]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/arm/arm.h
arm: add armv9-a architecture to -march
[thirdparty/gcc.git] / gcc / config / arm / arm.h
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991-2021 Free Software Foundation, Inc.
3 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4 and Martin Simmons (@harleqn.co.uk).
5 More major hacks by Richard Earnshaw (rearnsha@arm.com)
6 Minor hacks by Nick Clifton (nickc@cygnus.com)
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published
12 by the Free Software Foundation; either version 3, or (at your
13 option) any later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
18 License for more details.
19
20 Under Section 7 of GPL version 3, you are granted additional
21 permissions described in the GCC Runtime Library Exception, version
22 3.1, as published by the Free Software Foundation.
23
24 You should have received a copy of the GNU General Public License and
25 a copy of the GCC Runtime Library Exception along with this program;
26 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
27 <http://www.gnu.org/licenses/>. */
28
29 #ifndef GCC_ARM_H
30 #define GCC_ARM_H
31
32 /* We can't use machine_mode inside a generator file because it
33 hasn't been created yet; we shouldn't be using any code that
34 needs the real definition though, so this ought to be safe. */
35 #ifdef GENERATOR_FILE
36 #define MACHMODE int
37 #else
38 #include "insn-modes.h"
39 #define MACHMODE machine_mode
40 #endif
41
42 #include "config/vxworks-dummy.h"
43
44 /* The architecture define. */
45 extern char arm_arch_name[];
46
47 /* Target CPU builtins. */
48 #define TARGET_CPU_CPP_BUILTINS() arm_cpu_cpp_builtins (pfile)
49
50 /* Target hooks for D language. */
51 #define TARGET_D_CPU_VERSIONS arm_d_target_versions
52 #define TARGET_D_REGISTER_CPU_TARGET_INFO arm_d_register_target_info
53
54 #include "config/arm/arm-opts.h"
55
56 /* The processor for which instructions should be scheduled. */
57 extern enum processor_type arm_tune;
58
59 typedef enum arm_cond_code
60 {
61 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
62 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
63 }
64 arm_cc;
65
66 extern arm_cc arm_current_cc;
67
68 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
69
70 /* The maximum number of instructions that is beneficial to
71 conditionally execute. */
72 #undef MAX_CONDITIONAL_EXECUTE
73 #define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
74
75 extern int arm_target_label;
76 extern int arm_ccfsm_state;
77 extern GTY(()) rtx arm_target_insn;
78 /* Callback to output language specific object attributes. */
79 extern void (*arm_lang_output_object_attributes_hook)(void);
80
81 /* This type is the user-visible __fp16. We need it in a few places in
82 the backend. Defined in arm-builtins.c. */
83 extern tree arm_fp16_type_node;
84
85 /* This type is the user-visible __bf16. We need it in a few places in
86 the backend. Defined in arm-builtins.c. */
87 extern tree arm_bf16_type_node;
88 extern tree arm_bf16_ptr_type_node;
89
90 \f
91 #undef CPP_SPEC
92 #define CPP_SPEC "%(subtarget_cpp_spec)"
93
94 #ifndef CC1_SPEC
95 #define CC1_SPEC ""
96 #endif
97
98 /* This macro defines names of additional specifications to put in the specs
99 that can be used in various specifications like CC1_SPEC. Its definition
100 is an initializer with a subgrouping for each command option.
101
102 Each subgrouping contains a string constant, that defines the
103 specification name, and a string constant that used by the GCC driver
104 program.
105
106 Do not define this macro if it does not need to do anything. */
107 #define EXTRA_SPECS \
108 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
109 { "asm_cpu_spec", ASM_CPU_SPEC }, \
110 SUBTARGET_EXTRA_SPECS
111
112 #ifndef SUBTARGET_EXTRA_SPECS
113 #define SUBTARGET_EXTRA_SPECS
114 #endif
115
116 #ifndef SUBTARGET_CPP_SPEC
117 #define SUBTARGET_CPP_SPEC ""
118 #endif
119 \f
120 /* Tree Target Specification. */
121 #define TARGET_ARM_P(flags) (!TARGET_THUMB_P (flags))
122 #define TARGET_THUMB1_P(flags) (TARGET_THUMB_P (flags) && !arm_arch_thumb2)
123 #define TARGET_THUMB2_P(flags) (TARGET_THUMB_P (flags) && arm_arch_thumb2)
124 #define TARGET_32BIT_P(flags) (TARGET_ARM_P (flags) || TARGET_THUMB2_P (flags))
125
126 /* Run-time Target Specification. */
127 /* Use hardware floating point instructions. -mgeneral-regs-only prevents
128 the use of floating point instructions and registers but does not prevent
129 emission of floating point pcs attributes. */
130 #define TARGET_HARD_FLOAT_SUB (arm_float_abi != ARM_FLOAT_ABI_SOFT \
131 && bitmap_bit_p (arm_active_target.isa, \
132 isa_bit_vfpv2) \
133 && TARGET_32BIT)
134
135 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_SUB \
136 && !TARGET_GENERAL_REGS_ONLY)
137
138 #define TARGET_SOFT_FLOAT (!TARGET_HARD_FLOAT_SUB)
139 /* User has permitted use of FP instructions, if they exist for this
140 target. */
141 #define TARGET_MAYBE_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
142 /* Use hardware floating point calling convention. */
143 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
144 #define TARGET_IWMMXT (arm_arch_iwmmxt)
145 #define TARGET_IWMMXT2 (arm_arch_iwmmxt2)
146 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT \
147 && !TARGET_GENERAL_REGS_ONLY)
148 #define TARGET_REALLY_IWMMXT2 (TARGET_IWMMXT2 && TARGET_32BIT \
149 && !TARGET_GENERAL_REGS_ONLY)
150 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
151 #define TARGET_ARM (! TARGET_THUMB)
152 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
153 #define TARGET_BACKTRACE (crtl->is_leaf \
154 ? TARGET_TPCS_LEAF_FRAME \
155 : TARGET_TPCS_FRAME)
156 #define TARGET_AAPCS_BASED \
157 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
158
159 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
160 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
161 #define TARGET_GNU2_TLS (target_tls_dialect == TLS_GNU2)
162
163 /* Only 16-bit thumb code. */
164 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
165 /* Arm or Thumb-2 32-bit code. */
166 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
167 /* 32-bit Thumb-2 code. */
168 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
169 /* Thumb-1 only. */
170 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
171
172 #define TARGET_LDRD (arm_arch5te && ARM_DOUBLEWORD_ALIGN \
173 && !TARGET_THUMB1)
174
175 #define TARGET_CRC32 (arm_arch_crc)
176
177 /* Thumb-2 but also has some conditional arithmetic instructions like csinc,
178 csinv, etc. */
179 #define TARGET_COND_ARITH (arm_arch8_1m_main)
180
181 /* The following two macros concern the ability to execute coprocessor
182 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
183 only ever tested when we know we are generating for VFP hardware; we need
184 to be more careful with TARGET_NEON as noted below. */
185
186 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
187 #define TARGET_VFPD32 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_d32))
188
189 /* FPU supports VFPv3 instructions. */
190 #define TARGET_VFP3 (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv3))
191
192 /* FPU supports FPv5 instructions. */
193 #define TARGET_VFP5 (bitmap_bit_p (arm_active_target.isa, isa_bit_fpv5))
194
195 /* FPU only supports VFP single-precision instructions. */
196 #define TARGET_VFP_SINGLE (!TARGET_VFP_DOUBLE)
197
198 /* FPU supports VFP double-precision instructions. */
199 #define TARGET_VFP_DOUBLE (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_dbl))
200
201 /* FPU supports half-precision floating-point with NEON element load/store. */
202 #define TARGET_NEON_FP16 \
203 (bitmap_bit_p (arm_active_target.isa, isa_bit_neon) \
204 && bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
205
206 /* FPU supports VFP half-precision floating-point conversions. */
207 #define TARGET_FP16 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
208
209 /* FPU supports converting between HFmode and DFmode in a single hardware
210 step. */
211 #define TARGET_FP16_TO_DOUBLE \
212 (TARGET_HARD_FLOAT && TARGET_FP16 && TARGET_VFP5 && TARGET_VFP_DOUBLE)
213
214 /* FPU supports fused-multiply-add operations. */
215 #define TARGET_FMA (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv4))
216
217 /* FPU supports Crypto extensions. */
218 #define TARGET_CRYPTO (bitmap_bit_p (arm_active_target.isa, isa_bit_crypto))
219
220 /* FPU supports Neon instructions. The setting of this macro gets
221 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
222 and TARGET_HARD_FLOAT to ensure that NEON instructions are
223 available. */
224 #define TARGET_NEON \
225 (TARGET_32BIT && TARGET_HARD_FLOAT \
226 && bitmap_bit_p (arm_active_target.isa, isa_bit_neon))
227
228 /* FPU supports ARMv8.1 Adv.SIMD extensions. */
229 #define TARGET_NEON_RDMA (TARGET_NEON && arm_arch8_1)
230
231 /* Supports the Dot Product AdvSIMD extensions. */
232 #define TARGET_DOTPROD (TARGET_NEON && TARGET_VFP5 \
233 && bitmap_bit_p (arm_active_target.isa, \
234 isa_bit_dotprod) \
235 && arm_arch8_2)
236
237 /* Supports the Armv8.3-a Complex number AdvSIMD extensions. */
238 #define TARGET_COMPLEX (TARGET_NEON && arm_arch8_3)
239
240 /* FPU supports the floating point FP16 instructions for ARMv8.2-A
241 and later. */
242 #define TARGET_VFP_FP16INST \
243 (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP5 && arm_fp16_inst)
244
245 /* Target supports the floating point FP16 instructions from ARMv8.2-A
246 and later. */
247 #define TARGET_FP16FML (TARGET_NEON \
248 && bitmap_bit_p (arm_active_target.isa, \
249 isa_bit_fp16fml) \
250 && arm_arch8_2)
251
252 /* FPU supports the AdvSIMD FP16 instructions for ARMv8.2 and later. */
253 #define TARGET_NEON_FP16INST (TARGET_VFP_FP16INST && TARGET_NEON_RDMA)
254
255 /* FPU supports 8-bit Integer Matrix Multiply (I8MM) AdvSIMD extensions. */
256 #define TARGET_I8MM (TARGET_NEON && arm_arch8_2 && arm_arch_i8mm)
257
258 /* FPU supports Brain half-precision floating-point (BFloat16) extension. */
259 #define TARGET_BF16_FP (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP5 \
260 && arm_arch8_2 && arm_arch_bf16)
261 #define TARGET_BF16_SIMD (TARGET_NEON && TARGET_VFP5 \
262 && arm_arch8_2 && arm_arch_bf16)
263
264 /* Q-bit is present. */
265 #define TARGET_ARM_QBIT \
266 (TARGET_32BIT && arm_arch5te && (arm_arch_notm || arm_arch7))
267 /* Saturation operation, e.g. SSAT. */
268 #define TARGET_ARM_SAT \
269 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
270 /* "DSP" multiply instructions, eg. SMULxy. */
271 #define TARGET_DSP_MULTIPLY \
272 (TARGET_32BIT && arm_arch5te && (arm_arch_notm || arm_arch7em))
273 /* Integer SIMD instructions, and extend-accumulate instructions. */
274 #define TARGET_INT_SIMD \
275 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
276
277 /* Should MOVW/MOVT be used in preference to a constant pool. */
278 #define TARGET_USE_MOVT \
279 (TARGET_HAVE_MOVT \
280 && (arm_disable_literal_pool \
281 || (!optimize_size && !current_tune->prefer_constant_pool)))
282
283 /* Nonzero if this chip provides the DMB instruction. */
284 #define TARGET_HAVE_DMB (arm_arch6m || arm_arch7)
285
286 /* Nonzero if this chip implements a memory barrier via CP15. */
287 #define TARGET_HAVE_DMB_MCR (arm_arch6 && ! TARGET_HAVE_DMB \
288 && ! TARGET_THUMB1)
289
290 /* Nonzero if this chip implements a memory barrier instruction. */
291 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
292
293 /* Nonzero if this chip supports ldrex and strex */
294 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) \
295 || arm_arch7 \
296 || (arm_arch8 && !arm_arch_notm))
297
298 /* Nonzero if this chip supports LPAE. */
299 #define TARGET_HAVE_LPAE (arm_arch_lpae)
300
301 /* Nonzero if this chip supports ldrex{bh} and strex{bh}. */
302 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM) \
303 || arm_arch7 \
304 || (arm_arch8 && !arm_arch_notm))
305
306 /* Nonzero if this chip supports ldrexd and strexd. */
307 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) \
308 || arm_arch7) && arm_arch_notm)
309
310 /* Nonzero if this chip supports load-acquire and store-release. */
311 #define TARGET_HAVE_LDACQ (TARGET_ARM_ARCH >= 8)
312
313 /* Nonzero if this chip supports LDAEXD and STLEXD. */
314 #define TARGET_HAVE_LDACQEXD (TARGET_ARM_ARCH >= 8 \
315 && TARGET_32BIT \
316 && arm_arch_notm)
317
318 /* Nonzero if this chip provides the MOVW and MOVT instructions. */
319 #define TARGET_HAVE_MOVT (arm_arch_thumb2 || arm_arch8)
320
321 /* Nonzero if this chip provides the CBZ and CBNZ instructions. */
322 #define TARGET_HAVE_CBZ (arm_arch_thumb2 || arm_arch8)
323
324 /* Nonzero if this chip provides Armv8.1-M Mainline Security extensions
325 instructions (most are floating-point related). */
326 #define TARGET_HAVE_FPCXT_CMSE (arm_arch8_1m_main)
327
328 #define TARGET_HAVE_MVE (arm_float_abi != ARM_FLOAT_ABI_SOFT \
329 && bitmap_bit_p (arm_active_target.isa, \
330 isa_bit_mve) \
331 && !TARGET_GENERAL_REGS_ONLY)
332
333 #define TARGET_HAVE_MVE_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT \
334 && bitmap_bit_p (arm_active_target.isa, \
335 isa_bit_mve_float) \
336 && !TARGET_GENERAL_REGS_ONLY)
337
338 /* MVE have few common instructions as VFP, like VLDM alias VPOP, VLDR, VSTM
339 alia VPUSH, VSTR and VMOV, VMSR and VMRS. In the same manner it updates few
340 registers such as FPCAR, FPCCR, FPDSCR, FPSCR, MVFR0, MVFR1 and MVFR2. All
341 the VFP instructions, RTL patterns and register are guarded by
342 TARGET_HARD_FLOAT. But the common instructions, RTL pattern and registers
343 between MVE and VFP will be guarded by the following macro TARGET_VFP_BASE
344 hereafter. */
345
346 #define TARGET_VFP_BASE (arm_float_abi != ARM_FLOAT_ABI_SOFT \
347 && bitmap_bit_p (arm_active_target.isa, \
348 isa_bit_vfp_base) \
349 && !TARGET_GENERAL_REGS_ONLY)
350
351 /* Nonzero if integer division instructions supported. */
352 #define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \
353 || (TARGET_THUMB && arm_arch_thumb_hwdiv))
354
355 /* Nonzero if disallow volatile memory access in IT block. */
356 #define TARGET_NO_VOLATILE_CE (arm_arch_no_volatile_ce)
357
358 /* Nonzero if chip supports the Custom Datapath Extension. */
359 #define TARGET_CDE (arm_arch_cde && arm_arch8 && !arm_arch_notm)
360
361 /* Should constant I be slplit for OP. */
362 #define DONT_EARLY_SPLIT_CONSTANT(i, op) \
363 ((optimize >= 2) \
364 && can_create_pseudo_p () \
365 && !const_ok_for_op (i, op))
366
367 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
368 then TARGET_AAPCS_BASED must be true -- but the converse does not
369 hold. TARGET_BPABI implies the use of the BPABI runtime library,
370 etc., in addition to just the AAPCS calling conventions. */
371 #ifndef TARGET_BPABI
372 #define TARGET_BPABI false
373 #endif
374
375 /* Transform lane numbers on big endian targets. This is used to allow for the
376 endianness difference between NEON architectural lane numbers and those
377 used in RTL */
378 #define NEON_ENDIAN_LANE_N(mode, n) \
379 (BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 - n : n)
380
381 /* Support for a compile-time default CPU, et cetera. The rules are:
382 --with-arch is ignored if -march or -mcpu are specified.
383 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
384 by --with-arch.
385 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
386 by -march).
387 --with-float is ignored if -mfloat-abi is specified.
388 --with-fpu is ignored if -mfpu is specified.
389 --with-abi is ignored if -mabi is specified.
390 --with-tls is ignored if -mtls-dialect is specified.
391 Note: --with-mode is not handled here, that has a special rule
392 TARGET_MODE_CHECK that also takes into account the selected CPU and
393 architecture. */
394 #define OPTION_DEFAULT_SPECS \
395 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
396 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
397 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
398 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
399 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
400 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
401 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
402
403 extern const struct arm_fpu_desc
404 {
405 const char *name;
406 enum isa_feature isa_bits[isa_num_bits];
407 } all_fpus[];
408
409 /* Which floating point hardware to schedule for. */
410 extern int arm_fpu_attr;
411
412 #ifndef TARGET_DEFAULT_FLOAT_ABI
413 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
414 #endif
415
416 #ifndef ARM_DEFAULT_ABI
417 #define ARM_DEFAULT_ABI ARM_ABI_APCS
418 #endif
419
420 /* AAPCS based ABIs use short enums by default. */
421 #ifndef ARM_DEFAULT_SHORT_ENUMS
422 #define ARM_DEFAULT_SHORT_ENUMS \
423 (TARGET_AAPCS_BASED && arm_abi != ARM_ABI_AAPCS_LINUX)
424 #endif
425
426 /* Map each of the micro-architecture variants to their corresponding
427 major architecture revision. */
428
429 enum base_architecture
430 {
431 BASE_ARCH_0 = 0,
432 BASE_ARCH_2 = 2,
433 BASE_ARCH_3 = 3,
434 BASE_ARCH_3M = 3,
435 BASE_ARCH_4 = 4,
436 BASE_ARCH_4T = 4,
437 BASE_ARCH_5T = 5,
438 BASE_ARCH_5TE = 5,
439 BASE_ARCH_5TEJ = 5,
440 BASE_ARCH_6 = 6,
441 BASE_ARCH_6J = 6,
442 BASE_ARCH_6KZ = 6,
443 BASE_ARCH_6K = 6,
444 BASE_ARCH_6T2 = 6,
445 BASE_ARCH_6M = 6,
446 BASE_ARCH_6Z = 6,
447 BASE_ARCH_7 = 7,
448 BASE_ARCH_7A = 7,
449 BASE_ARCH_7R = 7,
450 BASE_ARCH_7M = 7,
451 BASE_ARCH_7EM = 7,
452 BASE_ARCH_8A = 8,
453 BASE_ARCH_8M_BASE = 8,
454 BASE_ARCH_8M_MAIN = 8,
455 BASE_ARCH_8R = 8,
456 BASE_ARCH_9A = 9
457 };
458
459 /* The major revision number of the ARM Architecture implemented by the target. */
460 extern enum base_architecture arm_base_arch;
461
462 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
463 extern int arm_arch4;
464
465 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
466 extern int arm_arch4t;
467
468 /* Nonzero if this chip supports the ARM Architecture 5T extensions. */
469 extern int arm_arch5t;
470
471 /* Nonzero if this chip supports the ARM Architecture 5TE extensions. */
472 extern int arm_arch5te;
473
474 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
475 extern int arm_arch6;
476
477 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
478 extern int arm_arch6k;
479
480 /* Nonzero if instructions present in ARMv6-M can be used. */
481 extern int arm_arch6m;
482
483 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
484 extern int arm_arch7;
485
486 /* Nonzero if instructions not present in the 'M' profile can be used. */
487 extern int arm_arch_notm;
488
489 /* Nonzero if instructions present in ARMv7E-M can be used. */
490 extern int arm_arch7em;
491
492 /* Nonzero if this chip supports the ARM Architecture 8 extensions. */
493 extern int arm_arch8;
494
495 /* Nonzero if this chip supports the ARM Architecture 8.1 extensions. */
496 extern int arm_arch8_1;
497
498 /* Nonzero if this chip supports the ARM Architecture 8.2 extensions. */
499 extern int arm_arch8_2;
500
501 /* Nonzero if this chip supports the ARM Architecture 8.3 extensions. */
502 extern int arm_arch8_3;
503
504 /* Nonzero if this chip supports the ARM Architecture 8.4 extensions. */
505 extern int arm_arch8_4;
506
507 /* Nonzero if this chip supports the ARM Architecture 8.1-M Mainline
508 extensions. */
509 extern int arm_arch8_1m_main;
510
511 /* Nonzero if this chip supports the FP16 instructions extension of ARM
512 Architecture 8.2. */
513 extern int arm_fp16_inst;
514
515 /* Nonzero if this chip can benefit from load scheduling. */
516 extern int arm_ld_sched;
517
518 /* Nonzero if this chip is a StrongARM. */
519 extern int arm_tune_strongarm;
520
521 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
522 extern int arm_arch_iwmmxt;
523
524 /* Nonzero if this chip supports Intel Wireless MMX2 technology. */
525 extern int arm_arch_iwmmxt2;
526
527 /* Nonzero if this chip is an XScale. */
528 extern int arm_arch_xscale;
529
530 /* Nonzero if tuning for XScale. */
531 extern int arm_tune_xscale;
532
533 /* Nonzero if tuning for stores via the write buffer. */
534 extern int arm_tune_wbuf;
535
536 /* Nonzero if tuning for Cortex-A9. */
537 extern int arm_tune_cortex_a9;
538
539 /* Nonzero if we should define __THUMB_INTERWORK__ in the
540 preprocessor.
541 XXX This is a bit of a hack, it's intended to help work around
542 problems in GLD which doesn't understand that armv5t code is
543 interworking clean. */
544 extern int arm_cpp_interwork;
545
546 /* Nonzero if chip supports Thumb 1. */
547 extern int arm_arch_thumb1;
548
549 /* Nonzero if chip supports Thumb 2. */
550 extern int arm_arch_thumb2;
551
552 /* Nonzero if chip supports integer division instruction in ARM mode. */
553 extern int arm_arch_arm_hwdiv;
554
555 /* Nonzero if chip supports integer division instruction in Thumb mode. */
556 extern int arm_arch_thumb_hwdiv;
557
558 /* Nonzero if chip disallows volatile memory access in IT block. */
559 extern int arm_arch_no_volatile_ce;
560
561 /* Nonzero if we shouldn't use literal pools. */
562 #ifndef USED_FOR_TARGET
563 extern bool arm_disable_literal_pool;
564 #endif
565
566 /* Nonzero if chip supports the ARMv8 CRC instructions. */
567 extern int arm_arch_crc;
568
569 /* Nonzero if chip supports the ARMv8-M Security Extensions. */
570 extern int arm_arch_cmse;
571
572 /* Nonzero if chip supports the I8MM instructions. */
573 extern int arm_arch_i8mm;
574
575 /* Nonzero if chip supports the BFloat16 instructions. */
576 extern int arm_arch_bf16;
577
578 /* Nonzero if chip supports the Custom Datapath Extension. */
579 extern int arm_arch_cde;
580 extern int arm_arch_cde_coproc;
581 extern const int arm_arch_cde_coproc_bits[];
582 #define ARM_CDE_CONST_COPROC 7
583 #define ARM_CCDE_CONST_1 ((1 << 13) - 1)
584 #define ARM_CCDE_CONST_2 ((1 << 9 ) - 1)
585 #define ARM_CCDE_CONST_3 ((1 << 6 ) - 1)
586 #define ARM_VCDE_CONST_1 ((1 << 11) - 1)
587 #define ARM_VCDE_CONST_2 ((1 << 6 ) - 1)
588 #define ARM_VCDE_CONST_3 ((1 << 3 ) - 1)
589 #define ARM_MVE_CDE_CONST_1 ((1 << 12) - 1)
590 #define ARM_MVE_CDE_CONST_2 ((1 << 7 ) - 1)
591 #define ARM_MVE_CDE_CONST_3 ((1 << 4 ) - 1)
592
593 #ifndef TARGET_DEFAULT
594 #define TARGET_DEFAULT (MASK_APCS_FRAME)
595 #endif
596
597 /* Nonzero if PIC code requires explicit qualifiers to generate
598 PLT and GOT relocs rather than the assembler doing so implicitly.
599 Subtargets can override these if required. */
600 #ifndef NEED_GOT_RELOC
601 #define NEED_GOT_RELOC 0
602 #endif
603 #ifndef NEED_PLT_RELOC
604 #define NEED_PLT_RELOC 0
605 #endif
606
607 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
608 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
609 #endif
610
611 /* Nonzero if we need to refer to the GOT with a PC-relative
612 offset. In other words, generate
613
614 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
615
616 rather than
617
618 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
619
620 The default is true, which matches NetBSD. Subtargets can
621 override this if required. */
622 #ifndef GOT_PCREL
623 #define GOT_PCREL 1
624 #endif
625 \f
626 /* Target machine storage Layout. */
627
628 /* Nonzero if this chip provides Armv8.1-M Mainline
629 LOB (low overhead branch features) extension instructions. */
630 #define TARGET_HAVE_LOB (arm_arch8_1m_main)
631
632 /* Define this macro if it is advisable to hold scalars in registers
633 in a wider mode than that declared by the program. In such cases,
634 the value is constrained to be within the bounds of the declared
635 type, but kept valid in the wider mode. The signedness of the
636 extension may differ from that of the type. */
637
638 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
639 if (GET_MODE_CLASS (MODE) == MODE_INT \
640 && GET_MODE_SIZE (MODE) < 4) \
641 { \
642 (MODE) = SImode; \
643 }
644
645 /* Define this if most significant bit is lowest numbered
646 in instructions that operate on numbered bit-fields. */
647 #define BITS_BIG_ENDIAN 0
648
649 /* Define this if most significant byte of a word is the lowest numbered.
650 Most ARM processors are run in little endian mode, so that is the default.
651 If you want to have it run-time selectable, change the definition in a
652 cover file to be TARGET_BIG_ENDIAN. */
653 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
654
655 /* Define this if most significant word of a multiword number is the lowest
656 numbered. */
657 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
658
659 #define UNITS_PER_WORD 4
660
661 /* True if natural alignment is used for doubleword types. */
662 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
663
664 #define DOUBLEWORD_ALIGNMENT 64
665
666 #define PARM_BOUNDARY 32
667
668 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
669
670 #define PREFERRED_STACK_BOUNDARY \
671 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
672
673 #define FUNCTION_BOUNDARY_P(flags) (TARGET_THUMB_P (flags) ? 16 : 32)
674 #define FUNCTION_BOUNDARY (FUNCTION_BOUNDARY_P (target_flags))
675
676 /* The lowest bit is used to indicate Thumb-mode functions, so the
677 vbit must go into the delta field of pointers to member
678 functions. */
679 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
680
681 #define EMPTY_FIELD_BOUNDARY 32
682
683 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
684
685 #define MALLOC_ABI_ALIGNMENT BIGGEST_ALIGNMENT
686
687 /* XXX Blah -- this macro is used directly by libobjc. Since it
688 supports no vector modes, cut out the complexity and fall back
689 on BIGGEST_FIELD_ALIGNMENT. */
690 #ifdef IN_TARGET_LIBS
691 #define BIGGEST_FIELD_ALIGNMENT 64
692 #endif
693
694 /* Align definitions of arrays, unions and structures so that
695 initializations and copies can be made more efficient. This is not
696 ABI-changing, so it only affects places where we can see the
697 definition. Increasing the alignment tends to introduce padding,
698 so don't do this when optimizing for size/conserving stack space. */
699 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
700 (((COND) && ((ALIGN) < BITS_PER_WORD) \
701 && (TREE_CODE (EXP) == ARRAY_TYPE \
702 || TREE_CODE (EXP) == UNION_TYPE \
703 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
704
705 /* Align global data. */
706 #define DATA_ALIGNMENT(EXP, ALIGN) \
707 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
708
709 /* Similarly, make sure that objects on the stack are sensibly aligned. */
710 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
711 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
712
713 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
714 value set in previous versions of this toolchain was 8, which produces more
715 compact structures. The command line option -mstructure_size_boundary=<n>
716 can be used to change this value. For compatibility with the ARM SDK
717 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
718 0020D) page 2-20 says "Structures are aligned on word boundaries".
719 The AAPCS specifies a value of 8. */
720 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
721
722 /* This is the value used to initialize arm_structure_size_boundary. If a
723 particular arm target wants to change the default value it should change
724 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
725 for an example of this. */
726 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
727 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
728 #endif
729
730 /* Nonzero if move instructions will actually fail to work
731 when given unaligned data. */
732 #define STRICT_ALIGNMENT 1
733
734 /* wchar_t is unsigned under the AAPCS. */
735 #ifndef WCHAR_TYPE
736 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
737
738 #define WCHAR_TYPE_SIZE BITS_PER_WORD
739 #endif
740
741 /* Sized for fixed-point types. */
742
743 #define SHORT_FRACT_TYPE_SIZE 8
744 #define FRACT_TYPE_SIZE 16
745 #define LONG_FRACT_TYPE_SIZE 32
746 #define LONG_LONG_FRACT_TYPE_SIZE 64
747
748 #define SHORT_ACCUM_TYPE_SIZE 16
749 #define ACCUM_TYPE_SIZE 32
750 #define LONG_ACCUM_TYPE_SIZE 64
751 #define LONG_LONG_ACCUM_TYPE_SIZE 64
752
753 #define MAX_FIXED_MODE_SIZE 64
754
755 #ifndef SIZE_TYPE
756 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
757 #endif
758
759 #ifndef PTRDIFF_TYPE
760 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
761 #endif
762
763 /* AAPCS requires that structure alignment is affected by bitfields. */
764 #ifndef PCC_BITFIELD_TYPE_MATTERS
765 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
766 #endif
767
768 /* The maximum size of the sync library functions supported. */
769 #ifndef MAX_SYNC_LIBFUNC_SIZE
770 #define MAX_SYNC_LIBFUNC_SIZE (2 * UNITS_PER_WORD)
771 #endif
772
773 \f
774 /* Standard register usage. */
775
776 /* Register allocation in ARM Procedure Call Standard
777 (S - saved over call, F - Frame-related).
778
779 r0 * argument word/integer result
780 r1-r3 argument word
781
782 r4-r8 S register variable
783 r9 S (rfp) register variable (real frame pointer)
784
785 r10 F S (sl) stack limit (used by -mapcs-stack-check)
786 r11 F S (fp) argument pointer
787 r12 (ip) temp workspace
788 r13 F S (sp) lower end of current stack frame
789 r14 (lr) link address/workspace
790 r15 F (pc) program counter
791
792 cc This is NOT a real register, but is used internally
793 to represent things that use or set the condition
794 codes.
795 sfp This isn't either. It is used during rtl generation
796 since the offset between the frame pointer and the
797 auto's isn't known until after register allocation.
798 afp Nor this, we only need this because of non-local
799 goto. Without it fp appears to be used and the
800 elimination code won't get rid of sfp. It tracks
801 fp exactly at all times.
802 apsrq Nor this, it is used to track operations on the Q bit
803 of APSR by ACLE saturating intrinsics.
804 apsrge Nor this, it is used to track operations on the GE bits
805 of APSR by ACLE SIMD32 intrinsics
806
807 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
808
809 /* s0-s15 VFP scratch (aka d0-d7).
810 s16-s31 S VFP variable (aka d8-d15).
811 vfpcc Not a real register. Represents the VFP condition
812 code flags.
813 vpr Used to represent MVE VPR predication. */
814
815 /* The stack backtrace structure is as follows:
816 fp points to here: | save code pointer | [fp]
817 | return link value | [fp, #-4]
818 | return sp value | [fp, #-8]
819 | return fp value | [fp, #-12]
820 [| saved r10 value |]
821 [| saved r9 value |]
822 [| saved r8 value |]
823 [| saved r7 value |]
824 [| saved r6 value |]
825 [| saved r5 value |]
826 [| saved r4 value |]
827 [| saved r3 value |]
828 [| saved r2 value |]
829 [| saved r1 value |]
830 [| saved r0 value |]
831 r0-r3 are not normally saved in a C function. */
832
833 /* 1 for registers that have pervasive standard uses
834 and are not available for the register allocator. */
835 #define FIXED_REGISTERS \
836 { \
837 /* Core regs. */ \
838 0,0,0,0,0,0,0,0, \
839 0,0,0,0,0,1,0,1, \
840 /* VFP regs. */ \
841 1,1,1,1,1,1,1,1, \
842 1,1,1,1,1,1,1,1, \
843 1,1,1,1,1,1,1,1, \
844 1,1,1,1,1,1,1,1, \
845 1,1,1,1,1,1,1,1, \
846 1,1,1,1,1,1,1,1, \
847 1,1,1,1,1,1,1,1, \
848 1,1,1,1,1,1,1,1, \
849 /* IWMMXT regs. */ \
850 1,1,1,1,1,1,1,1, \
851 1,1,1,1,1,1,1,1, \
852 1,1,1,1, \
853 /* Specials. */ \
854 1,1,1,1,1,1,1 \
855 }
856
857 /* 1 for registers not available across function calls.
858 These must include the FIXED_REGISTERS and also any
859 registers that can be used without being saved.
860 The latter must include the registers where values are returned
861 and the register where structure-value addresses are passed.
862 Aside from that, you can include as many other registers as you like.
863 The CC is not preserved over function calls on the ARM 6, so it is
864 easier to assume this for all. SFP is preserved, since FP is. */
865 #define CALL_USED_REGISTERS \
866 { \
867 /* Core regs. */ \
868 1,1,1,1,0,0,0,0, \
869 0,0,0,0,1,1,1,1, \
870 /* VFP Regs. */ \
871 1,1,1,1,1,1,1,1, \
872 1,1,1,1,1,1,1,1, \
873 1,1,1,1,1,1,1,1, \
874 1,1,1,1,1,1,1,1, \
875 1,1,1,1,1,1,1,1, \
876 1,1,1,1,1,1,1,1, \
877 1,1,1,1,1,1,1,1, \
878 1,1,1,1,1,1,1,1, \
879 /* IWMMXT regs. */ \
880 1,1,1,1,1,1,1,1, \
881 1,1,1,1,1,1,1,1, \
882 1,1,1,1, \
883 /* Specials. */ \
884 1,1,1,1,1,1,1 \
885 }
886
887 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
888 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
889 #endif
890
891 /* These are a couple of extensions to the formats accepted
892 by asm_fprintf:
893 %@ prints out ASM_COMMENT_START
894 %r prints out REGISTER_PREFIX reg_names[arg] */
895 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
896 case '@': \
897 fputs (ASM_COMMENT_START, FILE); \
898 break; \
899 \
900 case 'r': \
901 fputs (REGISTER_PREFIX, FILE); \
902 fputs (reg_names [va_arg (ARGS, int)], FILE); \
903 break;
904
905 /* Round X up to the nearest word. */
906 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
907
908 /* Convert fron bytes to ints. */
909 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
910
911 /* The number of (integer) registers required to hold a quantity of type MODE.
912 Also used for VFP registers. */
913 #define ARM_NUM_REGS(MODE) \
914 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
915
916 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
917 #define ARM_NUM_REGS2(MODE, TYPE) \
918 ARM_NUM_INTS ((MODE) == BLKmode ? \
919 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
920
921 /* The number of (integer) argument register available. */
922 #define NUM_ARG_REGS 4
923
924 /* And similarly for the VFP. */
925 #define NUM_VFP_ARG_REGS 16
926
927 /* Return the register number of the N'th (integer) argument. */
928 #define ARG_REGISTER(N) (N - 1)
929
930 /* Specify the registers used for certain standard purposes.
931 The values of these macros are register numbers. */
932
933 /* The number of the last argument register. */
934 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
935
936 /* The numbers of the Thumb register ranges. */
937 #define FIRST_LO_REGNUM 0
938 #define LAST_LO_REGNUM 7
939 #define FIRST_HI_REGNUM 8
940 #define LAST_HI_REGNUM 11
941
942 /* Overridden by config/arm/bpabi.h. */
943 #ifndef ARM_UNWIND_INFO
944 #define ARM_UNWIND_INFO 0
945 #endif
946
947 /* Use r0 and r1 to pass exception handling information. */
948 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
949
950 /* The register that holds the return address in exception handlers. */
951 #define ARM_EH_STACKADJ_REGNUM 2
952 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
953
954 #ifndef ARM_TARGET2_DWARF_FORMAT
955 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
956 #endif
957
958 /* ttype entries (the only interesting data references used)
959 use TARGET2 relocations. */
960 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
961 (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
962 : DW_EH_PE_absptr)
963
964 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
965 as an invisible last argument (possible since varargs don't exist in
966 Pascal), so the following is not true. */
967 #define STATIC_CHAIN_REGNUM 12
968
969 /* r9 is the FDPIC register (base register for GOT and FUNCDESC accesses). */
970 #define FDPIC_REGNUM 9
971
972 /* Define this to be where the real frame pointer is if it is not possible to
973 work out the offset between the frame pointer and the automatic variables
974 until after register allocation has taken place. FRAME_POINTER_REGNUM
975 should point to a special register that we will make sure is eliminated.
976
977 For the Thumb we have another problem. The TPCS defines the frame pointer
978 as r11, and GCC believes that it is always possible to use the frame pointer
979 as base register for addressing purposes. (See comments in
980 find_reloads_address()). But - the Thumb does not allow high registers,
981 including r11, to be used as base address registers. Hence our problem.
982
983 The solution used here, and in the old thumb port is to use r7 instead of
984 r11 as the hard frame pointer and to have special code to generate
985 backtrace structures on the stack (if required to do so via a command line
986 option) using r11. This is the only 'user visible' use of r11 as a frame
987 pointer. */
988 #define ARM_HARD_FRAME_POINTER_REGNUM 11
989 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
990
991 #define HARD_FRAME_POINTER_REGNUM \
992 (TARGET_ARM \
993 ? ARM_HARD_FRAME_POINTER_REGNUM \
994 : THUMB_HARD_FRAME_POINTER_REGNUM)
995
996 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
997 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
998
999 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
1000
1001 /* Register to use for pushing function arguments. */
1002 #define STACK_POINTER_REGNUM SP_REGNUM
1003
1004 #define FIRST_IWMMXT_REGNUM (LAST_HI_VFP_REGNUM + 1)
1005 #define LAST_IWMMXT_REGNUM (FIRST_IWMMXT_REGNUM + 15)
1006
1007 /* Need to sync with WCGR in iwmmxt.md. */
1008 #define FIRST_IWMMXT_GR_REGNUM (LAST_IWMMXT_REGNUM + 1)
1009 #define LAST_IWMMXT_GR_REGNUM (FIRST_IWMMXT_GR_REGNUM + 3)
1010
1011 #define IS_IWMMXT_REGNUM(REGNUM) \
1012 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
1013 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
1014 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
1015
1016 /* Base register for access to local variables of the function. */
1017 #define FRAME_POINTER_REGNUM 102
1018
1019 /* Base register for access to arguments of the function. */
1020 #define ARG_POINTER_REGNUM 103
1021
1022 #define FIRST_VFP_REGNUM 16
1023 #define D7_VFP_REGNUM (FIRST_VFP_REGNUM + 15)
1024 #define LAST_VFP_REGNUM \
1025 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
1026
1027 #define IS_VFP_REGNUM(REGNUM) \
1028 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
1029
1030 /* VFP registers are split into two types: those defined by VFP versions < 3
1031 have D registers overlaid on consecutive pairs of S registers. VFP version 3
1032 defines 16 new D registers (d16-d31) which, for simplicity and correctness
1033 in various parts of the backend, we implement as "fake" single-precision
1034 registers (which would be S32-S63, but cannot be used in that way). The
1035 following macros define these ranges of registers. */
1036 #define LAST_LO_VFP_REGNUM (FIRST_VFP_REGNUM + 31)
1037 #define FIRST_HI_VFP_REGNUM (LAST_LO_VFP_REGNUM + 1)
1038 #define LAST_HI_VFP_REGNUM (FIRST_HI_VFP_REGNUM + 31)
1039
1040 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
1041 ((REGNUM) <= LAST_LO_VFP_REGNUM)
1042
1043 /* DFmode values are only valid in even register pairs. */
1044 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
1045 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
1046
1047 /* Neon Quad values must start at a multiple of four registers. */
1048 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
1049 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
1050
1051 /* Neon structures of vectors must be in even register pairs and there
1052 must be enough registers available. Because of various patterns
1053 requiring quad registers, we require them to start at a multiple of
1054 four. */
1055 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
1056 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
1057 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
1058
1059 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP
1060 + 1 APSRQ + 1 APSRGE + 1 VPR. */
1061 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
1062 /* VFP (VFP3) adds 32 (64) + 1 VFPCC. */
1063 #define FIRST_PSEUDO_REGISTER 107
1064
1065 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1066
1067 /* Value should be nonzero if functions must have frame pointers.
1068 Zero means the frame pointer need not be set up (and parms may be accessed
1069 via the stack pointer) in functions that seem suitable.
1070 If we have to have a frame pointer we might as well make use of it.
1071 APCS says that the frame pointer does not need to be pushed in leaf
1072 functions, or simple tail call functions. */
1073
1074 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1075 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1076 #endif
1077
1078 #define VALID_IWMMXT_REG_MODE(MODE) \
1079 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1080
1081 /* Modes valid for Neon D registers. */
1082 #define VALID_NEON_DREG_MODE(MODE) \
1083 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1084 || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode \
1085 || (MODE) == V4BFmode)
1086
1087 /* Modes valid for Neon Q registers. */
1088 #define VALID_NEON_QREG_MODE(MODE) \
1089 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1090 || (MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DImode \
1091 || (MODE) == V8BFmode)
1092
1093 #define VALID_MVE_MODE(MODE) \
1094 ((MODE) == V2DImode ||(MODE) == V4SImode || (MODE) == V8HImode \
1095 || (MODE) == V16QImode || (MODE) == V8HFmode || (MODE) == V4SFmode \
1096 || (MODE) == V2DFmode)
1097
1098 #define VALID_MVE_SI_MODE(MODE) \
1099 ((MODE) == V2DImode ||(MODE) == V4SImode || (MODE) == V8HImode \
1100 || (MODE) == V16QImode)
1101
1102 #define VALID_MVE_SF_MODE(MODE) \
1103 ((MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DFmode)
1104
1105 /* Structure modes valid for Neon registers. */
1106 #define VALID_NEON_STRUCT_MODE(MODE) \
1107 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1108 || (MODE) == CImode || (MODE) == XImode)
1109
1110 #define VALID_MVE_STRUCT_MODE(MODE) \
1111 ((MODE) == TImode || (MODE) == OImode || (MODE) == XImode)
1112
1113 /* The conditions under which vector modes are supported for general
1114 arithmetic using Neon. */
1115
1116 #define ARM_HAVE_NEON_V8QI_ARITH TARGET_NEON
1117 #define ARM_HAVE_NEON_V4HI_ARITH TARGET_NEON
1118 #define ARM_HAVE_NEON_V2SI_ARITH TARGET_NEON
1119
1120 #define ARM_HAVE_NEON_V16QI_ARITH TARGET_NEON
1121 #define ARM_HAVE_NEON_V8HI_ARITH TARGET_NEON
1122 #define ARM_HAVE_NEON_V4SI_ARITH TARGET_NEON
1123 #define ARM_HAVE_NEON_V2DI_ARITH TARGET_NEON
1124
1125 /* HF operations have their own flush-to-zero control (FPSCR.FZ16). */
1126 #define ARM_HAVE_NEON_V4HF_ARITH TARGET_NEON_FP16INST
1127 #define ARM_HAVE_NEON_V8HF_ARITH TARGET_NEON_FP16INST
1128
1129 /* SF operations always flush to zero, regardless of FPSCR.FZ, so we can
1130 only use them for general arithmetic when -funsafe-math-optimizations
1131 is in effect. */
1132 #define ARM_HAVE_NEON_V2SF_ARITH \
1133 (TARGET_NEON && flag_unsafe_math_optimizations)
1134 #define ARM_HAVE_NEON_V4SF_ARITH ARM_HAVE_NEON_V2SF_ARITH
1135
1136 /* The conditions under which vector modes are supported for general
1137 arithmetic by any vector extension. */
1138
1139 #define ARM_HAVE_V8QI_ARITH (ARM_HAVE_NEON_V8QI_ARITH || TARGET_REALLY_IWMMXT)
1140 #define ARM_HAVE_V4HI_ARITH (ARM_HAVE_NEON_V4HI_ARITH || TARGET_REALLY_IWMMXT)
1141 #define ARM_HAVE_V2SI_ARITH (ARM_HAVE_NEON_V2SI_ARITH || TARGET_REALLY_IWMMXT)
1142
1143 #define ARM_HAVE_V16QI_ARITH (ARM_HAVE_NEON_V16QI_ARITH || TARGET_HAVE_MVE)
1144 #define ARM_HAVE_V8HI_ARITH (ARM_HAVE_NEON_V8HI_ARITH || TARGET_HAVE_MVE)
1145 #define ARM_HAVE_V4SI_ARITH (ARM_HAVE_NEON_V4SI_ARITH || TARGET_HAVE_MVE)
1146 #define ARM_HAVE_V2DI_ARITH ARM_HAVE_NEON_V2DI_ARITH
1147
1148 #define ARM_HAVE_V4HF_ARITH ARM_HAVE_NEON_V4HF_ARITH
1149 #define ARM_HAVE_V2SF_ARITH ARM_HAVE_NEON_V2SF_ARITH
1150
1151 #define ARM_HAVE_V8HF_ARITH (ARM_HAVE_NEON_V8HF_ARITH || TARGET_HAVE_MVE_FLOAT)
1152 #define ARM_HAVE_V4SF_ARITH (ARM_HAVE_NEON_V4SF_ARITH || TARGET_HAVE_MVE_FLOAT)
1153
1154 /* The conditions under which vector modes are supported by load/store
1155 instructions using Neon. */
1156
1157 #define ARM_HAVE_NEON_V8QI_LDST TARGET_NEON
1158 #define ARM_HAVE_NEON_V16QI_LDST TARGET_NEON
1159 #define ARM_HAVE_NEON_V4HI_LDST TARGET_NEON
1160 #define ARM_HAVE_NEON_V8HI_LDST TARGET_NEON
1161 #define ARM_HAVE_NEON_V2SI_LDST TARGET_NEON
1162 #define ARM_HAVE_NEON_V4SI_LDST TARGET_NEON
1163 #define ARM_HAVE_NEON_V4HF_LDST TARGET_NEON_FP16INST
1164 #define ARM_HAVE_NEON_V8HF_LDST TARGET_NEON_FP16INST
1165 #define ARM_HAVE_NEON_V4BF_LDST TARGET_BF16_SIMD
1166 #define ARM_HAVE_NEON_V8BF_LDST TARGET_BF16_SIMD
1167 #define ARM_HAVE_NEON_V2SF_LDST TARGET_NEON
1168 #define ARM_HAVE_NEON_V4SF_LDST TARGET_NEON
1169 #define ARM_HAVE_NEON_DI_LDST TARGET_NEON
1170 #define ARM_HAVE_NEON_V2DI_LDST TARGET_NEON
1171
1172 /* The conditions under which vector modes are supported by load/store
1173 instructions by any vector extension. */
1174
1175 #define ARM_HAVE_V8QI_LDST (ARM_HAVE_NEON_V8QI_LDST || TARGET_REALLY_IWMMXT)
1176 #define ARM_HAVE_V4HI_LDST (ARM_HAVE_NEON_V4HI_LDST || TARGET_REALLY_IWMMXT)
1177 #define ARM_HAVE_V2SI_LDST (ARM_HAVE_NEON_V2SI_LDST || TARGET_REALLY_IWMMXT)
1178
1179 #define ARM_HAVE_V16QI_LDST (ARM_HAVE_NEON_V16QI_LDST || TARGET_HAVE_MVE)
1180 #define ARM_HAVE_V8HI_LDST (ARM_HAVE_NEON_V8HI_LDST || TARGET_HAVE_MVE)
1181 #define ARM_HAVE_V4SI_LDST (ARM_HAVE_NEON_V4SI_LDST || TARGET_HAVE_MVE)
1182 #define ARM_HAVE_DI_LDST ARM_HAVE_NEON_DI_LDST
1183 #define ARM_HAVE_V2DI_LDST ARM_HAVE_NEON_V2DI_LDST
1184
1185 #define ARM_HAVE_V4HF_LDST ARM_HAVE_NEON_V4HF_LDST
1186 #define ARM_HAVE_V2SF_LDST ARM_HAVE_NEON_V2SF_LDST
1187
1188 #define ARM_HAVE_V4BF_LDST ARM_HAVE_NEON_V4BF_LDST
1189 #define ARM_HAVE_V8BF_LDST ARM_HAVE_NEON_V8BF_LDST
1190
1191 #define ARM_HAVE_V8HF_LDST (ARM_HAVE_NEON_V8HF_LDST || TARGET_HAVE_MVE_FLOAT)
1192 #define ARM_HAVE_V4SF_LDST (ARM_HAVE_NEON_V4SF_LDST || TARGET_HAVE_MVE_FLOAT)
1193
1194 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
1195 extern int arm_regs_in_sequence[];
1196
1197 /* The order in which register should be allocated. It is good to use ip
1198 since no saving is required (though calls clobber it) and it never contains
1199 function parameters. It is quite good to use lr since other calls may
1200 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1201 least likely to contain a function parameter; in addition results are
1202 returned in r0.
1203 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1204 then D8-D15. The reason for doing this is to attempt to reduce register
1205 pressure when both single- and double-precision registers are used in a
1206 function. */
1207
1208 #define VREG(X) (FIRST_VFP_REGNUM + (X))
1209 #define WREG(X) (FIRST_IWMMXT_REGNUM + (X))
1210 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1211
1212 #define REG_ALLOC_ORDER \
1213 { \
1214 /* General registers. */ \
1215 3, 2, 1, 0, 12, 14, 4, 5, \
1216 6, 7, 8, 9, 10, 11, \
1217 /* High VFP registers. */ \
1218 VREG(32), VREG(33), VREG(34), VREG(35), \
1219 VREG(36), VREG(37), VREG(38), VREG(39), \
1220 VREG(40), VREG(41), VREG(42), VREG(43), \
1221 VREG(44), VREG(45), VREG(46), VREG(47), \
1222 VREG(48), VREG(49), VREG(50), VREG(51), \
1223 VREG(52), VREG(53), VREG(54), VREG(55), \
1224 VREG(56), VREG(57), VREG(58), VREG(59), \
1225 VREG(60), VREG(61), VREG(62), VREG(63), \
1226 /* VFP argument registers. */ \
1227 VREG(15), VREG(14), VREG(13), VREG(12), \
1228 VREG(11), VREG(10), VREG(9), VREG(8), \
1229 VREG(7), VREG(6), VREG(5), VREG(4), \
1230 VREG(3), VREG(2), VREG(1), VREG(0), \
1231 /* VFP call-saved registers. */ \
1232 VREG(16), VREG(17), VREG(18), VREG(19), \
1233 VREG(20), VREG(21), VREG(22), VREG(23), \
1234 VREG(24), VREG(25), VREG(26), VREG(27), \
1235 VREG(28), VREG(29), VREG(30), VREG(31), \
1236 /* IWMMX registers. */ \
1237 WREG(0), WREG(1), WREG(2), WREG(3), \
1238 WREG(4), WREG(5), WREG(6), WREG(7), \
1239 WREG(8), WREG(9), WREG(10), WREG(11), \
1240 WREG(12), WREG(13), WREG(14), WREG(15), \
1241 WGREG(0), WGREG(1), WGREG(2), WGREG(3), \
1242 /* Registers not for general use. */ \
1243 CC_REGNUM, VFPCC_REGNUM, \
1244 FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, \
1245 SP_REGNUM, PC_REGNUM, APSRQ_REGNUM, \
1246 APSRGE_REGNUM, VPR_REGNUM \
1247 }
1248
1249 #define IS_VPR_REGNUM(REGNUM) \
1250 ((REGNUM) == VPR_REGNUM)
1251
1252 /* Use different register alloc ordering for Thumb. */
1253 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1254
1255 /* Tell IRA to use the order we define when optimizing for size. */
1256 #define HONOR_REG_ALLOC_ORDER optimize_function_for_size_p (cfun)
1257
1258 /* Interrupt functions can only use registers that have already been
1259 saved by the prologue, even if they would normally be
1260 call-clobbered. */
1261 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1262 (! IS_INTERRUPT (cfun->machine->func_type) || \
1263 df_regs_ever_live_p (DST))
1264 \f
1265 /* Register and constant classes. */
1266
1267 /* Register classes. */
1268 enum reg_class
1269 {
1270 NO_REGS,
1271 LO_REGS,
1272 STACK_REG,
1273 BASE_REGS,
1274 HI_REGS,
1275 CALLER_SAVE_REGS,
1276 EVEN_REG,
1277 GENERAL_REGS,
1278 CORE_REGS,
1279 VFP_D0_D7_REGS,
1280 VFP_LO_REGS,
1281 VFP_HI_REGS,
1282 VFP_REGS,
1283 IWMMXT_REGS,
1284 IWMMXT_GR_REGS,
1285 CC_REG,
1286 VFPCC_REG,
1287 SFP_REG,
1288 AFP_REG,
1289 VPR_REG,
1290 ALL_REGS,
1291 LIM_REG_CLASSES
1292 };
1293
1294 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1295
1296 /* Give names of register classes as strings for dump file. */
1297 #define REG_CLASS_NAMES \
1298 { \
1299 "NO_REGS", \
1300 "LO_REGS", \
1301 "STACK_REG", \
1302 "BASE_REGS", \
1303 "HI_REGS", \
1304 "CALLER_SAVE_REGS", \
1305 "EVEN_REG", \
1306 "GENERAL_REGS", \
1307 "CORE_REGS", \
1308 "VFP_D0_D7_REGS", \
1309 "VFP_LO_REGS", \
1310 "VFP_HI_REGS", \
1311 "VFP_REGS", \
1312 "IWMMXT_REGS", \
1313 "IWMMXT_GR_REGS", \
1314 "CC_REG", \
1315 "VFPCC_REG", \
1316 "SFP_REG", \
1317 "AFP_REG", \
1318 "VPR_REG", \
1319 "ALL_REGS" \
1320 }
1321
1322 /* Define which registers fit in which classes.
1323 This is an initializer for a vector of HARD_REG_SET
1324 of length N_REG_CLASSES. */
1325 #define REG_CLASS_CONTENTS \
1326 { \
1327 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1328 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1329 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1330 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1331 { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1332 { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1333 { 0x00005555, 0x00000000, 0x00000000, 0x00000000 }, /* EVEN_REGS. */ \
1334 { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1335 { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1336 { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1337 { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS */ \
1338 { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS */ \
1339 { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS */ \
1340 { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */ \
1341 { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1342 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */ \
1343 { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */ \
1344 { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */ \
1345 { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */ \
1346 { 0x00000000, 0x00000000, 0x00000000, 0x00000400 }, /* VPR_REG. */ \
1347 { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F } /* ALL_REGS. */ \
1348 }
1349
1350 #define FP_SYSREGS \
1351 DEF_FP_SYSREG (FPSCR) \
1352 DEF_FP_SYSREG (FPSCR_nzcvqc) \
1353 DEF_FP_SYSREG (VPR) \
1354 DEF_FP_SYSREG (P0) \
1355 DEF_FP_SYSREG (FPCXTNS) \
1356 DEF_FP_SYSREG (FPCXTS)
1357
1358 #define DEF_FP_SYSREG(reg) reg ## _ENUM,
1359 enum vfp_sysregs_encoding {
1360 FP_SYSREGS
1361 NB_FP_SYSREGS
1362 };
1363 #undef DEF_FP_SYSREG
1364 extern const char *fp_sysreg_names[NB_FP_SYSREGS];
1365
1366 /* Any of the VFP register classes. */
1367 #define IS_VFP_CLASS(X) \
1368 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1369 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1370
1371 /* The same information, inverted:
1372 Return the class number of the smallest class containing
1373 reg number REGNO. This could be a conditional expression
1374 or could index an array. */
1375 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1376
1377 /* The class value for index registers, and the one for base regs. */
1378 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1379 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1380
1381 /* For the Thumb the high registers cannot be used as base registers
1382 when addressing quantities in QI or HI mode; if we don't know the
1383 mode, then we must be conservative. For MVE we need to load from
1384 memory to low regs based on given modes i.e [Rn], Rn <= LO_REGS. */
1385 #define MODE_BASE_REG_CLASS(MODE) \
1386 (TARGET_HAVE_MVE ? arm_mode_base_reg_class (MODE) \
1387 :(TARGET_32BIT ? CORE_REGS \
1388 : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS \
1389 : LO_REGS))
1390
1391 /* For Thumb we cannot support SP+reg addressing, so we return LO_REGS
1392 instead of BASE_REGS. */
1393 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1394
1395 /* When this hook returns true for MODE, the compiler allows
1396 registers explicitly used in the rtl to be used as spill registers
1397 but prevents the compiler from extending the lifetime of these
1398 registers. */
1399 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1400 arm_small_register_classes_for_mode_p
1401
1402 /* Must leave BASE_REGS reloads alone */
1403 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1404 (lra_in_progress ? NO_REGS \
1405 : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1406 ? ((true_regnum (X) == -1 ? LO_REGS \
1407 : (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS \
1408 : NO_REGS)) \
1409 : NO_REGS))
1410
1411 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1412 (lra_in_progress ? NO_REGS \
1413 : (CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1414 ? ((true_regnum (X) == -1 ? LO_REGS \
1415 : (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS \
1416 : NO_REGS)) \
1417 : NO_REGS)
1418
1419 /* Return the register class of a scratch register needed to copy IN into
1420 or out of a register in CLASS in MODE. If it can be done directly,
1421 NO_REGS is returned. */
1422 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1423 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1424 ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS)) \
1425 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1426 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1427 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1428 : TARGET_32BIT \
1429 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1430 ? GENERAL_REGS : NO_REGS) \
1431 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1432
1433 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1434 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1435 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1436 ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS)) \
1437 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1438 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1439 coproc_secondary_reload_class (MODE, X, TRUE) : \
1440 (TARGET_32BIT ? \
1441 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1442 && CONSTANT_P (X)) \
1443 ? GENERAL_REGS : \
1444 (((MODE) == HImode && ! arm_arch4 \
1445 && (MEM_P (X) \
1446 || ((REG_P (X) || GET_CODE (X) == SUBREG) \
1447 && true_regnum (X) == -1))) \
1448 ? GENERAL_REGS : NO_REGS) \
1449 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1450
1451 /* Return the maximum number of consecutive registers
1452 needed to represent mode MODE in a register of class CLASS.
1453 ARM regs are UNITS_PER_WORD bits.
1454 FIXME: Is this true for iWMMX? */
1455 #define CLASS_MAX_NREGS(CLASS, MODE) \
1456 (ARM_NUM_REGS (MODE))
1457
1458 /* If defined, gives a class of registers that cannot be used as the
1459 operand of a SUBREG that changes the mode of the object illegally. */
1460 \f
1461 /* Stack layout; function entry, exit and calling. */
1462
1463 /* Define this if pushing a word on the stack
1464 makes the stack pointer a smaller address. */
1465 #define STACK_GROWS_DOWNWARD 1
1466
1467 /* Define this to nonzero if the nominal address of the stack frame
1468 is at the high-address end of the local variables;
1469 that is, each additional local variable allocated
1470 goes at a more negative offset in the frame. */
1471 #define FRAME_GROWS_DOWNWARD 1
1472
1473 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1474 When present, it is one word in size, and sits at the top of the frame,
1475 between the soft frame pointer and either r7 or r11.
1476
1477 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1478 and only then if some outgoing arguments are passed on the stack. It would
1479 be tempting to also check whether the stack arguments are passed by indirect
1480 calls, but there seems to be no reason in principle why a post-reload pass
1481 couldn't convert a direct call into an indirect one. */
1482 #define CALLER_INTERWORKING_SLOT_SIZE \
1483 (TARGET_CALLER_INTERWORKING \
1484 && maybe_ne (crtl->outgoing_args_size, 0) \
1485 ? UNITS_PER_WORD : 0)
1486
1487 /* If we generate an insn to push BYTES bytes,
1488 this says how many the stack pointer really advances by. */
1489 /* The push insns do not do this rounding implicitly.
1490 So don't define this. */
1491 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1492
1493 /* Define this if the maximum size of all the outgoing args is to be
1494 accumulated and pushed during the prologue. The amount can be
1495 found in the variable crtl->outgoing_args_size. */
1496 #define ACCUMULATE_OUTGOING_ARGS 1
1497
1498 /* Offset of first parameter from the argument pointer register value. */
1499 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1500
1501 /* Amount of memory needed for an untyped call to save all possible return
1502 registers. */
1503 #define APPLY_RESULT_SIZE arm_apply_result_size()
1504
1505 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1506 values must be in memory. On the ARM, they need only do so if larger
1507 than a word, or if they contain elements offset from zero in the struct. */
1508 #define DEFAULT_PCC_STRUCT_RETURN 0
1509
1510 /* These bits describe the different types of function supported
1511 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1512 normal function and an interworked function, for example. Knowing the
1513 type of a function is important for determining its prologue and
1514 epilogue sequences.
1515 Note value 7 is currently unassigned. Also note that the interrupt
1516 function types all have bit 2 set, so that they can be tested for easily.
1517 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1518 machine_function structure is initialized (to zero) func_type will
1519 default to unknown. This will force the first use of arm_current_func_type
1520 to call arm_compute_func_type. */
1521 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1522 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1523 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1524 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1525 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1526 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1527
1528 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1529
1530 /* In addition functions can have several type modifiers,
1531 outlined by these bit masks: */
1532 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1533 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1534 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1535 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1536 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1537 #define ARM_FT_CMSE_ENTRY (1 << 7) /* ARMv8-M non-secure entry function. */
1538
1539 /* Some macros to test these flags. */
1540 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1541 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1542 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1543 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1544 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1545 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1546 #define IS_CMSE_ENTRY(t) (t & ARM_FT_CMSE_ENTRY)
1547
1548
1549 /* Structure used to hold the function stack frame layout. Offsets are
1550 relative to the stack pointer on function entry. Positive offsets are
1551 in the direction of stack growth.
1552 Only soft_frame is used in thumb mode. */
1553
1554 typedef struct GTY(()) arm_stack_offsets
1555 {
1556 int saved_args; /* ARG_POINTER_REGNUM. */
1557 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1558 int saved_regs;
1559 int soft_frame; /* FRAME_POINTER_REGNUM. */
1560 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1561 int outgoing_args; /* STACK_POINTER_REGNUM. */
1562 unsigned int saved_regs_mask;
1563 }
1564 arm_stack_offsets;
1565
1566 #if !defined(GENERATOR_FILE) && !defined (USED_FOR_TARGET)
1567 /* A C structure for machine-specific, per-function data.
1568 This is added to the cfun structure. */
1569 typedef struct GTY(()) machine_function
1570 {
1571 /* Additional stack adjustment in __builtin_eh_throw. */
1572 rtx eh_epilogue_sp_ofs;
1573 /* Records if LR has to be saved for far jumps. */
1574 int far_jump_used;
1575 /* Records if ARG_POINTER was ever live. */
1576 int arg_pointer_live;
1577 /* Records if the save of LR has been eliminated. */
1578 int lr_save_eliminated;
1579 /* The size of the stack frame. Only valid after reload. */
1580 arm_stack_offsets stack_offsets;
1581 /* Records the type of the current function. */
1582 unsigned long func_type;
1583 /* Record if the function has a variable argument list. */
1584 int uses_anonymous_args;
1585 /* Records if sibcalls are blocked because an argument
1586 register is needed to preserve stack alignment. */
1587 int sibcall_blocked;
1588 /* The PIC register for this function. This might be a pseudo. */
1589 rtx pic_reg;
1590 /* Labels for per-function Thumb call-via stubs. One per potential calling
1591 register. We can never call via LR or PC. We can call via SP if a
1592 trampoline happens to be on the top of the stack. */
1593 rtx call_via[14];
1594 /* Set to 1 when a return insn is output, this means that the epilogue
1595 is not needed. */
1596 int return_used_this_function;
1597 /* When outputting Thumb-1 code, record the last insn that provides
1598 information about condition codes, and the comparison operands. */
1599 rtx thumb1_cc_insn;
1600 rtx thumb1_cc_op0;
1601 rtx thumb1_cc_op1;
1602 /* Also record the CC mode that is supported. */
1603 machine_mode thumb1_cc_mode;
1604 /* Set to 1 after arm_reorg has started. */
1605 int after_arm_reorg;
1606 /* The number of bytes used to store the static chain register on the
1607 stack, above the stack frame. */
1608 int static_chain_stack_bytes;
1609 }
1610 machine_function;
1611 #endif
1612
1613 #define ARM_Q_BIT_READ (arm_q_bit_access ())
1614 #define ARM_GE_BITS_READ (arm_ge_bits_access ())
1615
1616 /* As in the machine_function, a global set of call-via labels, for code
1617 that is in text_section. */
1618 extern GTY(()) rtx thumb_call_via_label[14];
1619
1620 /* The number of potential ways of assigning to a co-processor. */
1621 #define ARM_NUM_COPROC_SLOTS 1
1622
1623 /* Enumeration of procedure calling standard variants. We don't really
1624 support all of these yet. */
1625 enum arm_pcs
1626 {
1627 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1628 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1629 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1630 /* This must be the last AAPCS variant. */
1631 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1632 ARM_PCS_ATPCS, /* ATPCS. */
1633 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1634 ARM_PCS_UNKNOWN
1635 };
1636
1637 /* Default procedure calling standard of current compilation unit. */
1638 extern enum arm_pcs arm_pcs_default;
1639
1640 #if !defined (USED_FOR_TARGET)
1641 /* A C type for declaring a variable that is used as the first argument of
1642 `FUNCTION_ARG' and other related values. */
1643 typedef struct
1644 {
1645 /* This is the number of registers of arguments scanned so far. */
1646 int nregs;
1647 /* This is the number of iWMMXt register arguments scanned so far. */
1648 int iwmmxt_nregs;
1649 int named_count;
1650 int nargs;
1651 /* Which procedure call variant to use for this call. */
1652 enum arm_pcs pcs_variant;
1653
1654 /* AAPCS related state tracking. */
1655 int aapcs_arg_processed; /* No need to lay out this argument again. */
1656 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1657 this argument, or -1 if using core
1658 registers. */
1659 int aapcs_ncrn;
1660 int aapcs_next_ncrn;
1661 rtx aapcs_reg; /* Register assigned to this argument. */
1662 int aapcs_partial; /* How many bytes are passed in regs (if
1663 split between core regs and stack.
1664 Zero otherwise. */
1665 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1666 int can_split; /* Argument can be split between core regs
1667 and the stack. */
1668 /* Private data for tracking VFP register allocation */
1669 unsigned aapcs_vfp_regs_free;
1670 unsigned aapcs_vfp_reg_alloc;
1671 int aapcs_vfp_rcount;
1672 MACHMODE aapcs_vfp_rmode;
1673 } CUMULATIVE_ARGS;
1674 #endif
1675
1676 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1677 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? PAD_UPWARD : PAD_DOWNWARD)
1678
1679 /* For AAPCS, padding should never be below the argument. For other ABIs,
1680 * mimic the default. */
1681 #define PAD_VARARGS_DOWN \
1682 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1683
1684 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1685 for a call to a function whose data type is FNTYPE.
1686 For a library call, FNTYPE is 0.
1687 On the ARM, the offset starts at 0. */
1688 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1689 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1690
1691 /* 1 if N is a possible register number for function argument passing.
1692 On the ARM, r0-r3 are used to pass args. */
1693 #define FUNCTION_ARG_REGNO_P(REGNO) \
1694 (IN_RANGE ((REGNO), 0, 3) \
1695 || (TARGET_AAPCS_BASED && TARGET_HARD_FLOAT \
1696 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1697 || (TARGET_IWMMXT_ABI \
1698 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1699
1700 \f
1701 /* If your target environment doesn't prefix user functions with an
1702 underscore, you may wish to re-define this to prevent any conflicts. */
1703 #ifndef ARM_MCOUNT_NAME
1704 #define ARM_MCOUNT_NAME "*mcount"
1705 #endif
1706
1707 /* Call the function profiler with a given profile label. The Acorn
1708 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1709 On the ARM the full profile code will look like:
1710 .data
1711 LP1
1712 .word 0
1713 .text
1714 mov ip, lr
1715 bl mcount
1716 .word LP1
1717
1718 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1719 will output the .text section.
1720
1721 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1722 ``prof'' doesn't seem to mind about this!
1723
1724 Note - this version of the code is designed to work in both ARM and
1725 Thumb modes. */
1726 #ifndef ARM_FUNCTION_PROFILER
1727 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1728 { \
1729 char temp[20]; \
1730 rtx sym; \
1731 \
1732 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1733 IP_REGNUM, LR_REGNUM); \
1734 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1735 fputc ('\n', STREAM); \
1736 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1737 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1738 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1739 }
1740 #endif
1741
1742 #ifdef THUMB_FUNCTION_PROFILER
1743 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1744 if (TARGET_ARM) \
1745 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1746 else \
1747 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1748 #else
1749 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1750 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1751 #endif
1752
1753 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1754 the stack pointer does not matter. The value is tested only in
1755 functions that have frame pointers.
1756 No definition is equivalent to always zero.
1757
1758 On the ARM, the function epilogue recovers the stack pointer from the
1759 frame. */
1760 #define EXIT_IGNORE_STACK 1
1761
1762 #define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1763
1764 /* Determine if the epilogue should be output as RTL.
1765 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1766 #define USE_RETURN_INSN(ISCOND) \
1767 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1768
1769 /* Definitions for register eliminations.
1770
1771 This is an array of structures. Each structure initializes one pair
1772 of eliminable registers. The "from" register number is given first,
1773 followed by "to". Eliminations of the same "from" register are listed
1774 in order of preference.
1775
1776 We have two registers that can be eliminated on the ARM. First, the
1777 arg pointer register can often be eliminated in favor of the stack
1778 pointer register. Secondly, the pseudo frame pointer register can always
1779 be eliminated; it is replaced with either the stack or the real frame
1780 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1781 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1782
1783 #define ELIMINABLE_REGS \
1784 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1785 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1786 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1787 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1788 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1789 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1790 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1791
1792 /* Define the offset between two registers, one to be eliminated, and the
1793 other its replacement, at the start of a routine. */
1794 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1795 if (TARGET_ARM) \
1796 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1797 else \
1798 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1799
1800 /* Special case handling of the location of arguments passed on the stack. */
1801 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1802
1803 /* Initialize data used by insn expanders. This is called from insn_emit,
1804 once for every function before code is generated. */
1805 #define INIT_EXPANDERS arm_init_expanders ()
1806
1807 /* Length in units of the trampoline for entering a nested function. */
1808 #define TRAMPOLINE_SIZE (TARGET_FDPIC ? 32 : (TARGET_32BIT ? 16 : 20))
1809
1810 /* Alignment required for a trampoline in bits. */
1811 #define TRAMPOLINE_ALIGNMENT 32
1812 \f
1813 /* Addressing modes, and classification of registers for them. */
1814 #define HAVE_POST_INCREMENT 1
1815 #define HAVE_PRE_INCREMENT TARGET_32BIT
1816 #define HAVE_POST_DECREMENT TARGET_32BIT
1817 #define HAVE_PRE_DECREMENT TARGET_32BIT
1818 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1819 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1820 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1821 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1822
1823 enum arm_auto_incmodes
1824 {
1825 ARM_POST_INC,
1826 ARM_PRE_INC,
1827 ARM_POST_DEC,
1828 ARM_PRE_DEC
1829 };
1830
1831 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1832 (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1833 #define USE_LOAD_POST_INCREMENT(mode) \
1834 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1835 #define USE_LOAD_PRE_INCREMENT(mode) \
1836 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1837 #define USE_LOAD_POST_DECREMENT(mode) \
1838 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1839 #define USE_LOAD_PRE_DECREMENT(mode) \
1840 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1841
1842 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1843 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1844 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1845 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1846
1847 /* Macros to check register numbers against specific register classes. */
1848
1849 /* These assume that REGNO is a hard or pseudo reg number.
1850 They give nonzero only if REGNO is a hard reg of the suitable class
1851 or a pseudo reg currently allocated to a suitable hard reg. */
1852 #define TEST_REGNO(R, TEST, VALUE) \
1853 ((R TEST VALUE) \
1854 || (reg_renumber && ((unsigned) reg_renumber[R] TEST VALUE)))
1855
1856 /* Don't allow the pc to be used. */
1857 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1858 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1859 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1860 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1861
1862 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1863 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1864 || (GET_MODE_SIZE (MODE) >= 4 \
1865 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1866
1867 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1868 (TARGET_THUMB1 \
1869 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1870 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1871
1872 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1873 For Thumb, we cannot use SP + reg, so reject SP. */
1874 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1875 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1876
1877 /* For ARM code, we don't care about the mode, but for Thumb, the index
1878 must be suitable for use in a QImode load. */
1879 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1880 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1881 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1882
1883 /* Maximum number of registers that can appear in a valid memory address.
1884 Shifts in addresses can't be by a register. */
1885 #define MAX_REGS_PER_ADDRESS 2
1886
1887 /* Recognize any constant value that is a valid address. */
1888 /* XXX We can address any constant, eventually... */
1889 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1890 #define CONSTANT_ADDRESS_P(X) \
1891 (GET_CODE (X) == SYMBOL_REF \
1892 && (CONSTANT_POOL_ADDRESS_P (X) \
1893 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1894
1895 /* True if SYMBOL + OFFSET constants must refer to something within
1896 SYMBOL's section. */
1897 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1898
1899 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1900 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1901 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1902 #endif
1903
1904 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1905 #define SUBTARGET_NAME_ENCODING_LENGTHS
1906 #endif
1907
1908 /* This is a C fragment for the inside of a switch statement.
1909 Each case label should return the number of characters to
1910 be stripped from the start of a function's name, if that
1911 name starts with the indicated character. */
1912 #define ARM_NAME_ENCODING_LENGTHS \
1913 case '*': return 1; \
1914 SUBTARGET_NAME_ENCODING_LENGTHS
1915
1916 /* This is how to output a reference to a user-level label named NAME.
1917 `assemble_name' uses this. */
1918 #undef ASM_OUTPUT_LABELREF
1919 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1920 arm_asm_output_labelref (FILE, NAME)
1921
1922 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1923 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1924 if (TARGET_THUMB2) \
1925 thumb2_asm_output_opcode (STREAM);
1926
1927 /* The EABI specifies that constructors should go in .init_array.
1928 Other targets use .ctors for compatibility. */
1929 #ifndef ARM_EABI_CTORS_SECTION_OP
1930 #define ARM_EABI_CTORS_SECTION_OP \
1931 "\t.section\t.init_array,\"aw\",%init_array"
1932 #endif
1933 #ifndef ARM_EABI_DTORS_SECTION_OP
1934 #define ARM_EABI_DTORS_SECTION_OP \
1935 "\t.section\t.fini_array,\"aw\",%fini_array"
1936 #endif
1937 #define ARM_CTORS_SECTION_OP \
1938 "\t.section\t.ctors,\"aw\",%progbits"
1939 #define ARM_DTORS_SECTION_OP \
1940 "\t.section\t.dtors,\"aw\",%progbits"
1941
1942 /* Define CTORS_SECTION_ASM_OP. */
1943 #undef CTORS_SECTION_ASM_OP
1944 #undef DTORS_SECTION_ASM_OP
1945 #ifndef IN_LIBGCC2
1946 # define CTORS_SECTION_ASM_OP \
1947 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1948 # define DTORS_SECTION_ASM_OP \
1949 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1950 #else /* !defined (IN_LIBGCC2) */
1951 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1952 so we cannot use the definition above. */
1953 # ifdef __ARM_EABI__
1954 /* The .ctors section is not part of the EABI, so we do not define
1955 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1956 from trying to use it. We do define it when doing normal
1957 compilation, as .init_array can be used instead of .ctors. */
1958 /* There is no need to emit begin or end markers when using
1959 init_array; the dynamic linker will compute the size of the
1960 array itself based on special symbols created by the static
1961 linker. However, we do need to arrange to set up
1962 exception-handling here. */
1963 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1964 # define CTOR_LIST_END /* empty */
1965 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1966 # define DTOR_LIST_END /* empty */
1967 # else /* !defined (__ARM_EABI__) */
1968 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1969 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1970 # endif /* !defined (__ARM_EABI__) */
1971 #endif /* !defined (IN_LIBCC2) */
1972
1973 /* True if the operating system can merge entities with vague linkage
1974 (e.g., symbols in COMDAT group) during dynamic linking. */
1975 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1976 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1977 #endif
1978
1979 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1980
1981 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1982 and check its validity for a certain class.
1983 We have two alternate definitions for each of them.
1984 The usual definition accepts all pseudo regs; the other rejects
1985 them unless they have been allocated suitable hard regs.
1986 The symbol REG_OK_STRICT causes the latter definition to be used.
1987 Thumb-2 has the same restrictions as arm. */
1988 #ifndef REG_OK_STRICT
1989
1990 #define ARM_REG_OK_FOR_BASE_P(X) \
1991 (REGNO (X) <= LAST_ARM_REGNUM \
1992 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1993 || REGNO (X) == FRAME_POINTER_REGNUM \
1994 || REGNO (X) == ARG_POINTER_REGNUM)
1995
1996 #define ARM_REG_OK_FOR_INDEX_P(X) \
1997 ((REGNO (X) <= LAST_ARM_REGNUM \
1998 && REGNO (X) != STACK_POINTER_REGNUM) \
1999 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
2000 || REGNO (X) == FRAME_POINTER_REGNUM \
2001 || REGNO (X) == ARG_POINTER_REGNUM)
2002
2003 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
2004 (REGNO (X) <= LAST_LO_REGNUM \
2005 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
2006 || (GET_MODE_SIZE (MODE) >= 4 \
2007 && (REGNO (X) == STACK_POINTER_REGNUM \
2008 || (X) == hard_frame_pointer_rtx \
2009 || (X) == arg_pointer_rtx)))
2010
2011 #define REG_STRICT_P 0
2012
2013 #else /* REG_OK_STRICT */
2014
2015 #define ARM_REG_OK_FOR_BASE_P(X) \
2016 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
2017
2018 #define ARM_REG_OK_FOR_INDEX_P(X) \
2019 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
2020
2021 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
2022 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
2023
2024 #define REG_STRICT_P 1
2025
2026 #endif /* REG_OK_STRICT */
2027
2028 /* Now define some helpers in terms of the above. */
2029
2030 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2031 (TARGET_THUMB1 \
2032 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
2033 : ARM_REG_OK_FOR_BASE_P (X))
2034
2035 /* For 16-bit Thumb, a valid index register is anything that can be used in
2036 a byte load instruction. */
2037 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
2038 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
2039
2040 /* Nonzero if X is a hard reg that can be used as an index
2041 or if it is a pseudo reg. On the Thumb, the stack pointer
2042 is not suitable. */
2043 #define REG_OK_FOR_INDEX_P(X) \
2044 (TARGET_THUMB1 \
2045 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
2046 : ARM_REG_OK_FOR_INDEX_P (X))
2047
2048 /* Nonzero if X can be the base register in a reg+reg addressing mode.
2049 For Thumb, we cannot use SP + reg, so reject SP. */
2050 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
2051 REG_OK_FOR_INDEX_P (X)
2052 \f
2053 #define ARM_BASE_REGISTER_RTX_P(X) \
2054 (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
2055
2056 #define ARM_INDEX_REGISTER_RTX_P(X) \
2057 (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
2058 \f
2059 /* Specify the machine mode that this machine uses
2060 for the index in the tablejump instruction. */
2061 #define CASE_VECTOR_MODE Pmode
2062
2063 #define CASE_VECTOR_PC_RELATIVE ((TARGET_THUMB2 \
2064 || (TARGET_THUMB1 \
2065 && (optimize_size || flag_pic))) \
2066 && (!target_pure_code))
2067
2068
2069 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
2070 (TARGET_THUMB1 \
2071 ? (min >= 0 && max < 512 \
2072 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
2073 : min >= -256 && max < 256 \
2074 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
2075 : min >= 0 && max < 8192 \
2076 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
2077 : min >= -4096 && max < 4096 \
2078 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
2079 : SImode) \
2080 : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode \
2081 : (max >= 0x200) ? HImode \
2082 : QImode))
2083
2084 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
2085 unsigned is probably best, but may break some code. */
2086 #ifndef DEFAULT_SIGNED_CHAR
2087 #define DEFAULT_SIGNED_CHAR 0
2088 #endif
2089
2090 /* Max number of bytes we can move from memory to memory
2091 in one reasonably fast instruction. */
2092 #define MOVE_MAX 4
2093
2094 #undef MOVE_RATIO
2095 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
2096
2097 /* Define if operations between registers always perform the operation
2098 on the full register even if a narrower mode is specified. */
2099 #define WORD_REGISTER_OPERATIONS 1
2100
2101 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2102 will either zero-extend or sign-extend. The value of this macro should
2103 be the code that says which one of the two operations is implicitly
2104 done, UNKNOWN if none. */
2105 #define LOAD_EXTEND_OP(MODE) \
2106 (TARGET_THUMB ? ZERO_EXTEND : \
2107 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
2108 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
2109
2110 /* Nonzero if access to memory by bytes is slow and undesirable. */
2111 #define SLOW_BYTE_ACCESS 0
2112
2113 /* Immediate shift counts are truncated by the output routines (or was it
2114 the assembler?). Shift counts in a register are truncated by ARM. Note
2115 that the native compiler puts too large (> 32) immediate shift counts
2116 into a register and shifts by the register, letting the ARM decide what
2117 to do instead of doing that itself. */
2118 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
2119 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2120 On the arm, Y in a register is used modulo 256 for the shift. Only for
2121 rotates is modulo 32 used. */
2122 /* #define SHIFT_COUNT_TRUNCATED 1 */
2123
2124 /* Calling from registers is a massive pain. */
2125 #define NO_FUNCTION_CSE 1
2126
2127 /* The machine modes of pointers and functions */
2128 #define Pmode SImode
2129 #define FUNCTION_MODE Pmode
2130
2131 #define ARM_FRAME_RTX(X) \
2132 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
2133 || (X) == arg_pointer_rtx)
2134
2135 /* Try to generate sequences that don't involve branches, we can then use
2136 conditional instructions. */
2137 #define BRANCH_COST(speed_p, predictable_p) \
2138 ((arm_branch_cost != -1) ? arm_branch_cost : \
2139 (current_tune->branch_cost (speed_p, predictable_p)))
2140
2141 /* False if short circuit operation is preferred. */
2142 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
2143 ((optimize_size) \
2144 ? (TARGET_THUMB ? false : true) \
2145 : TARGET_THUMB ? static_cast<bool> (current_tune->logical_op_non_short_circuit_thumb) \
2146 : static_cast<bool> (current_tune->logical_op_non_short_circuit_arm))
2147
2148 \f
2149 /* Position Independent Code. */
2150 /* We decide which register to use based on the compilation options and
2151 the assembler in use; this is more general than the APCS restriction of
2152 using sb (r9) all the time. */
2153 extern unsigned arm_pic_register;
2154
2155 /* The register number of the register used to address a table of static
2156 data addresses in memory. */
2157 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2158
2159 /* For FDPIC, the FDPIC register is call-clobbered (otherwise PLT
2160 entries would need to handle saving and restoring it). */
2161 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED TARGET_FDPIC
2162
2163 /* We can't directly access anything that contains a symbol,
2164 nor can we indirect via the constant pool. One exception is
2165 UNSPEC_TLS, which is always PIC. */
2166 #define LEGITIMATE_PIC_OPERAND_P(X) \
2167 (!(symbol_mentioned_p (X) \
2168 || label_mentioned_p (X) \
2169 || (GET_CODE (X) == SYMBOL_REF \
2170 && CONSTANT_POOL_ADDRESS_P (X) \
2171 && (symbol_mentioned_p (get_pool_constant (X)) \
2172 || label_mentioned_p (get_pool_constant (X))))) \
2173 || tls_mentioned_p (X))
2174
2175 /* We may want to save the PIC register if it is a dedicated one. */
2176 #define PIC_REGISTER_MAY_NEED_SAVING \
2177 (flag_pic \
2178 && !TARGET_SINGLE_PIC_BASE \
2179 && !TARGET_FDPIC \
2180 && arm_pic_register != INVALID_REGNUM)
2181
2182 /* We need to know when we are making a constant pool; this determines
2183 whether data needs to be in the GOT or can be referenced via a GOT
2184 offset. */
2185 extern int making_const_table;
2186 \f
2187 /* Handle pragmas for compatibility with Intel's compilers. */
2188 /* Also abuse this to register additional C specific EABI attributes. */
2189 #define REGISTER_TARGET_PRAGMAS() do { \
2190 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
2191 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
2192 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
2193 arm_lang_object_attributes_init(); \
2194 arm_register_target_pragmas(); \
2195 } while (0)
2196
2197 /* Condition code information. */
2198 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2199 return the mode to be used for the comparison. */
2200
2201 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2202
2203 #define REVERSIBLE_CC_MODE(MODE) 1
2204
2205 #define REVERSE_CONDITION(CODE,MODE) \
2206 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2207 ? reverse_condition_maybe_unordered (code) \
2208 : reverse_condition (code))
2209
2210 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2211 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2212 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2213 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2214 \f
2215 #define CC_STATUS_INIT \
2216 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2217
2218 #undef ASM_APP_ON
2219 #define ASM_APP_ON (inline_asm_unified ? "\t.syntax unified\n" : \
2220 "\t.syntax divided\n")
2221
2222 #undef ASM_APP_OFF
2223 #define ASM_APP_OFF (TARGET_ARM ? "\t.arm\n\t.syntax unified\n" : \
2224 "\t.thumb\n\t.syntax unified\n")
2225
2226 /* Output a push or a pop instruction (only used when profiling).
2227 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2228 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2229 that r7 isn't used by the function profiler, so we can use it as a
2230 scratch reg. WARNING: This isn't safe in the general case! It may be
2231 sensitive to future changes in final.c:profile_function. */
2232 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2233 do \
2234 { \
2235 if (TARGET_THUMB1 \
2236 && (REGNO) == STATIC_CHAIN_REGNUM) \
2237 { \
2238 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2239 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2240 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2241 } \
2242 else \
2243 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2244 } while (0)
2245
2246
2247 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2248 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2249 do \
2250 { \
2251 if (TARGET_THUMB1 \
2252 && (REGNO) == STATIC_CHAIN_REGNUM) \
2253 { \
2254 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2255 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2256 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2257 } \
2258 else \
2259 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2260 } while (0)
2261
2262 #define ADDR_VEC_ALIGN(JUMPTABLE) \
2263 ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2264
2265 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2266 default alignment from elfos.h. */
2267 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2268 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty. */
2269
2270 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
2271 (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2272 ? 1 : 0)
2273
2274 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2275 arm_declare_function_name ((STREAM), (NAME), (DECL));
2276
2277 /* For aliases of functions we use .thumb_set instead. */
2278 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2279 do \
2280 { \
2281 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2282 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2283 \
2284 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2285 { \
2286 fprintf (FILE, "\t.thumb_set "); \
2287 assemble_name (FILE, LABEL1); \
2288 fprintf (FILE, ","); \
2289 assemble_name (FILE, LABEL2); \
2290 fprintf (FILE, "\n"); \
2291 } \
2292 else \
2293 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2294 } \
2295 while (0)
2296
2297 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2298 /* To support -falign-* switches we need to use .p2align so
2299 that alignment directives in code sections will be padded
2300 with no-op instructions, rather than zeroes. */
2301 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2302 if ((LOG) != 0) \
2303 { \
2304 if ((MAX_SKIP) == 0) \
2305 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2306 else \
2307 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2308 (int) (LOG), (int) (MAX_SKIP)); \
2309 }
2310 #endif
2311 \f
2312 /* Add two bytes to the length of conditionally executed Thumb-2
2313 instructions for the IT instruction. */
2314 #define ADJUST_INSN_LENGTH(insn, length) \
2315 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2316 length += 2;
2317
2318 /* Only perform branch elimination (by making instructions conditional) if
2319 we're optimizing. For Thumb-2 check if any IT instructions need
2320 outputting. */
2321 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2322 if (TARGET_ARM && optimize) \
2323 arm_final_prescan_insn (INSN); \
2324 else if (TARGET_THUMB2) \
2325 thumb2_final_prescan_insn (INSN); \
2326 else if (TARGET_THUMB1) \
2327 thumb1_final_prescan_insn (INSN)
2328
2329 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2330 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2331 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2332 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2333 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2334 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2335 : 0))))
2336
2337 /* A C expression whose value is RTL representing the value of the return
2338 address for the frame COUNT steps up from the current frame. */
2339
2340 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2341 arm_return_addr (COUNT, FRAME)
2342
2343 /* Mask of the bits in the PC that contain the real return address
2344 when running in 26-bit mode. */
2345 #define RETURN_ADDR_MASK26 (0x03fffffc)
2346
2347 /* Pick up the return address upon entry to a procedure. Used for
2348 dwarf2 unwind information. This also enables the table driven
2349 mechanism. */
2350 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2351 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2352
2353 /* Used to mask out junk bits from the return address, such as
2354 processor state, interrupt status, condition codes and the like. */
2355 #define MASK_RETURN_ADDR \
2356 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2357 in 26 bit mode, the condition codes must be masked out of the \
2358 return address. This does not apply to ARM6 and later processors \
2359 when running in 32 bit mode. */ \
2360 ((arm_arch4 || TARGET_THUMB) \
2361 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2362 : arm_gen_return_addr_mask ())
2363
2364 \f
2365 /* Do not emit .note.GNU-stack by default. */
2366 #ifndef NEED_INDICATE_EXEC_STACK
2367 #define NEED_INDICATE_EXEC_STACK 0
2368 #endif
2369
2370 #define TARGET_ARM_ARCH \
2371 (arm_base_arch) \
2372
2373 /* The highest Thumb instruction set version supported by the chip. */
2374 #define TARGET_ARM_ARCH_ISA_THUMB \
2375 (arm_arch_thumb2 ? 2 : (arm_arch_thumb1 ? 1 : 0))
2376
2377 /* Expands to an upper-case char of the target's architectural
2378 profile. */
2379 #define TARGET_ARM_ARCH_PROFILE \
2380 (arm_active_target.profile)
2381
2382 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2383 Bit 0 for bytes, up to bit 3 for double-words. */
2384 #define TARGET_ARM_FEATURE_LDREX \
2385 ((TARGET_HAVE_LDREX ? 4 : 0) \
2386 | (TARGET_HAVE_LDREXBH ? 3 : 0) \
2387 | (TARGET_HAVE_LDREXD ? 8 : 0))
2388
2389 /* Set as a bit mask indicating the available widths of hardware floating
2390 point types. Where bit 1 indicates 16-bit support, bit 2 indicates
2391 32-bit support, bit 3 indicates 64-bit support. */
2392 #define TARGET_ARM_FP \
2393 (!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4 \
2394 : (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \
2395 : 0)
2396
2397
2398 /* Set as a bit mask indicating the available widths of floating point
2399 types for hardware NEON floating point. This is the same as
2400 TARGET_ARM_FP without the 64-bit bit set. */
2401 #define TARGET_NEON_FP \
2402 (TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \
2403 : 0)
2404
2405 /* Name of the automatic fpu-selection option. */
2406 #define FPUTYPE_AUTO "auto"
2407
2408 /* The maximum number of parallel loads or stores we support in an ldm/stm
2409 instruction. */
2410 #define MAX_LDM_STM_OPS 4
2411
2412 extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2413 extern const char *arm_rewrite_march (int argc, const char **argv);
2414 extern const char *arm_asm_auto_mfpu (int argc, const char **argv);
2415 #define ASM_CPU_SPEC_FUNCTIONS \
2416 { "rewrite_mcpu", arm_rewrite_mcpu }, \
2417 { "rewrite_march", arm_rewrite_march }, \
2418 { "asm_auto_mfpu", arm_asm_auto_mfpu },
2419
2420 #define ASM_CPU_SPEC \
2421 " %{mfpu=auto:%<mfpu=auto %:asm_auto_mfpu(%{march=*: arch %*})}" \
2422 " %{mcpu=generic-*:-march=%:rewrite_march(%{mcpu=generic-*:%*});" \
2423 " march=*:-march=%:rewrite_march(%{march=*:%*});" \
2424 " mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})" \
2425 " }"
2426
2427 extern const char *arm_target_mode (int argc, const char **argv);
2428 #define TARGET_MODE_SPEC_FUNCTIONS \
2429 { "target_mode_check", arm_target_mode },
2430
2431 /* -mcpu=native handling only makes sense with compiler running on
2432 an ARM chip. */
2433 #if defined(__arm__)
2434 extern const char *host_detect_local_cpu (int argc, const char **argv);
2435 #define HAVE_LOCAL_CPU_DETECT
2436 # define MCPU_MTUNE_NATIVE_FUNCTIONS \
2437 { "local_cpu_detect", host_detect_local_cpu },
2438 # define MCPU_MTUNE_NATIVE_SPECS \
2439 " %{march=native:%<march=native %:local_cpu_detect(arch)}" \
2440 " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}" \
2441 " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2442 #else
2443 # define MCPU_MTUNE_NATIVE_FUNCTIONS
2444 # define MCPU_MTUNE_NATIVE_SPECS ""
2445 #endif
2446
2447 const char *arm_canon_arch_option (int argc, const char **argv);
2448 const char *arm_canon_arch_multilib_option (int argc, const char **argv);
2449
2450 #define CANON_ARCH_SPEC_FUNCTION \
2451 { "canon_arch", arm_canon_arch_option },
2452
2453 #define CANON_ARCH_MULTILIB_SPEC_FUNCTION \
2454 { "canon_arch_multilib", arm_canon_arch_multilib_option },
2455
2456 const char *arm_be8_option (int argc, const char **argv);
2457 #define BE8_SPEC_FUNCTION \
2458 { "be8_linkopt", arm_be8_option },
2459
2460 # define EXTRA_SPEC_FUNCTIONS \
2461 MCPU_MTUNE_NATIVE_FUNCTIONS \
2462 ASM_CPU_SPEC_FUNCTIONS \
2463 CANON_ARCH_SPEC_FUNCTION \
2464 CANON_ARCH_MULTILIB_SPEC_FUNCTION \
2465 TARGET_MODE_SPEC_FUNCTIONS \
2466 BE8_SPEC_FUNCTION
2467
2468 /* Automatically add -mthumb for Thumb-only targets if mode isn't specified
2469 via the configuration option --with-mode or via the command line. The
2470 function target_mode_check is called to do the check with either:
2471 - an array of -march values if any is given;
2472 - an array of -mcpu values if any is given;
2473 - an empty array. */
2474 #define TARGET_MODE_SPECS \
2475 " %{!marm:%{!mthumb:%:target_mode_check(%{march=*:arch %*;mcpu=*:cpu %*;:})}}"
2476
2477 /* Generate a canonical string to represent the architecture selected. */
2478 #define ARCH_CANONICAL_SPECS \
2479 " -march=%:canon_arch(%{mcpu=*: cpu %*} " \
2480 " %{march=*: arch %*} " \
2481 " %{mfpu=*: fpu %*} " \
2482 " %{mfloat-abi=*: abi %*}" \
2483 " %<march=*) "
2484
2485 /* Generate a canonical string to represent the architecture selected ignoring
2486 the options not required for multilib linking. */
2487 #define MULTILIB_ARCH_CANONICAL_SPECS \
2488 "-mlibarch=%:canon_arch_multilib(%{mcpu=*: cpu %*} " \
2489 " %{march=*: arch %*} " \
2490 " %{mfpu=*: fpu %*} " \
2491 " %{mfloat-abi=*: abi %*}" \
2492 " %<mlibarch=*) "
2493
2494 /* Complete set of specs for the driver. Commas separate the
2495 individual rules so that any option suppression (%<opt...)is
2496 completed before starting subsequent rules. */
2497 #define DRIVER_SELF_SPECS \
2498 MCPU_MTUNE_NATIVE_SPECS, \
2499 TARGET_MODE_SPECS, \
2500 MULTILIB_ARCH_CANONICAL_SPECS, \
2501 ARCH_CANONICAL_SPECS
2502
2503 #define TARGET_SUPPORTS_WIDE_INT 1
2504
2505 /* For switching between functions with different target attributes. */
2506 #define SWITCHABLE_TARGET 1
2507
2508 /* Define SECTION_ARM_PURECODE as the ARM specific section attribute
2509 representation for SHF_ARM_PURECODE in GCC. */
2510 #define SECTION_ARM_PURECODE SECTION_MACH_DEP
2511
2512 #endif /* ! GCC_ARM_H */