11828 else
11829 {
11830 rtx res;
11831
11832 if (imode == VOIDmode)
11833 {
11834 imode = int_mode_for_mode (omode).require ();
11835 x = gen_lowpart_common (imode, x);
11836 if (x == NULL)
11837 goto fail;
11838 }
11839 res = lowpart_subreg (omode, x, imode);
11840 if (res)
11841 return res;
11842 }
11843
11844 fail:
11845 return gen_rtx_CLOBBER (omode, const0_rtx);
11846 }
11847 \f
11848 /* Try to simplify a comparison between OP0 and a constant OP1,
11849 where CODE is the comparison code that will be tested, into a
11850 (CODE OP0 const0_rtx) form.
11851
11852 The result is a possibly different comparison code to use.
11853 *POP1 may be updated. */
11854
11855 static enum rtx_code
11856 simplify_compare_const (enum rtx_code code, machine_mode mode,
11857 rtx op0, rtx *pop1)
11858 {
11859 scalar_int_mode int_mode;
11860 HOST_WIDE_INT const_op = INTVAL (*pop1);
11861
11862 /* Get the constant we are comparing against and turn off all bits
11863 not on in our mode. */
11864 if (mode != VOIDmode)
11865 const_op = trunc_int_for_mode (const_op, mode);
11866
11867 /* If we are comparing against a constant power of two and the value
11868 being compared can only have that single bit nonzero (e.g., it was
11869 `and'ed with that bit), we can replace this with a comparison
11870 with zero. */
11871 if (const_op
11872 && (code == EQ || code == NE || code == GE || code == GEU
11873 || code == LT || code == LTU)
11874 && is_a <scalar_int_mode> (mode, &int_mode)
11875 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11876 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11877 && (nonzero_bits (op0, int_mode)
11878 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11879 {
11880 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11881 const_op = 0;
11882 }
11883
11884 /* Similarly, if we are comparing a value known to be either -1 or
11885 0 with -1, change it to the opposite comparison against zero. */
11886 if (const_op == -1
11887 && (code == EQ || code == NE || code == GT || code == LE
11888 || code == GEU || code == LTU)
11889 && is_a <scalar_int_mode> (mode, &int_mode)
11890 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11891 {
11892 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11893 const_op = 0;
11894 }
11895
11896 /* Do some canonicalizations based on the comparison code. We prefer
11897 comparisons against zero and then prefer equality comparisons.
11898 If we can reduce the size of a constant, we will do that too. */
11899 switch (code)
11900 {
11901 case LT:
11902 /* < C is equivalent to <= (C - 1) */
11903 if (const_op > 0)
11904 {
11905 const_op -= 1;
11906 code = LE;
11907 /* ... fall through to LE case below. */
11908 gcc_fallthrough ();
11909 }
11910 else
11911 break;
11912
11913 case LE:
11914 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11915 if (const_op < 0)
11916 {
11917 const_op += 1;
11918 code = LT;
11919 }
11920
11921 /* If we are doing a <= 0 comparison on a value known to have
11922 a zero sign bit, we can replace this with == 0. */
11923 else if (const_op == 0
11924 && is_a <scalar_int_mode> (mode, &int_mode)
11925 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11926 && (nonzero_bits (op0, int_mode)
11927 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11928 == 0)
11929 code = EQ;
11930 break;
11931
11932 case GE:
11933 /* >= C is equivalent to > (C - 1). */
11934 if (const_op > 0)
11935 {
11936 const_op -= 1;
11937 code = GT;
11938 /* ... fall through to GT below. */
11939 gcc_fallthrough ();
11940 }
11941 else
11942 break;
11943
11944 case GT:
11945 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11946 if (const_op < 0)
11947 {
11948 const_op += 1;
11949 code = GE;
11950 }
11951
11952 /* If we are doing a > 0 comparison on a value known to have
11953 a zero sign bit, we can replace this with != 0. */
11954 else if (const_op == 0
11955 && is_a <scalar_int_mode> (mode, &int_mode)
11956 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11957 && (nonzero_bits (op0, int_mode)
11958 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11959 == 0)
11960 code = NE;
11961 break;
11962
11963 case LTU:
11964 /* < C is equivalent to <= (C - 1). */
11965 if (const_op > 0)
11966 {
11967 const_op -= 1;
11968 code = LEU;
11969 /* ... fall through ... */
11970 gcc_fallthrough ();
11971 }
11972 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11973 else if (is_a <scalar_int_mode> (mode, &int_mode)
11974 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11975 && ((unsigned HOST_WIDE_INT) const_op
11976 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11977 {
11978 const_op = 0;
11979 code = GE;
11980 break;
11981 }
11982 else
11983 break;
11984
11985 case LEU:
11986 /* unsigned <= 0 is equivalent to == 0 */
11987 if (const_op == 0)
11988 code = EQ;
11989 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11990 else if (is_a <scalar_int_mode> (mode, &int_mode)
11991 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11992 && ((unsigned HOST_WIDE_INT) const_op
11993 == ((HOST_WIDE_INT_1U
11994 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11995 {
11996 const_op = 0;
11997 code = GE;
11998 }
11999 break;
12000
12001 case GEU:
12002 /* >= C is equivalent to > (C - 1). */
12003 if (const_op > 1)
12004 {
12005 const_op -= 1;
12006 code = GTU;
12007 /* ... fall through ... */
12008 gcc_fallthrough ();
12009 }
12010
12011 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
12012 else if (is_a <scalar_int_mode> (mode, &int_mode)
12013 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12014 && ((unsigned HOST_WIDE_INT) const_op
12015 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
12016 {
12017 const_op = 0;
12018 code = LT;
12019 break;
12020 }
12021 else
12022 break;
12023
12024 case GTU:
12025 /* unsigned > 0 is equivalent to != 0 */
12026 if (const_op == 0)
12027 code = NE;
12028 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
12029 else if (is_a <scalar_int_mode> (mode, &int_mode)
12030 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12031 && ((unsigned HOST_WIDE_INT) const_op
12032 == (HOST_WIDE_INT_1U
12033 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
12034 {
12035 const_op = 0;
12036 code = LT;
12037 }
12038 break;
12039
12040 default:
12041 break;
12042 }
12043
12044 *pop1 = GEN_INT (const_op);
12045 return code;
12046 }
12047 \f
12048 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
12049 comparison code that will be tested.
12050
12051 The result is a possibly different comparison code to use. *POP0 and
12052 *POP1 may be updated.
12053
12054 It is possible that we might detect that a comparison is either always
12055 true or always false. However, we do not perform general constant
12056 folding in combine, so this knowledge isn't useful. Such tautologies
12057 should have been detected earlier. Hence we ignore all such cases. */
12058
12059 static enum rtx_code
12060 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12061 {
12062 rtx op0 = *pop0;
12063 rtx op1 = *pop1;
12064 rtx tem, tem1;
12065 int i;
12066 scalar_int_mode mode, inner_mode, tmode;
12067 opt_scalar_int_mode tmode_iter;
12068
12069 /* Try a few ways of applying the same transformation to both operands. */
12070 while (1)
12071 {
12072 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12073 so check specially. */
12074 if (!WORD_REGISTER_OPERATIONS
12075 && code != GTU && code != GEU && code != LTU && code != LEU
12076 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12077 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12078 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12079 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12080 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12081 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
12082 && (is_a <scalar_int_mode>
12083 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
12084 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12085 && CONST_INT_P (XEXP (op0, 1))
12086 && XEXP (op0, 1) == XEXP (op1, 1)
12087 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12088 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12089 && (INTVAL (XEXP (op0, 1))
12090 == (GET_MODE_PRECISION (mode)
12091 - GET_MODE_PRECISION (inner_mode))))
12092 {
12093 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12094 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12095 }
12096
12097 /* If both operands are the same constant shift, see if we can ignore the
12098 shift. We can if the shift is a rotate or if the bits shifted out of
12099 this shift are known to be zero for both inputs and if the type of
12100 comparison is compatible with the shift. */
12101 if (GET_CODE (op0) == GET_CODE (op1)
12102 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12103 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12104 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12105 && (code != GT && code != LT && code != GE && code != LE))
12106 || (GET_CODE (op0) == ASHIFTRT
12107 && (code != GTU && code != LTU
12108 && code != GEU && code != LEU)))
12109 && CONST_INT_P (XEXP (op0, 1))
12110 && INTVAL (XEXP (op0, 1)) >= 0
12111 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12112 && XEXP (op0, 1) == XEXP (op1, 1))
12113 {
12114 machine_mode mode = GET_MODE (op0);
12115 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12116 int shift_count = INTVAL (XEXP (op0, 1));
12117
12118 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12119 mask &= (mask >> shift_count) << shift_count;
12120 else if (GET_CODE (op0) == ASHIFT)
12121 mask = (mask & (mask << shift_count)) >> shift_count;
12122
12123 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12124 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12125 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12126 else
12127 break;
12128 }
12129
12130 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12131 SUBREGs are of the same mode, and, in both cases, the AND would
12132 be redundant if the comparison was done in the narrower mode,
12133 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12134 and the operand's possibly nonzero bits are 0xffffff01; in that case
12135 if we only care about QImode, we don't need the AND). This case
12136 occurs if the output mode of an scc insn is not SImode and
12137 STORE_FLAG_VALUE == 1 (e.g., the 386).
12138
12139 Similarly, check for a case where the AND's are ZERO_EXTEND
12140 operations from some narrower mode even though a SUBREG is not
12141 present. */
12142
12143 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12144 && CONST_INT_P (XEXP (op0, 1))
12145 && CONST_INT_P (XEXP (op1, 1)))
12146 {
12147 rtx inner_op0 = XEXP (op0, 0);
12148 rtx inner_op1 = XEXP (op1, 0);
12149 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12150 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12151 int changed = 0;
12152
12153 if (paradoxical_subreg_p (inner_op0)
12154 && GET_CODE (inner_op1) == SUBREG
12155 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12156 && (GET_MODE (SUBREG_REG (inner_op0))
12157 == GET_MODE (SUBREG_REG (inner_op1)))
12158 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12159 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12160 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12161 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12162 {
12163 op0 = SUBREG_REG (inner_op0);
12164 op1 = SUBREG_REG (inner_op1);
12165
12166 /* The resulting comparison is always unsigned since we masked
12167 off the original sign bit. */
12168 code = unsigned_condition (code);
12169
12170 changed = 1;
12171 }
12172
12173 else if (c0 == c1)
12174 FOR_EACH_MODE_UNTIL (tmode,
12175 as_a <scalar_int_mode> (GET_MODE (op0)))
12176 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12177 {
12178 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12179 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12180 code = unsigned_condition (code);
12181 changed = 1;
12182 break;
12183 }
12184
12185 if (! changed)
12186 break;
12187 }
12188
12189 /* If both operands are NOT, we can strip off the outer operation
12190 and adjust the comparison code for swapped operands; similarly for
12191 NEG, except that this must be an equality comparison. */
12192 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12193 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12194 && (code == EQ || code == NE)))
12195 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12196
12197 else
12198 break;
12199 }
12200
12201 /* If the first operand is a constant, swap the operands and adjust the
12202 comparison code appropriately, but don't do this if the second operand
12203 is already a constant integer. */
12204 if (swap_commutative_operands_p (op0, op1))
12205 {
12206 std::swap (op0, op1);
12207 code = swap_condition (code);
12208 }
12209
12210 /* We now enter a loop during which we will try to simplify the comparison.
12211 For the most part, we only are concerned with comparisons with zero,
12212 but some things may really be comparisons with zero but not start
12213 out looking that way. */
12214
12215 while (CONST_INT_P (op1))
12216 {
12217 machine_mode raw_mode = GET_MODE (op0);
12218 scalar_int_mode int_mode;
12219 int equality_comparison_p;
12220 int sign_bit_comparison_p;
12221 int unsigned_comparison_p;
12222 HOST_WIDE_INT const_op;
12223
12224 /* We only want to handle integral modes. This catches VOIDmode,
12225 CCmode, and the floating-point modes. An exception is that we
12226 can handle VOIDmode if OP0 is a COMPARE or a comparison
12227 operation. */
12228
12229 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12230 && ! (raw_mode == VOIDmode
12231 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12232 break;
12233
12234 /* Try to simplify the compare to constant, possibly changing the
12235 comparison op, and/or changing op1 to zero. */
12236 code = simplify_compare_const (code, raw_mode, op0, &op1);
12237 const_op = INTVAL (op1);
12238
12239 /* Compute some predicates to simplify code below. */
12240
12241 equality_comparison_p = (code == EQ || code == NE);
12242 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12243 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12244 || code == GEU);
12245
12246 /* If this is a sign bit comparison and we can do arithmetic in
12247 MODE, say that we will only be needing the sign bit of OP0. */
12248 if (sign_bit_comparison_p
12249 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12250 && HWI_COMPUTABLE_MODE_P (int_mode))
12251 op0 = force_to_mode (op0, int_mode,
12252 HOST_WIDE_INT_1U
12253 << (GET_MODE_PRECISION (int_mode) - 1),
12254 0);
12255
12256 if (COMPARISON_P (op0))
12257 {
12258 /* We can't do anything if OP0 is a condition code value, rather
12259 than an actual data value. */
12260 if (const_op != 0
12261 || CC0_P (XEXP (op0, 0))
12262 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12263 break;
12264
12265 /* Get the two operands being compared. */
12266 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12267 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12268 else
12269 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12270
12271 /* Check for the cases where we simply want the result of the
12272 earlier test or the opposite of that result. */
12273 if (code == NE || code == EQ
12274 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12275 && (code == LT || code == GE)))
12276 {
12277 enum rtx_code new_code;
12278 if (code == LT || code == NE)
12279 new_code = GET_CODE (op0);
12280 else
12281 new_code = reversed_comparison_code (op0, NULL);
12282
12283 if (new_code != UNKNOWN)
12284 {
12285 code = new_code;
12286 op0 = tem;
12287 op1 = tem1;
12288 continue;
12289 }
12290 }
12291 break;
12292 }
12293
12294 if (raw_mode == VOIDmode)
12295 break;
12296 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12297
12298 /* Now try cases based on the opcode of OP0. If none of the cases
12299 does a "continue", we exit this loop immediately after the
12300 switch. */
12301
12302 unsigned int mode_width = GET_MODE_PRECISION (mode);
12303 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12304 switch (GET_CODE (op0))
12305 {
12306 case ZERO_EXTRACT:
12307 /* If we are extracting a single bit from a variable position in
12308 a constant that has only a single bit set and are comparing it
12309 with zero, we can convert this into an equality comparison
12310 between the position and the location of the single bit. */
12311 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12312 have already reduced the shift count modulo the word size. */
12313 if (!SHIFT_COUNT_TRUNCATED
12314 && CONST_INT_P (XEXP (op0, 0))
12315 && XEXP (op0, 1) == const1_rtx
12316 && equality_comparison_p && const_op == 0
12317 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12318 {
12319 if (BITS_BIG_ENDIAN)
12320 i = BITS_PER_WORD - 1 - i;
12321
12322 op0 = XEXP (op0, 2);
12323 op1 = GEN_INT (i);
12324 const_op = i;
12325
12326 /* Result is nonzero iff shift count is equal to I. */
12327 code = reverse_condition (code);
12328 continue;
12329 }
12330
12331 /* fall through */
12332
12333 case SIGN_EXTRACT:
12334 tem = expand_compound_operation (op0);
12335 if (tem != op0)
12336 {
12337 op0 = tem;
12338 continue;
12339 }
12340 break;
12341
12342 case NOT:
12343 /* If testing for equality, we can take the NOT of the constant. */
12344 if (equality_comparison_p
12345 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12346 {
12347 op0 = XEXP (op0, 0);
12348 op1 = tem;
12349 continue;
12350 }
12351
12352 /* If just looking at the sign bit, reverse the sense of the
12353 comparison. */
12354 if (sign_bit_comparison_p)
12355 {
12356 op0 = XEXP (op0, 0);
12357 code = (code == GE ? LT : GE);
12358 continue;
12359 }
12360 break;
12361
12362 case NEG:
12363 /* If testing for equality, we can take the NEG of the constant. */
12364 if (equality_comparison_p
12365 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12366 {
12367 op0 = XEXP (op0, 0);
12368 op1 = tem;
12369 continue;
12370 }
12371
12372 /* The remaining cases only apply to comparisons with zero. */
12373 if (const_op != 0)
12374 break;
12375
12376 /* When X is ABS or is known positive,
12377 (neg X) is < 0 if and only if X != 0. */
12378
12379 if (sign_bit_comparison_p
12380 && (GET_CODE (XEXP (op0, 0)) == ABS
12381 || (mode_width <= HOST_BITS_PER_WIDE_INT
12382 && (nonzero_bits (XEXP (op0, 0), mode)
12383 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12384 == 0)))
12385 {
12386 op0 = XEXP (op0, 0);
12387 code = (code == LT ? NE : EQ);
12388 continue;
12389 }
12390
12391 /* If we have NEG of something whose two high-order bits are the
12392 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12393 if (num_sign_bit_copies (op0, mode) >= 2)
12394 {
12395 op0 = XEXP (op0, 0);
12396 code = swap_condition (code);
12397 continue;
12398 }
12399 break;
12400
12401 case ROTATE:
12402 /* If we are testing equality and our count is a constant, we
12403 can perform the inverse operation on our RHS. */
12404 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12405 && (tem = simplify_binary_operation (ROTATERT, mode,
12406 op1, XEXP (op0, 1))) != 0)
12407 {
12408 op0 = XEXP (op0, 0);
12409 op1 = tem;
12410 continue;
12411 }
12412
12413 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12414 a particular bit. Convert it to an AND of a constant of that
12415 bit. This will be converted into a ZERO_EXTRACT. */
12416 if (const_op == 0 && sign_bit_comparison_p
12417 && CONST_INT_P (XEXP (op0, 1))
12418 && mode_width <= HOST_BITS_PER_WIDE_INT)
12419 {
12420 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12421 (HOST_WIDE_INT_1U
12422 << (mode_width - 1
12423 - INTVAL (XEXP (op0, 1)))));
12424 code = (code == LT ? NE : EQ);
12425 continue;
12426 }
12427
12428 /* Fall through. */
12429
12430 case ABS:
12431 /* ABS is ignorable inside an equality comparison with zero. */
12432 if (const_op == 0 && equality_comparison_p)
12433 {
12434 op0 = XEXP (op0, 0);
12435 continue;
12436 }
12437 break;
12438
12439 case SIGN_EXTEND:
12440 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12441 (compare FOO CONST) if CONST fits in FOO's mode and we
12442 are either testing inequality or have an unsigned
12443 comparison with ZERO_EXTEND or a signed comparison with
12444 SIGN_EXTEND. But don't do it if we don't have a compare
12445 insn of the given mode, since we'd have to revert it
12446 later on, and then we wouldn't know whether to sign- or
12447 zero-extend. */
12448 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12449 && ! unsigned_comparison_p
12450 && HWI_COMPUTABLE_MODE_P (mode)
12451 && trunc_int_for_mode (const_op, mode) == const_op
12452 && have_insn_for (COMPARE, mode))
12453 {
12454 op0 = XEXP (op0, 0);
12455 continue;
12456 }
12457 break;
12458
12459 case SUBREG:
12460 /* Check for the case where we are comparing A - C1 with C2, that is
12461
12462 (subreg:MODE (plus (A) (-C1))) op (C2)
12463
12464 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12465 comparison in the wider mode. One of the following two conditions
12466 must be true in order for this to be valid:
12467
12468 1. The mode extension results in the same bit pattern being added
12469 on both sides and the comparison is equality or unsigned. As
12470 C2 has been truncated to fit in MODE, the pattern can only be
12471 all 0s or all 1s.
12472
12473 2. The mode extension results in the sign bit being copied on
12474 each side.
12475
12476 The difficulty here is that we have predicates for A but not for
12477 (A - C1) so we need to check that C1 is within proper bounds so
12478 as to perturbate A as little as possible. */
12479
12480 if (mode_width <= HOST_BITS_PER_WIDE_INT
12481 && subreg_lowpart_p (op0)
12482 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12483 &inner_mode)
12484 && GET_MODE_PRECISION (inner_mode) > mode_width
12485 && GET_CODE (SUBREG_REG (op0)) == PLUS
12486 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12487 {
12488 rtx a = XEXP (SUBREG_REG (op0), 0);
12489 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12490
12491 if ((c1 > 0
12492 && (unsigned HOST_WIDE_INT) c1
12493 < HOST_WIDE_INT_1U << (mode_width - 1)
12494 && (equality_comparison_p || unsigned_comparison_p)
12495 /* (A - C1) zero-extends if it is positive and sign-extends
12496 if it is negative, C2 both zero- and sign-extends. */
12497 && (((nonzero_bits (a, inner_mode)
12498 & ~GET_MODE_MASK (mode)) == 0
12499 && const_op >= 0)
12500 /* (A - C1) sign-extends if it is positive and 1-extends
12501 if it is negative, C2 both sign- and 1-extends. */
12502 || (num_sign_bit_copies (a, inner_mode)
12503 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12504 - mode_width)
12505 && const_op < 0)))
12506 || ((unsigned HOST_WIDE_INT) c1
12507 < HOST_WIDE_INT_1U << (mode_width - 2)
12508 /* (A - C1) always sign-extends, like C2. */
12509 && num_sign_bit_copies (a, inner_mode)
12510 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12511 - (mode_width - 1))))
12512 {
12513 op0 = SUBREG_REG (op0);
12514 continue;
12515 }
12516 }
12517
12518 /* If the inner mode is narrower and we are extracting the low part,
12519 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12520 if (paradoxical_subreg_p (op0))
12521 ;
12522 else if (subreg_lowpart_p (op0)
12523 && GET_MODE_CLASS (mode) == MODE_INT
12524 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12525 && (code == NE || code == EQ)
12526 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12527 && !paradoxical_subreg_p (op0)
12528 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12529 & ~GET_MODE_MASK (mode)) == 0)
12530 {
12531 /* Remove outer subregs that don't do anything. */
12532 tem = gen_lowpart (inner_mode, op1);
12533
12534 if ((nonzero_bits (tem, inner_mode)
12535 & ~GET_MODE_MASK (mode)) == 0)
12536 {
12537 op0 = SUBREG_REG (op0);
12538 op1 = tem;
12539 continue;
12540 }
12541 break;
12542 }
12543 else
12544 break;
12545
12546 /* FALLTHROUGH */
12547
12548 case ZERO_EXTEND:
12549 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12550 && (unsigned_comparison_p || equality_comparison_p)
12551 && HWI_COMPUTABLE_MODE_P (mode)
12552 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12553 && const_op >= 0
12554 && have_insn_for (COMPARE, mode))
12555 {
12556 op0 = XEXP (op0, 0);
12557 continue;
12558 }
12559 break;
12560
12561 case PLUS:
12562 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12563 this for equality comparisons due to pathological cases involving
12564 overflows. */
12565 if (equality_comparison_p
12566 && (tem = simplify_binary_operation (MINUS, mode,
12567 op1, XEXP (op0, 1))) != 0)
12568 {
12569 op0 = XEXP (op0, 0);
12570 op1 = tem;
12571 continue;
12572 }
12573
12574 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12575 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12576 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12577 {
12578 op0 = XEXP (XEXP (op0, 0), 0);
12579 code = (code == LT ? EQ : NE);
12580 continue;
12581 }
12582 break;
12583
12584 case MINUS:
12585 /* We used to optimize signed comparisons against zero, but that
12586 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12587 arrive here as equality comparisons, or (GEU, LTU) are
12588 optimized away. No need to special-case them. */
12589
12590 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12591 (eq B (minus A C)), whichever simplifies. We can only do
12592 this for equality comparisons due to pathological cases involving
12593 overflows. */
12594 if (equality_comparison_p
12595 && (tem = simplify_binary_operation (PLUS, mode,
12596 XEXP (op0, 1), op1)) != 0)
12597 {
12598 op0 = XEXP (op0, 0);
12599 op1 = tem;
12600 continue;
12601 }
12602
12603 if (equality_comparison_p
12604 && (tem = simplify_binary_operation (MINUS, mode,
12605 XEXP (op0, 0), op1)) != 0)
12606 {
12607 op0 = XEXP (op0, 1);
12608 op1 = tem;
12609 continue;
12610 }
12611
12612 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12613 of bits in X minus 1, is one iff X > 0. */
12614 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12615 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12616 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12617 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12618 {
12619 op0 = XEXP (op0, 1);
12620 code = (code == GE ? LE : GT);
12621 continue;
12622 }
12623 break;
12624
12625 case XOR:
12626 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12627 if C is zero or B is a constant. */
12628 if (equality_comparison_p
12629 && (tem = simplify_binary_operation (XOR, mode,
12630 XEXP (op0, 1), op1)) != 0)
12631 {
12632 op0 = XEXP (op0, 0);
12633 op1 = tem;
12634 continue;
12635 }
12636 break;
12637
12638
12639 case IOR:
12640 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12641 iff X <= 0. */
12642 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12643 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12644 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12645 {
12646 op0 = XEXP (op0, 1);
12647 code = (code == GE ? GT : LE);
12648 continue;
12649 }
12650 break;
12651
12652 case AND:
12653 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12654 will be converted to a ZERO_EXTRACT later. */
12655 if (const_op == 0 && equality_comparison_p
12656 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12657 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12658 {
12659 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12660 XEXP (XEXP (op0, 0), 1));
12661 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12662 continue;
12663 }
12664
12665 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12666 zero and X is a comparison and C1 and C2 describe only bits set
12667 in STORE_FLAG_VALUE, we can compare with X. */
12668 if (const_op == 0 && equality_comparison_p
12669 && mode_width <= HOST_BITS_PER_WIDE_INT
12670 && CONST_INT_P (XEXP (op0, 1))
12671 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12672 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12673 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12674 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12675 {
12676 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12677 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12678 if ((~STORE_FLAG_VALUE & mask) == 0
12679 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12680 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12681 && COMPARISON_P (tem))))
12682 {
12683 op0 = XEXP (XEXP (op0, 0), 0);
12684 continue;
12685 }
12686 }
12687
12688 /* If we are doing an equality comparison of an AND of a bit equal
12689 to the sign bit, replace this with a LT or GE comparison of
12690 the underlying value. */
12691 if (equality_comparison_p
12692 && const_op == 0
12693 && CONST_INT_P (XEXP (op0, 1))
12694 && mode_width <= HOST_BITS_PER_WIDE_INT
12695 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12696 == HOST_WIDE_INT_1U << (mode_width - 1)))
12697 {
12698 op0 = XEXP (op0, 0);
12699 code = (code == EQ ? GE : LT);
12700 continue;
12701 }
12702
12703 /* If this AND operation is really a ZERO_EXTEND from a narrower
12704 mode, the constant fits within that mode, and this is either an
12705 equality or unsigned comparison, try to do this comparison in
12706 the narrower mode.
12707
12708 Note that in:
12709
12710 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12711 -> (ne:DI (reg:SI 4) (const_int 0))
12712
12713 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12714 known to hold a value of the required mode the
12715 transformation is invalid. */
12716 if ((equality_comparison_p || unsigned_comparison_p)
12717 && CONST_INT_P (XEXP (op0, 1))
12718 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12719 & GET_MODE_MASK (mode))
12720 + 1)) >= 0
12721 && const_op >> i == 0
12722 && int_mode_for_size (i, 1).exists (&tmode))
12723 {
12724 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12725 continue;
12726 }
12727
12728 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12729 fits in both M1 and M2 and the SUBREG is either paradoxical
12730 or represents the low part, permute the SUBREG and the AND
12731 and try again. */
12732 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12733 && CONST_INT_P (XEXP (op0, 1)))
12734 {
12735 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12736 /* Require an integral mode, to avoid creating something like
12737 (AND:SF ...). */
12738 if ((is_a <scalar_int_mode>
12739 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12740 /* It is unsafe to commute the AND into the SUBREG if the
12741 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12742 not defined. As originally written the upper bits
12743 have a defined value due to the AND operation.
12744 However, if we commute the AND inside the SUBREG then
12745 they no longer have defined values and the meaning of
12746 the code has been changed.
12747 Also C1 should not change value in the smaller mode,
12748 see PR67028 (a positive C1 can become negative in the
12749 smaller mode, so that the AND does no longer mask the
12750 upper bits). */
12751 && ((WORD_REGISTER_OPERATIONS
12752 && mode_width > GET_MODE_PRECISION (tmode)
12753 && mode_width <= BITS_PER_WORD
12754 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12755 || (mode_width <= GET_MODE_PRECISION (tmode)
12756 && subreg_lowpart_p (XEXP (op0, 0))))
12757 && mode_width <= HOST_BITS_PER_WIDE_INT
12758 && HWI_COMPUTABLE_MODE_P (tmode)
12759 && (c1 & ~mask) == 0
12760 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12761 && c1 != mask
12762 && c1 != GET_MODE_MASK (tmode))
12763 {
12764 op0 = simplify_gen_binary (AND, tmode,
12765 SUBREG_REG (XEXP (op0, 0)),
12766 gen_int_mode (c1, tmode));
12767 op0 = gen_lowpart (mode, op0);
12768 continue;
12769 }
12770 }
12771
12772 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12773 if (const_op == 0 && equality_comparison_p
12774 && XEXP (op0, 1) == const1_rtx
12775 && GET_CODE (XEXP (op0, 0)) == NOT)
12776 {
12777 op0 = simplify_and_const_int (NULL_RTX, mode,
12778 XEXP (XEXP (op0, 0), 0), 1);
12779 code = (code == NE ? EQ : NE);
12780 continue;
12781 }
12782
12783 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12784 (eq (and (lshiftrt X) 1) 0).
12785 Also handle the case where (not X) is expressed using xor. */
12786 if (const_op == 0 && equality_comparison_p
12787 && XEXP (op0, 1) == const1_rtx
12788 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12789 {
12790 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12791 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12792
12793 if (GET_CODE (shift_op) == NOT
12794 || (GET_CODE (shift_op) == XOR
12795 && CONST_INT_P (XEXP (shift_op, 1))
12796 && CONST_INT_P (shift_count)
12797 && HWI_COMPUTABLE_MODE_P (mode)
12798 && (UINTVAL (XEXP (shift_op, 1))
12799 == HOST_WIDE_INT_1U
12800 << INTVAL (shift_count))))
12801 {
12802 op0
12803 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12804 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12805 code = (code == NE ? EQ : NE);
12806 continue;
12807 }
12808 }
12809 break;
12810
12811 case ASHIFT:
12812 /* If we have (compare (ashift FOO N) (const_int C)) and
12813 the high order N bits of FOO (N+1 if an inequality comparison)
12814 are known to be zero, we can do this by comparing FOO with C
12815 shifted right N bits so long as the low-order N bits of C are
12816 zero. */
12817 if (CONST_INT_P (XEXP (op0, 1))
12818 && INTVAL (XEXP (op0, 1)) >= 0
12819 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12820 < HOST_BITS_PER_WIDE_INT)
12821 && (((unsigned HOST_WIDE_INT) const_op
12822 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12823 - 1)) == 0)
12824 && mode_width <= HOST_BITS_PER_WIDE_INT
12825 && (nonzero_bits (XEXP (op0, 0), mode)
12826 & ~(mask >> (INTVAL (XEXP (op0, 1))
12827 + ! equality_comparison_p))) == 0)
12828 {
12829 /* We must perform a logical shift, not an arithmetic one,
12830 as we want the top N bits of C to be zero. */
12831 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12832
12833 temp >>= INTVAL (XEXP (op0, 1));
12834 op1 = gen_int_mode (temp, mode);
12835 op0 = XEXP (op0, 0);
12836 continue;
12837 }
12838
12839 /* If we are doing a sign bit comparison, it means we are testing
12840 a particular bit. Convert it to the appropriate AND. */
12841 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12842 && mode_width <= HOST_BITS_PER_WIDE_INT)
12843 {
12844 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12845 (HOST_WIDE_INT_1U
12846 << (mode_width - 1
12847 - INTVAL (XEXP (op0, 1)))));
12848 code = (code == LT ? NE : EQ);
12849 continue;
12850 }
12851
12852 /* If this an equality comparison with zero and we are shifting
12853 the low bit to the sign bit, we can convert this to an AND of the
12854 low-order bit. */
12855 if (const_op == 0 && equality_comparison_p
12856 && CONST_INT_P (XEXP (op0, 1))
12857 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12858 {
12859 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12860 continue;
12861 }
12862 break;
12863
12864 case ASHIFTRT:
12865 /* If this is an equality comparison with zero, we can do this
12866 as a logical shift, which might be much simpler. */
12867 if (equality_comparison_p && const_op == 0
12868 && CONST_INT_P (XEXP (op0, 1)))
12869 {
12870 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12871 XEXP (op0, 0),
12872 INTVAL (XEXP (op0, 1)));
12873 continue;
12874 }
12875
12876 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12877 do the comparison in a narrower mode. */
12878 if (! unsigned_comparison_p
12879 && CONST_INT_P (XEXP (op0, 1))
12880 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12881 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12882 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12883 .exists (&tmode))
12884 && (((unsigned HOST_WIDE_INT) const_op
12885 + (GET_MODE_MASK (tmode) >> 1) + 1)
12886 <= GET_MODE_MASK (tmode)))
12887 {
12888 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12889 continue;
12890 }
12891
12892 /* Likewise if OP0 is a PLUS of a sign extension with a
12893 constant, which is usually represented with the PLUS
12894 between the shifts. */
12895 if (! unsigned_comparison_p
12896 && CONST_INT_P (XEXP (op0, 1))
12897 && GET_CODE (XEXP (op0, 0)) == PLUS
12898 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12899 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12900 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12901 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12902 .exists (&tmode))
12903 && (((unsigned HOST_WIDE_INT) const_op
12904 + (GET_MODE_MASK (tmode) >> 1) + 1)
12905 <= GET_MODE_MASK (tmode)))
12906 {
12907 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12908 rtx add_const = XEXP (XEXP (op0, 0), 1);
12909 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12910 add_const, XEXP (op0, 1));
12911
12912 op0 = simplify_gen_binary (PLUS, tmode,
12913 gen_lowpart (tmode, inner),
12914 new_const);
12915 continue;
12916 }
12917
12918 /* FALLTHROUGH */
12919 case LSHIFTRT:
12920 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12921 the low order N bits of FOO are known to be zero, we can do this
12922 by comparing FOO with C shifted left N bits so long as no
12923 overflow occurs. Even if the low order N bits of FOO aren't known
12924 to be zero, if the comparison is >= or < we can use the same
12925 optimization and for > or <= by setting all the low
12926 order N bits in the comparison constant. */
12927 if (CONST_INT_P (XEXP (op0, 1))
12928 && INTVAL (XEXP (op0, 1)) > 0
12929 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12930 && mode_width <= HOST_BITS_PER_WIDE_INT
12931 && (((unsigned HOST_WIDE_INT) const_op
12932 + (GET_CODE (op0) != LSHIFTRT
12933 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12934 + 1)
12935 : 0))
12936 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12937 {
12938 unsigned HOST_WIDE_INT low_bits
12939 = (nonzero_bits (XEXP (op0, 0), mode)
12940 & ((HOST_WIDE_INT_1U
12941 << INTVAL (XEXP (op0, 1))) - 1));
12942 if (low_bits == 0 || !equality_comparison_p)
12943 {
12944 /* If the shift was logical, then we must make the condition
12945 unsigned. */
12946 if (GET_CODE (op0) == LSHIFTRT)
12947 code = unsigned_condition (code);
12948
12949 const_op = (unsigned HOST_WIDE_INT) const_op
12950 << INTVAL (XEXP (op0, 1));
12951 if (low_bits != 0
12952 && (code == GT || code == GTU
12953 || code == LE || code == LEU))
12954 const_op
12955 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12956 op1 = GEN_INT (const_op);
12957 op0 = XEXP (op0, 0);
12958 continue;
12959 }
12960 }
12961
12962 /* If we are using this shift to extract just the sign bit, we
12963 can replace this with an LT or GE comparison. */
12964 if (const_op == 0
12965 && (equality_comparison_p || sign_bit_comparison_p)
12966 && CONST_INT_P (XEXP (op0, 1))
12967 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12968 {
12969 op0 = XEXP (op0, 0);
12970 code = (code == NE || code == GT ? LT : GE);
12971 continue;
12972 }
12973 break;
12974
12975 default:
12976 break;
12977 }
12978
12979 break;
12980 }
12981
12982 /* Now make any compound operations involved in this comparison. Then,
12983 check for an outmost SUBREG on OP0 that is not doing anything or is
12984 paradoxical. The latter transformation must only be performed when
12985 it is known that the "extra" bits will be the same in op0 and op1 or
12986 that they don't matter. There are three cases to consider:
12987
12988 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12989 care bits and we can assume they have any convenient value. So
12990 making the transformation is safe.
12991
12992 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12993 In this case the upper bits of op0 are undefined. We should not make
12994 the simplification in that case as we do not know the contents of
12995 those bits.
12996
12997 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12998 In that case we know those bits are zeros or ones. We must also be
12999 sure that they are the same as the upper bits of op1.
13000
13001 We can never remove a SUBREG for a non-equality comparison because
13002 the sign bit is in a different place in the underlying object. */
13003
13004 rtx_code op0_mco_code = SET;
13005 if (op1 == const0_rtx)
13006 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
13007
13008 op0 = make_compound_operation (op0, op0_mco_code);
13009 op1 = make_compound_operation (op1, SET);
13010
13011 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
13012 && is_int_mode (GET_MODE (op0), &mode)
13013 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
13014 && (code == NE || code == EQ))
13015 {
13016 if (paradoxical_subreg_p (op0))
13017 {
13018 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13019 implemented. */
13020 if (REG_P (SUBREG_REG (op0)))
13021 {
13022 op0 = SUBREG_REG (op0);
13023 op1 = gen_lowpart (inner_mode, op1);
13024 }
13025 }
13026 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
13027 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
13028 & ~GET_MODE_MASK (mode)) == 0)
13029 {
13030 tem = gen_lowpart (inner_mode, op1);
13031
13032 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
13033 op0 = SUBREG_REG (op0), op1 = tem;
13034 }
13035 }
13036
13037 /* We now do the opposite procedure: Some machines don't have compare
13038 insns in all modes. If OP0's mode is an integer mode smaller than a
13039 word and we can't do a compare in that mode, see if there is a larger
13040 mode for which we can do the compare. There are a number of cases in
13041 which we can use the wider mode. */
13042
13043 if (is_int_mode (GET_MODE (op0), &mode)
13044 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
13045 && ! have_insn_for (COMPARE, mode))
13046 FOR_EACH_WIDER_MODE (tmode_iter, mode)
13047 {
13048 tmode = tmode_iter.require ();
13049 if (!HWI_COMPUTABLE_MODE_P (tmode))
13050 break;
13051 if (have_insn_for (COMPARE, tmode))
13052 {
13053 int zero_extended;
13054
13055 /* If this is a test for negative, we can make an explicit
13056 test of the sign bit. Test this first so we can use
13057 a paradoxical subreg to extend OP0. */
13058
13059 if (op1 == const0_rtx && (code == LT || code == GE)
13060 && HWI_COMPUTABLE_MODE_P (mode))
13061 {
13062 unsigned HOST_WIDE_INT sign
13063 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13064 op0 = simplify_gen_binary (AND, tmode,
13065 gen_lowpart (tmode, op0),
13066 gen_int_mode (sign, tmode));
13067 code = (code == LT) ? NE : EQ;
13068 break;
13069 }
13070
13071 /* If the only nonzero bits in OP0 and OP1 are those in the
13072 narrower mode and this is an equality or unsigned comparison,
13073 we can use the wider mode. Similarly for sign-extended
13074 values, in which case it is true for all comparisons. */
13075 zero_extended = ((code == EQ || code == NE
13076 || code == GEU || code == GTU
13077 || code == LEU || code == LTU)
13078 && (nonzero_bits (op0, tmode)
13079 & ~GET_MODE_MASK (mode)) == 0
13080 && ((CONST_INT_P (op1)
13081 || (nonzero_bits (op1, tmode)
13082 & ~GET_MODE_MASK (mode)) == 0)));
13083
13084 if (zero_extended
13085 || ((num_sign_bit_copies (op0, tmode)
13086 > (unsigned int) (GET_MODE_PRECISION (tmode)
13087 - GET_MODE_PRECISION (mode)))
13088 && (num_sign_bit_copies (op1, tmode)
13089 > (unsigned int) (GET_MODE_PRECISION (tmode)
13090 - GET_MODE_PRECISION (mode)))))
13091 {
13092 /* If OP0 is an AND and we don't have an AND in MODE either,
13093 make a new AND in the proper mode. */
13094 if (GET_CODE (op0) == AND
13095 && !have_insn_for (AND, mode))
13096 op0 = simplify_gen_binary (AND, tmode,
13097 gen_lowpart (tmode,
13098 XEXP (op0, 0)),
13099 gen_lowpart (tmode,
13100 XEXP (op0, 1)));
13101 else
13102 {
13103 if (zero_extended)
13104 {
13105 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13106 op0, mode);
13107 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13108 op1, mode);
13109 }
13110 else
13111 {
13112 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13113 op0, mode);
13114 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13115 op1, mode);
13116 }
13117 break;
13118 }
13119 }
13120 }
13121 }
13122
13123 /* We may have changed the comparison operands. Re-canonicalize. */
13124 if (swap_commutative_operands_p (op0, op1))
13125 {
13126 std::swap (op0, op1);
13127 code = swap_condition (code);
13128 }
13129
13130 /* If this machine only supports a subset of valid comparisons, see if we
13131 can convert an unsupported one into a supported one. */
13132 target_canonicalize_comparison (&code, &op0, &op1, 0);
13133
13134 *pop0 = op0;
13135 *pop1 = op1;
13136
13137 return code;
13138 }
13139 \f
13140 /* Utility function for record_value_for_reg. Count number of
13141 rtxs in X. */
13142 static int
13143 count_rtxs (rtx x)
13144 {
13145 enum rtx_code code = GET_CODE (x);
13146 const char *fmt;
13147 int i, j, ret = 1;
13148
13149 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13150 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13151 {
13152 rtx x0 = XEXP (x, 0);
13153 rtx x1 = XEXP (x, 1);
13154
13155 if (x0 == x1)
13156 return 1 + 2 * count_rtxs (x0);
13157
13158 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13159 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13160 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13161 return 2 + 2 * count_rtxs (x0)
13162 + count_rtxs (x == XEXP (x1, 0)
13163 ? XEXP (x1, 1) : XEXP (x1, 0));
13164
13165 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13166 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13167 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13168 return 2 + 2 * count_rtxs (x1)
13169 + count_rtxs (x == XEXP (x0, 0)
13170 ? XEXP (x0, 1) : XEXP (x0, 0));
13171 }
13172
13173 fmt = GET_RTX_FORMAT (code);
13174 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13175 if (fmt[i] == 'e')
13176 ret += count_rtxs (XEXP (x, i));
13177 else if (fmt[i] == 'E')
13178 for (j = 0; j < XVECLEN (x, i); j++)
13179 ret += count_rtxs (XVECEXP (x, i, j));
13180
13181 return ret;
13182 }
13183 \f
13184 /* Utility function for following routine. Called when X is part of a value
13185 being stored into last_set_value. Sets last_set_table_tick
13186 for each register mentioned. Similar to mention_regs in cse.c */
13187
13188 static void
13189 update_table_tick (rtx x)
13190 {
13191 enum rtx_code code = GET_CODE (x);
13192 const char *fmt = GET_RTX_FORMAT (code);
13193 int i, j;
13194
13195 if (code == REG)
13196 {
13197 unsigned int regno = REGNO (x);
13198 unsigned int endregno = END_REGNO (x);
13199 unsigned int r;
13200
13201 for (r = regno; r < endregno; r++)
13202 {
13203 reg_stat_type *rsp = &reg_stat[r];
13204 rsp->last_set_table_tick = label_tick;
13205 }
13206
13207 return;
13208 }
13209
13210 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13211 if (fmt[i] == 'e')
13212 {
13213 /* Check for identical subexpressions. If x contains
13214 identical subexpression we only have to traverse one of
13215 them. */
13216 if (i == 0 && ARITHMETIC_P (x))
13217 {
13218 /* Note that at this point x1 has already been
13219 processed. */
13220 rtx x0 = XEXP (x, 0);
13221 rtx x1 = XEXP (x, 1);
13222
13223 /* If x0 and x1 are identical then there is no need to
13224 process x0. */
13225 if (x0 == x1)
13226 break;
13227
13228 /* If x0 is identical to a subexpression of x1 then while
13229 processing x1, x0 has already been processed. Thus we
13230 are done with x. */
13231 if (ARITHMETIC_P (x1)
13232 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13233 break;
13234
13235 /* If x1 is identical to a subexpression of x0 then we
13236 still have to process the rest of x0. */
13237 if (ARITHMETIC_P (x0)
13238 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13239 {
13240 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13241 break;
13242 }
13243 }
13244
13245 update_table_tick (XEXP (x, i));
13246 }
13247 else if (fmt[i] == 'E')
13248 for (j = 0; j < XVECLEN (x, i); j++)
13249 update_table_tick (XVECEXP (x, i, j));
13250 }
13251
13252 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13253 are saying that the register is clobbered and we no longer know its
13254 value. If INSN is zero, don't update reg_stat[].last_set; this is
13255 only permitted with VALUE also zero and is used to invalidate the
13256 register. */
13257
13258 static void
13259 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13260 {
13261 unsigned int regno = REGNO (reg);
13262 unsigned int endregno = END_REGNO (reg);
13263 unsigned int i;
13264 reg_stat_type *rsp;
13265
13266 /* If VALUE contains REG and we have a previous value for REG, substitute
13267 the previous value. */
13268 if (value && insn && reg_overlap_mentioned_p (reg, value))
13269 {
13270 rtx tem;
13271
13272 /* Set things up so get_last_value is allowed to see anything set up to
13273 our insn. */
13274 subst_low_luid = DF_INSN_LUID (insn);
13275 tem = get_last_value (reg);
13276
13277 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13278 it isn't going to be useful and will take a lot of time to process,
13279 so just use the CLOBBER. */
13280
13281 if (tem)
13282 {
13283 if (ARITHMETIC_P (tem)
13284 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13285 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13286 tem = XEXP (tem, 0);
13287 else if (count_occurrences (value, reg, 1) >= 2)
13288 {
13289 /* If there are two or more occurrences of REG in VALUE,
13290 prevent the value from growing too much. */
13291 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13292 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13293 }
13294
13295 value = replace_rtx (copy_rtx (value), reg, tem);
13296 }
13297 }
13298
13299 /* For each register modified, show we don't know its value, that
13300 we don't know about its bitwise content, that its value has been
13301 updated, and that we don't know the location of the death of the
13302 register. */
13303 for (i = regno; i < endregno; i++)
13304 {
13305 rsp = &reg_stat[i];
13306
13307 if (insn)
13308 rsp->last_set = insn;
13309
13310 rsp->last_set_value = 0;
13311 rsp->last_set_mode = VOIDmode;
13312 rsp->last_set_nonzero_bits = 0;
13313 rsp->last_set_sign_bit_copies = 0;
13314 rsp->last_death = 0;
13315 rsp->truncated_to_mode = VOIDmode;
13316 }
13317
13318 /* Mark registers that are being referenced in this value. */
13319 if (value)
13320 update_table_tick (value);
13321
13322 /* Now update the status of each register being set.
13323 If someone is using this register in this block, set this register
13324 to invalid since we will get confused between the two lives in this
13325 basic block. This makes using this register always invalid. In cse, we
13326 scan the table to invalidate all entries using this register, but this
13327 is too much work for us. */
13328
13329 for (i = regno; i < endregno; i++)
13330 {
13331 rsp = &reg_stat[i];
13332 rsp->last_set_label = label_tick;
13333 if (!insn
13334 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13335 rsp->last_set_invalid = 1;
13336 else
13337 rsp->last_set_invalid = 0;
13338 }
13339
13340 /* The value being assigned might refer to X (like in "x++;"). In that
13341 case, we must replace it with (clobber (const_int 0)) to prevent
13342 infinite loops. */
13343 rsp = &reg_stat[regno];
13344 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13345 {
13346 value = copy_rtx (value);
13347 if (!get_last_value_validate (&value, insn, label_tick, 1))
13348 value = 0;
13349 }
13350
13351 /* For the main register being modified, update the value, the mode, the
13352 nonzero bits, and the number of sign bit copies. */
13353
13354 rsp->last_set_value = value;
13355
13356 if (value)
13357 {
13358 machine_mode mode = GET_MODE (reg);
13359 subst_low_luid = DF_INSN_LUID (insn);
13360 rsp->last_set_mode = mode;
13361 if (GET_MODE_CLASS (mode) == MODE_INT
13362 && HWI_COMPUTABLE_MODE_P (mode))
13363 mode = nonzero_bits_mode;
13364 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13365 rsp->last_set_sign_bit_copies
13366 = num_sign_bit_copies (value, GET_MODE (reg));
13367 }
13368 }
13369
13370 /* Called via note_stores from record_dead_and_set_regs to handle one
13371 SET or CLOBBER in an insn. DATA is the instruction in which the
13372 set is occurring. */
13373
13374 static void
13375 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13376 {
13377 rtx_insn *record_dead_insn = (rtx_insn *) data;
13378
13379 if (GET_CODE (dest) == SUBREG)
13380 dest = SUBREG_REG (dest);
13381
13382 if (!record_dead_insn)
13383 {
13384 if (REG_P (dest))
13385 record_value_for_reg (dest, NULL, NULL_RTX);
13386 return;
13387 }
13388
13389 if (REG_P (dest))
13390 {
13391 /* If we are setting the whole register, we know its value. Otherwise
13392 show that we don't know the value. We can handle a SUBREG if it's
13393 the low part, but we must be careful with paradoxical SUBREGs on
13394 RISC architectures because we cannot strip e.g. an extension around
13395 a load and record the naked load since the RTL middle-end considers
13396 that the upper bits are defined according to LOAD_EXTEND_OP. */
13397 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13398 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13399 else if (GET_CODE (setter) == SET
13400 && GET_CODE (SET_DEST (setter)) == SUBREG
13401 && SUBREG_REG (SET_DEST (setter)) == dest
13402 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13403 BITS_PER_WORD)
13404 && subreg_lowpart_p (SET_DEST (setter)))
13405 record_value_for_reg (dest, record_dead_insn,
13406 WORD_REGISTER_OPERATIONS
13407 && word_register_operation_p (SET_SRC (setter))
13408 && paradoxical_subreg_p (SET_DEST (setter))
13409 ? SET_SRC (setter)
13410 : gen_lowpart (GET_MODE (dest),
13411 SET_SRC (setter)));
13412 else if (GET_CODE (setter) == CLOBBER_HIGH)
13413 {
13414 reg_stat_type *rsp = &reg_stat[REGNO (dest)];
13415 if (rsp->last_set_value
13416 && reg_is_clobbered_by_clobber_high
13417 (REGNO (dest), GET_MODE (rsp->last_set_value),
13418 XEXP (setter, 0)))
13419 record_value_for_reg (dest, NULL, NULL_RTX);
13420 }
13421 else
13422 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13423 }
13424 else if (MEM_P (dest)
13425 /* Ignore pushes, they clobber nothing. */
13426 && ! push_operand (dest, GET_MODE (dest)))
13427 mem_last_set = DF_INSN_LUID (record_dead_insn);
13428 }
13429
13430 /* Update the records of when each REG was most recently set or killed
13431 for the things done by INSN. This is the last thing done in processing
13432 INSN in the combiner loop.
13433
13434 We update reg_stat[], in particular fields last_set, last_set_value,
13435 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13436 last_death, and also the similar information mem_last_set (which insn
13437 most recently modified memory) and last_call_luid (which insn was the
13438 most recent subroutine call). */
13439
13440 static void
13441 record_dead_and_set_regs (rtx_insn *insn)
13442 {
13443 rtx link;
13444 unsigned int i;
13445
13446 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13447 {
13448 if (REG_NOTE_KIND (link) == REG_DEAD
13449 && REG_P (XEXP (link, 0)))
13450 {
13451 unsigned int regno = REGNO (XEXP (link, 0));
13452 unsigned int endregno = END_REGNO (XEXP (link, 0));
13453
13454 for (i = regno; i < endregno; i++)
13455 {
13456 reg_stat_type *rsp;
13457
13458 rsp = &reg_stat[i];
13459 rsp->last_death = insn;
13460 }
13461 }
13462 else if (REG_NOTE_KIND (link) == REG_INC)
13463 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13464 }
13465
13466 if (CALL_P (insn))
13467 {
13468 hard_reg_set_iterator hrsi;
13469 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13470 {
13471 reg_stat_type *rsp;
13472
13473 rsp = &reg_stat[i];
13474 rsp->last_set_invalid = 1;
13475 rsp->last_set = insn;
13476 rsp->last_set_value = 0;
13477 rsp->last_set_mode = VOIDmode;
13478 rsp->last_set_nonzero_bits = 0;
13479 rsp->last_set_sign_bit_copies = 0;
13480 rsp->last_death = 0;
13481 rsp->truncated_to_mode = VOIDmode;
13482 }
13483
13484 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13485
13486 /* We can't combine into a call pattern. Remember, though, that
13487 the return value register is set at this LUID. We could
13488 still replace a register with the return value from the
13489 wrong subroutine call! */
13490 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13491 }
13492 else
13493 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13494 }
13495
13496 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13497 register present in the SUBREG, so for each such SUBREG go back and
13498 adjust nonzero and sign bit information of the registers that are
13499 known to have some zero/sign bits set.
13500
13501 This is needed because when combine blows the SUBREGs away, the
13502 information on zero/sign bits is lost and further combines can be
13503 missed because of that. */
13504
13505 static void
13506 record_promoted_value (rtx_insn *insn, rtx subreg)
13507 {
13508 struct insn_link *links;
13509 rtx set;
13510 unsigned int regno = REGNO (SUBREG_REG (subreg));
13511 machine_mode mode = GET_MODE (subreg);
13512
13513 if (!HWI_COMPUTABLE_MODE_P (mode))
13514 return;
13515
13516 for (links = LOG_LINKS (insn); links;)
13517 {
13518 reg_stat_type *rsp;
13519
13520 insn = links->insn;
13521 set = single_set (insn);
13522
13523 if (! set || !REG_P (SET_DEST (set))
13524 || REGNO (SET_DEST (set)) != regno
13525 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13526 {
13527 links = links->next;
13528 continue;
13529 }
13530
13531 rsp = &reg_stat[regno];
13532 if (rsp->last_set == insn)
13533 {
13534 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13535 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13536 }
13537
13538 if (REG_P (SET_SRC (set)))
13539 {
13540 regno = REGNO (SET_SRC (set));
13541 links = LOG_LINKS (insn);
13542 }
13543 else
13544 break;
13545 }
13546 }
13547
13548 /* Check if X, a register, is known to contain a value already
13549 truncated to MODE. In this case we can use a subreg to refer to
13550 the truncated value even though in the generic case we would need
13551 an explicit truncation. */
13552
13553 static bool
13554 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13555 {
13556 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13557 machine_mode truncated = rsp->truncated_to_mode;
13558
13559 if (truncated == 0
13560 || rsp->truncation_label < label_tick_ebb_start)
13561 return false;
13562 if (!partial_subreg_p (mode, truncated))
13563 return true;
13564 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13565 return true;
13566 return false;
13567 }
13568
13569 /* If X is a hard reg or a subreg record the mode that the register is
13570 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13571 able to turn a truncate into a subreg using this information. Return true
13572 if traversing X is complete. */
13573
13574 static bool
13575 record_truncated_value (rtx x)
13576 {
13577 machine_mode truncated_mode;
13578 reg_stat_type *rsp;
13579
13580 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13581 {
13582 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13583 truncated_mode = GET_MODE (x);
13584
13585 if (!partial_subreg_p (truncated_mode, original_mode))
13586 return true;
13587
13588 truncated_mode = GET_MODE (x);
13589 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13590 return true;
13591
13592 x = SUBREG_REG (x);
13593 }
13594 /* ??? For hard-regs we now record everything. We might be able to
13595 optimize this using last_set_mode. */
13596 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13597 truncated_mode = GET_MODE (x);
13598 else
13599 return false;
13600
13601 rsp = &reg_stat[REGNO (x)];
13602 if (rsp->truncated_to_mode == 0
13603 || rsp->truncation_label < label_tick_ebb_start
13604 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13605 {
13606 rsp->truncated_to_mode = truncated_mode;
13607 rsp->truncation_label = label_tick;
13608 }
13609
13610 return true;
13611 }
13612
13613 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13614 the modes they are used in. This can help truning TRUNCATEs into
13615 SUBREGs. */
13616
13617 static void
13618 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13619 {
13620 subrtx_var_iterator::array_type array;
13621 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13622 if (record_truncated_value (*iter))
13623 iter.skip_subrtxes ();
13624 }
13625
13626 /* Scan X for promoted SUBREGs. For each one found,
13627 note what it implies to the registers used in it. */
13628
13629 static void
13630 check_promoted_subreg (rtx_insn *insn, rtx x)
13631 {
13632 if (GET_CODE (x) == SUBREG
13633 && SUBREG_PROMOTED_VAR_P (x)
13634 && REG_P (SUBREG_REG (x)))
13635 record_promoted_value (insn, x);
13636 else
13637 {
13638 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13639 int i, j;
13640
13641 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13642 switch (format[i])
13643 {
13644 case 'e':
13645 check_promoted_subreg (insn, XEXP (x, i));
13646 break;
13647 case 'V':
13648 case 'E':
13649 if (XVEC (x, i) != 0)
13650 for (j = 0; j < XVECLEN (x, i); j++)
13651 check_promoted_subreg (insn, XVECEXP (x, i, j));
13652 break;
13653 }
13654 }
13655 }
13656 \f
13657 /* Verify that all the registers and memory references mentioned in *LOC are
13658 still valid. *LOC was part of a value set in INSN when label_tick was
13659 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13660 the invalid references with (clobber (const_int 0)) and return 1. This
13661 replacement is useful because we often can get useful information about
13662 the form of a value (e.g., if it was produced by a shift that always
13663 produces -1 or 0) even though we don't know exactly what registers it
13664 was produced from. */
13665
13666 static int
13667 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13668 {
13669 rtx x = *loc;
13670 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13671 int len = GET_RTX_LENGTH (GET_CODE (x));
13672 int i, j;
13673
13674 if (REG_P (x))
13675 {
13676 unsigned int regno = REGNO (x);
13677 unsigned int endregno = END_REGNO (x);
13678 unsigned int j;
13679
13680 for (j = regno; j < endregno; j++)
13681 {
13682 reg_stat_type *rsp = &reg_stat[j];
13683 if (rsp->last_set_invalid
13684 /* If this is a pseudo-register that was only set once and not
13685 live at the beginning of the function, it is always valid. */
13686 || (! (regno >= FIRST_PSEUDO_REGISTER
13687 && regno < reg_n_sets_max
13688 && REG_N_SETS (regno) == 1
13689 && (!REGNO_REG_SET_P
13690 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13691 regno)))
13692 && rsp->last_set_label > tick))
13693 {
13694 if (replace)
13695 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13696 return replace;
13697 }
13698 }
13699
13700 return 1;
13701 }
13702 /* If this is a memory reference, make sure that there were no stores after
13703 it that might have clobbered the value. We don't have alias info, so we
13704 assume any store invalidates it. Moreover, we only have local UIDs, so
13705 we also assume that there were stores in the intervening basic blocks. */
13706 else if (MEM_P (x) && !MEM_READONLY_P (x)
13707 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13708 {
13709 if (replace)
13710 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13711 return replace;
13712 }
13713
13714 for (i = 0; i < len; i++)
13715 {
13716 if (fmt[i] == 'e')
13717 {
13718 /* Check for identical subexpressions. If x contains
13719 identical subexpression we only have to traverse one of
13720 them. */
13721 if (i == 1 && ARITHMETIC_P (x))
13722 {
13723 /* Note that at this point x0 has already been checked
13724 and found valid. */
13725 rtx x0 = XEXP (x, 0);
13726 rtx x1 = XEXP (x, 1);
13727
13728 /* If x0 and x1 are identical then x is also valid. */
13729 if (x0 == x1)
13730 return 1;
13731
13732 /* If x1 is identical to a subexpression of x0 then
13733 while checking x0, x1 has already been checked. Thus
13734 it is valid and so as x. */
13735 if (ARITHMETIC_P (x0)
13736 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13737 return 1;
13738
13739 /* If x0 is identical to a subexpression of x1 then x is
13740 valid iff the rest of x1 is valid. */
13741 if (ARITHMETIC_P (x1)
13742 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13743 return
13744 get_last_value_validate (&XEXP (x1,
13745 x0 == XEXP (x1, 0) ? 1 : 0),
13746 insn, tick, replace);
13747 }
13748
13749 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13750 replace) == 0)
13751 return 0;
13752 }
13753 else if (fmt[i] == 'E')
13754 for (j = 0; j < XVECLEN (x, i); j++)
13755 if (get_last_value_validate (&XVECEXP (x, i, j),
13756 insn, tick, replace) == 0)
13757 return 0;
13758 }
13759
13760 /* If we haven't found a reason for it to be invalid, it is valid. */
13761 return 1;
13762 }
13763
13764 /* Get the last value assigned to X, if known. Some registers
13765 in the value may be replaced with (clobber (const_int 0)) if their value
13766 is known longer known reliably. */
13767
13768 static rtx
13769 get_last_value (const_rtx x)
13770 {
13771 unsigned int regno;
13772 rtx value;
13773 reg_stat_type *rsp;
13774
13775 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13776 then convert it to the desired mode. If this is a paradoxical SUBREG,
13777 we cannot predict what values the "extra" bits might have. */
13778 if (GET_CODE (x) == SUBREG
13779 && subreg_lowpart_p (x)
13780 && !paradoxical_subreg_p (x)
13781 && (value = get_last_value (SUBREG_REG (x))) != 0)
13782 return gen_lowpart (GET_MODE (x), value);
13783
13784 if (!REG_P (x))
13785 return 0;
13786
13787 regno = REGNO (x);
13788 rsp = &reg_stat[regno];
13789 value = rsp->last_set_value;
13790
13791 /* If we don't have a value, or if it isn't for this basic block and
13792 it's either a hard register, set more than once, or it's a live
13793 at the beginning of the function, return 0.
13794
13795 Because if it's not live at the beginning of the function then the reg
13796 is always set before being used (is never used without being set).
13797 And, if it's set only once, and it's always set before use, then all
13798 uses must have the same last value, even if it's not from this basic
13799 block. */
13800
13801 if (value == 0
13802 || (rsp->last_set_label < label_tick_ebb_start
13803 && (regno < FIRST_PSEUDO_REGISTER
13804 || regno >= reg_n_sets_max
13805 || REG_N_SETS (regno) != 1
13806 || REGNO_REG_SET_P
13807 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13808 return 0;
13809
13810 /* If the value was set in a later insn than the ones we are processing,
13811 we can't use it even if the register was only set once. */
13812 if (rsp->last_set_label == label_tick
13813 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13814 return 0;
13815
13816 /* If fewer bits were set than what we are asked for now, we cannot use
13817 the value. */
13818 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13819 GET_MODE_PRECISION (GET_MODE (x))))
13820 return 0;
13821
13822 /* If the value has all its registers valid, return it. */
13823 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13824 return value;
13825
13826 /* Otherwise, make a copy and replace any invalid register with
13827 (clobber (const_int 0)). If that fails for some reason, return 0. */
13828
13829 value = copy_rtx (value);
13830 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13831 return value;
13832
13833 return 0;
13834 }
13835 \f
13836 /* Define three variables used for communication between the following
13837 routines. */
13838
13839 static unsigned int reg_dead_regno, reg_dead_endregno;
13840 static int reg_dead_flag;
13841 rtx reg_dead_reg;
13842
13843 /* Function called via note_stores from reg_dead_at_p.
13844
13845 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13846 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13847
13848 static void
13849 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13850 {
13851 unsigned int regno, endregno;
13852
13853 if (!REG_P (dest))
13854 return;
13855
13856 if (GET_CODE (x) == CLOBBER_HIGH
13857 && !reg_is_clobbered_by_clobber_high (reg_dead_reg, XEXP (x, 0)))
13858 return;
13859
13860 regno = REGNO (dest);
13861 endregno = END_REGNO (dest);
13862 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13863 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13864 }
13865
13866 /* Return nonzero if REG is known to be dead at INSN.
13867
13868 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13869 referencing REG, it is dead. If we hit a SET referencing REG, it is
13870 live. Otherwise, see if it is live or dead at the start of the basic
13871 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13872 must be assumed to be always live. */
13873
13874 static int
13875 reg_dead_at_p (rtx reg, rtx_insn *insn)
13876 {
13877 basic_block block;
13878 unsigned int i;
13879
13880 /* Set variables for reg_dead_at_p_1. */
13881 reg_dead_regno = REGNO (reg);
13882 reg_dead_endregno = END_REGNO (reg);
13883 reg_dead_reg = reg;
13884
13885 reg_dead_flag = 0;
13886
13887 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13888 we allow the machine description to decide whether use-and-clobber
13889 patterns are OK. */
13890 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13891 {
13892 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13893 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13894 return 0;
13895 }
13896
13897 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13898 beginning of basic block. */
13899 block = BLOCK_FOR_INSN (insn);
13900 for (;;)
13901 {
13902 if (INSN_P (insn))
13903 {
13904 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13905 return 1;
13906
13907 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13908 if (reg_dead_flag)
13909 return reg_dead_flag == 1 ? 1 : 0;
13910
13911 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13912 return 1;
13913 }
13914
13915 if (insn == BB_HEAD (block))
13916 break;
13917
13918 insn = PREV_INSN (insn);
13919 }
13920
13921 /* Look at live-in sets for the basic block that we were in. */
13922 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13923 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13924 return 0;
13925
13926 return 1;
13927 }
13928 \f
13929 /* Note hard registers in X that are used. */
13930
13931 static void
13932 mark_used_regs_combine (rtx x)
13933 {
13934 RTX_CODE code = GET_CODE (x);
13935 unsigned int regno;
13936 int i;
13937
13938 switch (code)
13939 {
13940 case LABEL_REF:
13941 case SYMBOL_REF:
13942 case CONST:
13943 CASE_CONST_ANY:
13944 case PC:
13945 case ADDR_VEC:
13946 case ADDR_DIFF_VEC:
13947 case ASM_INPUT:
13948 /* CC0 must die in the insn after it is set, so we don't need to take
13949 special note of it here. */
13950 case CC0:
13951 return;
13952
13953 case CLOBBER:
13954 /* If we are clobbering a MEM, mark any hard registers inside the
13955 address as used. */
13956 if (MEM_P (XEXP (x, 0)))
13957 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13958 return;
13959
13960 case REG:
13961 regno = REGNO (x);
13962 /* A hard reg in a wide mode may really be multiple registers.
13963 If so, mark all of them just like the first. */
13964 if (regno < FIRST_PSEUDO_REGISTER)
13965 {
13966 /* None of this applies to the stack, frame or arg pointers. */
13967 if (regno == STACK_POINTER_REGNUM
13968 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13969 && regno == HARD_FRAME_POINTER_REGNUM)
13970 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13971 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13972 || regno == FRAME_POINTER_REGNUM)
13973 return;
13974
13975 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13976 }
13977 return;
13978
13979 case SET:
13980 {
13981 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13982 the address. */
13983 rtx testreg = SET_DEST (x);
13984
13985 while (GET_CODE (testreg) == SUBREG
13986 || GET_CODE (testreg) == ZERO_EXTRACT
13987 || GET_CODE (testreg) == STRICT_LOW_PART)
13988 testreg = XEXP (testreg, 0);
13989
13990 if (MEM_P (testreg))
13991 mark_used_regs_combine (XEXP (testreg, 0));
13992
13993 mark_used_regs_combine (SET_SRC (x));
13994 }
13995 return;
13996
13997 default:
13998 break;
13999 }
14000
14001 /* Recursively scan the operands of this expression. */
14002
14003 {
14004 const char *fmt = GET_RTX_FORMAT (code);
14005
14006 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
14007 {
14008 if (fmt[i] == 'e')
14009 mark_used_regs_combine (XEXP (x, i));
14010 else if (fmt[i] == 'E')
14011 {
14012 int j;
14013
14014 for (j = 0; j < XVECLEN (x, i); j++)
14015 mark_used_regs_combine (XVECEXP (x, i, j));
14016 }
14017 }
14018 }
14019 }
14020 \f
14021 /* Remove register number REGNO from the dead registers list of INSN.
14022
14023 Return the note used to record the death, if there was one. */
14024
14025 rtx
14026 remove_death (unsigned int regno, rtx_insn *insn)
14027 {
14028 rtx note = find_regno_note (insn, REG_DEAD, regno);
14029
14030 if (note)
14031 remove_note (insn, note);
14032
14033 return note;
14034 }
14035
14036 /* For each register (hardware or pseudo) used within expression X, if its
14037 death is in an instruction with luid between FROM_LUID (inclusive) and
14038 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14039 list headed by PNOTES.
14040
14041 That said, don't move registers killed by maybe_kill_insn.
14042
14043 This is done when X is being merged by combination into TO_INSN. These
14044 notes will then be distributed as needed. */
14045
14046 static void
14047 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
14048 rtx *pnotes)
14049 {
14050 const char *fmt;
14051 int len, i;
14052 enum rtx_code code = GET_CODE (x);
14053
14054 if (code == REG)
14055 {
14056 unsigned int regno = REGNO (x);
14057 rtx_insn *where_dead = reg_stat[regno].last_death;
14058
14059 /* If we do not know where the register died, it may still die between
14060 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14061 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14062 {
14063 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14064 while (insn
14065 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
14066 && DF_INSN_LUID (insn) >= from_luid)
14067 {
14068 if (dead_or_set_regno_p (insn, regno))
14069 {
14070 if (find_regno_note (insn, REG_DEAD, regno))
14071 where_dead = insn;
14072 break;
14073 }
14074
14075 insn = prev_real_nondebug_insn (insn);
14076 }
14077 }
14078
14079 /* Don't move the register if it gets killed in between from and to. */
14080 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14081 && ! reg_referenced_p (x, maybe_kill_insn))
14082 return;
14083
14084 if (where_dead
14085 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
14086 && DF_INSN_LUID (where_dead) >= from_luid
14087 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14088 {
14089 rtx note = remove_death (regno, where_dead);
14090
14091 /* It is possible for the call above to return 0. This can occur
14092 when last_death points to I2 or I1 that we combined with.
14093 In that case make a new note.
14094
14095 We must also check for the case where X is a hard register
14096 and NOTE is a death note for a range of hard registers
14097 including X. In that case, we must put REG_DEAD notes for
14098 the remaining registers in place of NOTE. */
14099
14100 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14101 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14102 {
14103 unsigned int deadregno = REGNO (XEXP (note, 0));
14104 unsigned int deadend = END_REGNO (XEXP (note, 0));
14105 unsigned int ourend = END_REGNO (x);
14106 unsigned int i;
14107
14108 for (i = deadregno; i < deadend; i++)
14109 if (i < regno || i >= ourend)
14110 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14111 }
14112
14113 /* If we didn't find any note, or if we found a REG_DEAD note that
14114 covers only part of the given reg, and we have a multi-reg hard
14115 register, then to be safe we must check for REG_DEAD notes
14116 for each register other than the first. They could have
14117 their own REG_DEAD notes lying around. */
14118 else if ((note == 0
14119 || (note != 0
14120 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14121 GET_MODE (x))))
14122 && regno < FIRST_PSEUDO_REGISTER
14123 && REG_NREGS (x) > 1)
14124 {
14125 unsigned int ourend = END_REGNO (x);
14126 unsigned int i, offset;
14127 rtx oldnotes = 0;
14128
14129 if (note)
14130 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14131 else
14132 offset = 1;
14133
14134 for (i = regno + offset; i < ourend; i++)
14135 move_deaths (regno_reg_rtx[i],
14136 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14137 }
14138
14139 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14140 {
14141 XEXP (note, 1) = *pnotes;
14142 *pnotes = note;
14143 }
14144 else
14145 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14146 }
14147
14148 return;
14149 }
14150
14151 else if (GET_CODE (x) == SET)
14152 {
14153 rtx dest = SET_DEST (x);
14154
14155 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14156
14157 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14158 that accesses one word of a multi-word item, some
14159 piece of everything register in the expression is used by
14160 this insn, so remove any old death. */
14161 /* ??? So why do we test for equality of the sizes? */
14162
14163 if (GET_CODE (dest) == ZERO_EXTRACT
14164 || GET_CODE (dest) == STRICT_LOW_PART
14165 || (GET_CODE (dest) == SUBREG
14166 && !read_modify_subreg_p (dest)))
14167 {
14168 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14169 return;
14170 }
14171
14172 /* If this is some other SUBREG, we know it replaces the entire
14173 value, so use that as the destination. */
14174 if (GET_CODE (dest) == SUBREG)
14175 dest = SUBREG_REG (dest);
14176
14177 /* If this is a MEM, adjust deaths of anything used in the address.
14178 For a REG (the only other possibility), the entire value is
14179 being replaced so the old value is not used in this insn. */
14180
14181 if (MEM_P (dest))
14182 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14183 to_insn, pnotes);
14184 return;
14185 }
14186
14187 else if (GET_CODE (x) == CLOBBER)
14188 return;
14189
14190 len = GET_RTX_LENGTH (code);
14191 fmt = GET_RTX_FORMAT (code);
14192
14193 for (i = 0; i < len; i++)
14194 {
14195 if (fmt[i] == 'E')
14196 {
14197 int j;
14198 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14199 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14200 to_insn, pnotes);
14201 }
14202 else if (fmt[i] == 'e')
14203 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14204 }
14205 }
14206 \f
14207 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14208 pattern of an insn. X must be a REG. */
14209
14210 static int
14211 reg_bitfield_target_p (rtx x, rtx body)
14212 {
14213 int i;
14214
14215 if (GET_CODE (body) == SET)
14216 {
14217 rtx dest = SET_DEST (body);
14218 rtx target;
14219 unsigned int regno, tregno, endregno, endtregno;
14220
14221 if (GET_CODE (dest) == ZERO_EXTRACT)
14222 target = XEXP (dest, 0);
14223 else if (GET_CODE (dest) == STRICT_LOW_PART)
14224 target = SUBREG_REG (XEXP (dest, 0));
14225 else
14226 return 0;
14227
14228 if (GET_CODE (target) == SUBREG)
14229 target = SUBREG_REG (target);
14230
14231 if (!REG_P (target))
14232 return 0;
14233
14234 tregno = REGNO (target), regno = REGNO (x);
14235 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14236 return target == x;
14237
14238 endtregno = end_hard_regno (GET_MODE (target), tregno);
14239 endregno = end_hard_regno (GET_MODE (x), regno);
14240
14241 return endregno > tregno && regno < endtregno;
14242 }
14243
14244 else if (GET_CODE (body) == PARALLEL)
14245 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14246 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14247 return 1;
14248
14249 return 0;
14250 }
14251 \f
14252 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14253 as appropriate. I3 and I2 are the insns resulting from the combination
14254 insns including FROM (I2 may be zero).
14255
14256 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14257 not need REG_DEAD notes because they are being substituted for. This
14258 saves searching in the most common cases.
14259
14260 Each note in the list is either ignored or placed on some insns, depending
14261 on the type of note. */
14262
14263 static void
14264 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14265 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14266 {
14267 rtx note, next_note;
14268 rtx tem_note;
14269 rtx_insn *tem_insn;
14270
14271 for (note = notes; note; note = next_note)
14272 {
14273 rtx_insn *place = 0, *place2 = 0;
14274
14275 next_note = XEXP (note, 1);
14276 switch (REG_NOTE_KIND (note))
14277 {
14278 case REG_BR_PROB:
14279 case REG_BR_PRED:
14280 /* Doesn't matter much where we put this, as long as it's somewhere.
14281 It is preferable to keep these notes on branches, which is most
14282 likely to be i3. */
14283 place = i3;
14284 break;
14285
14286 case REG_NON_LOCAL_GOTO:
14287 if (JUMP_P (i3))
14288 place = i3;
14289 else
14290 {
14291 gcc_assert (i2 && JUMP_P (i2));
14292 place = i2;
14293 }
14294 break;
14295
14296 case REG_EH_REGION:
14297 /* These notes must remain with the call or trapping instruction. */
14298 if (CALL_P (i3))
14299 place = i3;
14300 else if (i2 && CALL_P (i2))
14301 place = i2;
14302 else
14303 {
14304 gcc_assert (cfun->can_throw_non_call_exceptions);
14305 if (may_trap_p (i3))
14306 place = i3;
14307 else if (i2 && may_trap_p (i2))
14308 place = i2;
14309 /* ??? Otherwise assume we've combined things such that we
14310 can now prove that the instructions can't trap. Drop the
14311 note in this case. */
14312 }
14313 break;
14314
14315 case REG_ARGS_SIZE:
14316 /* ??? How to distribute between i3-i1. Assume i3 contains the
14317 entire adjustment. Assert i3 contains at least some adjust. */
14318 if (!noop_move_p (i3))
14319 {
14320 poly_int64 old_size, args_size = get_args_size (note);
14321 /* fixup_args_size_notes looks at REG_NORETURN note,
14322 so ensure the note is placed there first. */
14323 if (CALL_P (i3))
14324 {
14325 rtx *np;
14326 for (np = &next_note; *np; np = &XEXP (*np, 1))
14327 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14328 {
14329 rtx n = *np;
14330 *np = XEXP (n, 1);
14331 XEXP (n, 1) = REG_NOTES (i3);
14332 REG_NOTES (i3) = n;
14333 break;
14334 }
14335 }
14336 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14337 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14338 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14339 gcc_assert (maybe_ne (old_size, args_size)
14340 || (CALL_P (i3)
14341 && !ACCUMULATE_OUTGOING_ARGS
14342 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14343 }
14344 break;
14345
14346 case REG_NORETURN:
14347 case REG_SETJMP:
14348 case REG_TM:
14349 case REG_CALL_DECL:
14350 case REG_CALL_NOCF_CHECK:
14351 /* These notes must remain with the call. It should not be
14352 possible for both I2 and I3 to be a call. */
14353 if (CALL_P (i3))
14354 place = i3;
14355 else
14356 {
14357 gcc_assert (i2 && CALL_P (i2));
14358 place = i2;
14359 }
14360 break;
14361
14362 case REG_UNUSED:
14363 /* Any clobbers for i3 may still exist, and so we must process
14364 REG_UNUSED notes from that insn.
14365
14366 Any clobbers from i2 or i1 can only exist if they were added by
14367 recog_for_combine. In that case, recog_for_combine created the
14368 necessary REG_UNUSED notes. Trying to keep any original
14369 REG_UNUSED notes from these insns can cause incorrect output
14370 if it is for the same register as the original i3 dest.
14371 In that case, we will notice that the register is set in i3,
14372 and then add a REG_UNUSED note for the destination of i3, which
14373 is wrong. However, it is possible to have REG_UNUSED notes from
14374 i2 or i1 for register which were both used and clobbered, so
14375 we keep notes from i2 or i1 if they will turn into REG_DEAD
14376 notes. */
14377
14378 /* If this register is set or clobbered in I3, put the note there
14379 unless there is one already. */
14380 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14381 {
14382 if (from_insn != i3)
14383 break;
14384
14385 if (! (REG_P (XEXP (note, 0))
14386 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14387 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14388 place = i3;
14389 }
14390 /* Otherwise, if this register is used by I3, then this register
14391 now dies here, so we must put a REG_DEAD note here unless there
14392 is one already. */
14393 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14394 && ! (REG_P (XEXP (note, 0))
14395 ? find_regno_note (i3, REG_DEAD,
14396 REGNO (XEXP (note, 0)))
14397 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14398 {
14399 PUT_REG_NOTE_KIND (note, REG_DEAD);
14400 place = i3;
14401 }
14402
14403 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14404 but we can't tell which at this point. We must reset any
14405 expectations we had about the value that was previously
14406 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14407 and, if appropriate, restore its previous value, but we
14408 don't have enough information for that at this point. */
14409 else
14410 {
14411 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14412
14413 /* Otherwise, if this register is now referenced in i2
14414 then the register used to be modified in one of the
14415 original insns. If it was i3 (say, in an unused
14416 parallel), it's now completely gone, so the note can
14417 be discarded. But if it was modified in i2, i1 or i0
14418 and we still reference it in i2, then we're
14419 referencing the previous value, and since the
14420 register was modified and REG_UNUSED, we know that
14421 the previous value is now dead. So, if we only
14422 reference the register in i2, we change the note to
14423 REG_DEAD, to reflect the previous value. However, if
14424 we're also setting or clobbering the register as
14425 scratch, we know (because the register was not
14426 referenced in i3) that it's unused, just as it was
14427 unused before, and we place the note in i2. */
14428 if (from_insn != i3 && i2 && INSN_P (i2)
14429 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14430 {
14431 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14432 PUT_REG_NOTE_KIND (note, REG_DEAD);
14433 if (! (REG_P (XEXP (note, 0))
14434 ? find_regno_note (i2, REG_NOTE_KIND (note),
14435 REGNO (XEXP (note, 0)))
14436 : find_reg_note (i2, REG_NOTE_KIND (note),
14437 XEXP (note, 0))))
14438 place = i2;
14439 }
14440 }
14441
14442 break;
14443
14444 case REG_EQUAL:
14445 case REG_EQUIV:
14446 case REG_NOALIAS:
14447 /* These notes say something about results of an insn. We can
14448 only support them if they used to be on I3 in which case they
14449 remain on I3. Otherwise they are ignored.
14450
14451 If the note refers to an expression that is not a constant, we
14452 must also ignore the note since we cannot tell whether the
14453 equivalence is still true. It might be possible to do
14454 slightly better than this (we only have a problem if I2DEST
14455 or I1DEST is present in the expression), but it doesn't
14456 seem worth the trouble. */
14457
14458 if (from_insn == i3
14459 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14460 place = i3;
14461 break;
14462
14463 case REG_INC:
14464 /* These notes say something about how a register is used. They must
14465 be present on any use of the register in I2 or I3. */
14466 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14467 place = i3;
14468
14469 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14470 {
14471 if (place)
14472 place2 = i2;
14473 else
14474 place = i2;
14475 }
14476 break;
14477
14478 case REG_LABEL_TARGET:
14479 case REG_LABEL_OPERAND:
14480 /* This can show up in several ways -- either directly in the
14481 pattern, or hidden off in the constant pool with (or without?)
14482 a REG_EQUAL note. */
14483 /* ??? Ignore the without-reg_equal-note problem for now. */
14484 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14485 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14486 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14487 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14488 place = i3;
14489
14490 if (i2
14491 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14492 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14493 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14494 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14495 {
14496 if (place)
14497 place2 = i2;
14498 else
14499 place = i2;
14500 }
14501
14502 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14503 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14504 there. */
14505 if (place && JUMP_P (place)
14506 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14507 && (JUMP_LABEL (place) == NULL
14508 || JUMP_LABEL (place) == XEXP (note, 0)))
14509 {
14510 rtx label = JUMP_LABEL (place);
14511
14512 if (!label)
14513 JUMP_LABEL (place) = XEXP (note, 0);
14514 else if (LABEL_P (label))
14515 LABEL_NUSES (label)--;
14516 }
14517
14518 if (place2 && JUMP_P (place2)
14519 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14520 && (JUMP_LABEL (place2) == NULL
14521 || JUMP_LABEL (place2) == XEXP (note, 0)))
14522 {
14523 rtx label = JUMP_LABEL (place2);
14524
14525 if (!label)
14526 JUMP_LABEL (place2) = XEXP (note, 0);
14527 else if (LABEL_P (label))
14528 LABEL_NUSES (label)--;
14529 place2 = 0;
14530 }
14531 break;
14532
14533 case REG_NONNEG:
14534 /* This note says something about the value of a register prior
14535 to the execution of an insn. It is too much trouble to see
14536 if the note is still correct in all situations. It is better
14537 to simply delete it. */
14538 break;
14539
14540 case REG_DEAD:
14541 /* If we replaced the right hand side of FROM_INSN with a
14542 REG_EQUAL note, the original use of the dying register
14543 will not have been combined into I3 and I2. In such cases,
14544 FROM_INSN is guaranteed to be the first of the combined
14545 instructions, so we simply need to search back before
14546 FROM_INSN for the previous use or set of this register,
14547 then alter the notes there appropriately.
14548
14549 If the register is used as an input in I3, it dies there.
14550 Similarly for I2, if it is nonzero and adjacent to I3.
14551
14552 If the register is not used as an input in either I3 or I2
14553 and it is not one of the registers we were supposed to eliminate,
14554 there are two possibilities. We might have a non-adjacent I2
14555 or we might have somehow eliminated an additional register
14556 from a computation. For example, we might have had A & B where
14557 we discover that B will always be zero. In this case we will
14558 eliminate the reference to A.
14559
14560 In both cases, we must search to see if we can find a previous
14561 use of A and put the death note there. */
14562
14563 if (from_insn
14564 && from_insn == i2mod
14565 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14566 tem_insn = from_insn;
14567 else
14568 {
14569 if (from_insn
14570 && CALL_P (from_insn)
14571 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14572 place = from_insn;
14573 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14574 {
14575 /* If the new I2 sets the same register that is marked
14576 dead in the note, we do not in general know where to
14577 put the note. One important case we _can_ handle is
14578 when the note comes from I3. */
14579 if (from_insn == i3)
14580 place = i3;
14581 else
14582 break;
14583 }
14584 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14585 place = i3;
14586 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14587 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14588 place = i2;
14589 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14590 && !(i2mod
14591 && reg_overlap_mentioned_p (XEXP (note, 0),
14592 i2mod_old_rhs)))
14593 || rtx_equal_p (XEXP (note, 0), elim_i1)
14594 || rtx_equal_p (XEXP (note, 0), elim_i0))
14595 break;
14596 tem_insn = i3;
14597 }
14598
14599 if (place == 0)
14600 {
14601 basic_block bb = this_basic_block;
14602
14603 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14604 {
14605 if (!NONDEBUG_INSN_P (tem_insn))
14606 {
14607 if (tem_insn == BB_HEAD (bb))
14608 break;
14609 continue;
14610 }
14611
14612 /* If the register is being set at TEM_INSN, see if that is all
14613 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14614 into a REG_UNUSED note instead. Don't delete sets to
14615 global register vars. */
14616 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14617 || !global_regs[REGNO (XEXP (note, 0))])
14618 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14619 {
14620 rtx set = single_set (tem_insn);
14621 rtx inner_dest = 0;
14622 rtx_insn *cc0_setter = NULL;
14623
14624 if (set != 0)
14625 for (inner_dest = SET_DEST (set);
14626 (GET_CODE (inner_dest) == STRICT_LOW_PART
14627 || GET_CODE (inner_dest) == SUBREG
14628 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14629 inner_dest = XEXP (inner_dest, 0))
14630 ;
14631
14632 /* Verify that it was the set, and not a clobber that
14633 modified the register.
14634
14635 CC0 targets must be careful to maintain setter/user
14636 pairs. If we cannot delete the setter due to side
14637 effects, mark the user with an UNUSED note instead
14638 of deleting it. */
14639
14640 if (set != 0 && ! side_effects_p (SET_SRC (set))
14641 && rtx_equal_p (XEXP (note, 0), inner_dest)
14642 && (!HAVE_cc0
14643 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14644 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14645 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14646 {
14647 /* Move the notes and links of TEM_INSN elsewhere.
14648 This might delete other dead insns recursively.
14649 First set the pattern to something that won't use
14650 any register. */
14651 rtx old_notes = REG_NOTES (tem_insn);
14652
14653 PATTERN (tem_insn) = pc_rtx;
14654 REG_NOTES (tem_insn) = NULL;
14655
14656 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14657 NULL_RTX, NULL_RTX, NULL_RTX);
14658 distribute_links (LOG_LINKS (tem_insn));
14659
14660 unsigned int regno = REGNO (XEXP (note, 0));
14661 reg_stat_type *rsp = &reg_stat[regno];
14662 if (rsp->last_set == tem_insn)
14663 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14664
14665 SET_INSN_DELETED (tem_insn);
14666 if (tem_insn == i2)
14667 i2 = NULL;
14668
14669 /* Delete the setter too. */
14670 if (cc0_setter)
14671 {
14672 PATTERN (cc0_setter) = pc_rtx;
14673 old_notes = REG_NOTES (cc0_setter);
14674 REG_NOTES (cc0_setter) = NULL;
14675
14676 distribute_notes (old_notes, cc0_setter,
14677 cc0_setter, NULL,
14678 NULL_RTX, NULL_RTX, NULL_RTX);
14679 distribute_links (LOG_LINKS (cc0_setter));
14680
14681 SET_INSN_DELETED (cc0_setter);
14682 if (cc0_setter == i2)
14683 i2 = NULL;
14684 }
14685 }
14686 else
14687 {
14688 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14689
14690 /* If there isn't already a REG_UNUSED note, put one
14691 here. Do not place a REG_DEAD note, even if
14692 the register is also used here; that would not
14693 match the algorithm used in lifetime analysis
14694 and can cause the consistency check in the
14695 scheduler to fail. */
14696 if (! find_regno_note (tem_insn, REG_UNUSED,
14697 REGNO (XEXP (note, 0))))
14698 place = tem_insn;
14699 break;
14700 }
14701 }
14702 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14703 || (CALL_P (tem_insn)
14704 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14705 {
14706 place = tem_insn;
14707
14708 /* If we are doing a 3->2 combination, and we have a
14709 register which formerly died in i3 and was not used
14710 by i2, which now no longer dies in i3 and is used in
14711 i2 but does not die in i2, and place is between i2
14712 and i3, then we may need to move a link from place to
14713 i2. */
14714 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14715 && from_insn
14716 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14717 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14718 {
14719 struct insn_link *links = LOG_LINKS (place);
14720 LOG_LINKS (place) = NULL;
14721 distribute_links (links);
14722 }
14723 break;
14724 }
14725
14726 if (tem_insn == BB_HEAD (bb))
14727 break;
14728 }
14729
14730 }
14731
14732 /* If the register is set or already dead at PLACE, we needn't do
14733 anything with this note if it is still a REG_DEAD note.
14734 We check here if it is set at all, not if is it totally replaced,
14735 which is what `dead_or_set_p' checks, so also check for it being
14736 set partially. */
14737
14738 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14739 {
14740 unsigned int regno = REGNO (XEXP (note, 0));
14741 reg_stat_type *rsp = &reg_stat[regno];
14742
14743 if (dead_or_set_p (place, XEXP (note, 0))
14744 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14745 {
14746 /* Unless the register previously died in PLACE, clear
14747 last_death. [I no longer understand why this is
14748 being done.] */
14749 if (rsp->last_death != place)
14750 rsp->last_death = 0;
14751 place = 0;
14752 }
14753 else
14754 rsp->last_death = place;
14755
14756 /* If this is a death note for a hard reg that is occupying
14757 multiple registers, ensure that we are still using all
14758 parts of the object. If we find a piece of the object
14759 that is unused, we must arrange for an appropriate REG_DEAD
14760 note to be added for it. However, we can't just emit a USE
14761 and tag the note to it, since the register might actually
14762 be dead; so we recourse, and the recursive call then finds
14763 the previous insn that used this register. */
14764
14765 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14766 {
14767 unsigned int endregno = END_REGNO (XEXP (note, 0));
14768 bool all_used = true;
14769 unsigned int i;
14770
14771 for (i = regno; i < endregno; i++)
14772 if ((! refers_to_regno_p (i, PATTERN (place))
14773 && ! find_regno_fusage (place, USE, i))
14774 || dead_or_set_regno_p (place, i))
14775 {
14776 all_used = false;
14777 break;
14778 }
14779
14780 if (! all_used)
14781 {
14782 /* Put only REG_DEAD notes for pieces that are
14783 not already dead or set. */
14784
14785 for (i = regno; i < endregno;
14786 i += hard_regno_nregs (i, reg_raw_mode[i]))
14787 {
14788 rtx piece = regno_reg_rtx[i];
14789 basic_block bb = this_basic_block;
14790
14791 if (! dead_or_set_p (place, piece)
14792 && ! reg_bitfield_target_p (piece,
14793 PATTERN (place)))
14794 {
14795 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14796 NULL_RTX);
14797
14798 distribute_notes (new_note, place, place,
14799 NULL, NULL_RTX, NULL_RTX,
14800 NULL_RTX);
14801 }
14802 else if (! refers_to_regno_p (i, PATTERN (place))
14803 && ! find_regno_fusage (place, USE, i))
14804 for (tem_insn = PREV_INSN (place); ;
14805 tem_insn = PREV_INSN (tem_insn))
14806 {
14807 if (!NONDEBUG_INSN_P (tem_insn))
14808 {
14809 if (tem_insn == BB_HEAD (bb))
14810 break;
14811 continue;
14812 }
14813 if (dead_or_set_p (tem_insn, piece)
14814 || reg_bitfield_target_p (piece,
14815 PATTERN (tem_insn)))
14816 {
14817 add_reg_note (tem_insn, REG_UNUSED, piece);
14818 break;
14819 }
14820 }
14821 }
14822
14823 place = 0;
14824 }
14825 }
14826 }
14827 break;
14828
14829 default:
14830 /* Any other notes should not be present at this point in the
14831 compilation. */
14832 gcc_unreachable ();
14833 }
14834
14835 if (place)
14836 {
14837 XEXP (note, 1) = REG_NOTES (place);
14838 REG_NOTES (place) = note;
14839
14840 /* Set added_notes_insn to the earliest insn we added a note to. */
14841 if (added_notes_insn == 0
14842 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14843 added_notes_insn = place;
14844 }
14845
14846 if (place2)
14847 {
14848 add_shallow_copy_of_reg_note (place2, note);
14849
14850 /* Set added_notes_insn to the earliest insn we added a note to. */
14851 if (added_notes_insn == 0
14852 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14853 added_notes_insn = place2;
14854 }
14855 }
14856 }
14857 \f
14858 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14859 I3, I2, and I1 to new locations. This is also called to add a link
14860 pointing at I3 when I3's destination is changed. */
14861
14862 static void
14863 distribute_links (struct insn_link *links)
14864 {
14865 struct insn_link *link, *next_link;
14866
14867 for (link = links; link; link = next_link)
14868 {
14869 rtx_insn *place = 0;
14870 rtx_insn *insn;
14871 rtx set, reg;
14872
14873 next_link = link->next;
14874
14875 /* If the insn that this link points to is a NOTE, ignore it. */
14876 if (NOTE_P (link->insn))
14877 continue;
14878
14879 set = 0;
14880 rtx pat = PATTERN (link->insn);
14881 if (GET_CODE (pat) == SET)
14882 set = pat;
14883 else if (GET_CODE (pat) == PARALLEL)
14884 {
14885 int i;
14886 for (i = 0; i < XVECLEN (pat, 0); i++)
14887 {
14888 set = XVECEXP (pat, 0, i);
14889 if (GET_CODE (set) != SET)
14890 continue;
14891
14892 reg = SET_DEST (set);
14893 while (GET_CODE (reg) == ZERO_EXTRACT
14894 || GET_CODE (reg) == STRICT_LOW_PART
14895 || GET_CODE (reg) == SUBREG)
14896 reg = XEXP (reg, 0);
14897
14898 if (!REG_P (reg))
14899 continue;
14900
14901 if (REGNO (reg) == link->regno)
14902 break;
14903 }
14904 if (i == XVECLEN (pat, 0))
14905 continue;
14906 }
14907 else
14908 continue;
14909
14910 reg = SET_DEST (set);
14911
14912 while (GET_CODE (reg) == ZERO_EXTRACT
14913 || GET_CODE (reg) == STRICT_LOW_PART
14914 || GET_CODE (reg) == SUBREG)
14915 reg = XEXP (reg, 0);
14916
14917 if (reg == pc_rtx)
14918 continue;
14919
14920 /* A LOG_LINK is defined as being placed on the first insn that uses
14921 a register and points to the insn that sets the register. Start
14922 searching at the next insn after the target of the link and stop
14923 when we reach a set of the register or the end of the basic block.
14924
14925 Note that this correctly handles the link that used to point from
14926 I3 to I2. Also note that not much searching is typically done here
14927 since most links don't point very far away. */
14928
14929 for (insn = NEXT_INSN (link->insn);
14930 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14931 || BB_HEAD (this_basic_block->next_bb) != insn));
14932 insn = NEXT_INSN (insn))
14933 if (DEBUG_INSN_P (insn))
14934 continue;
14935 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14936 {
14937 if (reg_referenced_p (reg, PATTERN (insn)))
14938 place = insn;
14939 break;
14940 }
14941 else if (CALL_P (insn)
14942 && find_reg_fusage (insn, USE, reg))
14943 {
14944 place = insn;
14945 break;
14946 }
14947 else if (INSN_P (insn) && reg_set_p (reg, insn))
14948 break;
14949
14950 /* If we found a place to put the link, place it there unless there
14951 is already a link to the same insn as LINK at that point. */
14952
14953 if (place)
14954 {
14955 struct insn_link *link2;
14956
14957 FOR_EACH_LOG_LINK (link2, place)
14958 if (link2->insn == link->insn && link2->regno == link->regno)
14959 break;
14960
14961 if (link2 == NULL)
14962 {
14963 link->next = LOG_LINKS (place);
14964 LOG_LINKS (place) = link;
14965
14966 /* Set added_links_insn to the earliest insn we added a
14967 link to. */
14968 if (added_links_insn == 0
14969 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14970 added_links_insn = place;
14971 }
14972 }
14973 }
14974 }
14975 \f
14976 /* Check for any register or memory mentioned in EQUIV that is not
14977 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14978 of EXPR where some registers may have been replaced by constants. */
14979
14980 static bool
14981 unmentioned_reg_p (rtx equiv, rtx expr)
14982 {
14983 subrtx_iterator::array_type array;
14984 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14985 {
14986 const_rtx x = *iter;
14987 if ((REG_P (x) || MEM_P (x))
14988 && !reg_mentioned_p (x, expr))
14989 return true;
14990 }
14991 return false;
14992 }
14993 \f
14994 DEBUG_FUNCTION void
14995 dump_combine_stats (FILE *file)
14996 {
14997 fprintf
14998 (file,
14999 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
15000 combine_attempts, combine_merges, combine_extras, combine_successes);
15001 }
15002
15003 void
15004 dump_combine_total_stats (FILE *file)
15005 {
15006 fprintf
15007 (file,
15008 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
15009 total_attempts, total_merges, total_extras, total_successes);
15010 }
15011 \f
15012 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
15013 the reg-to-reg copy can usefully combine with later instructions, but we
15014 do not want to combine the hard reg into later instructions, for that
15015 restricts register allocation. */
15016 static void
15017 make_more_copies (void)
15018 {
15019 basic_block bb;
15020
15021 FOR_EACH_BB_FN (bb, cfun)
15022 {
15023 rtx_insn *insn;
15024
15025 FOR_BB_INSNS (bb, insn)
15026 {
15027 if (!NONDEBUG_INSN_P (insn))
15028 continue;
15029
15030 rtx set = single_set (insn);
15031 if (!set)
15032 continue;
15033
15034 rtx dest = SET_DEST (set);
15035 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
15036 continue;
15037
15038 rtx src = SET_SRC (set);
15039 if (!(REG_P (src) && HARD_REGISTER_P (src)))
15040 continue;
15041 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
15042 continue;
15043
15044 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
15045 rtx_insn *new_insn = gen_move_insn (new_reg, src);
15046 SET_SRC (set) = new_reg;
15047 emit_insn_before (new_insn, insn);
15048 df_insn_rescan (insn);
15049 }
15050 }
15051 }
15052
15053 /* Try combining insns through substitution. */
15054 static unsigned int
15055 rest_of_handle_combine (void)
15056 {
15057 make_more_copies ();
15058
15059 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
15060 df_note_add_problem ();
15061 df_analyze ();
15062
15063 regstat_init_n_sets_and_refs ();
15064 reg_n_sets_max = max_reg_num ();
15065
15066 int rebuild_jump_labels_after_combine
15067 = combine_instructions (get_insns (), max_reg_num ());
15068
15069 /* Combining insns may have turned an indirect jump into a
15070 direct jump. Rebuild the JUMP_LABEL fields of jumping
15071 instructions. */
15072 if (rebuild_jump_labels_after_combine)
15073 {
15074 if (dom_info_available_p (CDI_DOMINATORS))
15075 free_dominance_info (CDI_DOMINATORS);
15076 timevar_push (TV_JUMP);
15077 rebuild_jump_labels (get_insns ());
15078 cleanup_cfg (0);
15079 timevar_pop (TV_JUMP);
15080 }
15081
15082 regstat_free_n_sets_and_refs ();
15083 return 0;
15084 }
15085
15086 namespace {
15087
15088 const pass_data pass_data_combine =
15089 {
15090 RTL_PASS, /* type */
15091 "combine", /* name */
15092 OPTGROUP_NONE, /* optinfo_flags */
15093 TV_COMBINE, /* tv_id */
15094 PROP_cfglayout, /* properties_required */
15095 0, /* properties_provided */
15096 0, /* properties_destroyed */
15097 0, /* todo_flags_start */
15098 TODO_df_finish, /* todo_flags_finish */
15099 };
15100
15101 class pass_combine : public rtl_opt_pass
15102 {
15103 public:
15104 pass_combine (gcc::context *ctxt)
15105 : rtl_opt_pass (pass_data_combine, ctxt)
15106 {}
15107
15108 /* opt_pass methods: */
15109 virtual bool gate (function *) { return (optimize > 0); }
15110 virtual unsigned int execute (function *)
15111 {
15112 return rest_of_handle_combine ();
15113 }
15114
15115 }; // class pass_combine
15116
15117 } // anon namespace
15118
15119 rtl_opt_pass *
15120 make_pass_combine (gcc::context *ctxt)
15121 {
15122 return new pass_combine (ctxt);
15123 }