]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/arc/arc.h
[ARC] Refurb eliminate regs.
[thirdparty/gcc.git] / gcc / config / arc / arc.h
1 /* Definitions of target machine for GNU compiler, Synopsys DesignWare ARC cpu.
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_ARC_H
21 #define GCC_ARC_H
22
23 #include <stdbool.h>
24
25 /* Things to do:
26
27 - incscc, decscc?
28
29 */
30
31 #define SYMBOL_FLAG_SHORT_CALL (SYMBOL_FLAG_MACH_DEP << 0)
32 #define SYMBOL_FLAG_MEDIUM_CALL (SYMBOL_FLAG_MACH_DEP << 1)
33 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 2)
34 #define SYMBOL_FLAG_CMEM (SYMBOL_FLAG_MACH_DEP << 3)
35
36 #ifndef TARGET_CPU_DEFAULT
37 #define TARGET_CPU_DEFAULT PROCESSOR_arc700
38 #endif
39
40 /* Check if this symbol has a long_call attribute in its declaration */
41 #define SYMBOL_REF_LONG_CALL_P(X) \
42 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
43
44 /* Check if this symbol has a medium_call attribute in its declaration */
45 #define SYMBOL_REF_MEDIUM_CALL_P(X) \
46 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_MEDIUM_CALL) != 0)
47
48 /* Check if this symbol has a short_call attribute in its declaration */
49 #define SYMBOL_REF_SHORT_CALL_P(X) \
50 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SHORT_CALL) != 0)
51
52 /* Names to predefine in the preprocessor for this target machine. */
53 #define TARGET_CPU_CPP_BUILTINS() arc_cpu_cpp_builtins (pfile)
54
55 /* Macros enabled by specific command line option. FIXME: to be
56 deprecatd. */
57 #define CPP_SPEC "\
58 %{msimd:-D__Xsimd} %{mno-mpy:-D__Xno_mpy} %{mswap:-D__Xswap} \
59 %{mmin-max:-D__Xmin_max} %{mEA:-D__Xea} \
60 %{mspfp*:-D__Xspfp} %{mdpfp*:-D__Xdpfp} \
61 %{mmac-d16:-D__Xxmac_d16} %{mmac-24:-D__Xxmac_24} \
62 %{mdsp-packa:-D__Xdsp_packa} %{mcrc:-D__Xcrc} %{mdvbf:-D__Xdvbf} \
63 %{mtelephony:-D__Xtelephony} %{mxy:-D__Xxy} %{mmul64: -D__Xmult32} \
64 %{mlock:-D__Xlock} %{mswape:-D__Xswape} %{mrtsc:-D__Xrtsc} \
65 %(subtarget_cpp_spec)"
66
67 #undef CC1_SPEC
68 #define CC1_SPEC "%{EB:%{EL:%emay not use both -EB and -EL}} \
69 %{EB:-mbig-endian} %{EL:-mlittle-endian} \
70 %{G*} \
71 "
72 extern const char *arc_cpu_to_as (int argc, const char **argv);
73
74 #define EXTRA_SPEC_FUNCTIONS \
75 { "cpu_to_as", arc_cpu_to_as },
76
77 /* This macro defines names of additional specifications to put in the specs
78 that can be used in various specifications like CC1_SPEC. Its definition
79 is an initializer with a subgrouping for each command option.
80
81 Each subgrouping contains a string constant, that defines the
82 specification name, and a string constant that used by the GCC driver
83 program.
84
85 Do not define this macro if it does not need to do anything. */
86 #define EXTRA_SPECS \
87 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
88 SUBTARGET_EXTRA_SPECS
89
90 #ifndef SUBTARGET_EXTRA_SPECS
91 #define SUBTARGET_EXTRA_SPECS
92 #endif
93
94 #ifndef SUBTARGET_CPP_SPEC
95 #define SUBTARGET_CPP_SPEC ""
96 #endif
97
98 #undef ASM_SPEC
99 #define ASM_SPEC "%{mbig-endian|EB:-EB} %{EL} " \
100 "%:cpu_to_as(%{mcpu=*:%*}) %{mspfp*} %{mdpfp*} %{mfpu=fpuda*:-mfpuda}"
101
102 #define OPTION_DEFAULT_SPECS \
103 {"cpu", "%{!mcpu=*:%{!mARC*:%{!marc*:%{!mA7:%{!mA6:-mcpu=%(VALUE)}}}}}" }
104
105 #ifndef DRIVER_ENDIAN_SELF_SPECS
106 #define DRIVER_ENDIAN_SELF_SPECS ""
107 #endif
108
109 #define DRIVER_SELF_SPECS DRIVER_ENDIAN_SELF_SPECS \
110 "%{mARC600|mA6: -mcpu=arc600 %<mARC600 %<mA6 %<mARC600}" \
111 "%{mARC601: -mcpu=arc601 %<mARC601}" \
112 "%{mARC700|mA7: -mcpu=arc700 %<mARC700 %<mA7}" \
113 "%{mEA: -mea %<mEA}"
114
115 /* Run-time compilation parameters selecting different hardware subsets. */
116
117 #define TARGET_MIXED_CODE (TARGET_MIXED_CODE_SET)
118
119 #define TARGET_SPFP (TARGET_SPFP_FAST_SET || TARGET_SPFP_COMPACT_SET)
120 #define TARGET_DPFP (TARGET_DPFP_FAST_SET || TARGET_DPFP_COMPACT_SET \
121 || TARGET_FP_DP_AX)
122
123 #define SUBTARGET_SWITCHES
124
125 /* Instruction set characteristics.
126 These are internal macros, set by the appropriate -m option. */
127
128 /* Non-zero means the cpu supports norm instruction. This flag is set by
129 default for A7, and only for pre A7 cores when -mnorm is given. */
130 #define TARGET_NORM (TARGET_ARC700 || TARGET_NORM_SET || TARGET_HS)
131 /* Indicate if an optimized floating point emulation library is available. */
132 #define TARGET_OPTFPE (TARGET_ARC700 || TARGET_FPX_QUARK)
133
134 /* Non-zero means the cpu supports swap instruction. This flag is set by
135 default for A7, and only for pre A7 cores when -mswap is given. */
136 #define TARGET_SWAP (TARGET_ARC700 || TARGET_SWAP_SET)
137
138 /* Provide some macros for size / scheduling features of the ARC700, so
139 that we can pick & choose features if we get a new cpu family member. */
140
141 /* Should we try to unalign likely taken branches without a delay slot. */
142 #define TARGET_UNALIGN_BRANCH (TARGET_ARC700 && !optimize_size)
143
144 /* Should we add padding before a return insn to avoid mispredict? */
145 #define TARGET_PAD_RETURN (TARGET_ARC700 && !optimize_size)
146
147 /* For an anulled-true delay slot insn for a delayed branch, should we only
148 use conditional execution? */
149 #define TARGET_AT_DBR_CONDEXEC (!TARGET_ARC700 && !TARGET_V2)
150
151 #define TARGET_ARC600 ((arc_selected_cpu->arch_info->arch_id \
152 == BASE_ARCH_6xx) \
153 && (TARGET_BARREL_SHIFTER))
154 #define TARGET_ARC601 ((arc_selected_cpu->arch_info->arch_id \
155 == BASE_ARCH_6xx) \
156 && (!TARGET_BARREL_SHIFTER))
157 #define TARGET_ARC700 (arc_selected_cpu->arch_info->arch_id \
158 == BASE_ARCH_700)
159 /* An NPS400 is a specialisation of ARC700, so it is correct for NPS400
160 TARGET_ARC700 is true, and TARGET_NPS400 is true. */
161 #define TARGET_NPS400 ((arc_selected_cpu->arch_info->arch_id \
162 == BASE_ARCH_700) \
163 && (arc_selected_cpu->processor \
164 == PROCESSOR_nps400))
165 #define TARGET_EM (arc_selected_cpu->arch_info->arch_id == BASE_ARCH_em)
166 #define TARGET_HS (arc_selected_cpu->arch_info->arch_id == BASE_ARCH_hs)
167 #define TARGET_V2 (TARGET_EM || TARGET_HS)
168
169 #ifndef UNALIGNED_ACCESS_DEFAULT
170 #define UNALIGNED_ACCESS_DEFAULT 0
171 #endif
172
173 #ifndef TARGET_NPS_BITOPS_DEFAULT
174 #define TARGET_NPS_BITOPS_DEFAULT 0
175 #endif
176
177 #ifndef TARGET_NPS_CMEM_DEFAULT
178 #define TARGET_NPS_CMEM_DEFAULT 0
179 #endif
180
181 /* Enable the RRQ instruction alternatives. */
182
183 #define TARGET_RRQ_CLASS TARGET_NPS_BITOPS
184
185 /* Target machine storage layout. */
186
187 /* We want zero_extract to mean the same
188 no matter what the byte endianness is. */
189 #define BITS_BIG_ENDIAN 0
190
191 /* Define this if most significant byte of a word is the lowest numbered. */
192 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
193
194 /* Define this if most significant word of a multiword number is the lowest
195 numbered. */
196 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
197
198 /* Width in bits of a "word", which is the contents of a machine register.
199 Note that this is not necessarily the width of data type `int';
200 if using 16-bit ints on a 68000, this would still be 32.
201 But on a machine with 16-bit registers, this would be 16. */
202 #define BITS_PER_WORD 32
203
204 /* Width of a word, in units (bytes). */
205 #define UNITS_PER_WORD 4
206
207 /* Define this macro if it is advisable to hold scalars in registers
208 in a wider mode than that declared by the program. In such cases,
209 the value is constrained to be within the bounds of the declared
210 type, but kept valid in the wider mode. The signedness of the
211 extension may differ from that of the type. */
212 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
213 if (GET_MODE_CLASS (MODE) == MODE_INT \
214 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
215 { \
216 (MODE) = SImode; \
217 }
218
219 /* Width in bits of a pointer.
220 See also the macro `Pmode' defined below. */
221 #define POINTER_SIZE 32
222
223 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
224 #define PARM_BOUNDARY 32
225
226 /* Boundary (in *bits*) on which stack pointer should be aligned. */
227 /* TOCHECK: Changed from 64 to 32 */
228 #define STACK_BOUNDARY 32
229
230 /* ALIGN FRAMES on word boundaries. */
231 #define ARC_STACK_ALIGN(LOC) \
232 (((LOC) + STACK_BOUNDARY / BITS_PER_UNIT - 1) & -STACK_BOUNDARY/BITS_PER_UNIT)
233
234 /* Allocation boundary (in *bits*) for the code of a function. */
235 #define FUNCTION_BOUNDARY 32
236
237 /* Alignment of field after `int : 0' in a structure. */
238 #define EMPTY_FIELD_BOUNDARY 32
239
240 /* Every structure's size must be a multiple of this. */
241 #define STRUCTURE_SIZE_BOUNDARY 8
242
243 /* A bitfield declared as `int' forces `int' alignment for the struct. */
244 #define PCC_BITFIELD_TYPE_MATTERS 1
245
246 /* An expression for the alignment of a structure field FIELD if the
247 alignment computed in the usual way (including applying of
248 `BIGGEST_ALIGNMENT' and `BIGGEST_FIELD_ALIGNMENT' to the
249 alignment) is COMPUTED. It overrides alignment only if the field
250 alignment has not been set by the `__attribute__ ((aligned (N)))'
251 construct.
252 */
253
254 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
255 (TYPE_MODE (strip_array_types (TYPE)) == DFmode \
256 ? MIN ((COMPUTED), 32) : (COMPUTED))
257
258
259
260 /* No data type wants to be aligned rounder than this. */
261 /* This is bigger than currently necessary for the ARC. If 8 byte floats are
262 ever added it's not clear whether they'll need such alignment or not. For
263 now we assume they will. We can always relax it if necessary but the
264 reverse isn't true. */
265 /* TOCHECK: Changed from 64 to 32 */
266 #define BIGGEST_ALIGNMENT 32
267
268 /* The best alignment to use in cases where we have a choice. */
269 #define FASTEST_ALIGNMENT 32
270
271 /* Make arrays of chars word-aligned for the same reasons. */
272 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
273 (TREE_CODE (TYPE) == ARRAY_TYPE \
274 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
275 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
276
277 #define DATA_ALIGNMENT(TYPE, ALIGN) \
278 (TREE_CODE (TYPE) == ARRAY_TYPE \
279 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
280 && arc_size_opt_level < 3 \
281 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
282
283 /* Set this nonzero if move instructions will actually fail to work
284 when given unaligned data. */
285 /* On the ARC the lower address bits are masked to 0 as necessary. The chip
286 won't croak when given an unaligned address, but the insn will still fail
287 to produce the correct result. */
288 #define STRICT_ALIGNMENT (!unaligned_access)
289
290 /* Layout of source language data types. */
291
292 #define SHORT_TYPE_SIZE 16
293 #define INT_TYPE_SIZE 32
294 #define LONG_TYPE_SIZE 32
295 #define LONG_LONG_TYPE_SIZE 64
296 #define FLOAT_TYPE_SIZE 32
297 #define DOUBLE_TYPE_SIZE 64
298 #define LONG_DOUBLE_TYPE_SIZE 64
299
300 /* Define this as 1 if `char' should by default be signed; else as 0. */
301 #define DEFAULT_SIGNED_CHAR 0
302
303 #undef SIZE_TYPE
304 #define SIZE_TYPE "unsigned int"
305
306 #undef PTRDIFF_TYPE
307 #define PTRDIFF_TYPE "int"
308
309 #undef WCHAR_TYPE
310 #define WCHAR_TYPE "int"
311
312 #undef WCHAR_TYPE_SIZE
313 #define WCHAR_TYPE_SIZE 32
314
315 /* Standard register usage. */
316
317 /* Number of actual hardware registers.
318 The hardware registers are assigned numbers for the compiler
319 from 0 to just below FIRST_PSEUDO_REGISTER.
320 All registers that the compiler knows about must be given numbers,
321 even those that are not normally considered general registers.
322
323 Registers 61, 62, and 63 are not really registers and we needn't treat
324 them as such. We still need a register for the condition code and
325 argument pointer. */
326
327 /* r63 is pc, r64-r127 = simd vregs, r128-r143 = simd dma config regs
328 r144, r145 = ARG_POINTER, FRAME_POINTER
329 and therefore the pseudo registers start from r146. */
330 #define FIRST_PSEUDO_REGISTER 146
331
332 /* 1 for registers that have pervasive standard uses
333 and are not available for the register allocator.
334
335 0-28 - general purpose registers
336 29 - ilink1 (interrupt link register)
337 30 - ilink2 (interrupt link register)
338 31 - blink (branch link register)
339 32-59 - reserved for extensions
340 60 - LP_COUNT
341 61 - condition code
342 62 - argument pointer
343 63 - program counter
344
345 FWIW, this is how the 61-63 encodings are used by the hardware:
346 61 - reserved
347 62 - long immediate data indicator
348 63 - PCL (program counter aligned to 32 bit, read-only)
349
350 The general purpose registers are further broken down into:
351
352 0-7 - arguments/results
353 8-12 - call used (r11 - static chain pointer)
354 13-25 - call saved
355 26 - global pointer
356 27 - frame pointer
357 28 - stack pointer
358 29 - ilink1
359 30 - ilink2
360 31 - return address register
361
362 By default, the extension registers are not available. */
363 /* Present implementations only have VR0-VR23 only. */
364 #define FIXED_REGISTERS \
365 { 0, 0, 0, 0, 0, 0, 0, 0, \
366 0, 0, 0, 0, 0, 0, 0, 0, \
367 0, 0, 0, 0, 0, 0, 0, 0, \
368 0, 0, 1, 0, 1, 1, 1, 1, \
369 \
370 1, 1, 1, 1, 1, 1, 1, 1, \
371 0, 0, 0, 0, 1, 1, 1, 1, \
372 1, 1, 1, 1, 1, 1, 1, 1, \
373 1, 1, 1, 1, 1, 1, 1, 1, \
374 \
375 0, 0, 0, 0, 0, 0, 0, 0, \
376 0, 0, 0, 0, 0, 0, 0, 0, \
377 0, 0, 0, 0, 0, 0, 0, 0, \
378 1, 1, 1, 1, 1, 1, 1, 1, \
379 \
380 1, 1, 1, 1, 1, 1, 1, 1, \
381 1, 1, 1, 1, 1, 1, 1, 1, \
382 1, 1, 1, 1, 1, 1, 1, 1, \
383 1, 1, 1, 1, 1, 1, 1, 1, \
384 \
385 0, 0, 0, 0, 0, 0, 0, 0, \
386 0, 0, 0, 0, 0, 0, 0, 0, \
387 1, 1}
388
389 /* 1 for registers not available across function calls.
390 These must include the FIXED_REGISTERS and also any
391 registers that can be used without being saved.
392 The latter must include the registers where values are returned
393 and the register where structure-value addresses are passed.
394 Aside from that, you can include as many other registers as you like. */
395 #define CALL_USED_REGISTERS \
396 { \
397 1, 1, 1, 1, 1, 1, 1, 1, \
398 1, 1, 1, 1, 1, 0, 0, 0, \
399 0, 0, 0, 0, 0, 0, 0, 0, \
400 0, 0, 1, 0, 1, 1, 1, 1, \
401 \
402 1, 1, 1, 1, 1, 1, 1, 1, \
403 1, 1, 1, 1, 1, 1, 1, 1, \
404 1, 1, 1, 1, 1, 1, 1, 1, \
405 1, 1, 1, 1, 1, 1, 1, 1, \
406 \
407 0, 0, 0, 0, 0, 0, 0, 0, \
408 0, 0, 0, 0, 0, 0, 0, 0, \
409 0, 0, 0, 0, 0, 0, 0, 0, \
410 1, 1, 1, 1, 1, 1, 1, 1, \
411 \
412 1, 1, 1, 1, 1, 1, 1, 1, \
413 1, 1, 1, 1, 1, 1, 1, 1, \
414 1, 1, 1, 1, 1, 1, 1, 1, \
415 1, 1, 1, 1, 1, 1, 1, 1, \
416 \
417 0, 0, 0, 0, 0, 0, 0, 0, \
418 0, 0, 0, 0, 0, 0, 0, 0, \
419 1, 1}
420
421 /* If defined, an initializer for a vector of integers, containing the
422 numbers of hard registers in the order in which GCC should
423 prefer to use them (from most preferred to least). */
424 #define REG_ALLOC_ORDER \
425 { \
426 /* General registers. */ \
427 2, 3, 12, 13, 14, 15, 1, 0, 4, 5, 6, 7, 8, 9, 10, 11, \
428 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, \
429 /* Extension core registers. */ \
430 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
431 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
432 /* VR regs. */ \
433 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
434 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
435 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, \
436 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, \
437 124, 125, 126, 127, \
438 /* DMA registers. */ \
439 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, \
440 142, 143, \
441 /* Register not used for general use. */ \
442 62, FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, \
443 SP_REG, ILINK1_REG, RETURN_ADDR_REGNUM, LP_COUNT, CC_REG, PCL_REG \
444 }
445
446 /* Use different register alloc ordering for Thumb. */
447 #define ADJUST_REG_ALLOC_ORDER arc_adjust_reg_alloc_order ()
448
449 /* Tell IRA to use the order we define rather than messing it up with its
450 own cost calculations. */
451 #define HONOR_REG_ALLOC_ORDER 1
452
453 /* Internal macros to classify a register number as to whether it's a
454 general purpose register for compact insns (r0-r3,r12-r15), or
455 stack pointer (r28). */
456
457 #define COMPACT_GP_REG_P(REGNO) \
458 (((signed)(REGNO) >= 0 && (REGNO) <= 3) || ((REGNO) >= 12 && (REGNO) <= 15))
459 #define SP_REG_P(REGNO) ((REGNO) == 28)
460
461
462
463 /* Register classes and constants. */
464
465 /* Define the classes of registers for register constraints in the
466 machine description. Also define ranges of constants.
467
468 One of the classes must always be named ALL_REGS and include all hard regs.
469 If there is more than one class, another class must be named NO_REGS
470 and contain no registers.
471
472 The name GENERAL_REGS must be the name of a class (or an alias for
473 another name such as ALL_REGS). This is the class of registers
474 that is allowed by "g" or "r" in a register constraint.
475 Also, registers outside this class are allocated only when
476 instructions express preferences for them.
477
478 The classes must be numbered in nondecreasing order; that is,
479 a larger-numbered class must never be contained completely
480 in a smaller-numbered class.
481
482 For any two classes, it is very desirable that there be another
483 class that represents their union.
484
485 It is important that any condition codes have class NO_REGS.
486 See `register_operand'. */
487
488 enum reg_class
489 {
490 NO_REGS,
491 R0_REGS, /* 'x' */
492 R0R1_CD_REGS, /* 'Rsd' */
493 R0R3_CD_REGS, /* 'Rcd' */
494 ARCOMPACT16_REGS, /* 'q' */
495 SIBCALL_REGS, /* "Rsc" */
496 AC16_H_REGS, /* 'h' */
497 DOUBLE_REGS, /* 'D' */
498 GENERAL_REGS, /* 'r' */
499 SIMD_VR_REGS, /* 'v' */
500 SIMD_DMA_CONFIG_REGS, /* 'd' */
501 ALL_REGS,
502 LIM_REG_CLASSES
503 };
504
505 #define N_REG_CLASSES (int) LIM_REG_CLASSES
506
507 /* Give names of register classes as strings for dump file. */
508 #define REG_CLASS_NAMES \
509 { \
510 "NO_REGS", \
511 "R0_REGS", \
512 "R0R1_CD_REGS", \
513 "R0R3_CD_REGS", \
514 "ARCOMPACT16_REGS", \
515 "SIBCALL_REGS", \
516 "AC16_H_REGS", \
517 "DOUBLE_REGS", \
518 "GENERAL_REGS", \
519 "SIMD_VR_REGS", \
520 "SIMD_DMA_CONFIG_REGS", \
521 "ALL_REGS" \
522 }
523
524 /* Define which registers fit in which classes.
525 This is an initializer for a vector of HARD_REG_SET
526 of length N_REG_CLASSES. */
527
528 #define REG_CLASS_CONTENTS \
529 { \
530 {0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* NO_REGS. */\
531 {0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'x'. */ \
532 {0x00000003, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rsd'. */ \
533 {0x0000000f, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rcd'. */ \
534 {0x0000f00f, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'q'. */ \
535 {0x00001fff, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'Rsc'. */ \
536 {0x9fffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000}, /* 'h'. */ \
537 {0x00000000, 0x00000f00, 0x00000000, 0x00000000, 0x00000000}, /* 'D'. */ \
538 {0xffffffff, 0x8fffffff, 0x00000000, 0x00000000, 0x00030000}, /* 'r'. */ \
539 {0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000}, /* 'v'. */ \
540 {0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000ffff}, /* 'd'. */ \
541 {0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff} /* ALL_REGS. */\
542 }
543
544 /* Local macros to mark the first and last regs of different classes. */
545 #define ARC_FIRST_SIMD_VR_REG 64
546 #define ARC_LAST_SIMD_VR_REG 127
547
548 #define ARC_FIRST_SIMD_DMA_CONFIG_REG 128
549 #define ARC_FIRST_SIMD_DMA_CONFIG_IN_REG 128
550 #define ARC_FIRST_SIMD_DMA_CONFIG_OUT_REG 136
551 #define ARC_LAST_SIMD_DMA_CONFIG_REG 143
552
553 /* ARCv2 double-register accumulator. */
554 #define ACC_REG_FIRST 58
555 #define ACC_REG_LAST 59
556 #define ACCL_REGNO (TARGET_BIG_ENDIAN ? ACC_REG_FIRST + 1 : ACC_REG_FIRST)
557 #define ACCH_REGNO (TARGET_BIG_ENDIAN ? ACC_REG_FIRST : ACC_REG_FIRST + 1)
558
559 /* The same information, inverted:
560 Return the class number of the smallest class containing
561 reg number REGNO. This could be a conditional expression
562 or could index an array. */
563
564 extern enum reg_class arc_regno_reg_class[];
565
566 #define REGNO_REG_CLASS(REGNO) (arc_regno_reg_class[REGNO])
567
568 /* The class value for valid index registers. An index register is
569 one used in an address where its value is either multiplied by
570 a scale factor or added to another register (as well as added to a
571 displacement). */
572
573 #define INDEX_REG_CLASS (TARGET_MIXED_CODE ? ARCOMPACT16_REGS : GENERAL_REGS)
574
575 /* The class value for valid base registers. A base register is one used in
576 an address which is the register value plus a displacement. */
577
578 #define BASE_REG_CLASS GENERAL_REGS
579
580 /* These assume that REGNO is a hard or pseudo reg number.
581 They give nonzero only if REGNO is a hard reg of the suitable class
582 or a pseudo reg currently allocated to a suitable hard reg.
583 Since they use reg_renumber, they are safe only once reg_renumber
584 has been allocated, which happens in local-alloc.c. */
585 #define REGNO_OK_FOR_BASE_P(REGNO) \
586 ((REGNO) < 29 \
587 || ((REGNO) == ARG_POINTER_REGNUM) \
588 || ((REGNO) == FRAME_POINTER_REGNUM) \
589 || ((REGNO) == PCL_REG) \
590 || ((unsigned) reg_renumber[REGNO] < 29) \
591 || ((unsigned) (REGNO) == (unsigned) arc_tp_regno) \
592 || (fixed_regs[REGNO] == 0 && IN_RANGE (REGNO, 32, 59)) \
593 || (fixed_regs[REGNO] == 0 && (REGNO) == R30_REG))
594
595 #define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_BASE_P(REGNO)
596
597 /* Given an rtx X being reloaded into a reg required to be
598 in class CLASS, return the class of reg to actually use.
599 In general this is just CLASS; but on some machines
600 in some cases it is preferable to use a more restrictive class. */
601
602 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
603 arc_preferred_reload_class((X), (CLASS))
604
605 extern enum reg_class arc_preferred_reload_class (rtx, enum reg_class);
606
607 /* Return the maximum number of consecutive registers
608 needed to represent mode MODE in a register of class CLASS. */
609
610 #define CLASS_MAX_NREGS(CLASS, MODE) \
611 (( GET_MODE_SIZE (MODE) == 16 && CLASS == SIMD_VR_REGS) ? 1: \
612 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
613
614 #define SMALL_INT(X) ((unsigned) ((X) + 0x100) < 0x200)
615 #define SMALL_INT_RANGE(X, OFFSET, SHIFT) \
616 ((unsigned) (((X) >> (SHIFT)) + 0x100) \
617 < 0x200 - ((unsigned) (OFFSET) >> (SHIFT)))
618 #define SIGNED_INT12(X) ((unsigned) ((X) + 0x800) < 0x1000)
619 #define SIGNED_INT16(X) ((unsigned) ((X) + 0x8000) < 0x10000)
620 #define LARGE_INT(X) \
621 (((X) < 0) \
622 ? (X) >= (-(HOST_WIDE_INT) 0x7fffffff - 1) \
623 : (unsigned HOST_WIDE_INT) (X) <= (unsigned HOST_WIDE_INT) 0xffffffff)
624 #define UNSIGNED_INT3(X) ((unsigned) (X) < 0x8)
625 #define UNSIGNED_INT5(X) ((unsigned) (X) < 0x20)
626 #define UNSIGNED_INT6(X) ((unsigned) (X) < 0x40)
627 #define UNSIGNED_INT7(X) ((unsigned) (X) < 0x80)
628 #define UNSIGNED_INT8(X) ((unsigned) (X) < 0x100)
629 #define UNSIGNED_INT12(X) ((unsigned) (X) < 0x800)
630 #define UNSIGNED_INT16(X) ((unsigned) (X) < 0x10000)
631 #define IS_ONE(X) ((X) == 1)
632 #define IS_ZERO(X) ((X) == 0)
633
634 /* Stack layout and stack pointer usage. */
635
636 /* Define this macro if pushing a word onto the stack moves the stack
637 pointer to a smaller address. */
638 #define STACK_GROWS_DOWNWARD 1
639
640 /* Define this if the nominal address of the stack frame
641 is at the high-address end of the local variables;
642 that is, each additional local variable allocated
643 goes at a more negative offset in the frame. */
644 #define FRAME_GROWS_DOWNWARD 1
645
646 /* Offset from the stack pointer register to the first location at which
647 outgoing arguments are placed. */
648 #define STACK_POINTER_OFFSET (0)
649
650 /* Offset of first parameter from the argument pointer register value. */
651 #define FIRST_PARM_OFFSET(FNDECL) (0)
652
653 /* A C expression whose value is RTL representing the address in a
654 stack frame where the pointer to the caller's frame is stored.
655 Assume that FRAMEADDR is an RTL expression for the address of the
656 stack frame itself.
657
658 If you don't define this macro, the default is to return the value
659 of FRAMEADDR--that is, the stack frame address is also the address
660 of the stack word that points to the previous frame. */
661 /* ??? unfinished */
662 /*define DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)*/
663
664 /* A C expression whose value is RTL representing the value of the
665 return address for the frame COUNT steps up from the current frame.
666 FRAMEADDR is the frame pointer of the COUNT frame, or the frame
667 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME'
668 is defined. */
669 /* The current return address is in r31. The return address of anything
670 farther back is at [%fp,4]. */
671
672 #define RETURN_ADDR_RTX(COUNT, FRAME) \
673 arc_return_addr_rtx(COUNT,FRAME)
674
675 /* Register to use for pushing function arguments. */
676 #define STACK_POINTER_REGNUM 28
677
678 /* Base register for access to local variables of the function. */
679 #define FRAME_POINTER_REGNUM 145
680 #define HARD_FRAME_POINTER_REGNUM 27
681
682 /* Base register for access to arguments of the function. This register
683 will be eliminated into either fp or sp. */
684 #define ARG_POINTER_REGNUM 144
685
686 #define RETURN_ADDR_REGNUM 31
687
688 /* TODO - check usage of STATIC_CHAIN_REGNUM with a testcase */
689 /* Register in which static-chain is passed to a function. This must
690 not be a register used by the prologue. */
691 #define STATIC_CHAIN_REGNUM 11
692
693 /* Function argument passing. */
694
695 /* If defined, the maximum amount of space required for outgoing
696 arguments will be computed and placed into the variable
697 `crtl->outgoing_args_size'. No space will be pushed
698 onto the stack for each call; instead, the function prologue should
699 increase the stack frame size by this amount. */
700 #define ACCUMULATE_OUTGOING_ARGS 1
701
702 /* Define a data type for recording info about an argument list
703 during the scan of that argument list. This data type should
704 hold all necessary information about the function itself
705 and about the args processed so far, enough to enable macros
706 such as FUNCTION_ARG to determine where the next arg should go. */
707 #define CUMULATIVE_ARGS int
708
709 /* Initialize a variable CUM of type CUMULATIVE_ARGS
710 for a call to a function whose data type is FNTYPE.
711 For a library call, FNTYPE is 0. */
712 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT,N_NAMED_ARGS) \
713 ((CUM) = 0)
714
715 /* The number of registers used for parameter passing. Local to this file. */
716 #define MAX_ARC_PARM_REGS (TARGET_RF16 ? 4 : 8)
717
718 /* 1 if N is a possible register number for function argument passing. */
719 #define FUNCTION_ARG_REGNO_P(N) \
720 ((unsigned) (N) < MAX_ARC_PARM_REGS)
721
722 /* The ROUND_ADVANCE* macros are local to this file. */
723 /* Round SIZE up to a word boundary. */
724 #define ROUND_ADVANCE(SIZE) \
725 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
726
727 /* Round arg MODE/TYPE up to the next word boundary. */
728 #define ROUND_ADVANCE_ARG(MODE, TYPE) \
729 ((MODE) == BLKmode \
730 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
731 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))
732
733 #define ARC_FUNCTION_ARG_BOUNDARY(MODE,TYPE) PARM_BOUNDARY
734 /* Round CUM up to the necessary point for argument MODE/TYPE. */
735 /* N.B. Vectors have alignment exceeding BIGGEST_ALIGNMENT.
736 ARC_FUNCTION_ARG_BOUNDARY reduces this to no more than 32 bit. */
737 #define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) \
738 ((((CUM) - 1) | (ARC_FUNCTION_ARG_BOUNDARY ((MODE), (TYPE)) - 1)/BITS_PER_WORD)\
739 + 1)
740
741 /* Return boolean indicating arg of type TYPE and mode MODE will be passed in
742 a reg. This includes arguments that have to be passed by reference as the
743 pointer to them is passed in a reg if one is available (and that is what
744 we're given).
745 When passing arguments NAMED is always 1. When receiving arguments NAMED
746 is 1 for each argument except the last in a stdarg/varargs function. In
747 a stdarg function we want to treat the last named arg as named. In a
748 varargs function we want to treat the last named arg (which is
749 `__builtin_va_alist') as unnamed.
750 This macro is only used in this file. */
751 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
752 ((CUM) < MAX_ARC_PARM_REGS)
753
754
755 /* Function results. */
756
757 /* Define how to find the value returned by a library function
758 assuming the value has mode MODE. */
759 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
760
761 /* 1 if N is a possible register number for a function value
762 as seen by the caller. */
763 /* ??? What about r1 in DI/DF values. */
764 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
765
766 /* Tell GCC to use RETURN_IN_MEMORY. */
767 #define DEFAULT_PCC_STRUCT_RETURN 0
768
769 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
770 the stack pointer does not matter. The value is tested only in
771 functions that have frame pointers.
772 No definition is equivalent to always zero. */
773 #define EXIT_IGNORE_STACK 0
774
775 #define EPILOGUE_USES(REGNO) arc_epilogue_uses ((REGNO))
776
777 #define EH_USES(REGNO) arc_eh_uses((REGNO))
778
779 /* Definitions for register eliminations.
780
781 This is an array of structures. Each structure initializes one pair
782 of eliminable registers. The "from" register number is given first,
783 followed by "to". Eliminations of the same "from" register are listed
784 in order of preference.
785
786 We have two registers that can be eliminated on the ARC. First, the
787 argument pointer register can always be eliminated in favor of the stack
788 pointer register or frame pointer register. Secondly, the frame pointer
789 register can often be eliminated in favor of the stack pointer register.
790 */
791
792 #define ELIMINABLE_REGS \
793 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
794 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
795 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
796 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
797
798 /* Define the offset between two registers, one to be eliminated, and the other
799 its replacement, at the start of a routine. */
800 extern int arc_initial_elimination_offset(int from, int to);
801 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
802 (OFFSET) = arc_initial_elimination_offset ((FROM), (TO))
803
804 /* All the work done in PROFILE_HOOK, but still required. */
805 #undef FUNCTION_PROFILER
806 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
807
808 #define NO_PROFILE_COUNTERS 1
809
810 /* Trampolines. */
811
812 /* Length in units of the trampoline for entering a nested function. */
813 #define TRAMPOLINE_SIZE 16
814
815 /* Alignment required for a trampoline in bits . */
816 /* For actual data alignment we just need 32, no more than the stack;
817 however, to reduce cache coherency issues, we want to make sure that
818 trampoline instructions always appear the same in any given cache line. */
819 #define TRAMPOLINE_ALIGNMENT 256
820
821 /* Library calls. */
822
823 /* Addressing modes, and classification of registers for them. */
824
825 /* Maximum number of registers that can appear in a valid memory address. */
826 /* The `ld' insn allows 2, but the `st' insn only allows 1. */
827 #define MAX_REGS_PER_ADDRESS 1
828
829 /* We have pre inc/dec (load/store with update). */
830 #define HAVE_PRE_INCREMENT 1
831 #define HAVE_PRE_DECREMENT 1
832 #define HAVE_POST_INCREMENT 1
833 #define HAVE_POST_DECREMENT 1
834 #define HAVE_PRE_MODIFY_DISP 1
835 #define HAVE_POST_MODIFY_DISP 1
836 #define HAVE_PRE_MODIFY_REG 1
837 #define HAVE_POST_MODIFY_REG 1
838 /* ??? should also do PRE_MODIFY_REG / POST_MODIFY_REG, but that requires
839 a special predicate for the memory operand of stores, like for the SH. */
840
841 /* Recognize any constant value that is a valid address. */
842 #define CONSTANT_ADDRESS_P(X) \
843 (flag_pic ? (arc_legitimate_pic_addr_p (X) || LABEL_P (X)): \
844 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
845 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST))
846
847 /* Is the argument a const_int rtx, containing an exact power of 2 */
848 #define IS_POWEROF2_P(X) (! ( (X) & ((X) - 1)) && (X))
849 #define IS_POWEROF2_OR_0_P(X) (! ( (X) & ((X) - 1)))
850
851 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
852 and check its validity for a certain class.
853 We have two alternate definitions for each of them.
854 The *_NONSTRICT definition accepts all pseudo regs; the other rejects
855 them unless they have been allocated suitable hard regs.
856
857 Most source files want to accept pseudo regs in the hope that
858 they will get allocated to the class that the insn wants them to be in.
859 Source files for reload pass need to be strict.
860 After reload, it makes no difference, since pseudo regs have
861 been eliminated by then. */
862
863 /* Nonzero if X is a hard reg that can be used as an index
864 or if it is a pseudo reg. */
865 #define REG_OK_FOR_INDEX_P_NONSTRICT(X) \
866 ((unsigned) REGNO (X) >= FIRST_PSEUDO_REGISTER \
867 || REGNO_OK_FOR_BASE_P (REGNO (X)))
868
869 /* Nonzero if X is a hard reg that can be used as a base reg
870 or if it is a pseudo reg. */
871 #define REG_OK_FOR_BASE_P_NONSTRICT(X) \
872 ((unsigned) REGNO (X) >= FIRST_PSEUDO_REGISTER \
873 || REGNO_OK_FOR_BASE_P (REGNO (X)))
874
875 /* Nonzero if X is a hard reg that can be used as an index. */
876 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
877 /* Nonzero if X is a hard reg that can be used as a base reg. */
878 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
879
880 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
881 that is a valid memory address for an instruction.
882 The MODE argument is the machine mode for the MEM expression
883 that wants to use this address. */
884 /* The `ld' insn allows [reg],[reg+shimm],[reg+limm],[reg+reg],[limm]
885 but the `st' insn only allows [reg],[reg+shimm],[limm].
886 The only thing we can do is only allow the most strict case `st' and hope
887 other parts optimize out the restrictions for `ld'. */
888
889 #define RTX_OK_FOR_BASE_P(X, STRICT) \
890 (REG_P (X) \
891 && ((STRICT) ? REG_OK_FOR_BASE_P_STRICT (X) : REG_OK_FOR_BASE_P_NONSTRICT (X)))
892
893 #define RTX_OK_FOR_INDEX_P(X, STRICT) \
894 (REG_P (X) \
895 && ((STRICT) ? REG_OK_FOR_INDEX_P_STRICT (X) : REG_OK_FOR_INDEX_P_NONSTRICT (X)))
896
897 /* A C compound statement that attempts to replace X, which is an address
898 that needs reloading, with a valid memory address for an operand of
899 mode MODE. WIN is a C statement label elsewhere in the code.
900
901 We try to get a normal form
902 of the address. That will allow inheritance of the address reloads. */
903
904 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
905 do { \
906 if (arc_legitimize_reload_address (&(X), (MODE), (OPNUM), (TYPE))) \
907 goto WIN; \
908 } while (0)
909
910 /* Reading lp_count for anything but the lp instruction is very slow on the
911 ARC700. */
912 #define DONT_REALLOC(REGNO,MODE) \
913 (TARGET_ARC700 && (REGNO) == 60)
914
915
916 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
917 return the mode to be used for the comparison. */
918 /*extern machine_mode arc_select_cc_mode ();*/
919 #define SELECT_CC_MODE(OP, X, Y) \
920 arc_select_cc_mode (OP, X, Y)
921
922 /* Return non-zero if SELECT_CC_MODE will never return MODE for a
923 floating point inequality comparison. */
924 #define REVERSIBLE_CC_MODE(MODE) 1 /*???*/
925
926 /* Costs. */
927
928 /* Compute extra cost of moving data between one register class
929 and another. */
930 #define REGISTER_MOVE_COST(MODE, CLASS, TO_CLASS) \
931 arc_register_move_cost ((MODE), (CLASS), (TO_CLASS))
932
933 /* Compute the cost of moving data between registers and memory. */
934 /* Memory is 3 times as expensive as registers.
935 ??? Is that the right way to look at it? */
936 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
937 (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD ? 6 : 12)
938
939 /* The cost of a branch insn. */
940 /* ??? What's the right value here? Branches are certainly more
941 expensive than reg->reg moves. */
942 #define BRANCH_COST(speed_p, predictable_p) 2
943
944 /* Scc sets the destination to 1 and then conditionally zeroes it.
945 Best case, ORed SCCs can be made into clear - condset - condset.
946 But it could also end up as five insns. So say it costs four on
947 average.
948 These extra instructions - and the second comparison - will also be
949 an extra cost if the first comparison would have been decisive.
950 So get an average saving, with a probability of the first branch
951 beging decisive of p0, we want:
952 p0 * (branch_cost - 4) > (1 - p0) * 5
953 ??? We don't get to see that probability to evaluate, so we can
954 only wildly guess that it might be 50%.
955 ??? The compiler also lacks the notion of branch predictability. */
956 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
957 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
958 false) > 9)
959
960 /* Nonzero if access to memory by bytes is slow and undesirable.
961 For RISC chips, it means that access to memory by bytes is no
962 better than access by words when possible, so grab a whole word
963 and maybe make use of that. */
964 #define SLOW_BYTE_ACCESS 0
965
966 /* Define this macro if it is as good or better to call a constant
967 function address than to call an address kept in a register. */
968 /* On the ARC, calling through registers is slow. */
969 #define NO_FUNCTION_CSE 1
970
971 /* Section selection. */
972 /* WARNING: These section names also appear in dwarfout.c. */
973
974 #define TEXT_SECTION_ASM_OP "\t.section\t.text"
975 #define DATA_SECTION_ASM_OP "\t.section\t.data"
976
977 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
978 #define SDATA_SECTION_ASM_OP "\t.section\t.sdata"
979 #define SBSS_SECTION_ASM_OP "\t.section\t.sbss"
980
981 /* Expression whose value is a string, including spacing, containing the
982 assembler operation to identify the following data as initialization/termination
983 code. If not defined, GCC will assume such a section does not exist. */
984 #define INIT_SECTION_ASM_OP "\t.section\t.init"
985 #define FINI_SECTION_ASM_OP "\t.section\t.fini"
986
987 /* Define this macro if jump tables (for tablejump insns) should be
988 output in the text section, along with the assembler instructions.
989 Otherwise, the readonly data section is used.
990 This macro is irrelevant if there is no separate readonly data section. */
991 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic || CASE_VECTOR_PC_RELATIVE)
992
993 /* For DWARF. Marginally different than default so output is "prettier"
994 (and consistent with above). */
995 #define PUSHSECTION_FORMAT "\t%s %s\n"
996
997 /* Tell crtstuff.c we're using ELF. */
998 #define OBJECT_FORMAT_ELF
999
1000 /* PIC */
1001
1002 /* The register number of the register used to address a table of static
1003 data addresses in memory. In some cases this register is defined by a
1004 processor's ``application binary interface'' (ABI). When this macro
1005 is defined, RTL is generated for this register once, as with the stack
1006 pointer and frame pointer registers. If this macro is not defined, it
1007 is up to the machine-dependent files to allocate such a register (if
1008 necessary). */
1009 #define PIC_OFFSET_TABLE_REGNUM 26
1010
1011 /* Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is
1012 clobbered by calls. Do not define this macro if PIC_OFFSET_TABLE_REGNUM
1013 is not defined. */
1014 /* This register is call-saved on the ARC. */
1015 /*#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED*/
1016
1017 /* A C expression that is nonzero if X is a legitimate immediate
1018 operand on the target machine when generating position independent code.
1019 You can assume that X satisfies CONSTANT_P, so you need not
1020 check this. You can also assume `flag_pic' is true, so you need not
1021 check it either. You need not define this macro if all constants
1022 (including SYMBOL_REF) can be immediate operands when generating
1023 position independent code. */
1024 #define LEGITIMATE_PIC_OPERAND_P(X) \
1025 (!arc_raw_symbolic_reference_mentioned_p ((X), true))
1026
1027 /* PIC and small data don't mix on ARC because they use the same register. */
1028 #define SDATA_BASE_REGNUM 26
1029
1030 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1031 (flag_pic \
1032 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
1033 : DW_EH_PE_absptr)
1034
1035 /* Control the assembler format that we output. */
1036
1037 /* A C string constant describing how to begin a comment in the target
1038 assembler language. The compiler assumes that the comment will
1039 end at the end of the line. */
1040 /* Gas needs this to be "#" in order to recognize line directives. */
1041 #define ASM_COMMENT_START "#"
1042
1043 /* Output to assembler file text saying following lines
1044 may contain character constants, extra white space, comments, etc. */
1045 #undef ASM_APP_ON
1046 #define ASM_APP_ON ""
1047
1048 /* Output to assembler file text saying following lines
1049 no longer contain unusual constructs. */
1050 #undef ASM_APP_OFF
1051 #define ASM_APP_OFF ""
1052
1053 /* Globalizing directive for a label. */
1054 #define GLOBAL_ASM_OP "\t.global\t"
1055
1056 /* This is how to output an assembler line defining a `char' constant. */
1057 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
1058 ( fprintf (FILE, "\t.byte\t"), \
1059 output_addr_const (FILE, (VALUE)), \
1060 fprintf (FILE, "\n"))
1061
1062 /* This is how to output an assembler line defining a `short' constant. */
1063 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
1064 ( fprintf (FILE, "\t.hword\t"), \
1065 output_addr_const (FILE, (VALUE)), \
1066 fprintf (FILE, "\n"))
1067
1068 /* This is how to output an assembler line defining an `int' constant.
1069 We also handle symbol output here. Code addresses must be right shifted
1070 by 2 because that's how the jump instruction wants them. */
1071 #define ASM_OUTPUT_INT(FILE, VALUE) \
1072 do { \
1073 fprintf (FILE, "\t.word\t"); \
1074 if (GET_CODE (VALUE) == LABEL_REF) \
1075 { \
1076 fprintf (FILE, "%%st(@"); \
1077 output_addr_const (FILE, (VALUE)); \
1078 fprintf (FILE, ")"); \
1079 } \
1080 else \
1081 output_addr_const (FILE, (VALUE)); \
1082 fprintf (FILE, "\n"); \
1083 } while (0)
1084
1085 /* This is how to output an assembler line defining a `float' constant. */
1086 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1087 { \
1088 long t; \
1089 char str[30]; \
1090 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1091 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1092 fprintf (FILE, "\t.word\t0x%lx %s %s\n", \
1093 t, ASM_COMMENT_START, str); \
1094 }
1095
1096 /* This is how to output an assembler line defining a `double' constant. */
1097 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1098 { \
1099 long t[2]; \
1100 char str[30]; \
1101 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1102 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1103 fprintf (FILE, "\t.word\t0x%lx %s %s\n\t.word\t0x%lx\n", \
1104 t[0], ASM_COMMENT_START, str, t[1]); \
1105 }
1106
1107 /* This is how to output the definition of a user-level label named NAME,
1108 such as the label on a static function or variable NAME. */
1109 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1110 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1111
1112 #define ASM_NAME_P(NAME) ( NAME[0]=='*')
1113
1114 /* This is how to output a reference to a user-level label named NAME.
1115 `assemble_name' uses this. */
1116 /* We work around a dwarfout.c deficiency by watching for labels from it and
1117 not adding the '_' prefix. There is a comment in
1118 dwarfout.c that says it should be using ASM_OUTPUT_INTERNAL_LABEL. */
1119 #define ASM_OUTPUT_LABELREF(FILE, NAME1) \
1120 do { \
1121 const char *NAME; \
1122 NAME = (*targetm.strip_name_encoding)(NAME1); \
1123 if ((NAME)[0] == '.' && (NAME)[1] == 'L') \
1124 fprintf (FILE, "%s", NAME); \
1125 else \
1126 { \
1127 if (!ASM_NAME_P (NAME1)) \
1128 fprintf (FILE, "%s", user_label_prefix); \
1129 fprintf (FILE, "%s", NAME); \
1130 } \
1131 } while (0)
1132
1133 /* This is how to output a reference to a symbol_ref / label_ref as
1134 (part of) an operand. To disambiguate from register names like
1135 a1 / a2 / status etc, symbols are preceded by '@'. */
1136 #define ASM_OUTPUT_SYMBOL_REF(FILE,SYM) \
1137 ASM_OUTPUT_LABEL_REF ((FILE), XSTR ((SYM), 0))
1138 #define ASM_OUTPUT_LABEL_REF(FILE,STR) \
1139 do \
1140 { \
1141 fputc ('@', file); \
1142 assemble_name ((FILE), (STR)); \
1143 } \
1144 while (0)
1145
1146 /* Store in OUTPUT a string (made with alloca) containing
1147 an assembler-name for a local static variable named NAME.
1148 LABELNO is an integer which is different for each call. */
1149 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1150 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1151 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1152
1153 /* The following macro defines the format used to output the second
1154 operand of the .type assembler directive. Different svr4 assemblers
1155 expect various different forms for this operand. The one given here
1156 is just a default. You may need to override it in your machine-
1157 specific tm.h file (depending upon the particulars of your assembler). */
1158
1159 #undef TYPE_OPERAND_FMT
1160 #define TYPE_OPERAND_FMT "@%s"
1161
1162 /* A C string containing the appropriate assembler directive to
1163 specify the size of a symbol, without any arguments. On systems
1164 that use ELF, the default (in `config/elfos.h') is `"\t.size\t"';
1165 on other systems, the default is not to define this macro. */
1166 #undef SIZE_ASM_OP
1167 #define SIZE_ASM_OP "\t.size\t"
1168
1169 /* Assembler pseudo-op to equate one value with another. */
1170 /* ??? This is needed because dwarfout.c provides a default definition too
1171 late for defaults.h (which contains the default definition of ASM_OTPUT_DEF
1172 that we use). */
1173 #ifdef SET_ASM_OP
1174 #undef SET_ASM_OP
1175 #endif
1176 #define SET_ASM_OP "\t.set\t"
1177
1178 extern char rname29[], rname30[];
1179 extern char rname56[], rname57[], rname58[], rname59[];
1180 /* How to refer to registers in assembler output.
1181 This sequence is indexed by compiler's hard-register-number (see above). */
1182 #define REGISTER_NAMES \
1183 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1184 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1185 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
1186 "r24", "r25", "gp", "fp", "sp", rname29, rname30, "blink", \
1187 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
1188 "d1", "d1", "d2", "d2", "r44", "r45", "r46", "r47", \
1189 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
1190 rname56,rname57,rname58,rname59,"lp_count", "cc", "limm", "pcl", \
1191 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7", \
1192 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15", \
1193 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23", \
1194 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31", \
1195 "vr32", "vr33", "vr34", "vr35", "vr36", "vr37", "vr38", "vr39", \
1196 "vr40", "vr41", "vr42", "vr43", "vr44", "vr45", "vr46", "vr47", \
1197 "vr48", "vr49", "vr50", "vr51", "vr52", "vr53", "vr54", "vr55", \
1198 "vr56", "vr57", "vr58", "vr59", "vr60", "vr61", "vr62", "vr63", \
1199 "dr0", "dr1", "dr2", "dr3", "dr4", "dr5", "dr6", "dr7", \
1200 "dr0", "dr1", "dr2", "dr3", "dr4", "dr5", "dr6", "dr7", \
1201 "arg", "frame" \
1202 }
1203
1204 #define ADDITIONAL_REGISTER_NAMES \
1205 { \
1206 {"ilink", 29}, \
1207 {"r29", 29}, \
1208 {"r30", 30}, \
1209 {"r40", 40}, \
1210 {"r41", 41}, \
1211 {"r42", 42}, \
1212 {"r43", 43}, \
1213 {"r56", 56}, \
1214 {"r57", 57}, \
1215 {"r58", 58}, \
1216 {"r59", 59} \
1217 }
1218
1219 /* Entry to the insn conditionalizer. */
1220 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
1221 arc_final_prescan_insn (INSN, OPVEC, NOPERANDS)
1222
1223 /* A C expression which evaluates to true if CODE is a valid
1224 punctuation character for use in the `PRINT_OPERAND' macro. */
1225 extern char arc_punct_chars[];
1226 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1227 arc_punct_chars[(unsigned char) (CHAR)]
1228
1229 /* Print operand X (an rtx) in assembler syntax to file FILE.
1230 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1231 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1232 #define PRINT_OPERAND(FILE, X, CODE) \
1233 arc_print_operand (FILE, X, CODE)
1234
1235 /* A C compound statement to output to stdio stream STREAM the
1236 assembler syntax for an instruction operand that is a memory
1237 reference whose address is ADDR. ADDR is an RTL expression.
1238
1239 On some machines, the syntax for a symbolic address depends on
1240 the section that the address refers to. On these machines,
1241 define the macro `ENCODE_SECTION_INFO' to store the information
1242 into the `symbol_ref', and then check for it here. */
1243 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1244 arc_print_operand_address (FILE, ADDR)
1245
1246 /* This is how to output an element of a case-vector that is absolute. */
1247 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1248 do { \
1249 char label[30]; \
1250 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1251 fprintf (FILE, "\t.word "); \
1252 assemble_name (FILE, label); \
1253 fprintf (FILE, "\n"); \
1254 } while (0)
1255
1256 /* This is how to output an element of a case-vector that is relative. */
1257 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1258 do { \
1259 char label[30]; \
1260 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1261 if (!TARGET_BI_BIH) \
1262 { \
1263 switch (GET_MODE (BODY)) \
1264 { \
1265 case E_QImode: fprintf (FILE, "\t.byte "); break; \
1266 case E_HImode: fprintf (FILE, "\t.hword "); break; \
1267 case E_SImode: fprintf (FILE, "\t.word "); break; \
1268 default: gcc_unreachable (); \
1269 } \
1270 assemble_name (FILE, label); \
1271 fprintf (FILE, "-"); \
1272 ASM_GENERATE_INTERNAL_LABEL (label, "L", REL); \
1273 assemble_name (FILE, label); \
1274 fprintf (FILE, "\n"); \
1275 } \
1276 else \
1277 { \
1278 switch (GET_MODE (BODY)) \
1279 { \
1280 case E_SImode: fprintf (FILE, "\tb\t@"); break; \
1281 case E_HImode: \
1282 case E_QImode: fprintf (FILE, "\tb_s\t@"); break; \
1283 default: gcc_unreachable (); \
1284 } \
1285 assemble_name (FILE, label); \
1286 fprintf(FILE, "\n"); \
1287 } \
1288 } while (0)
1289
1290 /* Defined to also emit an .align in elfos.h. We don't want that. */
1291 #undef ASM_OUTPUT_CASE_LABEL
1292
1293 /* ADDR_DIFF_VECs are in the text section and thus can affect the
1294 current alignment. */
1295 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE) \
1296 do \
1297 { \
1298 if (GET_CODE (PATTERN (JUMPTABLE)) == ADDR_DIFF_VEC \
1299 && ((GET_MODE_SIZE (as_a <scalar_int_mode> \
1300 (GET_MODE (PATTERN (JUMPTABLE)))) \
1301 * XVECLEN (PATTERN (JUMPTABLE), 1) + 1) \
1302 & 2)) \
1303 arc_toggle_unalign (); \
1304 } \
1305 while (0)
1306
1307 #define JUMP_ALIGN(LABEL) (arc_size_opt_level < 2 ? 2 : 0)
1308 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
1309 (JUMP_ALIGN(LABEL) \
1310 ? JUMP_ALIGN(LABEL) \
1311 : GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
1312 ? 1 : 0)
1313 /* The desired alignment for the location counter at the beginning
1314 of a loop. */
1315 /* On the ARC, align loops to 4 byte boundaries unless doing all-out size
1316 optimization. */
1317 #define LOOP_ALIGN(X) 0
1318
1319 #define LABEL_ALIGN(LABEL) (arc_label_align (LABEL))
1320
1321 /* This is how to output an assembler line
1322 that says to advance the location counter
1323 to a multiple of 2**LOG bytes. */
1324 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1325 do { \
1326 if ((LOG) != 0) fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
1327 if ((LOG) > 1) \
1328 arc_clear_unalign (); \
1329 } while (0)
1330
1331 /* ASM_OUTPUT_ALIGNED_DECL_LOCAL (STREAM, DECL, NAME, SIZE, ALIGNMENT)
1332 Define this macro when you need to see the variable's decl in order to
1333 chose what to output. */
1334 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGNMENT) \
1335 arc_asm_output_aligned_decl_local (STREAM, DECL, NAME, SIZE, ALIGNMENT, 0)
1336
1337 /* Debugging information. */
1338
1339 /* Generate DBX and DWARF debugging information. */
1340 #ifdef DBX_DEBUGGING_INFO
1341 #undef DBX_DEBUGGING_INFO
1342 #endif
1343 #define DBX_DEBUGGING_INFO
1344
1345 #ifdef DWARF2_DEBUGGING_INFO
1346 #undef DWARF2_DEBUGGING_INFO
1347 #endif
1348 #define DWARF2_DEBUGGING_INFO
1349
1350 /* Prefer STABS (for now). */
1351 #undef PREFERRED_DEBUGGING_TYPE
1352 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1353
1354 /* How to renumber registers for dbx and gdb. */
1355 #define DBX_REGISTER_NUMBER(REGNO) \
1356 ((TARGET_MULMAC_32BY16_SET && (REGNO) >= 56 && (REGNO) <= 57) \
1357 ? ((REGNO) ^ !TARGET_BIG_ENDIAN) \
1358 : (TARGET_MUL64_SET && (REGNO) >= 57 && (REGNO) <= 59) \
1359 ? ((REGNO) == 57 \
1360 ? 58 /* MMED */ \
1361 : ((REGNO) & 1) ^ TARGET_BIG_ENDIAN \
1362 ? 59 /* MHI */ \
1363 : 57 + !!TARGET_MULMAC_32BY16_SET) /* MLO */ \
1364 : (REGNO))
1365
1366 #define DWARF_FRAME_REGNUM(REG) (REG)
1367
1368 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (31)
1369
1370 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 31)
1371
1372 /* Frame info. */
1373
1374 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
1375
1376 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
1377
1378 /* Turn off splitting of long stabs. */
1379 #define DBX_CONTIN_LENGTH 0
1380
1381 /* Miscellaneous. */
1382
1383 /* Specify the machine mode that this machine uses
1384 for the index in the tablejump instruction.
1385 If we have pc relative case vectors, we start the case vector shortening
1386 with QImode. */
1387 #define CASE_VECTOR_MODE \
1388 (TARGET_BI_BIH ? SImode \
1389 : (optimize && (CASE_VECTOR_PC_RELATIVE || flag_pic)) ? QImode : Pmode)
1390
1391 /* Define as C expression which evaluates to nonzero if the tablejump
1392 instruction expects the table to contain offsets from the address of the
1393 table.
1394 Do not define this if the table should contain absolute addresses. */
1395 #define CASE_VECTOR_PC_RELATIVE \
1396 (TARGET_CASE_VECTOR_PC_RELATIVE || TARGET_BI_BIH)
1397
1398 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
1399 (TARGET_BI_BIH ? \
1400 ((MIN_OFFSET) >= -512 && (MAX_OFFSET) <= 508 ? HImode : SImode) \
1401 : ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
1402 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
1403 : (MIN_OFFSET) >= -128 && (MAX_OFFSET) <= 127 \
1404 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
1405 : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 65535 \
1406 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, HImode) \
1407 : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 \
1408 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, HImode) \
1409 : SImode))
1410
1411 #define ADDR_VEC_ALIGN(VEC_INSN) \
1412 (TARGET_BI_BIH ? 0 \
1413 : exact_log2 (GET_MODE_SIZE (as_a <scalar_int_mode> \
1414 (GET_MODE (PATTERN (VEC_INSN))))))
1415
1416 #define INSN_LENGTH_ALIGNMENT(INSN) \
1417 ((JUMP_TABLE_DATA_P (INSN) \
1418 && GET_CODE (PATTERN (INSN)) == ADDR_DIFF_VEC \
1419 && GET_MODE (PATTERN (INSN)) == QImode) \
1420 ? 0 : length_unit_log)
1421
1422 /* Define if operations between registers always perform the operation
1423 on the full register even if a narrower mode is specified. */
1424 #define WORD_REGISTER_OPERATIONS 1
1425
1426 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1427 will either zero-extend or sign-extend. The value of this macro should
1428 be the code that says which one of the two operations is implicitly
1429 done, NIL if none. */
1430 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1431
1432
1433 /* Max number of bytes we can move from memory to memory
1434 in one reasonably fast instruction. */
1435 #define MOVE_MAX 4
1436
1437 /* Undo the effects of the movmem pattern presence on STORE_BY_PIECES_P . */
1438 #define MOVE_RATIO(SPEED) ((SPEED) ? 15 : 3)
1439
1440 /* Define this to be nonzero if shift instructions ignore all but the
1441 low-order few bits.
1442 */
1443 #define SHIFT_COUNT_TRUNCATED 1
1444
1445 /* We assume that the store-condition-codes instructions store 0 for false
1446 and some other value for true. This is the value stored for true. */
1447 #define STORE_FLAG_VALUE 1
1448
1449 /* Specify the machine mode that pointers have.
1450 After generation of rtl, the compiler makes no further distinction
1451 between pointers and any other objects of this machine mode. */
1452 /* ARCompact has full 32-bit pointers. */
1453 #define Pmode SImode
1454
1455 /* A function address in a call instruction. */
1456 #define FUNCTION_MODE SImode
1457
1458 /* Define the information needed to generate branch and scc insns. This is
1459 stored from the compare operation. Note that we can't use "rtx" here
1460 since it hasn't been defined! */
1461 extern struct rtx_def *arc_compare_op0, *arc_compare_op1;
1462
1463 /* ARC function types. */
1464 enum arc_function_type {
1465 /* No function should have the unknown type. This value is used to
1466 indicate the that function type has not yet been computed. */
1467 ARC_FUNCTION_UNKNOWN = 0,
1468
1469 /* The normal function type indicates that the function has the
1470 standard prologue and epilogue. */
1471 ARC_FUNCTION_NORMAL = 1 << 0,
1472 /* These are interrupt handlers. The name corresponds to the register
1473 name that contains the return address. */
1474 ARC_FUNCTION_ILINK1 = 1 << 1,
1475 ARC_FUNCTION_ILINK2 = 1 << 2,
1476 /* Fast interrupt is only available on ARCv2 processors. */
1477 ARC_FUNCTION_FIRQ = 1 << 3,
1478 /* The naked function type indicates that the function does not have
1479 prologue or epilogue, and that no stack frame is available. */
1480 ARC_FUNCTION_NAKED = 1 << 4
1481 };
1482
1483 /* Check if a function is an interrupt function. */
1484 #define ARC_INTERRUPT_P(TYPE) \
1485 (((TYPE) & (ARC_FUNCTION_ILINK1 | ARC_FUNCTION_ILINK2 \
1486 | ARC_FUNCTION_FIRQ)) != 0)
1487
1488 /* Check if a function is a fast interrupt function. */
1489 #define ARC_FAST_INTERRUPT_P(TYPE) (((TYPE) & ARC_FUNCTION_FIRQ) != 0)
1490
1491 /* Check if a function is normal, that is, has standard prologue and
1492 epilogue. */
1493 #define ARC_NORMAL_P(TYPE) (((TYPE) & ARC_FUNCTION_NORMAL) != 0)
1494
1495 /* Check if a function is naked. */
1496 #define ARC_NAKED_P(TYPE) (((TYPE) & ARC_FUNCTION_NAKED) != 0)
1497
1498 /* Called by crtstuff.c to make calls to function FUNCTION that are defined in
1499 SECTION_OP, and then to switch back to text section. */
1500 #undef CRT_CALL_STATIC_FUNCTION
1501 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1502 asm (SECTION_OP "\n\t" \
1503 "add r12,pcl,@" USER_LABEL_PREFIX #FUNC "@pcl\n\t" \
1504 "jl [r12]\n" \
1505 TEXT_SECTION_ASM_OP);
1506
1507 /* This macro expands to the name of the scratch register r12, used for
1508 temporary calculations according to the ABI. */
1509 #define ARC_TEMP_SCRATCH_REG "r12"
1510
1511 /* The C++ compiler must use one bit to indicate whether the function
1512 that will be called through a pointer-to-member-function is
1513 virtual. Normally, we assume that the low-order bit of a function
1514 pointer must always be zero. Then, by ensuring that the
1515 vtable_index is odd, we can distinguish which variant of the union
1516 is in use. But, on some platforms function pointers can be odd,
1517 and so this doesn't work. In that case, we use the low-order bit
1518 of the `delta' field, and shift the remainder of the `delta' field
1519 to the left. We needed to do this for A4 because the address was always
1520 shifted and thus could be odd. */
1521 #define TARGET_PTRMEMFUNC_VBIT_LOCATION \
1522 (ptrmemfunc_vbit_in_pfn)
1523
1524 #define INSN_SETS_ARE_DELAYED(X) \
1525 (GET_CODE (X) == INSN \
1526 && GET_CODE (PATTERN (X)) != SEQUENCE \
1527 && GET_CODE (PATTERN (X)) != USE \
1528 && GET_CODE (PATTERN (X)) != CLOBBER \
1529 && (get_attr_type (X) == TYPE_CALL || get_attr_type (X) == TYPE_SFUNC))
1530
1531 #define INSN_REFERENCES_ARE_DELAYED(insn) \
1532 (INSN_SETS_ARE_DELAYED (insn))
1533
1534 #define CALL_ATTR(X, NAME) \
1535 ((CALL_P (X) || NONJUMP_INSN_P (X)) \
1536 && GET_CODE (PATTERN (X)) != USE \
1537 && GET_CODE (PATTERN (X)) != CLOBBER \
1538 && get_attr_is_##NAME (X) == IS_##NAME##_YES) \
1539
1540 #define REVERSE_CONDITION(CODE,MODE) \
1541 (((MODE) == CC_FP_GTmode || (MODE) == CC_FP_GEmode \
1542 || (MODE) == CC_FP_UNEQmode || (MODE) == CC_FP_ORDmode \
1543 || (MODE) == CC_FPXmode || (MODE) == CC_FPU_UNEQmode \
1544 || (MODE) == CC_FPUmode) \
1545 ? reverse_condition_maybe_unordered ((CODE)) \
1546 : reverse_condition ((CODE)))
1547
1548 #define ADJUST_INSN_LENGTH(X, LENGTH) \
1549 ((LENGTH) \
1550 = (GET_CODE (PATTERN (X)) == SEQUENCE \
1551 ? ((LENGTH) \
1552 + arc_adjust_insn_length ( \
1553 as_a <rtx_sequence *> (PATTERN (X))->insn (0), \
1554 get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (0)), \
1555 true) \
1556 - get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (0)) \
1557 + arc_adjust_insn_length ( \
1558 as_a <rtx_sequence *> (PATTERN (X))->insn (1), \
1559 get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (1)), \
1560 true) \
1561 - get_attr_length (as_a <rtx_sequence *> (PATTERN (X))->insn (1))) \
1562 : arc_adjust_insn_length ((X), (LENGTH), false)))
1563
1564 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C,STR) ((C) == '`')
1565
1566 #define INIT_EXPANDERS arc_init_expanders ()
1567
1568 enum
1569 {
1570 ARC_LRA_PRIORITY_NONE, ARC_LRA_PRIORITY_NONCOMPACT, ARC_LRA_PRIORITY_COMPACT
1571 };
1572
1573 /* The define_cond_exec construct is rather crude, as we can't have
1574 different ones with different conditions apply to different sets
1575 of instructions. We can't use an attribute test inside the condition,
1576 because that would lead to infinite recursion as the attribute test
1577 needs to recognize the insn. So, instead we have a clause for
1578 the pattern condition of all sfunc patterns which is only relevant for
1579 the predicated varaint. */
1580 #define SFUNC_CHECK_PREDICABLE \
1581 (GET_CODE (PATTERN (insn)) != COND_EXEC || !flag_pic || !TARGET_MEDIUM_CALLS)
1582
1583 /* MPYW feature macro. Only valid for ARCHS and ARCEM cores. */
1584 #define TARGET_MPYW ((arc_mpy_option > 0) && TARGET_V2)
1585 /* Full ARCv2 multiplication feature macro. */
1586 #define TARGET_MULTI ((arc_mpy_option > 1) && TARGET_V2)
1587 /* General MPY feature macro. */
1588 #define TARGET_MPY ((TARGET_ARC700 && (!TARGET_NOMPY_SET)) || TARGET_MULTI)
1589 /* ARC700 MPY feature macro. */
1590 #define TARGET_ARC700_MPY (TARGET_ARC700 && (!TARGET_NOMPY_SET))
1591 /* Any multiplication feature macro. */
1592 #define TARGET_ANY_MPY \
1593 (TARGET_MPY || TARGET_MUL64_SET || TARGET_MULMAC_32BY16_SET)
1594 /* PLUS_DMPY feature macro. */
1595 #define TARGET_PLUS_DMPY ((arc_mpy_option > 6) && TARGET_HS)
1596 /* PLUS_MACD feature macro. */
1597 #define TARGET_PLUS_MACD ((arc_mpy_option > 7) && TARGET_HS)
1598 /* PLUS_QMACW feature macro. */
1599 #define TARGET_PLUS_QMACW ((arc_mpy_option > 8) && TARGET_HS)
1600
1601 /* ARC600 and ARC601 feature macro. */
1602 #define TARGET_ARC600_FAMILY (TARGET_ARC600 || TARGET_ARC601)
1603 /* ARC600, ARC601 and ARC700 feature macro. */
1604 #define TARGET_ARCOMPACT_FAMILY \
1605 (TARGET_ARC600 || TARGET_ARC601 || TARGET_ARC700)
1606 /* Loop count register can be read in very next instruction after has
1607 been written to by an ordinary instruction. */
1608 #define TARGET_LP_WR_INTERLOCK (!TARGET_ARC600_FAMILY)
1609
1610 /* FPU defines. */
1611 /* Any FPU support. */
1612 #define TARGET_HARD_FLOAT ((arc_fpu_build & (FPU_SP | FPU_DP)) != 0)
1613 /* Single precision floating point support. */
1614 #define TARGET_FP_SP_BASE ((arc_fpu_build & FPU_SP) != 0)
1615 /* Double precision floating point support. */
1616 #define TARGET_FP_DP_BASE ((arc_fpu_build & FPU_DP) != 0)
1617 /* Single precision floating point support with fused operation. */
1618 #define TARGET_FP_SP_FUSED ((arc_fpu_build & FPU_SF) != 0)
1619 /* Double precision floating point support with fused operation. */
1620 #define TARGET_FP_DP_FUSED ((arc_fpu_build & FPU_DF) != 0)
1621 /* Single precision floating point conversion instruction support. */
1622 #define TARGET_FP_SP_CONV ((arc_fpu_build & FPU_SC) != 0)
1623 /* Double precision floating point conversion instruction support. */
1624 #define TARGET_FP_DP_CONV ((arc_fpu_build & FPU_DC) != 0)
1625 /* Single precision floating point SQRT/DIV instruction support. */
1626 #define TARGET_FP_SP_SQRT ((arc_fpu_build & FPU_SD) != 0)
1627 /* Double precision floating point SQRT/DIV instruction support. */
1628 #define TARGET_FP_DP_SQRT ((arc_fpu_build & FPU_DD) != 0)
1629 /* Double precision floating point assist instruction support. */
1630 #define TARGET_FP_DP_AX ((arc_fpu_build & FPX_DP) != 0)
1631 /* Custom FP instructions used by QuarkSE EM cpu. */
1632 #define TARGET_FPX_QUARK (TARGET_EM && TARGET_SPFP \
1633 && (arc_fpu_build == FPX_QK))
1634 /* DBNZ support is available for ARCv2 core3 and newer cpus. */
1635 #define TARGET_DBNZ (TARGET_V2 && (arc_tune >= ARC_TUNE_CORE_3))
1636
1637 /* BI/BIH feature macro. */
1638 #define TARGET_BI_BIH (TARGET_BRANCH_INDEX && TARGET_CODE_DENSITY)
1639
1640 /* The default option for BI/BIH instructions. */
1641 #define DEFAULT_BRANCH_INDEX 0
1642
1643 #ifndef TARGET_LRA
1644 #define TARGET_LRA arc_lra_p()
1645 #endif
1646
1647 #endif /* GCC_ARC_H */