]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/arm/arm.h
Update copyright years.
[thirdparty/gcc.git] / gcc / config / arm / arm.h
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991-2019 Free Software Foundation, Inc.
3 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4 and Martin Simmons (@harleqn.co.uk).
5 More major hacks by Richard Earnshaw (rearnsha@arm.com)
6 Minor hacks by Nick Clifton (nickc@cygnus.com)
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published
12 by the Free Software Foundation; either version 3, or (at your
13 option) any later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
18 License for more details.
19
20 Under Section 7 of GPL version 3, you are granted additional
21 permissions described in the GCC Runtime Library Exception, version
22 3.1, as published by the Free Software Foundation.
23
24 You should have received a copy of the GNU General Public License and
25 a copy of the GCC Runtime Library Exception along with this program;
26 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
27 <http://www.gnu.org/licenses/>. */
28
29 #ifndef GCC_ARM_H
30 #define GCC_ARM_H
31
32 /* We can't use machine_mode inside a generator file because it
33 hasn't been created yet; we shouldn't be using any code that
34 needs the real definition though, so this ought to be safe. */
35 #ifdef GENERATOR_FILE
36 #define MACHMODE int
37 #else
38 #include "insn-modes.h"
39 #define MACHMODE machine_mode
40 #endif
41
42 #include "config/vxworks-dummy.h"
43
44 /* The architecture define. */
45 extern char arm_arch_name[];
46
47 /* Target CPU builtins. */
48 #define TARGET_CPU_CPP_BUILTINS() arm_cpu_cpp_builtins (pfile)
49
50 /* Target CPU versions for D. */
51 #define TARGET_D_CPU_VERSIONS arm_d_target_versions
52
53 #include "config/arm/arm-opts.h"
54
55 /* The processor for which instructions should be scheduled. */
56 extern enum processor_type arm_tune;
57
58 typedef enum arm_cond_code
59 {
60 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
61 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
62 }
63 arm_cc;
64
65 extern arm_cc arm_current_cc;
66
67 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
68
69 /* The maximum number of instructions that is beneficial to
70 conditionally execute. */
71 #undef MAX_CONDITIONAL_EXECUTE
72 #define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
73
74 extern int arm_target_label;
75 extern int arm_ccfsm_state;
76 extern GTY(()) rtx arm_target_insn;
77 /* Callback to output language specific object attributes. */
78 extern void (*arm_lang_output_object_attributes_hook)(void);
79
80 /* This type is the user-visible __fp16. We need it in a few places in
81 the backend. Defined in arm-builtins.c. */
82 extern tree arm_fp16_type_node;
83
84 \f
85 #undef CPP_SPEC
86 #define CPP_SPEC "%(subtarget_cpp_spec) \
87 %{mfloat-abi=soft:%{mfloat-abi=hard: \
88 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
89 %{mbig-endian:%{mlittle-endian: \
90 %e-mbig-endian and -mlittle-endian may not be used together}}"
91
92 #ifndef CC1_SPEC
93 #define CC1_SPEC ""
94 #endif
95
96 /* This macro defines names of additional specifications to put in the specs
97 that can be used in various specifications like CC1_SPEC. Its definition
98 is an initializer with a subgrouping for each command option.
99
100 Each subgrouping contains a string constant, that defines the
101 specification name, and a string constant that used by the GCC driver
102 program.
103
104 Do not define this macro if it does not need to do anything. */
105 #define EXTRA_SPECS \
106 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
107 { "asm_cpu_spec", ASM_CPU_SPEC }, \
108 SUBTARGET_EXTRA_SPECS
109
110 #ifndef SUBTARGET_EXTRA_SPECS
111 #define SUBTARGET_EXTRA_SPECS
112 #endif
113
114 #ifndef SUBTARGET_CPP_SPEC
115 #define SUBTARGET_CPP_SPEC ""
116 #endif
117 \f
118 /* Tree Target Specification. */
119 #define TARGET_ARM_P(flags) (!TARGET_THUMB_P (flags))
120 #define TARGET_THUMB1_P(flags) (TARGET_THUMB_P (flags) && !arm_arch_thumb2)
121 #define TARGET_THUMB2_P(flags) (TARGET_THUMB_P (flags) && arm_arch_thumb2)
122 #define TARGET_32BIT_P(flags) (TARGET_ARM_P (flags) || TARGET_THUMB2_P (flags))
123
124 /* Run-time Target Specification. */
125 /* Use hardware floating point instructions. */
126 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT \
127 && bitmap_bit_p (arm_active_target.isa, \
128 isa_bit_vfpv2) \
129 && TARGET_32BIT)
130 #define TARGET_SOFT_FLOAT (!TARGET_HARD_FLOAT)
131 /* User has permitted use of FP instructions, if they exist for this
132 target. */
133 #define TARGET_MAYBE_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
134 /* Use hardware floating point calling convention. */
135 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
136 #define TARGET_IWMMXT (arm_arch_iwmmxt)
137 #define TARGET_IWMMXT2 (arm_arch_iwmmxt2)
138 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
139 #define TARGET_REALLY_IWMMXT2 (TARGET_IWMMXT2 && TARGET_32BIT)
140 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
141 #define TARGET_ARM (! TARGET_THUMB)
142 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
143 #define TARGET_BACKTRACE (crtl->is_leaf \
144 ? TARGET_TPCS_LEAF_FRAME \
145 : TARGET_TPCS_FRAME)
146 #define TARGET_AAPCS_BASED \
147 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
148
149 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
150 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
151 #define TARGET_GNU2_TLS (target_tls_dialect == TLS_GNU2)
152
153 /* Only 16-bit thumb code. */
154 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
155 /* Arm or Thumb-2 32-bit code. */
156 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
157 /* 32-bit Thumb-2 code. */
158 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
159 /* Thumb-1 only. */
160 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
161
162 #define TARGET_LDRD (arm_arch5te && ARM_DOUBLEWORD_ALIGN \
163 && !TARGET_THUMB1)
164
165 #define TARGET_CRC32 (arm_arch_crc)
166
167 /* The following two macros concern the ability to execute coprocessor
168 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
169 only ever tested when we know we are generating for VFP hardware; we need
170 to be more careful with TARGET_NEON as noted below. */
171
172 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
173 #define TARGET_VFPD32 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_d32))
174
175 /* FPU supports VFPv3 instructions. */
176 #define TARGET_VFP3 (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv3))
177
178 /* FPU supports FPv5 instructions. */
179 #define TARGET_VFP5 (bitmap_bit_p (arm_active_target.isa, isa_bit_fpv5))
180
181 /* FPU only supports VFP single-precision instructions. */
182 #define TARGET_VFP_SINGLE (!TARGET_VFP_DOUBLE)
183
184 /* FPU supports VFP double-precision instructions. */
185 #define TARGET_VFP_DOUBLE (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_dbl))
186
187 /* FPU supports half-precision floating-point with NEON element load/store. */
188 #define TARGET_NEON_FP16 \
189 (bitmap_bit_p (arm_active_target.isa, isa_bit_neon) \
190 && bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
191
192 /* FPU supports VFP half-precision floating-point conversions. */
193 #define TARGET_FP16 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
194
195 /* FPU supports converting between HFmode and DFmode in a single hardware
196 step. */
197 #define TARGET_FP16_TO_DOUBLE \
198 (TARGET_HARD_FLOAT && (TARGET_FP16 && TARGET_VFP5))
199
200 /* FPU supports fused-multiply-add operations. */
201 #define TARGET_FMA (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv4))
202
203 /* FPU supports Crypto extensions. */
204 #define TARGET_CRYPTO (bitmap_bit_p (arm_active_target.isa, isa_bit_crypto))
205
206 /* FPU supports Neon instructions. The setting of this macro gets
207 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
208 and TARGET_HARD_FLOAT to ensure that NEON instructions are
209 available. */
210 #define TARGET_NEON \
211 (TARGET_32BIT && TARGET_HARD_FLOAT \
212 && bitmap_bit_p (arm_active_target.isa, isa_bit_neon))
213
214 /* FPU supports ARMv8.1 Adv.SIMD extensions. */
215 #define TARGET_NEON_RDMA (TARGET_NEON && arm_arch8_1)
216
217 /* Supports the Dot Product AdvSIMD extensions. */
218 #define TARGET_DOTPROD (TARGET_NEON && TARGET_VFP5 \
219 && bitmap_bit_p (arm_active_target.isa, \
220 isa_bit_dotprod) \
221 && arm_arch8_2)
222
223 /* FPU supports the floating point FP16 instructions for ARMv8.2-A
224 and later. */
225 #define TARGET_VFP_FP16INST \
226 (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP5 && arm_fp16_inst)
227
228 /* Target supports the floating point FP16 instructions from ARMv8.2-A
229 and later. */
230 #define TARGET_FP16FML (TARGET_NEON \
231 && bitmap_bit_p (arm_active_target.isa, \
232 isa_bit_fp16fml) \
233 && arm_arch8_2)
234
235 /* FPU supports the AdvSIMD FP16 instructions for ARMv8.2 and later. */
236 #define TARGET_NEON_FP16INST (TARGET_VFP_FP16INST && TARGET_NEON_RDMA)
237
238 /* Q-bit is present. */
239 #define TARGET_ARM_QBIT \
240 (TARGET_32BIT && arm_arch5te && (arm_arch_notm || arm_arch7))
241 /* Saturation operation, e.g. SSAT. */
242 #define TARGET_ARM_SAT \
243 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
244 /* "DSP" multiply instructions, eg. SMULxy. */
245 #define TARGET_DSP_MULTIPLY \
246 (TARGET_32BIT && arm_arch5te && (arm_arch_notm || arm_arch7em))
247 /* Integer SIMD instructions, and extend-accumulate instructions. */
248 #define TARGET_INT_SIMD \
249 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
250
251 /* Should MOVW/MOVT be used in preference to a constant pool. */
252 #define TARGET_USE_MOVT \
253 (TARGET_HAVE_MOVT \
254 && (arm_disable_literal_pool \
255 || (!optimize_size && !current_tune->prefer_constant_pool)))
256
257 /* Nonzero if this chip provides the DMB instruction. */
258 #define TARGET_HAVE_DMB (arm_arch6m || arm_arch7)
259
260 /* Nonzero if this chip implements a memory barrier via CP15. */
261 #define TARGET_HAVE_DMB_MCR (arm_arch6 && ! TARGET_HAVE_DMB \
262 && ! TARGET_THUMB1)
263
264 /* Nonzero if this chip implements a memory barrier instruction. */
265 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
266
267 /* Nonzero if this chip supports ldrex and strex */
268 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) \
269 || arm_arch7 \
270 || (arm_arch8 && !arm_arch_notm))
271
272 /* Nonzero if this chip supports LPAE. */
273 #define TARGET_HAVE_LPAE (arm_arch_lpae)
274
275 /* Nonzero if this chip supports ldrex{bh} and strex{bh}. */
276 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM) \
277 || arm_arch7 \
278 || (arm_arch8 && !arm_arch_notm))
279
280 /* Nonzero if this chip supports ldrexd and strexd. */
281 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) \
282 || arm_arch7) && arm_arch_notm)
283
284 /* Nonzero if this chip supports load-acquire and store-release. */
285 #define TARGET_HAVE_LDACQ (TARGET_ARM_ARCH >= 8)
286
287 /* Nonzero if this chip supports LDAEXD and STLEXD. */
288 #define TARGET_HAVE_LDACQEXD (TARGET_ARM_ARCH >= 8 \
289 && TARGET_32BIT \
290 && arm_arch_notm)
291
292 /* Nonzero if this chip provides the MOVW and MOVT instructions. */
293 #define TARGET_HAVE_MOVT (arm_arch_thumb2 || arm_arch8)
294
295 /* Nonzero if this chip provides the CBZ and CBNZ instructions. */
296 #define TARGET_HAVE_CBZ (arm_arch_thumb2 || arm_arch8)
297
298 /* Nonzero if integer division instructions supported. */
299 #define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \
300 || (TARGET_THUMB && arm_arch_thumb_hwdiv))
301
302 /* Nonzero if disallow volatile memory access in IT block. */
303 #define TARGET_NO_VOLATILE_CE (arm_arch_no_volatile_ce)
304
305 /* Should NEON be used for 64-bits bitops. */
306 #define TARGET_PREFER_NEON_64BITS (prefer_neon_for_64bits)
307
308 /* Should constant I be slplit for OP. */
309 #define DONT_EARLY_SPLIT_CONSTANT(i, op) \
310 ((optimize >= 2) \
311 && can_create_pseudo_p () \
312 && !const_ok_for_op (i, op))
313
314 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
315 then TARGET_AAPCS_BASED must be true -- but the converse does not
316 hold. TARGET_BPABI implies the use of the BPABI runtime library,
317 etc., in addition to just the AAPCS calling conventions. */
318 #ifndef TARGET_BPABI
319 #define TARGET_BPABI false
320 #endif
321
322 /* Transform lane numbers on big endian targets. This is used to allow for the
323 endianness difference between NEON architectural lane numbers and those
324 used in RTL */
325 #define NEON_ENDIAN_LANE_N(mode, n) \
326 (BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 - n : n)
327
328 /* Support for a compile-time default CPU, et cetera. The rules are:
329 --with-arch is ignored if -march or -mcpu are specified.
330 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
331 by --with-arch.
332 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
333 by -march).
334 --with-float is ignored if -mfloat-abi is specified.
335 --with-fpu is ignored if -mfpu is specified.
336 --with-abi is ignored if -mabi is specified.
337 --with-tls is ignored if -mtls-dialect is specified. */
338 #define OPTION_DEFAULT_SPECS \
339 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
340 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
341 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
342 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
343 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
344 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
345 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
346 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
347
348 extern const struct arm_fpu_desc
349 {
350 const char *name;
351 enum isa_feature isa_bits[isa_num_bits];
352 } all_fpus[];
353
354 /* Which floating point hardware to schedule for. */
355 extern int arm_fpu_attr;
356
357 #ifndef TARGET_DEFAULT_FLOAT_ABI
358 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
359 #endif
360
361 #ifndef ARM_DEFAULT_ABI
362 #define ARM_DEFAULT_ABI ARM_ABI_APCS
363 #endif
364
365 /* AAPCS based ABIs use short enums by default. */
366 #ifndef ARM_DEFAULT_SHORT_ENUMS
367 #define ARM_DEFAULT_SHORT_ENUMS \
368 (TARGET_AAPCS_BASED && arm_abi != ARM_ABI_AAPCS_LINUX)
369 #endif
370
371 /* Map each of the micro-architecture variants to their corresponding
372 major architecture revision. */
373
374 enum base_architecture
375 {
376 BASE_ARCH_0 = 0,
377 BASE_ARCH_2 = 2,
378 BASE_ARCH_3 = 3,
379 BASE_ARCH_3M = 3,
380 BASE_ARCH_4 = 4,
381 BASE_ARCH_4T = 4,
382 BASE_ARCH_5T = 5,
383 BASE_ARCH_5TE = 5,
384 BASE_ARCH_5TEJ = 5,
385 BASE_ARCH_6 = 6,
386 BASE_ARCH_6J = 6,
387 BASE_ARCH_6KZ = 6,
388 BASE_ARCH_6K = 6,
389 BASE_ARCH_6T2 = 6,
390 BASE_ARCH_6M = 6,
391 BASE_ARCH_6Z = 6,
392 BASE_ARCH_7 = 7,
393 BASE_ARCH_7A = 7,
394 BASE_ARCH_7R = 7,
395 BASE_ARCH_7M = 7,
396 BASE_ARCH_7EM = 7,
397 BASE_ARCH_8A = 8,
398 BASE_ARCH_8M_BASE = 8,
399 BASE_ARCH_8M_MAIN = 8,
400 BASE_ARCH_8R = 8
401 };
402
403 /* The major revision number of the ARM Architecture implemented by the target. */
404 extern enum base_architecture arm_base_arch;
405
406 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
407 extern int arm_arch4;
408
409 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
410 extern int arm_arch4t;
411
412 /* Nonzero if this chip supports the ARM Architecture 5T extensions. */
413 extern int arm_arch5t;
414
415 /* Nonzero if this chip supports the ARM Architecture 5TE extensions. */
416 extern int arm_arch5te;
417
418 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
419 extern int arm_arch6;
420
421 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
422 extern int arm_arch6k;
423
424 /* Nonzero if instructions present in ARMv6-M can be used. */
425 extern int arm_arch6m;
426
427 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
428 extern int arm_arch7;
429
430 /* Nonzero if instructions not present in the 'M' profile can be used. */
431 extern int arm_arch_notm;
432
433 /* Nonzero if instructions present in ARMv7E-M can be used. */
434 extern int arm_arch7em;
435
436 /* Nonzero if this chip supports the ARM Architecture 8 extensions. */
437 extern int arm_arch8;
438
439 /* Nonzero if this chip supports the ARM Architecture 8.1 extensions. */
440 extern int arm_arch8_1;
441
442 /* Nonzero if this chip supports the ARM Architecture 8.2 extensions. */
443 extern int arm_arch8_2;
444
445 /* Nonzero if this chip supports the FP16 instructions extension of ARM
446 Architecture 8.2. */
447 extern int arm_fp16_inst;
448
449 /* Nonzero if this chip can benefit from load scheduling. */
450 extern int arm_ld_sched;
451
452 /* Nonzero if this chip is a StrongARM. */
453 extern int arm_tune_strongarm;
454
455 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
456 extern int arm_arch_iwmmxt;
457
458 /* Nonzero if this chip supports Intel Wireless MMX2 technology. */
459 extern int arm_arch_iwmmxt2;
460
461 /* Nonzero if this chip is an XScale. */
462 extern int arm_arch_xscale;
463
464 /* Nonzero if tuning for XScale. */
465 extern int arm_tune_xscale;
466
467 /* Nonzero if tuning for stores via the write buffer. */
468 extern int arm_tune_wbuf;
469
470 /* Nonzero if tuning for Cortex-A9. */
471 extern int arm_tune_cortex_a9;
472
473 /* Nonzero if we should define __THUMB_INTERWORK__ in the
474 preprocessor.
475 XXX This is a bit of a hack, it's intended to help work around
476 problems in GLD which doesn't understand that armv5t code is
477 interworking clean. */
478 extern int arm_cpp_interwork;
479
480 /* Nonzero if chip supports Thumb 1. */
481 extern int arm_arch_thumb1;
482
483 /* Nonzero if chip supports Thumb 2. */
484 extern int arm_arch_thumb2;
485
486 /* Nonzero if chip supports integer division instruction in ARM mode. */
487 extern int arm_arch_arm_hwdiv;
488
489 /* Nonzero if chip supports integer division instruction in Thumb mode. */
490 extern int arm_arch_thumb_hwdiv;
491
492 /* Nonzero if chip disallows volatile memory access in IT block. */
493 extern int arm_arch_no_volatile_ce;
494
495 /* Nonzero if we should use Neon to handle 64-bits operations rather
496 than core registers. */
497 extern int prefer_neon_for_64bits;
498
499 /* Nonzero if we shouldn't use literal pools. */
500 #ifndef USED_FOR_TARGET
501 extern bool arm_disable_literal_pool;
502 #endif
503
504 /* Nonzero if chip supports the ARMv8 CRC instructions. */
505 extern int arm_arch_crc;
506
507 /* Nonzero if chip supports the ARMv8-M Security Extensions. */
508 extern int arm_arch_cmse;
509
510 #ifndef TARGET_DEFAULT
511 #define TARGET_DEFAULT (MASK_APCS_FRAME)
512 #endif
513
514 /* Nonzero if PIC code requires explicit qualifiers to generate
515 PLT and GOT relocs rather than the assembler doing so implicitly.
516 Subtargets can override these if required. */
517 #ifndef NEED_GOT_RELOC
518 #define NEED_GOT_RELOC 0
519 #endif
520 #ifndef NEED_PLT_RELOC
521 #define NEED_PLT_RELOC 0
522 #endif
523
524 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
525 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
526 #endif
527
528 /* Nonzero if we need to refer to the GOT with a PC-relative
529 offset. In other words, generate
530
531 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
532
533 rather than
534
535 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
536
537 The default is true, which matches NetBSD. Subtargets can
538 override this if required. */
539 #ifndef GOT_PCREL
540 #define GOT_PCREL 1
541 #endif
542 \f
543 /* Target machine storage Layout. */
544
545
546 /* Define this macro if it is advisable to hold scalars in registers
547 in a wider mode than that declared by the program. In such cases,
548 the value is constrained to be within the bounds of the declared
549 type, but kept valid in the wider mode. The signedness of the
550 extension may differ from that of the type. */
551
552 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
553 if (GET_MODE_CLASS (MODE) == MODE_INT \
554 && GET_MODE_SIZE (MODE) < 4) \
555 { \
556 (MODE) = SImode; \
557 }
558
559 /* Define this if most significant bit is lowest numbered
560 in instructions that operate on numbered bit-fields. */
561 #define BITS_BIG_ENDIAN 0
562
563 /* Define this if most significant byte of a word is the lowest numbered.
564 Most ARM processors are run in little endian mode, so that is the default.
565 If you want to have it run-time selectable, change the definition in a
566 cover file to be TARGET_BIG_ENDIAN. */
567 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
568
569 /* Define this if most significant word of a multiword number is the lowest
570 numbered. */
571 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
572
573 #define UNITS_PER_WORD 4
574
575 /* True if natural alignment is used for doubleword types. */
576 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
577
578 #define DOUBLEWORD_ALIGNMENT 64
579
580 #define PARM_BOUNDARY 32
581
582 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
583
584 #define PREFERRED_STACK_BOUNDARY \
585 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
586
587 #define FUNCTION_BOUNDARY_P(flags) (TARGET_THUMB_P (flags) ? 16 : 32)
588 #define FUNCTION_BOUNDARY (FUNCTION_BOUNDARY_P (target_flags))
589
590 /* The lowest bit is used to indicate Thumb-mode functions, so the
591 vbit must go into the delta field of pointers to member
592 functions. */
593 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
594
595 #define EMPTY_FIELD_BOUNDARY 32
596
597 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
598
599 #define MALLOC_ABI_ALIGNMENT BIGGEST_ALIGNMENT
600
601 /* XXX Blah -- this macro is used directly by libobjc. Since it
602 supports no vector modes, cut out the complexity and fall back
603 on BIGGEST_FIELD_ALIGNMENT. */
604 #ifdef IN_TARGET_LIBS
605 #define BIGGEST_FIELD_ALIGNMENT 64
606 #endif
607
608 /* Align definitions of arrays, unions and structures so that
609 initializations and copies can be made more efficient. This is not
610 ABI-changing, so it only affects places where we can see the
611 definition. Increasing the alignment tends to introduce padding,
612 so don't do this when optimizing for size/conserving stack space. */
613 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
614 (((COND) && ((ALIGN) < BITS_PER_WORD) \
615 && (TREE_CODE (EXP) == ARRAY_TYPE \
616 || TREE_CODE (EXP) == UNION_TYPE \
617 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
618
619 /* Align global data. */
620 #define DATA_ALIGNMENT(EXP, ALIGN) \
621 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
622
623 /* Similarly, make sure that objects on the stack are sensibly aligned. */
624 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
625 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
626
627 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
628 value set in previous versions of this toolchain was 8, which produces more
629 compact structures. The command line option -mstructure_size_boundary=<n>
630 can be used to change this value. For compatibility with the ARM SDK
631 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
632 0020D) page 2-20 says "Structures are aligned on word boundaries".
633 The AAPCS specifies a value of 8. */
634 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
635
636 /* This is the value used to initialize arm_structure_size_boundary. If a
637 particular arm target wants to change the default value it should change
638 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
639 for an example of this. */
640 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
641 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
642 #endif
643
644 /* Nonzero if move instructions will actually fail to work
645 when given unaligned data. */
646 #define STRICT_ALIGNMENT 1
647
648 /* wchar_t is unsigned under the AAPCS. */
649 #ifndef WCHAR_TYPE
650 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
651
652 #define WCHAR_TYPE_SIZE BITS_PER_WORD
653 #endif
654
655 /* Sized for fixed-point types. */
656
657 #define SHORT_FRACT_TYPE_SIZE 8
658 #define FRACT_TYPE_SIZE 16
659 #define LONG_FRACT_TYPE_SIZE 32
660 #define LONG_LONG_FRACT_TYPE_SIZE 64
661
662 #define SHORT_ACCUM_TYPE_SIZE 16
663 #define ACCUM_TYPE_SIZE 32
664 #define LONG_ACCUM_TYPE_SIZE 64
665 #define LONG_LONG_ACCUM_TYPE_SIZE 64
666
667 #define MAX_FIXED_MODE_SIZE 64
668
669 #ifndef SIZE_TYPE
670 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
671 #endif
672
673 #ifndef PTRDIFF_TYPE
674 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
675 #endif
676
677 /* AAPCS requires that structure alignment is affected by bitfields. */
678 #ifndef PCC_BITFIELD_TYPE_MATTERS
679 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
680 #endif
681
682 /* The maximum size of the sync library functions supported. */
683 #ifndef MAX_SYNC_LIBFUNC_SIZE
684 #define MAX_SYNC_LIBFUNC_SIZE (2 * UNITS_PER_WORD)
685 #endif
686
687 \f
688 /* Standard register usage. */
689
690 /* Register allocation in ARM Procedure Call Standard
691 (S - saved over call, F - Frame-related).
692
693 r0 * argument word/integer result
694 r1-r3 argument word
695
696 r4-r8 S register variable
697 r9 S (rfp) register variable (real frame pointer)
698
699 r10 F S (sl) stack limit (used by -mapcs-stack-check)
700 r11 F S (fp) argument pointer
701 r12 (ip) temp workspace
702 r13 F S (sp) lower end of current stack frame
703 r14 (lr) link address/workspace
704 r15 F (pc) program counter
705
706 cc This is NOT a real register, but is used internally
707 to represent things that use or set the condition
708 codes.
709 sfp This isn't either. It is used during rtl generation
710 since the offset between the frame pointer and the
711 auto's isn't known until after register allocation.
712 afp Nor this, we only need this because of non-local
713 goto. Without it fp appears to be used and the
714 elimination code won't get rid of sfp. It tracks
715 fp exactly at all times.
716
717 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
718
719 /* s0-s15 VFP scratch (aka d0-d7).
720 s16-s31 S VFP variable (aka d8-d15).
721 vfpcc Not a real register. Represents the VFP condition
722 code flags. */
723
724 /* The stack backtrace structure is as follows:
725 fp points to here: | save code pointer | [fp]
726 | return link value | [fp, #-4]
727 | return sp value | [fp, #-8]
728 | return fp value | [fp, #-12]
729 [| saved r10 value |]
730 [| saved r9 value |]
731 [| saved r8 value |]
732 [| saved r7 value |]
733 [| saved r6 value |]
734 [| saved r5 value |]
735 [| saved r4 value |]
736 [| saved r3 value |]
737 [| saved r2 value |]
738 [| saved r1 value |]
739 [| saved r0 value |]
740 r0-r3 are not normally saved in a C function. */
741
742 /* 1 for registers that have pervasive standard uses
743 and are not available for the register allocator. */
744 #define FIXED_REGISTERS \
745 { \
746 /* Core regs. */ \
747 0,0,0,0,0,0,0,0, \
748 0,0,0,0,0,1,0,1, \
749 /* VFP regs. */ \
750 1,1,1,1,1,1,1,1, \
751 1,1,1,1,1,1,1,1, \
752 1,1,1,1,1,1,1,1, \
753 1,1,1,1,1,1,1,1, \
754 1,1,1,1,1,1,1,1, \
755 1,1,1,1,1,1,1,1, \
756 1,1,1,1,1,1,1,1, \
757 1,1,1,1,1,1,1,1, \
758 /* IWMMXT regs. */ \
759 1,1,1,1,1,1,1,1, \
760 1,1,1,1,1,1,1,1, \
761 1,1,1,1, \
762 /* Specials. */ \
763 1,1,1,1 \
764 }
765
766 /* 1 for registers not available across function calls.
767 These must include the FIXED_REGISTERS and also any
768 registers that can be used without being saved.
769 The latter must include the registers where values are returned
770 and the register where structure-value addresses are passed.
771 Aside from that, you can include as many other registers as you like.
772 The CC is not preserved over function calls on the ARM 6, so it is
773 easier to assume this for all. SFP is preserved, since FP is. */
774 #define CALL_USED_REGISTERS \
775 { \
776 /* Core regs. */ \
777 1,1,1,1,0,0,0,0, \
778 0,0,0,0,1,1,1,1, \
779 /* VFP Regs. */ \
780 1,1,1,1,1,1,1,1, \
781 1,1,1,1,1,1,1,1, \
782 1,1,1,1,1,1,1,1, \
783 1,1,1,1,1,1,1,1, \
784 1,1,1,1,1,1,1,1, \
785 1,1,1,1,1,1,1,1, \
786 1,1,1,1,1,1,1,1, \
787 1,1,1,1,1,1,1,1, \
788 /* IWMMXT regs. */ \
789 1,1,1,1,1,1,1,1, \
790 1,1,1,1,1,1,1,1, \
791 1,1,1,1, \
792 /* Specials. */ \
793 1,1,1,1 \
794 }
795
796 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
797 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
798 #endif
799
800 /* These are a couple of extensions to the formats accepted
801 by asm_fprintf:
802 %@ prints out ASM_COMMENT_START
803 %r prints out REGISTER_PREFIX reg_names[arg] */
804 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
805 case '@': \
806 fputs (ASM_COMMENT_START, FILE); \
807 break; \
808 \
809 case 'r': \
810 fputs (REGISTER_PREFIX, FILE); \
811 fputs (reg_names [va_arg (ARGS, int)], FILE); \
812 break;
813
814 /* Round X up to the nearest word. */
815 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
816
817 /* Convert fron bytes to ints. */
818 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
819
820 /* The number of (integer) registers required to hold a quantity of type MODE.
821 Also used for VFP registers. */
822 #define ARM_NUM_REGS(MODE) \
823 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
824
825 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
826 #define ARM_NUM_REGS2(MODE, TYPE) \
827 ARM_NUM_INTS ((MODE) == BLKmode ? \
828 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
829
830 /* The number of (integer) argument register available. */
831 #define NUM_ARG_REGS 4
832
833 /* And similarly for the VFP. */
834 #define NUM_VFP_ARG_REGS 16
835
836 /* Return the register number of the N'th (integer) argument. */
837 #define ARG_REGISTER(N) (N - 1)
838
839 /* Specify the registers used for certain standard purposes.
840 The values of these macros are register numbers. */
841
842 /* The number of the last argument register. */
843 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
844
845 /* The numbers of the Thumb register ranges. */
846 #define FIRST_LO_REGNUM 0
847 #define LAST_LO_REGNUM 7
848 #define FIRST_HI_REGNUM 8
849 #define LAST_HI_REGNUM 11
850
851 /* Overridden by config/arm/bpabi.h. */
852 #ifndef ARM_UNWIND_INFO
853 #define ARM_UNWIND_INFO 0
854 #endif
855
856 /* Use r0 and r1 to pass exception handling information. */
857 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
858
859 /* The register that holds the return address in exception handlers. */
860 #define ARM_EH_STACKADJ_REGNUM 2
861 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
862
863 #ifndef ARM_TARGET2_DWARF_FORMAT
864 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
865 #endif
866
867 /* ttype entries (the only interesting data references used)
868 use TARGET2 relocations. */
869 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
870 (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
871 : DW_EH_PE_absptr)
872
873 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
874 as an invisible last argument (possible since varargs don't exist in
875 Pascal), so the following is not true. */
876 #define STATIC_CHAIN_REGNUM 12
877
878 /* Define this to be where the real frame pointer is if it is not possible to
879 work out the offset between the frame pointer and the automatic variables
880 until after register allocation has taken place. FRAME_POINTER_REGNUM
881 should point to a special register that we will make sure is eliminated.
882
883 For the Thumb we have another problem. The TPCS defines the frame pointer
884 as r11, and GCC believes that it is always possible to use the frame pointer
885 as base register for addressing purposes. (See comments in
886 find_reloads_address()). But - the Thumb does not allow high registers,
887 including r11, to be used as base address registers. Hence our problem.
888
889 The solution used here, and in the old thumb port is to use r7 instead of
890 r11 as the hard frame pointer and to have special code to generate
891 backtrace structures on the stack (if required to do so via a command line
892 option) using r11. This is the only 'user visible' use of r11 as a frame
893 pointer. */
894 #define ARM_HARD_FRAME_POINTER_REGNUM 11
895 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
896
897 #define HARD_FRAME_POINTER_REGNUM \
898 (TARGET_ARM \
899 ? ARM_HARD_FRAME_POINTER_REGNUM \
900 : THUMB_HARD_FRAME_POINTER_REGNUM)
901
902 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
903 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
904
905 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
906
907 /* Register to use for pushing function arguments. */
908 #define STACK_POINTER_REGNUM SP_REGNUM
909
910 #define FIRST_IWMMXT_REGNUM (LAST_HI_VFP_REGNUM + 1)
911 #define LAST_IWMMXT_REGNUM (FIRST_IWMMXT_REGNUM + 15)
912
913 /* Need to sync with WCGR in iwmmxt.md. */
914 #define FIRST_IWMMXT_GR_REGNUM (LAST_IWMMXT_REGNUM + 1)
915 #define LAST_IWMMXT_GR_REGNUM (FIRST_IWMMXT_GR_REGNUM + 3)
916
917 #define IS_IWMMXT_REGNUM(REGNUM) \
918 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
919 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
920 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
921
922 /* Base register for access to local variables of the function. */
923 #define FRAME_POINTER_REGNUM 102
924
925 /* Base register for access to arguments of the function. */
926 #define ARG_POINTER_REGNUM 103
927
928 #define FIRST_VFP_REGNUM 16
929 #define D7_VFP_REGNUM (FIRST_VFP_REGNUM + 15)
930 #define LAST_VFP_REGNUM \
931 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
932
933 #define IS_VFP_REGNUM(REGNUM) \
934 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
935
936 /* VFP registers are split into two types: those defined by VFP versions < 3
937 have D registers overlaid on consecutive pairs of S registers. VFP version 3
938 defines 16 new D registers (d16-d31) which, for simplicity and correctness
939 in various parts of the backend, we implement as "fake" single-precision
940 registers (which would be S32-S63, but cannot be used in that way). The
941 following macros define these ranges of registers. */
942 #define LAST_LO_VFP_REGNUM (FIRST_VFP_REGNUM + 31)
943 #define FIRST_HI_VFP_REGNUM (LAST_LO_VFP_REGNUM + 1)
944 #define LAST_HI_VFP_REGNUM (FIRST_HI_VFP_REGNUM + 31)
945
946 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
947 ((REGNUM) <= LAST_LO_VFP_REGNUM)
948
949 /* DFmode values are only valid in even register pairs. */
950 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
951 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
952
953 /* Neon Quad values must start at a multiple of four registers. */
954 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
955 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
956
957 /* Neon structures of vectors must be in even register pairs and there
958 must be enough registers available. Because of various patterns
959 requiring quad registers, we require them to start at a multiple of
960 four. */
961 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
962 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
963 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
964
965 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP. */
966 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
967 /* VFP (VFP3) adds 32 (64) + 1 VFPCC. */
968 #define FIRST_PSEUDO_REGISTER 104
969
970 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
971
972 /* Value should be nonzero if functions must have frame pointers.
973 Zero means the frame pointer need not be set up (and parms may be accessed
974 via the stack pointer) in functions that seem suitable.
975 If we have to have a frame pointer we might as well make use of it.
976 APCS says that the frame pointer does not need to be pushed in leaf
977 functions, or simple tail call functions. */
978
979 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
980 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
981 #endif
982
983 #define VALID_IWMMXT_REG_MODE(MODE) \
984 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
985
986 /* Modes valid for Neon D registers. */
987 #define VALID_NEON_DREG_MODE(MODE) \
988 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
989 || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode)
990
991 /* Modes valid for Neon Q registers. */
992 #define VALID_NEON_QREG_MODE(MODE) \
993 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
994 || (MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DImode)
995
996 /* Structure modes valid for Neon registers. */
997 #define VALID_NEON_STRUCT_MODE(MODE) \
998 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
999 || (MODE) == CImode || (MODE) == XImode)
1000
1001 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
1002 extern int arm_regs_in_sequence[];
1003
1004 /* The order in which register should be allocated. It is good to use ip
1005 since no saving is required (though calls clobber it) and it never contains
1006 function parameters. It is quite good to use lr since other calls may
1007 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1008 least likely to contain a function parameter; in addition results are
1009 returned in r0.
1010 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1011 then D8-D15. The reason for doing this is to attempt to reduce register
1012 pressure when both single- and double-precision registers are used in a
1013 function. */
1014
1015 #define VREG(X) (FIRST_VFP_REGNUM + (X))
1016 #define WREG(X) (FIRST_IWMMXT_REGNUM + (X))
1017 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1018
1019 #define REG_ALLOC_ORDER \
1020 { \
1021 /* General registers. */ \
1022 3, 2, 1, 0, 12, 14, 4, 5, \
1023 6, 7, 8, 9, 10, 11, \
1024 /* High VFP registers. */ \
1025 VREG(32), VREG(33), VREG(34), VREG(35), \
1026 VREG(36), VREG(37), VREG(38), VREG(39), \
1027 VREG(40), VREG(41), VREG(42), VREG(43), \
1028 VREG(44), VREG(45), VREG(46), VREG(47), \
1029 VREG(48), VREG(49), VREG(50), VREG(51), \
1030 VREG(52), VREG(53), VREG(54), VREG(55), \
1031 VREG(56), VREG(57), VREG(58), VREG(59), \
1032 VREG(60), VREG(61), VREG(62), VREG(63), \
1033 /* VFP argument registers. */ \
1034 VREG(15), VREG(14), VREG(13), VREG(12), \
1035 VREG(11), VREG(10), VREG(9), VREG(8), \
1036 VREG(7), VREG(6), VREG(5), VREG(4), \
1037 VREG(3), VREG(2), VREG(1), VREG(0), \
1038 /* VFP call-saved registers. */ \
1039 VREG(16), VREG(17), VREG(18), VREG(19), \
1040 VREG(20), VREG(21), VREG(22), VREG(23), \
1041 VREG(24), VREG(25), VREG(26), VREG(27), \
1042 VREG(28), VREG(29), VREG(30), VREG(31), \
1043 /* IWMMX registers. */ \
1044 WREG(0), WREG(1), WREG(2), WREG(3), \
1045 WREG(4), WREG(5), WREG(6), WREG(7), \
1046 WREG(8), WREG(9), WREG(10), WREG(11), \
1047 WREG(12), WREG(13), WREG(14), WREG(15), \
1048 WGREG(0), WGREG(1), WGREG(2), WGREG(3), \
1049 /* Registers not for general use. */ \
1050 CC_REGNUM, VFPCC_REGNUM, \
1051 FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, \
1052 SP_REGNUM, PC_REGNUM \
1053 }
1054
1055 /* Use different register alloc ordering for Thumb. */
1056 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1057
1058 /* Tell IRA to use the order we define rather than messing it up with its
1059 own cost calculations. */
1060 #define HONOR_REG_ALLOC_ORDER 1
1061
1062 /* Interrupt functions can only use registers that have already been
1063 saved by the prologue, even if they would normally be
1064 call-clobbered. */
1065 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1066 (! IS_INTERRUPT (cfun->machine->func_type) || \
1067 df_regs_ever_live_p (DST))
1068 \f
1069 /* Register and constant classes. */
1070
1071 /* Register classes. */
1072 enum reg_class
1073 {
1074 NO_REGS,
1075 LO_REGS,
1076 STACK_REG,
1077 BASE_REGS,
1078 HI_REGS,
1079 CALLER_SAVE_REGS,
1080 GENERAL_REGS,
1081 CORE_REGS,
1082 VFP_D0_D7_REGS,
1083 VFP_LO_REGS,
1084 VFP_HI_REGS,
1085 VFP_REGS,
1086 IWMMXT_REGS,
1087 IWMMXT_GR_REGS,
1088 CC_REG,
1089 VFPCC_REG,
1090 SFP_REG,
1091 AFP_REG,
1092 ALL_REGS,
1093 LIM_REG_CLASSES
1094 };
1095
1096 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1097
1098 /* Give names of register classes as strings for dump file. */
1099 #define REG_CLASS_NAMES \
1100 { \
1101 "NO_REGS", \
1102 "LO_REGS", \
1103 "STACK_REG", \
1104 "BASE_REGS", \
1105 "HI_REGS", \
1106 "CALLER_SAVE_REGS", \
1107 "GENERAL_REGS", \
1108 "CORE_REGS", \
1109 "VFP_D0_D7_REGS", \
1110 "VFP_LO_REGS", \
1111 "VFP_HI_REGS", \
1112 "VFP_REGS", \
1113 "IWMMXT_REGS", \
1114 "IWMMXT_GR_REGS", \
1115 "CC_REG", \
1116 "VFPCC_REG", \
1117 "SFP_REG", \
1118 "AFP_REG", \
1119 "ALL_REGS" \
1120 }
1121
1122 /* Define which registers fit in which classes.
1123 This is an initializer for a vector of HARD_REG_SET
1124 of length N_REG_CLASSES. */
1125 #define REG_CLASS_CONTENTS \
1126 { \
1127 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1128 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1129 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1130 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1131 { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1132 { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1133 { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1134 { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1135 { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1136 { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS */ \
1137 { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS */ \
1138 { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS */ \
1139 { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */ \
1140 { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1141 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */ \
1142 { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */ \
1143 { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */ \
1144 { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */ \
1145 { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F } /* ALL_REGS */ \
1146 }
1147
1148 /* Any of the VFP register classes. */
1149 #define IS_VFP_CLASS(X) \
1150 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1151 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1152
1153 /* The same information, inverted:
1154 Return the class number of the smallest class containing
1155 reg number REGNO. This could be a conditional expression
1156 or could index an array. */
1157 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1158
1159 /* The class value for index registers, and the one for base regs. */
1160 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1161 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1162
1163 /* For the Thumb the high registers cannot be used as base registers
1164 when addressing quantities in QI or HI mode; if we don't know the
1165 mode, then we must be conservative. */
1166 #define MODE_BASE_REG_CLASS(MODE) \
1167 (TARGET_32BIT ? CORE_REGS \
1168 : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS \
1169 : LO_REGS)
1170
1171 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1172 instead of BASE_REGS. */
1173 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1174
1175 /* When this hook returns true for MODE, the compiler allows
1176 registers explicitly used in the rtl to be used as spill registers
1177 but prevents the compiler from extending the lifetime of these
1178 registers. */
1179 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1180 arm_small_register_classes_for_mode_p
1181
1182 /* Must leave BASE_REGS reloads alone */
1183 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1184 (lra_in_progress ? NO_REGS \
1185 : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1186 ? ((true_regnum (X) == -1 ? LO_REGS \
1187 : (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS \
1188 : NO_REGS)) \
1189 : NO_REGS))
1190
1191 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1192 (lra_in_progress ? NO_REGS \
1193 : (CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1194 ? ((true_regnum (X) == -1 ? LO_REGS \
1195 : (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS \
1196 : NO_REGS)) \
1197 : NO_REGS)
1198
1199 /* Return the register class of a scratch register needed to copy IN into
1200 or out of a register in CLASS in MODE. If it can be done directly,
1201 NO_REGS is returned. */
1202 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1203 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1204 ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS)) \
1205 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1206 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1207 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1208 : TARGET_32BIT \
1209 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1210 ? GENERAL_REGS : NO_REGS) \
1211 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1212
1213 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1214 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1215 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1216 ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS)) \
1217 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1218 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1219 coproc_secondary_reload_class (MODE, X, TRUE) : \
1220 (TARGET_32BIT ? \
1221 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1222 && CONSTANT_P (X)) \
1223 ? GENERAL_REGS : \
1224 (((MODE) == HImode && ! arm_arch4 \
1225 && (MEM_P (X) \
1226 || ((REG_P (X) || GET_CODE (X) == SUBREG) \
1227 && true_regnum (X) == -1))) \
1228 ? GENERAL_REGS : NO_REGS) \
1229 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1230
1231 /* Return the maximum number of consecutive registers
1232 needed to represent mode MODE in a register of class CLASS.
1233 ARM regs are UNITS_PER_WORD bits.
1234 FIXME: Is this true for iWMMX? */
1235 #define CLASS_MAX_NREGS(CLASS, MODE) \
1236 (ARM_NUM_REGS (MODE))
1237
1238 /* If defined, gives a class of registers that cannot be used as the
1239 operand of a SUBREG that changes the mode of the object illegally. */
1240 \f
1241 /* Stack layout; function entry, exit and calling. */
1242
1243 /* Define this if pushing a word on the stack
1244 makes the stack pointer a smaller address. */
1245 #define STACK_GROWS_DOWNWARD 1
1246
1247 /* Define this to nonzero if the nominal address of the stack frame
1248 is at the high-address end of the local variables;
1249 that is, each additional local variable allocated
1250 goes at a more negative offset in the frame. */
1251 #define FRAME_GROWS_DOWNWARD 1
1252
1253 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1254 When present, it is one word in size, and sits at the top of the frame,
1255 between the soft frame pointer and either r7 or r11.
1256
1257 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1258 and only then if some outgoing arguments are passed on the stack. It would
1259 be tempting to also check whether the stack arguments are passed by indirect
1260 calls, but there seems to be no reason in principle why a post-reload pass
1261 couldn't convert a direct call into an indirect one. */
1262 #define CALLER_INTERWORKING_SLOT_SIZE \
1263 (TARGET_CALLER_INTERWORKING \
1264 && maybe_ne (crtl->outgoing_args_size, 0) \
1265 ? UNITS_PER_WORD : 0)
1266
1267 /* If we generate an insn to push BYTES bytes,
1268 this says how many the stack pointer really advances by. */
1269 /* The push insns do not do this rounding implicitly.
1270 So don't define this. */
1271 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1272
1273 /* Define this if the maximum size of all the outgoing args is to be
1274 accumulated and pushed during the prologue. The amount can be
1275 found in the variable crtl->outgoing_args_size. */
1276 #define ACCUMULATE_OUTGOING_ARGS 1
1277
1278 /* Offset of first parameter from the argument pointer register value. */
1279 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1280
1281 /* Amount of memory needed for an untyped call to save all possible return
1282 registers. */
1283 #define APPLY_RESULT_SIZE arm_apply_result_size()
1284
1285 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1286 values must be in memory. On the ARM, they need only do so if larger
1287 than a word, or if they contain elements offset from zero in the struct. */
1288 #define DEFAULT_PCC_STRUCT_RETURN 0
1289
1290 /* These bits describe the different types of function supported
1291 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1292 normal function and an interworked function, for example. Knowing the
1293 type of a function is important for determining its prologue and
1294 epilogue sequences.
1295 Note value 7 is currently unassigned. Also note that the interrupt
1296 function types all have bit 2 set, so that they can be tested for easily.
1297 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1298 machine_function structure is initialized (to zero) func_type will
1299 default to unknown. This will force the first use of arm_current_func_type
1300 to call arm_compute_func_type. */
1301 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1302 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1303 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1304 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1305 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1306 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1307
1308 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1309
1310 /* In addition functions can have several type modifiers,
1311 outlined by these bit masks: */
1312 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1313 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1314 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1315 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1316 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1317 #define ARM_FT_CMSE_ENTRY (1 << 7) /* ARMv8-M non-secure entry function. */
1318
1319 /* Some macros to test these flags. */
1320 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1321 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1322 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1323 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1324 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1325 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1326 #define IS_CMSE_ENTRY(t) (t & ARM_FT_CMSE_ENTRY)
1327
1328
1329 /* Structure used to hold the function stack frame layout. Offsets are
1330 relative to the stack pointer on function entry. Positive offsets are
1331 in the direction of stack growth.
1332 Only soft_frame is used in thumb mode. */
1333
1334 typedef struct GTY(()) arm_stack_offsets
1335 {
1336 int saved_args; /* ARG_POINTER_REGNUM. */
1337 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1338 int saved_regs;
1339 int soft_frame; /* FRAME_POINTER_REGNUM. */
1340 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1341 int outgoing_args; /* STACK_POINTER_REGNUM. */
1342 unsigned int saved_regs_mask;
1343 }
1344 arm_stack_offsets;
1345
1346 #if !defined(GENERATOR_FILE) && !defined (USED_FOR_TARGET)
1347 /* A C structure for machine-specific, per-function data.
1348 This is added to the cfun structure. */
1349 typedef struct GTY(()) machine_function
1350 {
1351 /* Additional stack adjustment in __builtin_eh_throw. */
1352 rtx eh_epilogue_sp_ofs;
1353 /* Records if LR has to be saved for far jumps. */
1354 int far_jump_used;
1355 /* Records if ARG_POINTER was ever live. */
1356 int arg_pointer_live;
1357 /* Records if the save of LR has been eliminated. */
1358 int lr_save_eliminated;
1359 /* The size of the stack frame. Only valid after reload. */
1360 arm_stack_offsets stack_offsets;
1361 /* Records the type of the current function. */
1362 unsigned long func_type;
1363 /* Record if the function has a variable argument list. */
1364 int uses_anonymous_args;
1365 /* Records if sibcalls are blocked because an argument
1366 register is needed to preserve stack alignment. */
1367 int sibcall_blocked;
1368 /* The PIC register for this function. This might be a pseudo. */
1369 rtx pic_reg;
1370 /* Labels for per-function Thumb call-via stubs. One per potential calling
1371 register. We can never call via LR or PC. We can call via SP if a
1372 trampoline happens to be on the top of the stack. */
1373 rtx call_via[14];
1374 /* Set to 1 when a return insn is output, this means that the epilogue
1375 is not needed. */
1376 int return_used_this_function;
1377 /* When outputting Thumb-1 code, record the last insn that provides
1378 information about condition codes, and the comparison operands. */
1379 rtx thumb1_cc_insn;
1380 rtx thumb1_cc_op0;
1381 rtx thumb1_cc_op1;
1382 /* Also record the CC mode that is supported. */
1383 machine_mode thumb1_cc_mode;
1384 /* Set to 1 after arm_reorg has started. */
1385 int after_arm_reorg;
1386 /* The number of bytes used to store the static chain register on the
1387 stack, above the stack frame. */
1388 int static_chain_stack_bytes;
1389 }
1390 machine_function;
1391 #endif
1392
1393 /* As in the machine_function, a global set of call-via labels, for code
1394 that is in text_section. */
1395 extern GTY(()) rtx thumb_call_via_label[14];
1396
1397 /* The number of potential ways of assigning to a co-processor. */
1398 #define ARM_NUM_COPROC_SLOTS 1
1399
1400 /* Enumeration of procedure calling standard variants. We don't really
1401 support all of these yet. */
1402 enum arm_pcs
1403 {
1404 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1405 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1406 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1407 /* This must be the last AAPCS variant. */
1408 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1409 ARM_PCS_ATPCS, /* ATPCS. */
1410 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1411 ARM_PCS_UNKNOWN
1412 };
1413
1414 /* Default procedure calling standard of current compilation unit. */
1415 extern enum arm_pcs arm_pcs_default;
1416
1417 #if !defined (USED_FOR_TARGET)
1418 /* A C type for declaring a variable that is used as the first argument of
1419 `FUNCTION_ARG' and other related values. */
1420 typedef struct
1421 {
1422 /* This is the number of registers of arguments scanned so far. */
1423 int nregs;
1424 /* This is the number of iWMMXt register arguments scanned so far. */
1425 int iwmmxt_nregs;
1426 int named_count;
1427 int nargs;
1428 /* Which procedure call variant to use for this call. */
1429 enum arm_pcs pcs_variant;
1430
1431 /* AAPCS related state tracking. */
1432 int aapcs_arg_processed; /* No need to lay out this argument again. */
1433 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1434 this argument, or -1 if using core
1435 registers. */
1436 int aapcs_ncrn;
1437 int aapcs_next_ncrn;
1438 rtx aapcs_reg; /* Register assigned to this argument. */
1439 int aapcs_partial; /* How many bytes are passed in regs (if
1440 split between core regs and stack.
1441 Zero otherwise. */
1442 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1443 int can_split; /* Argument can be split between core regs
1444 and the stack. */
1445 /* Private data for tracking VFP register allocation */
1446 unsigned aapcs_vfp_regs_free;
1447 unsigned aapcs_vfp_reg_alloc;
1448 int aapcs_vfp_rcount;
1449 MACHMODE aapcs_vfp_rmode;
1450 } CUMULATIVE_ARGS;
1451 #endif
1452
1453 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1454 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? PAD_UPWARD : PAD_DOWNWARD)
1455
1456 /* For AAPCS, padding should never be below the argument. For other ABIs,
1457 * mimic the default. */
1458 #define PAD_VARARGS_DOWN \
1459 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1460
1461 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1462 for a call to a function whose data type is FNTYPE.
1463 For a library call, FNTYPE is 0.
1464 On the ARM, the offset starts at 0. */
1465 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1466 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1467
1468 /* 1 if N is a possible register number for function argument passing.
1469 On the ARM, r0-r3 are used to pass args. */
1470 #define FUNCTION_ARG_REGNO_P(REGNO) \
1471 (IN_RANGE ((REGNO), 0, 3) \
1472 || (TARGET_AAPCS_BASED && TARGET_HARD_FLOAT \
1473 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1474 || (TARGET_IWMMXT_ABI \
1475 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1476
1477 \f
1478 /* If your target environment doesn't prefix user functions with an
1479 underscore, you may wish to re-define this to prevent any conflicts. */
1480 #ifndef ARM_MCOUNT_NAME
1481 #define ARM_MCOUNT_NAME "*mcount"
1482 #endif
1483
1484 /* Call the function profiler with a given profile label. The Acorn
1485 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1486 On the ARM the full profile code will look like:
1487 .data
1488 LP1
1489 .word 0
1490 .text
1491 mov ip, lr
1492 bl mcount
1493 .word LP1
1494
1495 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1496 will output the .text section.
1497
1498 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1499 ``prof'' doesn't seem to mind about this!
1500
1501 Note - this version of the code is designed to work in both ARM and
1502 Thumb modes. */
1503 #ifndef ARM_FUNCTION_PROFILER
1504 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1505 { \
1506 char temp[20]; \
1507 rtx sym; \
1508 \
1509 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1510 IP_REGNUM, LR_REGNUM); \
1511 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1512 fputc ('\n', STREAM); \
1513 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1514 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1515 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1516 }
1517 #endif
1518
1519 #ifdef THUMB_FUNCTION_PROFILER
1520 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1521 if (TARGET_ARM) \
1522 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1523 else \
1524 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1525 #else
1526 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1527 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1528 #endif
1529
1530 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1531 the stack pointer does not matter. The value is tested only in
1532 functions that have frame pointers.
1533 No definition is equivalent to always zero.
1534
1535 On the ARM, the function epilogue recovers the stack pointer from the
1536 frame. */
1537 #define EXIT_IGNORE_STACK 1
1538
1539 #define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1540
1541 /* Determine if the epilogue should be output as RTL.
1542 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1543 #define USE_RETURN_INSN(ISCOND) \
1544 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1545
1546 /* Definitions for register eliminations.
1547
1548 This is an array of structures. Each structure initializes one pair
1549 of eliminable registers. The "from" register number is given first,
1550 followed by "to". Eliminations of the same "from" register are listed
1551 in order of preference.
1552
1553 We have two registers that can be eliminated on the ARM. First, the
1554 arg pointer register can often be eliminated in favor of the stack
1555 pointer register. Secondly, the pseudo frame pointer register can always
1556 be eliminated; it is replaced with either the stack or the real frame
1557 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1558 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1559
1560 #define ELIMINABLE_REGS \
1561 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1562 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1563 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1564 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1565 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1566 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1567 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1568
1569 /* Define the offset between two registers, one to be eliminated, and the
1570 other its replacement, at the start of a routine. */
1571 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1572 if (TARGET_ARM) \
1573 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1574 else \
1575 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1576
1577 /* Special case handling of the location of arguments passed on the stack. */
1578 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1579
1580 /* Initialize data used by insn expanders. This is called from insn_emit,
1581 once for every function before code is generated. */
1582 #define INIT_EXPANDERS arm_init_expanders ()
1583
1584 /* Length in units of the trampoline for entering a nested function. */
1585 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1586
1587 /* Alignment required for a trampoline in bits. */
1588 #define TRAMPOLINE_ALIGNMENT 32
1589 \f
1590 /* Addressing modes, and classification of registers for them. */
1591 #define HAVE_POST_INCREMENT 1
1592 #define HAVE_PRE_INCREMENT TARGET_32BIT
1593 #define HAVE_POST_DECREMENT TARGET_32BIT
1594 #define HAVE_PRE_DECREMENT TARGET_32BIT
1595 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1596 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1597 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1598 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1599
1600 enum arm_auto_incmodes
1601 {
1602 ARM_POST_INC,
1603 ARM_PRE_INC,
1604 ARM_POST_DEC,
1605 ARM_PRE_DEC
1606 };
1607
1608 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1609 (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1610 #define USE_LOAD_POST_INCREMENT(mode) \
1611 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1612 #define USE_LOAD_PRE_INCREMENT(mode) \
1613 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1614 #define USE_LOAD_POST_DECREMENT(mode) \
1615 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1616 #define USE_LOAD_PRE_DECREMENT(mode) \
1617 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1618
1619 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1620 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1621 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1622 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1623
1624 /* Macros to check register numbers against specific register classes. */
1625
1626 /* These assume that REGNO is a hard or pseudo reg number.
1627 They give nonzero only if REGNO is a hard reg of the suitable class
1628 or a pseudo reg currently allocated to a suitable hard reg. */
1629 #define TEST_REGNO(R, TEST, VALUE) \
1630 ((R TEST VALUE) \
1631 || (reg_renumber && ((unsigned) reg_renumber[R] TEST VALUE)))
1632
1633 /* Don't allow the pc to be used. */
1634 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1635 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1636 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1637 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1638
1639 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1640 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1641 || (GET_MODE_SIZE (MODE) >= 4 \
1642 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1643
1644 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1645 (TARGET_THUMB1 \
1646 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1647 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1648
1649 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1650 For Thumb, we can not use SP + reg, so reject SP. */
1651 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1652 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1653
1654 /* For ARM code, we don't care about the mode, but for Thumb, the index
1655 must be suitable for use in a QImode load. */
1656 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1657 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1658 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1659
1660 /* Maximum number of registers that can appear in a valid memory address.
1661 Shifts in addresses can't be by a register. */
1662 #define MAX_REGS_PER_ADDRESS 2
1663
1664 /* Recognize any constant value that is a valid address. */
1665 /* XXX We can address any constant, eventually... */
1666 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1667 #define CONSTANT_ADDRESS_P(X) \
1668 (GET_CODE (X) == SYMBOL_REF \
1669 && (CONSTANT_POOL_ADDRESS_P (X) \
1670 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1671
1672 /* True if SYMBOL + OFFSET constants must refer to something within
1673 SYMBOL's section. */
1674 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1675
1676 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1677 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1678 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1679 #endif
1680
1681 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1682 #define SUBTARGET_NAME_ENCODING_LENGTHS
1683 #endif
1684
1685 /* This is a C fragment for the inside of a switch statement.
1686 Each case label should return the number of characters to
1687 be stripped from the start of a function's name, if that
1688 name starts with the indicated character. */
1689 #define ARM_NAME_ENCODING_LENGTHS \
1690 case '*': return 1; \
1691 SUBTARGET_NAME_ENCODING_LENGTHS
1692
1693 /* This is how to output a reference to a user-level label named NAME.
1694 `assemble_name' uses this. */
1695 #undef ASM_OUTPUT_LABELREF
1696 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1697 arm_asm_output_labelref (FILE, NAME)
1698
1699 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1700 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1701 if (TARGET_THUMB2) \
1702 thumb2_asm_output_opcode (STREAM);
1703
1704 /* The EABI specifies that constructors should go in .init_array.
1705 Other targets use .ctors for compatibility. */
1706 #ifndef ARM_EABI_CTORS_SECTION_OP
1707 #define ARM_EABI_CTORS_SECTION_OP \
1708 "\t.section\t.init_array,\"aw\",%init_array"
1709 #endif
1710 #ifndef ARM_EABI_DTORS_SECTION_OP
1711 #define ARM_EABI_DTORS_SECTION_OP \
1712 "\t.section\t.fini_array,\"aw\",%fini_array"
1713 #endif
1714 #define ARM_CTORS_SECTION_OP \
1715 "\t.section\t.ctors,\"aw\",%progbits"
1716 #define ARM_DTORS_SECTION_OP \
1717 "\t.section\t.dtors,\"aw\",%progbits"
1718
1719 /* Define CTORS_SECTION_ASM_OP. */
1720 #undef CTORS_SECTION_ASM_OP
1721 #undef DTORS_SECTION_ASM_OP
1722 #ifndef IN_LIBGCC2
1723 # define CTORS_SECTION_ASM_OP \
1724 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1725 # define DTORS_SECTION_ASM_OP \
1726 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1727 #else /* !defined (IN_LIBGCC2) */
1728 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1729 so we cannot use the definition above. */
1730 # ifdef __ARM_EABI__
1731 /* The .ctors section is not part of the EABI, so we do not define
1732 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1733 from trying to use it. We do define it when doing normal
1734 compilation, as .init_array can be used instead of .ctors. */
1735 /* There is no need to emit begin or end markers when using
1736 init_array; the dynamic linker will compute the size of the
1737 array itself based on special symbols created by the static
1738 linker. However, we do need to arrange to set up
1739 exception-handling here. */
1740 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1741 # define CTOR_LIST_END /* empty */
1742 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1743 # define DTOR_LIST_END /* empty */
1744 # else /* !defined (__ARM_EABI__) */
1745 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1746 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1747 # endif /* !defined (__ARM_EABI__) */
1748 #endif /* !defined (IN_LIBCC2) */
1749
1750 /* True if the operating system can merge entities with vague linkage
1751 (e.g., symbols in COMDAT group) during dynamic linking. */
1752 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1753 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1754 #endif
1755
1756 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1757
1758 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1759 and check its validity for a certain class.
1760 We have two alternate definitions for each of them.
1761 The usual definition accepts all pseudo regs; the other rejects
1762 them unless they have been allocated suitable hard regs.
1763 The symbol REG_OK_STRICT causes the latter definition to be used.
1764 Thumb-2 has the same restrictions as arm. */
1765 #ifndef REG_OK_STRICT
1766
1767 #define ARM_REG_OK_FOR_BASE_P(X) \
1768 (REGNO (X) <= LAST_ARM_REGNUM \
1769 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1770 || REGNO (X) == FRAME_POINTER_REGNUM \
1771 || REGNO (X) == ARG_POINTER_REGNUM)
1772
1773 #define ARM_REG_OK_FOR_INDEX_P(X) \
1774 ((REGNO (X) <= LAST_ARM_REGNUM \
1775 && REGNO (X) != STACK_POINTER_REGNUM) \
1776 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1777 || REGNO (X) == FRAME_POINTER_REGNUM \
1778 || REGNO (X) == ARG_POINTER_REGNUM)
1779
1780 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1781 (REGNO (X) <= LAST_LO_REGNUM \
1782 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1783 || (GET_MODE_SIZE (MODE) >= 4 \
1784 && (REGNO (X) == STACK_POINTER_REGNUM \
1785 || (X) == hard_frame_pointer_rtx \
1786 || (X) == arg_pointer_rtx)))
1787
1788 #define REG_STRICT_P 0
1789
1790 #else /* REG_OK_STRICT */
1791
1792 #define ARM_REG_OK_FOR_BASE_P(X) \
1793 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1794
1795 #define ARM_REG_OK_FOR_INDEX_P(X) \
1796 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1797
1798 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1799 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1800
1801 #define REG_STRICT_P 1
1802
1803 #endif /* REG_OK_STRICT */
1804
1805 /* Now define some helpers in terms of the above. */
1806
1807 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1808 (TARGET_THUMB1 \
1809 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1810 : ARM_REG_OK_FOR_BASE_P (X))
1811
1812 /* For 16-bit Thumb, a valid index register is anything that can be used in
1813 a byte load instruction. */
1814 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1815 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1816
1817 /* Nonzero if X is a hard reg that can be used as an index
1818 or if it is a pseudo reg. On the Thumb, the stack pointer
1819 is not suitable. */
1820 #define REG_OK_FOR_INDEX_P(X) \
1821 (TARGET_THUMB1 \
1822 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1823 : ARM_REG_OK_FOR_INDEX_P (X))
1824
1825 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1826 For Thumb, we can not use SP + reg, so reject SP. */
1827 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1828 REG_OK_FOR_INDEX_P (X)
1829 \f
1830 #define ARM_BASE_REGISTER_RTX_P(X) \
1831 (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
1832
1833 #define ARM_INDEX_REGISTER_RTX_P(X) \
1834 (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
1835 \f
1836 /* Specify the machine mode that this machine uses
1837 for the index in the tablejump instruction. */
1838 #define CASE_VECTOR_MODE Pmode
1839
1840 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
1841 || (TARGET_THUMB1 \
1842 && (optimize_size || flag_pic)))
1843
1844 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
1845 (TARGET_THUMB1 \
1846 ? (min >= 0 && max < 512 \
1847 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
1848 : min >= -256 && max < 256 \
1849 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
1850 : min >= 0 && max < 8192 \
1851 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
1852 : min >= -4096 && max < 4096 \
1853 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
1854 : SImode) \
1855 : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode \
1856 : (max >= 0x200) ? HImode \
1857 : QImode))
1858
1859 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1860 unsigned is probably best, but may break some code. */
1861 #ifndef DEFAULT_SIGNED_CHAR
1862 #define DEFAULT_SIGNED_CHAR 0
1863 #endif
1864
1865 /* Max number of bytes we can move from memory to memory
1866 in one reasonably fast instruction. */
1867 #define MOVE_MAX 4
1868
1869 #undef MOVE_RATIO
1870 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1871
1872 /* Define if operations between registers always perform the operation
1873 on the full register even if a narrower mode is specified. */
1874 #define WORD_REGISTER_OPERATIONS 1
1875
1876 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1877 will either zero-extend or sign-extend. The value of this macro should
1878 be the code that says which one of the two operations is implicitly
1879 done, UNKNOWN if none. */
1880 #define LOAD_EXTEND_OP(MODE) \
1881 (TARGET_THUMB ? ZERO_EXTEND : \
1882 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
1883 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
1884
1885 /* Nonzero if access to memory by bytes is slow and undesirable. */
1886 #define SLOW_BYTE_ACCESS 0
1887
1888 /* Immediate shift counts are truncated by the output routines (or was it
1889 the assembler?). Shift counts in a register are truncated by ARM. Note
1890 that the native compiler puts too large (> 32) immediate shift counts
1891 into a register and shifts by the register, letting the ARM decide what
1892 to do instead of doing that itself. */
1893 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
1894 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1895 On the arm, Y in a register is used modulo 256 for the shift. Only for
1896 rotates is modulo 32 used. */
1897 /* #define SHIFT_COUNT_TRUNCATED 1 */
1898
1899 /* Calling from registers is a massive pain. */
1900 #define NO_FUNCTION_CSE 1
1901
1902 /* The machine modes of pointers and functions */
1903 #define Pmode SImode
1904 #define FUNCTION_MODE Pmode
1905
1906 #define ARM_FRAME_RTX(X) \
1907 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
1908 || (X) == arg_pointer_rtx)
1909
1910 /* Try to generate sequences that don't involve branches, we can then use
1911 conditional instructions. */
1912 #define BRANCH_COST(speed_p, predictable_p) \
1913 ((arm_branch_cost != -1) ? arm_branch_cost : \
1914 (current_tune->branch_cost (speed_p, predictable_p)))
1915
1916 /* False if short circuit operation is preferred. */
1917 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
1918 ((optimize_size) \
1919 ? (TARGET_THUMB ? false : true) \
1920 : TARGET_THUMB ? static_cast<bool> (current_tune->logical_op_non_short_circuit_thumb) \
1921 : static_cast<bool> (current_tune->logical_op_non_short_circuit_arm))
1922
1923 \f
1924 /* Position Independent Code. */
1925 /* We decide which register to use based on the compilation options and
1926 the assembler in use; this is more general than the APCS restriction of
1927 using sb (r9) all the time. */
1928 extern unsigned arm_pic_register;
1929
1930 /* The register number of the register used to address a table of static
1931 data addresses in memory. */
1932 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
1933
1934 /* We can't directly access anything that contains a symbol,
1935 nor can we indirect via the constant pool. One exception is
1936 UNSPEC_TLS, which is always PIC. */
1937 #define LEGITIMATE_PIC_OPERAND_P(X) \
1938 (!(symbol_mentioned_p (X) \
1939 || label_mentioned_p (X) \
1940 || (GET_CODE (X) == SYMBOL_REF \
1941 && CONSTANT_POOL_ADDRESS_P (X) \
1942 && (symbol_mentioned_p (get_pool_constant (X)) \
1943 || label_mentioned_p (get_pool_constant (X))))) \
1944 || tls_mentioned_p (X))
1945
1946 /* We need to know when we are making a constant pool; this determines
1947 whether data needs to be in the GOT or can be referenced via a GOT
1948 offset. */
1949 extern int making_const_table;
1950 \f
1951 /* Handle pragmas for compatibility with Intel's compilers. */
1952 /* Also abuse this to register additional C specific EABI attributes. */
1953 #define REGISTER_TARGET_PRAGMAS() do { \
1954 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
1955 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
1956 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
1957 arm_lang_object_attributes_init(); \
1958 arm_register_target_pragmas(); \
1959 } while (0)
1960
1961 /* Condition code information. */
1962 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1963 return the mode to be used for the comparison. */
1964
1965 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
1966
1967 #define REVERSIBLE_CC_MODE(MODE) 1
1968
1969 #define REVERSE_CONDITION(CODE,MODE) \
1970 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
1971 ? reverse_condition_maybe_unordered (code) \
1972 : reverse_condition (code))
1973
1974 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1975 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1976 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1977 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1978 \f
1979 #define CC_STATUS_INIT \
1980 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
1981
1982 #undef ASM_APP_ON
1983 #define ASM_APP_ON (inline_asm_unified ? "\t.syntax unified\n" : \
1984 "\t.syntax divided\n")
1985
1986 #undef ASM_APP_OFF
1987 #define ASM_APP_OFF (TARGET_ARM ? "\t.arm\n\t.syntax unified\n" : \
1988 "\t.thumb\n\t.syntax unified\n")
1989
1990 /* Output a push or a pop instruction (only used when profiling).
1991 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
1992 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
1993 that r7 isn't used by the function profiler, so we can use it as a
1994 scratch reg. WARNING: This isn't safe in the general case! It may be
1995 sensitive to future changes in final.c:profile_function. */
1996 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
1997 do \
1998 { \
1999 if (TARGET_THUMB1 \
2000 && (REGNO) == STATIC_CHAIN_REGNUM) \
2001 { \
2002 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2003 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2004 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2005 } \
2006 else \
2007 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2008 } while (0)
2009
2010
2011 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2012 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2013 do \
2014 { \
2015 if (TARGET_THUMB1 \
2016 && (REGNO) == STATIC_CHAIN_REGNUM) \
2017 { \
2018 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2019 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2020 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2021 } \
2022 else \
2023 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2024 } while (0)
2025
2026 #define ADDR_VEC_ALIGN(JUMPTABLE) \
2027 ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2028
2029 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2030 default alignment from elfos.h. */
2031 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2032 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty. */
2033
2034 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
2035 (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2036 ? 1 : 0)
2037
2038 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2039 arm_declare_function_name ((STREAM), (NAME), (DECL));
2040
2041 /* For aliases of functions we use .thumb_set instead. */
2042 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2043 do \
2044 { \
2045 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2046 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2047 \
2048 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2049 { \
2050 fprintf (FILE, "\t.thumb_set "); \
2051 assemble_name (FILE, LABEL1); \
2052 fprintf (FILE, ","); \
2053 assemble_name (FILE, LABEL2); \
2054 fprintf (FILE, "\n"); \
2055 } \
2056 else \
2057 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2058 } \
2059 while (0)
2060
2061 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2062 /* To support -falign-* switches we need to use .p2align so
2063 that alignment directives in code sections will be padded
2064 with no-op instructions, rather than zeroes. */
2065 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2066 if ((LOG) != 0) \
2067 { \
2068 if ((MAX_SKIP) == 0) \
2069 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2070 else \
2071 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2072 (int) (LOG), (int) (MAX_SKIP)); \
2073 }
2074 #endif
2075 \f
2076 /* Add two bytes to the length of conditionally executed Thumb-2
2077 instructions for the IT instruction. */
2078 #define ADJUST_INSN_LENGTH(insn, length) \
2079 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2080 length += 2;
2081
2082 /* Only perform branch elimination (by making instructions conditional) if
2083 we're optimizing. For Thumb-2 check if any IT instructions need
2084 outputting. */
2085 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2086 if (TARGET_ARM && optimize) \
2087 arm_final_prescan_insn (INSN); \
2088 else if (TARGET_THUMB2) \
2089 thumb2_final_prescan_insn (INSN); \
2090 else if (TARGET_THUMB1) \
2091 thumb1_final_prescan_insn (INSN)
2092
2093 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2094 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2095 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2096 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2097 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2098 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2099 : 0))))
2100
2101 /* A C expression whose value is RTL representing the value of the return
2102 address for the frame COUNT steps up from the current frame. */
2103
2104 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2105 arm_return_addr (COUNT, FRAME)
2106
2107 /* Mask of the bits in the PC that contain the real return address
2108 when running in 26-bit mode. */
2109 #define RETURN_ADDR_MASK26 (0x03fffffc)
2110
2111 /* Pick up the return address upon entry to a procedure. Used for
2112 dwarf2 unwind information. This also enables the table driven
2113 mechanism. */
2114 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2115 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2116
2117 /* Used to mask out junk bits from the return address, such as
2118 processor state, interrupt status, condition codes and the like. */
2119 #define MASK_RETURN_ADDR \
2120 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2121 in 26 bit mode, the condition codes must be masked out of the \
2122 return address. This does not apply to ARM6 and later processors \
2123 when running in 32 bit mode. */ \
2124 ((arm_arch4 || TARGET_THUMB) \
2125 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2126 : arm_gen_return_addr_mask ())
2127
2128 \f
2129 /* Do not emit .note.GNU-stack by default. */
2130 #ifndef NEED_INDICATE_EXEC_STACK
2131 #define NEED_INDICATE_EXEC_STACK 0
2132 #endif
2133
2134 #define TARGET_ARM_ARCH \
2135 (arm_base_arch) \
2136
2137 /* The highest Thumb instruction set version supported by the chip. */
2138 #define TARGET_ARM_ARCH_ISA_THUMB \
2139 (arm_arch_thumb2 ? 2 : (arm_arch_thumb1 ? 1 : 0))
2140
2141 /* Expands to an upper-case char of the target's architectural
2142 profile. */
2143 #define TARGET_ARM_ARCH_PROFILE \
2144 (arm_active_target.profile)
2145
2146 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2147 Bit 0 for bytes, up to bit 3 for double-words. */
2148 #define TARGET_ARM_FEATURE_LDREX \
2149 ((TARGET_HAVE_LDREX ? 4 : 0) \
2150 | (TARGET_HAVE_LDREXBH ? 3 : 0) \
2151 | (TARGET_HAVE_LDREXD ? 8 : 0))
2152
2153 /* Set as a bit mask indicating the available widths of hardware floating
2154 point types. Where bit 1 indicates 16-bit support, bit 2 indicates
2155 32-bit support, bit 3 indicates 64-bit support. */
2156 #define TARGET_ARM_FP \
2157 (!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4 \
2158 : (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \
2159 : 0)
2160
2161
2162 /* Set as a bit mask indicating the available widths of floating point
2163 types for hardware NEON floating point. This is the same as
2164 TARGET_ARM_FP without the 64-bit bit set. */
2165 #define TARGET_NEON_FP \
2166 (TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \
2167 : 0)
2168
2169 /* Name of the automatic fpu-selection option. */
2170 #define FPUTYPE_AUTO "auto"
2171
2172 /* The maximum number of parallel loads or stores we support in an ldm/stm
2173 instruction. */
2174 #define MAX_LDM_STM_OPS 4
2175
2176 extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2177 extern const char *arm_rewrite_march (int argc, const char **argv);
2178 extern const char *arm_asm_auto_mfpu (int argc, const char **argv);
2179 #define ASM_CPU_SPEC_FUNCTIONS \
2180 { "rewrite_mcpu", arm_rewrite_mcpu }, \
2181 { "rewrite_march", arm_rewrite_march }, \
2182 { "asm_auto_mfpu", arm_asm_auto_mfpu },
2183
2184 #define ASM_CPU_SPEC \
2185 " %{mfpu=auto:%<mfpu=auto %:asm_auto_mfpu(%{march=*: arch %*})}" \
2186 " %{mcpu=generic-*:-march=%:rewrite_march(%{mcpu=generic-*:%*});" \
2187 " march=*:-march=%:rewrite_march(%{march=*:%*});" \
2188 " mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})" \
2189 " }"
2190
2191 extern const char *arm_target_thumb_only (int argc, const char **argv);
2192 #define TARGET_MODE_SPEC_FUNCTIONS \
2193 { "target_mode_check", arm_target_thumb_only },
2194
2195 /* -mcpu=native handling only makes sense with compiler running on
2196 an ARM chip. */
2197 #if defined(__arm__)
2198 extern const char *host_detect_local_cpu (int argc, const char **argv);
2199 #define HAVE_LOCAL_CPU_DETECT
2200 # define MCPU_MTUNE_NATIVE_FUNCTIONS \
2201 { "local_cpu_detect", host_detect_local_cpu },
2202 # define MCPU_MTUNE_NATIVE_SPECS \
2203 " %{march=native:%<march=native %:local_cpu_detect(arch)}" \
2204 " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}" \
2205 " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2206 #else
2207 # define MCPU_MTUNE_NATIVE_FUNCTIONS
2208 # define MCPU_MTUNE_NATIVE_SPECS ""
2209 #endif
2210
2211 const char *arm_canon_arch_option (int argc, const char **argv);
2212
2213 #define CANON_ARCH_SPEC_FUNCTION \
2214 { "canon_arch", arm_canon_arch_option },
2215
2216 const char *arm_be8_option (int argc, const char **argv);
2217 #define BE8_SPEC_FUNCTION \
2218 { "be8_linkopt", arm_be8_option },
2219
2220 # define EXTRA_SPEC_FUNCTIONS \
2221 MCPU_MTUNE_NATIVE_FUNCTIONS \
2222 ASM_CPU_SPEC_FUNCTIONS \
2223 CANON_ARCH_SPEC_FUNCTION \
2224 TARGET_MODE_SPEC_FUNCTIONS \
2225 BE8_SPEC_FUNCTION
2226
2227 /* Automatically add -mthumb for Thumb-only targets if mode isn't specified
2228 via the configuration option --with-mode or via the command line. The
2229 function target_mode_check is called to do the check with either:
2230 - an array of -march values if any is given;
2231 - an array of -mcpu values if any is given;
2232 - an empty array. */
2233 #define TARGET_MODE_SPECS \
2234 " %{!marm:%{!mthumb:%:target_mode_check(%{march=*:arch %*;mcpu=*:cpu %*;:})}}"
2235
2236 /* Generate a canonical string to represent the architecture selected. */
2237 #define ARCH_CANONICAL_SPECS \
2238 " -march=%:canon_arch(%{mcpu=*: cpu %*} " \
2239 " %{march=*: arch %*} " \
2240 " %{mfpu=*: fpu %*} " \
2241 " %{mfloat-abi=*: abi %*}" \
2242 " %<march=*) "
2243
2244 /* Complete set of specs for the driver. Commas separate the
2245 individual rules so that any option suppression (%<opt...)is
2246 completed before starting subsequent rules. */
2247 #define DRIVER_SELF_SPECS \
2248 MCPU_MTUNE_NATIVE_SPECS, \
2249 TARGET_MODE_SPECS, \
2250 ARCH_CANONICAL_SPECS
2251
2252 #define TARGET_SUPPORTS_WIDE_INT 1
2253
2254 /* For switching between functions with different target attributes. */
2255 #define SWITCHABLE_TARGET 1
2256
2257 /* Define SECTION_ARM_PURECODE as the ARM specific section attribute
2258 representation for SHF_ARM_PURECODE in GCC. */
2259 #define SECTION_ARM_PURECODE SECTION_MACH_DEP
2260
2261 #endif /* ! GCC_ARM_H */