]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/arm/arm.h
Makefile.in (MACHMODE_H): Add @extra_modes_file@.
[thirdparty/gcc.git] / gcc / config / arm / arm.h
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
5 and Martin Simmons (@harleqn.co.uk).
6 More major hacks by Richard Earnshaw (rearnsha@arm.com)
7 Minor hacks by Nick Clifton (nickc@cygnus.com)
8
9 This file is part of GNU CC.
10
11 GNU CC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2, or (at your option)
14 any later version.
15
16 GNU CC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GNU CC; see the file COPYING. If not, write to
23 the Free Software Foundation, 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #ifndef GCC_ARM_H
27 #define GCC_ARM_H
28
29 /* Target CPU builtins. */
30 #define TARGET_CPU_CPP_BUILTINS() \
31 do \
32 { \
33 if (TARGET_ARM) \
34 builtin_define ("__arm__"); \
35 else \
36 builtin_define ("__thumb__"); \
37 \
38 if (TARGET_BIG_END) \
39 { \
40 builtin_define ("__ARMEB__"); \
41 if (TARGET_THUMB) \
42 builtin_define ("__THUMBEB__"); \
43 if (TARGET_LITTLE_WORDS) \
44 builtin_define ("__ARMWEL__"); \
45 } \
46 else \
47 { \
48 builtin_define ("__ARMEL__"); \
49 if (TARGET_THUMB) \
50 builtin_define ("__THUMBEL__"); \
51 } \
52 \
53 if (TARGET_APCS_32) \
54 builtin_define ("__APCS_32__"); \
55 else \
56 builtin_define ("__APCS_26__"); \
57 \
58 if (TARGET_SOFT_FLOAT) \
59 builtin_define ("__SOFTFP__"); \
60 \
61 /* Add a define for interworking. \
62 Needed when building libgcc.a. */ \
63 if (TARGET_INTERWORK) \
64 builtin_define ("__THUMB_INTERWORK__"); \
65 \
66 builtin_assert ("cpu=arm"); \
67 builtin_assert ("machine=arm"); \
68 } while (0)
69
70 #define TARGET_CPU_arm2 0x0000
71 #define TARGET_CPU_arm250 0x0000
72 #define TARGET_CPU_arm3 0x0000
73 #define TARGET_CPU_arm6 0x0001
74 #define TARGET_CPU_arm600 0x0001
75 #define TARGET_CPU_arm610 0x0002
76 #define TARGET_CPU_arm7 0x0001
77 #define TARGET_CPU_arm7m 0x0004
78 #define TARGET_CPU_arm7dm 0x0004
79 #define TARGET_CPU_arm7dmi 0x0004
80 #define TARGET_CPU_arm700 0x0001
81 #define TARGET_CPU_arm710 0x0002
82 #define TARGET_CPU_arm7100 0x0002
83 #define TARGET_CPU_arm7500 0x0002
84 #define TARGET_CPU_arm7500fe 0x1001
85 #define TARGET_CPU_arm7tdmi 0x0008
86 #define TARGET_CPU_arm8 0x0010
87 #define TARGET_CPU_arm810 0x0020
88 #define TARGET_CPU_strongarm 0x0040
89 #define TARGET_CPU_strongarm110 0x0040
90 #define TARGET_CPU_strongarm1100 0x0040
91 #define TARGET_CPU_arm9 0x0080
92 #define TARGET_CPU_arm9tdmi 0x0080
93 #define TARGET_CPU_xscale 0x0100
94 /* Configure didn't specify. */
95 #define TARGET_CPU_generic 0x8000
96
97 typedef enum arm_cond_code
98 {
99 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
100 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
101 }
102 arm_cc;
103
104 extern arm_cc arm_current_cc;
105
106 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
107
108 extern int arm_target_label;
109 extern int arm_ccfsm_state;
110 extern GTY(()) rtx arm_target_insn;
111 /* Run-time compilation parameters selecting different hardware subsets. */
112 extern int target_flags;
113 /* The floating point instruction architecture, can be 2 or 3 */
114 extern const char * target_fp_name;
115 /* Define the information needed to generate branch insns. This is
116 stored from the compare operation. */
117 extern GTY(()) rtx arm_compare_op0;
118 extern GTY(()) rtx arm_compare_op1;
119 /* The label of the current constant pool. */
120 extern rtx pool_vector_label;
121 /* Set to 1 when a return insn is output, this means that the epilogue
122 is not needed. */
123 extern int return_used_this_function;
124 /* Used to produce AOF syntax assembler. */
125 extern GTY(()) rtx aof_pic_label;
126 \f
127 /* Just in case configure has failed to define anything. */
128 #ifndef TARGET_CPU_DEFAULT
129 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
130 #endif
131
132 /* If the configuration file doesn't specify the cpu, the subtarget may
133 override it. If it doesn't, then default to an ARM6. */
134 #if TARGET_CPU_DEFAULT == TARGET_CPU_generic
135 #undef TARGET_CPU_DEFAULT
136
137 #ifdef SUBTARGET_CPU_DEFAULT
138 #define TARGET_CPU_DEFAULT SUBTARGET_CPU_DEFAULT
139 #else
140 #define TARGET_CPU_DEFAULT TARGET_CPU_arm6
141 #endif
142 #endif
143
144 #if TARGET_CPU_DEFAULT == TARGET_CPU_arm2
145 #define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_2__"
146 #else
147 #if TARGET_CPU_DEFAULT == TARGET_CPU_arm6 || TARGET_CPU_DEFAULT == TARGET_CPU_arm610 || TARGET_CPU_DEFAULT == TARGET_CPU_arm7500fe
148 #define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_3__"
149 #else
150 #if TARGET_CPU_DEFAULT == TARGET_CPU_arm7m
151 #define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_3M__"
152 #else
153 #if TARGET_CPU_DEFAULT == TARGET_CPU_arm7tdmi || TARGET_CPU_DEFAULT == TARGET_CPU_arm9 || TARGET_CPU_DEFAULT == TARGET_CPU_arm9tdmi
154 #define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_4T__"
155 #else
156 #if TARGET_CPU_DEFAULT == TARGET_CPU_arm8 || TARGET_CPU_DEFAULT == TARGET_CPU_arm810 || TARGET_CPU_DEFAULT == TARGET_CPU_strongarm || TARGET_CPU_DEFAULT == TARGET_CPU_strongarm110 || TARGET_CPU_DEFAULT == TARGET_CPU_strongarm1100
157 #define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_4__"
158 #else
159 #if TARGET_CPU_DEFAULT == TARGET_CPU_xscale
160 #define CPP_ARCH_DEFAULT_SPEC "-D__ARM_ARCH_5TE__ -D__XSCALE__"
161 #else
162 Unrecognized value in TARGET_CPU_DEFAULT.
163 #endif
164 #endif
165 #endif
166 #endif
167 #endif
168 #endif
169
170 #undef CPP_SPEC
171 #define CPP_SPEC "%(cpp_cpu_arch) %(subtarget_cpp_spec) \
172 %{mapcs-32:%{mapcs-26: \
173 %e-mapcs-26 and -mapcs-32 may not be used together}} \
174 %{msoft-float:%{mhard-float: \
175 %e-msoft-float and -mhard_float may not be used together}} \
176 %{mbig-endian:%{mlittle-endian: \
177 %e-mbig-endian and -mlittle-endian may not be used together}}"
178
179 /* Set the architecture define -- if -march= is set, then it overrides
180 the -mcpu= setting. */
181 #define CPP_CPU_ARCH_SPEC "\
182 %{march=arm2:-D__ARM_ARCH_2__} \
183 %{march=arm250:-D__ARM_ARCH_2__} \
184 %{march=arm3:-D__ARM_ARCH_2__} \
185 %{march=arm6:-D__ARM_ARCH_3__} \
186 %{march=arm600:-D__ARM_ARCH_3__} \
187 %{march=arm610:-D__ARM_ARCH_3__} \
188 %{march=arm7:-D__ARM_ARCH_3__} \
189 %{march=arm700:-D__ARM_ARCH_3__} \
190 %{march=arm710:-D__ARM_ARCH_3__} \
191 %{march=arm720:-D__ARM_ARCH_3__} \
192 %{march=arm7100:-D__ARM_ARCH_3__} \
193 %{march=arm7500:-D__ARM_ARCH_3__} \
194 %{march=arm7500fe:-D__ARM_ARCH_3__} \
195 %{march=arm7m:-D__ARM_ARCH_3M__} \
196 %{march=arm7dm:-D__ARM_ARCH_3M__} \
197 %{march=arm7dmi:-D__ARM_ARCH_3M__} \
198 %{march=arm7tdmi:-D__ARM_ARCH_4T__} \
199 %{march=arm8:-D__ARM_ARCH_4__} \
200 %{march=arm810:-D__ARM_ARCH_4__} \
201 %{march=arm9:-D__ARM_ARCH_4T__} \
202 %{march=arm920:-D__ARM_ARCH_4__} \
203 %{march=arm920t:-D__ARM_ARCH_4T__} \
204 %{march=arm9tdmi:-D__ARM_ARCH_4T__} \
205 %{march=strongarm:-D__ARM_ARCH_4__} \
206 %{march=strongarm110:-D__ARM_ARCH_4__} \
207 %{march=strongarm1100:-D__ARM_ARCH_4__} \
208 %{march=xscale:-D__ARM_ARCH_5TE__} \
209 %{march=xscale:-D__XSCALE__} \
210 %{march=armv2:-D__ARM_ARCH_2__} \
211 %{march=armv2a:-D__ARM_ARCH_2__} \
212 %{march=armv3:-D__ARM_ARCH_3__} \
213 %{march=armv3m:-D__ARM_ARCH_3M__} \
214 %{march=armv4:-D__ARM_ARCH_4__} \
215 %{march=armv4t:-D__ARM_ARCH_4T__} \
216 %{march=armv5:-D__ARM_ARCH_5__} \
217 %{march=armv5t:-D__ARM_ARCH_5T__} \
218 %{march=armv5e:-D__ARM_ARCH_5E__} \
219 %{march=armv5te:-D__ARM_ARCH_5TE__} \
220 %{!march=*: \
221 %{mcpu=arm2:-D__ARM_ARCH_2__} \
222 %{mcpu=arm250:-D__ARM_ARCH_2__} \
223 %{mcpu=arm3:-D__ARM_ARCH_2__} \
224 %{mcpu=arm6:-D__ARM_ARCH_3__} \
225 %{mcpu=arm600:-D__ARM_ARCH_3__} \
226 %{mcpu=arm610:-D__ARM_ARCH_3__} \
227 %{mcpu=arm7:-D__ARM_ARCH_3__} \
228 %{mcpu=arm700:-D__ARM_ARCH_3__} \
229 %{mcpu=arm710:-D__ARM_ARCH_3__} \
230 %{mcpu=arm720:-D__ARM_ARCH_3__} \
231 %{mcpu=arm7100:-D__ARM_ARCH_3__} \
232 %{mcpu=arm7500:-D__ARM_ARCH_3__} \
233 %{mcpu=arm7500fe:-D__ARM_ARCH_3__} \
234 %{mcpu=arm7m:-D__ARM_ARCH_3M__} \
235 %{mcpu=arm7dm:-D__ARM_ARCH_3M__} \
236 %{mcpu=arm7dmi:-D__ARM_ARCH_3M__} \
237 %{mcpu=arm7tdmi:-D__ARM_ARCH_4T__} \
238 %{mcpu=arm8:-D__ARM_ARCH_4__} \
239 %{mcpu=arm810:-D__ARM_ARCH_4__} \
240 %{mcpu=arm9:-D__ARM_ARCH_4T__} \
241 %{mcpu=arm920:-D__ARM_ARCH_4__} \
242 %{mcpu=arm920t:-D__ARM_ARCH_4T__} \
243 %{mcpu=arm9tdmi:-D__ARM_ARCH_4T__} \
244 %{mcpu=strongarm:-D__ARM_ARCH_4__} \
245 %{mcpu=strongarm110:-D__ARM_ARCH_4__} \
246 %{mcpu=strongarm1100:-D__ARM_ARCH_4__} \
247 %{mcpu=xscale:-D__ARM_ARCH_5TE__} \
248 %{mcpu=xscale:-D__XSCALE__} \
249 %{!mcpu*:%(cpp_cpu_arch_default)}} \
250 "
251
252 #ifndef CC1_SPEC
253 #define CC1_SPEC ""
254 #endif
255
256 /* This macro defines names of additional specifications to put in the specs
257 that can be used in various specifications like CC1_SPEC. Its definition
258 is an initializer with a subgrouping for each command option.
259
260 Each subgrouping contains a string constant, that defines the
261 specification name, and a string constant that used by the GNU CC driver
262 program.
263
264 Do not define this macro if it does not need to do anything. */
265 #define EXTRA_SPECS \
266 { "cpp_cpu_arch", CPP_CPU_ARCH_SPEC }, \
267 { "cpp_cpu_arch_default", CPP_ARCH_DEFAULT_SPEC }, \
268 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
269 SUBTARGET_EXTRA_SPECS
270
271 #ifndef SUBTARGET_EXTRA_SPECS
272 #define SUBTARGET_EXTRA_SPECS
273 #endif
274
275 #ifndef SUBTARGET_CPP_SPEC
276 #define SUBTARGET_CPP_SPEC ""
277 #endif
278 \f
279 /* Run-time Target Specification. */
280 #ifndef TARGET_VERSION
281 #define TARGET_VERSION fputs (" (ARM/generic)", stderr);
282 #endif
283
284 /* Nonzero if the function prologue (and epilogue) should obey
285 the ARM Procedure Call Standard. */
286 #define ARM_FLAG_APCS_FRAME (1 << 0)
287
288 /* Nonzero if the function prologue should output the function name to enable
289 the post mortem debugger to print a backtrace (very useful on RISCOS,
290 unused on RISCiX). Specifying this flag also enables
291 -fno-omit-frame-pointer.
292 XXX Must still be implemented in the prologue. */
293 #define ARM_FLAG_POKE (1 << 1)
294
295 /* Nonzero if floating point instructions are emulated by the FPE, in which
296 case instruction scheduling becomes very uninteresting. */
297 #define ARM_FLAG_FPE (1 << 2)
298
299 /* Nonzero if destined for a processor in 32-bit program mode. Takes out bit
300 that assume restoration of the condition flags when returning from a
301 branch and link (ie a function). */
302 #define ARM_FLAG_APCS_32 (1 << 3)
303
304 /* FLAGS 0x0008 and 0x0010 are now spare (used to be arm3/6 selection). */
305
306 /* Nonzero if stack checking should be performed on entry to each function
307 which allocates temporary variables on the stack. */
308 #define ARM_FLAG_APCS_STACK (1 << 4)
309
310 /* Nonzero if floating point parameters should be passed to functions in
311 floating point registers. */
312 #define ARM_FLAG_APCS_FLOAT (1 << 5)
313
314 /* Nonzero if re-entrant, position independent code should be generated.
315 This is equivalent to -fpic. */
316 #define ARM_FLAG_APCS_REENT (1 << 6)
317
318 /* Nonzero if the MMU will trap unaligned word accesses, so shorts must
319 be loaded using either LDRH or LDRB instructions. */
320 #define ARM_FLAG_MMU_TRAPS (1 << 7)
321
322 /* Nonzero if all floating point instructions are missing (and there is no
323 emulator either). Generate function calls for all ops in this case. */
324 #define ARM_FLAG_SOFT_FLOAT (1 << 8)
325
326 /* Nonzero if we should compile with BYTES_BIG_ENDIAN set to 1. */
327 #define ARM_FLAG_BIG_END (1 << 9)
328
329 /* Nonzero if we should compile for Thumb interworking. */
330 #define ARM_FLAG_INTERWORK (1 << 10)
331
332 /* Nonzero if we should have little-endian words even when compiling for
333 big-endian (for backwards compatibility with older versions of GCC). */
334 #define ARM_FLAG_LITTLE_WORDS (1 << 11)
335
336 /* Nonzero if we need to protect the prolog from scheduling */
337 #define ARM_FLAG_NO_SCHED_PRO (1 << 12)
338
339 /* Nonzero if a call to abort should be generated if a noreturn
340 function tries to return. */
341 #define ARM_FLAG_ABORT_NORETURN (1 << 13)
342
343 /* Nonzero if function prologues should not load the PIC register. */
344 #define ARM_FLAG_SINGLE_PIC_BASE (1 << 14)
345
346 /* Nonzero if all call instructions should be indirect. */
347 #define ARM_FLAG_LONG_CALLS (1 << 15)
348
349 /* Nonzero means that the target ISA is the THUMB, not the ARM. */
350 #define ARM_FLAG_THUMB (1 << 16)
351
352 /* Set if a TPCS style stack frame should be generated, for non-leaf
353 functions, even if they do not need one. */
354 #define THUMB_FLAG_BACKTRACE (1 << 17)
355
356 /* Set if a TPCS style stack frame should be generated, for leaf
357 functions, even if they do not need one. */
358 #define THUMB_FLAG_LEAF_BACKTRACE (1 << 18)
359
360 /* Set if externally visible functions should assume that they
361 might be called in ARM mode, from a non-thumb aware code. */
362 #define THUMB_FLAG_CALLEE_SUPER_INTERWORKING (1 << 19)
363
364 /* Set if calls via function pointers should assume that their
365 destination is non-Thumb aware. */
366 #define THUMB_FLAG_CALLER_SUPER_INTERWORKING (1 << 20)
367
368 #define TARGET_APCS_FRAME (target_flags & ARM_FLAG_APCS_FRAME)
369 #define TARGET_POKE_FUNCTION_NAME (target_flags & ARM_FLAG_POKE)
370 #define TARGET_FPE (target_flags & ARM_FLAG_FPE)
371 #define TARGET_APCS_32 (target_flags & ARM_FLAG_APCS_32)
372 #define TARGET_APCS_STACK (target_flags & ARM_FLAG_APCS_STACK)
373 #define TARGET_APCS_FLOAT (target_flags & ARM_FLAG_APCS_FLOAT)
374 #define TARGET_APCS_REENT (target_flags & ARM_FLAG_APCS_REENT)
375 #define TARGET_MMU_TRAPS (target_flags & ARM_FLAG_MMU_TRAPS)
376 #define TARGET_SOFT_FLOAT (target_flags & ARM_FLAG_SOFT_FLOAT)
377 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
378 #define TARGET_BIG_END (target_flags & ARM_FLAG_BIG_END)
379 #define TARGET_INTERWORK (target_flags & ARM_FLAG_INTERWORK)
380 #define TARGET_LITTLE_WORDS (target_flags & ARM_FLAG_LITTLE_WORDS)
381 #define TARGET_NO_SCHED_PRO (target_flags & ARM_FLAG_NO_SCHED_PRO)
382 #define TARGET_ABORT_NORETURN (target_flags & ARM_FLAG_ABORT_NORETURN)
383 #define TARGET_SINGLE_PIC_BASE (target_flags & ARM_FLAG_SINGLE_PIC_BASE)
384 #define TARGET_LONG_CALLS (target_flags & ARM_FLAG_LONG_CALLS)
385 #define TARGET_THUMB (target_flags & ARM_FLAG_THUMB)
386 #define TARGET_ARM (! TARGET_THUMB)
387 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
388 #define TARGET_CALLEE_INTERWORKING (target_flags & THUMB_FLAG_CALLEE_SUPER_INTERWORKING)
389 #define TARGET_CALLER_INTERWORKING (target_flags & THUMB_FLAG_CALLER_SUPER_INTERWORKING)
390 #define TARGET_BACKTRACE (leaf_function_p () \
391 ? (target_flags & THUMB_FLAG_LEAF_BACKTRACE) \
392 : (target_flags & THUMB_FLAG_BACKTRACE))
393
394 /* SUBTARGET_SWITCHES is used to add flags on a per-config basis. */
395 #ifndef SUBTARGET_SWITCHES
396 #define SUBTARGET_SWITCHES
397 #endif
398
399 #define TARGET_SWITCHES \
400 { \
401 {"apcs", ARM_FLAG_APCS_FRAME, "" }, \
402 {"apcs-frame", ARM_FLAG_APCS_FRAME, \
403 N_("Generate APCS conformant stack frames") }, \
404 {"no-apcs-frame", -ARM_FLAG_APCS_FRAME, "" }, \
405 {"poke-function-name", ARM_FLAG_POKE, \
406 N_("Store function names in object code") }, \
407 {"no-poke-function-name", -ARM_FLAG_POKE, "" }, \
408 {"fpe", ARM_FLAG_FPE, "" }, \
409 {"apcs-32", ARM_FLAG_APCS_32, \
410 N_("Use the 32-bit version of the APCS") }, \
411 {"apcs-26", -ARM_FLAG_APCS_32, \
412 N_("Use the 26-bit version of the APCS") }, \
413 {"apcs-stack-check", ARM_FLAG_APCS_STACK, "" }, \
414 {"no-apcs-stack-check", -ARM_FLAG_APCS_STACK, "" }, \
415 {"apcs-float", ARM_FLAG_APCS_FLOAT, \
416 N_("Pass FP arguments in FP registers") }, \
417 {"no-apcs-float", -ARM_FLAG_APCS_FLOAT, "" }, \
418 {"apcs-reentrant", ARM_FLAG_APCS_REENT, \
419 N_("Generate re-entrant, PIC code") }, \
420 {"no-apcs-reentrant", -ARM_FLAG_APCS_REENT, "" }, \
421 {"alignment-traps", ARM_FLAG_MMU_TRAPS, \
422 N_("The MMU will trap on unaligned accesses") }, \
423 {"no-alignment-traps", -ARM_FLAG_MMU_TRAPS, "" }, \
424 {"short-load-bytes", ARM_FLAG_MMU_TRAPS, "" }, \
425 {"no-short-load-bytes", -ARM_FLAG_MMU_TRAPS, "" }, \
426 {"short-load-words", -ARM_FLAG_MMU_TRAPS, "" }, \
427 {"no-short-load-words", ARM_FLAG_MMU_TRAPS, "" }, \
428 {"soft-float", ARM_FLAG_SOFT_FLOAT, \
429 N_("Use library calls to perform FP operations") }, \
430 {"hard-float", -ARM_FLAG_SOFT_FLOAT, \
431 N_("Use hardware floating point instructions") }, \
432 {"big-endian", ARM_FLAG_BIG_END, \
433 N_("Assume target CPU is configured as big endian") }, \
434 {"little-endian", -ARM_FLAG_BIG_END, \
435 N_("Assume target CPU is configured as little endian") }, \
436 {"words-little-endian", ARM_FLAG_LITTLE_WORDS, \
437 N_("Assume big endian bytes, little endian words") }, \
438 {"thumb-interwork", ARM_FLAG_INTERWORK, \
439 N_("Support calls between Thumb and ARM instruction sets") }, \
440 {"no-thumb-interwork", -ARM_FLAG_INTERWORK, "" }, \
441 {"abort-on-noreturn", ARM_FLAG_ABORT_NORETURN, \
442 N_("Generate a call to abort if a noreturn function returns")}, \
443 {"no-abort-on-noreturn", -ARM_FLAG_ABORT_NORETURN, "" }, \
444 {"no-sched-prolog", ARM_FLAG_NO_SCHED_PRO, \
445 N_("Do not move instructions into a function's prologue") }, \
446 {"sched-prolog", -ARM_FLAG_NO_SCHED_PRO, "" }, \
447 {"single-pic-base", ARM_FLAG_SINGLE_PIC_BASE, \
448 N_("Do not load the PIC register in function prologues") }, \
449 {"no-single-pic-base", -ARM_FLAG_SINGLE_PIC_BASE, "" }, \
450 {"long-calls", ARM_FLAG_LONG_CALLS, \
451 N_("Generate call insns as indirect calls, if necessary") }, \
452 {"no-long-calls", -ARM_FLAG_LONG_CALLS, "" }, \
453 {"thumb", ARM_FLAG_THUMB, \
454 N_("Compile for the Thumb not the ARM") }, \
455 {"no-thumb", -ARM_FLAG_THUMB, "" }, \
456 {"arm", -ARM_FLAG_THUMB, "" }, \
457 {"tpcs-frame", THUMB_FLAG_BACKTRACE, \
458 N_("Thumb: Generate (non-leaf) stack frames even if not needed") }, \
459 {"no-tpcs-frame", -THUMB_FLAG_BACKTRACE, "" }, \
460 {"tpcs-leaf-frame", THUMB_FLAG_LEAF_BACKTRACE, \
461 N_("Thumb: Generate (leaf) stack frames even if not needed") }, \
462 {"no-tpcs-leaf-frame", -THUMB_FLAG_LEAF_BACKTRACE, "" }, \
463 {"callee-super-interworking", THUMB_FLAG_CALLEE_SUPER_INTERWORKING, \
464 N_("Thumb: Assume non-static functions may be called from ARM code") }, \
465 {"no-callee-super-interworking", -THUMB_FLAG_CALLEE_SUPER_INTERWORKING, \
466 "" }, \
467 {"caller-super-interworking", THUMB_FLAG_CALLER_SUPER_INTERWORKING, \
468 N_("Thumb: Assume function pointers may go to non-Thumb aware code") }, \
469 {"no-caller-super-interworking", -THUMB_FLAG_CALLER_SUPER_INTERWORKING, \
470 "" }, \
471 SUBTARGET_SWITCHES \
472 {"", TARGET_DEFAULT, "" } \
473 }
474
475 #define TARGET_OPTIONS \
476 { \
477 {"cpu=", & arm_select[0].string, \
478 N_("Specify the name of the target CPU") }, \
479 {"arch=", & arm_select[1].string, \
480 N_("Specify the name of the target architecture") }, \
481 {"tune=", & arm_select[2].string, "" }, \
482 {"fpe=", & target_fp_name, "" }, \
483 {"fp=", & target_fp_name, \
484 N_("Specify the version of the floating point emulator") }, \
485 {"structure-size-boundary=", & structure_size_string, \
486 N_("Specify the minimum bit alignment of structures") }, \
487 {"pic-register=", & arm_pic_register_string, \
488 N_("Specify the register to be used for PIC addressing") } \
489 }
490
491 struct arm_cpu_select
492 {
493 const char * string;
494 const char * name;
495 const struct processors * processors;
496 };
497
498 /* This is a magic array. If the user specifies a command line switch
499 which matches one of the entries in TARGET_OPTIONS then the corresponding
500 string pointer will be set to the value specified by the user. */
501 extern struct arm_cpu_select arm_select[];
502
503 enum prog_mode_type
504 {
505 prog_mode26,
506 prog_mode32
507 };
508
509 /* Recast the program mode class to be the prog_mode attribute */
510 #define arm_prog_mode ((enum attr_prog_mode) arm_prgmode)
511
512 extern enum prog_mode_type arm_prgmode;
513
514 /* What sort of floating point unit do we have? Hardware or software.
515 If software, is it issue 2 or issue 3? */
516 enum floating_point_type
517 {
518 FP_HARD,
519 FP_SOFT2,
520 FP_SOFT3
521 };
522
523 /* Recast the floating point class to be the floating point attribute. */
524 #define arm_fpu_attr ((enum attr_fpu) arm_fpu)
525
526 /* What type of floating point to tune for */
527 extern enum floating_point_type arm_fpu;
528
529 /* What type of floating point instructions are available */
530 extern enum floating_point_type arm_fpu_arch;
531
532 /* Default floating point architecture. Override in sub-target if
533 necessary. */
534 #ifndef FP_DEFAULT
535 #define FP_DEFAULT FP_SOFT2
536 #endif
537
538 /* Nonzero if the processor has a fast multiply insn, and one that does
539 a 64-bit multiply of two 32-bit values. */
540 extern int arm_fast_multiply;
541
542 /* Nonzero if this chip supports the ARM Architecture 4 extensions */
543 extern int arm_arch4;
544
545 /* Nonzero if this chip supports the ARM Architecture 5 extensions */
546 extern int arm_arch5;
547
548 /* Nonzero if this chip supports the ARM Architecture 5E extensions */
549 extern int arm_arch5e;
550
551 /* Nonzero if this chip can benefit from load scheduling. */
552 extern int arm_ld_sched;
553
554 /* Nonzero if generating thumb code. */
555 extern int thumb_code;
556
557 /* Nonzero if this chip is a StrongARM. */
558 extern int arm_is_strong;
559
560 /* Nonzero if this chip is an XScale. */
561 extern int arm_is_xscale;
562
563 /* Nonzero if this chip is an ARM6 or an ARM7. */
564 extern int arm_is_6_or_7;
565
566 #ifndef TARGET_DEFAULT
567 #define TARGET_DEFAULT (ARM_FLAG_APCS_FRAME)
568 #endif
569
570 /* The frame pointer register used in gcc has nothing to do with debugging;
571 that is controlled by the APCS-FRAME option. */
572 #define CAN_DEBUG_WITHOUT_FP
573
574 #undef TARGET_MEM_FUNCTIONS
575 #define TARGET_MEM_FUNCTIONS 1
576
577 #define OVERRIDE_OPTIONS arm_override_options ()
578
579 /* Nonzero if PIC code requires explicit qualifiers to generate
580 PLT and GOT relocs rather than the assembler doing so implicitly.
581 Subtargets can override these if required. */
582 #ifndef NEED_GOT_RELOC
583 #define NEED_GOT_RELOC 0
584 #endif
585 #ifndef NEED_PLT_RELOC
586 #define NEED_PLT_RELOC 0
587 #endif
588
589 /* Nonzero if we need to refer to the GOT with a PC-relative
590 offset. In other words, generate
591
592 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
593
594 rather than
595
596 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
597
598 The default is true, which matches NetBSD. Subtargets can
599 override this if required. */
600 #ifndef GOT_PCREL
601 #define GOT_PCREL 1
602 #endif
603 \f
604 /* Target machine storage Layout. */
605
606
607 /* Define this macro if it is advisable to hold scalars in registers
608 in a wider mode than that declared by the program. In such cases,
609 the value is constrained to be within the bounds of the declared
610 type, but kept valid in the wider mode. The signedness of the
611 extension may differ from that of the type. */
612
613 /* It is far faster to zero extend chars than to sign extend them */
614
615 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
616 if (GET_MODE_CLASS (MODE) == MODE_INT \
617 && GET_MODE_SIZE (MODE) < 4) \
618 { \
619 if (MODE == QImode) \
620 UNSIGNEDP = 1; \
621 else if (MODE == HImode) \
622 UNSIGNEDP = TARGET_MMU_TRAPS != 0; \
623 (MODE) = SImode; \
624 }
625
626 /* Define this macro if the promotion described by `PROMOTE_MODE'
627 should also be done for outgoing function arguments. */
628 /* This is required to ensure that push insns always push a word. */
629 #define PROMOTE_FUNCTION_ARGS
630
631 /* For the ARM:
632 I think I have added all the code to make this work. Unfortunately,
633 early releases of the floating point emulation code on RISCiX used a
634 different format for extended precision numbers. On my RISCiX box there
635 is a bug somewhere which causes the machine to lock up when running enquire
636 with long doubles. There is the additional aspect that Norcroft C
637 treats long doubles as doubles and we ought to remain compatible.
638 Perhaps someone with an FPA coprocessor and not running RISCiX would like
639 to try this someday. */
640 /* #define LONG_DOUBLE_TYPE_SIZE 96 */
641
642 /* Disable XFmode patterns in md file */
643 #define ENABLE_XF_PATTERNS 0
644
645 /* Define this if most significant bit is lowest numbered
646 in instructions that operate on numbered bit-fields. */
647 #define BITS_BIG_ENDIAN 0
648
649 /* Define this if most significant byte of a word is the lowest numbered.
650 Most ARM processors are run in little endian mode, so that is the default.
651 If you want to have it run-time selectable, change the definition in a
652 cover file to be TARGET_BIG_ENDIAN. */
653 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
654
655 /* Define this if most significant word of a multiword number is the lowest
656 numbered.
657 This is always false, even when in big-endian mode. */
658 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
659
660 /* LIBGCC2_WORDS_BIG_ENDIAN has to be a constant, so we define this based
661 on processor pre-defineds when compiling libgcc2.c. */
662 #if defined(__ARMEB__) && !defined(__ARMWEL__)
663 #define LIBGCC2_WORDS_BIG_ENDIAN 1
664 #else
665 #define LIBGCC2_WORDS_BIG_ENDIAN 0
666 #endif
667
668 /* Define this if most significant word of doubles is the lowest numbered.
669 This is always true, even when in little-endian mode. */
670 #define FLOAT_WORDS_BIG_ENDIAN 1
671
672 #define UNITS_PER_WORD 4
673
674 #define PARM_BOUNDARY 32
675
676 #define STACK_BOUNDARY 32
677
678 #define FUNCTION_BOUNDARY 32
679
680 /* The lowest bit is used to indicate Thumb-mode functions, so the
681 vbit must go into the delta field of pointers to member
682 functions. */
683 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
684
685 #define EMPTY_FIELD_BOUNDARY 32
686
687 #define BIGGEST_ALIGNMENT 32
688
689 /* Make strings word-aligned so strcpy from constants will be faster. */
690 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_is_xscale ? 1 : 2)
691
692 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
693 ((TREE_CODE (EXP) == STRING_CST \
694 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
695 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
696
697 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
698 value set in previous versions of this toolchain was 8, which produces more
699 compact structures. The command line option -mstructure_size_boundary=<n>
700 can be used to change this value. For compatibility with the ARM SDK
701 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
702 0020D) page 2-20 says "Structures are aligned on word boundaries". */
703 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
704 extern int arm_structure_size_boundary;
705
706 /* This is the value used to initialise arm_structure_size_boundary. If a
707 particular arm target wants to change the default value it should change
708 the definition of this macro, not STRUCTRUE_SIZE_BOUNDARY. See netbsd.h
709 for an example of this. */
710 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
711 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
712 #endif
713
714 /* Used when parsing command line option -mstructure_size_boundary. */
715 extern const char * structure_size_string;
716
717 /* Non-zero if move instructions will actually fail to work
718 when given unaligned data. */
719 #define STRICT_ALIGNMENT 1
720
721 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
722
723 \f
724 /* Standard register usage. */
725
726 /* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
727 (S - saved over call).
728
729 r0 * argument word/integer result
730 r1-r3 argument word
731
732 r4-r8 S register variable
733 r9 S (rfp) register variable (real frame pointer)
734
735 r10 F S (sl) stack limit (used by -mapcs-stack-check)
736 r11 F S (fp) argument pointer
737 r12 (ip) temp workspace
738 r13 F S (sp) lower end of current stack frame
739 r14 (lr) link address/workspace
740 r15 F (pc) program counter
741
742 f0 floating point result
743 f1-f3 floating point scratch
744
745 f4-f7 S floating point variable
746
747 cc This is NOT a real register, but is used internally
748 to represent things that use or set the condition
749 codes.
750 sfp This isn't either. It is used during rtl generation
751 since the offset between the frame pointer and the
752 auto's isn't known until after register allocation.
753 afp Nor this, we only need this because of non-local
754 goto. Without it fp appears to be used and the
755 elimination code won't get rid of sfp. It tracks
756 fp exactly at all times.
757
758 *: See CONDITIONAL_REGISTER_USAGE */
759
760 /* The stack backtrace structure is as follows:
761 fp points to here: | save code pointer | [fp]
762 | return link value | [fp, #-4]
763 | return sp value | [fp, #-8]
764 | return fp value | [fp, #-12]
765 [| saved r10 value |]
766 [| saved r9 value |]
767 [| saved r8 value |]
768 [| saved r7 value |]
769 [| saved r6 value |]
770 [| saved r5 value |]
771 [| saved r4 value |]
772 [| saved r3 value |]
773 [| saved r2 value |]
774 [| saved r1 value |]
775 [| saved r0 value |]
776 [| saved f7 value |] three words
777 [| saved f6 value |] three words
778 [| saved f5 value |] three words
779 [| saved f4 value |] three words
780 r0-r3 are not normally saved in a C function. */
781
782 /* 1 for registers that have pervasive standard uses
783 and are not available for the register allocator. */
784 #define FIXED_REGISTERS \
785 { \
786 0,0,0,0,0,0,0,0, \
787 0,0,0,0,0,1,0,1, \
788 0,0,0,0,0,0,0,0, \
789 1,1,1 \
790 }
791
792 /* 1 for registers not available across function calls.
793 These must include the FIXED_REGISTERS and also any
794 registers that can be used without being saved.
795 The latter must include the registers where values are returned
796 and the register where structure-value addresses are passed.
797 Aside from that, you can include as many other registers as you like.
798 The CC is not preserved over function calls on the ARM 6, so it is
799 easier to assume this for all. SFP is preserved, since FP is. */
800 #define CALL_USED_REGISTERS \
801 { \
802 1,1,1,1,0,0,0,0, \
803 0,0,0,0,1,1,1,1, \
804 1,1,1,1,0,0,0,0, \
805 1,1,1 \
806 }
807
808 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
809 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
810 #endif
811
812 #define CONDITIONAL_REGISTER_USAGE \
813 { \
814 int regno; \
815 \
816 if (TARGET_SOFT_FLOAT || TARGET_THUMB) \
817 { \
818 for (regno = FIRST_ARM_FP_REGNUM; \
819 regno <= LAST_ARM_FP_REGNUM; ++regno) \
820 fixed_regs[regno] = call_used_regs[regno] = 1; \
821 } \
822 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
823 { \
824 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
825 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
826 } \
827 else if (TARGET_APCS_STACK) \
828 { \
829 fixed_regs[10] = 1; \
830 call_used_regs[10] = 1; \
831 } \
832 if (TARGET_APCS_FRAME) \
833 { \
834 fixed_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \
835 call_used_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \
836 } \
837 SUBTARGET_CONDITIONAL_REGISTER_USAGE \
838 }
839
840 /* These are a couple of extensions to the formats accecpted
841 by asm_fprintf:
842 %@ prints out ASM_COMMENT_START
843 %r prints out REGISTER_PREFIX reg_names[arg] */
844 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
845 case '@': \
846 fputs (ASM_COMMENT_START, FILE); \
847 break; \
848 \
849 case 'r': \
850 fputs (REGISTER_PREFIX, FILE); \
851 fputs (reg_names [va_arg (ARGS, int)], FILE); \
852 break;
853
854 /* Round X up to the nearest word. */
855 #define ROUND_UP(X) (((X) + 3) & ~3)
856
857 /* Convert fron bytes to ints. */
858 #define NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
859
860 /* The number of (integer) registers required to hold a quantity of type MODE. */
861 #define NUM_REGS(MODE) \
862 NUM_INTS (GET_MODE_SIZE (MODE))
863
864 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
865 #define NUM_REGS2(MODE, TYPE) \
866 NUM_INTS ((MODE) == BLKmode ? \
867 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
868
869 /* The number of (integer) argument register available. */
870 #define NUM_ARG_REGS 4
871
872 /* Return the regiser number of the N'th (integer) argument. */
873 #define ARG_REGISTER(N) (N - 1)
874
875 #if 0 /* FIXME: The ARM backend has special code to handle structure
876 returns, and will reserve its own hidden first argument. So
877 if this macro is enabled a *second* hidden argument will be
878 reserved, which will break binary compatibility with old
879 toolchains and also thunk handling. One day this should be
880 fixed. */
881 /* RTX for structure returns. NULL means use a hidden first argument. */
882 #define STRUCT_VALUE 0
883 #else
884 /* Register in which address to store a structure value
885 is passed to a function. */
886 #define STRUCT_VALUE_REGNUM ARG_REGISTER (1)
887 #endif
888
889 /* Specify the registers used for certain standard purposes.
890 The values of these macros are register numbers. */
891
892 /* The number of the last argument register. */
893 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
894
895 /* The number of the last "lo" register (thumb). */
896 #define LAST_LO_REGNUM 7
897
898 /* The register that holds the return address in exception handlers. */
899 #define EXCEPTION_LR_REGNUM 2
900
901 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
902 as an invisible last argument (possible since varargs don't exist in
903 Pascal), so the following is not true. */
904 #define STATIC_CHAIN_REGNUM (TARGET_ARM ? 12 : 9)
905
906 /* Define this to be where the real frame pointer is if it is not possible to
907 work out the offset between the frame pointer and the automatic variables
908 until after register allocation has taken place. FRAME_POINTER_REGNUM
909 should point to a special register that we will make sure is eliminated.
910
911 For the Thumb we have another problem. The TPCS defines the frame pointer
912 as r11, and GCC belives that it is always possible to use the frame pointer
913 as base register for addressing purposes. (See comments in
914 find_reloads_address()). But - the Thumb does not allow high registers,
915 including r11, to be used as base address registers. Hence our problem.
916
917 The solution used here, and in the old thumb port is to use r7 instead of
918 r11 as the hard frame pointer and to have special code to generate
919 backtrace structures on the stack (if required to do so via a command line
920 option) using r11. This is the only 'user visable' use of r11 as a frame
921 pointer. */
922 #define ARM_HARD_FRAME_POINTER_REGNUM 11
923 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
924
925 #define HARD_FRAME_POINTER_REGNUM \
926 (TARGET_ARM \
927 ? ARM_HARD_FRAME_POINTER_REGNUM \
928 : THUMB_HARD_FRAME_POINTER_REGNUM)
929
930 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
931
932 /* Register to use for pushing function arguments. */
933 #define STACK_POINTER_REGNUM SP_REGNUM
934
935 /* ARM floating pointer registers. */
936 #define FIRST_ARM_FP_REGNUM 16
937 #define LAST_ARM_FP_REGNUM 23
938
939 /* Base register for access to local variables of the function. */
940 #define FRAME_POINTER_REGNUM 25
941
942 /* Base register for access to arguments of the function. */
943 #define ARG_POINTER_REGNUM 26
944
945 /* The number of hard registers is 16 ARM + 8 FPU + 1 CC + 1 SFP. */
946 #define FIRST_PSEUDO_REGISTER 27
947
948 /* Value should be nonzero if functions must have frame pointers.
949 Zero means the frame pointer need not be set up (and parms may be accessed
950 via the stack pointer) in functions that seem suitable.
951 If we have to have a frame pointer we might as well make use of it.
952 APCS says that the frame pointer does not need to be pushed in leaf
953 functions, or simple tail call functions. */
954 #define FRAME_POINTER_REQUIRED \
955 (current_function_has_nonlocal_label \
956 || (TARGET_ARM && TARGET_APCS_FRAME && ! leaf_function_p ()))
957
958 /* Return number of consecutive hard regs needed starting at reg REGNO
959 to hold something of mode MODE.
960 This is ordinarily the length in words of a value of mode MODE
961 but can be less for certain modes in special long registers.
962
963 On the ARM regs are UNITS_PER_WORD bits wide; FPU regs can hold any FP
964 mode. */
965 #define HARD_REGNO_NREGS(REGNO, MODE) \
966 ((TARGET_ARM \
967 && REGNO >= FIRST_ARM_FP_REGNUM \
968 && REGNO != FRAME_POINTER_REGNUM \
969 && REGNO != ARG_POINTER_REGNUM) \
970 ? 1 : NUM_REGS (MODE))
971
972 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
973 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
974 arm_hard_regno_mode_ok ((REGNO), (MODE))
975
976 /* Value is 1 if it is a good idea to tie two pseudo registers
977 when one has mode MODE1 and one has mode MODE2.
978 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
979 for any hard reg, then this must be 0 for correct output. */
980 #define MODES_TIEABLE_P(MODE1, MODE2) \
981 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
982
983 /* The order in which register should be allocated. It is good to use ip
984 since no saving is required (though calls clobber it) and it never contains
985 function parameters. It is quite good to use lr since other calls may
986 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
987 least likely to contain a function parameter; in addition results are
988 returned in r0. */
989 #define REG_ALLOC_ORDER \
990 { \
991 3, 2, 1, 0, 12, 14, 4, 5, \
992 6, 7, 8, 10, 9, 11, 13, 15, \
993 16, 17, 18, 19, 20, 21, 22, 23, \
994 24, 25, 26 \
995 }
996
997 /* Interrupt functions can only use registers that have already been
998 saved by the prologue, even if they would normally be
999 call-clobbered. */
1000 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1001 (! IS_INTERRUPT (cfun->machine->func_type) || \
1002 regs_ever_live[DST])
1003 \f
1004 /* Register and constant classes. */
1005
1006 /* Register classes: used to be simple, just all ARM regs or all FPU regs
1007 Now that the Thumb is involved it has become more complicated. */
1008 enum reg_class
1009 {
1010 NO_REGS,
1011 FPU_REGS,
1012 LO_REGS,
1013 STACK_REG,
1014 BASE_REGS,
1015 HI_REGS,
1016 CC_REG,
1017 GENERAL_REGS,
1018 ALL_REGS,
1019 LIM_REG_CLASSES
1020 };
1021
1022 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1023
1024 /* Give names of register classes as strings for dump file. */
1025 #define REG_CLASS_NAMES \
1026 { \
1027 "NO_REGS", \
1028 "FPU_REGS", \
1029 "LO_REGS", \
1030 "STACK_REG", \
1031 "BASE_REGS", \
1032 "HI_REGS", \
1033 "CC_REG", \
1034 "GENERAL_REGS", \
1035 "ALL_REGS", \
1036 }
1037
1038 /* Define which registers fit in which classes.
1039 This is an initializer for a vector of HARD_REG_SET
1040 of length N_REG_CLASSES. */
1041 #define REG_CLASS_CONTENTS \
1042 { \
1043 { 0x0000000 }, /* NO_REGS */ \
1044 { 0x0FF0000 }, /* FPU_REGS */ \
1045 { 0x00000FF }, /* LO_REGS */ \
1046 { 0x0002000 }, /* STACK_REG */ \
1047 { 0x00020FF }, /* BASE_REGS */ \
1048 { 0x000FF00 }, /* HI_REGS */ \
1049 { 0x1000000 }, /* CC_REG */ \
1050 { 0x200FFFF }, /* GENERAL_REGS */ \
1051 { 0x2FFFFFF } /* ALL_REGS */ \
1052 }
1053
1054 /* The same information, inverted:
1055 Return the class number of the smallest class containing
1056 reg number REGNO. This could be a conditional expression
1057 or could index an array. */
1058 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1059
1060 /* The class value for index registers, and the one for base regs. */
1061 #define INDEX_REG_CLASS (TARGET_THUMB ? LO_REGS : GENERAL_REGS)
1062 #define BASE_REG_CLASS (TARGET_THUMB ? BASE_REGS : GENERAL_REGS)
1063
1064 /* For the Thumb the high registers cannot be used as base
1065 registers when addressing quanitities in QI or HI mode. */
1066 #define MODE_BASE_REG_CLASS(MODE) \
1067 (TARGET_ARM ? BASE_REGS : \
1068 (((MODE) == QImode || (MODE) == HImode || (MODE) == VOIDmode) \
1069 ? LO_REGS : BASE_REGS))
1070
1071 /* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1072 registers explicitly used in the rtl to be used as spill registers
1073 but prevents the compiler from extending the lifetime of these
1074 registers. */
1075 #define SMALL_REGISTER_CLASSES TARGET_THUMB
1076
1077 /* Get reg_class from a letter such as appears in the machine description.
1078 We only need constraint `f' for FPU_REGS (`r' == GENERAL_REGS) for the
1079 ARM, but several more letters for the Thumb. */
1080 #define REG_CLASS_FROM_LETTER(C) \
1081 ( (C) == 'f' ? FPU_REGS \
1082 : (C) == 'l' ? (TARGET_ARM ? GENERAL_REGS : LO_REGS) \
1083 : TARGET_ARM ? NO_REGS \
1084 : (C) == 'h' ? HI_REGS \
1085 : (C) == 'b' ? BASE_REGS \
1086 : (C) == 'k' ? STACK_REG \
1087 : (C) == 'c' ? CC_REG \
1088 : NO_REGS)
1089
1090 /* The letters I, J, K, L and M in a register constraint string
1091 can be used to stand for particular ranges of immediate operands.
1092 This macro defines what the ranges are.
1093 C is the letter, and VALUE is a constant value.
1094 Return 1 if VALUE is in the range specified by C.
1095 I: immediate arithmetic operand (i.e. 8 bits shifted as required).
1096 J: valid indexing constants.
1097 K: ~value ok in rhs argument of data operand.
1098 L: -value ok in rhs argument of data operand.
1099 M: 0..32, or a power of 2 (for shifts, or mult done by shift). */
1100 #define CONST_OK_FOR_ARM_LETTER(VALUE, C) \
1101 ((C) == 'I' ? const_ok_for_arm (VALUE) : \
1102 (C) == 'J' ? ((VALUE) < 4096 && (VALUE) > -4096) : \
1103 (C) == 'K' ? (const_ok_for_arm (~(VALUE))) : \
1104 (C) == 'L' ? (const_ok_for_arm (-(VALUE))) : \
1105 (C) == 'M' ? (((VALUE >= 0 && VALUE <= 32)) \
1106 || (((VALUE) & ((VALUE) - 1)) == 0)) \
1107 : 0)
1108
1109 #define CONST_OK_FOR_THUMB_LETTER(VAL, C) \
1110 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VAL) < 256 : \
1111 (C) == 'J' ? (VAL) > -256 && (VAL) < 0 : \
1112 (C) == 'K' ? thumb_shiftable_const (VAL) : \
1113 (C) == 'L' ? (VAL) > -8 && (VAL) < 8 : \
1114 (C) == 'M' ? ((unsigned HOST_WIDE_INT) (VAL) < 1024 \
1115 && ((VAL) & 3) == 0) : \
1116 (C) == 'N' ? ((unsigned HOST_WIDE_INT) (VAL) < 32) : \
1117 (C) == 'O' ? ((VAL) >= -508 && (VAL) <= 508) \
1118 : 0)
1119
1120 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1121 (TARGET_ARM ? \
1122 CONST_OK_FOR_ARM_LETTER (VALUE, C) : CONST_OK_FOR_THUMB_LETTER (VALUE, C))
1123
1124 /* Constant letter 'G' for the FPU immediate constants.
1125 'H' means the same constant negated. */
1126 #define CONST_DOUBLE_OK_FOR_ARM_LETTER(X, C) \
1127 ((C) == 'G' ? const_double_rtx_ok_for_fpu (X) : \
1128 (C) == 'H' ? neg_const_double_rtx_ok_for_fpu (X) : 0)
1129
1130 #define CONST_DOUBLE_OK_FOR_LETTER_P(X, C) \
1131 (TARGET_ARM ? \
1132 CONST_DOUBLE_OK_FOR_ARM_LETTER (X, C) : 0)
1133
1134 /* For the ARM, `Q' means that this is a memory operand that is just
1135 an offset from a register.
1136 `S' means any symbol that has the SYMBOL_REF_FLAG set or a CONSTANT_POOL
1137 address. This means that the symbol is in the text segment and can be
1138 accessed without using a load. */
1139
1140 #define EXTRA_CONSTRAINT_ARM(OP, C) \
1141 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG : \
1142 (C) == 'R' ? (GET_CODE (OP) == MEM \
1143 && GET_CODE (XEXP (OP, 0)) == SYMBOL_REF \
1144 && CONSTANT_POOL_ADDRESS_P (XEXP (OP, 0))) : \
1145 (C) == 'S' ? (optimize > 0 && CONSTANT_ADDRESS_P (OP)) \
1146 : 0)
1147
1148 #define EXTRA_CONSTRAINT_THUMB(X, C) \
1149 ((C) == 'Q' ? (GET_CODE (X) == MEM \
1150 && GET_CODE (XEXP (X, 0)) == LABEL_REF) : 0)
1151
1152 #define EXTRA_CONSTRAINT(X, C) \
1153 (TARGET_ARM ? \
1154 EXTRA_CONSTRAINT_ARM (X, C) : EXTRA_CONSTRAINT_THUMB (X, C))
1155
1156 /* Given an rtx X being reloaded into a reg required to be
1157 in class CLASS, return the class of reg to actually use.
1158 In general this is just CLASS, but for the Thumb we prefer
1159 a LO_REGS class or a subset. */
1160 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1161 (TARGET_ARM ? (CLASS) : \
1162 ((CLASS) == BASE_REGS ? (CLASS) : LO_REGS))
1163
1164 /* Must leave BASE_REGS reloads alone */
1165 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1166 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1167 ? ((true_regnum (X) == -1 ? LO_REGS \
1168 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1169 : NO_REGS)) \
1170 : NO_REGS)
1171
1172 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1173 ((CLASS) != LO_REGS \
1174 ? ((true_regnum (X) == -1 ? LO_REGS \
1175 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1176 : NO_REGS)) \
1177 : NO_REGS)
1178
1179 /* Return the register class of a scratch register needed to copy IN into
1180 or out of a register in CLASS in MODE. If it can be done directly,
1181 NO_REGS is returned. */
1182 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1183 (TARGET_ARM ? \
1184 (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1185 ? GENERAL_REGS : NO_REGS) \
1186 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1187
1188 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1189 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1190 (TARGET_ARM ? \
1191 (((MODE) == HImode && ! arm_arch4 && TARGET_MMU_TRAPS \
1192 && (GET_CODE (X) == MEM \
1193 || ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG) \
1194 && true_regnum (X) == -1))) \
1195 ? GENERAL_REGS : NO_REGS) \
1196 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X))
1197
1198 /* Try a machine-dependent way of reloading an illegitimate address
1199 operand. If we find one, push the reload and jump to WIN. This
1200 macro is used in only one place: `find_reloads_address' in reload.c.
1201
1202 For the ARM, we wish to handle large displacements off a base
1203 register by splitting the addend across a MOV and the mem insn.
1204 This can cut the number of reloads needed. */
1205 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
1206 do \
1207 { \
1208 if (GET_CODE (X) == PLUS \
1209 && GET_CODE (XEXP (X, 0)) == REG \
1210 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
1211 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
1212 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1213 { \
1214 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1215 HOST_WIDE_INT low, high; \
1216 \
1217 if (MODE == DImode || (TARGET_SOFT_FLOAT && MODE == DFmode)) \
1218 low = ((val & 0xf) ^ 0x8) - 0x8; \
1219 else if (MODE == SImode \
1220 || (MODE == SFmode && TARGET_SOFT_FLOAT) \
1221 || ((MODE == HImode || MODE == QImode) && ! arm_arch4)) \
1222 /* Need to be careful, -4096 is not a valid offset. */ \
1223 low = val >= 0 ? (val & 0xfff) : -((-val) & 0xfff); \
1224 else if ((MODE == HImode || MODE == QImode) && arm_arch4) \
1225 /* Need to be careful, -256 is not a valid offset. */ \
1226 low = val >= 0 ? (val & 0xff) : -((-val) & 0xff); \
1227 else if (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1228 && TARGET_HARD_FLOAT) \
1229 /* Need to be careful, -1024 is not a valid offset. */ \
1230 low = val >= 0 ? (val & 0x3ff) : -((-val) & 0x3ff); \
1231 else \
1232 break; \
1233 \
1234 high = ((((val - low) & (unsigned HOST_WIDE_INT) 0xffffffff) \
1235 ^ (unsigned HOST_WIDE_INT) 0x80000000) \
1236 - (unsigned HOST_WIDE_INT) 0x80000000); \
1237 /* Check for overflow or zero */ \
1238 if (low == 0 || high == 0 || (high + low != val)) \
1239 break; \
1240 \
1241 /* Reload the high part into a base reg; leave the low part \
1242 in the mem. */ \
1243 X = gen_rtx_PLUS (GET_MODE (X), \
1244 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
1245 GEN_INT (high)), \
1246 GEN_INT (low)); \
1247 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
1248 MODE_BASE_REG_CLASS (MODE), GET_MODE (X), \
1249 VOIDmode, 0, 0, OPNUM, TYPE); \
1250 goto WIN; \
1251 } \
1252 } \
1253 while (0)
1254
1255 /* ??? If an HImode FP+large_offset address is converted to an HImode
1256 SP+large_offset address, then reload won't know how to fix it. It sees
1257 only that SP isn't valid for HImode, and so reloads the SP into an index
1258 register, but the resulting address is still invalid because the offset
1259 is too big. We fix it here instead by reloading the entire address. */
1260 /* We could probably achieve better results by defining PROMOTE_MODE to help
1261 cope with the variances between the Thumb's signed and unsigned byte and
1262 halfword load instructions. */
1263 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
1264 { \
1265 if (GET_CODE (X) == PLUS \
1266 && GET_MODE_SIZE (MODE) < 4 \
1267 && GET_CODE (XEXP (X, 0)) == REG \
1268 && XEXP (X, 0) == stack_pointer_rtx \
1269 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1270 && ! THUMB_LEGITIMATE_OFFSET (MODE, INTVAL (XEXP (X, 1)))) \
1271 { \
1272 rtx orig_X = X; \
1273 X = copy_rtx (X); \
1274 push_reload (orig_X, NULL_RTX, &X, NULL, \
1275 MODE_BASE_REG_CLASS (MODE), \
1276 Pmode, VOIDmode, 0, 0, OPNUM, TYPE); \
1277 goto WIN; \
1278 } \
1279 }
1280
1281 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
1282 if (TARGET_ARM) \
1283 ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1284 else \
1285 THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1286
1287 /* Return the maximum number of consecutive registers
1288 needed to represent mode MODE in a register of class CLASS.
1289 ARM regs are UNITS_PER_WORD bits while FPU regs can hold any FP mode */
1290 #define CLASS_MAX_NREGS(CLASS, MODE) \
1291 ((CLASS) == FPU_REGS ? 1 : NUM_REGS (MODE))
1292
1293 /* Moves between FPU_REGS and GENERAL_REGS are two memory insns. */
1294 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1295 (TARGET_ARM ? \
1296 ((FROM) == FPU_REGS && (TO) != FPU_REGS ? 20 : \
1297 (FROM) != FPU_REGS && (TO) == FPU_REGS ? 20 : 2) \
1298 : \
1299 ((FROM) == HI_REGS || (TO) == HI_REGS) ? 4 : 2)
1300 \f
1301 /* Stack layout; function entry, exit and calling. */
1302
1303 /* Define this if pushing a word on the stack
1304 makes the stack pointer a smaller address. */
1305 #define STACK_GROWS_DOWNWARD 1
1306
1307 /* Define this if the nominal address of the stack frame
1308 is at the high-address end of the local variables;
1309 that is, each additional local variable allocated
1310 goes at a more negative offset in the frame. */
1311 #define FRAME_GROWS_DOWNWARD 1
1312
1313 /* Offset within stack frame to start allocating local variables at.
1314 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1315 first local allocated. Otherwise, it is the offset to the BEGINNING
1316 of the first local allocated. */
1317 #define STARTING_FRAME_OFFSET 0
1318
1319 /* If we generate an insn to push BYTES bytes,
1320 this says how many the stack pointer really advances by. */
1321 /* The push insns do not do this rounding implicitly.
1322 So don't define this. */
1323 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP (NPUSHED) */
1324
1325 /* Define this if the maximum size of all the outgoing args is to be
1326 accumulated and pushed during the prologue. The amount can be
1327 found in the variable current_function_outgoing_args_size. */
1328 #define ACCUMULATE_OUTGOING_ARGS 1
1329
1330 /* Offset of first parameter from the argument pointer register value. */
1331 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1332
1333 /* Value is the number of byte of arguments automatically
1334 popped when returning from a subroutine call.
1335 FUNDECL is the declaration node of the function (as a tree),
1336 FUNTYPE is the data type of the function (as a tree),
1337 or for a library call it is an identifier node for the subroutine name.
1338 SIZE is the number of bytes of arguments passed on the stack.
1339
1340 On the ARM, the caller does not pop any of its arguments that were passed
1341 on the stack. */
1342 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
1343
1344 /* Define how to find the value returned by a library function
1345 assuming the value has mode MODE. */
1346 #define LIBCALL_VALUE(MODE) \
1347 (TARGET_ARM && TARGET_HARD_FLOAT && GET_MODE_CLASS (MODE) == MODE_FLOAT \
1348 ? gen_rtx_REG (MODE, FIRST_ARM_FP_REGNUM) \
1349 : gen_rtx_REG (MODE, ARG_REGISTER (1)))
1350
1351 /* Define how to find the value returned by a function.
1352 VALTYPE is the data type of the value (as a tree).
1353 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1354 otherwise, FUNC is 0. */
1355 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1356 LIBCALL_VALUE (TYPE_MODE (VALTYPE))
1357
1358 /* 1 if N is a possible register number for a function value.
1359 On the ARM, only r0 and f0 can return results. */
1360 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1361 ((REGNO) == ARG_REGISTER (1) \
1362 || (TARGET_ARM && ((REGNO) == FIRST_ARM_FP_REGNUM) && TARGET_HARD_FLOAT))
1363
1364 /* How large values are returned */
1365 /* A C expression which can inhibit the returning of certain function values
1366 in registers, based on the type of value. */
1367 #define RETURN_IN_MEMORY(TYPE) arm_return_in_memory (TYPE)
1368
1369 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1370 values must be in memory. On the ARM, they need only do so if larger
1371 than a word, or if they contain elements offset from zero in the struct. */
1372 #define DEFAULT_PCC_STRUCT_RETURN 0
1373
1374 /* Flags for the call/call_value rtl operations set up by function_arg. */
1375 #define CALL_NORMAL 0x00000000 /* No special processing. */
1376 #define CALL_LONG 0x00000001 /* Always call indirect. */
1377 #define CALL_SHORT 0x00000002 /* Never call indirect. */
1378
1379 /* These bits describe the different types of function supported
1380 by the ARM backend. They are exclusive. ie a function cannot be both a
1381 normal function and an interworked function, for example. Knowing the
1382 type of a function is important for determining its prologue and
1383 epilogue sequences.
1384 Note value 7 is currently unassigned. Also note that the interrupt
1385 function types all have bit 2 set, so that they can be tested for easily.
1386 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1387 machine_function structure is initialised (to zero) func_type will
1388 default to unknown. This will force the first use of arm_current_func_type
1389 to call arm_compute_func_type. */
1390 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1391 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1392 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1393 #define ARM_FT_EXCEPTION_HANDLER 3 /* A C++ exception handler. */
1394 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1395 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1396 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1397
1398 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1399
1400 /* In addition functions can have several type modifiers,
1401 outlined by these bit masks: */
1402 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1403 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1404 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1405 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1406
1407 /* Some macros to test these flags. */
1408 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1409 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1410 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1411 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1412 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1413
1414 /* A C structure for machine-specific, per-function data.
1415 This is added to the cfun structure. */
1416 typedef struct machine_function GTY(())
1417 {
1418 /* Additionsl stack adjustment in __builtin_eh_throw. */
1419 rtx eh_epilogue_sp_ofs;
1420 /* Records if LR has to be saved for far jumps. */
1421 int far_jump_used;
1422 /* Records if ARG_POINTER was ever live. */
1423 int arg_pointer_live;
1424 /* Records if the save of LR has been eliminated. */
1425 int lr_save_eliminated;
1426 /* Records the type of the current function. */
1427 unsigned long func_type;
1428 /* Record if the function has a variable argument list. */
1429 int uses_anonymous_args;
1430 }
1431 machine_function;
1432
1433 /* A C type for declaring a variable that is used as the first argument of
1434 `FUNCTION_ARG' and other related values. For some target machines, the
1435 type `int' suffices and can hold the number of bytes of argument so far. */
1436 typedef struct
1437 {
1438 /* This is the number of registers of arguments scanned so far. */
1439 int nregs;
1440 /* One of CALL_NORMAL, CALL_LONG or CALL_SHORT . */
1441 int call_cookie;
1442 } CUMULATIVE_ARGS;
1443
1444 /* Define where to put the arguments to a function.
1445 Value is zero to push the argument on the stack,
1446 or a hard register in which to store the argument.
1447
1448 MODE is the argument's machine mode.
1449 TYPE is the data type of the argument (as a tree).
1450 This is null for libcalls where that information may
1451 not be available.
1452 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1453 the preceding args and about the function being called.
1454 NAMED is nonzero if this argument is a named parameter
1455 (otherwise it is an extra parameter matching an ellipsis).
1456
1457 On the ARM, normally the first 16 bytes are passed in registers r0-r3; all
1458 other arguments are passed on the stack. If (NAMED == 0) (which happens
1459 only in assign_parms, since SETUP_INCOMING_VARARGS is defined), say it is
1460 passed in the stack (function_prologue will indeed make it pass in the
1461 stack if necessary). */
1462 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1463 arm_function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1464
1465 /* For an arg passed partly in registers and partly in memory,
1466 this is the number of registers used.
1467 For args passed entirely in registers or entirely in memory, zero. */
1468 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1469 ( NUM_ARG_REGS > (CUM).nregs \
1470 && (NUM_ARG_REGS < ((CUM).nregs + NUM_REGS2 (MODE, TYPE))) \
1471 ? NUM_ARG_REGS - (CUM).nregs : 0)
1472
1473 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1474 for a call to a function whose data type is FNTYPE.
1475 For a library call, FNTYPE is 0.
1476 On the ARM, the offset starts at 0. */
1477 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1478 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (INDIRECT))
1479
1480 /* Update the data in CUM to advance over an argument
1481 of mode MODE and data type TYPE.
1482 (TYPE is null for libcalls where that information may not be available.) */
1483 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1484 (CUM).nregs += NUM_REGS2 (MODE, TYPE)
1485
1486 /* 1 if N is a possible register number for function argument passing.
1487 On the ARM, r0-r3 are used to pass args. */
1488 #define FUNCTION_ARG_REGNO_P(REGNO) (IN_RANGE ((REGNO), 0, 3))
1489
1490 \f
1491 /* Tail calling. */
1492
1493 /* A C expression that evaluates to true if it is ok to perform a sibling
1494 call to DECL. */
1495 #define FUNCTION_OK_FOR_SIBCALL(DECL) arm_function_ok_for_sibcall ((DECL))
1496
1497 /* Perform any actions needed for a function that is receiving a variable
1498 number of arguments. CUM is as above. MODE and TYPE are the mode and type
1499 of the current parameter. PRETEND_SIZE is a variable that should be set to
1500 the amount of stack that must be pushed by the prolog to pretend that our
1501 caller pushed it.
1502
1503 Normally, this macro will push all remaining incoming registers on the
1504 stack and set PRETEND_SIZE to the length of the registers pushed.
1505
1506 On the ARM, PRETEND_SIZE is set in order to have the prologue push the last
1507 named arg and all anonymous args onto the stack.
1508 XXX I know the prologue shouldn't be pushing registers, but it is faster
1509 that way. */
1510 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1511 { \
1512 cfun->machine->uses_anonymous_args = 1; \
1513 if ((CUM).nregs < NUM_ARG_REGS) \
1514 (PRETEND_SIZE) = (NUM_ARG_REGS - (CUM).nregs) * UNITS_PER_WORD; \
1515 }
1516
1517 /* If your target environment doesn't prefix user functions with an
1518 underscore, you may wish to re-define this to prevent any conflicts.
1519 e.g. AOF may prefix mcount with an underscore. */
1520 #ifndef ARM_MCOUNT_NAME
1521 #define ARM_MCOUNT_NAME "*mcount"
1522 #endif
1523
1524 /* Call the function profiler with a given profile label. The Acorn
1525 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1526 On the ARM the full profile code will look like:
1527 .data
1528 LP1
1529 .word 0
1530 .text
1531 mov ip, lr
1532 bl mcount
1533 .word LP1
1534
1535 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1536 will output the .text section.
1537
1538 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1539 ``prof'' doesn't seem to mind about this! */
1540 #ifndef ARM_FUNCTION_PROFILER
1541 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1542 { \
1543 char temp[20]; \
1544 rtx sym; \
1545 \
1546 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1547 IP_REGNUM, LR_REGNUM); \
1548 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1549 fputc ('\n', STREAM); \
1550 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1551 sym = gen_rtx (SYMBOL_REF, Pmode, temp); \
1552 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1553 }
1554 #endif
1555
1556 #ifndef THUMB_FUNCTION_PROFILER
1557 #define THUMB_FUNCTION_PROFILER(STREAM, LABELNO) \
1558 { \
1559 fprintf (STREAM, "\tmov\tip, lr\n"); \
1560 fprintf (STREAM, "\tbl\tmcount\n"); \
1561 fprintf (STREAM, "\t.word\tLP%d\n", LABELNO); \
1562 }
1563 #endif
1564
1565 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1566 if (TARGET_ARM) \
1567 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1568 else \
1569 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1570
1571 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1572 the stack pointer does not matter. The value is tested only in
1573 functions that have frame pointers.
1574 No definition is equivalent to always zero.
1575
1576 On the ARM, the function epilogue recovers the stack pointer from the
1577 frame. */
1578 #define EXIT_IGNORE_STACK 1
1579
1580 #define EPILOGUE_USES(REGNO) (reload_completed && (REGNO) == LR_REGNUM)
1581
1582 /* Determine if the epilogue should be output as RTL.
1583 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1584 #define USE_RETURN_INSN(ISCOND) \
1585 (TARGET_ARM ? use_return_insn (ISCOND) : 0)
1586
1587 /* Definitions for register eliminations.
1588
1589 This is an array of structures. Each structure initializes one pair
1590 of eliminable registers. The "from" register number is given first,
1591 followed by "to". Eliminations of the same "from" register are listed
1592 in order of preference.
1593
1594 We have two registers that can be eliminated on the ARM. First, the
1595 arg pointer register can often be eliminated in favor of the stack
1596 pointer register. Secondly, the pseudo frame pointer register can always
1597 be eliminated; it is replaced with either the stack or the real frame
1598 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1599 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1600
1601 #define ELIMINABLE_REGS \
1602 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1603 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1604 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1605 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1606 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1607 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1608 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1609
1610 /* Given FROM and TO register numbers, say whether this elimination is
1611 allowed. Frame pointer elimination is automatically handled.
1612
1613 All eliminations are permissible. Note that ARG_POINTER_REGNUM and
1614 HARD_FRAME_POINTER_REGNUM are in fact the same thing. If we need a frame
1615 pointer, we must eliminate FRAME_POINTER_REGNUM into
1616 HARD_FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM or
1617 ARG_POINTER_REGNUM. */
1618 #define CAN_ELIMINATE(FROM, TO) \
1619 (((TO) == FRAME_POINTER_REGNUM && (FROM) == ARG_POINTER_REGNUM) ? 0 : \
1620 ((TO) == STACK_POINTER_REGNUM && frame_pointer_needed) ? 0 : \
1621 ((TO) == ARM_HARD_FRAME_POINTER_REGNUM && TARGET_THUMB) ? 0 : \
1622 ((TO) == THUMB_HARD_FRAME_POINTER_REGNUM && TARGET_ARM) ? 0 : \
1623 1)
1624
1625 /* Define the offset between two registers, one to be eliminated, and the
1626 other its replacement, at the start of a routine. */
1627 #define ARM_INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1628 do \
1629 { \
1630 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1631 } \
1632 while (0)
1633
1634 /* Note: This macro must match the code in thumb_function_prologue(). */
1635 #define THUMB_INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1636 { \
1637 (OFFSET) = 0; \
1638 if ((FROM) == ARG_POINTER_REGNUM) \
1639 { \
1640 int count_regs = 0; \
1641 int regno; \
1642 for (regno = 8; regno < 13; regno ++) \
1643 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
1644 count_regs ++; \
1645 if (count_regs) \
1646 (OFFSET) += 4 * count_regs; \
1647 count_regs = 0; \
1648 for (regno = 0; regno <= LAST_LO_REGNUM; regno ++) \
1649 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
1650 count_regs ++; \
1651 if (count_regs || ! leaf_function_p () || thumb_far_jump_used_p (0))\
1652 (OFFSET) += 4 * (count_regs + 1); \
1653 if (TARGET_BACKTRACE) \
1654 { \
1655 if ((count_regs & 0xFF) == 0 && (regs_ever_live[3] != 0)) \
1656 (OFFSET) += 20; \
1657 else \
1658 (OFFSET) += 16; \
1659 } \
1660 } \
1661 if ((TO) == STACK_POINTER_REGNUM) \
1662 { \
1663 (OFFSET) += current_function_outgoing_args_size; \
1664 (OFFSET) += ROUND_UP (get_frame_size ()); \
1665 } \
1666 }
1667
1668 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1669 if (TARGET_ARM) \
1670 ARM_INITIAL_ELIMINATION_OFFSET (FROM, TO, OFFSET); \
1671 else \
1672 THUMB_INITIAL_ELIMINATION_OFFSET (FROM, TO, OFFSET)
1673
1674 /* Special case handling of the location of arguments passed on the stack. */
1675 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1676
1677 /* Initialize data used by insn expanders. This is called from insn_emit,
1678 once for every function before code is generated. */
1679 #define INIT_EXPANDERS arm_init_expanders ()
1680
1681 /* Output assembler code for a block containing the constant parts
1682 of a trampoline, leaving space for the variable parts.
1683
1684 On the ARM, (if r8 is the static chain regnum, and remembering that
1685 referencing pc adds an offset of 8) the trampoline looks like:
1686 ldr r8, [pc, #0]
1687 ldr pc, [pc]
1688 .word static chain value
1689 .word function's address
1690 ??? FIXME: When the trampoline returns, r8 will be clobbered. */
1691 #define ARM_TRAMPOLINE_TEMPLATE(FILE) \
1692 { \
1693 asm_fprintf (FILE, "\tldr\t%r, [%r, #0]\n", \
1694 STATIC_CHAIN_REGNUM, PC_REGNUM); \
1695 asm_fprintf (FILE, "\tldr\t%r, [%r, #0]\n", \
1696 PC_REGNUM, PC_REGNUM); \
1697 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
1698 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
1699 }
1700
1701 /* On the Thumb we always switch into ARM mode to execute the trampoline.
1702 Why - because it is easier. This code will always be branched to via
1703 a BX instruction and since the compiler magically generates the address
1704 of the function the linker has no opportunity to ensure that the
1705 bottom bit is set. Thus the processor will be in ARM mode when it
1706 reaches this code. So we duplicate the ARM trampoline code and add
1707 a switch into Thumb mode as well. */
1708 #define THUMB_TRAMPOLINE_TEMPLATE(FILE) \
1709 { \
1710 fprintf (FILE, "\t.code 32\n"); \
1711 fprintf (FILE, ".Ltrampoline_start:\n"); \
1712 asm_fprintf (FILE, "\tldr\t%r, [%r, #8]\n", \
1713 STATIC_CHAIN_REGNUM, PC_REGNUM); \
1714 asm_fprintf (FILE, "\tldr\t%r, [%r, #8]\n", \
1715 IP_REGNUM, PC_REGNUM); \
1716 asm_fprintf (FILE, "\torr\t%r, %r, #1\n", \
1717 IP_REGNUM, IP_REGNUM); \
1718 asm_fprintf (FILE, "\tbx\t%r\n", IP_REGNUM); \
1719 fprintf (FILE, "\t.word\t0\n"); \
1720 fprintf (FILE, "\t.word\t0\n"); \
1721 fprintf (FILE, "\t.code 16\n"); \
1722 }
1723
1724 #define TRAMPOLINE_TEMPLATE(FILE) \
1725 if (TARGET_ARM) \
1726 ARM_TRAMPOLINE_TEMPLATE (FILE) \
1727 else \
1728 THUMB_TRAMPOLINE_TEMPLATE (FILE)
1729
1730 /* Length in units of the trampoline for entering a nested function. */
1731 #define TRAMPOLINE_SIZE (TARGET_ARM ? 16 : 24)
1732
1733 /* Alignment required for a trampoline in bits. */
1734 #define TRAMPOLINE_ALIGNMENT 32
1735
1736 /* Emit RTL insns to initialize the variable parts of a trampoline.
1737 FNADDR is an RTX for the address of the function's pure code.
1738 CXT is an RTX for the static chain value for the function. */
1739 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1740 { \
1741 emit_move_insn \
1742 (gen_rtx_MEM (SImode, plus_constant (TRAMP, TARGET_ARM ? 8 : 16)), CXT); \
1743 emit_move_insn \
1744 (gen_rtx_MEM (SImode, plus_constant (TRAMP, TARGET_ARM ? 12 : 20)), FNADDR); \
1745 }
1746
1747 \f
1748 /* Addressing modes, and classification of registers for them. */
1749 #define HAVE_POST_INCREMENT 1
1750 #define HAVE_PRE_INCREMENT TARGET_ARM
1751 #define HAVE_POST_DECREMENT TARGET_ARM
1752 #define HAVE_PRE_DECREMENT TARGET_ARM
1753
1754 /* Macros to check register numbers against specific register classes. */
1755
1756 /* These assume that REGNO is a hard or pseudo reg number.
1757 They give nonzero only if REGNO is a hard reg of the suitable class
1758 or a pseudo reg currently allocated to a suitable hard reg.
1759 Since they use reg_renumber, they are safe only once reg_renumber
1760 has been allocated, which happens in local-alloc.c. */
1761 #define TEST_REGNO(R, TEST, VALUE) \
1762 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1763
1764 /* On the ARM, don't allow the pc to be used. */
1765 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1766 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1767 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1768 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1769
1770 #define THUMB_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1771 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1772 || (GET_MODE_SIZE (MODE) >= 4 \
1773 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1774
1775 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1776 (TARGET_THUMB \
1777 ? THUMB_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1778 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1779
1780 /* For ARM code, we don't care about the mode, but for Thumb, the index
1781 must be suitable for use in a QImode load. */
1782 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1783 REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode)
1784
1785 /* Maximum number of registers that can appear in a valid memory address.
1786 Shifts in addresses can't be by a register. */
1787 #define MAX_REGS_PER_ADDRESS 2
1788
1789 /* Recognize any constant value that is a valid address. */
1790 /* XXX We can address any constant, eventually... */
1791
1792 #ifdef AOF_ASSEMBLER
1793
1794 #define CONSTANT_ADDRESS_P(X) \
1795 (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X))
1796
1797 #else
1798
1799 #define CONSTANT_ADDRESS_P(X) \
1800 (GET_CODE (X) == SYMBOL_REF \
1801 && (CONSTANT_POOL_ADDRESS_P (X) \
1802 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1803
1804 #endif /* AOF_ASSEMBLER */
1805
1806 /* Nonzero if the constant value X is a legitimate general operand.
1807 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1808
1809 On the ARM, allow any integer (invalid ones are removed later by insn
1810 patterns), nice doubles and symbol_refs which refer to the function's
1811 constant pool XXX.
1812
1813 When generating pic allow anything. */
1814 #define ARM_LEGITIMATE_CONSTANT_P(X) (flag_pic || ! label_mentioned_p (X))
1815
1816 #define THUMB_LEGITIMATE_CONSTANT_P(X) \
1817 ( GET_CODE (X) == CONST_INT \
1818 || GET_CODE (X) == CONST_DOUBLE \
1819 || CONSTANT_ADDRESS_P (X) \
1820 || flag_pic)
1821
1822 #define LEGITIMATE_CONSTANT_P(X) \
1823 (TARGET_ARM ? ARM_LEGITIMATE_CONSTANT_P (X) : THUMB_LEGITIMATE_CONSTANT_P (X))
1824
1825 /* Special characters prefixed to function names
1826 in order to encode attribute like information.
1827 Note, '@' and '*' have already been taken. */
1828 #define SHORT_CALL_FLAG_CHAR '^'
1829 #define LONG_CALL_FLAG_CHAR '#'
1830
1831 #define ENCODED_SHORT_CALL_ATTR_P(SYMBOL_NAME) \
1832 (*(SYMBOL_NAME) == SHORT_CALL_FLAG_CHAR)
1833
1834 #define ENCODED_LONG_CALL_ATTR_P(SYMBOL_NAME) \
1835 (*(SYMBOL_NAME) == LONG_CALL_FLAG_CHAR)
1836
1837 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1838 #define SUBTARGET_NAME_ENCODING_LENGTHS
1839 #endif
1840
1841 /* This is a C fragement for the inside of a switch statement.
1842 Each case label should return the number of characters to
1843 be stripped from the start of a function's name, if that
1844 name starts with the indicated character. */
1845 #define ARM_NAME_ENCODING_LENGTHS \
1846 case SHORT_CALL_FLAG_CHAR: return 1; \
1847 case LONG_CALL_FLAG_CHAR: return 1; \
1848 case '*': return 1; \
1849 SUBTARGET_NAME_ENCODING_LENGTHS
1850
1851 /* This is how to output a reference to a user-level label named NAME.
1852 `assemble_name' uses this. */
1853 #undef ASM_OUTPUT_LABELREF
1854 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1855 asm_fprintf (FILE, "%U%s", arm_strip_name_encoding (NAME))
1856
1857 #define ARM_DECLARE_FUNCTION_SIZE(STREAM, NAME, DECL) \
1858 arm_encode_call_attribute (DECL, SHORT_CALL_FLAG_CHAR)
1859
1860 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1861 and check its validity for a certain class.
1862 We have two alternate definitions for each of them.
1863 The usual definition accepts all pseudo regs; the other rejects
1864 them unless they have been allocated suitable hard regs.
1865 The symbol REG_OK_STRICT causes the latter definition to be used. */
1866 #ifndef REG_OK_STRICT
1867
1868 #define ARM_REG_OK_FOR_BASE_P(X) \
1869 (REGNO (X) <= LAST_ARM_REGNUM \
1870 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1871 || REGNO (X) == FRAME_POINTER_REGNUM \
1872 || REGNO (X) == ARG_POINTER_REGNUM)
1873
1874 #define THUMB_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1875 (REGNO (X) <= LAST_LO_REGNUM \
1876 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1877 || (GET_MODE_SIZE (MODE) >= 4 \
1878 && (REGNO (X) == STACK_POINTER_REGNUM \
1879 || (X) == hard_frame_pointer_rtx \
1880 || (X) == arg_pointer_rtx)))
1881
1882 #else /* REG_OK_STRICT */
1883
1884 #define ARM_REG_OK_FOR_BASE_P(X) \
1885 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1886
1887 #define THUMB_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1888 THUMB_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1889
1890 #endif /* REG_OK_STRICT */
1891
1892 /* Now define some helpers in terms of the above. */
1893
1894 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1895 (TARGET_THUMB \
1896 ? THUMB_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1897 : ARM_REG_OK_FOR_BASE_P (X))
1898
1899 #define ARM_REG_OK_FOR_INDEX_P(X) ARM_REG_OK_FOR_BASE_P (X)
1900
1901 /* For Thumb, a valid index register is anything that can be used in
1902 a byte load instruction. */
1903 #define THUMB_REG_OK_FOR_INDEX_P(X) THUMB_REG_MODE_OK_FOR_BASE_P (X, QImode)
1904
1905 /* Nonzero if X is a hard reg that can be used as an index
1906 or if it is a pseudo reg. On the Thumb, the stack pointer
1907 is not suitable. */
1908 #define REG_OK_FOR_INDEX_P(X) \
1909 (TARGET_THUMB \
1910 ? THUMB_REG_OK_FOR_INDEX_P (X) \
1911 : ARM_REG_OK_FOR_INDEX_P (X))
1912
1913 \f
1914 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1915 that is a valid memory address for an instruction.
1916 The MODE argument is the machine mode for the MEM expression
1917 that wants to use this address.
1918
1919 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
1920
1921 /* --------------------------------arm version----------------------------- */
1922 #define ARM_BASE_REGISTER_RTX_P(X) \
1923 (GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X))
1924
1925 #define ARM_INDEX_REGISTER_RTX_P(X) \
1926 (GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X))
1927
1928 /* A C statement (sans semicolon) to jump to LABEL for legitimate index RTXs
1929 used by the macro GO_IF_LEGITIMATE_ADDRESS. Floating point indices can
1930 only be small constants. */
1931 #define ARM_GO_IF_LEGITIMATE_INDEX(MODE, BASE_REGNO, INDEX, LABEL) \
1932 do \
1933 { \
1934 HOST_WIDE_INT range; \
1935 enum rtx_code code = GET_CODE (INDEX); \
1936 \
1937 if (TARGET_HARD_FLOAT && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1938 { \
1939 if (code == CONST_INT && INTVAL (INDEX) < 1024 \
1940 && INTVAL (INDEX) > -1024 \
1941 && (INTVAL (INDEX) & 3) == 0) \
1942 goto LABEL; \
1943 } \
1944 else \
1945 { \
1946 if (ARM_INDEX_REGISTER_RTX_P (INDEX) \
1947 && GET_MODE_SIZE (MODE) <= 4) \
1948 goto LABEL; \
1949 if (GET_MODE_SIZE (MODE) <= 4 && code == MULT \
1950 && (! arm_arch4 || (MODE) != HImode)) \
1951 { \
1952 rtx xiop0 = XEXP (INDEX, 0); \
1953 rtx xiop1 = XEXP (INDEX, 1); \
1954 if (ARM_INDEX_REGISTER_RTX_P (xiop0) \
1955 && power_of_two_operand (xiop1, SImode)) \
1956 goto LABEL; \
1957 if (ARM_INDEX_REGISTER_RTX_P (xiop1) \
1958 && power_of_two_operand (xiop0, SImode)) \
1959 goto LABEL; \
1960 } \
1961 if (GET_MODE_SIZE (MODE) <= 4 \
1962 && (code == LSHIFTRT || code == ASHIFTRT \
1963 || code == ASHIFT || code == ROTATERT) \
1964 && (! arm_arch4 || (MODE) != HImode)) \
1965 { \
1966 rtx op = XEXP (INDEX, 1); \
1967 if (ARM_INDEX_REGISTER_RTX_P (XEXP (INDEX, 0)) \
1968 && GET_CODE (op) == CONST_INT && INTVAL (op) > 0 \
1969 && INTVAL (op) <= 31) \
1970 goto LABEL; \
1971 } \
1972 /* NASTY: Since this limits the addressing of unsigned \
1973 byte loads. */ \
1974 range = ((MODE) == HImode || (MODE) == QImode) \
1975 ? (arm_arch4 ? 256 : 4095) : 4096; \
1976 if (code == CONST_INT && INTVAL (INDEX) < range \
1977 && INTVAL (INDEX) > -range) \
1978 goto LABEL; \
1979 } \
1980 } \
1981 while (0)
1982
1983 /* Jump to LABEL if X is a valid address RTX. This must take
1984 REG_OK_STRICT into account when deciding about valid registers.
1985
1986 Allow REG, REG+REG, REG+INDEX, INDEX+REG, REG-INDEX, and non
1987 floating SYMBOL_REF to the constant pool. Allow REG-only and
1988 AUTINC-REG if handling TImode or HImode. Other symbol refs must be
1989 forced though a static cell to ensure addressability. */
1990 #define ARM_GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1991 { \
1992 if (ARM_BASE_REGISTER_RTX_P (X)) \
1993 goto LABEL; \
1994 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
1995 && GET_CODE (XEXP (X, 0)) == REG \
1996 && ARM_REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1997 goto LABEL; \
1998 else if (GET_MODE_SIZE (MODE) >= 4 && reload_completed \
1999 && (GET_CODE (X) == LABEL_REF \
2000 || (GET_CODE (X) == CONST \
2001 && GET_CODE (XEXP ((X), 0)) == PLUS \
2002 && GET_CODE (XEXP (XEXP ((X), 0), 0)) == LABEL_REF \
2003 && GET_CODE (XEXP (XEXP ((X), 0), 1)) == CONST_INT)))\
2004 goto LABEL; \
2005 else if ((MODE) == TImode) \
2006 ; \
2007 else if ((MODE) == DImode || (TARGET_SOFT_FLOAT && (MODE) == DFmode)) \
2008 { \
2009 if (GET_CODE (X) == PLUS && ARM_BASE_REGISTER_RTX_P (XEXP (X, 0)) \
2010 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
2011 { \
2012 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
2013 if (val == 4 || val == -4 || val == -8) \
2014 goto LABEL; \
2015 } \
2016 } \
2017 else if (GET_CODE (X) == PLUS) \
2018 { \
2019 rtx xop0 = XEXP (X, 0); \
2020 rtx xop1 = XEXP (X, 1); \
2021 \
2022 if (ARM_BASE_REGISTER_RTX_P (xop0)) \
2023 ARM_GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop0), xop1, LABEL); \
2024 else if (ARM_BASE_REGISTER_RTX_P (xop1)) \
2025 ARM_GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop1), xop0, LABEL); \
2026 } \
2027 /* Reload currently can't handle MINUS, so disable this for now */ \
2028 /* else if (GET_CODE (X) == MINUS) \
2029 { \
2030 rtx xop0 = XEXP (X,0); \
2031 rtx xop1 = XEXP (X,1); \
2032 \
2033 if (ARM_BASE_REGISTER_RTX_P (xop0)) \
2034 ARM_GO_IF_LEGITIMATE_INDEX (MODE, -1, xop1, LABEL); \
2035 } */ \
2036 else if (GET_MODE_CLASS (MODE) != MODE_FLOAT \
2037 && GET_CODE (X) == SYMBOL_REF \
2038 && CONSTANT_POOL_ADDRESS_P (X) \
2039 && ! (flag_pic \
2040 && symbol_mentioned_p (get_pool_constant (X)))) \
2041 goto LABEL; \
2042 else if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_DEC) \
2043 && (GET_MODE_SIZE (MODE) <= 4) \
2044 && GET_CODE (XEXP (X, 0)) == REG \
2045 && ARM_REG_OK_FOR_BASE_P (XEXP (X, 0))) \
2046 goto LABEL; \
2047 }
2048
2049 /* ---------------------thumb version----------------------------------*/
2050 #define THUMB_LEGITIMATE_OFFSET(MODE, VAL) \
2051 (GET_MODE_SIZE (MODE) == 1 ? ((unsigned HOST_WIDE_INT) (VAL) < 32) \
2052 : GET_MODE_SIZE (MODE) == 2 ? ((unsigned HOST_WIDE_INT) (VAL) < 64 \
2053 && ((VAL) & 1) == 0) \
2054 : ((VAL) >= 0 && ((VAL) + GET_MODE_SIZE (MODE)) <= 128 \
2055 && ((VAL) & 3) == 0))
2056
2057 /* The AP may be eliminated to either the SP or the FP, so we use the
2058 least common denominator, e.g. SImode, and offsets from 0 to 64. */
2059
2060 /* ??? Verify whether the above is the right approach. */
2061
2062 /* ??? Also, the FP may be eliminated to the SP, so perhaps that
2063 needs special handling also. */
2064
2065 /* ??? Look at how the mips16 port solves this problem. It probably uses
2066 better ways to solve some of these problems. */
2067
2068 /* Although it is not incorrect, we don't accept QImode and HImode
2069 addresses based on the frame pointer or arg pointer until the
2070 reload pass starts. This is so that eliminating such addresses
2071 into stack based ones won't produce impossible code. */
2072 #define THUMB_GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
2073 { \
2074 /* ??? Not clear if this is right. Experiment. */ \
2075 if (GET_MODE_SIZE (MODE) < 4 \
2076 && ! (reload_in_progress || reload_completed) \
2077 && ( reg_mentioned_p (frame_pointer_rtx, X) \
2078 || reg_mentioned_p (arg_pointer_rtx, X) \
2079 || reg_mentioned_p (virtual_incoming_args_rtx, X) \
2080 || reg_mentioned_p (virtual_outgoing_args_rtx, X) \
2081 || reg_mentioned_p (virtual_stack_dynamic_rtx, X) \
2082 || reg_mentioned_p (virtual_stack_vars_rtx, X))) \
2083 ; \
2084 /* Accept any base register. SP only in SImode or larger. */ \
2085 else if (GET_CODE (X) == REG \
2086 && THUMB_REG_MODE_OK_FOR_BASE_P (X, MODE)) \
2087 goto WIN; \
2088 /* This is PC relative data before MACHINE_DEPENDENT_REORG runs. */ \
2089 else if (GET_MODE_SIZE (MODE) >= 4 && CONSTANT_P (X) \
2090 && GET_CODE (X) == SYMBOL_REF \
2091 && CONSTANT_POOL_ADDRESS_P (X) && ! flag_pic) \
2092 goto WIN; \
2093 /* This is PC relative data after MACHINE_DEPENDENT_REORG runs. */ \
2094 else if (GET_MODE_SIZE (MODE) >= 4 && reload_completed \
2095 && (GET_CODE (X) == LABEL_REF \
2096 || (GET_CODE (X) == CONST \
2097 && GET_CODE (XEXP (X, 0)) == PLUS \
2098 && GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF \
2099 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT))) \
2100 goto WIN; \
2101 /* Post-inc indexing only supported for SImode and larger. */ \
2102 else if (GET_CODE (X) == POST_INC && GET_MODE_SIZE (MODE) >= 4 \
2103 && GET_CODE (XEXP (X, 0)) == REG \
2104 && THUMB_REG_OK_FOR_INDEX_P (XEXP (X, 0))) \
2105 goto WIN; \
2106 else if (GET_CODE (X) == PLUS) \
2107 { \
2108 /* REG+REG address can be any two index registers. */ \
2109 /* We disallow FRAME+REG addressing since we know that FRAME \
2110 will be replaced with STACK, and SP relative addressing only \
2111 permits SP+OFFSET. */ \
2112 if (GET_MODE_SIZE (MODE) <= 4 \
2113 && GET_CODE (XEXP (X, 0)) == REG \
2114 && GET_CODE (XEXP (X, 1)) == REG \
2115 && XEXP (X, 0) != frame_pointer_rtx \
2116 && XEXP (X, 1) != frame_pointer_rtx \
2117 && XEXP (X, 0) != virtual_stack_vars_rtx \
2118 && XEXP (X, 1) != virtual_stack_vars_rtx \
2119 && THUMB_REG_OK_FOR_INDEX_P (XEXP (X, 0)) \
2120 && THUMB_REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
2121 goto WIN; \
2122 /* REG+const has 5-7 bit offset for non-SP registers. */ \
2123 else if (GET_CODE (XEXP (X, 0)) == REG \
2124 && (THUMB_REG_OK_FOR_INDEX_P (XEXP (X, 0)) \
2125 || XEXP (X, 0) == arg_pointer_rtx) \
2126 && GET_CODE (XEXP (X, 1)) == CONST_INT \
2127 && THUMB_LEGITIMATE_OFFSET (MODE, INTVAL (XEXP (X, 1)))) \
2128 goto WIN; \
2129 /* REG+const has 10 bit offset for SP, but only SImode and \
2130 larger is supported. */ \
2131 /* ??? Should probably check for DI/DFmode overflow here \
2132 just like GO_IF_LEGITIMATE_OFFSET does. */ \
2133 else if (GET_CODE (XEXP (X, 0)) == REG \
2134 && REGNO (XEXP (X, 0)) == STACK_POINTER_REGNUM \
2135 && GET_MODE_SIZE (MODE) >= 4 \
2136 && GET_CODE (XEXP (X, 1)) == CONST_INT \
2137 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (X, 1)) \
2138 + GET_MODE_SIZE (MODE)) <= 1024 \
2139 && (INTVAL (XEXP (X, 1)) & 3) == 0) \
2140 goto WIN; \
2141 else if (GET_CODE (XEXP (X, 0)) == REG \
2142 && REGNO (XEXP (X, 0)) == FRAME_POINTER_REGNUM \
2143 && GET_MODE_SIZE (MODE) >= 4 \
2144 && GET_CODE (XEXP (X, 1)) == CONST_INT \
2145 && (INTVAL (XEXP (X, 1)) & 3) == 0) \
2146 goto WIN; \
2147 } \
2148 else if (GET_MODE_CLASS (MODE) != MODE_FLOAT \
2149 && GET_CODE (X) == SYMBOL_REF \
2150 && CONSTANT_POOL_ADDRESS_P (X) \
2151 && ! (flag_pic \
2152 && symbol_mentioned_p (get_pool_constant (X)))) \
2153 goto WIN; \
2154 }
2155
2156 /* ------------------------------------------------------------------- */
2157 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
2158 if (TARGET_ARM) \
2159 ARM_GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN) \
2160 else /* if (TARGET_THUMB) */ \
2161 THUMB_GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN)
2162 /* ------------------------------------------------------------------- */
2163 \f
2164 /* Try machine-dependent ways of modifying an illegitimate address
2165 to be legitimate. If we find one, return the new, valid address.
2166 This macro is used in only one place: `memory_address' in explow.c.
2167
2168 OLDX is the address as it was before break_out_memory_refs was called.
2169 In some cases it is useful to look at this to decide what needs to be done.
2170
2171 MODE and WIN are passed so that this macro can use
2172 GO_IF_LEGITIMATE_ADDRESS.
2173
2174 It is always safe for this macro to do nothing. It exists to recognize
2175 opportunities to optimize the output.
2176
2177 On the ARM, try to convert [REG, #BIGCONST]
2178 into ADD BASE, REG, #UPPERCONST and [BASE, #VALIDCONST],
2179 where VALIDCONST == 0 in case of TImode. */
2180 #define ARM_LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2181 { \
2182 if (GET_CODE (X) == PLUS) \
2183 { \
2184 rtx xop0 = XEXP (X, 0); \
2185 rtx xop1 = XEXP (X, 1); \
2186 \
2187 if (CONSTANT_P (xop0) && ! symbol_mentioned_p (xop0)) \
2188 xop0 = force_reg (SImode, xop0); \
2189 if (CONSTANT_P (xop1) && ! symbol_mentioned_p (xop1)) \
2190 xop1 = force_reg (SImode, xop1); \
2191 if (ARM_BASE_REGISTER_RTX_P (xop0) \
2192 && GET_CODE (xop1) == CONST_INT) \
2193 { \
2194 HOST_WIDE_INT n, low_n; \
2195 rtx base_reg, val; \
2196 n = INTVAL (xop1); \
2197 \
2198 if (MODE == DImode || (TARGET_SOFT_FLOAT && MODE == DFmode)) \
2199 { \
2200 low_n = n & 0x0f; \
2201 n &= ~0x0f; \
2202 if (low_n > 4) \
2203 { \
2204 n += 16; \
2205 low_n -= 16; \
2206 } \
2207 } \
2208 else \
2209 { \
2210 low_n = ((MODE) == TImode ? 0 \
2211 : n >= 0 ? (n & 0xfff) : -((-n) & 0xfff)); \
2212 n -= low_n; \
2213 } \
2214 base_reg = gen_reg_rtx (SImode); \
2215 val = force_operand (gen_rtx_PLUS (SImode, xop0, \
2216 GEN_INT (n)), NULL_RTX); \
2217 emit_move_insn (base_reg, val); \
2218 (X) = (low_n == 0 ? base_reg \
2219 : gen_rtx_PLUS (SImode, base_reg, GEN_INT (low_n))); \
2220 } \
2221 else if (xop0 != XEXP (X, 0) || xop1 != XEXP (x, 1)) \
2222 (X) = gen_rtx_PLUS (SImode, xop0, xop1); \
2223 } \
2224 else if (GET_CODE (X) == MINUS) \
2225 { \
2226 rtx xop0 = XEXP (X, 0); \
2227 rtx xop1 = XEXP (X, 1); \
2228 \
2229 if (CONSTANT_P (xop0)) \
2230 xop0 = force_reg (SImode, xop0); \
2231 if (CONSTANT_P (xop1) && ! symbol_mentioned_p (xop1)) \
2232 xop1 = force_reg (SImode, xop1); \
2233 if (xop0 != XEXP (X, 0) || xop1 != XEXP (X, 1)) \
2234 (X) = gen_rtx_MINUS (SImode, xop0, xop1); \
2235 } \
2236 if (flag_pic) \
2237 (X) = legitimize_pic_address (OLDX, MODE, NULL_RTX); \
2238 if (memory_address_p (MODE, X)) \
2239 goto WIN; \
2240 }
2241
2242 #define THUMB_LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2243 if (flag_pic) \
2244 (X) = legitimize_pic_address (OLDX, MODE, NULL_RTX);
2245
2246 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2247 if (TARGET_ARM) \
2248 ARM_LEGITIMIZE_ADDRESS (X, OLDX, MODE, WIN) \
2249 else \
2250 THUMB_LEGITIMIZE_ADDRESS (X, OLDX, MODE, WIN)
2251
2252 /* Go to LABEL if ADDR (a legitimate address expression)
2253 has an effect that depends on the machine mode it is used for. */
2254 #define ARM_GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2255 { \
2256 if ( GET_CODE (ADDR) == PRE_DEC || GET_CODE (ADDR) == POST_DEC \
2257 || GET_CODE (ADDR) == PRE_INC || GET_CODE (ADDR) == POST_INC) \
2258 goto LABEL; \
2259 }
2260
2261 /* Nothing helpful to do for the Thumb */
2262 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2263 if (TARGET_ARM) \
2264 ARM_GO_IF_MODE_DEPENDENT_ADDRESS (ADDR, LABEL)
2265 \f
2266
2267 /* Specify the machine mode that this machine uses
2268 for the index in the tablejump instruction. */
2269 #define CASE_VECTOR_MODE Pmode
2270
2271 /* Define as C expression which evaluates to nonzero if the tablejump
2272 instruction expects the table to contain offsets from the address of the
2273 table.
2274 Do not define this if the table should contain absolute addresses. */
2275 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2276
2277 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
2278 unsigned is probably best, but may break some code. */
2279 #ifndef DEFAULT_SIGNED_CHAR
2280 #define DEFAULT_SIGNED_CHAR 0
2281 #endif
2282
2283 /* Don't cse the address of the function being compiled. */
2284 #define NO_RECURSIVE_FUNCTION_CSE 1
2285
2286 /* Max number of bytes we can move from memory to memory
2287 in one reasonably fast instruction. */
2288 #define MOVE_MAX 4
2289
2290 #undef MOVE_RATIO
2291 #define MOVE_RATIO (arm_is_xscale ? 4 : 2)
2292
2293 /* Define if operations between registers always perform the operation
2294 on the full register even if a narrower mode is specified. */
2295 #define WORD_REGISTER_OPERATIONS
2296
2297 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2298 will either zero-extend or sign-extend. The value of this macro should
2299 be the code that says which one of the two operations is implicitly
2300 done, NIL if none. */
2301 #define LOAD_EXTEND_OP(MODE) \
2302 (TARGET_THUMB ? ZERO_EXTEND : \
2303 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
2304 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : NIL)))
2305
2306 /* Nonzero if access to memory by bytes is slow and undesirable. */
2307 #define SLOW_BYTE_ACCESS 0
2308
2309 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
2310
2311 /* Immediate shift counts are truncated by the output routines (or was it
2312 the assembler?). Shift counts in a register are truncated by ARM. Note
2313 that the native compiler puts too large (> 32) immediate shift counts
2314 into a register and shifts by the register, letting the ARM decide what
2315 to do instead of doing that itself. */
2316 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
2317 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2318 On the arm, Y in a register is used modulo 256 for the shift. Only for
2319 rotates is modulo 32 used. */
2320 /* #define SHIFT_COUNT_TRUNCATED 1 */
2321
2322 /* All integers have the same format so truncation is easy. */
2323 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2324
2325 /* Calling from registers is a massive pain. */
2326 #define NO_FUNCTION_CSE 1
2327
2328 /* Chars and shorts should be passed as ints. */
2329 #define PROMOTE_PROTOTYPES 1
2330
2331 /* The machine modes of pointers and functions */
2332 #define Pmode SImode
2333 #define FUNCTION_MODE Pmode
2334
2335 #define ARM_FRAME_RTX(X) \
2336 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
2337 || (X) == arg_pointer_rtx)
2338
2339 #define DEFAULT_RTX_COSTS(X, CODE, OUTER_CODE) \
2340 return arm_rtx_costs (X, CODE, OUTER_CODE);
2341
2342 /* Moves to and from memory are quite expensive */
2343 #define MEMORY_MOVE_COST(M, CLASS, IN) \
2344 (TARGET_ARM ? 10 : \
2345 ((GET_MODE_SIZE (M) < 4 ? 8 : 2 * GET_MODE_SIZE (M)) \
2346 * (CLASS == LO_REGS ? 1 : 2)))
2347
2348 /* All address computations that can be done are free, but rtx cost returns
2349 the same for practically all of them. So we weight the different types
2350 of address here in the order (most pref first):
2351 PRE/POST_INC/DEC, SHIFT or NON-INT sum, INT sum, REG, MEM or LABEL. */
2352 #define ARM_ADDRESS_COST(X) \
2353 (10 - ((GET_CODE (X) == MEM || GET_CODE (X) == LABEL_REF \
2354 || GET_CODE (X) == SYMBOL_REF) \
2355 ? 0 \
2356 : ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC \
2357 || GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
2358 ? 10 \
2359 : (((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS) \
2360 ? 6 + (GET_CODE (XEXP (X, 1)) == CONST_INT ? 2 \
2361 : ((GET_RTX_CLASS (GET_CODE (XEXP (X, 0))) == '2' \
2362 || GET_RTX_CLASS (GET_CODE (XEXP (X, 0))) == 'c' \
2363 || GET_RTX_CLASS (GET_CODE (XEXP (X, 1))) == '2' \
2364 || GET_RTX_CLASS (GET_CODE (XEXP (X, 1))) == 'c') \
2365 ? 1 : 0)) \
2366 : 4)))))
2367
2368 #define THUMB_ADDRESS_COST(X) \
2369 ((GET_CODE (X) == REG \
2370 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
2371 && GET_CODE (XEXP (X, 1)) == CONST_INT)) \
2372 ? 1 : 2)
2373
2374 #define ADDRESS_COST(X) \
2375 (TARGET_ARM ? ARM_ADDRESS_COST (X) : THUMB_ADDRESS_COST (X))
2376
2377 /* Try to generate sequences that don't involve branches, we can then use
2378 conditional instructions */
2379 #define BRANCH_COST \
2380 (TARGET_ARM ? 4 : (optimize > 1 ? 1 : 0))
2381 \f
2382 /* Position Independent Code. */
2383 /* We decide which register to use based on the compilation options and
2384 the assembler in use; this is more general than the APCS restriction of
2385 using sb (r9) all the time. */
2386 extern int arm_pic_register;
2387
2388 /* Used when parsing command line option -mpic-register=. */
2389 extern const char * arm_pic_register_string;
2390
2391 /* The register number of the register used to address a table of static
2392 data addresses in memory. */
2393 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2394
2395 #define FINALIZE_PIC arm_finalize_pic (1)
2396
2397 /* We can't directly access anything that contains a symbol,
2398 nor can we indirect via the constant pool. */
2399 #define LEGITIMATE_PIC_OPERAND_P(X) \
2400 ( ! symbol_mentioned_p (X) \
2401 && ! label_mentioned_p (X) \
2402 && (! CONSTANT_POOL_ADDRESS_P (X) \
2403 || ( ! symbol_mentioned_p (get_pool_constant (X)) \
2404 && ! label_mentioned_p (get_pool_constant (X)))))
2405
2406 /* We need to know when we are making a constant pool; this determines
2407 whether data needs to be in the GOT or can be referenced via a GOT
2408 offset. */
2409 extern int making_const_table;
2410 \f
2411 /* Handle pragmas for compatibility with Intel's compilers. */
2412 #define REGISTER_TARGET_PRAGMAS(PFILE) do { \
2413 cpp_register_pragma (PFILE, 0, "long_calls", arm_pr_long_calls); \
2414 cpp_register_pragma (PFILE, 0, "no_long_calls", arm_pr_no_long_calls); \
2415 cpp_register_pragma (PFILE, 0, "long_calls_off", arm_pr_long_calls_off); \
2416 } while (0)
2417
2418 /* Condition code information. */
2419 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2420 return the mode to be used for the comparison. */
2421
2422 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2423
2424 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
2425
2426 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
2427 do \
2428 { \
2429 if (GET_CODE (OP1) == CONST_INT \
2430 && ! (const_ok_for_arm (INTVAL (OP1)) \
2431 || (const_ok_for_arm (- INTVAL (OP1))))) \
2432 { \
2433 rtx const_op = OP1; \
2434 CODE = arm_canonicalize_comparison ((CODE), &const_op); \
2435 OP1 = const_op; \
2436 } \
2437 } \
2438 while (0)
2439
2440 #define STORE_FLAG_VALUE 1
2441
2442 \f
2443
2444 /* Gcc puts the pool in the wrong place for ARM, since we can only
2445 load addresses a limited distance around the pc. We do some
2446 special munging to move the constant pool values to the correct
2447 point in the code. */
2448 #define MACHINE_DEPENDENT_REORG(INSN) \
2449 arm_reorg (INSN); \
2450
2451 #undef ASM_APP_OFF
2452 #define ASM_APP_OFF (TARGET_THUMB ? "\t.code\t16\n" : "")
2453
2454 /* Output an internal label definition. */
2455 #ifndef ASM_OUTPUT_INTERNAL_LABEL
2456 #define ASM_OUTPUT_INTERNAL_LABEL(STREAM, PREFIX, NUM) \
2457 do \
2458 { \
2459 char * s = (char *) alloca (40 + strlen (PREFIX)); \
2460 \
2461 if (arm_ccfsm_state == 3 && arm_target_label == (NUM) \
2462 && !strcmp (PREFIX, "L")) \
2463 { \
2464 arm_ccfsm_state = 0; \
2465 arm_target_insn = NULL; \
2466 } \
2467 ASM_GENERATE_INTERNAL_LABEL (s, (PREFIX), (NUM)); \
2468 ASM_OUTPUT_LABEL (STREAM, s); \
2469 } \
2470 while (0)
2471 #endif
2472
2473 /* Output a push or a pop instruction (only used when profiling). */
2474 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2475 if (TARGET_ARM) \
2476 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
2477 STACK_POINTER_REGNUM, REGNO); \
2478 else \
2479 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO)
2480
2481
2482 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2483 if (TARGET_ARM) \
2484 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
2485 STACK_POINTER_REGNUM, REGNO); \
2486 else \
2487 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO)
2488
2489 /* This is how to output a label which precedes a jumptable. Since
2490 Thumb instructions are 2 bytes, we may need explicit alignment here. */
2491 #undef ASM_OUTPUT_CASE_LABEL
2492 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \
2493 do \
2494 { \
2495 if (TARGET_THUMB) \
2496 ASM_OUTPUT_ALIGN (FILE, 2); \
2497 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
2498 } \
2499 while (0)
2500
2501 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2502 do \
2503 { \
2504 if (TARGET_THUMB) \
2505 { \
2506 if (is_called_in_ARM_mode (DECL)) \
2507 fprintf (STREAM, "\t.code 32\n") ; \
2508 else \
2509 fprintf (STREAM, "\t.thumb_func\n") ; \
2510 } \
2511 if (TARGET_POKE_FUNCTION_NAME) \
2512 arm_poke_function_name (STREAM, (char *) NAME); \
2513 } \
2514 while (0)
2515
2516 /* For aliases of functions we use .thumb_set instead. */
2517 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2518 do \
2519 { \
2520 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2521 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2522 \
2523 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2524 { \
2525 fprintf (FILE, "\t.thumb_set "); \
2526 assemble_name (FILE, LABEL1); \
2527 fprintf (FILE, ","); \
2528 assemble_name (FILE, LABEL2); \
2529 fprintf (FILE, "\n"); \
2530 } \
2531 else \
2532 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2533 } \
2534 while (0)
2535
2536 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2537 /* To support -falign-* switches we need to use .p2align so
2538 that alignment directives in code sections will be padded
2539 with no-op instructions, rather than zeroes. */
2540 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE,LOG,MAX_SKIP) \
2541 if ((LOG) != 0) \
2542 { \
2543 if ((MAX_SKIP) == 0) \
2544 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2545 else \
2546 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2547 (LOG), (MAX_SKIP)); \
2548 }
2549 #endif
2550 \f
2551 /* Only perform branch elimination (by making instructions conditional) if
2552 we're optimising. Otherwise it's of no use anyway. */
2553 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2554 if (TARGET_ARM && optimize) \
2555 arm_final_prescan_insn (INSN); \
2556 else if (TARGET_THUMB) \
2557 thumb_final_prescan_insn (INSN)
2558
2559 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2560 (CODE == '@' || CODE == '|' \
2561 || (TARGET_ARM && (CODE == '?')) \
2562 || (TARGET_THUMB && (CODE == '_')))
2563
2564 /* Output an operand of an instruction. */
2565 #define PRINT_OPERAND(STREAM, X, CODE) \
2566 arm_print_operand (STREAM, X, CODE)
2567
2568 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2569 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2570 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2571 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2572 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2573 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2574 : 0))))
2575
2576 /* Output the address of an operand. */
2577 #define ARM_PRINT_OPERAND_ADDRESS(STREAM, X) \
2578 { \
2579 int is_minus = GET_CODE (X) == MINUS; \
2580 \
2581 if (GET_CODE (X) == REG) \
2582 asm_fprintf (STREAM, "[%r, #0]", REGNO (X)); \
2583 else if (GET_CODE (X) == PLUS || is_minus) \
2584 { \
2585 rtx base = XEXP (X, 0); \
2586 rtx index = XEXP (X, 1); \
2587 HOST_WIDE_INT offset = 0; \
2588 if (GET_CODE (base) != REG) \
2589 { \
2590 /* Ensure that BASE is a register */ \
2591 /* (one of them must be). */ \
2592 rtx temp = base; \
2593 base = index; \
2594 index = temp; \
2595 } \
2596 switch (GET_CODE (index)) \
2597 { \
2598 case CONST_INT: \
2599 offset = INTVAL (index); \
2600 if (is_minus) \
2601 offset = -offset; \
2602 asm_fprintf (STREAM, "[%r, #%d]", \
2603 REGNO (base), offset); \
2604 break; \
2605 \
2606 case REG: \
2607 asm_fprintf (STREAM, "[%r, %s%r]", \
2608 REGNO (base), is_minus ? "-" : "", \
2609 REGNO (index)); \
2610 break; \
2611 \
2612 case MULT: \
2613 case ASHIFTRT: \
2614 case LSHIFTRT: \
2615 case ASHIFT: \
2616 case ROTATERT: \
2617 { \
2618 asm_fprintf (STREAM, "[%r, %s%r", \
2619 REGNO (base), is_minus ? "-" : "", \
2620 REGNO (XEXP (index, 0))); \
2621 arm_print_operand (STREAM, index, 'S'); \
2622 fputs ("]", STREAM); \
2623 break; \
2624 } \
2625 \
2626 default: \
2627 abort(); \
2628 } \
2629 } \
2630 else if ( GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC\
2631 || GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC)\
2632 { \
2633 extern int output_memory_reference_mode; \
2634 \
2635 if (GET_CODE (XEXP (X, 0)) != REG) \
2636 abort (); \
2637 \
2638 if (GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC) \
2639 asm_fprintf (STREAM, "[%r, #%s%d]!", \
2640 REGNO (XEXP (X, 0)), \
2641 GET_CODE (X) == PRE_DEC ? "-" : "", \
2642 GET_MODE_SIZE (output_memory_reference_mode));\
2643 else \
2644 asm_fprintf (STREAM, "[%r], #%s%d", \
2645 REGNO (XEXP (X, 0)), \
2646 GET_CODE (X) == POST_DEC ? "-" : "", \
2647 GET_MODE_SIZE (output_memory_reference_mode));\
2648 } \
2649 else output_addr_const (STREAM, X); \
2650 }
2651
2652 #define THUMB_PRINT_OPERAND_ADDRESS(STREAM, X) \
2653 { \
2654 if (GET_CODE (X) == REG) \
2655 asm_fprintf (STREAM, "[%r]", REGNO (X)); \
2656 else if (GET_CODE (X) == POST_INC) \
2657 asm_fprintf (STREAM, "%r!", REGNO (XEXP (X, 0))); \
2658 else if (GET_CODE (X) == PLUS) \
2659 { \
2660 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2661 asm_fprintf (STREAM, "[%r, #%d]", \
2662 REGNO (XEXP (X, 0)), \
2663 (int) INTVAL (XEXP (X, 1))); \
2664 else \
2665 asm_fprintf (STREAM, "[%r, %r]", \
2666 REGNO (XEXP (X, 0)), \
2667 REGNO (XEXP (X, 1))); \
2668 } \
2669 else \
2670 output_addr_const (STREAM, X); \
2671 }
2672
2673 #define PRINT_OPERAND_ADDRESS(STREAM, X) \
2674 if (TARGET_ARM) \
2675 ARM_PRINT_OPERAND_ADDRESS (STREAM, X) \
2676 else \
2677 THUMB_PRINT_OPERAND_ADDRESS (STREAM, X)
2678
2679 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2680 Used for C++ multiple inheritance. */
2681 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2682 do \
2683 { \
2684 int mi_delta = (DELTA); \
2685 const char *const mi_op = mi_delta < 0 ? "sub" : "add"; \
2686 int shift = 0; \
2687 int this_regno = (aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION))) \
2688 ? 1 : 0); \
2689 if (mi_delta < 0) \
2690 mi_delta = - mi_delta; \
2691 while (mi_delta != 0) \
2692 { \
2693 if ((mi_delta & (3 << shift)) == 0) \
2694 shift += 2; \
2695 else \
2696 { \
2697 asm_fprintf (FILE, "\t%s\t%r, %r, #%d\n", \
2698 mi_op, this_regno, this_regno, \
2699 mi_delta & (0xff << shift)); \
2700 mi_delta &= ~(0xff << shift); \
2701 shift += 8; \
2702 } \
2703 } \
2704 fputs ("\tb\t", FILE); \
2705 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
2706 if (NEED_PLT_RELOC) \
2707 fputs ("(PLT)", FILE); \
2708 fputc ('\n', FILE); \
2709 } \
2710 while (0)
2711
2712 /* A C expression whose value is RTL representing the value of the return
2713 address for the frame COUNT steps up from the current frame. */
2714
2715 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2716 arm_return_addr (COUNT, FRAME)
2717
2718 /* Mask of the bits in the PC that contain the real return address
2719 when running in 26-bit mode. */
2720 #define RETURN_ADDR_MASK26 (0x03fffffc)
2721
2722 /* Pick up the return address upon entry to a procedure. Used for
2723 dwarf2 unwind information. This also enables the table driven
2724 mechanism. */
2725 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2726 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2727
2728 /* Used to mask out junk bits from the return address, such as
2729 processor state, interrupt status, condition codes and the like. */
2730 #define MASK_RETURN_ADDR \
2731 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2732 in 26 bit mode, the condition codes must be masked out of the \
2733 return address. This does not apply to ARM6 and later processors \
2734 when running in 32 bit mode. */ \
2735 ((!TARGET_APCS_32) ? (GEN_INT (RETURN_ADDR_MASK26)) \
2736 : (GEN_INT ((unsigned long)0xffffffff)))
2737
2738 \f
2739 /* Define the codes that are matched by predicates in arm.c */
2740 #define PREDICATE_CODES \
2741 {"s_register_operand", {SUBREG, REG}}, \
2742 {"arm_hard_register_operand", {REG}}, \
2743 {"f_register_operand", {SUBREG, REG}}, \
2744 {"arm_add_operand", {SUBREG, REG, CONST_INT}}, \
2745 {"fpu_add_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2746 {"fpu_rhs_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2747 {"arm_rhs_operand", {SUBREG, REG, CONST_INT}}, \
2748 {"arm_not_operand", {SUBREG, REG, CONST_INT}}, \
2749 {"reg_or_int_operand", {SUBREG, REG, CONST_INT}}, \
2750 {"index_operand", {SUBREG, REG, CONST_INT}}, \
2751 {"thumb_cmp_operand", {SUBREG, REG, CONST_INT}}, \
2752 {"offsettable_memory_operand", {MEM}}, \
2753 {"bad_signed_byte_operand", {MEM}}, \
2754 {"alignable_memory_operand", {MEM}}, \
2755 {"shiftable_operator", {PLUS, MINUS, AND, IOR, XOR}}, \
2756 {"minmax_operator", {SMIN, SMAX, UMIN, UMAX}}, \
2757 {"shift_operator", {ASHIFT, ASHIFTRT, LSHIFTRT, ROTATERT, MULT}}, \
2758 {"di_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE, MEM}}, \
2759 {"nonimmediate_di_operand", {SUBREG, REG, MEM}}, \
2760 {"soft_df_operand", {SUBREG, REG, CONST_DOUBLE, MEM}}, \
2761 {"nonimmediate_soft_df_operand", {SUBREG, REG, MEM}}, \
2762 {"load_multiple_operation", {PARALLEL}}, \
2763 {"store_multiple_operation", {PARALLEL}}, \
2764 {"equality_operator", {EQ, NE}}, \
2765 {"arm_comparison_operator", {EQ, NE, LE, LT, GE, GT, GEU, GTU, LEU, \
2766 LTU, UNORDERED, ORDERED, UNLT, UNLE, \
2767 UNGE, UNGT}}, \
2768 {"arm_rhsm_operand", {SUBREG, REG, CONST_INT, MEM}}, \
2769 {"const_shift_operand", {CONST_INT}}, \
2770 {"multi_register_push", {PARALLEL}}, \
2771 {"cc_register", {REG}}, \
2772 {"logical_binary_operator", {AND, IOR, XOR}}, \
2773 {"dominant_cc_register", {REG}},
2774
2775 /* Define this if you have special predicates that know special things
2776 about modes. Genrecog will warn about certain forms of
2777 match_operand without a mode; if the operand predicate is listed in
2778 SPECIAL_MODE_PREDICATES, the warning will be suppressed. */
2779 #define SPECIAL_MODE_PREDICATES \
2780 "cc_register", "dominant_cc_register",
2781
2782 enum arm_builtins
2783 {
2784 ARM_BUILTIN_CLZ,
2785 ARM_BUILTIN_MAX
2786 };
2787 #endif /* ! GCC_ARM_H */