]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/arm/arm.h
Add support for ARMv8-R architecture
[thirdparty/gcc.git] / gcc / config / arm / arm.h
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991-2017 Free Software Foundation, Inc.
3 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4 and Martin Simmons (@harleqn.co.uk).
5 More major hacks by Richard Earnshaw (rearnsha@arm.com)
6 Minor hacks by Nick Clifton (nickc@cygnus.com)
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published
12 by the Free Software Foundation; either version 3, or (at your
13 option) any later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
18 License for more details.
19
20 Under Section 7 of GPL version 3, you are granted additional
21 permissions described in the GCC Runtime Library Exception, version
22 3.1, as published by the Free Software Foundation.
23
24 You should have received a copy of the GNU General Public License and
25 a copy of the GCC Runtime Library Exception along with this program;
26 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
27 <http://www.gnu.org/licenses/>. */
28
29 #ifndef GCC_ARM_H
30 #define GCC_ARM_H
31
32 /* We can't use machine_mode inside a generator file because it
33 hasn't been created yet; we shouldn't be using any code that
34 needs the real definition though, so this ought to be safe. */
35 #ifdef GENERATOR_FILE
36 #define MACHMODE int
37 #else
38 #include "insn-modes.h"
39 #define MACHMODE machine_mode
40 #endif
41
42 #include "config/vxworks-dummy.h"
43
44 /* The architecture define. */
45 extern char arm_arch_name[];
46
47 /* Target CPU builtins. */
48 #define TARGET_CPU_CPP_BUILTINS() arm_cpu_cpp_builtins (pfile)
49
50 #include "config/arm/arm-opts.h"
51
52 /* The processor for which instructions should be scheduled. */
53 extern enum processor_type arm_tune;
54
55 typedef enum arm_cond_code
56 {
57 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
58 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
59 }
60 arm_cc;
61
62 extern arm_cc arm_current_cc;
63
64 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
65
66 /* The maximum number of instructions that is beneficial to
67 conditionally execute. */
68 #undef MAX_CONDITIONAL_EXECUTE
69 #define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
70
71 extern int arm_target_label;
72 extern int arm_ccfsm_state;
73 extern GTY(()) rtx arm_target_insn;
74 /* Callback to output language specific object attributes. */
75 extern void (*arm_lang_output_object_attributes_hook)(void);
76
77 /* This type is the user-visible __fp16. We need it in a few places in
78 the backend. Defined in arm-builtins.c. */
79 extern tree arm_fp16_type_node;
80
81 \f
82 #undef CPP_SPEC
83 #define CPP_SPEC "%(subtarget_cpp_spec) \
84 %{mfloat-abi=soft:%{mfloat-abi=hard: \
85 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
86 %{mbig-endian:%{mlittle-endian: \
87 %e-mbig-endian and -mlittle-endian may not be used together}}"
88
89 #ifndef CC1_SPEC
90 #define CC1_SPEC ""
91 #endif
92
93 /* This macro defines names of additional specifications to put in the specs
94 that can be used in various specifications like CC1_SPEC. Its definition
95 is an initializer with a subgrouping for each command option.
96
97 Each subgrouping contains a string constant, that defines the
98 specification name, and a string constant that used by the GCC driver
99 program.
100
101 Do not define this macro if it does not need to do anything. */
102 #define EXTRA_SPECS \
103 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
104 { "asm_cpu_spec", ASM_CPU_SPEC }, \
105 SUBTARGET_EXTRA_SPECS
106
107 #ifndef SUBTARGET_EXTRA_SPECS
108 #define SUBTARGET_EXTRA_SPECS
109 #endif
110
111 #ifndef SUBTARGET_CPP_SPEC
112 #define SUBTARGET_CPP_SPEC ""
113 #endif
114 \f
115 /* Tree Target Specification. */
116 #define TARGET_ARM_P(flags) (!TARGET_THUMB_P (flags))
117 #define TARGET_THUMB1_P(flags) (TARGET_THUMB_P (flags) && !arm_arch_thumb2)
118 #define TARGET_THUMB2_P(flags) (TARGET_THUMB_P (flags) && arm_arch_thumb2)
119 #define TARGET_32BIT_P(flags) (TARGET_ARM_P (flags) || TARGET_THUMB2_P (flags))
120
121 /* Run-time Target Specification. */
122 /* Use hardware floating point instructions. */
123 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT \
124 && bitmap_bit_p (arm_active_target.isa, \
125 isa_bit_VFPv2))
126 #define TARGET_SOFT_FLOAT (!TARGET_HARD_FLOAT)
127 /* User has permitted use of FP instructions, if they exist for this
128 target. */
129 #define TARGET_MAYBE_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
130 /* Use hardware floating point calling convention. */
131 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
132 #define TARGET_IWMMXT (arm_arch_iwmmxt)
133 #define TARGET_IWMMXT2 (arm_arch_iwmmxt2)
134 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
135 #define TARGET_REALLY_IWMMXT2 (TARGET_IWMMXT2 && TARGET_32BIT)
136 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
137 #define TARGET_ARM (! TARGET_THUMB)
138 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
139 #define TARGET_BACKTRACE (crtl->is_leaf \
140 ? TARGET_TPCS_LEAF_FRAME \
141 : TARGET_TPCS_FRAME)
142 #define TARGET_AAPCS_BASED \
143 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
144
145 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
146 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
147 #define TARGET_GNU2_TLS (target_tls_dialect == TLS_GNU2)
148
149 /* Only 16-bit thumb code. */
150 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
151 /* Arm or Thumb-2 32-bit code. */
152 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
153 /* 32-bit Thumb-2 code. */
154 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
155 /* Thumb-1 only. */
156 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
157
158 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN \
159 && !TARGET_THUMB1)
160
161 #define TARGET_CRC32 (arm_arch_crc)
162
163 /* The following two macros concern the ability to execute coprocessor
164 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
165 only ever tested when we know we are generating for VFP hardware; we need
166 to be more careful with TARGET_NEON as noted below. */
167
168 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
169 #define TARGET_VFPD32 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_d32))
170
171 /* FPU supports VFPv3 instructions. */
172 #define TARGET_VFP3 (bitmap_bit_p (arm_active_target.isa, isa_bit_VFPv3))
173
174 /* FPU supports FPv5 instructions. */
175 #define TARGET_VFP5 (bitmap_bit_p (arm_active_target.isa, isa_bit_FPv5))
176
177 /* FPU only supports VFP single-precision instructions. */
178 #define TARGET_VFP_SINGLE (!TARGET_VFP_DOUBLE)
179
180 /* FPU supports VFP double-precision instructions. */
181 #define TARGET_VFP_DOUBLE (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_dbl))
182
183 /* FPU supports half-precision floating-point with NEON element load/store. */
184 #define TARGET_NEON_FP16 \
185 (bitmap_bit_p (arm_active_target.isa, isa_bit_neon) \
186 && bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
187
188 /* FPU supports VFP half-precision floating-point conversions. */
189 #define TARGET_FP16 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
190
191 /* FPU supports converting between HFmode and DFmode in a single hardware
192 step. */
193 #define TARGET_FP16_TO_DOUBLE \
194 (TARGET_HARD_FLOAT && (TARGET_FP16 && TARGET_VFP5))
195
196 /* FPU supports fused-multiply-add operations. */
197 #define TARGET_FMA (bitmap_bit_p (arm_active_target.isa, isa_bit_VFPv4))
198
199 /* FPU is ARMv8 compatible. */
200 #define TARGET_FPU_ARMV8 \
201 (bitmap_bit_p (arm_active_target.isa, isa_bit_FP_ARMv8))
202
203 /* FPU supports Crypto extensions. */
204 #define TARGET_CRYPTO (bitmap_bit_p (arm_active_target.isa, isa_bit_crypto))
205
206 /* FPU supports Neon instructions. The setting of this macro gets
207 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
208 and TARGET_HARD_FLOAT to ensure that NEON instructions are
209 available. */
210 #define TARGET_NEON \
211 (TARGET_32BIT && TARGET_HARD_FLOAT \
212 && bitmap_bit_p (arm_active_target.isa, isa_bit_neon))
213
214 /* FPU supports ARMv8.1 Adv.SIMD extensions. */
215 #define TARGET_NEON_RDMA (TARGET_NEON && arm_arch8_1)
216
217 /* FPU supports the floating point FP16 instructions for ARMv8.2 and later. */
218 #define TARGET_VFP_FP16INST \
219 (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_FPU_ARMV8 && arm_fp16_inst)
220
221 /* FPU supports the AdvSIMD FP16 instructions for ARMv8.2 and later. */
222 #define TARGET_NEON_FP16INST (TARGET_VFP_FP16INST && TARGET_NEON_RDMA)
223
224 /* Q-bit is present. */
225 #define TARGET_ARM_QBIT \
226 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7))
227 /* Saturation operation, e.g. SSAT. */
228 #define TARGET_ARM_SAT \
229 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
230 /* "DSP" multiply instructions, eg. SMULxy. */
231 #define TARGET_DSP_MULTIPLY \
232 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
233 /* Integer SIMD instructions, and extend-accumulate instructions. */
234 #define TARGET_INT_SIMD \
235 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
236
237 /* Should MOVW/MOVT be used in preference to a constant pool. */
238 #define TARGET_USE_MOVT \
239 (TARGET_HAVE_MOVT \
240 && (arm_disable_literal_pool \
241 || (!optimize_size && !current_tune->prefer_constant_pool)))
242
243 /* Nonzero if this chip provides the DMB instruction. */
244 #define TARGET_HAVE_DMB (arm_arch6m || arm_arch7)
245
246 /* Nonzero if this chip implements a memory barrier via CP15. */
247 #define TARGET_HAVE_DMB_MCR (arm_arch6 && ! TARGET_HAVE_DMB \
248 && ! TARGET_THUMB1)
249
250 /* Nonzero if this chip implements a memory barrier instruction. */
251 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
252
253 /* Nonzero if this chip supports ldrex and strex */
254 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) \
255 || arm_arch7 \
256 || (arm_arch8 && !arm_arch_notm))
257
258 /* Nonzero if this chip supports LPAE. */
259 #define TARGET_HAVE_LPAE (arm_arch_lpae)
260
261 /* Nonzero if this chip supports ldrex{bh} and strex{bh}. */
262 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM) \
263 || arm_arch7 \
264 || (arm_arch8 && !arm_arch_notm))
265
266 /* Nonzero if this chip supports ldrexd and strexd. */
267 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) \
268 || arm_arch7) && arm_arch_notm)
269
270 /* Nonzero if this chip supports load-acquire and store-release. */
271 #define TARGET_HAVE_LDACQ (TARGET_ARM_ARCH >= 8)
272
273 /* Nonzero if this chip supports LDAEXD and STLEXD. */
274 #define TARGET_HAVE_LDACQEXD (TARGET_ARM_ARCH >= 8 \
275 && TARGET_32BIT \
276 && arm_arch_notm)
277
278 /* Nonzero if this chip provides the MOVW and MOVT instructions. */
279 #define TARGET_HAVE_MOVT (arm_arch_thumb2 || arm_arch8)
280
281 /* Nonzero if this chip provides the CBZ and CBNZ instructions. */
282 #define TARGET_HAVE_CBZ (arm_arch_thumb2 || arm_arch8)
283
284 /* Nonzero if integer division instructions supported. */
285 #define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \
286 || (TARGET_THUMB && arm_arch_thumb_hwdiv))
287
288 /* Nonzero if disallow volatile memory access in IT block. */
289 #define TARGET_NO_VOLATILE_CE (arm_arch_no_volatile_ce)
290
291 /* Should NEON be used for 64-bits bitops. */
292 #define TARGET_PREFER_NEON_64BITS (prefer_neon_for_64bits)
293
294 /* Should constant I be slplit for OP. */
295 #define DONT_EARLY_SPLIT_CONSTANT(i, op) \
296 ((optimize >= 2) \
297 && can_create_pseudo_p () \
298 && !const_ok_for_op (i, op))
299
300 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
301 then TARGET_AAPCS_BASED must be true -- but the converse does not
302 hold. TARGET_BPABI implies the use of the BPABI runtime library,
303 etc., in addition to just the AAPCS calling conventions. */
304 #ifndef TARGET_BPABI
305 #define TARGET_BPABI false
306 #endif
307
308 /* Transform lane numbers on big endian targets. This is used to allow for the
309 endianness difference between NEON architectural lane numbers and those
310 used in RTL */
311 #define NEON_ENDIAN_LANE_N(mode, n) \
312 (BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 - n : n)
313
314 /* Support for a compile-time default CPU, et cetera. The rules are:
315 --with-arch is ignored if -march or -mcpu are specified.
316 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
317 by --with-arch.
318 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
319 by -march).
320 --with-float is ignored if -mfloat-abi is specified.
321 --with-fpu is ignored if -mfpu is specified.
322 --with-abi is ignored if -mabi is specified.
323 --with-tls is ignored if -mtls-dialect is specified. */
324 #define OPTION_DEFAULT_SPECS \
325 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
326 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
327 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
328 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
329 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
330 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
331 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
332 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
333
334 extern const struct arm_fpu_desc
335 {
336 const char *name;
337 enum isa_feature isa_bits[isa_num_bits];
338 } all_fpus[];
339
340 /* Which floating point hardware to schedule for. */
341 extern int arm_fpu_attr;
342
343 #ifndef TARGET_DEFAULT_FLOAT_ABI
344 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
345 #endif
346
347 #ifndef ARM_DEFAULT_ABI
348 #define ARM_DEFAULT_ABI ARM_ABI_APCS
349 #endif
350
351 /* AAPCS based ABIs use short enums by default. */
352 #ifndef ARM_DEFAULT_SHORT_ENUMS
353 #define ARM_DEFAULT_SHORT_ENUMS \
354 (TARGET_AAPCS_BASED && arm_abi != ARM_ABI_AAPCS_LINUX)
355 #endif
356
357 /* Map each of the micro-architecture variants to their corresponding
358 major architecture revision. */
359
360 enum base_architecture
361 {
362 BASE_ARCH_0 = 0,
363 BASE_ARCH_2 = 2,
364 BASE_ARCH_3 = 3,
365 BASE_ARCH_3M = 3,
366 BASE_ARCH_4 = 4,
367 BASE_ARCH_4T = 4,
368 BASE_ARCH_5 = 5,
369 BASE_ARCH_5E = 5,
370 BASE_ARCH_5T = 5,
371 BASE_ARCH_5TE = 5,
372 BASE_ARCH_5TEJ = 5,
373 BASE_ARCH_6 = 6,
374 BASE_ARCH_6J = 6,
375 BASE_ARCH_6KZ = 6,
376 BASE_ARCH_6K = 6,
377 BASE_ARCH_6T2 = 6,
378 BASE_ARCH_6M = 6,
379 BASE_ARCH_6Z = 6,
380 BASE_ARCH_7 = 7,
381 BASE_ARCH_7A = 7,
382 BASE_ARCH_7R = 7,
383 BASE_ARCH_7M = 7,
384 BASE_ARCH_7EM = 7,
385 BASE_ARCH_8A = 8,
386 BASE_ARCH_8M_BASE = 8,
387 BASE_ARCH_8M_MAIN = 8,
388 BASE_ARCH_8R = 8
389 };
390
391 /* The major revision number of the ARM Architecture implemented by the target. */
392 extern enum base_architecture arm_base_arch;
393
394 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
395 extern int arm_arch3m;
396
397 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
398 extern int arm_arch4;
399
400 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
401 extern int arm_arch4t;
402
403 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
404 extern int arm_arch5;
405
406 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
407 extern int arm_arch5e;
408
409 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
410 extern int arm_arch6;
411
412 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
413 extern int arm_arch6k;
414
415 /* Nonzero if instructions present in ARMv6-M can be used. */
416 extern int arm_arch6m;
417
418 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
419 extern int arm_arch7;
420
421 /* Nonzero if instructions not present in the 'M' profile can be used. */
422 extern int arm_arch_notm;
423
424 /* Nonzero if instructions present in ARMv7E-M can be used. */
425 extern int arm_arch7em;
426
427 /* Nonzero if this chip supports the ARM Architecture 8 extensions. */
428 extern int arm_arch8;
429
430 /* Nonzero if this chip supports the ARM Architecture 8.1 extensions. */
431 extern int arm_arch8_1;
432
433 /* Nonzero if this chip supports the ARM Architecture 8.2 extensions. */
434 extern int arm_arch8_2;
435
436 /* Nonzero if this chip supports the FP16 instructions extension of ARM
437 Architecture 8.2. */
438 extern int arm_fp16_inst;
439
440 /* Nonzero if this chip can benefit from load scheduling. */
441 extern int arm_ld_sched;
442
443 /* Nonzero if this chip is a StrongARM. */
444 extern int arm_tune_strongarm;
445
446 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
447 extern int arm_arch_iwmmxt;
448
449 /* Nonzero if this chip supports Intel Wireless MMX2 technology. */
450 extern int arm_arch_iwmmxt2;
451
452 /* Nonzero if this chip is an XScale. */
453 extern int arm_arch_xscale;
454
455 /* Nonzero if tuning for XScale. */
456 extern int arm_tune_xscale;
457
458 /* Nonzero if tuning for stores via the write buffer. */
459 extern int arm_tune_wbuf;
460
461 /* Nonzero if tuning for Cortex-A9. */
462 extern int arm_tune_cortex_a9;
463
464 /* Nonzero if we should define __THUMB_INTERWORK__ in the
465 preprocessor.
466 XXX This is a bit of a hack, it's intended to help work around
467 problems in GLD which doesn't understand that armv5t code is
468 interworking clean. */
469 extern int arm_cpp_interwork;
470
471 /* Nonzero if chip supports Thumb 1. */
472 extern int arm_arch_thumb1;
473
474 /* Nonzero if chip supports Thumb 2. */
475 extern int arm_arch_thumb2;
476
477 /* Nonzero if chip supports integer division instruction in ARM mode. */
478 extern int arm_arch_arm_hwdiv;
479
480 /* Nonzero if chip supports integer division instruction in Thumb mode. */
481 extern int arm_arch_thumb_hwdiv;
482
483 /* Nonzero if chip disallows volatile memory access in IT block. */
484 extern int arm_arch_no_volatile_ce;
485
486 /* Nonzero if we should use Neon to handle 64-bits operations rather
487 than core registers. */
488 extern int prefer_neon_for_64bits;
489
490 /* Nonzero if we shouldn't use literal pools. */
491 #ifndef USED_FOR_TARGET
492 extern bool arm_disable_literal_pool;
493 #endif
494
495 /* Nonzero if chip supports the ARMv8 CRC instructions. */
496 extern int arm_arch_crc;
497
498 /* Nonzero if chip supports the ARMv8-M Security Extensions. */
499 extern int arm_arch_cmse;
500
501 #ifndef TARGET_DEFAULT
502 #define TARGET_DEFAULT (MASK_APCS_FRAME)
503 #endif
504
505 /* Nonzero if PIC code requires explicit qualifiers to generate
506 PLT and GOT relocs rather than the assembler doing so implicitly.
507 Subtargets can override these if required. */
508 #ifndef NEED_GOT_RELOC
509 #define NEED_GOT_RELOC 0
510 #endif
511 #ifndef NEED_PLT_RELOC
512 #define NEED_PLT_RELOC 0
513 #endif
514
515 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
516 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
517 #endif
518
519 /* Nonzero if we need to refer to the GOT with a PC-relative
520 offset. In other words, generate
521
522 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
523
524 rather than
525
526 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
527
528 The default is true, which matches NetBSD. Subtargets can
529 override this if required. */
530 #ifndef GOT_PCREL
531 #define GOT_PCREL 1
532 #endif
533 \f
534 /* Target machine storage Layout. */
535
536
537 /* Define this macro if it is advisable to hold scalars in registers
538 in a wider mode than that declared by the program. In such cases,
539 the value is constrained to be within the bounds of the declared
540 type, but kept valid in the wider mode. The signedness of the
541 extension may differ from that of the type. */
542
543 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
544 if (GET_MODE_CLASS (MODE) == MODE_INT \
545 && GET_MODE_SIZE (MODE) < 4) \
546 { \
547 (MODE) = SImode; \
548 }
549
550 /* Define this if most significant bit is lowest numbered
551 in instructions that operate on numbered bit-fields. */
552 #define BITS_BIG_ENDIAN 0
553
554 /* Define this if most significant byte of a word is the lowest numbered.
555 Most ARM processors are run in little endian mode, so that is the default.
556 If you want to have it run-time selectable, change the definition in a
557 cover file to be TARGET_BIG_ENDIAN. */
558 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
559
560 /* Define this if most significant word of a multiword number is the lowest
561 numbered. */
562 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
563
564 #define UNITS_PER_WORD 4
565
566 /* True if natural alignment is used for doubleword types. */
567 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
568
569 #define DOUBLEWORD_ALIGNMENT 64
570
571 #define PARM_BOUNDARY 32
572
573 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
574
575 #define PREFERRED_STACK_BOUNDARY \
576 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
577
578 #define FUNCTION_BOUNDARY_P(flags) (TARGET_THUMB_P (flags) ? 16 : 32)
579 #define FUNCTION_BOUNDARY (FUNCTION_BOUNDARY_P (target_flags))
580
581 /* The lowest bit is used to indicate Thumb-mode functions, so the
582 vbit must go into the delta field of pointers to member
583 functions. */
584 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
585
586 #define EMPTY_FIELD_BOUNDARY 32
587
588 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
589
590 #define MALLOC_ABI_ALIGNMENT BIGGEST_ALIGNMENT
591
592 /* XXX Blah -- this macro is used directly by libobjc. Since it
593 supports no vector modes, cut out the complexity and fall back
594 on BIGGEST_FIELD_ALIGNMENT. */
595 #ifdef IN_TARGET_LIBS
596 #define BIGGEST_FIELD_ALIGNMENT 64
597 #endif
598
599 /* Make strings word-aligned so strcpy from constants will be faster. */
600 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
601
602 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
603 ((TREE_CODE (EXP) == STRING_CST \
604 && !optimize_size \
605 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
606 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
607
608 /* Align definitions of arrays, unions and structures so that
609 initializations and copies can be made more efficient. This is not
610 ABI-changing, so it only affects places where we can see the
611 definition. Increasing the alignment tends to introduce padding,
612 so don't do this when optimizing for size/conserving stack space. */
613 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
614 (((COND) && ((ALIGN) < BITS_PER_WORD) \
615 && (TREE_CODE (EXP) == ARRAY_TYPE \
616 || TREE_CODE (EXP) == UNION_TYPE \
617 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
618
619 /* Align global data. */
620 #define DATA_ALIGNMENT(EXP, ALIGN) \
621 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
622
623 /* Similarly, make sure that objects on the stack are sensibly aligned. */
624 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
625 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
626
627 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
628 value set in previous versions of this toolchain was 8, which produces more
629 compact structures. The command line option -mstructure_size_boundary=<n>
630 can be used to change this value. For compatibility with the ARM SDK
631 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
632 0020D) page 2-20 says "Structures are aligned on word boundaries".
633 The AAPCS specifies a value of 8. */
634 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
635
636 /* This is the value used to initialize arm_structure_size_boundary. If a
637 particular arm target wants to change the default value it should change
638 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
639 for an example of this. */
640 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
641 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
642 #endif
643
644 /* Nonzero if move instructions will actually fail to work
645 when given unaligned data. */
646 #define STRICT_ALIGNMENT 1
647
648 /* wchar_t is unsigned under the AAPCS. */
649 #ifndef WCHAR_TYPE
650 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
651
652 #define WCHAR_TYPE_SIZE BITS_PER_WORD
653 #endif
654
655 /* Sized for fixed-point types. */
656
657 #define SHORT_FRACT_TYPE_SIZE 8
658 #define FRACT_TYPE_SIZE 16
659 #define LONG_FRACT_TYPE_SIZE 32
660 #define LONG_LONG_FRACT_TYPE_SIZE 64
661
662 #define SHORT_ACCUM_TYPE_SIZE 16
663 #define ACCUM_TYPE_SIZE 32
664 #define LONG_ACCUM_TYPE_SIZE 64
665 #define LONG_LONG_ACCUM_TYPE_SIZE 64
666
667 #define MAX_FIXED_MODE_SIZE 64
668
669 #ifndef SIZE_TYPE
670 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
671 #endif
672
673 #ifndef PTRDIFF_TYPE
674 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
675 #endif
676
677 /* AAPCS requires that structure alignment is affected by bitfields. */
678 #ifndef PCC_BITFIELD_TYPE_MATTERS
679 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
680 #endif
681
682 /* The maximum size of the sync library functions supported. */
683 #ifndef MAX_SYNC_LIBFUNC_SIZE
684 #define MAX_SYNC_LIBFUNC_SIZE (2 * UNITS_PER_WORD)
685 #endif
686
687 \f
688 /* Standard register usage. */
689
690 /* Register allocation in ARM Procedure Call Standard
691 (S - saved over call, F - Frame-related).
692
693 r0 * argument word/integer result
694 r1-r3 argument word
695
696 r4-r8 S register variable
697 r9 S (rfp) register variable (real frame pointer)
698
699 r10 F S (sl) stack limit (used by -mapcs-stack-check)
700 r11 F S (fp) argument pointer
701 r12 (ip) temp workspace
702 r13 F S (sp) lower end of current stack frame
703 r14 (lr) link address/workspace
704 r15 F (pc) program counter
705
706 cc This is NOT a real register, but is used internally
707 to represent things that use or set the condition
708 codes.
709 sfp This isn't either. It is used during rtl generation
710 since the offset between the frame pointer and the
711 auto's isn't known until after register allocation.
712 afp Nor this, we only need this because of non-local
713 goto. Without it fp appears to be used and the
714 elimination code won't get rid of sfp. It tracks
715 fp exactly at all times.
716
717 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
718
719 /* s0-s15 VFP scratch (aka d0-d7).
720 s16-s31 S VFP variable (aka d8-d15).
721 vfpcc Not a real register. Represents the VFP condition
722 code flags. */
723
724 /* The stack backtrace structure is as follows:
725 fp points to here: | save code pointer | [fp]
726 | return link value | [fp, #-4]
727 | return sp value | [fp, #-8]
728 | return fp value | [fp, #-12]
729 [| saved r10 value |]
730 [| saved r9 value |]
731 [| saved r8 value |]
732 [| saved r7 value |]
733 [| saved r6 value |]
734 [| saved r5 value |]
735 [| saved r4 value |]
736 [| saved r3 value |]
737 [| saved r2 value |]
738 [| saved r1 value |]
739 [| saved r0 value |]
740 r0-r3 are not normally saved in a C function. */
741
742 /* 1 for registers that have pervasive standard uses
743 and are not available for the register allocator. */
744 #define FIXED_REGISTERS \
745 { \
746 /* Core regs. */ \
747 0,0,0,0,0,0,0,0, \
748 0,0,0,0,0,1,0,1, \
749 /* VFP regs. */ \
750 1,1,1,1,1,1,1,1, \
751 1,1,1,1,1,1,1,1, \
752 1,1,1,1,1,1,1,1, \
753 1,1,1,1,1,1,1,1, \
754 1,1,1,1,1,1,1,1, \
755 1,1,1,1,1,1,1,1, \
756 1,1,1,1,1,1,1,1, \
757 1,1,1,1,1,1,1,1, \
758 /* IWMMXT regs. */ \
759 1,1,1,1,1,1,1,1, \
760 1,1,1,1,1,1,1,1, \
761 1,1,1,1, \
762 /* Specials. */ \
763 1,1,1,1 \
764 }
765
766 /* 1 for registers not available across function calls.
767 These must include the FIXED_REGISTERS and also any
768 registers that can be used without being saved.
769 The latter must include the registers where values are returned
770 and the register where structure-value addresses are passed.
771 Aside from that, you can include as many other registers as you like.
772 The CC is not preserved over function calls on the ARM 6, so it is
773 easier to assume this for all. SFP is preserved, since FP is. */
774 #define CALL_USED_REGISTERS \
775 { \
776 /* Core regs. */ \
777 1,1,1,1,0,0,0,0, \
778 0,0,0,0,1,1,1,1, \
779 /* VFP Regs. */ \
780 1,1,1,1,1,1,1,1, \
781 1,1,1,1,1,1,1,1, \
782 1,1,1,1,1,1,1,1, \
783 1,1,1,1,1,1,1,1, \
784 1,1,1,1,1,1,1,1, \
785 1,1,1,1,1,1,1,1, \
786 1,1,1,1,1,1,1,1, \
787 1,1,1,1,1,1,1,1, \
788 /* IWMMXT regs. */ \
789 1,1,1,1,1,1,1,1, \
790 1,1,1,1,1,1,1,1, \
791 1,1,1,1, \
792 /* Specials. */ \
793 1,1,1,1 \
794 }
795
796 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
797 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
798 #endif
799
800 /* These are a couple of extensions to the formats accepted
801 by asm_fprintf:
802 %@ prints out ASM_COMMENT_START
803 %r prints out REGISTER_PREFIX reg_names[arg] */
804 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
805 case '@': \
806 fputs (ASM_COMMENT_START, FILE); \
807 break; \
808 \
809 case 'r': \
810 fputs (REGISTER_PREFIX, FILE); \
811 fputs (reg_names [va_arg (ARGS, int)], FILE); \
812 break;
813
814 /* Round X up to the nearest word. */
815 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
816
817 /* Convert fron bytes to ints. */
818 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
819
820 /* The number of (integer) registers required to hold a quantity of type MODE.
821 Also used for VFP registers. */
822 #define ARM_NUM_REGS(MODE) \
823 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
824
825 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
826 #define ARM_NUM_REGS2(MODE, TYPE) \
827 ARM_NUM_INTS ((MODE) == BLKmode ? \
828 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
829
830 /* The number of (integer) argument register available. */
831 #define NUM_ARG_REGS 4
832
833 /* And similarly for the VFP. */
834 #define NUM_VFP_ARG_REGS 16
835
836 /* Return the register number of the N'th (integer) argument. */
837 #define ARG_REGISTER(N) (N - 1)
838
839 /* Specify the registers used for certain standard purposes.
840 The values of these macros are register numbers. */
841
842 /* The number of the last argument register. */
843 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
844
845 /* The numbers of the Thumb register ranges. */
846 #define FIRST_LO_REGNUM 0
847 #define LAST_LO_REGNUM 7
848 #define FIRST_HI_REGNUM 8
849 #define LAST_HI_REGNUM 11
850
851 /* Overridden by config/arm/bpabi.h. */
852 #ifndef ARM_UNWIND_INFO
853 #define ARM_UNWIND_INFO 0
854 #endif
855
856 /* Use r0 and r1 to pass exception handling information. */
857 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
858
859 /* The register that holds the return address in exception handlers. */
860 #define ARM_EH_STACKADJ_REGNUM 2
861 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
862
863 #ifndef ARM_TARGET2_DWARF_FORMAT
864 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
865 #endif
866
867 /* ttype entries (the only interesting data references used)
868 use TARGET2 relocations. */
869 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
870 (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
871 : DW_EH_PE_absptr)
872
873 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
874 as an invisible last argument (possible since varargs don't exist in
875 Pascal), so the following is not true. */
876 #define STATIC_CHAIN_REGNUM 12
877
878 /* Define this to be where the real frame pointer is if it is not possible to
879 work out the offset between the frame pointer and the automatic variables
880 until after register allocation has taken place. FRAME_POINTER_REGNUM
881 should point to a special register that we will make sure is eliminated.
882
883 For the Thumb we have another problem. The TPCS defines the frame pointer
884 as r11, and GCC believes that it is always possible to use the frame pointer
885 as base register for addressing purposes. (See comments in
886 find_reloads_address()). But - the Thumb does not allow high registers,
887 including r11, to be used as base address registers. Hence our problem.
888
889 The solution used here, and in the old thumb port is to use r7 instead of
890 r11 as the hard frame pointer and to have special code to generate
891 backtrace structures on the stack (if required to do so via a command line
892 option) using r11. This is the only 'user visible' use of r11 as a frame
893 pointer. */
894 #define ARM_HARD_FRAME_POINTER_REGNUM 11
895 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
896
897 #define HARD_FRAME_POINTER_REGNUM \
898 (TARGET_ARM \
899 ? ARM_HARD_FRAME_POINTER_REGNUM \
900 : THUMB_HARD_FRAME_POINTER_REGNUM)
901
902 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
903 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
904
905 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
906
907 /* Register to use for pushing function arguments. */
908 #define STACK_POINTER_REGNUM SP_REGNUM
909
910 #define FIRST_IWMMXT_REGNUM (LAST_HI_VFP_REGNUM + 1)
911 #define LAST_IWMMXT_REGNUM (FIRST_IWMMXT_REGNUM + 15)
912
913 /* Need to sync with WCGR in iwmmxt.md. */
914 #define FIRST_IWMMXT_GR_REGNUM (LAST_IWMMXT_REGNUM + 1)
915 #define LAST_IWMMXT_GR_REGNUM (FIRST_IWMMXT_GR_REGNUM + 3)
916
917 #define IS_IWMMXT_REGNUM(REGNUM) \
918 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
919 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
920 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
921
922 /* Base register for access to local variables of the function. */
923 #define FRAME_POINTER_REGNUM 102
924
925 /* Base register for access to arguments of the function. */
926 #define ARG_POINTER_REGNUM 103
927
928 #define FIRST_VFP_REGNUM 16
929 #define D7_VFP_REGNUM (FIRST_VFP_REGNUM + 15)
930 #define LAST_VFP_REGNUM \
931 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
932
933 #define IS_VFP_REGNUM(REGNUM) \
934 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
935
936 /* VFP registers are split into two types: those defined by VFP versions < 3
937 have D registers overlaid on consecutive pairs of S registers. VFP version 3
938 defines 16 new D registers (d16-d31) which, for simplicity and correctness
939 in various parts of the backend, we implement as "fake" single-precision
940 registers (which would be S32-S63, but cannot be used in that way). The
941 following macros define these ranges of registers. */
942 #define LAST_LO_VFP_REGNUM (FIRST_VFP_REGNUM + 31)
943 #define FIRST_HI_VFP_REGNUM (LAST_LO_VFP_REGNUM + 1)
944 #define LAST_HI_VFP_REGNUM (FIRST_HI_VFP_REGNUM + 31)
945
946 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
947 ((REGNUM) <= LAST_LO_VFP_REGNUM)
948
949 /* DFmode values are only valid in even register pairs. */
950 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
951 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
952
953 /* Neon Quad values must start at a multiple of four registers. */
954 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
955 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
956
957 /* Neon structures of vectors must be in even register pairs and there
958 must be enough registers available. Because of various patterns
959 requiring quad registers, we require them to start at a multiple of
960 four. */
961 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
962 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
963 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
964
965 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP. */
966 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
967 /* VFP (VFP3) adds 32 (64) + 1 VFPCC. */
968 #define FIRST_PSEUDO_REGISTER 104
969
970 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
971
972 /* Value should be nonzero if functions must have frame pointers.
973 Zero means the frame pointer need not be set up (and parms may be accessed
974 via the stack pointer) in functions that seem suitable.
975 If we have to have a frame pointer we might as well make use of it.
976 APCS says that the frame pointer does not need to be pushed in leaf
977 functions, or simple tail call functions. */
978
979 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
980 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
981 #endif
982
983 /* Return number of consecutive hard regs needed starting at reg REGNO
984 to hold something of mode MODE.
985 This is ordinarily the length in words of a value of mode MODE
986 but can be less for certain modes in special long registers.
987
988 On the ARM core regs are UNITS_PER_WORD bits wide. */
989 #define HARD_REGNO_NREGS(REGNO, MODE) \
990 ((TARGET_32BIT \
991 && REGNO > PC_REGNUM \
992 && REGNO != FRAME_POINTER_REGNUM \
993 && REGNO != ARG_POINTER_REGNUM) \
994 && !IS_VFP_REGNUM (REGNO) \
995 ? 1 : ARM_NUM_REGS (MODE))
996
997 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
998 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
999 arm_hard_regno_mode_ok ((REGNO), (MODE))
1000
1001 #define MODES_TIEABLE_P(MODE1, MODE2) arm_modes_tieable_p (MODE1, MODE2)
1002
1003 #define VALID_IWMMXT_REG_MODE(MODE) \
1004 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1005
1006 /* Modes valid for Neon D registers. */
1007 #define VALID_NEON_DREG_MODE(MODE) \
1008 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1009 || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode)
1010
1011 /* Modes valid for Neon Q registers. */
1012 #define VALID_NEON_QREG_MODE(MODE) \
1013 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1014 || (MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DImode)
1015
1016 /* Structure modes valid for Neon registers. */
1017 #define VALID_NEON_STRUCT_MODE(MODE) \
1018 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1019 || (MODE) == CImode || (MODE) == XImode)
1020
1021 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
1022 extern int arm_regs_in_sequence[];
1023
1024 /* The order in which register should be allocated. It is good to use ip
1025 since no saving is required (though calls clobber it) and it never contains
1026 function parameters. It is quite good to use lr since other calls may
1027 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1028 least likely to contain a function parameter; in addition results are
1029 returned in r0.
1030 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1031 then D8-D15. The reason for doing this is to attempt to reduce register
1032 pressure when both single- and double-precision registers are used in a
1033 function. */
1034
1035 #define VREG(X) (FIRST_VFP_REGNUM + (X))
1036 #define WREG(X) (FIRST_IWMMXT_REGNUM + (X))
1037 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1038
1039 #define REG_ALLOC_ORDER \
1040 { \
1041 /* General registers. */ \
1042 3, 2, 1, 0, 12, 14, 4, 5, \
1043 6, 7, 8, 9, 10, 11, \
1044 /* High VFP registers. */ \
1045 VREG(32), VREG(33), VREG(34), VREG(35), \
1046 VREG(36), VREG(37), VREG(38), VREG(39), \
1047 VREG(40), VREG(41), VREG(42), VREG(43), \
1048 VREG(44), VREG(45), VREG(46), VREG(47), \
1049 VREG(48), VREG(49), VREG(50), VREG(51), \
1050 VREG(52), VREG(53), VREG(54), VREG(55), \
1051 VREG(56), VREG(57), VREG(58), VREG(59), \
1052 VREG(60), VREG(61), VREG(62), VREG(63), \
1053 /* VFP argument registers. */ \
1054 VREG(15), VREG(14), VREG(13), VREG(12), \
1055 VREG(11), VREG(10), VREG(9), VREG(8), \
1056 VREG(7), VREG(6), VREG(5), VREG(4), \
1057 VREG(3), VREG(2), VREG(1), VREG(0), \
1058 /* VFP call-saved registers. */ \
1059 VREG(16), VREG(17), VREG(18), VREG(19), \
1060 VREG(20), VREG(21), VREG(22), VREG(23), \
1061 VREG(24), VREG(25), VREG(26), VREG(27), \
1062 VREG(28), VREG(29), VREG(30), VREG(31), \
1063 /* IWMMX registers. */ \
1064 WREG(0), WREG(1), WREG(2), WREG(3), \
1065 WREG(4), WREG(5), WREG(6), WREG(7), \
1066 WREG(8), WREG(9), WREG(10), WREG(11), \
1067 WREG(12), WREG(13), WREG(14), WREG(15), \
1068 WGREG(0), WGREG(1), WGREG(2), WGREG(3), \
1069 /* Registers not for general use. */ \
1070 CC_REGNUM, VFPCC_REGNUM, \
1071 FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, \
1072 SP_REGNUM, PC_REGNUM \
1073 }
1074
1075 /* Use different register alloc ordering for Thumb. */
1076 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1077
1078 /* Tell IRA to use the order we define rather than messing it up with its
1079 own cost calculations. */
1080 #define HONOR_REG_ALLOC_ORDER 1
1081
1082 /* Interrupt functions can only use registers that have already been
1083 saved by the prologue, even if they would normally be
1084 call-clobbered. */
1085 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1086 (! IS_INTERRUPT (cfun->machine->func_type) || \
1087 df_regs_ever_live_p (DST))
1088 \f
1089 /* Register and constant classes. */
1090
1091 /* Register classes. */
1092 enum reg_class
1093 {
1094 NO_REGS,
1095 LO_REGS,
1096 STACK_REG,
1097 BASE_REGS,
1098 HI_REGS,
1099 CALLER_SAVE_REGS,
1100 GENERAL_REGS,
1101 CORE_REGS,
1102 VFP_D0_D7_REGS,
1103 VFP_LO_REGS,
1104 VFP_HI_REGS,
1105 VFP_REGS,
1106 IWMMXT_REGS,
1107 IWMMXT_GR_REGS,
1108 CC_REG,
1109 VFPCC_REG,
1110 SFP_REG,
1111 AFP_REG,
1112 ALL_REGS,
1113 LIM_REG_CLASSES
1114 };
1115
1116 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1117
1118 /* Give names of register classes as strings for dump file. */
1119 #define REG_CLASS_NAMES \
1120 { \
1121 "NO_REGS", \
1122 "LO_REGS", \
1123 "STACK_REG", \
1124 "BASE_REGS", \
1125 "HI_REGS", \
1126 "CALLER_SAVE_REGS", \
1127 "GENERAL_REGS", \
1128 "CORE_REGS", \
1129 "VFP_D0_D7_REGS", \
1130 "VFP_LO_REGS", \
1131 "VFP_HI_REGS", \
1132 "VFP_REGS", \
1133 "IWMMXT_REGS", \
1134 "IWMMXT_GR_REGS", \
1135 "CC_REG", \
1136 "VFPCC_REG", \
1137 "SFP_REG", \
1138 "AFP_REG", \
1139 "ALL_REGS" \
1140 }
1141
1142 /* Define which registers fit in which classes.
1143 This is an initializer for a vector of HARD_REG_SET
1144 of length N_REG_CLASSES. */
1145 #define REG_CLASS_CONTENTS \
1146 { \
1147 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1148 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1149 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1150 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1151 { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1152 { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1153 { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1154 { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1155 { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1156 { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS */ \
1157 { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS */ \
1158 { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS */ \
1159 { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */ \
1160 { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1161 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */ \
1162 { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */ \
1163 { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */ \
1164 { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */ \
1165 { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F } /* ALL_REGS */ \
1166 }
1167
1168 /* Any of the VFP register classes. */
1169 #define IS_VFP_CLASS(X) \
1170 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1171 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1172
1173 /* The same information, inverted:
1174 Return the class number of the smallest class containing
1175 reg number REGNO. This could be a conditional expression
1176 or could index an array. */
1177 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1178
1179 /* In VFPv1, VFP registers could only be accessed in the mode they
1180 were set, so subregs would be invalid there. However, we don't
1181 support VFPv1 at the moment, and the restriction was lifted in
1182 VFPv2.
1183 In big-endian mode, modes greater than word size (i.e. DFmode) are stored in
1184 VFP registers in little-endian order. We can't describe that accurately to
1185 GCC, so avoid taking subregs of such values.
1186 The only exception is going from a 128-bit to a 64-bit type. In that case
1187 the data layout happens to be consistent for big-endian, so we explicitly allow
1188 that case. */
1189 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1190 (TARGET_BIG_END \
1191 && !(GET_MODE_SIZE (FROM) == 16 && GET_MODE_SIZE (TO) == 8) \
1192 && (GET_MODE_SIZE (FROM) > UNITS_PER_WORD \
1193 || GET_MODE_SIZE (TO) > UNITS_PER_WORD) \
1194 && reg_classes_intersect_p (VFP_REGS, (CLASS)))
1195
1196 /* The class value for index registers, and the one for base regs. */
1197 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1198 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1199
1200 /* For the Thumb the high registers cannot be used as base registers
1201 when addressing quantities in QI or HI mode; if we don't know the
1202 mode, then we must be conservative. */
1203 #define MODE_BASE_REG_CLASS(MODE) \
1204 (TARGET_32BIT ? CORE_REGS \
1205 : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS \
1206 : LO_REGS)
1207
1208 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1209 instead of BASE_REGS. */
1210 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1211
1212 /* When this hook returns true for MODE, the compiler allows
1213 registers explicitly used in the rtl to be used as spill registers
1214 but prevents the compiler from extending the lifetime of these
1215 registers. */
1216 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1217 arm_small_register_classes_for_mode_p
1218
1219 /* Must leave BASE_REGS reloads alone */
1220 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1221 (lra_in_progress ? NO_REGS \
1222 : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1223 ? ((true_regnum (X) == -1 ? LO_REGS \
1224 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1225 : NO_REGS)) \
1226 : NO_REGS))
1227
1228 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1229 (lra_in_progress ? NO_REGS \
1230 : (CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1231 ? ((true_regnum (X) == -1 ? LO_REGS \
1232 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1233 : NO_REGS)) \
1234 : NO_REGS)
1235
1236 /* Return the register class of a scratch register needed to copy IN into
1237 or out of a register in CLASS in MODE. If it can be done directly,
1238 NO_REGS is returned. */
1239 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1240 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1241 ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS)) \
1242 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1243 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1244 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1245 : TARGET_32BIT \
1246 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1247 ? GENERAL_REGS : NO_REGS) \
1248 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1249
1250 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1251 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1252 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1253 ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS)) \
1254 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1255 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1256 coproc_secondary_reload_class (MODE, X, TRUE) : \
1257 (TARGET_32BIT ? \
1258 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1259 && CONSTANT_P (X)) \
1260 ? GENERAL_REGS : \
1261 (((MODE) == HImode && ! arm_arch4 \
1262 && (MEM_P (X) \
1263 || ((REG_P (X) || GET_CODE (X) == SUBREG) \
1264 && true_regnum (X) == -1))) \
1265 ? GENERAL_REGS : NO_REGS) \
1266 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1267
1268 /* Return the maximum number of consecutive registers
1269 needed to represent mode MODE in a register of class CLASS.
1270 ARM regs are UNITS_PER_WORD bits.
1271 FIXME: Is this true for iWMMX? */
1272 #define CLASS_MAX_NREGS(CLASS, MODE) \
1273 (ARM_NUM_REGS (MODE))
1274
1275 /* If defined, gives a class of registers that cannot be used as the
1276 operand of a SUBREG that changes the mode of the object illegally. */
1277 \f
1278 /* Stack layout; function entry, exit and calling. */
1279
1280 /* Define this if pushing a word on the stack
1281 makes the stack pointer a smaller address. */
1282 #define STACK_GROWS_DOWNWARD 1
1283
1284 /* Define this to nonzero if the nominal address of the stack frame
1285 is at the high-address end of the local variables;
1286 that is, each additional local variable allocated
1287 goes at a more negative offset in the frame. */
1288 #define FRAME_GROWS_DOWNWARD 1
1289
1290 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1291 When present, it is one word in size, and sits at the top of the frame,
1292 between the soft frame pointer and either r7 or r11.
1293
1294 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1295 and only then if some outgoing arguments are passed on the stack. It would
1296 be tempting to also check whether the stack arguments are passed by indirect
1297 calls, but there seems to be no reason in principle why a post-reload pass
1298 couldn't convert a direct call into an indirect one. */
1299 #define CALLER_INTERWORKING_SLOT_SIZE \
1300 (TARGET_CALLER_INTERWORKING \
1301 && crtl->outgoing_args_size != 0 \
1302 ? UNITS_PER_WORD : 0)
1303
1304 /* Offset within stack frame to start allocating local variables at.
1305 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1306 first local allocated. Otherwise, it is the offset to the BEGINNING
1307 of the first local allocated. */
1308 #define STARTING_FRAME_OFFSET 0
1309
1310 /* If we generate an insn to push BYTES bytes,
1311 this says how many the stack pointer really advances by. */
1312 /* The push insns do not do this rounding implicitly.
1313 So don't define this. */
1314 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1315
1316 /* Define this if the maximum size of all the outgoing args is to be
1317 accumulated and pushed during the prologue. The amount can be
1318 found in the variable crtl->outgoing_args_size. */
1319 #define ACCUMULATE_OUTGOING_ARGS 1
1320
1321 /* Offset of first parameter from the argument pointer register value. */
1322 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1323
1324 /* Amount of memory needed for an untyped call to save all possible return
1325 registers. */
1326 #define APPLY_RESULT_SIZE arm_apply_result_size()
1327
1328 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1329 values must be in memory. On the ARM, they need only do so if larger
1330 than a word, or if they contain elements offset from zero in the struct. */
1331 #define DEFAULT_PCC_STRUCT_RETURN 0
1332
1333 /* These bits describe the different types of function supported
1334 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1335 normal function and an interworked function, for example. Knowing the
1336 type of a function is important for determining its prologue and
1337 epilogue sequences.
1338 Note value 7 is currently unassigned. Also note that the interrupt
1339 function types all have bit 2 set, so that they can be tested for easily.
1340 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1341 machine_function structure is initialized (to zero) func_type will
1342 default to unknown. This will force the first use of arm_current_func_type
1343 to call arm_compute_func_type. */
1344 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1345 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1346 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1347 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1348 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1349 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1350
1351 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1352
1353 /* In addition functions can have several type modifiers,
1354 outlined by these bit masks: */
1355 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1356 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1357 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1358 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1359 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1360 #define ARM_FT_CMSE_ENTRY (1 << 7) /* ARMv8-M non-secure entry function. */
1361
1362 /* Some macros to test these flags. */
1363 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1364 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1365 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1366 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1367 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1368 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1369 #define IS_CMSE_ENTRY(t) (t & ARM_FT_CMSE_ENTRY)
1370
1371
1372 /* Structure used to hold the function stack frame layout. Offsets are
1373 relative to the stack pointer on function entry. Positive offsets are
1374 in the direction of stack growth.
1375 Only soft_frame is used in thumb mode. */
1376
1377 typedef struct GTY(()) arm_stack_offsets
1378 {
1379 int saved_args; /* ARG_POINTER_REGNUM. */
1380 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1381 int saved_regs;
1382 int soft_frame; /* FRAME_POINTER_REGNUM. */
1383 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1384 int outgoing_args; /* STACK_POINTER_REGNUM. */
1385 unsigned int saved_regs_mask;
1386 }
1387 arm_stack_offsets;
1388
1389 #if !defined(GENERATOR_FILE) && !defined (USED_FOR_TARGET)
1390 /* A C structure for machine-specific, per-function data.
1391 This is added to the cfun structure. */
1392 typedef struct GTY(()) machine_function
1393 {
1394 /* Additional stack adjustment in __builtin_eh_throw. */
1395 rtx eh_epilogue_sp_ofs;
1396 /* Records if LR has to be saved for far jumps. */
1397 int far_jump_used;
1398 /* Records if ARG_POINTER was ever live. */
1399 int arg_pointer_live;
1400 /* Records if the save of LR has been eliminated. */
1401 int lr_save_eliminated;
1402 /* The size of the stack frame. Only valid after reload. */
1403 arm_stack_offsets stack_offsets;
1404 /* Records the type of the current function. */
1405 unsigned long func_type;
1406 /* Record if the function has a variable argument list. */
1407 int uses_anonymous_args;
1408 /* Records if sibcalls are blocked because an argument
1409 register is needed to preserve stack alignment. */
1410 int sibcall_blocked;
1411 /* The PIC register for this function. This might be a pseudo. */
1412 rtx pic_reg;
1413 /* Labels for per-function Thumb call-via stubs. One per potential calling
1414 register. We can never call via LR or PC. We can call via SP if a
1415 trampoline happens to be on the top of the stack. */
1416 rtx call_via[14];
1417 /* Set to 1 when a return insn is output, this means that the epilogue
1418 is not needed. */
1419 int return_used_this_function;
1420 /* When outputting Thumb-1 code, record the last insn that provides
1421 information about condition codes, and the comparison operands. */
1422 rtx thumb1_cc_insn;
1423 rtx thumb1_cc_op0;
1424 rtx thumb1_cc_op1;
1425 /* Also record the CC mode that is supported. */
1426 machine_mode thumb1_cc_mode;
1427 /* Set to 1 after arm_reorg has started. */
1428 int after_arm_reorg;
1429 }
1430 machine_function;
1431 #endif
1432
1433 /* As in the machine_function, a global set of call-via labels, for code
1434 that is in text_section. */
1435 extern GTY(()) rtx thumb_call_via_label[14];
1436
1437 /* The number of potential ways of assigning to a co-processor. */
1438 #define ARM_NUM_COPROC_SLOTS 1
1439
1440 /* Enumeration of procedure calling standard variants. We don't really
1441 support all of these yet. */
1442 enum arm_pcs
1443 {
1444 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1445 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1446 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1447 /* This must be the last AAPCS variant. */
1448 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1449 ARM_PCS_ATPCS, /* ATPCS. */
1450 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1451 ARM_PCS_UNKNOWN
1452 };
1453
1454 /* Default procedure calling standard of current compilation unit. */
1455 extern enum arm_pcs arm_pcs_default;
1456
1457 #if !defined (USED_FOR_TARGET)
1458 /* A C type for declaring a variable that is used as the first argument of
1459 `FUNCTION_ARG' and other related values. */
1460 typedef struct
1461 {
1462 /* This is the number of registers of arguments scanned so far. */
1463 int nregs;
1464 /* This is the number of iWMMXt register arguments scanned so far. */
1465 int iwmmxt_nregs;
1466 int named_count;
1467 int nargs;
1468 /* Which procedure call variant to use for this call. */
1469 enum arm_pcs pcs_variant;
1470
1471 /* AAPCS related state tracking. */
1472 int aapcs_arg_processed; /* No need to lay out this argument again. */
1473 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1474 this argument, or -1 if using core
1475 registers. */
1476 int aapcs_ncrn;
1477 int aapcs_next_ncrn;
1478 rtx aapcs_reg; /* Register assigned to this argument. */
1479 int aapcs_partial; /* How many bytes are passed in regs (if
1480 split between core regs and stack.
1481 Zero otherwise. */
1482 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1483 int can_split; /* Argument can be split between core regs
1484 and the stack. */
1485 /* Private data for tracking VFP register allocation */
1486 unsigned aapcs_vfp_regs_free;
1487 unsigned aapcs_vfp_reg_alloc;
1488 int aapcs_vfp_rcount;
1489 MACHMODE aapcs_vfp_rmode;
1490 } CUMULATIVE_ARGS;
1491 #endif
1492
1493 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1494 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1495
1496 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1497 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1498
1499 /* For AAPCS, padding should never be below the argument. For other ABIs,
1500 * mimic the default. */
1501 #define PAD_VARARGS_DOWN \
1502 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1503
1504 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1505 for a call to a function whose data type is FNTYPE.
1506 For a library call, FNTYPE is 0.
1507 On the ARM, the offset starts at 0. */
1508 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1509 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1510
1511 /* 1 if N is a possible register number for function argument passing.
1512 On the ARM, r0-r3 are used to pass args. */
1513 #define FUNCTION_ARG_REGNO_P(REGNO) \
1514 (IN_RANGE ((REGNO), 0, 3) \
1515 || (TARGET_AAPCS_BASED && TARGET_HARD_FLOAT \
1516 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1517 || (TARGET_IWMMXT_ABI \
1518 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1519
1520 \f
1521 /* If your target environment doesn't prefix user functions with an
1522 underscore, you may wish to re-define this to prevent any conflicts. */
1523 #ifndef ARM_MCOUNT_NAME
1524 #define ARM_MCOUNT_NAME "*mcount"
1525 #endif
1526
1527 /* Call the function profiler with a given profile label. The Acorn
1528 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1529 On the ARM the full profile code will look like:
1530 .data
1531 LP1
1532 .word 0
1533 .text
1534 mov ip, lr
1535 bl mcount
1536 .word LP1
1537
1538 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1539 will output the .text section.
1540
1541 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1542 ``prof'' doesn't seem to mind about this!
1543
1544 Note - this version of the code is designed to work in both ARM and
1545 Thumb modes. */
1546 #ifndef ARM_FUNCTION_PROFILER
1547 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1548 { \
1549 char temp[20]; \
1550 rtx sym; \
1551 \
1552 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1553 IP_REGNUM, LR_REGNUM); \
1554 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1555 fputc ('\n', STREAM); \
1556 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1557 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1558 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1559 }
1560 #endif
1561
1562 #ifdef THUMB_FUNCTION_PROFILER
1563 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1564 if (TARGET_ARM) \
1565 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1566 else \
1567 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1568 #else
1569 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1570 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1571 #endif
1572
1573 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1574 the stack pointer does not matter. The value is tested only in
1575 functions that have frame pointers.
1576 No definition is equivalent to always zero.
1577
1578 On the ARM, the function epilogue recovers the stack pointer from the
1579 frame. */
1580 #define EXIT_IGNORE_STACK 1
1581
1582 #define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1583
1584 /* Determine if the epilogue should be output as RTL.
1585 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1586 #define USE_RETURN_INSN(ISCOND) \
1587 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1588
1589 /* Definitions for register eliminations.
1590
1591 This is an array of structures. Each structure initializes one pair
1592 of eliminable registers. The "from" register number is given first,
1593 followed by "to". Eliminations of the same "from" register are listed
1594 in order of preference.
1595
1596 We have two registers that can be eliminated on the ARM. First, the
1597 arg pointer register can often be eliminated in favor of the stack
1598 pointer register. Secondly, the pseudo frame pointer register can always
1599 be eliminated; it is replaced with either the stack or the real frame
1600 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1601 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1602
1603 #define ELIMINABLE_REGS \
1604 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1605 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1606 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1607 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1608 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1609 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1610 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1611
1612 /* Define the offset between two registers, one to be eliminated, and the
1613 other its replacement, at the start of a routine. */
1614 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1615 if (TARGET_ARM) \
1616 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1617 else \
1618 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1619
1620 /* Special case handling of the location of arguments passed on the stack. */
1621 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1622
1623 /* Initialize data used by insn expanders. This is called from insn_emit,
1624 once for every function before code is generated. */
1625 #define INIT_EXPANDERS arm_init_expanders ()
1626
1627 /* Length in units of the trampoline for entering a nested function. */
1628 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1629
1630 /* Alignment required for a trampoline in bits. */
1631 #define TRAMPOLINE_ALIGNMENT 32
1632 \f
1633 /* Addressing modes, and classification of registers for them. */
1634 #define HAVE_POST_INCREMENT 1
1635 #define HAVE_PRE_INCREMENT TARGET_32BIT
1636 #define HAVE_POST_DECREMENT TARGET_32BIT
1637 #define HAVE_PRE_DECREMENT TARGET_32BIT
1638 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1639 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1640 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1641 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1642
1643 enum arm_auto_incmodes
1644 {
1645 ARM_POST_INC,
1646 ARM_PRE_INC,
1647 ARM_POST_DEC,
1648 ARM_PRE_DEC
1649 };
1650
1651 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1652 (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1653 #define USE_LOAD_POST_INCREMENT(mode) \
1654 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1655 #define USE_LOAD_PRE_INCREMENT(mode) \
1656 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1657 #define USE_LOAD_POST_DECREMENT(mode) \
1658 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1659 #define USE_LOAD_PRE_DECREMENT(mode) \
1660 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1661
1662 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1663 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1664 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1665 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1666
1667 /* Macros to check register numbers against specific register classes. */
1668
1669 /* These assume that REGNO is a hard or pseudo reg number.
1670 They give nonzero only if REGNO is a hard reg of the suitable class
1671 or a pseudo reg currently allocated to a suitable hard reg.
1672 Since they use reg_renumber, they are safe only once reg_renumber
1673 has been allocated, which happens in reginfo.c during register
1674 allocation. */
1675 #define TEST_REGNO(R, TEST, VALUE) \
1676 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1677
1678 /* Don't allow the pc to be used. */
1679 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1680 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1681 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1682 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1683
1684 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1685 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1686 || (GET_MODE_SIZE (MODE) >= 4 \
1687 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1688
1689 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1690 (TARGET_THUMB1 \
1691 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1692 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1693
1694 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1695 For Thumb, we can not use SP + reg, so reject SP. */
1696 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1697 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1698
1699 /* For ARM code, we don't care about the mode, but for Thumb, the index
1700 must be suitable for use in a QImode load. */
1701 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1702 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1703 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1704
1705 /* Maximum number of registers that can appear in a valid memory address.
1706 Shifts in addresses can't be by a register. */
1707 #define MAX_REGS_PER_ADDRESS 2
1708
1709 /* Recognize any constant value that is a valid address. */
1710 /* XXX We can address any constant, eventually... */
1711 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1712 #define CONSTANT_ADDRESS_P(X) \
1713 (GET_CODE (X) == SYMBOL_REF \
1714 && (CONSTANT_POOL_ADDRESS_P (X) \
1715 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1716
1717 /* True if SYMBOL + OFFSET constants must refer to something within
1718 SYMBOL's section. */
1719 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1720
1721 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1722 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1723 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1724 #endif
1725
1726 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1727 #define SUBTARGET_NAME_ENCODING_LENGTHS
1728 #endif
1729
1730 /* This is a C fragment for the inside of a switch statement.
1731 Each case label should return the number of characters to
1732 be stripped from the start of a function's name, if that
1733 name starts with the indicated character. */
1734 #define ARM_NAME_ENCODING_LENGTHS \
1735 case '*': return 1; \
1736 SUBTARGET_NAME_ENCODING_LENGTHS
1737
1738 /* This is how to output a reference to a user-level label named NAME.
1739 `assemble_name' uses this. */
1740 #undef ASM_OUTPUT_LABELREF
1741 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1742 arm_asm_output_labelref (FILE, NAME)
1743
1744 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1745 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1746 if (TARGET_THUMB2) \
1747 thumb2_asm_output_opcode (STREAM);
1748
1749 /* The EABI specifies that constructors should go in .init_array.
1750 Other targets use .ctors for compatibility. */
1751 #ifndef ARM_EABI_CTORS_SECTION_OP
1752 #define ARM_EABI_CTORS_SECTION_OP \
1753 "\t.section\t.init_array,\"aw\",%init_array"
1754 #endif
1755 #ifndef ARM_EABI_DTORS_SECTION_OP
1756 #define ARM_EABI_DTORS_SECTION_OP \
1757 "\t.section\t.fini_array,\"aw\",%fini_array"
1758 #endif
1759 #define ARM_CTORS_SECTION_OP \
1760 "\t.section\t.ctors,\"aw\",%progbits"
1761 #define ARM_DTORS_SECTION_OP \
1762 "\t.section\t.dtors,\"aw\",%progbits"
1763
1764 /* Define CTORS_SECTION_ASM_OP. */
1765 #undef CTORS_SECTION_ASM_OP
1766 #undef DTORS_SECTION_ASM_OP
1767 #ifndef IN_LIBGCC2
1768 # define CTORS_SECTION_ASM_OP \
1769 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1770 # define DTORS_SECTION_ASM_OP \
1771 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1772 #else /* !defined (IN_LIBGCC2) */
1773 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1774 so we cannot use the definition above. */
1775 # ifdef __ARM_EABI__
1776 /* The .ctors section is not part of the EABI, so we do not define
1777 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1778 from trying to use it. We do define it when doing normal
1779 compilation, as .init_array can be used instead of .ctors. */
1780 /* There is no need to emit begin or end markers when using
1781 init_array; the dynamic linker will compute the size of the
1782 array itself based on special symbols created by the static
1783 linker. However, we do need to arrange to set up
1784 exception-handling here. */
1785 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1786 # define CTOR_LIST_END /* empty */
1787 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1788 # define DTOR_LIST_END /* empty */
1789 # else /* !defined (__ARM_EABI__) */
1790 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1791 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1792 # endif /* !defined (__ARM_EABI__) */
1793 #endif /* !defined (IN_LIBCC2) */
1794
1795 /* True if the operating system can merge entities with vague linkage
1796 (e.g., symbols in COMDAT group) during dynamic linking. */
1797 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1798 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1799 #endif
1800
1801 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1802
1803 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1804 and check its validity for a certain class.
1805 We have two alternate definitions for each of them.
1806 The usual definition accepts all pseudo regs; the other rejects
1807 them unless they have been allocated suitable hard regs.
1808 The symbol REG_OK_STRICT causes the latter definition to be used.
1809 Thumb-2 has the same restrictions as arm. */
1810 #ifndef REG_OK_STRICT
1811
1812 #define ARM_REG_OK_FOR_BASE_P(X) \
1813 (REGNO (X) <= LAST_ARM_REGNUM \
1814 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1815 || REGNO (X) == FRAME_POINTER_REGNUM \
1816 || REGNO (X) == ARG_POINTER_REGNUM)
1817
1818 #define ARM_REG_OK_FOR_INDEX_P(X) \
1819 ((REGNO (X) <= LAST_ARM_REGNUM \
1820 && REGNO (X) != STACK_POINTER_REGNUM) \
1821 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1822 || REGNO (X) == FRAME_POINTER_REGNUM \
1823 || REGNO (X) == ARG_POINTER_REGNUM)
1824
1825 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1826 (REGNO (X) <= LAST_LO_REGNUM \
1827 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1828 || (GET_MODE_SIZE (MODE) >= 4 \
1829 && (REGNO (X) == STACK_POINTER_REGNUM \
1830 || (X) == hard_frame_pointer_rtx \
1831 || (X) == arg_pointer_rtx)))
1832
1833 #define REG_STRICT_P 0
1834
1835 #else /* REG_OK_STRICT */
1836
1837 #define ARM_REG_OK_FOR_BASE_P(X) \
1838 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1839
1840 #define ARM_REG_OK_FOR_INDEX_P(X) \
1841 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1842
1843 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1844 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1845
1846 #define REG_STRICT_P 1
1847
1848 #endif /* REG_OK_STRICT */
1849
1850 /* Now define some helpers in terms of the above. */
1851
1852 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1853 (TARGET_THUMB1 \
1854 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1855 : ARM_REG_OK_FOR_BASE_P (X))
1856
1857 /* For 16-bit Thumb, a valid index register is anything that can be used in
1858 a byte load instruction. */
1859 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1860 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1861
1862 /* Nonzero if X is a hard reg that can be used as an index
1863 or if it is a pseudo reg. On the Thumb, the stack pointer
1864 is not suitable. */
1865 #define REG_OK_FOR_INDEX_P(X) \
1866 (TARGET_THUMB1 \
1867 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1868 : ARM_REG_OK_FOR_INDEX_P (X))
1869
1870 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1871 For Thumb, we can not use SP + reg, so reject SP. */
1872 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1873 REG_OK_FOR_INDEX_P (X)
1874 \f
1875 #define ARM_BASE_REGISTER_RTX_P(X) \
1876 (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
1877
1878 #define ARM_INDEX_REGISTER_RTX_P(X) \
1879 (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
1880 \f
1881 /* Specify the machine mode that this machine uses
1882 for the index in the tablejump instruction. */
1883 #define CASE_VECTOR_MODE Pmode
1884
1885 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
1886 || (TARGET_THUMB1 \
1887 && (optimize_size || flag_pic)))
1888
1889 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
1890 (TARGET_THUMB1 \
1891 ? (min >= 0 && max < 512 \
1892 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
1893 : min >= -256 && max < 256 \
1894 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
1895 : min >= 0 && max < 8192 \
1896 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
1897 : min >= -4096 && max < 4096 \
1898 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
1899 : SImode) \
1900 : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode \
1901 : (max >= 0x200) ? HImode \
1902 : QImode))
1903
1904 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1905 unsigned is probably best, but may break some code. */
1906 #ifndef DEFAULT_SIGNED_CHAR
1907 #define DEFAULT_SIGNED_CHAR 0
1908 #endif
1909
1910 /* Max number of bytes we can move from memory to memory
1911 in one reasonably fast instruction. */
1912 #define MOVE_MAX 4
1913
1914 #undef MOVE_RATIO
1915 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1916
1917 /* Define if operations between registers always perform the operation
1918 on the full register even if a narrower mode is specified. */
1919 #define WORD_REGISTER_OPERATIONS 1
1920
1921 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1922 will either zero-extend or sign-extend. The value of this macro should
1923 be the code that says which one of the two operations is implicitly
1924 done, UNKNOWN if none. */
1925 #define LOAD_EXTEND_OP(MODE) \
1926 (TARGET_THUMB ? ZERO_EXTEND : \
1927 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
1928 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
1929
1930 /* Nonzero if access to memory by bytes is slow and undesirable. */
1931 #define SLOW_BYTE_ACCESS 0
1932
1933 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
1934
1935 /* Immediate shift counts are truncated by the output routines (or was it
1936 the assembler?). Shift counts in a register are truncated by ARM. Note
1937 that the native compiler puts too large (> 32) immediate shift counts
1938 into a register and shifts by the register, letting the ARM decide what
1939 to do instead of doing that itself. */
1940 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
1941 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1942 On the arm, Y in a register is used modulo 256 for the shift. Only for
1943 rotates is modulo 32 used. */
1944 /* #define SHIFT_COUNT_TRUNCATED 1 */
1945
1946 /* All integers have the same format so truncation is easy. */
1947 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1948
1949 /* Calling from registers is a massive pain. */
1950 #define NO_FUNCTION_CSE 1
1951
1952 /* The machine modes of pointers and functions */
1953 #define Pmode SImode
1954 #define FUNCTION_MODE Pmode
1955
1956 #define ARM_FRAME_RTX(X) \
1957 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
1958 || (X) == arg_pointer_rtx)
1959
1960 /* Try to generate sequences that don't involve branches, we can then use
1961 conditional instructions. */
1962 #define BRANCH_COST(speed_p, predictable_p) \
1963 (current_tune->branch_cost (speed_p, predictable_p))
1964
1965 /* False if short circuit operation is preferred. */
1966 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
1967 ((optimize_size) \
1968 ? (TARGET_THUMB ? false : true) \
1969 : TARGET_THUMB ? static_cast<bool> (current_tune->logical_op_non_short_circuit_thumb) \
1970 : static_cast<bool> (current_tune->logical_op_non_short_circuit_arm))
1971
1972 \f
1973 /* Position Independent Code. */
1974 /* We decide which register to use based on the compilation options and
1975 the assembler in use; this is more general than the APCS restriction of
1976 using sb (r9) all the time. */
1977 extern unsigned arm_pic_register;
1978
1979 /* The register number of the register used to address a table of static
1980 data addresses in memory. */
1981 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
1982
1983 /* We can't directly access anything that contains a symbol,
1984 nor can we indirect via the constant pool. One exception is
1985 UNSPEC_TLS, which is always PIC. */
1986 #define LEGITIMATE_PIC_OPERAND_P(X) \
1987 (!(symbol_mentioned_p (X) \
1988 || label_mentioned_p (X) \
1989 || (GET_CODE (X) == SYMBOL_REF \
1990 && CONSTANT_POOL_ADDRESS_P (X) \
1991 && (symbol_mentioned_p (get_pool_constant (X)) \
1992 || label_mentioned_p (get_pool_constant (X))))) \
1993 || tls_mentioned_p (X))
1994
1995 /* We need to know when we are making a constant pool; this determines
1996 whether data needs to be in the GOT or can be referenced via a GOT
1997 offset. */
1998 extern int making_const_table;
1999 \f
2000 /* Handle pragmas for compatibility with Intel's compilers. */
2001 /* Also abuse this to register additional C specific EABI attributes. */
2002 #define REGISTER_TARGET_PRAGMAS() do { \
2003 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
2004 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
2005 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
2006 arm_lang_object_attributes_init(); \
2007 arm_register_target_pragmas(); \
2008 } while (0)
2009
2010 /* Condition code information. */
2011 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2012 return the mode to be used for the comparison. */
2013
2014 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2015
2016 #define REVERSIBLE_CC_MODE(MODE) 1
2017
2018 #define REVERSE_CONDITION(CODE,MODE) \
2019 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2020 ? reverse_condition_maybe_unordered (code) \
2021 : reverse_condition (code))
2022
2023 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2024 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2025 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2026 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2027 \f
2028 #define CC_STATUS_INIT \
2029 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2030
2031 #undef ASM_APP_ON
2032 #define ASM_APP_ON (inline_asm_unified ? "\t.syntax unified\n" : \
2033 "\t.syntax divided\n")
2034
2035 #undef ASM_APP_OFF
2036 #define ASM_APP_OFF (TARGET_ARM ? "\t.arm\n\t.syntax unified\n" : \
2037 "\t.thumb\n\t.syntax unified\n")
2038
2039 /* Output a push or a pop instruction (only used when profiling).
2040 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2041 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2042 that r7 isn't used by the function profiler, so we can use it as a
2043 scratch reg. WARNING: This isn't safe in the general case! It may be
2044 sensitive to future changes in final.c:profile_function. */
2045 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2046 do \
2047 { \
2048 if (TARGET_THUMB1 \
2049 && (REGNO) == STATIC_CHAIN_REGNUM) \
2050 { \
2051 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2052 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2053 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2054 } \
2055 else \
2056 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2057 } while (0)
2058
2059
2060 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2061 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2062 do \
2063 { \
2064 if (TARGET_THUMB1 \
2065 && (REGNO) == STATIC_CHAIN_REGNUM) \
2066 { \
2067 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2068 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2069 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2070 } \
2071 else \
2072 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2073 } while (0)
2074
2075 #define ADDR_VEC_ALIGN(JUMPTABLE) \
2076 ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2077
2078 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2079 default alignment from elfos.h. */
2080 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2081 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty. */
2082
2083 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
2084 (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2085 ? 1 : 0)
2086
2087 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2088 arm_declare_function_name ((STREAM), (NAME), (DECL));
2089
2090 /* For aliases of functions we use .thumb_set instead. */
2091 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2092 do \
2093 { \
2094 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2095 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2096 \
2097 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2098 { \
2099 fprintf (FILE, "\t.thumb_set "); \
2100 assemble_name (FILE, LABEL1); \
2101 fprintf (FILE, ","); \
2102 assemble_name (FILE, LABEL2); \
2103 fprintf (FILE, "\n"); \
2104 } \
2105 else \
2106 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2107 } \
2108 while (0)
2109
2110 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2111 /* To support -falign-* switches we need to use .p2align so
2112 that alignment directives in code sections will be padded
2113 with no-op instructions, rather than zeroes. */
2114 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2115 if ((LOG) != 0) \
2116 { \
2117 if ((MAX_SKIP) == 0) \
2118 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2119 else \
2120 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2121 (int) (LOG), (int) (MAX_SKIP)); \
2122 }
2123 #endif
2124 \f
2125 /* Add two bytes to the length of conditionally executed Thumb-2
2126 instructions for the IT instruction. */
2127 #define ADJUST_INSN_LENGTH(insn, length) \
2128 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2129 length += 2;
2130
2131 /* Only perform branch elimination (by making instructions conditional) if
2132 we're optimizing. For Thumb-2 check if any IT instructions need
2133 outputting. */
2134 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2135 if (TARGET_ARM && optimize) \
2136 arm_final_prescan_insn (INSN); \
2137 else if (TARGET_THUMB2) \
2138 thumb2_final_prescan_insn (INSN); \
2139 else if (TARGET_THUMB1) \
2140 thumb1_final_prescan_insn (INSN)
2141
2142 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2143 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2144 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2145 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2146 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2147 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2148 : 0))))
2149
2150 /* A C expression whose value is RTL representing the value of the return
2151 address for the frame COUNT steps up from the current frame. */
2152
2153 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2154 arm_return_addr (COUNT, FRAME)
2155
2156 /* Mask of the bits in the PC that contain the real return address
2157 when running in 26-bit mode. */
2158 #define RETURN_ADDR_MASK26 (0x03fffffc)
2159
2160 /* Pick up the return address upon entry to a procedure. Used for
2161 dwarf2 unwind information. This also enables the table driven
2162 mechanism. */
2163 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2164 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2165
2166 /* Used to mask out junk bits from the return address, such as
2167 processor state, interrupt status, condition codes and the like. */
2168 #define MASK_RETURN_ADDR \
2169 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2170 in 26 bit mode, the condition codes must be masked out of the \
2171 return address. This does not apply to ARM6 and later processors \
2172 when running in 32 bit mode. */ \
2173 ((arm_arch4 || TARGET_THUMB) \
2174 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2175 : arm_gen_return_addr_mask ())
2176
2177 \f
2178 /* Do not emit .note.GNU-stack by default. */
2179 #ifndef NEED_INDICATE_EXEC_STACK
2180 #define NEED_INDICATE_EXEC_STACK 0
2181 #endif
2182
2183 #define TARGET_ARM_ARCH \
2184 (arm_base_arch) \
2185
2186 /* The highest Thumb instruction set version supported by the chip. */
2187 #define TARGET_ARM_ARCH_ISA_THUMB \
2188 (arm_arch_thumb2 ? 2 : (arm_arch_thumb1 ? 1 : 0))
2189
2190 /* Expands to an upper-case char of the target's architectural
2191 profile. */
2192 #define TARGET_ARM_ARCH_PROFILE \
2193 (arm_active_target.profile)
2194
2195 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2196 Bit 0 for bytes, up to bit 3 for double-words. */
2197 #define TARGET_ARM_FEATURE_LDREX \
2198 ((TARGET_HAVE_LDREX ? 4 : 0) \
2199 | (TARGET_HAVE_LDREXBH ? 3 : 0) \
2200 | (TARGET_HAVE_LDREXD ? 8 : 0))
2201
2202 /* Set as a bit mask indicating the available widths of hardware floating
2203 point types. Where bit 1 indicates 16-bit support, bit 2 indicates
2204 32-bit support, bit 3 indicates 64-bit support. */
2205 #define TARGET_ARM_FP \
2206 (!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4 \
2207 : (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \
2208 : 0)
2209
2210
2211 /* Set as a bit mask indicating the available widths of floating point
2212 types for hardware NEON floating point. This is the same as
2213 TARGET_ARM_FP without the 64-bit bit set. */
2214 #define TARGET_NEON_FP \
2215 (TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \
2216 : 0)
2217
2218 /* Name of the automatic fpu-selection option. */
2219 #define FPUTYPE_AUTO "auto"
2220
2221 /* The maximum number of parallel loads or stores we support in an ldm/stm
2222 instruction. */
2223 #define MAX_LDM_STM_OPS 4
2224
2225 extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2226 extern const char *arm_rewrite_march (int argc, const char **argv);
2227 #define ASM_CPU_SPEC_FUNCTIONS \
2228 { "rewrite_mcpu", arm_rewrite_mcpu }, \
2229 { "rewrite_march", arm_rewrite_march },
2230
2231 #define ASM_CPU_SPEC \
2232 " %{mcpu=generic-*:-march=%:rewrite_march(%{mcpu=generic-*:%*});" \
2233 " march=*:-march=%:rewrite_march(%{march=*:%*});" \
2234 " mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})" \
2235 " }"
2236
2237 extern const char *arm_target_thumb_only (int argc, const char **argv);
2238 #define TARGET_MODE_SPEC_FUNCTIONS \
2239 { "target_mode_check", arm_target_thumb_only },
2240
2241 /* -mcpu=native handling only makes sense with compiler running on
2242 an ARM chip. */
2243 #if defined(__arm__)
2244 extern const char *host_detect_local_cpu (int argc, const char **argv);
2245 # define MCPU_MTUNE_NATIVE_FUNCTIONS \
2246 { "local_cpu_detect", host_detect_local_cpu },
2247 # define MCPU_MTUNE_NATIVE_SPECS \
2248 " %{march=native:%<march=native %:local_cpu_detect(arch)}" \
2249 " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}" \
2250 " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2251 #else
2252 # define MCPU_MTUNE_NATIVE_FUNCTIONS
2253 # define MCPU_MTUNE_NATIVE_SPECS ""
2254 #endif
2255
2256 const char *arm_canon_arch_option (int argc, const char **argv);
2257
2258 #define CANON_ARCH_SPEC_FUNCTION \
2259 { "canon_arch", arm_canon_arch_option },
2260
2261 const char *arm_be8_option (int argc, const char **argv);
2262 #define BE8_SPEC_FUNCTION \
2263 { "be8_linkopt", arm_be8_option },
2264
2265 # define EXTRA_SPEC_FUNCTIONS \
2266 MCPU_MTUNE_NATIVE_FUNCTIONS \
2267 ASM_CPU_SPEC_FUNCTIONS \
2268 CANON_ARCH_SPEC_FUNCTION \
2269 TARGET_MODE_SPEC_FUNCTIONS \
2270 BE8_SPEC_FUNCTION
2271
2272 /* Automatically add -mthumb for Thumb-only targets if mode isn't specified
2273 via the configuration option --with-mode or via the command line. The
2274 function target_mode_check is called to do the check with either:
2275 - an array of -march values if any is given;
2276 - an array of -mcpu values if any is given;
2277 - an empty array. */
2278 #define TARGET_MODE_SPECS \
2279 " %{!marm:%{!mthumb:%:target_mode_check(%{march=*:arch %*;mcpu=*:cpu %*;:})}}"
2280
2281 /* Generate a canonical string to represent the architecture selected. */
2282 #define ARCH_CANONICAL_SPECS \
2283 " -march=%:canon_arch(%{mcpu=*: cpu %*} " \
2284 " %{march=*: arch %*} " \
2285 " %{mfpu=*: fpu %*} " \
2286 " %{mfloat-abi=*: abi %*}" \
2287 " %<march=*) "
2288
2289 #define DRIVER_SELF_SPECS \
2290 MCPU_MTUNE_NATIVE_SPECS \
2291 TARGET_MODE_SPECS \
2292 ARCH_CANONICAL_SPECS
2293
2294 #define TARGET_SUPPORTS_WIDE_INT 1
2295
2296 /* For switching between functions with different target attributes. */
2297 #define SWITCHABLE_TARGET 1
2298
2299 /* Define SECTION_ARM_PURECODE as the ARM specific section attribute
2300 representation for SHF_ARM_PURECODE in GCC. */
2301 #define SECTION_ARM_PURECODE SECTION_MACH_DEP
2302
2303 #endif /* ! GCC_ARM_H */