]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/arc/arc.h
* alpha.h, arc.h, arm/aout.h, avr.h, cris.h, d30v.h, dsp16xx.h,
[thirdparty/gcc.git] / gcc / config / arc / arc.h
1 /* Definitions of target machine for GNU compiler, Argonaut ARC cpu.
2 Copyright (C) 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* ??? This is an old port, and is undoubtedly suffering from bit rot. */
23
24 /* Things to do:
25
26 - PREDICATE_CODES
27 - incscc, decscc?
28 - print active compiler options in assembler output
29 */
30
31
32 #undef ASM_SPEC
33 #undef LINK_SPEC
34 #undef STARTFILE_SPEC
35 #undef ENDFILE_SPEC
36 #undef SIZE_TYPE
37 #undef PTRDIFF_TYPE
38 #undef WCHAR_TYPE
39 #undef WCHAR_TYPE_SIZE
40 #undef ASM_OUTPUT_LABELREF
41 \f
42 /* Print subsidiary information on the compiler version in use. */
43 #define TARGET_VERSION fprintf (stderr, " (arc)")
44
45 /* Names to predefine in the preprocessor for this target machine. */
46 #define TARGET_CPU_CPP_BUILTINS() \
47 do \
48 { \
49 builtin_define ("__arc__"); \
50 if (TARGET_BIG_ENDIAN) \
51 builtin_define ("__big_endian__"); \
52 if (arc_cpu_type == 0) \
53 builtin_define ("__base__"); \
54 builtin_assert ("cpu=arc"); \
55 builtin_assert ("machine=arc"); \
56 } while (0)
57
58 /* Pass -mmangle-cpu if we get -mcpu=*.
59 Doing it this way lets one have it on as default with -mcpu=*,
60 but also lets one turn it off with -mno-mangle-cpu. */
61 #define CC1_SPEC "\
62 %{mcpu=*:-mmangle-cpu} \
63 %{EB:%{EL:%emay not use both -EB and -EL}} \
64 %{EB:-mbig-endian} %{EL:-mlittle-endian} \
65 "
66
67 #define ASM_SPEC "%{v} %{EB} %{EL}"
68
69 #define LINK_SPEC "%{v} %{EB} %{EL}"
70
71 #define STARTFILE_SPEC "%{!shared:crt0.o%s} crtinit.o%s"
72
73 #define ENDFILE_SPEC "crtfini.o%s"
74 \f
75 /* Run-time compilation parameters selecting different hardware subsets. */
76
77 extern int target_flags;
78
79 /* Mangle all user symbols for the specified cpu.
80 ARC's can be shipped in which a collection of cpus are coupled together.
81 Each CPU may be different in some way, and thus we may need to distinguish
82 code compiled for one to ensure it isn't linked with code compiled for
83 another. */
84 #define TARGET_MASK_MANGLE_CPU 1
85 #define TARGET_MANGLE_CPU (target_flags & TARGET_MASK_MANGLE_CPU)
86
87 #if 0
88 /* Mangle libgcc symbols by adding a suffix for the specified cpu. */
89 #define TARGET_MASK_MANGLE_CPU_LIBGCC 2
90 #define TARGET_MANGLE_CPU_LIBGCC (target_flags & TARGET_MASK_MANGLE_CPU_LIBGCC)
91 #endif
92
93 /* Align loops to 32 byte boundaries (cache line size). */
94 #define TARGET_MASK_ALIGN_LOOPS 4
95 #define TARGET_ALIGN_LOOPS (target_flags & TARGET_MASK_ALIGN_LOOPS)
96
97 /* Big Endian. */
98 #define TARGET_MASK_BIG_ENDIAN 8
99 #define TARGET_BIG_ENDIAN (target_flags & TARGET_MASK_BIG_ENDIAN)
100
101 /* Turn off conditional execution optimization,
102 so we can see how well it does, or in case it's buggy. */
103 #define TARGET_MASK_NO_COND_EXEC 0x10
104 #define TARGET_NO_COND_EXEC (target_flags & TARGET_MASK_NO_COND_EXEC)
105
106 /* Macro to define tables used to set the flags.
107 This is a list in braces of pairs in braces,
108 each pair being { "NAME", VALUE }
109 where VALUE is the bits to set or minus the bits to clear.
110 An empty string NAME is used to identify the default VALUE. */
111
112 #define TARGET_SWITCHES \
113 { \
114 { "mangle-cpu", TARGET_MASK_MANGLE_CPU }, \
115 { "no-mangle-cpu", -TARGET_MASK_MANGLE_CPU }, \
116 /* { "mangle-cpu-libgcc", TARGET_MASK_MANGLE_CPU_LIBGCC }, */ \
117 /* { "no-mangle-cpu-libgcc", -TARGET_MASK_MANGLE_CPU_LIBGCC }, */ \
118 { "align-loops", TARGET_MASK_ALIGN_LOOPS }, \
119 { "no-align-loops", -TARGET_MASK_ALIGN_LOOPS }, \
120 { "big-endian", TARGET_MASK_BIG_ENDIAN }, \
121 { "little-endian", -TARGET_MASK_BIG_ENDIAN }, \
122 { "no-cond-exec", TARGET_MASK_NO_COND_EXEC }, \
123 SUBTARGET_SWITCHES \
124 { "", TARGET_DEFAULT } \
125 }
126
127 #define TARGET_DEFAULT (0)
128
129 #define SUBTARGET_SWITCHES
130
131 /* Instruction set characteristics.
132 These are internal macros, set by the appropriate -mcpu= option. */
133
134 /* Non-zero means the cpu has a barrel shifter. */
135 #define TARGET_SHIFTER 0
136
137 extern const char *arc_cpu_string;
138 extern const char *arc_text_string,*arc_data_string,*arc_rodata_string;
139
140 #define TARGET_OPTIONS \
141 { \
142 { "cpu=", &arc_cpu_string }, \
143 { "text=", &arc_text_string }, \
144 { "data=", &arc_data_string }, \
145 { "rodata=", &arc_rodata_string }, \
146 }
147
148 /* Which cpu we're compiling for. */
149 extern int arc_cpu_type;
150
151 /* Check if CPU is an extension and set `arc_cpu_type' and `arc_mangle_cpu'
152 appropriately. The result should be non-zero if the cpu is recognized,
153 otherwise zero. This is intended to be redefined in a cover file.
154 This is used by arc_init. */
155 #define ARC_EXTENSION_CPU(cpu) 0
156
157 /* Sometimes certain combinations of command options do not make
158 sense on a particular target machine. You can define a macro
159 `OVERRIDE_OPTIONS' to take account of this. This macro, if
160 defined, is executed once just after all the command options have
161 been parsed.
162
163 Don't use this macro to turn on various extra optimizations for
164 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
165
166
167 #define OVERRIDE_OPTIONS \
168 do { \
169 /* These need to be done at start up. It's convenient to do them here. */ \
170 arc_init (); \
171 } while (0)
172 \f
173 /* Target machine storage layout. */
174
175 /* Define this if most significant bit is lowest numbered
176 in instructions that operate on numbered bit-fields. */
177 #define BITS_BIG_ENDIAN 1
178
179 /* Define this if most significant byte of a word is the lowest numbered. */
180 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
181
182 /* Define this if most significant word of a multiword number is the lowest
183 numbered. */
184 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
185
186 /* Define this to set the endianness to use in libgcc2.c, which can
187 not depend on target_flags. */
188 #ifdef __big_endian__
189 #define LIBGCC2_WORDS_BIG_ENDIAN 1
190 #else
191 #define LIBGCC2_WORDS_BIG_ENDIAN 0
192 #endif
193
194 /* Width of a word, in units (bytes). */
195 #define UNITS_PER_WORD 4
196
197 /* Define this macro if it is advisable to hold scalars in registers
198 in a wider mode than that declared by the program. In such cases,
199 the value is constrained to be within the bounds of the declared
200 type, but kept valid in the wider mode. The signedness of the
201 extension may differ from that of the type. */
202 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
203 if (GET_MODE_CLASS (MODE) == MODE_INT \
204 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
205 { \
206 (MODE) = SImode; \
207 }
208
209 /* Define this macro if the promotion described by `PROMOTE_MODE'
210 should also be done for outgoing function arguments. */
211 #define PROMOTE_FUNCTION_ARGS
212
213 /* Likewise, if the function return value is promoted. */
214 #define PROMOTE_FUNCTION_RETURN
215
216 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
217 #define PARM_BOUNDARY 32
218
219 /* Boundary (in *bits*) on which stack pointer should be aligned. */
220 #define STACK_BOUNDARY 64
221
222 /* ALIGN FRAMES on word boundaries */
223 #define ARC_STACK_ALIGN(LOC) (((LOC)+7) & ~7)
224
225 /* Allocation boundary (in *bits*) for the code of a function. */
226 #define FUNCTION_BOUNDARY 32
227
228 /* Alignment of field after `int : 0' in a structure. */
229 #define EMPTY_FIELD_BOUNDARY 32
230
231 /* Every structure's size must be a multiple of this. */
232 #define STRUCTURE_SIZE_BOUNDARY 8
233
234 /* A bitfield declared as `int' forces `int' alignment for the struct. */
235 #define PCC_BITFIELD_TYPE_MATTERS 1
236
237 /* No data type wants to be aligned rounder than this. */
238 /* This is bigger than currently necessary for the ARC. If 8 byte floats are
239 ever added it's not clear whether they'll need such alignment or not. For
240 now we assume they will. We can always relax it if necessary but the
241 reverse isn't true. */
242 #define BIGGEST_ALIGNMENT 64
243
244 /* The best alignment to use in cases where we have a choice. */
245 #define FASTEST_ALIGNMENT 32
246
247 /* Make strings word-aligned so strcpy from constants will be faster. */
248 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
249 ((TREE_CODE (EXP) == STRING_CST \
250 && (ALIGN) < FASTEST_ALIGNMENT) \
251 ? FASTEST_ALIGNMENT : (ALIGN))
252
253 /* Make arrays of chars word-aligned for the same reasons. */
254 #define DATA_ALIGNMENT(TYPE, ALIGN) \
255 (TREE_CODE (TYPE) == ARRAY_TYPE \
256 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
257 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
258
259 /* Set this nonzero if move instructions will actually fail to work
260 when given unaligned data. */
261 /* On the ARC the lower address bits are masked to 0 as necessary. The chip
262 won't croak when given an unaligned address, but the insn will still fail
263 to produce the correct result. */
264 #define STRICT_ALIGNMENT 1
265 \f
266 /* Layout of source language data types. */
267
268 #define SHORT_TYPE_SIZE 16
269 #define INT_TYPE_SIZE 32
270 #define LONG_TYPE_SIZE 32
271 #define LONG_LONG_TYPE_SIZE 64
272 #define FLOAT_TYPE_SIZE 32
273 #define DOUBLE_TYPE_SIZE 64
274 #define LONG_DOUBLE_TYPE_SIZE 64
275
276 /* Define this as 1 if `char' should by default be signed; else as 0. */
277 #define DEFAULT_SIGNED_CHAR 1
278
279 #define SIZE_TYPE "long unsigned int"
280 #define PTRDIFF_TYPE "long int"
281 #define WCHAR_TYPE "short unsigned int"
282 #define WCHAR_TYPE_SIZE 16
283 \f
284 /* Standard register usage. */
285
286 /* Number of actual hardware registers.
287 The hardware registers are assigned numbers for the compiler
288 from 0 to just below FIRST_PSEUDO_REGISTER.
289 All registers that the compiler knows about must be given numbers,
290 even those that are not normally considered general registers. */
291 /* Registers 61, 62, and 63 are not really registers and we needn't treat
292 them as such. We still need a register for the condition code. */
293 #define FIRST_PSEUDO_REGISTER 62
294
295 /* 1 for registers that have pervasive standard uses
296 and are not available for the register allocator.
297
298 0-28 - general purpose registers
299 29 - ilink1 (interrupt link register)
300 30 - ilink2 (interrupt link register)
301 31 - blink (branch link register)
302 32-59 - reserved for extensions
303 60 - LP_COUNT
304 61 - condition code
305
306 For doc purposes:
307 61 - short immediate data indicator (setting flags)
308 62 - long immediate data indicator
309 63 - short immediate data indicator (not setting flags).
310
311 The general purpose registers are further broken down into:
312 0-7 - arguments/results
313 8-15 - call used
314 16-23 - call saved
315 24 - call used, static chain pointer
316 25 - call used, gptmp
317 26 - global pointer
318 27 - frame pointer
319 28 - stack pointer
320
321 By default, the extension registers are not available. */
322
323 #define FIXED_REGISTERS \
324 { 0, 0, 0, 0, 0, 0, 0, 0, \
325 0, 0, 0, 0, 0, 0, 0, 0, \
326 0, 0, 0, 0, 0, 0, 0, 0, \
327 0, 0, 0, 1, 1, 1, 1, 0, \
328 \
329 1, 1, 1, 1, 1, 1, 1, 1, \
330 1, 1, 1, 1, 1, 1, 1, 1, \
331 1, 1, 1, 1, 1, 1, 1, 1, \
332 1, 1, 1, 1, 1, 1 }
333
334 /* 1 for registers not available across function calls.
335 These must include the FIXED_REGISTERS and also any
336 registers that can be used without being saved.
337 The latter must include the registers where values are returned
338 and the register where structure-value addresses are passed.
339 Aside from that, you can include as many other registers as you like. */
340
341 #define CALL_USED_REGISTERS \
342 { 1, 1, 1, 1, 1, 1, 1, 1, \
343 1, 1, 1, 1, 1, 1, 1, 1, \
344 0, 0, 0, 0, 0, 0, 0, 0, \
345 1, 1, 1, 1, 1, 1, 1, 1, \
346 \
347 1, 1, 1, 1, 1, 1, 1, 1, \
348 1, 1, 1, 1, 1, 1, 1, 1, \
349 1, 1, 1, 1, 1, 1, 1, 1, \
350 1, 1, 1, 1, 1, 1 }
351
352 /* If defined, an initializer for a vector of integers, containing the
353 numbers of hard registers in the order in which GNU CC should
354 prefer to use them (from most preferred to least). */
355 #define REG_ALLOC_ORDER \
356 { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, \
357 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 31, \
358 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
359 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, \
360 27, 28, 29, 30 }
361
362 /* Macro to conditionally modify fixed_regs/call_used_regs. */
363 #define CONDITIONAL_REGISTER_USAGE \
364 do { \
365 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
366 { \
367 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
368 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
369 } \
370 } while (0)
371
372 /* Return number of consecutive hard regs needed starting at reg REGNO
373 to hold something of mode MODE.
374 This is ordinarily the length in words of a value of mode MODE
375 but can be less for certain modes in special long registers. */
376 #define HARD_REGNO_NREGS(REGNO, MODE) \
377 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
378
379 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
380 extern const unsigned int arc_hard_regno_mode_ok[];
381 extern unsigned int arc_mode_class[];
382 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
383 ((arc_hard_regno_mode_ok[REGNO] & arc_mode_class[MODE]) != 0)
384
385 /* A C expression that is nonzero if it is desirable to choose
386 register allocation so as to avoid move instructions between a
387 value of mode MODE1 and a value of mode MODE2.
388
389 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
390 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
391 MODE2)' must be zero. */
392
393 /* Tie QI/HI/SI modes together. */
394 #define MODES_TIEABLE_P(MODE1, MODE2) \
395 (GET_MODE_CLASS (MODE1) == MODE_INT \
396 && GET_MODE_CLASS (MODE2) == MODE_INT \
397 && GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD \
398 && GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD)
399 \f
400 /* Register classes and constants. */
401
402 /* Define the classes of registers for register constraints in the
403 machine description. Also define ranges of constants.
404
405 One of the classes must always be named ALL_REGS and include all hard regs.
406 If there is more than one class, another class must be named NO_REGS
407 and contain no registers.
408
409 The name GENERAL_REGS must be the name of a class (or an alias for
410 another name such as ALL_REGS). This is the class of registers
411 that is allowed by "g" or "r" in a register constraint.
412 Also, registers outside this class are allocated only when
413 instructions express preferences for them.
414
415 The classes must be numbered in nondecreasing order; that is,
416 a larger-numbered class must never be contained completely
417 in a smaller-numbered class.
418
419 For any two classes, it is very desirable that there be another
420 class that represents their union.
421
422 It is important that any condition codes have class NO_REGS.
423 See `register_operand'. */
424
425 enum reg_class {
426 NO_REGS, LPCOUNT_REG, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
427 };
428
429 #define N_REG_CLASSES (int) LIM_REG_CLASSES
430
431 /* Give names of register classes as strings for dump file. */
432 #define REG_CLASS_NAMES \
433 { "NO_REGS", "LPCOUNT_REG", "GENERAL_REGS", "ALL_REGS" }
434
435 /* Define which registers fit in which classes.
436 This is an initializer for a vector of HARD_REG_SET
437 of length N_REG_CLASSES. */
438
439 #define REG_CLASS_CONTENTS \
440 { {0, 0}, {0, 0x10000000}, {0xffffffff, 0xfffffff}, \
441 {0xffffffff, 0x1fffffff} }
442
443 /* The same information, inverted:
444 Return the class number of the smallest class containing
445 reg number REGNO. This could be a conditional expression
446 or could index an array. */
447 extern enum reg_class arc_regno_reg_class[FIRST_PSEUDO_REGISTER];
448 #define REGNO_REG_CLASS(REGNO) \
449 (arc_regno_reg_class[REGNO])
450
451 /* The class value for index registers, and the one for base regs. */
452 #define INDEX_REG_CLASS GENERAL_REGS
453 #define BASE_REG_CLASS GENERAL_REGS
454
455 /* Get reg_class from a letter such as appears in the machine description. */
456 #define REG_CLASS_FROM_LETTER(C) \
457 ((C) == 'l' ? LPCOUNT_REG /* ??? needed? */ \
458 : NO_REGS)
459
460 /* These assume that REGNO is a hard or pseudo reg number.
461 They give nonzero only if REGNO is a hard reg of the suitable class
462 or a pseudo reg currently allocated to a suitable hard reg.
463 Since they use reg_renumber, they are safe only once reg_renumber
464 has been allocated, which happens in local-alloc.c. */
465 #define REGNO_OK_FOR_BASE_P(REGNO) \
466 ((REGNO) < 29 || (unsigned) reg_renumber[REGNO] < 29)
467 #define REGNO_OK_FOR_INDEX_P(REGNO) \
468 ((REGNO) < 29 || (unsigned) reg_renumber[REGNO] < 29)
469
470 /* Given an rtx X being reloaded into a reg required to be
471 in class CLASS, return the class of reg to actually use.
472 In general this is just CLASS; but on some machines
473 in some cases it is preferable to use a more restrictive class. */
474 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
475 (CLASS)
476
477 /* Return the maximum number of consecutive registers
478 needed to represent mode MODE in a register of class CLASS. */
479 #define CLASS_MAX_NREGS(CLASS, MODE) \
480 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
481
482 /* The letters I, J, K, L, M, N, O, P in a register constraint string
483 can be used to stand for particular ranges of immediate operands.
484 This macro defines what the ranges are.
485 C is the letter, and VALUE is a constant value.
486 Return 1 if VALUE is in the range specified by C. */
487 /* 'I' is used for short immediates (always signed).
488 'J' is used for long immediates.
489 'K' is used for any constant up to 64 bits (for 64x32 situations?). */
490
491 /* local to this file */
492 #define SMALL_INT(X) ((unsigned) ((X) + 0x100) < 0x200)
493 /* local to this file */
494 #define LARGE_INT(X) \
495 ((X) >= (-(HOST_WIDE_INT) 0x7fffffff - 1) \
496 && (X) <= (unsigned HOST_WIDE_INT) 0xffffffff)
497
498 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
499 ((C) == 'I' ? SMALL_INT (VALUE) \
500 : (C) == 'J' ? LARGE_INT (VALUE) \
501 : (C) == 'K' ? 1 \
502 : 0)
503
504 /* Similar, but for floating constants, and defining letters G and H.
505 Here VALUE is the CONST_DOUBLE rtx itself. */
506 /* 'G' is used for integer values for the multiplication insns where the
507 operands are extended from 4 bytes to 8 bytes.
508 'H' is used when any 64 bit constant is allowed. */
509 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
510 ((C) == 'G' ? arc_double_limm_p (VALUE) \
511 : (C) == 'H' ? 1 \
512 : 0)
513
514 /* A C expression that defines the optional machine-dependent constraint
515 letters that can be used to segregate specific types of operands,
516 usually memory references, for the target machine. It should return 1 if
517 VALUE corresponds to the operand type represented by the constraint letter
518 C. If C is not defined as an extra constraint, the value returned should
519 be 0 regardless of VALUE. */
520 /* ??? This currently isn't used. Waiting for PIC. */
521 #if 0
522 #define EXTRA_CONSTRAINT(VALUE, C) \
523 ((C) == 'R' ? (SYMBOL_REF_FLAG (VALUE) || GET_CODE (VALUE) == LABEL_REF) \
524 : 0)
525 #endif
526 \f
527 /* Stack layout and stack pointer usage. */
528
529 /* Define this macro if pushing a word onto the stack moves the stack
530 pointer to a smaller address. */
531 #define STACK_GROWS_DOWNWARD
532
533 /* Define this if the nominal address of the stack frame
534 is at the high-address end of the local variables;
535 that is, each additional local variable allocated
536 goes at a more negative offset in the frame. */
537 #define FRAME_GROWS_DOWNWARD
538
539 /* Offset within stack frame to start allocating local variables at.
540 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
541 first local allocated. Otherwise, it is the offset to the BEGINNING
542 of the first local allocated. */
543 #define STARTING_FRAME_OFFSET 0
544
545 /* Offset from the stack pointer register to the first location at which
546 outgoing arguments are placed. */
547 #define STACK_POINTER_OFFSET FIRST_PARM_OFFSET (0)
548
549 /* Offset of first parameter from the argument pointer register value. */
550 /* 4 bytes for each of previous fp, return address, and previous gp.
551 4 byte reserved area for future considerations. */
552 #define FIRST_PARM_OFFSET(FNDECL) 16
553
554 /* A C expression whose value is RTL representing the address in a
555 stack frame where the pointer to the caller's frame is stored.
556 Assume that FRAMEADDR is an RTL expression for the address of the
557 stack frame itself.
558
559 If you don't define this macro, the default is to return the value
560 of FRAMEADDR--that is, the stack frame address is also the address
561 of the stack word that points to the previous frame. */
562 /* ??? unfinished */
563 /*define DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)*/
564
565 /* A C expression whose value is RTL representing the value of the
566 return address for the frame COUNT steps up from the current frame.
567 FRAMEADDR is the frame pointer of the COUNT frame, or the frame
568 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME'
569 is defined. */
570 /* The current return address is in r31. The return address of anything
571 farther back is at [%fp,4]. */
572 #if 0 /* The default value should work. */
573 #define RETURN_ADDR_RTX(COUNT, FRAME) \
574 (((COUNT) == -1) \
575 ? gen_rtx_REG (Pmode, 31) \
576 : copy_to_reg (gen_rtx_MEM (Pmode, \
577 memory_address (Pmode, \
578 plus_constant ((FRAME), \
579 UNITS_PER_WORD)))))
580 #endif
581
582 /* Register to use for pushing function arguments. */
583 #define STACK_POINTER_REGNUM 28
584
585 /* Base register for access to local variables of the function. */
586 #define FRAME_POINTER_REGNUM 27
587
588 /* Base register for access to arguments of the function. */
589 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
590
591 /* Register in which static-chain is passed to a function. This must
592 not be a register used by the prologue. */
593 #define STATIC_CHAIN_REGNUM 24
594
595 /* A C expression which is nonzero if a function must have and use a
596 frame pointer. This expression is evaluated in the reload pass.
597 If its value is nonzero the function will have a frame pointer. */
598 #define FRAME_POINTER_REQUIRED \
599 (current_function_calls_alloca)
600
601 /* C statement to store the difference between the frame pointer
602 and the stack pointer values immediately after the function prologue. */
603 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
604 ((VAR) = arc_compute_frame_size (get_frame_size ()))
605 \f
606 /* Function argument passing. */
607
608 /* When a prototype says `char' or `short', really pass an `int'. */
609 #define PROMOTE_PROTOTYPES 1
610
611 /* If defined, the maximum amount of space required for outgoing
612 arguments will be computed and placed into the variable
613 `current_function_outgoing_args_size'. No space will be pushed
614 onto the stack for each call; instead, the function prologue should
615 increase the stack frame size by this amount. */
616 #define ACCUMULATE_OUTGOING_ARGS 1
617
618 /* Value is the number of bytes of arguments automatically
619 popped when returning from a subroutine call.
620 FUNDECL is the declaration node of the function (as a tree),
621 FUNTYPE is the data type of the function (as a tree),
622 or for a library call it is an identifier node for the subroutine name.
623 SIZE is the number of bytes of arguments passed on the stack. */
624 #define RETURN_POPS_ARGS(DECL, FUNTYPE, SIZE) 0
625
626 /* Define a data type for recording info about an argument list
627 during the scan of that argument list. This data type should
628 hold all necessary information about the function itself
629 and about the args processed so far, enough to enable macros
630 such as FUNCTION_ARG to determine where the next arg should go. */
631 #define CUMULATIVE_ARGS int
632
633 /* Initialize a variable CUM of type CUMULATIVE_ARGS
634 for a call to a function whose data type is FNTYPE.
635 For a library call, FNTYPE is 0. */
636 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
637 ((CUM) = 0)
638
639 /* The number of registers used for parameter passing. Local to this file. */
640 #define MAX_ARC_PARM_REGS 8
641
642 /* 1 if N is a possible register number for function argument passing. */
643 #define FUNCTION_ARG_REGNO_P(N) \
644 ((unsigned) (N) < MAX_ARC_PARM_REGS)
645
646 /* The ROUND_ADVANCE* macros are local to this file. */
647 /* Round SIZE up to a word boundary. */
648 #define ROUND_ADVANCE(SIZE) \
649 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
650
651 /* Round arg MODE/TYPE up to the next word boundary. */
652 #define ROUND_ADVANCE_ARG(MODE, TYPE) \
653 ((MODE) == BLKmode \
654 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
655 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))
656
657 /* Round CUM up to the necessary point for argument MODE/TYPE. */
658 #define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) \
659 ((((MODE) == BLKmode ? TYPE_ALIGN (TYPE) : GET_MODE_BITSIZE (MODE)) \
660 > BITS_PER_WORD) \
661 ? (((CUM) + 1) & ~1) \
662 : (CUM))
663
664 /* Return boolean indicating arg of type TYPE and mode MODE will be passed in
665 a reg. This includes arguments that have to be passed by reference as the
666 pointer to them is passed in a reg if one is available (and that is what
667 we're given).
668 This macro is only used in this file. */
669 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
670 ((CUM) < MAX_ARC_PARM_REGS \
671 && ((ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) \
672 + ROUND_ADVANCE_ARG ((MODE), (TYPE)) \
673 <= MAX_ARC_PARM_REGS)))
674
675 /* Determine where to put an argument to a function.
676 Value is zero to push the argument on the stack,
677 or a hard register in which to store the argument.
678
679 MODE is the argument's machine mode.
680 TYPE is the data type of the argument (as a tree).
681 This is null for libcalls where that information may
682 not be available.
683 CUM is a variable of type CUMULATIVE_ARGS which gives info about
684 the preceding args and about the function being called.
685 NAMED is nonzero if this argument is a named parameter
686 (otherwise it is an extra parameter matching an ellipsis). */
687 /* On the ARC the first MAX_ARC_PARM_REGS args are normally in registers
688 and the rest are pushed. */
689 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
690 (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
691 ? gen_rtx_REG ((MODE), ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE))) \
692 : 0)
693
694 /* A C expression for the number of words, at the beginning of an
695 argument, must be put in registers. The value must be zero for
696 arguments that are passed entirely in registers or that are entirely
697 pushed on the stack.
698
699 On some machines, certain arguments must be passed partially in
700 registers and partially in memory. On these machines, typically the
701 first @var{n} words of arguments are passed in registers, and the rest
702 on the stack. If a multi-word argument (a @code{double} or a
703 structure) crosses that boundary, its first few words must be passed
704 in registers and the rest must be pushed. This macro tells the
705 compiler when this occurs, and how many of the words should go in
706 registers. */
707 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
708
709 /* A C expression that indicates when an argument must be passed by
710 reference. If nonzero for an argument, a copy of that argument is
711 made in memory and a pointer to the argument is passed instead of
712 the argument itself. The pointer is passed in whatever way is
713 appropriate for passing a pointer to that type. */
714 /* All aggregates and arguments greater than 8 bytes are passed this way. */
715 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
716 (TYPE \
717 && (AGGREGATE_TYPE_P (TYPE) \
718 || int_size_in_bytes (TYPE) > 8))
719
720 /* A C expression that indicates when it is the called function's
721 responsibility to make copies of arguments passed by reference.
722 If the callee can determine that the argument won't be modified, it can
723 avoid the copy. */
724 /* ??? We'd love to be able to use NAMED here. Unfortunately, it doesn't
725 include the last named argument so we keep track of the args ourselves. */
726
727 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
728 FUNCTION_ARG_PASS_BY_REFERENCE ((CUM), (MODE), (TYPE), (NAMED))
729
730 /* Update the data in CUM to advance over an argument
731 of mode MODE and data type TYPE.
732 (TYPE is null for libcalls where that information may not be available.) */
733 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
734 ((CUM) = (ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) \
735 + ROUND_ADVANCE_ARG ((MODE), (TYPE))))
736
737 /* If defined, a C expression that gives the alignment boundary, in bits,
738 of an argument with the specified mode and type. If it is not defined,
739 PARM_BOUNDARY is used for all arguments. */
740 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
741 (((TYPE) ? TYPE_ALIGN (TYPE) : GET_MODE_BITSIZE (MODE)) <= PARM_BOUNDARY \
742 ? PARM_BOUNDARY \
743 : 2 * PARM_BOUNDARY)
744
745 /* This macro offers an alternative
746 to using `__builtin_saveregs' and defining the macro
747 `EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register
748 arguments into the stack so that all the arguments appear to have
749 been passed consecutively on the stack. Once this is done, you
750 can use the standard implementation of varargs that works for
751 machines that pass all their arguments on the stack.
752
753 The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure,
754 containing the values that obtain after processing of the named
755 arguments. The arguments MODE and TYPE describe the last named
756 argument--its machine mode and its data type as a tree node.
757
758 The macro implementation should do two things: first, push onto the
759 stack all the argument registers *not* used for the named
760 arguments, and second, store the size of the data thus pushed into
761 the `int'-valued variable whose name is supplied as the argument
762 PRETEND_SIZE. The value that you store here will serve as
763 additional offset for setting up the stack frame.
764
765 If the argument NO_RTL is nonzero, it means that the
766 arguments of the function are being analyzed for the second time.
767 This happens for an inline function, which is not actually
768 compiled until the end of the source file. The macro
769 `SETUP_INCOMING_VARARGS' should not generate any instructions in
770 this case. */
771
772 #define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
773 arc_setup_incoming_varargs(&ARGS_SO_FAR, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
774 \f
775 /* Function results. */
776
777 /* Define how to find the value returned by a function.
778 VALTYPE is the data type of the value (as a tree).
779 If the precise function being called is known, FUNC is its FUNCTION_DECL;
780 otherwise, FUNC is 0. */
781 #define FUNCTION_VALUE(VALTYPE, FUNC) gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
782
783 /* Define how to find the value returned by a library function
784 assuming the value has mode MODE. */
785 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
786
787 /* 1 if N is a possible register number for a function value
788 as seen by the caller. */
789 /* ??? What about r1 in DI/DF values. */
790 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
791
792 /* A C expression which can inhibit the returning of certain function
793 values in registers, based on the type of value. A nonzero value says
794 to return the function value in memory, just as large structures are
795 always returned. Here TYPE will be a C expression of type `tree',
796 representing the data type of the value. */
797 #define RETURN_IN_MEMORY(TYPE) \
798 (AGGREGATE_TYPE_P (TYPE) \
799 || int_size_in_bytes (TYPE) > 8 \
800 || TREE_ADDRESSABLE (TYPE))
801
802 /* Tell GCC to use RETURN_IN_MEMORY. */
803 #define DEFAULT_PCC_STRUCT_RETURN 0
804
805 /* Register in which address to store a structure value
806 is passed to a function, or 0 to use `invisible' first argument. */
807 #define STRUCT_VALUE 0
808 \f
809 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
810 the stack pointer does not matter. The value is tested only in
811 functions that have frame pointers.
812 No definition is equivalent to always zero. */
813 #define EXIT_IGNORE_STACK 0
814
815 /* Epilogue delay slots. */
816 #define DELAY_SLOTS_FOR_EPILOGUE arc_delay_slots_for_epilogue ()
817
818 #define ELIGIBLE_FOR_EPILOGUE_DELAY(TRIAL, SLOTS_FILLED) \
819 arc_eligible_for_epilogue_delay (TRIAL, SLOTS_FILLED)
820
821 /* Output assembler code to FILE to increment profiler label # LABELNO
822 for profiling a function entry. */
823 #define FUNCTION_PROFILER(FILE, LABELNO)
824 \f
825 /* Trampolines. */
826 /* ??? This doesn't work yet because GCC will use as the address of a nested
827 function the address of the trampoline. We need to use that address
828 right shifted by 2. It looks like we'll need PSImode after all. :-( */
829
830 /* Output assembler code for a block containing the constant parts
831 of a trampoline, leaving space for the variable parts. */
832 /* On the ARC, the trampoline is quite simple as we have 32 bit immediate
833 constants.
834
835 mov r24,STATIC
836 j.nd FUNCTION
837 */
838 #define TRAMPOLINE_TEMPLATE(FILE) \
839 do { \
840 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x631f7c00)); \
841 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
842 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x381f0000)); \
843 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
844 } while (0)
845
846 /* Length in units of the trampoline for entering a nested function. */
847 #define TRAMPOLINE_SIZE 16
848
849 /* Emit RTL insns to initialize the variable parts of a trampoline.
850 FNADDR is an RTX for the address of the function's pure code.
851 CXT is an RTX for the static chain value for the function. */
852 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
853 do { \
854 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), CXT); \
855 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 12)), FNADDR); \
856 emit_insn (gen_flush_icache (validize_mem (gen_rtx_MEM (SImode, TRAMP)))); \
857 } while (0)
858 \f
859 /* Library calls. */
860
861 /* Generate calls to memcpy, memcmp and memset. */
862 #define TARGET_MEM_FUNCTIONS
863 \f
864 /* Addressing modes, and classification of registers for them. */
865
866 /* Maximum number of registers that can appear in a valid memory address. */
867 /* The `ld' insn allows 2, but the `st' insn only allows 1. */
868 #define MAX_REGS_PER_ADDRESS 1
869
870 /* We have pre inc/dec (load/store with update). */
871 #define HAVE_PRE_INCREMENT 1
872 #define HAVE_PRE_DECREMENT 1
873
874 /* Recognize any constant value that is a valid address. */
875 #define CONSTANT_ADDRESS_P(X) \
876 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
877 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST)
878
879 /* Nonzero if the constant value X is a legitimate general operand.
880 We can handle any 32 or 64 bit constant. */
881 /* "1" should work since the largest constant should be a 64 bit critter. */
882 /* ??? Not sure what to do for 64x32 compiler. */
883 #define LEGITIMATE_CONSTANT_P(X) 1
884
885 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
886 and check its validity for a certain class.
887 We have two alternate definitions for each of them.
888 The usual definition accepts all pseudo regs; the other rejects
889 them unless they have been allocated suitable hard regs.
890 The symbol REG_OK_STRICT causes the latter definition to be used.
891
892 Most source files want to accept pseudo regs in the hope that
893 they will get allocated to the class that the insn wants them to be in.
894 Source files for reload pass need to be strict.
895 After reload, it makes no difference, since pseudo regs have
896 been eliminated by then. */
897
898 #ifndef REG_OK_STRICT
899
900 /* Nonzero if X is a hard reg that can be used as an index
901 or if it is a pseudo reg. */
902 #define REG_OK_FOR_INDEX_P(X) \
903 ((unsigned) REGNO (X) - 29 >= FIRST_PSEUDO_REGISTER - 29)
904 /* Nonzero if X is a hard reg that can be used as a base reg
905 or if it is a pseudo reg. */
906 #define REG_OK_FOR_BASE_P(X) \
907 ((unsigned) REGNO (X) - 29 >= FIRST_PSEUDO_REGISTER - 29)
908
909 #else
910
911 /* Nonzero if X is a hard reg that can be used as an index. */
912 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
913 /* Nonzero if X is a hard reg that can be used as a base reg. */
914 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
915
916 #endif
917
918 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
919 that is a valid memory address for an instruction.
920 The MODE argument is the machine mode for the MEM expression
921 that wants to use this address. */
922 /* The `ld' insn allows [reg],[reg+shimm],[reg+limm],[reg+reg],[limm]
923 but the `st' insn only allows [reg],[reg+shimm],[limm].
924 The only thing we can do is only allow the most strict case `st' and hope
925 other parts optimize out the restrictions for `ld'. */
926
927 /* local to this file */
928 #define RTX_OK_FOR_BASE_P(X) \
929 (REG_P (X) && REG_OK_FOR_BASE_P (X))
930
931 /* local to this file */
932 #define RTX_OK_FOR_INDEX_P(X) \
933 (0 && /*???*/ REG_P (X) && REG_OK_FOR_INDEX_P (X))
934
935 /* local to this file */
936 /* ??? Loads can handle any constant, stores can only handle small ones. */
937 #define RTX_OK_FOR_OFFSET_P(X) \
938 (GET_CODE (X) == CONST_INT && SMALL_INT (INTVAL (X)))
939
940 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X) \
941 (GET_CODE (X) == PLUS \
942 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
943 && (RTX_OK_FOR_INDEX_P (XEXP (X, 1)) \
944 || RTX_OK_FOR_OFFSET_P (XEXP (X, 1))))
945
946 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
947 { if (RTX_OK_FOR_BASE_P (X)) \
948 goto ADDR; \
949 if (LEGITIMATE_OFFSET_ADDRESS_P ((MODE), (X))) \
950 goto ADDR; \
951 if (GET_CODE (X) == CONST_INT && LARGE_INT (INTVAL (X))) \
952 goto ADDR; \
953 if (GET_CODE (X) == SYMBOL_REF \
954 || GET_CODE (X) == LABEL_REF \
955 || GET_CODE (X) == CONST) \
956 goto ADDR; \
957 if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC) \
958 /* We're restricted here by the `st' insn. */ \
959 && RTX_OK_FOR_BASE_P (XEXP ((X), 0))) \
960 goto ADDR; \
961 }
962
963 /* Try machine-dependent ways of modifying an illegitimate address
964 to be legitimate. If we find one, return the new, valid address.
965 This macro is used in only one place: `memory_address' in explow.c.
966
967 OLDX is the address as it was before break_out_memory_refs was called.
968 In some cases it is useful to look at this to decide what needs to be done.
969
970 MODE and WIN are passed so that this macro can use
971 GO_IF_LEGITIMATE_ADDRESS.
972
973 It is always safe for this macro to do nothing. It exists to recognize
974 opportunities to optimize the output. */
975
976 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
977
978 /* Go to LABEL if ADDR (a legitimate address expression)
979 has an effect that depends on the machine mode it is used for. */
980 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
981 { if (GET_CODE (ADDR) == PRE_DEC) \
982 goto LABEL; \
983 if (GET_CODE (ADDR) == PRE_INC) \
984 goto LABEL; \
985 }
986 \f
987 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
988 return the mode to be used for the comparison. */
989 #define SELECT_CC_MODE(OP, X, Y) \
990 arc_select_cc_mode (OP, X, Y)
991
992 /* Return non-zero if SELECT_CC_MODE will never return MODE for a
993 floating point inequality comparison. */
994 #define REVERSIBLE_CC_MODE(MODE) 1 /*???*/
995 \f
996 /* Costs. */
997
998 /* An insn is define to cost 4 "units", and we work from there.
999 COSTS_N_INSNS (N) is defined as (N) * 4 - 2 so that seems reasonable.
1000 Some values are supposed to be defined relative to each other and thus
1001 aren't necessarily related to COSTS_N_INSNS. */
1002
1003 /* Compute the cost of computing a constant rtl expression RTX
1004 whose rtx-code is CODE. The body of this macro is a portion
1005 of a switch statement. If the code is computed here,
1006 return it with a return statement. Otherwise, break from the switch. */
1007 /* Small integers are as cheap as registers. 4 byte values can be fetched
1008 as immediate constants - let's give that the cost of an extra insn. */
1009 #define CONST_COSTS(X, CODE, OUTER_CODE) \
1010 case CONST_INT : \
1011 if (SMALL_INT (INTVAL (X))) \
1012 return 0; \
1013 /* fall through */ \
1014 case CONST : \
1015 case LABEL_REF : \
1016 case SYMBOL_REF : \
1017 return 4; \
1018 case CONST_DOUBLE : \
1019 { \
1020 rtx high, low; \
1021 split_double (X, &high, &low); \
1022 return 4 * (!SMALL_INT (INTVAL (high)) \
1023 + !SMALL_INT (INTVAL (low))); \
1024 }
1025
1026 /* Compute the cost of an address. */
1027 #define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : arc_address_cost (ADDR))
1028
1029 /* Compute extra cost of moving data between one register class
1030 and another. */
1031 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) 2
1032
1033 /* Compute the cost of moving data between registers and memory. */
1034 /* Memory is 3 times as expensive as registers.
1035 ??? Is that the right way to look at it? */
1036 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1037 (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD ? 6 : 12)
1038
1039 /* The cost of a branch insn. */
1040 /* ??? What's the right value here? Branches are certainly more
1041 expensive than reg->reg moves. */
1042 #define BRANCH_COST 2
1043
1044 /* Provide the costs of a rtl expression. This is in the body of a
1045 switch on CODE. The purpose for the cost of MULT is to encourage
1046 `synth_mult' to find a synthetic multiply when reasonable.
1047
1048 If we need more than 12 insns to do a multiply, then go out-of-line,
1049 since the call overhead will be < 10% of the cost of the multiply. */
1050 #define RTX_COSTS(X, CODE, OUTER_CODE) \
1051 case ASHIFT : \
1052 case ASHIFTRT : \
1053 case LSHIFTRT : \
1054 if (TARGET_SHIFTER) \
1055 return COSTS_N_INSNS (1); \
1056 if (GET_CODE (XEXP ((X), 1)) != CONST_INT) \
1057 return COSTS_N_INSNS (16); \
1058 return COSTS_N_INSNS (INTVAL (XEXP ((X), 1)));
1059
1060 /* Nonzero if access to memory by bytes is slow and undesirable.
1061 For RISC chips, it means that access to memory by bytes is no
1062 better than access by words when possible, so grab a whole word
1063 and maybe make use of that. */
1064 #define SLOW_BYTE_ACCESS 1
1065
1066 /* Define this macro if it is as good or better to call a constant
1067 function address than to call an address kept in a register. */
1068 /* On the ARC, calling through registers is slow. */
1069 #define NO_FUNCTION_CSE
1070
1071 /* Define this macro if it is as good or better for a function to call
1072 itself with an explicit address than to call an address kept in a
1073 register. */
1074 /* On the ARC, calling through registers is slow. */
1075 #define NO_RECURSIVE_FUNCTION_CSE
1076 \f
1077 /* Section selection. */
1078 /* WARNING: These section names also appear in dwarfout.c. */
1079
1080 /* The names of the text, data, and readonly-data sections are runtime
1081 selectable. */
1082
1083 #define ARC_SECTION_FORMAT "\t.section %s"
1084 #define ARC_DEFAULT_TEXT_SECTION ".text"
1085 #define ARC_DEFAULT_DATA_SECTION ".data"
1086 #define ARC_DEFAULT_RODATA_SECTION ".rodata"
1087
1088 extern const char *arc_text_section, *arc_data_section, *arc_rodata_section;
1089
1090 /* initfini.c uses this in an asm. */
1091 #if defined (CRT_INIT) || defined (CRT_FINI)
1092 #define TEXT_SECTION_ASM_OP "\t.section .text"
1093 #else
1094 #define TEXT_SECTION_ASM_OP arc_text_section
1095 #endif
1096 #define DATA_SECTION_ASM_OP arc_data_section
1097
1098 #undef READONLY_DATA_SECTION_ASM_OP
1099 #define READONLY_DATA_SECTION_ASM_OP arc_rodata_section
1100
1101 #define BSS_SECTION_ASM_OP "\t.section .bss"
1102
1103 /* Define this macro if jump tables (for tablejump insns) should be
1104 output in the text section, along with the assembler instructions.
1105 Otherwise, the readonly data section is used.
1106 This macro is irrelevant if there is no separate readonly data section. */
1107 /*#define JUMP_TABLES_IN_TEXT_SECTION*/
1108
1109 /* For DWARF. Marginally different than default so output is "prettier"
1110 (and consistent with above). */
1111 #define PUSHSECTION_ASM_OP "\t.section "
1112
1113 /* Tell crtstuff.c we're using ELF. */
1114 #define OBJECT_FORMAT_ELF
1115 \f
1116 /* PIC */
1117
1118 /* The register number of the register used to address a table of static
1119 data addresses in memory. In some cases this register is defined by a
1120 processor's ``application binary interface'' (ABI). When this macro
1121 is defined, RTL is generated for this register once, as with the stack
1122 pointer and frame pointer registers. If this macro is not defined, it
1123 is up to the machine-dependent files to allocate such a register (if
1124 necessary). */
1125 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 26 : INVALID_REGNUM)
1126
1127 /* Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is
1128 clobbered by calls. Do not define this macro if PIC_OFFSET_TABLE_REGNUM
1129 is not defined. */
1130 /* This register is call-saved on the ARC. */
1131 /*#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED*/
1132
1133 /* By generating position-independent code, when two different programs (A
1134 and B) share a common library (libC.a), the text of the library can be
1135 shared whether or not the library is linked at the same address for both
1136 programs. In some of these environments, position-independent code
1137 requires not only the use of different addressing modes, but also
1138 special code to enable the use of these addressing modes.
1139
1140 The FINALIZE_PIC macro serves as a hook to emit these special
1141 codes once the function is being compiled into assembly code, but not
1142 before. (It is not done before, because in the case of compiling an
1143 inline function, it would lead to multiple PIC prologues being
1144 included in functions which used inline functions and were compiled to
1145 assembly language.) */
1146
1147 #define FINALIZE_PIC arc_finalize_pic ()
1148
1149 /* A C expression that is nonzero if X is a legitimate immediate
1150 operand on the target machine when generating position independent code.
1151 You can assume that X satisfies CONSTANT_P, so you need not
1152 check this. You can also assume `flag_pic' is true, so you need not
1153 check it either. You need not define this macro if all constants
1154 (including SYMBOL_REF) can be immediate operands when generating
1155 position independent code. */
1156 /*#define LEGITIMATE_PIC_OPERAND_P(X)*/
1157 \f
1158 /* Control the assembler format that we output. */
1159
1160 /* Output at beginning of assembler file. */
1161 #undef ASM_FILE_START
1162 #define ASM_FILE_START(FILE) arc_asm_file_start (FILE)
1163
1164 /* A C string constant describing how to begin a comment in the target
1165 assembler language. The compiler assumes that the comment will
1166 end at the end of the line. */
1167 #define ASM_COMMENT_START ";"
1168
1169 /* Output to assembler file text saying following lines
1170 may contain character constants, extra white space, comments, etc. */
1171 #define ASM_APP_ON ""
1172
1173 /* Output to assembler file text saying following lines
1174 no longer contain unusual constructs. */
1175 #define ASM_APP_OFF ""
1176
1177 /* Globalizing directive for a label. */
1178 #define GLOBAL_ASM_OP "\t.global\t"
1179
1180 /* A C statement (sans semicolon) to output on FILE an assembler pseudo-op to
1181 declare a library function name external. The name of the library function
1182 is given by SYMREF, which has type RTX and is a SYMBOL_REF. */
1183 #if 0
1184 /* On the ARC we want to have libgcc's for multiple cpus in one binary.
1185 We can't use `assemble_name' here as that will call ASM_OUTPUT_LABELREF
1186 and we'll get another suffix added on if -mmangle-cpu. */
1187 extern const char *arc_mangle_cpu;
1188 #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, SYMREF) \
1189 do { \
1190 if (TARGET_MANGLE_CPU_LIBGCC) \
1191 { \
1192 fprintf (FILE, "\t.rename\t_%s, _%s%s\n", \
1193 XSTR (SYMREF, 0), XSTR (SYMREF, 0), \
1194 arc_mangle_suffix); \
1195 } \
1196 } while (0)
1197 #endif
1198
1199 /* This is how to output a reference to a user-level label named NAME.
1200 `assemble_name' uses this. */
1201 /* We mangle all user labels to provide protection from linking code
1202 compiled for different cpus. */
1203 /* We work around a dwarfout.c deficiency by watching for labels from it and
1204 not adding the '_' prefix nor the cpu suffix. There is a comment in
1205 dwarfout.c that says it should be using ASM_OUTPUT_INTERNAL_LABEL. */
1206 extern const char *arc_mangle_cpu;
1207 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1208 do { \
1209 if ((NAME)[0] == '.' && (NAME)[1] == 'L') \
1210 fprintf (FILE, "%s", NAME); \
1211 else \
1212 { \
1213 fputc ('_', FILE); \
1214 if (TARGET_MANGLE_CPU && arc_mangle_cpu != NULL) \
1215 fprintf (FILE, "%s_", arc_mangle_cpu); \
1216 fprintf (FILE, "%s", NAME); \
1217 } \
1218 } while (0)
1219
1220 /* This is how to output a definition of an internal numbered label where
1221 PREFIX is the class of label and NUM is the number within the class. */
1222 #undef ASM_OUTPUT_INTERNAL_LABEL
1223 #define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \
1224 do { \
1225 arc_ccfsm_at_label (PREFIX, NUM); \
1226 fprintf (FILE, ".%s%d:\n", PREFIX, NUM); \
1227 } while (0)
1228
1229 /* Store in OUTPUT a string (made with alloca) containing
1230 an assembler-name for a local static variable named NAME.
1231 LABELNO is an integer which is different for each call. */
1232 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1233 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1234 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1235
1236 /* Assembler pseudo-op to equate one value with another. */
1237 /* ??? This is needed because dwarfout.c provides a default definition too
1238 late for defaults.h (which contains the default definition of ASM_OUTPUT_DEF
1239 that we use). */
1240 #define SET_ASM_OP "\t.set\t"
1241
1242 /* How to refer to registers in assembler output.
1243 This sequence is indexed by compiler's hard-register-number (see above). */
1244 #define REGISTER_NAMES \
1245 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1246 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1247 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
1248 "r24", "r25", "r26", "fp", "sp", "ilink1", "ilink2", "blink", \
1249 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
1250 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \
1251 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
1252 "r56", "r57", "r58", "r59", "lp_count", "cc"}
1253
1254 /* Entry to the insn conditionalizer. */
1255 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
1256 arc_final_prescan_insn (INSN, OPVEC, NOPERANDS)
1257
1258 /* A C expression which evaluates to true if CODE is a valid
1259 punctuation character for use in the `PRINT_OPERAND' macro. */
1260 extern char arc_punct_chars[256];
1261 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1262 arc_punct_chars[(unsigned char) (CHAR)]
1263
1264 /* Print operand X (an rtx) in assembler syntax to file FILE.
1265 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1266 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1267 #define PRINT_OPERAND(FILE, X, CODE) \
1268 arc_print_operand (FILE, X, CODE)
1269
1270 /* A C compound statement to output to stdio stream STREAM the
1271 assembler syntax for an instruction operand that is a memory
1272 reference whose address is ADDR. ADDR is an RTL expression. */
1273 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1274 arc_print_operand_address (FILE, ADDR)
1275
1276 /* This is how to output an element of a case-vector that is absolute. */
1277 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1278 do { \
1279 char label[30]; \
1280 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1281 fprintf (FILE, "\t.word %%st("); \
1282 assemble_name (FILE, label); \
1283 fprintf (FILE, ")\n"); \
1284 } while (0)
1285
1286 /* This is how to output an element of a case-vector that is relative. */
1287 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1288 do { \
1289 char label[30]; \
1290 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1291 fprintf (FILE, "\t.word %%st("); \
1292 assemble_name (FILE, label); \
1293 fprintf (FILE, "-"); \
1294 ASM_GENERATE_INTERNAL_LABEL (label, "L", REL); \
1295 assemble_name (FILE, label); \
1296 fprintf (FILE, ")\n"); \
1297 } while (0)
1298
1299 /* The desired alignment for the location counter at the beginning
1300 of a loop. */
1301 /* On the ARC, align loops to 32 byte boundaries (cache line size)
1302 if -malign-loops. */
1303 #define LOOP_ALIGN(LABEL) (TARGET_ALIGN_LOOPS ? 5 : 0)
1304
1305 /* This is how to output an assembler line
1306 that says to advance the location counter
1307 to a multiple of 2**LOG bytes. */
1308 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1309 do { if ((LOG) != 0) fprintf (FILE, "\t.align %d\n", 1 << (LOG)); } while (0)
1310 \f
1311 /* Debugging information. */
1312
1313 /* Generate DBX and DWARF debugging information. */
1314 #ifndef DBX_DEBUGGING_INFO
1315 #define DBX_DEBUGGING_INFO
1316 #endif
1317 #ifndef DWARF_DEBUGGING_INFO
1318 #define DWARF_DEBUGGING_INFO
1319 #endif
1320
1321 /* Prefer STABS (for now). */
1322 #undef PREFERRED_DEBUGGING_TYPE
1323 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
1324
1325 /* Turn off splitting of long stabs. */
1326 #define DBX_CONTIN_LENGTH 0
1327 \f
1328 /* Miscellaneous. */
1329
1330 /* Specify the machine mode that this machine uses
1331 for the index in the tablejump instruction. */
1332 #define CASE_VECTOR_MODE Pmode
1333
1334 /* Define as C expression which evaluates to nonzero if the tablejump
1335 instruction expects the table to contain offsets from the address of the
1336 table.
1337 Do not define this if the table should contain absolute addresses. */
1338 /* It's not clear what PIC will look like or whether we want to use -fpic
1339 for the embedded form currently being talked about. For now require -fpic
1340 to get pc relative switch tables. */
1341 /*#define CASE_VECTOR_PC_RELATIVE 1 */
1342
1343 /* Define if operations between registers always perform the operation
1344 on the full register even if a narrower mode is specified. */
1345 #define WORD_REGISTER_OPERATIONS
1346
1347 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1348 will either zero-extend or sign-extend. The value of this macro should
1349 be the code that says which one of the two operations is implicitly
1350 done, NIL if none. */
1351 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1352
1353 /* Max number of bytes we can move from memory to memory
1354 in one reasonably fast instruction. */
1355 #define MOVE_MAX 4
1356
1357 /* Define this to be nonzero if shift instructions ignore all but the low-order
1358 few bits. */
1359 #define SHIFT_COUNT_TRUNCATED 1
1360
1361 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1362 is done just by pretending it is already truncated. */
1363 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1364
1365 /* We assume that the store-condition-codes instructions store 0 for false
1366 and some other value for true. This is the value stored for true. */
1367 #define STORE_FLAG_VALUE 1
1368
1369 /* Specify the machine mode that pointers have.
1370 After generation of rtl, the compiler makes no further distinction
1371 between pointers and any other objects of this machine mode. */
1372 /* ??? The arc doesn't have full 32 bit pointers, but making this PSImode has
1373 its own problems (you have to add extendpsisi2 and trucnsipsi2 but how does
1374 one do it without getting excess code?). Try to avoid it. */
1375 #define Pmode SImode
1376
1377 /* A function address in a call instruction. */
1378 #define FUNCTION_MODE SImode
1379
1380 /* alloca should avoid clobbering the old register save area. */
1381 /* ??? Not defined in tm.texi. */
1382 #define SETJMP_VIA_SAVE_AREA
1383 \f
1384 /* Define the information needed to generate branch and scc insns. This is
1385 stored from the compare operation. Note that we can't use "rtx" here
1386 since it hasn't been defined! */
1387 extern struct rtx_def *arc_compare_op0, *arc_compare_op1;
1388
1389 /* ARC function types. */
1390 enum arc_function_type {
1391 ARC_FUNCTION_UNKNOWN, ARC_FUNCTION_NORMAL,
1392 /* These are interrupt handlers. The name corresponds to the register
1393 name that contains the return address. */
1394 ARC_FUNCTION_ILINK1, ARC_FUNCTION_ILINK2
1395 };
1396 #define ARC_INTERRUPT_P(TYPE) \
1397 ((TYPE) == ARC_FUNCTION_ILINK1 || (TYPE) == ARC_FUNCTION_ILINK2)
1398 /* Compute the type of a function from its DECL. */
1399
1400 \f
1401 /* Implement `va_start' for varargs and stdarg. */
1402 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1403 arc_va_start (valist, nextarg)
1404
1405 /* Implement `va_arg'. */
1406 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1407 arc_va_arg (valist, type)