]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/arc/arc.h
[ARC] Cleanup, fix and set LRA default.
[thirdparty/gcc.git] / gcc / config / arc / arc.h
1 /* Definitions of target machine for GNU compiler, Synopsys DesignWare ARC cpu.
2 Copyright (C) 1994-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_ARC_H
21 #define GCC_ARC_H
22
23 #include <stdbool.h>
24
25 /* Things to do:
26
27 - incscc, decscc?
28
29 */
30
31 #define SYMBOL_FLAG_SHORT_CALL (SYMBOL_FLAG_MACH_DEP << 0)
32 #define SYMBOL_FLAG_MEDIUM_CALL (SYMBOL_FLAG_MACH_DEP << 1)
33 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 2)
34 #define SYMBOL_FLAG_CMEM (SYMBOL_FLAG_MACH_DEP << 3)
35
36 #ifndef TARGET_CPU_DEFAULT
37 #define TARGET_CPU_DEFAULT PROCESSOR_arc700
38 #endif
39
40 /* Check if this symbol has a long_call attribute in its declaration */
41 #define SYMBOL_REF_LONG_CALL_P(X) \
42 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
43
44 /* Check if this symbol has a medium_call attribute in its declaration */
45 #define SYMBOL_REF_MEDIUM_CALL_P(X) \
46 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_MEDIUM_CALL) != 0)
47
48 /* Check if this symbol has a short_call attribute in its declaration */
49 #define SYMBOL_REF_SHORT_CALL_P(X) \
50 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SHORT_CALL) != 0)
51
52 /* Names to predefine in the preprocessor for this target machine. */
53 #define TARGET_CPU_CPP_BUILTINS() arc_cpu_cpp_builtins (pfile)
54
55 /* Macros enabled by specific command line option. FIXME: to be
56 deprecatd. */
57 #define CPP_SPEC "\
58 %{msimd:-D__Xsimd} %{mno-mpy:-D__Xno_mpy} %{mswap:-D__Xswap} \
59 %{mmin-max:-D__Xmin_max} %{mEA:-D__Xea} \
60 %{mspfp*:-D__Xspfp} %{mdpfp*:-D__Xdpfp} \
61 %{mmac-d16:-D__Xxmac_d16} %{mmac-24:-D__Xxmac_24} \
62 %{mdsp-packa:-D__Xdsp_packa} %{mcrc:-D__Xcrc} %{mdvbf:-D__Xdvbf} \
63 %{mtelephony:-D__Xtelephony} %{mxy:-D__Xxy} %{mmul64: -D__Xmult32} \
64 %{mlock:-D__Xlock} %{mswape:-D__Xswape} %{mrtsc:-D__Xrtsc} \
65 %(subtarget_cpp_spec)"
66
67 #undef CC1_SPEC
68 #define CC1_SPEC "%{EB:%{EL:%emay not use both -EB and -EL}} \
69 %{EB:-mbig-endian} %{EL:-mlittle-endian} \
70 %{G*} \
71 "
72 extern const char *arc_cpu_to_as (int argc, const char **argv);
73
74 #define EXTRA_SPEC_FUNCTIONS \
75 { "cpu_to_as", arc_cpu_to_as },
76
77 /* This macro defines names of additional specifications to put in the specs
78 that can be used in various specifications like CC1_SPEC. Its definition
79 is an initializer with a subgrouping for each command option.
80
81 Each subgrouping contains a string constant, that defines the
82 specification name, and a string constant that used by the GCC driver
83 program.
84
85 Do not define this macro if it does not need to do anything. */
86 #define EXTRA_SPECS \
87 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
88 SUBTARGET_EXTRA_SPECS
89
90 #ifndef SUBTARGET_EXTRA_SPECS
91 #define SUBTARGET_EXTRA_SPECS
92 #endif
93
94 #ifndef SUBTARGET_CPP_SPEC
95 #define SUBTARGET_CPP_SPEC ""
96 #endif
97
98 #undef ASM_SPEC
99 #define ASM_SPEC "%{mbig-endian|EB:-EB} %{EL} " \
100 "%:cpu_to_as(%{mcpu=*:%*}) %{mspfp*} %{mdpfp*} %{mfpu=fpuda*:-mfpuda}"
101
102 #define OPTION_DEFAULT_SPECS \
103 {"cpu", "%{!mcpu=*:%{!mARC*:%{!marc*:%{!mA7:%{!mA6:-mcpu=%(VALUE)}}}}}" }
104
105 #ifndef DRIVER_ENDIAN_SELF_SPECS
106 #define DRIVER_ENDIAN_SELF_SPECS ""
107 #endif
108
109 #define DRIVER_SELF_SPECS DRIVER_ENDIAN_SELF_SPECS \
110 "%{mARC600|mA6: -mcpu=arc600 %<mARC600 %<mA6 %<mARC600}" \
111 "%{mARC601: -mcpu=arc601 %<mARC601}" \
112 "%{mARC700|mA7: -mcpu=arc700 %<mARC700 %<mA7}" \
113 "%{mEA: -mea %<mEA}"
114
115 /* Run-time compilation parameters selecting different hardware subsets. */
116
117 #define TARGET_MIXED_CODE (TARGET_MIXED_CODE_SET)
118
119 #define TARGET_SPFP (TARGET_SPFP_FAST_SET || TARGET_SPFP_COMPACT_SET)
120 #define TARGET_DPFP (TARGET_DPFP_FAST_SET || TARGET_DPFP_COMPACT_SET \
121 || TARGET_FP_DP_AX)
122
123 #define SUBTARGET_SWITCHES
124
125 /* Instruction set characteristics.
126 These are internal macros, set by the appropriate -m option. */
127
128 /* Non-zero means the cpu supports norm instruction. This flag is set by
129 default for A7, and only for pre A7 cores when -mnorm is given. */
130 #define TARGET_NORM (TARGET_ARC700 || TARGET_NORM_SET || TARGET_HS)
131 /* Indicate if an optimized floating point emulation library is available. */
132 #define TARGET_OPTFPE (TARGET_ARC700 || TARGET_FPX_QUARK)
133
134 /* Non-zero means the cpu supports swap instruction. This flag is set by
135 default for A7, and only for pre A7 cores when -mswap is given. */
136 #define TARGET_SWAP (TARGET_ARC700 || TARGET_SWAP_SET)
137
138 /* Provide some macros for size / scheduling features of the ARC700, so
139 that we can pick & choose features if we get a new cpu family member. */
140
141 /* Should we try to unalign likely taken branches without a delay slot. */
142 #define TARGET_UNALIGN_BRANCH (TARGET_ARC700 && !optimize_size)
143
144 /* Should we add padding before a return insn to avoid mispredict? */
145 #define TARGET_PAD_RETURN (TARGET_ARC700 && !optimize_size)
146
147 /* For an anulled-true delay slot insn for a delayed branch, should we only
148 use conditional execution? */
149 #define TARGET_AT_DBR_CONDEXEC (!TARGET_ARC700 && !TARGET_V2)
150
151 #define TARGET_ARC600 ((arc_selected_cpu->arch_info->arch_id \
152 == BASE_ARCH_6xx) \
153 && (TARGET_BARREL_SHIFTER))
154 #define TARGET_ARC601 ((arc_selected_cpu->arch_info->arch_id \
155 == BASE_ARCH_6xx) \
156 && (!TARGET_BARREL_SHIFTER))
157 #define TARGET_ARC700 (arc_selected_cpu->arch_info->arch_id \
158 == BASE_ARCH_700)
159 /* An NPS400 is a specialisation of ARC700, so it is correct for NPS400
160 TARGET_ARC700 is true, and TARGET_NPS400 is true. */
161 #define TARGET_NPS400 ((arc_selected_cpu->arch_info->arch_id \
162 == BASE_ARCH_700) \
163 && (arc_selected_cpu->processor \
164 == PROCESSOR_nps400))
165 #define TARGET_EM (arc_selected_cpu->arch_info->arch_id == BASE_ARCH_em)
166 #define TARGET_HS (arc_selected_cpu->arch_info->arch_id == BASE_ARCH_hs)
167 #define TARGET_V2 (TARGET_EM || TARGET_HS)
168
169 #ifndef UNALIGNED_ACCESS_DEFAULT
170 #define UNALIGNED_ACCESS_DEFAULT 0
171 #endif
172
173 #ifndef TARGET_NPS_BITOPS_DEFAULT
174 #define TARGET_NPS_BITOPS_DEFAULT 0
175 #endif
176
177 #ifndef TARGET_NPS_CMEM_DEFAULT
178 #define TARGET_NPS_CMEM_DEFAULT 0
179 #endif
180
181 /* Enable the RRQ instruction alternatives. */
182
183 #define TARGET_RRQ_CLASS TARGET_NPS_BITOPS
184
185 /* Target machine storage layout. */
186
187 /* We want zero_extract to mean the same
188 no matter what the byte endianness is. */
189 #define BITS_BIG_ENDIAN 0
190
191 /* Define this if most significant byte of a word is the lowest numbered. */
192 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
193
194 /* Define this if most significant word of a multiword number is the lowest
195 numbered. */
196 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
197
198 /* Width in bits of a "word", which is the contents of a machine register.
199 Note that this is not necessarily the width of data type `int';
200 if using 16-bit ints on a 68000, this would still be 32.
201 But on a machine with 16-bit registers, this would be 16. */
202 #define BITS_PER_WORD 32
203
204 /* Width of a word, in units (bytes). */
205 #define UNITS_PER_WORD 4
206
207 /* Define this macro if it is advisable to hold scalars in registers
208 in a wider mode than that declared by the program. In such cases,
209 the value is constrained to be within the bounds of the declared
210 type, but kept valid in the wider mode. The signedness of the
211 extension may differ from that of the type. */
212 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
213 if (GET_MODE_CLASS (MODE) == MODE_INT \
214 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
215 { \
216 (MODE) = SImode; \
217 }
218
219 /* Width in bits of a pointer.
220 See also the macro `Pmode' defined below. */
221 #define POINTER_SIZE 32
222
223 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
224 #define PARM_BOUNDARY 32
225
226 /* Boundary (in *bits*) on which stack pointer should be aligned. */
227 /* TOCHECK: Changed from 64 to 32 */
228 #define STACK_BOUNDARY 32
229
230 /* ALIGN FRAMES on word boundaries. */
231 #define ARC_STACK_ALIGN(LOC) \
232 (((LOC) + STACK_BOUNDARY / BITS_PER_UNIT - 1) & -STACK_BOUNDARY/BITS_PER_UNIT)
233
234 /* Allocation boundary (in *bits*) for the code of a function. */
235 #define FUNCTION_BOUNDARY 32
236
237 /* Alignment of field after `int : 0' in a structure. */
238 #define EMPTY_FIELD_BOUNDARY 32
239
240 /* Every structure's size must be a multiple of this. */
241 #define STRUCTURE_SIZE_BOUNDARY 8
242
243 /* A bitfield declared as `int' forces `int' alignment for the struct. */
244 #define PCC_BITFIELD_TYPE_MATTERS 1
245
246 /* An expression for the alignment of a structure field FIELD if the
247 alignment computed in the usual way (including applying of
248 `BIGGEST_ALIGNMENT' and `BIGGEST_FIELD_ALIGNMENT' to the
249 alignment) is COMPUTED. It overrides alignment only if the field
250 alignment has not been set by the `__attribute__ ((aligned (N)))'
251 construct.
252 */
253
254 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
255 (TYPE_MODE (strip_array_types (TYPE)) == DFmode \
256 ? MIN ((COMPUTED), 32) : (COMPUTED))
257
258
259
260 /* No data type wants to be aligned rounder than this. */
261 /* This is bigger than currently necessary for the ARC. If 8 byte floats are
262 ever added it's not clear whether they'll need such alignment or not. For
263 now we assume they will. We can always relax it if necessary but the
264 reverse isn't true. */
265 /* TOCHECK: Changed from 64 to 32 */
266 #define BIGGEST_ALIGNMENT 32
267
268 /* The best alignment to use in cases where we have a choice. */
269 #define FASTEST_ALIGNMENT 32
270
271 /* Make arrays of chars word-aligned for the same reasons. */
272 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
273 (TREE_CODE (TYPE) == ARRAY_TYPE \
274 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
275 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
276
277 #define DATA_ALIGNMENT(TYPE, ALIGN) \
278 (TREE_CODE (TYPE) == ARRAY_TYPE \
279 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
280 && arc_size_opt_level < 3 \
281 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
282
283 /* Set this nonzero if move instructions will actually fail to work
284 when given unaligned data. */
285 /* On the ARC the lower address bits are masked to 0 as necessary. The chip
286 won't croak when given an unaligned address, but the insn will still fail
287 to produce the correct result. */
288 #define STRICT_ALIGNMENT (!unaligned_access && !TARGET_HS)
289
290 /* Layout of source language data types. */
291
292 #define SHORT_TYPE_SIZE 16
293 #define INT_TYPE_SIZE 32
294 #define LONG_TYPE_SIZE 32
295 #define LONG_LONG_TYPE_SIZE 64
296 #define FLOAT_TYPE_SIZE 32
297 #define DOUBLE_TYPE_SIZE 64
298 #define LONG_DOUBLE_TYPE_SIZE 64
299
300 /* Define this as 1 if `char' should by default be signed; else as 0. */
301 #define DEFAULT_SIGNED_CHAR 0
302
303 #undef SIZE_TYPE
304 #define SIZE_TYPE "unsigned int"
305
306 #undef PTRDIFF_TYPE
307 #define PTRDIFF_TYPE "int"
308
309 #undef WCHAR_TYPE
310 #define WCHAR_TYPE "int"
311
312 #undef WCHAR_TYPE_SIZE
313 #define WCHAR_TYPE_SIZE 32
314
315 /* Standard register usage. */
316
317 /* Number of actual hardware registers.
318 The hardware registers are assigned numbers for the compiler
319 from 0 to just below FIRST_PSEUDO_REGISTER.
320 All registers that the compiler knows about must be given numbers,
321 even those that are not normally considered general registers.
322
323 Registers 61, 62, and 63 are not really registers and we needn't treat
324 them as such. We still need a register for the condition code and
325 argument pointer. */
326
327 /* r63 is pc, r64-r127 = simd vregs, r128-r143 = simd dma config regs
328 r144, r145 = lp_start, lp_end
329 and therefore the pseudo registers start from r146. */
330 #define FIRST_PSEUDO_REGISTER 146
331
332 /* 1 for registers that have pervasive standard uses
333 and are not available for the register allocator.
334
335 0-28 - general purpose registers
336 29 - ilink1 (interrupt link register)
337 30 - ilink2 (interrupt link register)
338 31 - blink (branch link register)
339 32-59 - reserved for extensions
340 60 - LP_COUNT
341 61 - condition code
342 62 - argument pointer
343 63 - program counter
344
345 FWIW, this is how the 61-63 encodings are used by the hardware:
346 61 - reserved
347 62 - long immediate data indicator
348 63 - PCL (program counter aligned to 32 bit, read-only)
349
350 The general purpose registers are further broken down into:
351
352 0-7 - arguments/results
353 8-12 - call used (r11 - static chain pointer)
354 13-25 - call saved
355 26 - global pointer
356 27 - frame pointer
357 28 - stack pointer
358 29 - ilink1
359 30 - ilink2
360 31 - return address register
361
362 By default, the extension registers are not available. */
363 /* Present implementations only have VR0-VR23 only. */
364 /* ??? FIXME: r27 and r31 should not be fixed registers. */
365 #define FIXED_REGISTERS \
366 { 0, 0, 0, 0, 0, 0, 0, 0, \
367 0, 0, 0, 0, 0, 0, 0, 0, \
368 0, 0, 0, 0, 0, 0, 0, 0, \
369 0, 0, 1, 1, 1, 1, 1, 1, \
370 \
371 1, 1, 1, 1, 1, 1, 1, 1, \
372 0, 0, 0, 0, 1, 1, 1, 1, \
373 1, 1, 1, 1, 1, 1, 1, 1, \
374 1, 1, 1, 1, 1, 1, 1, 1, \
375 \
376 0, 0, 0, 0, 0, 0, 0, 0, \
377 0, 0, 0, 0, 0, 0, 0, 0, \
378 0, 0, 0, 0, 0, 0, 0, 0, \
379 1, 1, 1, 1, 1, 1, 1, 1, \
380 \
381 1, 1, 1, 1, 1, 1, 1, 1, \
382 1, 1, 1, 1, 1, 1, 1, 1, \
383 1, 1, 1, 1, 1, 1, 1, 1, \
384 1, 1, 1, 1, 1, 1, 1, 1, \
385 \
386 0, 0, 0, 0, 0, 0, 0, 0, \
387 0, 0, 0, 0, 0, 0, 0, 0, \
388 1, 1}
389
390 /* 1 for registers not available across function calls.
391 These must include the FIXED_REGISTERS and also any
392 registers that can be used without being saved.
393 The latter must include the registers where values are returned
394 and the register where structure-value addresses are passed.
395 Aside from that, you can include as many other registers as you like. */
396 #define CALL_USED_REGISTERS \
397 { \
398 1, 1, 1, 1, 1, 1, 1, 1, \
399 1, 1, 1, 1, 1, 0, 0, 0, \
400 0, 0, 0, 0, 0, 0, 0, 0, \
401 0, 0, 1, 1, 1, 1, 1, 1, \
402 \
403 1, 1, 1, 1, 1, 1, 1, 1, \
404 1, 1, 1, 1, 1, 1, 1, 1, \
405 1, 1, 1, 1, 1, 1, 1, 1, \
406 1, 1, 1, 1, 1, 1, 1, 1, \
407 \
408 0, 0, 0, 0, 0, 0, 0, 0, \
409 0, 0, 0, 0, 0, 0, 0, 0, \
410 0, 0, 0, 0, 0, 0, 0, 0, \
411 1, 1, 1, 1, 1, 1, 1, 1, \
412 \
413 1, 1, 1, 1, 1, 1, 1, 1, \
414 1, 1, 1, 1, 1, 1, 1, 1, \
415 1, 1, 1, 1, 1, 1, 1, 1, \
416 1, 1, 1, 1, 1, 1, 1, 1, \
417 \
418 0, 0, 0, 0, 0, 0, 0, 0, \
419 0, 0, 0, 0, 0, 0, 0, 0, \
420 1, 1}
421
422 /* If defined, an initializer for a vector of integers, containing the
423 numbers of hard registers in the order in which GCC should
424 prefer to use them (from most preferred to least). */
425 #define REG_ALLOC_ORDER \
426 { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, \
427 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, \
428 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
429 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
430 27, 28, 29, 30, 31, 63}
431
432 /* Internal macros to classify a register number as to whether it's a
433 general purpose register for compact insns (r0-r3,r12-r15), or
434 stack pointer (r28). */
435
436 #define COMPACT_GP_REG_P(REGNO) \
437 (((signed)(REGNO) >= 0 && (REGNO) <= 3) || ((REGNO) >= 12 && (REGNO) <= 15))
438 #define SP_REG_P(REGNO) ((REGNO) == 28)
439
440
441
442 /* Register classes and constants. */
443
444 /* Define the classes of registers for register constraints in the
445 machine description. Also define ranges of constants.
446
447 One of the classes must always be named ALL_REGS and include all hard regs.
448 If there is more than one class, another class must be named NO_REGS
449 and contain no registers.
450
451 The name GENERAL_REGS must be the name of a class (or an alias for
452 another name such as ALL_REGS). This is the class of registers
453 that is allowed by "g" or "r" in a register constraint.
454 Also, registers outside this class are allocated only when
455 instructions express preferences for them.
456
457 The classes must be numbered in nondecreasing order; that is,
458 a larger-numbered class must never be contained completely
459 in a smaller-numbered class.
460
461 For any two classes, it is very desirable that there be another
462 class that represents their union.
463
464 It is important that any condition codes have class NO_REGS.
465 See `register_operand'. */
466
467 enum reg_class
468 {
469 NO_REGS,
470 R0_REGS, /* 'x' */
471 R0R1_CD_REGS, /* 'Rsd' */
472 R0R3_CD_REGS, /* 'Rcd' */
473 ARCOMPACT16_REGS, /* 'q' */
474 SIBCALL_REGS, /* "Rsc" */
475 AC16_H_REGS, /* 'h' */
476 DOUBLE_REGS, /* 'D' */
477 GENERAL_REGS, /* 'r' */
478 SIMD_VR_REGS, /* 'v' */
479 SIMD_DMA_CONFIG_REGS, /* 'd' */
480 ALL_REGS,
481 LIM_REG_CLASSES
482 };
483
484 #define N_REG_CLASSES (int) LIM_REG_CLASSES
485
486 /* Give names of register classes as strings for dump file. */
487 #define REG_CLASS_NAMES \
488 { \
489 "NO_REGS", \
490 "R0_REGS", \
491 "R0R1_CD_REGS", \
492 "R0R3_CD_REGS", \
493 "ARCOMPACT16_REGS", \
494 "AC16_H_REGS", \
495 "DOUBLE_REGS", \
496 "GENERAL_REGS", \
497 "SIMD_VR_REGS", \
498 "SIMD_DMA_CONFIG_REGS", \
499 "ALL_REGS" \
500 }
501
502 /* Define which registers fit in which classes.
503 This is an initializer for a vector of HARD_REG_SET
504 of length N_REG_CLASSES. */
505
506 #define REG_CLASS_CONTENTS \
507 { \
508 {0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* NO_REGS. */\
509 {0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'x'. */ \
510 {0x00000003, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rsd'. */ \
511 {0x0000000f, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rcd'. */ \
512 {0x0000f00f, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'q'. */ \
513 {0x1c001fff, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rsc'. */ \
514 {0x9fffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'h'. */ \
515 {0x00000000, 0x00000f00, 0x00000000, 0x00000000, 0x00000000}, /* 'D'. */ \
516 {0xffffffff, 0x8fffffff, 0x00000000, 0x00000000, 0x00000000}, /* 'r'. */ \
517 {0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000}, /* 'v'. */ \
518 {0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000ffff}, /* 'd'. */ \
519 {0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff} /* ALL_REGS. */\
520 }
521
522 /* Local macros to mark the first and last regs of different classes. */
523 #define ARC_FIRST_SIMD_VR_REG 64
524 #define ARC_LAST_SIMD_VR_REG 127
525
526 #define ARC_FIRST_SIMD_DMA_CONFIG_REG 128
527 #define ARC_FIRST_SIMD_DMA_CONFIG_IN_REG 128
528 #define ARC_FIRST_SIMD_DMA_CONFIG_OUT_REG 136
529 #define ARC_LAST_SIMD_DMA_CONFIG_REG 143
530
531 /* ARCv2 double-register accumulator. */
532 #define ACC_REG_FIRST 58
533 #define ACC_REG_LAST 59
534 #define ACCL_REGNO (TARGET_BIG_ENDIAN ? ACC_REG_FIRST + 1 : ACC_REG_FIRST)
535 #define ACCH_REGNO (TARGET_BIG_ENDIAN ? ACC_REG_FIRST : ACC_REG_FIRST + 1)
536
537 /* The same information, inverted:
538 Return the class number of the smallest class containing
539 reg number REGNO. This could be a conditional expression
540 or could index an array. */
541
542 extern enum reg_class arc_regno_reg_class[];
543
544 #define REGNO_REG_CLASS(REGNO) (arc_regno_reg_class[REGNO])
545
546 /* The class value for valid index registers. An index register is
547 one used in an address where its value is either multiplied by
548 a scale factor or added to another register (as well as added to a
549 displacement). */
550
551 #define INDEX_REG_CLASS (TARGET_MIXED_CODE ? ARCOMPACT16_REGS : GENERAL_REGS)
552
553 /* The class value for valid base registers. A base register is one used in
554 an address which is the register value plus a displacement. */
555
556 #define BASE_REG_CLASS GENERAL_REGS
557
558 /* These assume that REGNO is a hard or pseudo reg number.
559 They give nonzero only if REGNO is a hard reg of the suitable class
560 or a pseudo reg currently allocated to a suitable hard reg.
561 Since they use reg_renumber, they are safe only once reg_renumber
562 has been allocated, which happens in local-alloc.c. */
563 #define REGNO_OK_FOR_BASE_P(REGNO) \
564 ((REGNO) < 29 || ((REGNO) == ARG_POINTER_REGNUM) || ((REGNO) == 63) \
565 || ((unsigned) reg_renumber[REGNO] < 29) \
566 || ((unsigned) (REGNO) == (unsigned) arc_tp_regno) \
567 || (fixed_regs[REGNO] == 0 && IN_RANGE (REGNO, 32, 59)) \
568 || ((REGNO) == 30 && fixed_regs[REGNO] == 0))
569
570 #define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_BASE_P(REGNO)
571
572 /* Given an rtx X being reloaded into a reg required to be
573 in class CLASS, return the class of reg to actually use.
574 In general this is just CLASS; but on some machines
575 in some cases it is preferable to use a more restrictive class. */
576
577 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
578 arc_preferred_reload_class((X), (CLASS))
579
580 extern enum reg_class arc_preferred_reload_class (rtx, enum reg_class);
581
582 /* Return the maximum number of consecutive registers
583 needed to represent mode MODE in a register of class CLASS. */
584
585 #define CLASS_MAX_NREGS(CLASS, MODE) \
586 (( GET_MODE_SIZE (MODE) == 16 && CLASS == SIMD_VR_REGS) ? 1: \
587 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
588
589 #define SMALL_INT(X) ((unsigned) ((X) + 0x100) < 0x200)
590 #define SMALL_INT_RANGE(X, OFFSET, SHIFT) \
591 ((unsigned) (((X) >> (SHIFT)) + 0x100) \
592 < 0x200 - ((unsigned) (OFFSET) >> (SHIFT)))
593 #define SIGNED_INT12(X) ((unsigned) ((X) + 0x800) < 0x1000)
594 #define SIGNED_INT16(X) ((unsigned) ((X) + 0x8000) < 0x10000)
595 #define LARGE_INT(X) \
596 (((X) < 0) \
597 ? (X) >= (-(HOST_WIDE_INT) 0x7fffffff - 1) \
598 : (unsigned HOST_WIDE_INT) (X) <= (unsigned HOST_WIDE_INT) 0xffffffff)
599 #define UNSIGNED_INT3(X) ((unsigned) (X) < 0x8)
600 #define UNSIGNED_INT5(X) ((unsigned) (X) < 0x20)
601 #define UNSIGNED_INT6(X) ((unsigned) (X) < 0x40)
602 #define UNSIGNED_INT7(X) ((unsigned) (X) < 0x80)
603 #define UNSIGNED_INT8(X) ((unsigned) (X) < 0x100)
604 #define UNSIGNED_INT12(X) ((unsigned) (X) < 0x800)
605 #define UNSIGNED_INT16(X) ((unsigned) (X) < 0x10000)
606 #define IS_ONE(X) ((X) == 1)
607 #define IS_ZERO(X) ((X) == 0)
608
609 /* Stack layout and stack pointer usage. */
610
611 /* Define this macro if pushing a word onto the stack moves the stack
612 pointer to a smaller address. */
613 #define STACK_GROWS_DOWNWARD 1
614
615 /* Define this if the nominal address of the stack frame
616 is at the high-address end of the local variables;
617 that is, each additional local variable allocated
618 goes at a more negative offset in the frame. */
619 #define FRAME_GROWS_DOWNWARD 1
620
621 /* Offset from the stack pointer register to the first location at which
622 outgoing arguments are placed. */
623 #define STACK_POINTER_OFFSET (0)
624
625 /* Offset of first parameter from the argument pointer register value. */
626 #define FIRST_PARM_OFFSET(FNDECL) (0)
627
628 /* A C expression whose value is RTL representing the address in a
629 stack frame where the pointer to the caller's frame is stored.
630 Assume that FRAMEADDR is an RTL expression for the address of the
631 stack frame itself.
632
633 If you don't define this macro, the default is to return the value
634 of FRAMEADDR--that is, the stack frame address is also the address
635 of the stack word that points to the previous frame. */
636 /* ??? unfinished */
637 /*define DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)*/
638
639 /* A C expression whose value is RTL representing the value of the
640 return address for the frame COUNT steps up from the current frame.
641 FRAMEADDR is the frame pointer of the COUNT frame, or the frame
642 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME'
643 is defined. */
644 /* The current return address is in r31. The return address of anything
645 farther back is at [%fp,4]. */
646
647 #define RETURN_ADDR_RTX(COUNT, FRAME) \
648 arc_return_addr_rtx(COUNT,FRAME)
649
650 /* Register to use for pushing function arguments. */
651 #define STACK_POINTER_REGNUM 28
652
653 /* Base register for access to local variables of the function. */
654 #define FRAME_POINTER_REGNUM 27
655
656 /* Base register for access to arguments of the function. This register
657 will be eliminated into either fp or sp. */
658 #define ARG_POINTER_REGNUM 62
659
660 #define RETURN_ADDR_REGNUM 31
661
662 /* TODO - check usage of STATIC_CHAIN_REGNUM with a testcase */
663 /* Register in which static-chain is passed to a function. This must
664 not be a register used by the prologue. */
665 #define STATIC_CHAIN_REGNUM 11
666
667 /* Function argument passing. */
668
669 /* If defined, the maximum amount of space required for outgoing
670 arguments will be computed and placed into the variable
671 `crtl->outgoing_args_size'. No space will be pushed
672 onto the stack for each call; instead, the function prologue should
673 increase the stack frame size by this amount. */
674 #define ACCUMULATE_OUTGOING_ARGS 1
675
676 /* Define a data type for recording info about an argument list
677 during the scan of that argument list. This data type should
678 hold all necessary information about the function itself
679 and about the args processed so far, enough to enable macros
680 such as FUNCTION_ARG to determine where the next arg should go. */
681 #define CUMULATIVE_ARGS int
682
683 /* Initialize a variable CUM of type CUMULATIVE_ARGS
684 for a call to a function whose data type is FNTYPE.
685 For a library call, FNTYPE is 0. */
686 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT,N_NAMED_ARGS) \
687 ((CUM) = 0)
688
689 /* The number of registers used for parameter passing. Local to this file. */
690 #define MAX_ARC_PARM_REGS (TARGET_RF16 ? 4 : 8)
691
692 /* 1 if N is a possible register number for function argument passing. */
693 #define FUNCTION_ARG_REGNO_P(N) \
694 ((unsigned) (N) < MAX_ARC_PARM_REGS)
695
696 /* The ROUND_ADVANCE* macros are local to this file. */
697 /* Round SIZE up to a word boundary. */
698 #define ROUND_ADVANCE(SIZE) \
699 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
700
701 /* Round arg MODE/TYPE up to the next word boundary. */
702 #define ROUND_ADVANCE_ARG(MODE, TYPE) \
703 ((MODE) == BLKmode \
704 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
705 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))
706
707 #define ARC_FUNCTION_ARG_BOUNDARY(MODE,TYPE) PARM_BOUNDARY
708 /* Round CUM up to the necessary point for argument MODE/TYPE. */
709 /* N.B. Vectors have alignment exceeding BIGGEST_ALIGNMENT.
710 ARC_FUNCTION_ARG_BOUNDARY reduces this to no more than 32 bit. */
711 #define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) \
712 ((((CUM) - 1) | (ARC_FUNCTION_ARG_BOUNDARY ((MODE), (TYPE)) - 1)/BITS_PER_WORD)\
713 + 1)
714
715 /* Return boolean indicating arg of type TYPE and mode MODE will be passed in
716 a reg. This includes arguments that have to be passed by reference as the
717 pointer to them is passed in a reg if one is available (and that is what
718 we're given).
719 When passing arguments NAMED is always 1. When receiving arguments NAMED
720 is 1 for each argument except the last in a stdarg/varargs function. In
721 a stdarg function we want to treat the last named arg as named. In a
722 varargs function we want to treat the last named arg (which is
723 `__builtin_va_alist') as unnamed.
724 This macro is only used in this file. */
725 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
726 ((CUM) < MAX_ARC_PARM_REGS)
727
728
729 /* Function results. */
730
731 /* Define how to find the value returned by a library function
732 assuming the value has mode MODE. */
733 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
734
735 /* 1 if N is a possible register number for a function value
736 as seen by the caller. */
737 /* ??? What about r1 in DI/DF values. */
738 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
739
740 /* Tell GCC to use RETURN_IN_MEMORY. */
741 #define DEFAULT_PCC_STRUCT_RETURN 0
742
743 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
744 the stack pointer does not matter. The value is tested only in
745 functions that have frame pointers.
746 No definition is equivalent to always zero. */
747 #define EXIT_IGNORE_STACK 0
748
749 #define EPILOGUE_USES(REGNO) arc_epilogue_uses ((REGNO))
750
751 #define EH_USES(REGNO) arc_eh_uses((REGNO))
752
753 /* Definitions for register eliminations.
754
755 This is an array of structures. Each structure initializes one pair
756 of eliminable registers. The "from" register number is given first,
757 followed by "to". Eliminations of the same "from" register are listed
758 in order of preference.
759
760 We have two registers that can be eliminated on the ARC. First, the
761 argument pointer register can always be eliminated in favor of the stack
762 pointer register or frame pointer register. Secondly, the frame pointer
763 register can often be eliminated in favor of the stack pointer register.
764 */
765
766 #define ELIMINABLE_REGS \
767 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
768 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
769 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
770
771 /* Define the offset between two registers, one to be eliminated, and the other
772 its replacement, at the start of a routine. */
773 extern int arc_initial_elimination_offset(int from, int to);
774 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
775 (OFFSET) = arc_initial_elimination_offset ((FROM), (TO))
776
777 /* All the work done in PROFILE_HOOK, but still required. */
778 #undef FUNCTION_PROFILER
779 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
780
781 #define NO_PROFILE_COUNTERS 1
782
783 /* Trampolines. */
784
785 /* Length in units of the trampoline for entering a nested function. */
786 #define TRAMPOLINE_SIZE 16
787
788 /* Alignment required for a trampoline in bits . */
789 /* For actual data alignment we just need 32, no more than the stack;
790 however, to reduce cache coherency issues, we want to make sure that
791 trampoline instructions always appear the same in any given cache line. */
792 #define TRAMPOLINE_ALIGNMENT 256
793
794 /* Library calls. */
795
796 /* Addressing modes, and classification of registers for them. */
797
798 /* Maximum number of registers that can appear in a valid memory address. */
799 /* The `ld' insn allows 2, but the `st' insn only allows 1. */
800 #define MAX_REGS_PER_ADDRESS 1
801
802 /* We have pre inc/dec (load/store with update). */
803 #define HAVE_PRE_INCREMENT 1
804 #define HAVE_PRE_DECREMENT 1
805 #define HAVE_POST_INCREMENT 1
806 #define HAVE_POST_DECREMENT 1
807 #define HAVE_PRE_MODIFY_DISP 1
808 #define HAVE_POST_MODIFY_DISP 1
809 #define HAVE_PRE_MODIFY_REG 1
810 #define HAVE_POST_MODIFY_REG 1
811 /* ??? should also do PRE_MODIFY_REG / POST_MODIFY_REG, but that requires
812 a special predicate for the memory operand of stores, like for the SH. */
813
814 /* Recognize any constant value that is a valid address. */
815 #define CONSTANT_ADDRESS_P(X) \
816 (flag_pic ? (arc_legitimate_pic_addr_p (X) || LABEL_P (X)): \
817 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
818 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST))
819
820 /* Is the argument a const_int rtx, containing an exact power of 2 */
821 #define IS_POWEROF2_P(X) (! ( (X) & ((X) - 1)) && (X))
822 #define IS_POWEROF2_OR_0_P(X) (! ( (X) & ((X) - 1)))
823
824 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
825 and check its validity for a certain class.
826 We have two alternate definitions for each of them.
827 The *_NONSTRICT definition accepts all pseudo regs; the other rejects
828 them unless they have been allocated suitable hard regs.
829
830 Most source files want to accept pseudo regs in the hope that
831 they will get allocated to the class that the insn wants them to be in.
832 Source files for reload pass need to be strict.
833 After reload, it makes no difference, since pseudo regs have
834 been eliminated by then. */
835
836 /* Nonzero if X is a hard reg that can be used as an index
837 or if it is a pseudo reg. */
838 #define REG_OK_FOR_INDEX_P_NONSTRICT(X) \
839 ((unsigned) REGNO (X) >= FIRST_PSEUDO_REGISTER \
840 || REGNO_OK_FOR_BASE_P (REGNO (X)))
841
842 /* Nonzero if X is a hard reg that can be used as a base reg
843 or if it is a pseudo reg. */
844 #define REG_OK_FOR_BASE_P_NONSTRICT(X) \
845 ((unsigned) REGNO (X) >= FIRST_PSEUDO_REGISTER \
846 || REGNO_OK_FOR_BASE_P (REGNO (X)))
847
848 /* Nonzero if X is a hard reg that can be used as an index. */
849 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
850 /* Nonzero if X is a hard reg that can be used as a base reg. */
851 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
852
853 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
854 that is a valid memory address for an instruction.
855 The MODE argument is the machine mode for the MEM expression
856 that wants to use this address. */
857 /* The `ld' insn allows [reg],[reg+shimm],[reg+limm],[reg+reg],[limm]
858 but the `st' insn only allows [reg],[reg+shimm],[limm].
859 The only thing we can do is only allow the most strict case `st' and hope
860 other parts optimize out the restrictions for `ld'. */
861
862 #define RTX_OK_FOR_BASE_P(X, STRICT) \
863 (REG_P (X) \
864 && ((STRICT) ? REG_OK_FOR_BASE_P_STRICT (X) : REG_OK_FOR_BASE_P_NONSTRICT (X)))
865
866 #define RTX_OK_FOR_INDEX_P(X, STRICT) \
867 (REG_P (X) \
868 && ((STRICT) ? REG_OK_FOR_INDEX_P_STRICT (X) : REG_OK_FOR_INDEX_P_NONSTRICT (X)))
869
870 /* A C compound statement that attempts to replace X, which is an address
871 that needs reloading, with a valid memory address for an operand of
872 mode MODE. WIN is a C statement label elsewhere in the code.
873
874 We try to get a normal form
875 of the address. That will allow inheritance of the address reloads. */
876
877 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
878 do { \
879 if (arc_legitimize_reload_address (&(X), (MODE), (OPNUM), (TYPE))) \
880 goto WIN; \
881 } while (0)
882
883 /* Reading lp_count for anything but the lp instruction is very slow on the
884 ARC700. */
885 #define DONT_REALLOC(REGNO,MODE) \
886 (TARGET_ARC700 && (REGNO) == 60)
887
888
889 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
890 return the mode to be used for the comparison. */
891 /*extern machine_mode arc_select_cc_mode ();*/
892 #define SELECT_CC_MODE(OP, X, Y) \
893 arc_select_cc_mode (OP, X, Y)
894
895 /* Return non-zero if SELECT_CC_MODE will never return MODE for a
896 floating point inequality comparison. */
897 #define REVERSIBLE_CC_MODE(MODE) 1 /*???*/
898
899 /* Costs. */
900
901 /* Compute extra cost of moving data between one register class
902 and another. */
903 #define REGISTER_MOVE_COST(MODE, CLASS, TO_CLASS) \
904 arc_register_move_cost ((MODE), (CLASS), (TO_CLASS))
905
906 /* Compute the cost of moving data between registers and memory. */
907 /* Memory is 3 times as expensive as registers.
908 ??? Is that the right way to look at it? */
909 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
910 (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD ? 6 : 12)
911
912 /* The cost of a branch insn. */
913 /* ??? What's the right value here? Branches are certainly more
914 expensive than reg->reg moves. */
915 #define BRANCH_COST(speed_p, predictable_p) 2
916
917 /* Scc sets the destination to 1 and then conditionally zeroes it.
918 Best case, ORed SCCs can be made into clear - condset - condset.
919 But it could also end up as five insns. So say it costs four on
920 average.
921 These extra instructions - and the second comparison - will also be
922 an extra cost if the first comparison would have been decisive.
923 So get an average saving, with a probability of the first branch
924 beging decisive of p0, we want:
925 p0 * (branch_cost - 4) > (1 - p0) * 5
926 ??? We don't get to see that probability to evaluate, so we can
927 only wildly guess that it might be 50%.
928 ??? The compiler also lacks the notion of branch predictability. */
929 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
930 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
931 false) > 9)
932
933 /* Nonzero if access to memory by bytes is slow and undesirable.
934 For RISC chips, it means that access to memory by bytes is no
935 better than access by words when possible, so grab a whole word
936 and maybe make use of that. */
937 #define SLOW_BYTE_ACCESS 0
938
939 /* Define this macro if it is as good or better to call a constant
940 function address than to call an address kept in a register. */
941 /* On the ARC, calling through registers is slow. */
942 #define NO_FUNCTION_CSE 1
943
944 /* Section selection. */
945 /* WARNING: These section names also appear in dwarfout.c. */
946
947 #define TEXT_SECTION_ASM_OP "\t.section\t.text"
948 #define DATA_SECTION_ASM_OP "\t.section\t.data"
949
950 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
951 #define SDATA_SECTION_ASM_OP "\t.section\t.sdata"
952 #define SBSS_SECTION_ASM_OP "\t.section\t.sbss"
953
954 /* Expression whose value is a string, including spacing, containing the
955 assembler operation to identify the following data as initialization/termination
956 code. If not defined, GCC will assume such a section does not exist. */
957 #define INIT_SECTION_ASM_OP "\t.section\t.init"
958 #define FINI_SECTION_ASM_OP "\t.section\t.fini"
959
960 /* Define this macro if jump tables (for tablejump insns) should be
961 output in the text section, along with the assembler instructions.
962 Otherwise, the readonly data section is used.
963 This macro is irrelevant if there is no separate readonly data section. */
964 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic || CASE_VECTOR_PC_RELATIVE)
965
966 /* For DWARF. Marginally different than default so output is "prettier"
967 (and consistent with above). */
968 #define PUSHSECTION_FORMAT "\t%s %s\n"
969
970 /* Tell crtstuff.c we're using ELF. */
971 #define OBJECT_FORMAT_ELF
972
973 /* PIC */
974
975 /* The register number of the register used to address a table of static
976 data addresses in memory. In some cases this register is defined by a
977 processor's ``application binary interface'' (ABI). When this macro
978 is defined, RTL is generated for this register once, as with the stack
979 pointer and frame pointer registers. If this macro is not defined, it
980 is up to the machine-dependent files to allocate such a register (if
981 necessary). */
982 #define PIC_OFFSET_TABLE_REGNUM 26
983
984 /* Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is
985 clobbered by calls. Do not define this macro if PIC_OFFSET_TABLE_REGNUM
986 is not defined. */
987 /* This register is call-saved on the ARC. */
988 /*#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED*/
989
990 /* A C expression that is nonzero if X is a legitimate immediate
991 operand on the target machine when generating position independent code.
992 You can assume that X satisfies CONSTANT_P, so you need not
993 check this. You can also assume `flag_pic' is true, so you need not
994 check it either. You need not define this macro if all constants
995 (including SYMBOL_REF) can be immediate operands when generating
996 position independent code. */
997 #define LEGITIMATE_PIC_OPERAND_P(X) \
998 (!arc_raw_symbolic_reference_mentioned_p ((X), true))
999
1000 /* PIC and small data don't mix on ARC because they use the same register. */
1001 #define SDATA_BASE_REGNUM 26
1002
1003 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1004 (flag_pic \
1005 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
1006 : DW_EH_PE_absptr)
1007
1008 /* Control the assembler format that we output. */
1009
1010 /* A C string constant describing how to begin a comment in the target
1011 assembler language. The compiler assumes that the comment will
1012 end at the end of the line. */
1013 /* Gas needs this to be "#" in order to recognize line directives. */
1014 #define ASM_COMMENT_START "#"
1015
1016 /* Output to assembler file text saying following lines
1017 may contain character constants, extra white space, comments, etc. */
1018 #undef ASM_APP_ON
1019 #define ASM_APP_ON ""
1020
1021 /* Output to assembler file text saying following lines
1022 no longer contain unusual constructs. */
1023 #undef ASM_APP_OFF
1024 #define ASM_APP_OFF ""
1025
1026 /* Globalizing directive for a label. */
1027 #define GLOBAL_ASM_OP "\t.global\t"
1028
1029 /* This is how to output an assembler line defining a `char' constant. */
1030 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
1031 ( fprintf (FILE, "\t.byte\t"), \
1032 output_addr_const (FILE, (VALUE)), \
1033 fprintf (FILE, "\n"))
1034
1035 /* This is how to output an assembler line defining a `short' constant. */
1036 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
1037 ( fprintf (FILE, "\t.hword\t"), \
1038 output_addr_const (FILE, (VALUE)), \
1039 fprintf (FILE, "\n"))
1040
1041 /* This is how to output an assembler line defining an `int' constant.
1042 We also handle symbol output here. Code addresses must be right shifted
1043 by 2 because that's how the jump instruction wants them. */
1044 #define ASM_OUTPUT_INT(FILE, VALUE) \
1045 do { \
1046 fprintf (FILE, "\t.word\t"); \
1047 if (GET_CODE (VALUE) == LABEL_REF) \
1048 { \
1049 fprintf (FILE, "%%st(@"); \
1050 output_addr_const (FILE, (VALUE)); \
1051 fprintf (FILE, ")"); \
1052 } \
1053 else \
1054 output_addr_const (FILE, (VALUE)); \
1055 fprintf (FILE, "\n"); \
1056 } while (0)
1057
1058 /* This is how to output an assembler line defining a `float' constant. */
1059 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1060 { \
1061 long t; \
1062 char str[30]; \
1063 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1064 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1065 fprintf (FILE, "\t.word\t0x%lx %s %s\n", \
1066 t, ASM_COMMENT_START, str); \
1067 }
1068
1069 /* This is how to output an assembler line defining a `double' constant. */
1070 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1071 { \
1072 long t[2]; \
1073 char str[30]; \
1074 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1075 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1076 fprintf (FILE, "\t.word\t0x%lx %s %s\n\t.word\t0x%lx\n", \
1077 t[0], ASM_COMMENT_START, str, t[1]); \
1078 }
1079
1080 /* This is how to output the definition of a user-level label named NAME,
1081 such as the label on a static function or variable NAME. */
1082 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1083 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1084
1085 #define ASM_NAME_P(NAME) ( NAME[0]=='*')
1086
1087 /* This is how to output a reference to a user-level label named NAME.
1088 `assemble_name' uses this. */
1089 /* We work around a dwarfout.c deficiency by watching for labels from it and
1090 not adding the '_' prefix. There is a comment in
1091 dwarfout.c that says it should be using ASM_OUTPUT_INTERNAL_LABEL. */
1092 #define ASM_OUTPUT_LABELREF(FILE, NAME1) \
1093 do { \
1094 const char *NAME; \
1095 NAME = (*targetm.strip_name_encoding)(NAME1); \
1096 if ((NAME)[0] == '.' && (NAME)[1] == 'L') \
1097 fprintf (FILE, "%s", NAME); \
1098 else \
1099 { \
1100 if (!ASM_NAME_P (NAME1)) \
1101 fprintf (FILE, "%s", user_label_prefix); \
1102 fprintf (FILE, "%s", NAME); \
1103 } \
1104 } while (0)
1105
1106 /* This is how to output a reference to a symbol_ref / label_ref as
1107 (part of) an operand. To disambiguate from register names like
1108 a1 / a2 / status etc, symbols are preceded by '@'. */
1109 #define ASM_OUTPUT_SYMBOL_REF(FILE,SYM) \
1110 ASM_OUTPUT_LABEL_REF ((FILE), XSTR ((SYM), 0))
1111 #define ASM_OUTPUT_LABEL_REF(FILE,STR) \
1112 do \
1113 { \
1114 fputc ('@', file); \
1115 assemble_name ((FILE), (STR)); \
1116 } \
1117 while (0)
1118
1119 /* Store in OUTPUT a string (made with alloca) containing
1120 an assembler-name for a local static variable named NAME.
1121 LABELNO is an integer which is different for each call. */
1122 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1123 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1124 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1125
1126 /* The following macro defines the format used to output the second
1127 operand of the .type assembler directive. Different svr4 assemblers
1128 expect various different forms for this operand. The one given here
1129 is just a default. You may need to override it in your machine-
1130 specific tm.h file (depending upon the particulars of your assembler). */
1131
1132 #undef TYPE_OPERAND_FMT
1133 #define TYPE_OPERAND_FMT "@%s"
1134
1135 /* A C string containing the appropriate assembler directive to
1136 specify the size of a symbol, without any arguments. On systems
1137 that use ELF, the default (in `config/elfos.h') is `"\t.size\t"';
1138 on other systems, the default is not to define this macro. */
1139 #undef SIZE_ASM_OP
1140 #define SIZE_ASM_OP "\t.size\t"
1141
1142 /* Assembler pseudo-op to equate one value with another. */
1143 /* ??? This is needed because dwarfout.c provides a default definition too
1144 late for defaults.h (which contains the default definition of ASM_OTPUT_DEF
1145 that we use). */
1146 #ifdef SET_ASM_OP
1147 #undef SET_ASM_OP
1148 #endif
1149 #define SET_ASM_OP "\t.set\t"
1150
1151 extern char rname29[], rname30[];
1152 extern char rname56[], rname57[], rname58[], rname59[];
1153 /* How to refer to registers in assembler output.
1154 This sequence is indexed by compiler's hard-register-number (see above). */
1155 #define REGISTER_NAMES \
1156 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1157 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1158 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
1159 "r24", "r25", "gp", "fp", "sp", rname29, rname30, "blink", \
1160 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
1161 "d1", "d1", "d2", "d2", "r44", "r45", "r46", "r47", \
1162 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
1163 rname56,rname57,rname58,rname59,"lp_count", "cc", "ap", "pcl", \
1164 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7", \
1165 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15", \
1166 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23", \
1167 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31", \
1168 "vr32", "vr33", "vr34", "vr35", "vr36", "vr37", "vr38", "vr39", \
1169 "vr40", "vr41", "vr42", "vr43", "vr44", "vr45", "vr46", "vr47", \
1170 "vr48", "vr49", "vr50", "vr51", "vr52", "vr53", "vr54", "vr55", \
1171 "vr56", "vr57", "vr58", "vr59", "vr60", "vr61", "vr62", "vr63", \
1172 "dr0", "dr1", "dr2", "dr3", "dr4", "dr5", "dr6", "dr7", \
1173 "dr0", "dr1", "dr2", "dr3", "dr4", "dr5", "dr6", "dr7", \
1174 "lp_start", "lp_end" \
1175 }
1176
1177 #define ADDITIONAL_REGISTER_NAMES \
1178 { \
1179 {"ilink", 29}, \
1180 {"r29", 29}, \
1181 {"r30", 30}, \
1182 {"r40", 40}, \
1183 {"r41", 41}, \
1184 {"r42", 42}, \
1185 {"r43", 43}, \
1186 {"r56", 56}, \
1187 {"r57", 57}, \
1188 {"r58", 58}, \
1189 {"r59", 59} \
1190 }
1191
1192 /* Entry to the insn conditionalizer. */
1193 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
1194 arc_final_prescan_insn (INSN, OPVEC, NOPERANDS)
1195
1196 /* A C expression which evaluates to true if CODE is a valid
1197 punctuation character for use in the `PRINT_OPERAND' macro. */
1198 extern char arc_punct_chars[];
1199 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1200 arc_punct_chars[(unsigned char) (CHAR)]
1201
1202 /* Print operand X (an rtx) in assembler syntax to file FILE.
1203 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1204 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1205 #define PRINT_OPERAND(FILE, X, CODE) \
1206 arc_print_operand (FILE, X, CODE)
1207
1208 /* A C compound statement to output to stdio stream STREAM the
1209 assembler syntax for an instruction operand that is a memory
1210 reference whose address is ADDR. ADDR is an RTL expression.
1211
1212 On some machines, the syntax for a symbolic address depends on
1213 the section that the address refers to. On these machines,
1214 define the macro `ENCODE_SECTION_INFO' to store the information
1215 into the `symbol_ref', and then check for it here. */
1216 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1217 arc_print_operand_address (FILE, ADDR)
1218
1219 /* This is how to output an element of a case-vector that is absolute. */
1220 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1221 do { \
1222 char label[30]; \
1223 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1224 fprintf (FILE, "\t.word "); \
1225 assemble_name (FILE, label); \
1226 fprintf (FILE, "\n"); \
1227 } while (0)
1228
1229 /* This is how to output an element of a case-vector that is relative. */
1230 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1231 do { \
1232 char label[30]; \
1233 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1234 if (!TARGET_BI_BIH) \
1235 { \
1236 switch (GET_MODE (BODY)) \
1237 { \
1238 case E_QImode: fprintf (FILE, "\t.byte "); break; \
1239 case E_HImode: fprintf (FILE, "\t.hword "); break; \
1240 case E_SImode: fprintf (FILE, "\t.word "); break; \
1241 default: gcc_unreachable (); \
1242 } \
1243 assemble_name (FILE, label); \
1244 fprintf (FILE, "-"); \
1245 ASM_GENERATE_INTERNAL_LABEL (label, "L", REL); \
1246 assemble_name (FILE, label); \
1247 fprintf (FILE, "\n"); \
1248 } \
1249 else \
1250 { \
1251 switch (GET_MODE (BODY)) \
1252 { \
1253 case E_SImode: fprintf (FILE, "\tb\t@"); break; \
1254 case E_HImode: \
1255 case E_QImode: fprintf (FILE, "\tb_s\t@"); break; \
1256 default: gcc_unreachable (); \
1257 } \
1258 assemble_name (FILE, label); \
1259 fprintf(FILE, "\n"); \
1260 } \
1261 } while (0)
1262
1263 /* Defined to also emit an .align in elfos.h. We don't want that. */
1264 #undef ASM_OUTPUT_CASE_LABEL
1265
1266 /* ADDR_DIFF_VECs are in the text section and thus can affect the
1267 current alignment. */
1268 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE) \
1269 do \
1270 { \
1271 if (GET_CODE (PATTERN (JUMPTABLE)) == ADDR_DIFF_VEC \
1272 && ((GET_MODE_SIZE (as_a <scalar_int_mode> \
1273 (GET_MODE (PATTERN (JUMPTABLE)))) \
1274 * XVECLEN (PATTERN (JUMPTABLE), 1) + 1) \
1275 & 2)) \
1276 arc_toggle_unalign (); \
1277 } \
1278 while (0)
1279
1280 #define JUMP_ALIGN(LABEL) (arc_size_opt_level < 2 ? 2 : 0)
1281 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
1282 (JUMP_ALIGN(LABEL) \
1283 ? JUMP_ALIGN(LABEL) \
1284 : GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
1285 ? 1 : 0)
1286 /* The desired alignment for the location counter at the beginning
1287 of a loop. */
1288 /* On the ARC, align loops to 4 byte boundaries unless doing all-out size
1289 optimization. */
1290 #define LOOP_ALIGN(X) 0
1291
1292 #define LABEL_ALIGN(LABEL) (arc_label_align (LABEL))
1293
1294 /* This is how to output an assembler line
1295 that says to advance the location counter
1296 to a multiple of 2**LOG bytes. */
1297 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1298 do { \
1299 if ((LOG) != 0) fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
1300 if ((LOG) > 1) \
1301 arc_clear_unalign (); \
1302 } while (0)
1303
1304 /* ASM_OUTPUT_ALIGNED_DECL_LOCAL (STREAM, DECL, NAME, SIZE, ALIGNMENT)
1305 Define this macro when you need to see the variable's decl in order to
1306 chose what to output. */
1307 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGNMENT) \
1308 arc_asm_output_aligned_decl_local (STREAM, DECL, NAME, SIZE, ALIGNMENT, 0)
1309
1310 /* Debugging information. */
1311
1312 /* Generate DBX and DWARF debugging information. */
1313 #ifdef DBX_DEBUGGING_INFO
1314 #undef DBX_DEBUGGING_INFO
1315 #endif
1316 #define DBX_DEBUGGING_INFO
1317
1318 #ifdef DWARF2_DEBUGGING_INFO
1319 #undef DWARF2_DEBUGGING_INFO
1320 #endif
1321 #define DWARF2_DEBUGGING_INFO
1322
1323 /* Prefer STABS (for now). */
1324 #undef PREFERRED_DEBUGGING_TYPE
1325 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1326
1327 /* How to renumber registers for dbx and gdb. */
1328 #define DBX_REGISTER_NUMBER(REGNO) \
1329 ((TARGET_MULMAC_32BY16_SET && (REGNO) >= 56 && (REGNO) <= 57) \
1330 ? ((REGNO) ^ !TARGET_BIG_ENDIAN) \
1331 : (TARGET_MUL64_SET && (REGNO) >= 57 && (REGNO) <= 59) \
1332 ? ((REGNO) == 57 \
1333 ? 58 /* MMED */ \
1334 : ((REGNO) & 1) ^ TARGET_BIG_ENDIAN \
1335 ? 59 /* MHI */ \
1336 : 57 + !!TARGET_MULMAC_32BY16_SET) /* MLO */ \
1337 : (REGNO))
1338
1339 #define DWARF_FRAME_REGNUM(REG) (REG)
1340
1341 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (31)
1342
1343 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 31)
1344
1345 /* Frame info. */
1346
1347 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
1348
1349 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
1350
1351 /* Turn off splitting of long stabs. */
1352 #define DBX_CONTIN_LENGTH 0
1353
1354 /* Miscellaneous. */
1355
1356 /* Specify the machine mode that this machine uses
1357 for the index in the tablejump instruction.
1358 If we have pc relative case vectors, we start the case vector shortening
1359 with QImode. */
1360 #define CASE_VECTOR_MODE \
1361 (TARGET_BI_BIH ? SImode \
1362 : (optimize && (CASE_VECTOR_PC_RELATIVE || flag_pic)) ? QImode : Pmode)
1363
1364 /* Define as C expression which evaluates to nonzero if the tablejump
1365 instruction expects the table to contain offsets from the address of the
1366 table.
1367 Do not define this if the table should contain absolute addresses. */
1368 #define CASE_VECTOR_PC_RELATIVE \
1369 (TARGET_CASE_VECTOR_PC_RELATIVE || TARGET_BI_BIH)
1370
1371 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
1372 (TARGET_BI_BIH ? \
1373 ((MIN_OFFSET) >= -512 && (MAX_OFFSET) <= 508 ? HImode : SImode) \
1374 : ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
1375 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
1376 : (MIN_OFFSET) >= -128 && (MAX_OFFSET) <= 127 \
1377 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
1378 : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 65535 \
1379 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, HImode) \
1380 : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 \
1381 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, HImode) \
1382 : SImode))
1383
1384 #define ADDR_VEC_ALIGN(VEC_INSN) \
1385 (TARGET_BI_BIH ? 0 \
1386 : exact_log2 (GET_MODE_SIZE (as_a <scalar_int_mode> \
1387 (GET_MODE (PATTERN (VEC_INSN))))))
1388
1389 #define INSN_LENGTH_ALIGNMENT(INSN) \
1390 ((JUMP_TABLE_DATA_P (INSN) \
1391 && GET_CODE (PATTERN (INSN)) == ADDR_DIFF_VEC \
1392 && GET_MODE (PATTERN (INSN)) == QImode) \
1393 ? 0 : length_unit_log)
1394
1395 /* Define if operations between registers always perform the operation
1396 on the full register even if a narrower mode is specified. */
1397 #define WORD_REGISTER_OPERATIONS 1
1398
1399 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1400 will either zero-extend or sign-extend. The value of this macro should
1401 be the code that says which one of the two operations is implicitly
1402 done, NIL if none. */
1403 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1404
1405
1406 /* Max number of bytes we can move from memory to memory
1407 in one reasonably fast instruction. */
1408 #define MOVE_MAX 4
1409
1410 /* Undo the effects of the movmem pattern presence on STORE_BY_PIECES_P . */
1411 #define MOVE_RATIO(SPEED) ((SPEED) ? 15 : 3)
1412
1413 /* Define this to be nonzero if shift instructions ignore all but the
1414 low-order few bits.
1415 */
1416 #define SHIFT_COUNT_TRUNCATED 1
1417
1418 /* We assume that the store-condition-codes instructions store 0 for false
1419 and some other value for true. This is the value stored for true. */
1420 #define STORE_FLAG_VALUE 1
1421
1422 /* Specify the machine mode that pointers have.
1423 After generation of rtl, the compiler makes no further distinction
1424 between pointers and any other objects of this machine mode. */
1425 /* ARCompact has full 32-bit pointers. */
1426 #define Pmode SImode
1427
1428 /* A function address in a call instruction. */
1429 #define FUNCTION_MODE SImode
1430
1431 /* Define the information needed to generate branch and scc insns. This is
1432 stored from the compare operation. Note that we can't use "rtx" here
1433 since it hasn't been defined! */
1434 extern struct rtx_def *arc_compare_op0, *arc_compare_op1;
1435
1436 /* ARC function types. */
1437 enum arc_function_type {
1438 /* No function should have the unknown type. This value is used to
1439 indicate the that function type has not yet been computed. */
1440 ARC_FUNCTION_UNKNOWN = 0,
1441
1442 /* The normal function type indicates that the function has the
1443 standard prologue and epilogue. */
1444 ARC_FUNCTION_NORMAL = 1 << 0,
1445 /* These are interrupt handlers. The name corresponds to the register
1446 name that contains the return address. */
1447 ARC_FUNCTION_ILINK1 = 1 << 1,
1448 ARC_FUNCTION_ILINK2 = 1 << 2,
1449 /* Fast interrupt is only available on ARCv2 processors. */
1450 ARC_FUNCTION_FIRQ = 1 << 3,
1451 /* The naked function type indicates that the function does not have
1452 prologue or epilogue, and that no stack frame is available. */
1453 ARC_FUNCTION_NAKED = 1 << 4
1454 };
1455
1456 /* Check if a function is an interrupt function. */
1457 #define ARC_INTERRUPT_P(TYPE) \
1458 (((TYPE) & (ARC_FUNCTION_ILINK1 | ARC_FUNCTION_ILINK2 \
1459 | ARC_FUNCTION_FIRQ)) != 0)
1460
1461 /* Check if a function is a fast interrupt function. */
1462 #define ARC_FAST_INTERRUPT_P(TYPE) (((TYPE) & ARC_FUNCTION_FIRQ) != 0)
1463
1464 /* Check if a function is normal, that is, has standard prologue and
1465 epilogue. */
1466 #define ARC_NORMAL_P(TYPE) (((TYPE) & ARC_FUNCTION_NORMAL) != 0)
1467
1468 /* Check if a function is naked. */
1469 #define ARC_NAKED_P(TYPE) (((TYPE) & ARC_FUNCTION_NAKED) != 0)
1470
1471 /* Called by crtstuff.c to make calls to function FUNCTION that are defined in
1472 SECTION_OP, and then to switch back to text section. */
1473 #undef CRT_CALL_STATIC_FUNCTION
1474 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1475 asm (SECTION_OP "\n\t" \
1476 "add r12,pcl,@" USER_LABEL_PREFIX #FUNC "@pcl\n\t" \
1477 "jl [r12]\n" \
1478 TEXT_SECTION_ASM_OP);
1479
1480 /* This macro expands to the name of the scratch register r12, used for
1481 temporary calculations according to the ABI. */
1482 #define ARC_TEMP_SCRATCH_REG "r12"
1483
1484 /* The C++ compiler must use one bit to indicate whether the function
1485 that will be called through a pointer-to-member-function is
1486 virtual. Normally, we assume that the low-order bit of a function
1487 pointer must always be zero. Then, by ensuring that the
1488 vtable_index is odd, we can distinguish which variant of the union
1489 is in use. But, on some platforms function pointers can be odd,
1490 and so this doesn't work. In that case, we use the low-order bit
1491 of the `delta' field, and shift the remainder of the `delta' field
1492 to the left. We needed to do this for A4 because the address was always
1493 shifted and thus could be odd. */
1494 #define TARGET_PTRMEMFUNC_VBIT_LOCATION \
1495 (ptrmemfunc_vbit_in_pfn)
1496
1497 #define INSN_SETS_ARE_DELAYED(X) \
1498 (GET_CODE (X) == INSN \
1499 && GET_CODE (PATTERN (X)) != SEQUENCE \
1500 && GET_CODE (PATTERN (X)) != USE \
1501 && GET_CODE (PATTERN (X)) != CLOBBER \
1502 && (get_attr_type (X) == TYPE_CALL || get_attr_type (X) == TYPE_SFUNC))
1503
1504 #define INSN_REFERENCES_ARE_DELAYED(insn) \
1505 (INSN_SETS_ARE_DELAYED (insn))
1506
1507 #define CALL_ATTR(X, NAME) \
1508 ((CALL_P (X) || NONJUMP_INSN_P (X)) \
1509 && GET_CODE (PATTERN (X)) != USE \
1510 && GET_CODE (PATTERN (X)) != CLOBBER \
1511 && get_attr_is_##NAME (X) == IS_##NAME##_YES) \
1512
1513 #define REVERSE_CONDITION(CODE,MODE) \
1514 (((MODE) == CC_FP_GTmode || (MODE) == CC_FP_GEmode \
1515 || (MODE) == CC_FP_UNEQmode || (MODE) == CC_FP_ORDmode \
1516 || (MODE) == CC_FPXmode || (MODE) == CC_FPU_UNEQmode \
1517 || (MODE) == CC_FPUmode) \
1518 ? reverse_condition_maybe_unordered ((CODE)) \
1519 : reverse_condition ((CODE)))
1520
1521 #define ADJUST_INSN_LENGTH(X, LENGTH) \
1522 ((LENGTH) \
1523 = (GET_CODE (PATTERN (X)) == SEQUENCE \
1524 ? ((LENGTH) \
1525 + arc_adjust_insn_length ( \
1526 as_a <rtx_sequence *> (PATTERN (X))->insn (0), \
1527 get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (0)), \
1528 true) \
1529 - get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (0)) \
1530 + arc_adjust_insn_length ( \
1531 as_a <rtx_sequence *> (PATTERN (X))->insn (1), \
1532 get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (1)), \
1533 true) \
1534 - get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (1))) \
1535 : arc_adjust_insn_length ((X), (LENGTH), false)))
1536
1537 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C,STR) ((C) == '`')
1538
1539 #define INIT_EXPANDERS arc_init_expanders ()
1540
1541 enum
1542 {
1543 ARC_LRA_PRIORITY_NONE, ARC_LRA_PRIORITY_NONCOMPACT, ARC_LRA_PRIORITY_COMPACT
1544 };
1545
1546 /* The define_cond_exec construct is rather crude, as we can't have
1547 different ones with different conditions apply to different sets
1548 of instructions. We can't use an attribute test inside the condition,
1549 because that would lead to infinite recursion as the attribute test
1550 needs to recognize the insn. So, instead we have a clause for
1551 the pattern condition of all sfunc patterns which is only relevant for
1552 the predicated varaint. */
1553 #define SFUNC_CHECK_PREDICABLE \
1554 (GET_CODE (PATTERN (insn)) != COND_EXEC || !flag_pic || !TARGET_MEDIUM_CALLS)
1555
1556 /* MPYW feature macro. Only valid for ARCHS and ARCEM cores. */
1557 #define TARGET_MPYW ((arc_mpy_option > 0) && TARGET_V2)
1558 /* Full ARCv2 multiplication feature macro. */
1559 #define TARGET_MULTI ((arc_mpy_option > 1) && TARGET_V2)
1560 /* General MPY feature macro. */
1561 #define TARGET_MPY ((TARGET_ARC700 && (!TARGET_NOMPY_SET)) || TARGET_MULTI)
1562 /* ARC700 MPY feature macro. */
1563 #define TARGET_ARC700_MPY (TARGET_ARC700 && (!TARGET_NOMPY_SET))
1564 /* Any multiplication feature macro. */
1565 #define TARGET_ANY_MPY \
1566 (TARGET_MPY || TARGET_MUL64_SET || TARGET_MULMAC_32BY16_SET)
1567 /* PLUS_DMPY feature macro. */
1568 #define TARGET_PLUS_DMPY ((arc_mpy_option > 6) && TARGET_HS)
1569 /* PLUS_MACD feature macro. */
1570 #define TARGET_PLUS_MACD ((arc_mpy_option > 7) && TARGET_HS)
1571 /* PLUS_QMACW feature macro. */
1572 #define TARGET_PLUS_QMACW ((arc_mpy_option > 8) && TARGET_HS)
1573
1574 /* ARC600 and ARC601 feature macro. */
1575 #define TARGET_ARC600_FAMILY (TARGET_ARC600 || TARGET_ARC601)
1576 /* ARC600, ARC601 and ARC700 feature macro. */
1577 #define TARGET_ARCOMPACT_FAMILY \
1578 (TARGET_ARC600 || TARGET_ARC601 || TARGET_ARC700)
1579 /* Loop count register can be read in very next instruction after has
1580 been written to by an ordinary instruction. */
1581 #define TARGET_LP_WR_INTERLOCK (!TARGET_ARC600_FAMILY)
1582
1583 /* FPU defines. */
1584 /* Any FPU support. */
1585 #define TARGET_HARD_FLOAT ((arc_fpu_build & (FPU_SP | FPU_DP)) != 0)
1586 /* Single precision floating point support. */
1587 #define TARGET_FP_SP_BASE ((arc_fpu_build & FPU_SP) != 0)
1588 /* Double precision floating point support. */
1589 #define TARGET_FP_DP_BASE ((arc_fpu_build & FPU_DP) != 0)
1590 /* Single precision floating point support with fused operation. */
1591 #define TARGET_FP_SP_FUSED ((arc_fpu_build & FPU_SF) != 0)
1592 /* Double precision floating point support with fused operation. */
1593 #define TARGET_FP_DP_FUSED ((arc_fpu_build & FPU_DF) != 0)
1594 /* Single precision floating point conversion instruction support. */
1595 #define TARGET_FP_SP_CONV ((arc_fpu_build & FPU_SC) != 0)
1596 /* Double precision floating point conversion instruction support. */
1597 #define TARGET_FP_DP_CONV ((arc_fpu_build & FPU_DC) != 0)
1598 /* Single precision floating point SQRT/DIV instruction support. */
1599 #define TARGET_FP_SP_SQRT ((arc_fpu_build & FPU_SD) != 0)
1600 /* Double precision floating point SQRT/DIV instruction support. */
1601 #define TARGET_FP_DP_SQRT ((arc_fpu_build & FPU_DD) != 0)
1602 /* Double precision floating point assist instruction support. */
1603 #define TARGET_FP_DP_AX ((arc_fpu_build & FPX_DP) != 0)
1604 /* Custom FP instructions used by QuarkSE EM cpu. */
1605 #define TARGET_FPX_QUARK (TARGET_EM && TARGET_SPFP \
1606 && (arc_fpu_build == FPX_QK))
1607 /* DBNZ support is available for ARCv2 core3 and newer cpus. */
1608 #define TARGET_DBNZ (TARGET_V2 && (arc_tune >= ARC_TUNE_CORE_3))
1609
1610 /* BI/BIH feature macro. */
1611 #define TARGET_BI_BIH (TARGET_BRANCH_INDEX && TARGET_CODE_DENSITY)
1612
1613 /* The default option for BI/BIH instructions. */
1614 #define DEFAULT_BRANCH_INDEX 0
1615
1616 #ifndef TARGET_LRA
1617 #define TARGET_LRA arc_lra_p()
1618 #endif
1619
1620 #endif /* GCC_ARC_H */