]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/arm/arm.h
gcc/ada/
[thirdparty/gcc.git] / gcc / config / arm / arm.h
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991-2014 Free Software Foundation, Inc.
3 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4 and Martin Simmons (@harleqn.co.uk).
5 More major hacks by Richard Earnshaw (rearnsha@arm.com)
6 Minor hacks by Nick Clifton (nickc@cygnus.com)
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published
12 by the Free Software Foundation; either version 3, or (at your
13 option) any later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
18 License for more details.
19
20 Under Section 7 of GPL version 3, you are granted additional
21 permissions described in the GCC Runtime Library Exception, version
22 3.1, as published by the Free Software Foundation.
23
24 You should have received a copy of the GNU General Public License and
25 a copy of the GCC Runtime Library Exception along with this program;
26 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
27 <http://www.gnu.org/licenses/>. */
28
29 #ifndef GCC_ARM_H
30 #define GCC_ARM_H
31
32 /* We can't use machine_mode inside a generator file because it
33 hasn't been created yet; we shouldn't be using any code that
34 needs the real definition though, so this ought to be safe. */
35 #ifdef GENERATOR_FILE
36 #define MACHMODE int
37 #else
38 #include "insn-modes.h"
39 #define MACHMODE machine_mode
40 #endif
41
42 #include "config/vxworks-dummy.h"
43
44 /* The architecture define. */
45 extern char arm_arch_name[];
46
47 /* Target CPU builtins. */
48 #define TARGET_CPU_CPP_BUILTINS() \
49 do \
50 { \
51 if (TARGET_DSP_MULTIPLY) \
52 builtin_define ("__ARM_FEATURE_DSP"); \
53 if (TARGET_ARM_QBIT) \
54 builtin_define ("__ARM_FEATURE_QBIT"); \
55 if (TARGET_ARM_SAT) \
56 builtin_define ("__ARM_FEATURE_SAT"); \
57 if (TARGET_CRYPTO) \
58 builtin_define ("__ARM_FEATURE_CRYPTO"); \
59 if (unaligned_access) \
60 builtin_define ("__ARM_FEATURE_UNALIGNED"); \
61 if (TARGET_CRC32) \
62 builtin_define ("__ARM_FEATURE_CRC32"); \
63 if (TARGET_32BIT) \
64 builtin_define ("__ARM_32BIT_STATE"); \
65 if (TARGET_ARM_FEATURE_LDREX) \
66 builtin_define_with_int_value ( \
67 "__ARM_FEATURE_LDREX", TARGET_ARM_FEATURE_LDREX); \
68 if ((TARGET_ARM_ARCH >= 5 && !TARGET_THUMB) \
69 || TARGET_ARM_ARCH_ISA_THUMB >=2) \
70 builtin_define ("__ARM_FEATURE_CLZ"); \
71 if (TARGET_INT_SIMD) \
72 builtin_define ("__ARM_FEATURE_SIMD32"); \
73 \
74 builtin_define_with_int_value ( \
75 "__ARM_SIZEOF_MINIMAL_ENUM", \
76 flag_short_enums ? 1 : 4); \
77 builtin_define_type_sizeof ("__ARM_SIZEOF_WCHAR_T", \
78 wchar_type_node); \
79 if (TARGET_ARM_ARCH_PROFILE) \
80 builtin_define_with_int_value ( \
81 "__ARM_ARCH_PROFILE", TARGET_ARM_ARCH_PROFILE); \
82 \
83 /* Define __arm__ even when in thumb mode, for \
84 consistency with armcc. */ \
85 builtin_define ("__arm__"); \
86 if (TARGET_ARM_ARCH) \
87 builtin_define_with_int_value ( \
88 "__ARM_ARCH", TARGET_ARM_ARCH); \
89 if (arm_arch_notm) \
90 builtin_define ("__ARM_ARCH_ISA_ARM"); \
91 builtin_define ("__APCS_32__"); \
92 if (TARGET_THUMB) \
93 builtin_define ("__thumb__"); \
94 if (TARGET_THUMB2) \
95 builtin_define ("__thumb2__"); \
96 if (TARGET_ARM_ARCH_ISA_THUMB) \
97 builtin_define_with_int_value ( \
98 "__ARM_ARCH_ISA_THUMB", \
99 TARGET_ARM_ARCH_ISA_THUMB); \
100 \
101 if (TARGET_BIG_END) \
102 { \
103 builtin_define ("__ARMEB__"); \
104 builtin_define ("__ARM_BIG_ENDIAN"); \
105 if (TARGET_THUMB) \
106 builtin_define ("__THUMBEB__"); \
107 } \
108 else \
109 { \
110 builtin_define ("__ARMEL__"); \
111 if (TARGET_THUMB) \
112 builtin_define ("__THUMBEL__"); \
113 } \
114 \
115 if (TARGET_SOFT_FLOAT) \
116 builtin_define ("__SOFTFP__"); \
117 \
118 if (TARGET_VFP) \
119 builtin_define ("__VFP_FP__"); \
120 \
121 if (TARGET_ARM_FP) \
122 builtin_define_with_int_value ( \
123 "__ARM_FP", TARGET_ARM_FP); \
124 if (arm_fp16_format == ARM_FP16_FORMAT_IEEE) \
125 builtin_define ("__ARM_FP16_FORMAT_IEEE"); \
126 if (arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE) \
127 builtin_define ("__ARM_FP16_FORMAT_ALTERNATIVE"); \
128 if (TARGET_FMA) \
129 builtin_define ("__ARM_FEATURE_FMA"); \
130 \
131 if (TARGET_NEON) \
132 { \
133 builtin_define ("__ARM_NEON__"); \
134 builtin_define ("__ARM_NEON"); \
135 } \
136 if (TARGET_NEON_FP) \
137 builtin_define_with_int_value ( \
138 "__ARM_NEON_FP", TARGET_NEON_FP); \
139 \
140 /* Add a define for interworking. \
141 Needed when building libgcc.a. */ \
142 if (arm_cpp_interwork) \
143 builtin_define ("__THUMB_INTERWORK__"); \
144 \
145 builtin_assert ("cpu=arm"); \
146 builtin_assert ("machine=arm"); \
147 \
148 builtin_define (arm_arch_name); \
149 if (arm_arch_xscale) \
150 builtin_define ("__XSCALE__"); \
151 if (arm_arch_iwmmxt) \
152 { \
153 builtin_define ("__IWMMXT__"); \
154 builtin_define ("__ARM_WMMX"); \
155 } \
156 if (arm_arch_iwmmxt2) \
157 builtin_define ("__IWMMXT2__"); \
158 if (TARGET_AAPCS_BASED) \
159 { \
160 if (arm_pcs_default == ARM_PCS_AAPCS_VFP) \
161 builtin_define ("__ARM_PCS_VFP"); \
162 else if (arm_pcs_default == ARM_PCS_AAPCS) \
163 builtin_define ("__ARM_PCS"); \
164 builtin_define ("__ARM_EABI__"); \
165 } \
166 if (TARGET_IDIV) \
167 { \
168 builtin_define ("__ARM_ARCH_EXT_IDIV__"); \
169 builtin_define ("__ARM_FEATURE_IDIV__"); \
170 } \
171 } while (0)
172
173 #include "config/arm/arm-opts.h"
174
175 enum target_cpus
176 {
177 #define ARM_CORE(NAME, INTERNAL_IDENT, IDENT, ARCH, FLAGS, COSTS) \
178 TARGET_CPU_##INTERNAL_IDENT,
179 #include "arm-cores.def"
180 #undef ARM_CORE
181 TARGET_CPU_generic
182 };
183
184 /* The processor for which instructions should be scheduled. */
185 extern enum processor_type arm_tune;
186
187 typedef enum arm_cond_code
188 {
189 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
190 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
191 }
192 arm_cc;
193
194 extern arm_cc arm_current_cc;
195
196 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
197
198 /* The maximum number of instructions that is beneficial to
199 conditionally execute. */
200 #undef MAX_CONDITIONAL_EXECUTE
201 #define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
202
203 extern int arm_target_label;
204 extern int arm_ccfsm_state;
205 extern GTY(()) rtx arm_target_insn;
206 /* The label of the current constant pool. */
207 extern rtx pool_vector_label;
208 /* Set to 1 when a return insn is output, this means that the epilogue
209 is not needed. */
210 extern int return_used_this_function;
211 /* Callback to output language specific object attributes. */
212 extern void (*arm_lang_output_object_attributes_hook)(void);
213 \f
214 /* Just in case configure has failed to define anything. */
215 #ifndef TARGET_CPU_DEFAULT
216 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
217 #endif
218
219
220 #undef CPP_SPEC
221 #define CPP_SPEC "%(subtarget_cpp_spec) \
222 %{mfloat-abi=soft:%{mfloat-abi=hard: \
223 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
224 %{mbig-endian:%{mlittle-endian: \
225 %e-mbig-endian and -mlittle-endian may not be used together}}"
226
227 #ifndef CC1_SPEC
228 #define CC1_SPEC ""
229 #endif
230
231 /* This macro defines names of additional specifications to put in the specs
232 that can be used in various specifications like CC1_SPEC. Its definition
233 is an initializer with a subgrouping for each command option.
234
235 Each subgrouping contains a string constant, that defines the
236 specification name, and a string constant that used by the GCC driver
237 program.
238
239 Do not define this macro if it does not need to do anything. */
240 #define EXTRA_SPECS \
241 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
242 { "asm_cpu_spec", ASM_CPU_SPEC }, \
243 SUBTARGET_EXTRA_SPECS
244
245 #ifndef SUBTARGET_EXTRA_SPECS
246 #define SUBTARGET_EXTRA_SPECS
247 #endif
248
249 #ifndef SUBTARGET_CPP_SPEC
250 #define SUBTARGET_CPP_SPEC ""
251 #endif
252 \f
253 /* Run-time Target Specification. */
254 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
255 /* Use hardware floating point instructions. */
256 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
257 /* Use hardware floating point calling convention. */
258 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
259 #define TARGET_VFP (arm_fpu_desc->model == ARM_FP_MODEL_VFP)
260 #define TARGET_IWMMXT (arm_arch_iwmmxt)
261 #define TARGET_IWMMXT2 (arm_arch_iwmmxt2)
262 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
263 #define TARGET_REALLY_IWMMXT2 (TARGET_IWMMXT2 && TARGET_32BIT)
264 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
265 #define TARGET_ARM (! TARGET_THUMB)
266 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
267 #define TARGET_BACKTRACE (leaf_function_p () \
268 ? TARGET_TPCS_LEAF_FRAME \
269 : TARGET_TPCS_FRAME)
270 #define TARGET_AAPCS_BASED \
271 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
272
273 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
274 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
275 #define TARGET_GNU2_TLS (target_tls_dialect == TLS_GNU2)
276
277 /* Only 16-bit thumb code. */
278 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
279 /* Arm or Thumb-2 32-bit code. */
280 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
281 /* 32-bit Thumb-2 code. */
282 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
283 /* Thumb-1 only. */
284 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
285
286 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN \
287 && !TARGET_THUMB1)
288
289 #define TARGET_CRC32 (arm_arch_crc)
290
291 /* The following two macros concern the ability to execute coprocessor
292 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
293 only ever tested when we know we are generating for VFP hardware; we need
294 to be more careful with TARGET_NEON as noted below. */
295
296 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
297 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
298
299 /* FPU supports VFPv3 instructions. */
300 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
301
302 /* FPU supports FPv5 instructions. */
303 #define TARGET_VFP5 (TARGET_VFP && arm_fpu_desc->rev >= 5)
304
305 /* FPU only supports VFP single-precision instructions. */
306 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
307
308 /* FPU supports VFP double-precision instructions. */
309 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
310
311 /* FPU supports half-precision floating-point with NEON element load/store. */
312 #define TARGET_NEON_FP16 \
313 (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
314
315 /* FPU supports VFP half-precision floating-point. */
316 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
317
318 /* FPU supports fused-multiply-add operations. */
319 #define TARGET_FMA (TARGET_VFP && arm_fpu_desc->rev >= 4)
320
321 /* FPU is ARMv8 compatible. */
322 #define TARGET_FPU_ARMV8 (TARGET_VFP && arm_fpu_desc->rev >= 8)
323
324 /* FPU supports Crypto extensions. */
325 #define TARGET_CRYPTO (TARGET_VFP && arm_fpu_desc->crypto)
326
327 /* FPU supports Neon instructions. The setting of this macro gets
328 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
329 and TARGET_HARD_FLOAT to ensure that NEON instructions are
330 available. */
331 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
332 && TARGET_VFP && arm_fpu_desc->neon)
333
334 /* Q-bit is present. */
335 #define TARGET_ARM_QBIT \
336 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7))
337 /* Saturation operation, e.g. SSAT. */
338 #define TARGET_ARM_SAT \
339 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
340 /* "DSP" multiply instructions, eg. SMULxy. */
341 #define TARGET_DSP_MULTIPLY \
342 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
343 /* Integer SIMD instructions, and extend-accumulate instructions. */
344 #define TARGET_INT_SIMD \
345 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
346
347 /* Should MOVW/MOVT be used in preference to a constant pool. */
348 #define TARGET_USE_MOVT \
349 (arm_arch_thumb2 \
350 && (arm_disable_literal_pool \
351 || (!optimize_size && !current_tune->prefer_constant_pool)))
352
353 /* We could use unified syntax for arm mode, but for now we just use it
354 for Thumb-2. */
355 #define TARGET_UNIFIED_ASM TARGET_THUMB2
356
357 /* Nonzero if this chip provides the DMB instruction. */
358 #define TARGET_HAVE_DMB (arm_arch6m || arm_arch7)
359
360 /* Nonzero if this chip implements a memory barrier via CP15. */
361 #define TARGET_HAVE_DMB_MCR (arm_arch6 && ! TARGET_HAVE_DMB \
362 && ! TARGET_THUMB1)
363
364 /* Nonzero if this chip implements a memory barrier instruction. */
365 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
366
367 /* Nonzero if this chip supports ldrex and strex */
368 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) || arm_arch7)
369
370 /* Nonzero if this chip supports ldrex{bh} and strex{bh}. */
371 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM) || arm_arch7)
372
373 /* Nonzero if this chip supports ldrexd and strexd. */
374 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) || arm_arch7) \
375 && arm_arch_notm)
376
377 /* Nonzero if this chip supports load-acquire and store-release. */
378 #define TARGET_HAVE_LDACQ (TARGET_ARM_ARCH >= 8)
379
380 /* Nonzero if integer division instructions supported. */
381 #define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \
382 || (TARGET_THUMB2 && arm_arch_thumb_hwdiv))
383
384 /* Should NEON be used for 64-bits bitops. */
385 #define TARGET_PREFER_NEON_64BITS (prefer_neon_for_64bits)
386
387 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
388 then TARGET_AAPCS_BASED must be true -- but the converse does not
389 hold. TARGET_BPABI implies the use of the BPABI runtime library,
390 etc., in addition to just the AAPCS calling conventions. */
391 #ifndef TARGET_BPABI
392 #define TARGET_BPABI false
393 #endif
394
395 /* Support for a compile-time default CPU, et cetera. The rules are:
396 --with-arch is ignored if -march or -mcpu are specified.
397 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
398 by --with-arch.
399 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
400 by -march).
401 --with-float is ignored if -mfloat-abi is specified.
402 --with-fpu is ignored if -mfpu is specified.
403 --with-abi is ignored if -mabi is specified.
404 --with-tls is ignored if -mtls-dialect is specified. */
405 #define OPTION_DEFAULT_SPECS \
406 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
407 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
408 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
409 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
410 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
411 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
412 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
413 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
414
415 /* Which floating point model to use. */
416 enum arm_fp_model
417 {
418 ARM_FP_MODEL_UNKNOWN,
419 /* VFP floating point model. */
420 ARM_FP_MODEL_VFP
421 };
422
423 enum vfp_reg_type
424 {
425 VFP_NONE = 0,
426 VFP_REG_D16,
427 VFP_REG_D32,
428 VFP_REG_SINGLE
429 };
430
431 extern const struct arm_fpu_desc
432 {
433 const char *name;
434 enum arm_fp_model model;
435 int rev;
436 enum vfp_reg_type regs;
437 int neon;
438 int fp16;
439 int crypto;
440 } *arm_fpu_desc;
441
442 /* Which floating point hardware to schedule for. */
443 extern int arm_fpu_attr;
444
445 #ifndef TARGET_DEFAULT_FLOAT_ABI
446 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
447 #endif
448
449 #ifndef ARM_DEFAULT_ABI
450 #define ARM_DEFAULT_ABI ARM_ABI_APCS
451 #endif
452
453 /* Map each of the micro-architecture variants to their corresponding
454 major architecture revision. */
455
456 enum base_architecture
457 {
458 BASE_ARCH_0 = 0,
459 BASE_ARCH_2 = 2,
460 BASE_ARCH_3 = 3,
461 BASE_ARCH_3M = 3,
462 BASE_ARCH_4 = 4,
463 BASE_ARCH_4T = 4,
464 BASE_ARCH_5 = 5,
465 BASE_ARCH_5E = 5,
466 BASE_ARCH_5T = 5,
467 BASE_ARCH_5TE = 5,
468 BASE_ARCH_5TEJ = 5,
469 BASE_ARCH_6 = 6,
470 BASE_ARCH_6J = 6,
471 BASE_ARCH_6ZK = 6,
472 BASE_ARCH_6K = 6,
473 BASE_ARCH_6T2 = 6,
474 BASE_ARCH_6M = 6,
475 BASE_ARCH_6Z = 6,
476 BASE_ARCH_7 = 7,
477 BASE_ARCH_7A = 7,
478 BASE_ARCH_7R = 7,
479 BASE_ARCH_7M = 7,
480 BASE_ARCH_7EM = 7,
481 BASE_ARCH_8A = 8
482 };
483
484 /* The major revision number of the ARM Architecture implemented by the target. */
485 extern enum base_architecture arm_base_arch;
486
487 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
488 extern int arm_arch3m;
489
490 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
491 extern int arm_arch4;
492
493 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
494 extern int arm_arch4t;
495
496 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
497 extern int arm_arch5;
498
499 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
500 extern int arm_arch5e;
501
502 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
503 extern int arm_arch6;
504
505 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
506 extern int arm_arch6k;
507
508 /* Nonzero if instructions present in ARMv6-M can be used. */
509 extern int arm_arch6m;
510
511 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
512 extern int arm_arch7;
513
514 /* Nonzero if instructions not present in the 'M' profile can be used. */
515 extern int arm_arch_notm;
516
517 /* Nonzero if instructions present in ARMv7E-M can be used. */
518 extern int arm_arch7em;
519
520 /* Nonzero if this chip supports the ARM Architecture 8 extensions. */
521 extern int arm_arch8;
522
523 /* Nonzero if this chip can benefit from load scheduling. */
524 extern int arm_ld_sched;
525
526 /* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2. */
527 extern int thumb_code;
528
529 /* Nonzero if generating Thumb-1 code. */
530 extern int thumb1_code;
531
532 /* Nonzero if this chip is a StrongARM. */
533 extern int arm_tune_strongarm;
534
535 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
536 extern int arm_arch_iwmmxt;
537
538 /* Nonzero if this chip supports Intel Wireless MMX2 technology. */
539 extern int arm_arch_iwmmxt2;
540
541 /* Nonzero if this chip is an XScale. */
542 extern int arm_arch_xscale;
543
544 /* Nonzero if tuning for XScale. */
545 extern int arm_tune_xscale;
546
547 /* Nonzero if tuning for stores via the write buffer. */
548 extern int arm_tune_wbuf;
549
550 /* Nonzero if tuning for Cortex-A9. */
551 extern int arm_tune_cortex_a9;
552
553 /* Nonzero if we should define __THUMB_INTERWORK__ in the
554 preprocessor.
555 XXX This is a bit of a hack, it's intended to help work around
556 problems in GLD which doesn't understand that armv5t code is
557 interworking clean. */
558 extern int arm_cpp_interwork;
559
560 /* Nonzero if chip supports Thumb 2. */
561 extern int arm_arch_thumb2;
562
563 /* Nonzero if chip supports integer division instruction in ARM mode. */
564 extern int arm_arch_arm_hwdiv;
565
566 /* Nonzero if chip supports integer division instruction in Thumb mode. */
567 extern int arm_arch_thumb_hwdiv;
568
569 /* Nonzero if we should use Neon to handle 64-bits operations rather
570 than core registers. */
571 extern int prefer_neon_for_64bits;
572
573 /* Nonzero if we shouldn't use literal pools. */
574 #ifndef USED_FOR_TARGET
575 extern bool arm_disable_literal_pool;
576 #endif
577
578 /* Nonzero if chip supports the ARMv8 CRC instructions. */
579 extern int arm_arch_crc;
580
581 #ifndef TARGET_DEFAULT
582 #define TARGET_DEFAULT (MASK_APCS_FRAME)
583 #endif
584
585 /* Nonzero if PIC code requires explicit qualifiers to generate
586 PLT and GOT relocs rather than the assembler doing so implicitly.
587 Subtargets can override these if required. */
588 #ifndef NEED_GOT_RELOC
589 #define NEED_GOT_RELOC 0
590 #endif
591 #ifndef NEED_PLT_RELOC
592 #define NEED_PLT_RELOC 0
593 #endif
594
595 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
596 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
597 #endif
598
599 /* Nonzero if we need to refer to the GOT with a PC-relative
600 offset. In other words, generate
601
602 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
603
604 rather than
605
606 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
607
608 The default is true, which matches NetBSD. Subtargets can
609 override this if required. */
610 #ifndef GOT_PCREL
611 #define GOT_PCREL 1
612 #endif
613 \f
614 /* Target machine storage Layout. */
615
616
617 /* Define this macro if it is advisable to hold scalars in registers
618 in a wider mode than that declared by the program. In such cases,
619 the value is constrained to be within the bounds of the declared
620 type, but kept valid in the wider mode. The signedness of the
621 extension may differ from that of the type. */
622
623 /* It is far faster to zero extend chars than to sign extend them */
624
625 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
626 if (GET_MODE_CLASS (MODE) == MODE_INT \
627 && GET_MODE_SIZE (MODE) < 4) \
628 { \
629 if (MODE == QImode) \
630 UNSIGNEDP = 1; \
631 else if (MODE == HImode) \
632 UNSIGNEDP = 1; \
633 (MODE) = SImode; \
634 }
635
636 /* Define this if most significant bit is lowest numbered
637 in instructions that operate on numbered bit-fields. */
638 #define BITS_BIG_ENDIAN 0
639
640 /* Define this if most significant byte of a word is the lowest numbered.
641 Most ARM processors are run in little endian mode, so that is the default.
642 If you want to have it run-time selectable, change the definition in a
643 cover file to be TARGET_BIG_ENDIAN. */
644 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
645
646 /* Define this if most significant word of a multiword number is the lowest
647 numbered. */
648 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
649
650 #define UNITS_PER_WORD 4
651
652 /* True if natural alignment is used for doubleword types. */
653 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
654
655 #define DOUBLEWORD_ALIGNMENT 64
656
657 #define PARM_BOUNDARY 32
658
659 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
660
661 #define PREFERRED_STACK_BOUNDARY \
662 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
663
664 #define FUNCTION_BOUNDARY ((TARGET_THUMB && optimize_size) ? 16 : 32)
665
666 /* The lowest bit is used to indicate Thumb-mode functions, so the
667 vbit must go into the delta field of pointers to member
668 functions. */
669 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
670
671 #define EMPTY_FIELD_BOUNDARY 32
672
673 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
674
675 #define MALLOC_ABI_ALIGNMENT BIGGEST_ALIGNMENT
676
677 /* XXX Blah -- this macro is used directly by libobjc. Since it
678 supports no vector modes, cut out the complexity and fall back
679 on BIGGEST_FIELD_ALIGNMENT. */
680 #ifdef IN_TARGET_LIBS
681 #define BIGGEST_FIELD_ALIGNMENT 64
682 #endif
683
684 /* Make strings word-aligned so strcpy from constants will be faster. */
685 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
686
687 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
688 ((TREE_CODE (EXP) == STRING_CST \
689 && !optimize_size \
690 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
691 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
692
693 /* Align definitions of arrays, unions and structures so that
694 initializations and copies can be made more efficient. This is not
695 ABI-changing, so it only affects places where we can see the
696 definition. Increasing the alignment tends to introduce padding,
697 so don't do this when optimizing for size/conserving stack space. */
698 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
699 (((COND) && ((ALIGN) < BITS_PER_WORD) \
700 && (TREE_CODE (EXP) == ARRAY_TYPE \
701 || TREE_CODE (EXP) == UNION_TYPE \
702 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
703
704 /* Align global data. */
705 #define DATA_ALIGNMENT(EXP, ALIGN) \
706 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
707
708 /* Similarly, make sure that objects on the stack are sensibly aligned. */
709 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
710 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
711
712 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
713 value set in previous versions of this toolchain was 8, which produces more
714 compact structures. The command line option -mstructure_size_boundary=<n>
715 can be used to change this value. For compatibility with the ARM SDK
716 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
717 0020D) page 2-20 says "Structures are aligned on word boundaries".
718 The AAPCS specifies a value of 8. */
719 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
720
721 /* This is the value used to initialize arm_structure_size_boundary. If a
722 particular arm target wants to change the default value it should change
723 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
724 for an example of this. */
725 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
726 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
727 #endif
728
729 /* Nonzero if move instructions will actually fail to work
730 when given unaligned data. */
731 #define STRICT_ALIGNMENT 1
732
733 /* wchar_t is unsigned under the AAPCS. */
734 #ifndef WCHAR_TYPE
735 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
736
737 #define WCHAR_TYPE_SIZE BITS_PER_WORD
738 #endif
739
740 /* Sized for fixed-point types. */
741
742 #define SHORT_FRACT_TYPE_SIZE 8
743 #define FRACT_TYPE_SIZE 16
744 #define LONG_FRACT_TYPE_SIZE 32
745 #define LONG_LONG_FRACT_TYPE_SIZE 64
746
747 #define SHORT_ACCUM_TYPE_SIZE 16
748 #define ACCUM_TYPE_SIZE 32
749 #define LONG_ACCUM_TYPE_SIZE 64
750 #define LONG_LONG_ACCUM_TYPE_SIZE 64
751
752 #define MAX_FIXED_MODE_SIZE 64
753
754 #ifndef SIZE_TYPE
755 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
756 #endif
757
758 #ifndef PTRDIFF_TYPE
759 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
760 #endif
761
762 /* AAPCS requires that structure alignment is affected by bitfields. */
763 #ifndef PCC_BITFIELD_TYPE_MATTERS
764 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
765 #endif
766
767 \f
768 /* Standard register usage. */
769
770 /* Register allocation in ARM Procedure Call Standard
771 (S - saved over call).
772
773 r0 * argument word/integer result
774 r1-r3 argument word
775
776 r4-r8 S register variable
777 r9 S (rfp) register variable (real frame pointer)
778
779 r10 F S (sl) stack limit (used by -mapcs-stack-check)
780 r11 F S (fp) argument pointer
781 r12 (ip) temp workspace
782 r13 F S (sp) lower end of current stack frame
783 r14 (lr) link address/workspace
784 r15 F (pc) program counter
785
786 cc This is NOT a real register, but is used internally
787 to represent things that use or set the condition
788 codes.
789 sfp This isn't either. It is used during rtl generation
790 since the offset between the frame pointer and the
791 auto's isn't known until after register allocation.
792 afp Nor this, we only need this because of non-local
793 goto. Without it fp appears to be used and the
794 elimination code won't get rid of sfp. It tracks
795 fp exactly at all times.
796
797 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
798
799 /* s0-s15 VFP scratch (aka d0-d7).
800 s16-s31 S VFP variable (aka d8-d15).
801 vfpcc Not a real register. Represents the VFP condition
802 code flags. */
803
804 /* The stack backtrace structure is as follows:
805 fp points to here: | save code pointer | [fp]
806 | return link value | [fp, #-4]
807 | return sp value | [fp, #-8]
808 | return fp value | [fp, #-12]
809 [| saved r10 value |]
810 [| saved r9 value |]
811 [| saved r8 value |]
812 [| saved r7 value |]
813 [| saved r6 value |]
814 [| saved r5 value |]
815 [| saved r4 value |]
816 [| saved r3 value |]
817 [| saved r2 value |]
818 [| saved r1 value |]
819 [| saved r0 value |]
820 r0-r3 are not normally saved in a C function. */
821
822 /* 1 for registers that have pervasive standard uses
823 and are not available for the register allocator. */
824 #define FIXED_REGISTERS \
825 { \
826 /* Core regs. */ \
827 0,0,0,0,0,0,0,0, \
828 0,0,0,0,0,1,0,1, \
829 /* VFP regs. */ \
830 1,1,1,1,1,1,1,1, \
831 1,1,1,1,1,1,1,1, \
832 1,1,1,1,1,1,1,1, \
833 1,1,1,1,1,1,1,1, \
834 1,1,1,1,1,1,1,1, \
835 1,1,1,1,1,1,1,1, \
836 1,1,1,1,1,1,1,1, \
837 1,1,1,1,1,1,1,1, \
838 /* IWMMXT regs. */ \
839 1,1,1,1,1,1,1,1, \
840 1,1,1,1,1,1,1,1, \
841 1,1,1,1, \
842 /* Specials. */ \
843 1,1,1,1 \
844 }
845
846 /* 1 for registers not available across function calls.
847 These must include the FIXED_REGISTERS and also any
848 registers that can be used without being saved.
849 The latter must include the registers where values are returned
850 and the register where structure-value addresses are passed.
851 Aside from that, you can include as many other registers as you like.
852 The CC is not preserved over function calls on the ARM 6, so it is
853 easier to assume this for all. SFP is preserved, since FP is. */
854 #define CALL_USED_REGISTERS \
855 { \
856 /* Core regs. */ \
857 1,1,1,1,0,0,0,0, \
858 0,0,0,0,1,1,1,1, \
859 /* VFP Regs. */ \
860 1,1,1,1,1,1,1,1, \
861 1,1,1,1,1,1,1,1, \
862 1,1,1,1,1,1,1,1, \
863 1,1,1,1,1,1,1,1, \
864 1,1,1,1,1,1,1,1, \
865 1,1,1,1,1,1,1,1, \
866 1,1,1,1,1,1,1,1, \
867 1,1,1,1,1,1,1,1, \
868 /* IWMMXT regs. */ \
869 1,1,1,1,1,1,1,1, \
870 1,1,1,1,1,1,1,1, \
871 1,1,1,1, \
872 /* Specials. */ \
873 1,1,1,1 \
874 }
875
876 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
877 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
878 #endif
879
880 /* These are a couple of extensions to the formats accepted
881 by asm_fprintf:
882 %@ prints out ASM_COMMENT_START
883 %r prints out REGISTER_PREFIX reg_names[arg] */
884 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
885 case '@': \
886 fputs (ASM_COMMENT_START, FILE); \
887 break; \
888 \
889 case 'r': \
890 fputs (REGISTER_PREFIX, FILE); \
891 fputs (reg_names [va_arg (ARGS, int)], FILE); \
892 break;
893
894 /* Round X up to the nearest word. */
895 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
896
897 /* Convert fron bytes to ints. */
898 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
899
900 /* The number of (integer) registers required to hold a quantity of type MODE.
901 Also used for VFP registers. */
902 #define ARM_NUM_REGS(MODE) \
903 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
904
905 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
906 #define ARM_NUM_REGS2(MODE, TYPE) \
907 ARM_NUM_INTS ((MODE) == BLKmode ? \
908 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
909
910 /* The number of (integer) argument register available. */
911 #define NUM_ARG_REGS 4
912
913 /* And similarly for the VFP. */
914 #define NUM_VFP_ARG_REGS 16
915
916 /* Return the register number of the N'th (integer) argument. */
917 #define ARG_REGISTER(N) (N - 1)
918
919 /* Specify the registers used for certain standard purposes.
920 The values of these macros are register numbers. */
921
922 /* The number of the last argument register. */
923 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
924
925 /* The numbers of the Thumb register ranges. */
926 #define FIRST_LO_REGNUM 0
927 #define LAST_LO_REGNUM 7
928 #define FIRST_HI_REGNUM 8
929 #define LAST_HI_REGNUM 11
930
931 /* Overridden by config/arm/bpabi.h. */
932 #ifndef ARM_UNWIND_INFO
933 #define ARM_UNWIND_INFO 0
934 #endif
935
936 /* Use r0 and r1 to pass exception handling information. */
937 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
938
939 /* The register that holds the return address in exception handlers. */
940 #define ARM_EH_STACKADJ_REGNUM 2
941 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
942
943 #ifndef ARM_TARGET2_DWARF_FORMAT
944 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
945 #endif
946
947 /* ttype entries (the only interesting data references used)
948 use TARGET2 relocations. */
949 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
950 (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
951 : DW_EH_PE_absptr)
952
953 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
954 as an invisible last argument (possible since varargs don't exist in
955 Pascal), so the following is not true. */
956 #define STATIC_CHAIN_REGNUM 12
957
958 /* Define this to be where the real frame pointer is if it is not possible to
959 work out the offset between the frame pointer and the automatic variables
960 until after register allocation has taken place. FRAME_POINTER_REGNUM
961 should point to a special register that we will make sure is eliminated.
962
963 For the Thumb we have another problem. The TPCS defines the frame pointer
964 as r11, and GCC believes that it is always possible to use the frame pointer
965 as base register for addressing purposes. (See comments in
966 find_reloads_address()). But - the Thumb does not allow high registers,
967 including r11, to be used as base address registers. Hence our problem.
968
969 The solution used here, and in the old thumb port is to use r7 instead of
970 r11 as the hard frame pointer and to have special code to generate
971 backtrace structures on the stack (if required to do so via a command line
972 option) using r11. This is the only 'user visible' use of r11 as a frame
973 pointer. */
974 #define ARM_HARD_FRAME_POINTER_REGNUM 11
975 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
976
977 #define HARD_FRAME_POINTER_REGNUM \
978 (TARGET_ARM \
979 ? ARM_HARD_FRAME_POINTER_REGNUM \
980 : THUMB_HARD_FRAME_POINTER_REGNUM)
981
982 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
983 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
984
985 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
986
987 /* Register to use for pushing function arguments. */
988 #define STACK_POINTER_REGNUM SP_REGNUM
989
990 #define FIRST_IWMMXT_REGNUM (LAST_HI_VFP_REGNUM + 1)
991 #define LAST_IWMMXT_REGNUM (FIRST_IWMMXT_REGNUM + 15)
992
993 /* Need to sync with WCGR in iwmmxt.md. */
994 #define FIRST_IWMMXT_GR_REGNUM (LAST_IWMMXT_REGNUM + 1)
995 #define LAST_IWMMXT_GR_REGNUM (FIRST_IWMMXT_GR_REGNUM + 3)
996
997 #define IS_IWMMXT_REGNUM(REGNUM) \
998 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
999 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
1000 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
1001
1002 /* Base register for access to local variables of the function. */
1003 #define FRAME_POINTER_REGNUM 102
1004
1005 /* Base register for access to arguments of the function. */
1006 #define ARG_POINTER_REGNUM 103
1007
1008 #define FIRST_VFP_REGNUM 16
1009 #define D7_VFP_REGNUM (FIRST_VFP_REGNUM + 15)
1010 #define LAST_VFP_REGNUM \
1011 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
1012
1013 #define IS_VFP_REGNUM(REGNUM) \
1014 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
1015
1016 /* VFP registers are split into two types: those defined by VFP versions < 3
1017 have D registers overlaid on consecutive pairs of S registers. VFP version 3
1018 defines 16 new D registers (d16-d31) which, for simplicity and correctness
1019 in various parts of the backend, we implement as "fake" single-precision
1020 registers (which would be S32-S63, but cannot be used in that way). The
1021 following macros define these ranges of registers. */
1022 #define LAST_LO_VFP_REGNUM (FIRST_VFP_REGNUM + 31)
1023 #define FIRST_HI_VFP_REGNUM (LAST_LO_VFP_REGNUM + 1)
1024 #define LAST_HI_VFP_REGNUM (FIRST_HI_VFP_REGNUM + 31)
1025
1026 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
1027 ((REGNUM) <= LAST_LO_VFP_REGNUM)
1028
1029 /* DFmode values are only valid in even register pairs. */
1030 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
1031 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
1032
1033 /* Neon Quad values must start at a multiple of four registers. */
1034 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
1035 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
1036
1037 /* Neon structures of vectors must be in even register pairs and there
1038 must be enough registers available. Because of various patterns
1039 requiring quad registers, we require them to start at a multiple of
1040 four. */
1041 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
1042 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
1043 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
1044
1045 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP. */
1046 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
1047 /* VFP (VFP3) adds 32 (64) + 1 VFPCC. */
1048 #define FIRST_PSEUDO_REGISTER 104
1049
1050 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1051
1052 /* Value should be nonzero if functions must have frame pointers.
1053 Zero means the frame pointer need not be set up (and parms may be accessed
1054 via the stack pointer) in functions that seem suitable.
1055 If we have to have a frame pointer we might as well make use of it.
1056 APCS says that the frame pointer does not need to be pushed in leaf
1057 functions, or simple tail call functions. */
1058
1059 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1060 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1061 #endif
1062
1063 /* Return number of consecutive hard regs needed starting at reg REGNO
1064 to hold something of mode MODE.
1065 This is ordinarily the length in words of a value of mode MODE
1066 but can be less for certain modes in special long registers.
1067
1068 On the ARM core regs are UNITS_PER_WORD bits wide. */
1069 #define HARD_REGNO_NREGS(REGNO, MODE) \
1070 ((TARGET_32BIT \
1071 && REGNO > PC_REGNUM \
1072 && REGNO != FRAME_POINTER_REGNUM \
1073 && REGNO != ARG_POINTER_REGNUM) \
1074 && !IS_VFP_REGNUM (REGNO) \
1075 ? 1 : ARM_NUM_REGS (MODE))
1076
1077 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
1078 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1079 arm_hard_regno_mode_ok ((REGNO), (MODE))
1080
1081 #define MODES_TIEABLE_P(MODE1, MODE2) arm_modes_tieable_p (MODE1, MODE2)
1082
1083 #define VALID_IWMMXT_REG_MODE(MODE) \
1084 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1085
1086 /* Modes valid for Neon D registers. */
1087 #define VALID_NEON_DREG_MODE(MODE) \
1088 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1089 || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode)
1090
1091 /* Modes valid for Neon Q registers. */
1092 #define VALID_NEON_QREG_MODE(MODE) \
1093 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1094 || (MODE) == V4SFmode || (MODE) == V2DImode)
1095
1096 /* Structure modes valid for Neon registers. */
1097 #define VALID_NEON_STRUCT_MODE(MODE) \
1098 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1099 || (MODE) == CImode || (MODE) == XImode)
1100
1101 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
1102 extern int arm_regs_in_sequence[];
1103
1104 /* The order in which register should be allocated. It is good to use ip
1105 since no saving is required (though calls clobber it) and it never contains
1106 function parameters. It is quite good to use lr since other calls may
1107 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1108 least likely to contain a function parameter; in addition results are
1109 returned in r0.
1110 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1111 then D8-D15. The reason for doing this is to attempt to reduce register
1112 pressure when both single- and double-precision registers are used in a
1113 function. */
1114
1115 #define VREG(X) (FIRST_VFP_REGNUM + (X))
1116 #define WREG(X) (FIRST_IWMMXT_REGNUM + (X))
1117 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1118
1119 #define REG_ALLOC_ORDER \
1120 { \
1121 /* General registers. */ \
1122 3, 2, 1, 0, 12, 14, 4, 5, \
1123 6, 7, 8, 9, 10, 11, \
1124 /* High VFP registers. */ \
1125 VREG(32), VREG(33), VREG(34), VREG(35), \
1126 VREG(36), VREG(37), VREG(38), VREG(39), \
1127 VREG(40), VREG(41), VREG(42), VREG(43), \
1128 VREG(44), VREG(45), VREG(46), VREG(47), \
1129 VREG(48), VREG(49), VREG(50), VREG(51), \
1130 VREG(52), VREG(53), VREG(54), VREG(55), \
1131 VREG(56), VREG(57), VREG(58), VREG(59), \
1132 VREG(60), VREG(61), VREG(62), VREG(63), \
1133 /* VFP argument registers. */ \
1134 VREG(15), VREG(14), VREG(13), VREG(12), \
1135 VREG(11), VREG(10), VREG(9), VREG(8), \
1136 VREG(7), VREG(6), VREG(5), VREG(4), \
1137 VREG(3), VREG(2), VREG(1), VREG(0), \
1138 /* VFP call-saved registers. */ \
1139 VREG(16), VREG(17), VREG(18), VREG(19), \
1140 VREG(20), VREG(21), VREG(22), VREG(23), \
1141 VREG(24), VREG(25), VREG(26), VREG(27), \
1142 VREG(28), VREG(29), VREG(30), VREG(31), \
1143 /* IWMMX registers. */ \
1144 WREG(0), WREG(1), WREG(2), WREG(3), \
1145 WREG(4), WREG(5), WREG(6), WREG(7), \
1146 WREG(8), WREG(9), WREG(10), WREG(11), \
1147 WREG(12), WREG(13), WREG(14), WREG(15), \
1148 WGREG(0), WGREG(1), WGREG(2), WGREG(3), \
1149 /* Registers not for general use. */ \
1150 CC_REGNUM, VFPCC_REGNUM, \
1151 FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, \
1152 SP_REGNUM, PC_REGNUM \
1153 }
1154
1155 /* Use different register alloc ordering for Thumb. */
1156 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1157
1158 /* Tell IRA to use the order we define rather than messing it up with its
1159 own cost calculations. */
1160 #define HONOR_REG_ALLOC_ORDER 1
1161
1162 /* Interrupt functions can only use registers that have already been
1163 saved by the prologue, even if they would normally be
1164 call-clobbered. */
1165 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1166 (! IS_INTERRUPT (cfun->machine->func_type) || \
1167 df_regs_ever_live_p (DST))
1168 \f
1169 /* Register and constant classes. */
1170
1171 /* Register classes. */
1172 enum reg_class
1173 {
1174 NO_REGS,
1175 LO_REGS,
1176 STACK_REG,
1177 BASE_REGS,
1178 HI_REGS,
1179 CALLER_SAVE_REGS,
1180 GENERAL_REGS,
1181 CORE_REGS,
1182 VFP_D0_D7_REGS,
1183 VFP_LO_REGS,
1184 VFP_HI_REGS,
1185 VFP_REGS,
1186 IWMMXT_REGS,
1187 IWMMXT_GR_REGS,
1188 CC_REG,
1189 VFPCC_REG,
1190 SFP_REG,
1191 AFP_REG,
1192 ALL_REGS,
1193 LIM_REG_CLASSES
1194 };
1195
1196 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1197
1198 /* Give names of register classes as strings for dump file. */
1199 #define REG_CLASS_NAMES \
1200 { \
1201 "NO_REGS", \
1202 "LO_REGS", \
1203 "STACK_REG", \
1204 "BASE_REGS", \
1205 "HI_REGS", \
1206 "CALLER_SAVE_REGS", \
1207 "GENERAL_REGS", \
1208 "CORE_REGS", \
1209 "VFP_D0_D7_REGS", \
1210 "VFP_LO_REGS", \
1211 "VFP_HI_REGS", \
1212 "VFP_REGS", \
1213 "IWMMXT_REGS", \
1214 "IWMMXT_GR_REGS", \
1215 "CC_REG", \
1216 "VFPCC_REG", \
1217 "SFP_REG", \
1218 "AFP_REG", \
1219 "ALL_REGS" \
1220 }
1221
1222 /* Define which registers fit in which classes.
1223 This is an initializer for a vector of HARD_REG_SET
1224 of length N_REG_CLASSES. */
1225 #define REG_CLASS_CONTENTS \
1226 { \
1227 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1228 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1229 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1230 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1231 { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1232 { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1233 { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1234 { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1235 { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1236 { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS */ \
1237 { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS */ \
1238 { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS */ \
1239 { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */ \
1240 { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1241 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */ \
1242 { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */ \
1243 { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */ \
1244 { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */ \
1245 { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F } /* ALL_REGS */ \
1246 }
1247
1248 /* Any of the VFP register classes. */
1249 #define IS_VFP_CLASS(X) \
1250 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1251 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1252
1253 /* The same information, inverted:
1254 Return the class number of the smallest class containing
1255 reg number REGNO. This could be a conditional expression
1256 or could index an array. */
1257 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1258
1259 /* In VFPv1, VFP registers could only be accessed in the mode they
1260 were set, so subregs would be invalid there. However, we don't
1261 support VFPv1 at the moment, and the restriction was lifted in
1262 VFPv2.
1263 In big-endian mode, modes greater than word size (i.e. DFmode) are stored in
1264 VFP registers in little-endian order. We can't describe that accurately to
1265 GCC, so avoid taking subregs of such values.
1266 The only exception is going from a 128-bit to a 64-bit type. In that case
1267 the data layout happens to be consistent for big-endian, so we explicitly allow
1268 that case. */
1269 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1270 (TARGET_VFP && TARGET_BIG_END \
1271 && !(GET_MODE_SIZE (FROM) == 16 && GET_MODE_SIZE (TO) == 8) \
1272 && (GET_MODE_SIZE (FROM) > UNITS_PER_WORD \
1273 || GET_MODE_SIZE (TO) > UNITS_PER_WORD) \
1274 && reg_classes_intersect_p (VFP_REGS, (CLASS)))
1275
1276 /* The class value for index registers, and the one for base regs. */
1277 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1278 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1279
1280 /* For the Thumb the high registers cannot be used as base registers
1281 when addressing quantities in QI or HI mode; if we don't know the
1282 mode, then we must be conservative. */
1283 #define MODE_BASE_REG_CLASS(MODE) \
1284 (arm_lra_flag \
1285 ? (TARGET_32BIT ? CORE_REGS \
1286 : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS \
1287 : LO_REGS) \
1288 : ((TARGET_ARM || (TARGET_THUMB2 && !optimize_size)) ? CORE_REGS \
1289 : ((MODE) == SImode) ? BASE_REGS \
1290 : LO_REGS))
1291
1292 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1293 instead of BASE_REGS. */
1294 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1295
1296 /* When this hook returns true for MODE, the compiler allows
1297 registers explicitly used in the rtl to be used as spill registers
1298 but prevents the compiler from extending the lifetime of these
1299 registers. */
1300 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1301 arm_small_register_classes_for_mode_p
1302
1303 /* Must leave BASE_REGS reloads alone */
1304 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1305 (lra_in_progress ? NO_REGS \
1306 : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1307 ? ((true_regnum (X) == -1 ? LO_REGS \
1308 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1309 : NO_REGS)) \
1310 : NO_REGS))
1311
1312 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1313 (lra_in_progress ? NO_REGS \
1314 : (CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1315 ? ((true_regnum (X) == -1 ? LO_REGS \
1316 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1317 : NO_REGS)) \
1318 : NO_REGS)
1319
1320 /* Return the register class of a scratch register needed to copy IN into
1321 or out of a register in CLASS in MODE. If it can be done directly,
1322 NO_REGS is returned. */
1323 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1324 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1325 ((TARGET_VFP && TARGET_HARD_FLOAT \
1326 && IS_VFP_CLASS (CLASS)) \
1327 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1328 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1329 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1330 : TARGET_32BIT \
1331 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1332 ? GENERAL_REGS : NO_REGS) \
1333 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1334
1335 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1336 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1337 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1338 ((TARGET_VFP && TARGET_HARD_FLOAT \
1339 && IS_VFP_CLASS (CLASS)) \
1340 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1341 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1342 coproc_secondary_reload_class (MODE, X, TRUE) : \
1343 (TARGET_32BIT ? \
1344 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1345 && CONSTANT_P (X)) \
1346 ? GENERAL_REGS : \
1347 (((MODE) == HImode && ! arm_arch4 \
1348 && (MEM_P (X) \
1349 || ((REG_P (X) || GET_CODE (X) == SUBREG) \
1350 && true_regnum (X) == -1))) \
1351 ? GENERAL_REGS : NO_REGS) \
1352 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1353
1354 /* Try a machine-dependent way of reloading an illegitimate address
1355 operand. If we find one, push the reload and jump to WIN. This
1356 macro is used in only one place: `find_reloads_address' in reload.c.
1357
1358 For the ARM, we wish to handle large displacements off a base
1359 register by splitting the addend across a MOV and the mem insn.
1360 This can cut the number of reloads needed. */
1361 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
1362 do \
1363 { \
1364 if (arm_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND)) \
1365 goto WIN; \
1366 } \
1367 while (0)
1368
1369 /* XXX If an HImode FP+large_offset address is converted to an HImode
1370 SP+large_offset address, then reload won't know how to fix it. It sees
1371 only that SP isn't valid for HImode, and so reloads the SP into an index
1372 register, but the resulting address is still invalid because the offset
1373 is too big. We fix it here instead by reloading the entire address. */
1374 /* We could probably achieve better results by defining PROMOTE_MODE to help
1375 cope with the variances between the Thumb's signed and unsigned byte and
1376 halfword load instructions. */
1377 /* ??? This should be safe for thumb2, but we may be able to do better. */
1378 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN) \
1379 do { \
1380 rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1381 if (new_x) \
1382 { \
1383 X = new_x; \
1384 goto WIN; \
1385 } \
1386 } while (0)
1387
1388 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
1389 if (TARGET_ARM) \
1390 ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1391 else \
1392 THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1393
1394 /* Return the maximum number of consecutive registers
1395 needed to represent mode MODE in a register of class CLASS.
1396 ARM regs are UNITS_PER_WORD bits.
1397 FIXME: Is this true for iWMMX? */
1398 #define CLASS_MAX_NREGS(CLASS, MODE) \
1399 (ARM_NUM_REGS (MODE))
1400
1401 /* If defined, gives a class of registers that cannot be used as the
1402 operand of a SUBREG that changes the mode of the object illegally. */
1403 \f
1404 /* Stack layout; function entry, exit and calling. */
1405
1406 /* Define this if pushing a word on the stack
1407 makes the stack pointer a smaller address. */
1408 #define STACK_GROWS_DOWNWARD 1
1409
1410 /* Define this to nonzero if the nominal address of the stack frame
1411 is at the high-address end of the local variables;
1412 that is, each additional local variable allocated
1413 goes at a more negative offset in the frame. */
1414 #define FRAME_GROWS_DOWNWARD 1
1415
1416 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1417 When present, it is one word in size, and sits at the top of the frame,
1418 between the soft frame pointer and either r7 or r11.
1419
1420 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1421 and only then if some outgoing arguments are passed on the stack. It would
1422 be tempting to also check whether the stack arguments are passed by indirect
1423 calls, but there seems to be no reason in principle why a post-reload pass
1424 couldn't convert a direct call into an indirect one. */
1425 #define CALLER_INTERWORKING_SLOT_SIZE \
1426 (TARGET_CALLER_INTERWORKING \
1427 && crtl->outgoing_args_size != 0 \
1428 ? UNITS_PER_WORD : 0)
1429
1430 /* Offset within stack frame to start allocating local variables at.
1431 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1432 first local allocated. Otherwise, it is the offset to the BEGINNING
1433 of the first local allocated. */
1434 #define STARTING_FRAME_OFFSET 0
1435
1436 /* If we generate an insn to push BYTES bytes,
1437 this says how many the stack pointer really advances by. */
1438 /* The push insns do not do this rounding implicitly.
1439 So don't define this. */
1440 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1441
1442 /* Define this if the maximum size of all the outgoing args is to be
1443 accumulated and pushed during the prologue. The amount can be
1444 found in the variable crtl->outgoing_args_size. */
1445 #define ACCUMULATE_OUTGOING_ARGS 1
1446
1447 /* Offset of first parameter from the argument pointer register value. */
1448 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1449
1450 /* Amount of memory needed for an untyped call to save all possible return
1451 registers. */
1452 #define APPLY_RESULT_SIZE arm_apply_result_size()
1453
1454 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1455 values must be in memory. On the ARM, they need only do so if larger
1456 than a word, or if they contain elements offset from zero in the struct. */
1457 #define DEFAULT_PCC_STRUCT_RETURN 0
1458
1459 /* These bits describe the different types of function supported
1460 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1461 normal function and an interworked function, for example. Knowing the
1462 type of a function is important for determining its prologue and
1463 epilogue sequences.
1464 Note value 7 is currently unassigned. Also note that the interrupt
1465 function types all have bit 2 set, so that they can be tested for easily.
1466 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1467 machine_function structure is initialized (to zero) func_type will
1468 default to unknown. This will force the first use of arm_current_func_type
1469 to call arm_compute_func_type. */
1470 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1471 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1472 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1473 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1474 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1475 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1476
1477 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1478
1479 /* In addition functions can have several type modifiers,
1480 outlined by these bit masks: */
1481 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1482 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1483 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1484 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1485 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1486
1487 /* Some macros to test these flags. */
1488 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1489 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1490 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1491 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1492 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1493 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1494
1495
1496 /* Structure used to hold the function stack frame layout. Offsets are
1497 relative to the stack pointer on function entry. Positive offsets are
1498 in the direction of stack growth.
1499 Only soft_frame is used in thumb mode. */
1500
1501 typedef struct GTY(()) arm_stack_offsets
1502 {
1503 int saved_args; /* ARG_POINTER_REGNUM. */
1504 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1505 int saved_regs;
1506 int soft_frame; /* FRAME_POINTER_REGNUM. */
1507 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1508 int outgoing_args; /* STACK_POINTER_REGNUM. */
1509 unsigned int saved_regs_mask;
1510 }
1511 arm_stack_offsets;
1512
1513 #ifndef GENERATOR_FILE
1514 /* A C structure for machine-specific, per-function data.
1515 This is added to the cfun structure. */
1516 typedef struct GTY(()) machine_function
1517 {
1518 /* Additional stack adjustment in __builtin_eh_throw. */
1519 rtx eh_epilogue_sp_ofs;
1520 /* Records if LR has to be saved for far jumps. */
1521 int far_jump_used;
1522 /* Records if ARG_POINTER was ever live. */
1523 int arg_pointer_live;
1524 /* Records if the save of LR has been eliminated. */
1525 int lr_save_eliminated;
1526 /* The size of the stack frame. Only valid after reload. */
1527 arm_stack_offsets stack_offsets;
1528 /* Records the type of the current function. */
1529 unsigned long func_type;
1530 /* Record if the function has a variable argument list. */
1531 int uses_anonymous_args;
1532 /* Records if sibcalls are blocked because an argument
1533 register is needed to preserve stack alignment. */
1534 int sibcall_blocked;
1535 /* The PIC register for this function. This might be a pseudo. */
1536 rtx pic_reg;
1537 /* Labels for per-function Thumb call-via stubs. One per potential calling
1538 register. We can never call via LR or PC. We can call via SP if a
1539 trampoline happens to be on the top of the stack. */
1540 rtx call_via[14];
1541 /* Set to 1 when a return insn is output, this means that the epilogue
1542 is not needed. */
1543 int return_used_this_function;
1544 /* When outputting Thumb-1 code, record the last insn that provides
1545 information about condition codes, and the comparison operands. */
1546 rtx thumb1_cc_insn;
1547 rtx thumb1_cc_op0;
1548 rtx thumb1_cc_op1;
1549 /* Also record the CC mode that is supported. */
1550 machine_mode thumb1_cc_mode;
1551 /* Set to 1 after arm_reorg has started. */
1552 int after_arm_reorg;
1553 }
1554 machine_function;
1555 #endif
1556
1557 /* As in the machine_function, a global set of call-via labels, for code
1558 that is in text_section. */
1559 extern GTY(()) rtx thumb_call_via_label[14];
1560
1561 /* The number of potential ways of assigning to a co-processor. */
1562 #define ARM_NUM_COPROC_SLOTS 1
1563
1564 /* Enumeration of procedure calling standard variants. We don't really
1565 support all of these yet. */
1566 enum arm_pcs
1567 {
1568 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1569 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1570 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1571 /* This must be the last AAPCS variant. */
1572 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1573 ARM_PCS_ATPCS, /* ATPCS. */
1574 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1575 ARM_PCS_UNKNOWN
1576 };
1577
1578 /* Default procedure calling standard of current compilation unit. */
1579 extern enum arm_pcs arm_pcs_default;
1580
1581 /* A C type for declaring a variable that is used as the first argument of
1582 `FUNCTION_ARG' and other related values. */
1583 typedef struct
1584 {
1585 /* This is the number of registers of arguments scanned so far. */
1586 int nregs;
1587 /* This is the number of iWMMXt register arguments scanned so far. */
1588 int iwmmxt_nregs;
1589 int named_count;
1590 int nargs;
1591 /* Which procedure call variant to use for this call. */
1592 enum arm_pcs pcs_variant;
1593
1594 /* AAPCS related state tracking. */
1595 int aapcs_arg_processed; /* No need to lay out this argument again. */
1596 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1597 this argument, or -1 if using core
1598 registers. */
1599 int aapcs_ncrn;
1600 int aapcs_next_ncrn;
1601 rtx aapcs_reg; /* Register assigned to this argument. */
1602 int aapcs_partial; /* How many bytes are passed in regs (if
1603 split between core regs and stack.
1604 Zero otherwise. */
1605 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1606 int can_split; /* Argument can be split between core regs
1607 and the stack. */
1608 /* Private data for tracking VFP register allocation */
1609 unsigned aapcs_vfp_regs_free;
1610 unsigned aapcs_vfp_reg_alloc;
1611 int aapcs_vfp_rcount;
1612 MACHMODE aapcs_vfp_rmode;
1613 } CUMULATIVE_ARGS;
1614
1615 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1616 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1617
1618 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1619 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1620
1621 /* For AAPCS, padding should never be below the argument. For other ABIs,
1622 * mimic the default. */
1623 #define PAD_VARARGS_DOWN \
1624 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1625
1626 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1627 for a call to a function whose data type is FNTYPE.
1628 For a library call, FNTYPE is 0.
1629 On the ARM, the offset starts at 0. */
1630 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1631 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1632
1633 /* 1 if N is a possible register number for function argument passing.
1634 On the ARM, r0-r3 are used to pass args. */
1635 #define FUNCTION_ARG_REGNO_P(REGNO) \
1636 (IN_RANGE ((REGNO), 0, 3) \
1637 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \
1638 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1639 || (TARGET_IWMMXT_ABI \
1640 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1641
1642 \f
1643 /* If your target environment doesn't prefix user functions with an
1644 underscore, you may wish to re-define this to prevent any conflicts. */
1645 #ifndef ARM_MCOUNT_NAME
1646 #define ARM_MCOUNT_NAME "*mcount"
1647 #endif
1648
1649 /* Call the function profiler with a given profile label. The Acorn
1650 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1651 On the ARM the full profile code will look like:
1652 .data
1653 LP1
1654 .word 0
1655 .text
1656 mov ip, lr
1657 bl mcount
1658 .word LP1
1659
1660 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1661 will output the .text section.
1662
1663 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1664 ``prof'' doesn't seem to mind about this!
1665
1666 Note - this version of the code is designed to work in both ARM and
1667 Thumb modes. */
1668 #ifndef ARM_FUNCTION_PROFILER
1669 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1670 { \
1671 char temp[20]; \
1672 rtx sym; \
1673 \
1674 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1675 IP_REGNUM, LR_REGNUM); \
1676 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1677 fputc ('\n', STREAM); \
1678 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1679 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1680 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1681 }
1682 #endif
1683
1684 #ifdef THUMB_FUNCTION_PROFILER
1685 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1686 if (TARGET_ARM) \
1687 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1688 else \
1689 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1690 #else
1691 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1692 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1693 #endif
1694
1695 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1696 the stack pointer does not matter. The value is tested only in
1697 functions that have frame pointers.
1698 No definition is equivalent to always zero.
1699
1700 On the ARM, the function epilogue recovers the stack pointer from the
1701 frame. */
1702 #define EXIT_IGNORE_STACK 1
1703
1704 #define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1705
1706 /* Determine if the epilogue should be output as RTL.
1707 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1708 #define USE_RETURN_INSN(ISCOND) \
1709 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1710
1711 /* Definitions for register eliminations.
1712
1713 This is an array of structures. Each structure initializes one pair
1714 of eliminable registers. The "from" register number is given first,
1715 followed by "to". Eliminations of the same "from" register are listed
1716 in order of preference.
1717
1718 We have two registers that can be eliminated on the ARM. First, the
1719 arg pointer register can often be eliminated in favor of the stack
1720 pointer register. Secondly, the pseudo frame pointer register can always
1721 be eliminated; it is replaced with either the stack or the real frame
1722 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1723 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1724
1725 #define ELIMINABLE_REGS \
1726 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1727 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1728 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1729 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1730 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1731 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1732 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1733
1734 /* Define the offset between two registers, one to be eliminated, and the
1735 other its replacement, at the start of a routine. */
1736 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1737 if (TARGET_ARM) \
1738 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1739 else \
1740 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1741
1742 /* Special case handling of the location of arguments passed on the stack. */
1743 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1744
1745 /* Initialize data used by insn expanders. This is called from insn_emit,
1746 once for every function before code is generated. */
1747 #define INIT_EXPANDERS arm_init_expanders ()
1748
1749 /* Length in units of the trampoline for entering a nested function. */
1750 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1751
1752 /* Alignment required for a trampoline in bits. */
1753 #define TRAMPOLINE_ALIGNMENT 32
1754 \f
1755 /* Addressing modes, and classification of registers for them. */
1756 #define HAVE_POST_INCREMENT 1
1757 #define HAVE_PRE_INCREMENT TARGET_32BIT
1758 #define HAVE_POST_DECREMENT TARGET_32BIT
1759 #define HAVE_PRE_DECREMENT TARGET_32BIT
1760 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1761 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1762 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1763 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1764
1765 enum arm_auto_incmodes
1766 {
1767 ARM_POST_INC,
1768 ARM_PRE_INC,
1769 ARM_POST_DEC,
1770 ARM_PRE_DEC
1771 };
1772
1773 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1774 (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1775 #define USE_LOAD_POST_INCREMENT(mode) \
1776 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1777 #define USE_LOAD_PRE_INCREMENT(mode) \
1778 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1779 #define USE_LOAD_POST_DECREMENT(mode) \
1780 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1781 #define USE_LOAD_PRE_DECREMENT(mode) \
1782 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1783
1784 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1785 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1786 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1787 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1788
1789 /* Macros to check register numbers against specific register classes. */
1790
1791 /* These assume that REGNO is a hard or pseudo reg number.
1792 They give nonzero only if REGNO is a hard reg of the suitable class
1793 or a pseudo reg currently allocated to a suitable hard reg.
1794 Since they use reg_renumber, they are safe only once reg_renumber
1795 has been allocated, which happens in reginfo.c during register
1796 allocation. */
1797 #define TEST_REGNO(R, TEST, VALUE) \
1798 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1799
1800 /* Don't allow the pc to be used. */
1801 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1802 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1803 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1804 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1805
1806 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1807 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1808 || (GET_MODE_SIZE (MODE) >= 4 \
1809 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1810
1811 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1812 (TARGET_THUMB1 \
1813 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1814 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1815
1816 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1817 For Thumb, we can not use SP + reg, so reject SP. */
1818 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1819 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1820
1821 /* For ARM code, we don't care about the mode, but for Thumb, the index
1822 must be suitable for use in a QImode load. */
1823 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1824 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1825 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1826
1827 /* Maximum number of registers that can appear in a valid memory address.
1828 Shifts in addresses can't be by a register. */
1829 #define MAX_REGS_PER_ADDRESS 2
1830
1831 /* Recognize any constant value that is a valid address. */
1832 /* XXX We can address any constant, eventually... */
1833 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1834 #define CONSTANT_ADDRESS_P(X) \
1835 (GET_CODE (X) == SYMBOL_REF \
1836 && (CONSTANT_POOL_ADDRESS_P (X) \
1837 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1838
1839 /* True if SYMBOL + OFFSET constants must refer to something within
1840 SYMBOL's section. */
1841 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1842
1843 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1844 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1845 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1846 #endif
1847
1848 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1849 #define SUBTARGET_NAME_ENCODING_LENGTHS
1850 #endif
1851
1852 /* This is a C fragment for the inside of a switch statement.
1853 Each case label should return the number of characters to
1854 be stripped from the start of a function's name, if that
1855 name starts with the indicated character. */
1856 #define ARM_NAME_ENCODING_LENGTHS \
1857 case '*': return 1; \
1858 SUBTARGET_NAME_ENCODING_LENGTHS
1859
1860 /* This is how to output a reference to a user-level label named NAME.
1861 `assemble_name' uses this. */
1862 #undef ASM_OUTPUT_LABELREF
1863 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1864 arm_asm_output_labelref (FILE, NAME)
1865
1866 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1867 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1868 if (TARGET_THUMB2) \
1869 thumb2_asm_output_opcode (STREAM);
1870
1871 /* The EABI specifies that constructors should go in .init_array.
1872 Other targets use .ctors for compatibility. */
1873 #ifndef ARM_EABI_CTORS_SECTION_OP
1874 #define ARM_EABI_CTORS_SECTION_OP \
1875 "\t.section\t.init_array,\"aw\",%init_array"
1876 #endif
1877 #ifndef ARM_EABI_DTORS_SECTION_OP
1878 #define ARM_EABI_DTORS_SECTION_OP \
1879 "\t.section\t.fini_array,\"aw\",%fini_array"
1880 #endif
1881 #define ARM_CTORS_SECTION_OP \
1882 "\t.section\t.ctors,\"aw\",%progbits"
1883 #define ARM_DTORS_SECTION_OP \
1884 "\t.section\t.dtors,\"aw\",%progbits"
1885
1886 /* Define CTORS_SECTION_ASM_OP. */
1887 #undef CTORS_SECTION_ASM_OP
1888 #undef DTORS_SECTION_ASM_OP
1889 #ifndef IN_LIBGCC2
1890 # define CTORS_SECTION_ASM_OP \
1891 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1892 # define DTORS_SECTION_ASM_OP \
1893 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1894 #else /* !defined (IN_LIBGCC2) */
1895 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1896 so we cannot use the definition above. */
1897 # ifdef __ARM_EABI__
1898 /* The .ctors section is not part of the EABI, so we do not define
1899 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1900 from trying to use it. We do define it when doing normal
1901 compilation, as .init_array can be used instead of .ctors. */
1902 /* There is no need to emit begin or end markers when using
1903 init_array; the dynamic linker will compute the size of the
1904 array itself based on special symbols created by the static
1905 linker. However, we do need to arrange to set up
1906 exception-handling here. */
1907 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1908 # define CTOR_LIST_END /* empty */
1909 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1910 # define DTOR_LIST_END /* empty */
1911 # else /* !defined (__ARM_EABI__) */
1912 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1913 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1914 # endif /* !defined (__ARM_EABI__) */
1915 #endif /* !defined (IN_LIBCC2) */
1916
1917 /* True if the operating system can merge entities with vague linkage
1918 (e.g., symbols in COMDAT group) during dynamic linking. */
1919 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1920 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1921 #endif
1922
1923 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1924
1925 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1926 and check its validity for a certain class.
1927 We have two alternate definitions for each of them.
1928 The usual definition accepts all pseudo regs; the other rejects
1929 them unless they have been allocated suitable hard regs.
1930 The symbol REG_OK_STRICT causes the latter definition to be used.
1931 Thumb-2 has the same restrictions as arm. */
1932 #ifndef REG_OK_STRICT
1933
1934 #define ARM_REG_OK_FOR_BASE_P(X) \
1935 (REGNO (X) <= LAST_ARM_REGNUM \
1936 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1937 || REGNO (X) == FRAME_POINTER_REGNUM \
1938 || REGNO (X) == ARG_POINTER_REGNUM)
1939
1940 #define ARM_REG_OK_FOR_INDEX_P(X) \
1941 ((REGNO (X) <= LAST_ARM_REGNUM \
1942 && REGNO (X) != STACK_POINTER_REGNUM) \
1943 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1944 || REGNO (X) == FRAME_POINTER_REGNUM \
1945 || REGNO (X) == ARG_POINTER_REGNUM)
1946
1947 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1948 (REGNO (X) <= LAST_LO_REGNUM \
1949 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1950 || (GET_MODE_SIZE (MODE) >= 4 \
1951 && (REGNO (X) == STACK_POINTER_REGNUM \
1952 || (X) == hard_frame_pointer_rtx \
1953 || (X) == arg_pointer_rtx)))
1954
1955 #define REG_STRICT_P 0
1956
1957 #else /* REG_OK_STRICT */
1958
1959 #define ARM_REG_OK_FOR_BASE_P(X) \
1960 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1961
1962 #define ARM_REG_OK_FOR_INDEX_P(X) \
1963 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1964
1965 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1966 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1967
1968 #define REG_STRICT_P 1
1969
1970 #endif /* REG_OK_STRICT */
1971
1972 /* Now define some helpers in terms of the above. */
1973
1974 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1975 (TARGET_THUMB1 \
1976 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1977 : ARM_REG_OK_FOR_BASE_P (X))
1978
1979 /* For 16-bit Thumb, a valid index register is anything that can be used in
1980 a byte load instruction. */
1981 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1982 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1983
1984 /* Nonzero if X is a hard reg that can be used as an index
1985 or if it is a pseudo reg. On the Thumb, the stack pointer
1986 is not suitable. */
1987 #define REG_OK_FOR_INDEX_P(X) \
1988 (TARGET_THUMB1 \
1989 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1990 : ARM_REG_OK_FOR_INDEX_P (X))
1991
1992 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1993 For Thumb, we can not use SP + reg, so reject SP. */
1994 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1995 REG_OK_FOR_INDEX_P (X)
1996 \f
1997 #define ARM_BASE_REGISTER_RTX_P(X) \
1998 (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
1999
2000 #define ARM_INDEX_REGISTER_RTX_P(X) \
2001 (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
2002 \f
2003 /* Specify the machine mode that this machine uses
2004 for the index in the tablejump instruction. */
2005 #define CASE_VECTOR_MODE Pmode
2006
2007 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
2008 || (TARGET_THUMB1 \
2009 && (optimize_size || flag_pic)))
2010
2011 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
2012 (TARGET_THUMB1 \
2013 ? (min >= 0 && max < 512 \
2014 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
2015 : min >= -256 && max < 256 \
2016 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
2017 : min >= 0 && max < 8192 \
2018 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
2019 : min >= -4096 && max < 4096 \
2020 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
2021 : SImode) \
2022 : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode \
2023 : (max >= 0x200) ? HImode \
2024 : QImode))
2025
2026 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
2027 unsigned is probably best, but may break some code. */
2028 #ifndef DEFAULT_SIGNED_CHAR
2029 #define DEFAULT_SIGNED_CHAR 0
2030 #endif
2031
2032 /* Max number of bytes we can move from memory to memory
2033 in one reasonably fast instruction. */
2034 #define MOVE_MAX 4
2035
2036 #undef MOVE_RATIO
2037 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
2038
2039 /* Define if operations between registers always perform the operation
2040 on the full register even if a narrower mode is specified. */
2041 #define WORD_REGISTER_OPERATIONS
2042
2043 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2044 will either zero-extend or sign-extend. The value of this macro should
2045 be the code that says which one of the two operations is implicitly
2046 done, UNKNOWN if none. */
2047 #define LOAD_EXTEND_OP(MODE) \
2048 (TARGET_THUMB ? ZERO_EXTEND : \
2049 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
2050 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
2051
2052 /* Nonzero if access to memory by bytes is slow and undesirable. */
2053 #define SLOW_BYTE_ACCESS 0
2054
2055 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
2056
2057 /* Immediate shift counts are truncated by the output routines (or was it
2058 the assembler?). Shift counts in a register are truncated by ARM. Note
2059 that the native compiler puts too large (> 32) immediate shift counts
2060 into a register and shifts by the register, letting the ARM decide what
2061 to do instead of doing that itself. */
2062 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
2063 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2064 On the arm, Y in a register is used modulo 256 for the shift. Only for
2065 rotates is modulo 32 used. */
2066 /* #define SHIFT_COUNT_TRUNCATED 1 */
2067
2068 /* All integers have the same format so truncation is easy. */
2069 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2070
2071 /* Calling from registers is a massive pain. */
2072 #define NO_FUNCTION_CSE 1
2073
2074 /* The machine modes of pointers and functions */
2075 #define Pmode SImode
2076 #define FUNCTION_MODE Pmode
2077
2078 #define ARM_FRAME_RTX(X) \
2079 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
2080 || (X) == arg_pointer_rtx)
2081
2082 /* Try to generate sequences that don't involve branches, we can then use
2083 conditional instructions. */
2084 #define BRANCH_COST(speed_p, predictable_p) \
2085 (current_tune->branch_cost (speed_p, predictable_p))
2086
2087 /* False if short circuit operation is preferred. */
2088 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
2089 ((optimize_size) \
2090 ? (TARGET_THUMB ? false : true) \
2091 : (current_tune->logical_op_non_short_circuit[TARGET_ARM]))
2092
2093 \f
2094 /* Position Independent Code. */
2095 /* We decide which register to use based on the compilation options and
2096 the assembler in use; this is more general than the APCS restriction of
2097 using sb (r9) all the time. */
2098 extern unsigned arm_pic_register;
2099
2100 /* The register number of the register used to address a table of static
2101 data addresses in memory. */
2102 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2103
2104 /* We can't directly access anything that contains a symbol,
2105 nor can we indirect via the constant pool. One exception is
2106 UNSPEC_TLS, which is always PIC. */
2107 #define LEGITIMATE_PIC_OPERAND_P(X) \
2108 (!(symbol_mentioned_p (X) \
2109 || label_mentioned_p (X) \
2110 || (GET_CODE (X) == SYMBOL_REF \
2111 && CONSTANT_POOL_ADDRESS_P (X) \
2112 && (symbol_mentioned_p (get_pool_constant (X)) \
2113 || label_mentioned_p (get_pool_constant (X))))) \
2114 || tls_mentioned_p (X))
2115
2116 /* We need to know when we are making a constant pool; this determines
2117 whether data needs to be in the GOT or can be referenced via a GOT
2118 offset. */
2119 extern int making_const_table;
2120 \f
2121 /* Handle pragmas for compatibility with Intel's compilers. */
2122 /* Also abuse this to register additional C specific EABI attributes. */
2123 #define REGISTER_TARGET_PRAGMAS() do { \
2124 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
2125 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
2126 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
2127 arm_lang_object_attributes_init(); \
2128 } while (0)
2129
2130 /* Condition code information. */
2131 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2132 return the mode to be used for the comparison. */
2133
2134 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2135
2136 #define REVERSIBLE_CC_MODE(MODE) 1
2137
2138 #define REVERSE_CONDITION(CODE,MODE) \
2139 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2140 ? reverse_condition_maybe_unordered (code) \
2141 : reverse_condition (code))
2142
2143 /* The arm5 clz instruction returns 32. */
2144 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2145 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2146 \f
2147 #define CC_STATUS_INIT \
2148 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2149
2150 #undef ASM_APP_OFF
2151 #define ASM_APP_OFF (TARGET_ARM ? "" : "\t.thumb\n")
2152
2153 /* Output a push or a pop instruction (only used when profiling).
2154 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2155 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2156 that r7 isn't used by the function profiler, so we can use it as a
2157 scratch reg. WARNING: This isn't safe in the general case! It may be
2158 sensitive to future changes in final.c:profile_function. */
2159 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2160 do \
2161 { \
2162 if (TARGET_ARM) \
2163 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
2164 STACK_POINTER_REGNUM, REGNO); \
2165 else if (TARGET_THUMB1 \
2166 && (REGNO) == STATIC_CHAIN_REGNUM) \
2167 { \
2168 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2169 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2170 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2171 } \
2172 else \
2173 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2174 } while (0)
2175
2176
2177 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2178 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2179 do \
2180 { \
2181 if (TARGET_ARM) \
2182 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
2183 STACK_POINTER_REGNUM, REGNO); \
2184 else if (TARGET_THUMB1 \
2185 && (REGNO) == STATIC_CHAIN_REGNUM) \
2186 { \
2187 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2188 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2189 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2190 } \
2191 else \
2192 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2193 } while (0)
2194
2195 #define ADDR_VEC_ALIGN(JUMPTABLE) \
2196 ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2197
2198 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2199 default alignment from elfos.h. */
2200 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2201 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty. */
2202
2203 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
2204 (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2205 ? 1 : 0)
2206
2207 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2208 do \
2209 { \
2210 if (TARGET_THUMB) \
2211 { \
2212 if (is_called_in_ARM_mode (DECL) \
2213 || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY \
2214 && cfun->is_thunk)) \
2215 fprintf (STREAM, "\t.code 32\n") ; \
2216 else if (TARGET_THUMB1) \
2217 fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ; \
2218 else \
2219 fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ; \
2220 } \
2221 if (TARGET_POKE_FUNCTION_NAME) \
2222 arm_poke_function_name (STREAM, (const char *) NAME); \
2223 } \
2224 while (0)
2225
2226 /* For aliases of functions we use .thumb_set instead. */
2227 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2228 do \
2229 { \
2230 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2231 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2232 \
2233 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2234 { \
2235 fprintf (FILE, "\t.thumb_set "); \
2236 assemble_name (FILE, LABEL1); \
2237 fprintf (FILE, ","); \
2238 assemble_name (FILE, LABEL2); \
2239 fprintf (FILE, "\n"); \
2240 } \
2241 else \
2242 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2243 } \
2244 while (0)
2245
2246 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2247 /* To support -falign-* switches we need to use .p2align so
2248 that alignment directives in code sections will be padded
2249 with no-op instructions, rather than zeroes. */
2250 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2251 if ((LOG) != 0) \
2252 { \
2253 if ((MAX_SKIP) == 0) \
2254 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2255 else \
2256 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2257 (int) (LOG), (int) (MAX_SKIP)); \
2258 }
2259 #endif
2260 \f
2261 /* Add two bytes to the length of conditionally executed Thumb-2
2262 instructions for the IT instruction. */
2263 #define ADJUST_INSN_LENGTH(insn, length) \
2264 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2265 length += 2;
2266
2267 /* Only perform branch elimination (by making instructions conditional) if
2268 we're optimizing. For Thumb-2 check if any IT instructions need
2269 outputting. */
2270 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2271 if (TARGET_ARM && optimize) \
2272 arm_final_prescan_insn (INSN); \
2273 else if (TARGET_THUMB2) \
2274 thumb2_final_prescan_insn (INSN); \
2275 else if (TARGET_THUMB1) \
2276 thumb1_final_prescan_insn (INSN)
2277
2278 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2279 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2280 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2281 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2282 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2283 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2284 : 0))))
2285
2286 /* A C expression whose value is RTL representing the value of the return
2287 address for the frame COUNT steps up from the current frame. */
2288
2289 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2290 arm_return_addr (COUNT, FRAME)
2291
2292 /* Mask of the bits in the PC that contain the real return address
2293 when running in 26-bit mode. */
2294 #define RETURN_ADDR_MASK26 (0x03fffffc)
2295
2296 /* Pick up the return address upon entry to a procedure. Used for
2297 dwarf2 unwind information. This also enables the table driven
2298 mechanism. */
2299 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2300 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2301
2302 /* Used to mask out junk bits from the return address, such as
2303 processor state, interrupt status, condition codes and the like. */
2304 #define MASK_RETURN_ADDR \
2305 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2306 in 26 bit mode, the condition codes must be masked out of the \
2307 return address. This does not apply to ARM6 and later processors \
2308 when running in 32 bit mode. */ \
2309 ((arm_arch4 || TARGET_THUMB) \
2310 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2311 : arm_gen_return_addr_mask ())
2312
2313 \f
2314 /* Do not emit .note.GNU-stack by default. */
2315 #ifndef NEED_INDICATE_EXEC_STACK
2316 #define NEED_INDICATE_EXEC_STACK 0
2317 #endif
2318
2319 #define TARGET_ARM_ARCH \
2320 (arm_base_arch) \
2321
2322 #define TARGET_ARM_V6M (!arm_arch_notm && !arm_arch_thumb2)
2323 #define TARGET_ARM_V7M (!arm_arch_notm && arm_arch_thumb2)
2324
2325 /* The highest Thumb instruction set version supported by the chip. */
2326 #define TARGET_ARM_ARCH_ISA_THUMB \
2327 (arm_arch_thumb2 ? 2 \
2328 : ((TARGET_ARM_ARCH >= 5 || arm_arch4t) ? 1 : 0))
2329
2330 /* Expands to an upper-case char of the target's architectural
2331 profile. */
2332 #define TARGET_ARM_ARCH_PROFILE \
2333 (!arm_arch_notm \
2334 ? 'M' \
2335 : (arm_arch7 \
2336 ? (strlen (arm_arch_name) >=3 \
2337 ? (arm_arch_name[strlen (arm_arch_name) - 3]) \
2338 : 0) \
2339 : 0))
2340
2341 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2342 Bit 0 for bytes, up to bit 3 for double-words. */
2343 #define TARGET_ARM_FEATURE_LDREX \
2344 ((TARGET_HAVE_LDREX ? 4 : 0) \
2345 | (TARGET_HAVE_LDREXBH ? 3 : 0) \
2346 | (TARGET_HAVE_LDREXD ? 8 : 0))
2347
2348 /* Set as a bit mask indicating the available widths of hardware floating
2349 point types. Where bit 1 indicates 16-bit support, bit 2 indicates
2350 32-bit support, bit 3 indicates 64-bit support. */
2351 #define TARGET_ARM_FP \
2352 (TARGET_VFP_SINGLE ? 4 \
2353 : (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0))
2354
2355
2356 /* Set as a bit mask indicating the available widths of floating point
2357 types for hardware NEON floating point. This is the same as
2358 TARGET_ARM_FP without the 64-bit bit set. */
2359 #ifdef TARGET_NEON
2360 #define TARGET_NEON_FP \
2361 (TARGET_ARM_FP & (0xff ^ 0x08))
2362 #endif
2363
2364 /* The maximum number of parallel loads or stores we support in an ldm/stm
2365 instruction. */
2366 #define MAX_LDM_STM_OPS 4
2367
2368 #define BIG_LITTLE_SPEC \
2369 " %{mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})}"
2370
2371 extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2372 #define BIG_LITTLE_CPU_SPEC_FUNCTIONS \
2373 { "rewrite_mcpu", arm_rewrite_mcpu },
2374
2375 #define ASM_CPU_SPEC \
2376 " %{mcpu=generic-*:-march=%*;" \
2377 " :%{march=*:-march=%*}}" \
2378 BIG_LITTLE_SPEC
2379
2380 /* -mcpu=native handling only makes sense with compiler running on
2381 an ARM chip. */
2382 #if defined(__arm__)
2383 extern const char *host_detect_local_cpu (int argc, const char **argv);
2384 # define EXTRA_SPEC_FUNCTIONS \
2385 { "local_cpu_detect", host_detect_local_cpu }, \
2386 BIG_LITTLE_CPU_SPEC_FUNCTIONS
2387
2388 # define MCPU_MTUNE_NATIVE_SPECS \
2389 " %{march=native:%<march=native %:local_cpu_detect(arch)}" \
2390 " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}" \
2391 " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2392 #else
2393 # define MCPU_MTUNE_NATIVE_SPECS ""
2394 # define EXTRA_SPEC_FUNCTIONS BIG_LITTLE_CPU_SPEC_FUNCTIONS
2395 #endif
2396
2397 #define DRIVER_SELF_SPECS MCPU_MTUNE_NATIVE_SPECS
2398 #define TARGET_SUPPORTS_WIDE_INT 1
2399 #endif /* ! GCC_ARM_H */