]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/arm/arm.h
thumb2.md (thumb2_movsi_insn): Split ldr and str alternatives according to use of...
[thirdparty/gcc.git] / gcc / config / arm / arm.h
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
6 and Martin Simmons (@harleqn.co.uk).
7 More major hacks by Richard Earnshaw (rearnsha@arm.com)
8 Minor hacks by Nick Clifton (nickc@cygnus.com)
9
10 This file is part of GCC.
11
12 GCC is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published
14 by the Free Software Foundation; either version 3, or (at your
15 option) any later version.
16
17 GCC is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
20 License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
25
26 #ifndef GCC_ARM_H
27 #define GCC_ARM_H
28
29 /* We can't use enum machine_mode inside a generator file because it
30 hasn't been created yet; we shouldn't be using any code that
31 needs the real definition though, so this ought to be safe. */
32 #ifdef GENERATOR_FILE
33 #define MACHMODE int
34 #else
35 #include "insn-modes.h"
36 #define MACHMODE enum machine_mode
37 #endif
38
39 #include "config/vxworks-dummy.h"
40
41 /* The architecture define. */
42 extern char arm_arch_name[];
43
44 /* Target CPU builtins. */
45 #define TARGET_CPU_CPP_BUILTINS() \
46 do \
47 { \
48 /* Define __arm__ even when in thumb mode, for \
49 consistency with armcc. */ \
50 builtin_define ("__arm__"); \
51 builtin_define ("__APCS_32__"); \
52 if (TARGET_THUMB) \
53 builtin_define ("__thumb__"); \
54 if (TARGET_THUMB2) \
55 builtin_define ("__thumb2__"); \
56 \
57 if (TARGET_BIG_END) \
58 { \
59 builtin_define ("__ARMEB__"); \
60 if (TARGET_THUMB) \
61 builtin_define ("__THUMBEB__"); \
62 if (TARGET_LITTLE_WORDS) \
63 builtin_define ("__ARMWEL__"); \
64 } \
65 else \
66 { \
67 builtin_define ("__ARMEL__"); \
68 if (TARGET_THUMB) \
69 builtin_define ("__THUMBEL__"); \
70 } \
71 \
72 if (TARGET_SOFT_FLOAT) \
73 builtin_define ("__SOFTFP__"); \
74 \
75 if (TARGET_VFP) \
76 builtin_define ("__VFP_FP__"); \
77 \
78 if (TARGET_NEON) \
79 builtin_define ("__ARM_NEON__"); \
80 \
81 /* Add a define for interworking. \
82 Needed when building libgcc.a. */ \
83 if (arm_cpp_interwork) \
84 builtin_define ("__THUMB_INTERWORK__"); \
85 \
86 builtin_assert ("cpu=arm"); \
87 builtin_assert ("machine=arm"); \
88 \
89 builtin_define (arm_arch_name); \
90 if (arm_arch_cirrus) \
91 builtin_define ("__MAVERICK__"); \
92 if (arm_arch_xscale) \
93 builtin_define ("__XSCALE__"); \
94 if (arm_arch_iwmmxt) \
95 builtin_define ("__IWMMXT__"); \
96 if (TARGET_AAPCS_BASED) \
97 builtin_define ("__ARM_EABI__"); \
98 } while (0)
99
100 /* The various ARM cores. */
101 enum processor_type
102 {
103 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
104 IDENT,
105 #include "arm-cores.def"
106 #undef ARM_CORE
107 /* Used to indicate that no processor has been specified. */
108 arm_none
109 };
110
111 enum target_cpus
112 {
113 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
114 TARGET_CPU_##IDENT,
115 #include "arm-cores.def"
116 #undef ARM_CORE
117 TARGET_CPU_generic
118 };
119
120 /* The processor for which instructions should be scheduled. */
121 extern enum processor_type arm_tune;
122
123 typedef enum arm_cond_code
124 {
125 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
126 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
127 }
128 arm_cc;
129
130 extern arm_cc arm_current_cc;
131
132 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
133
134 extern int arm_target_label;
135 extern int arm_ccfsm_state;
136 extern GTY(()) rtx arm_target_insn;
137 /* The label of the current constant pool. */
138 extern rtx pool_vector_label;
139 /* Set to 1 when a return insn is output, this means that the epilogue
140 is not needed. */
141 extern int return_used_this_function;
142 /* Callback to output language specific object attributes. */
143 extern void (*arm_lang_output_object_attributes_hook)(void);
144 \f
145 /* Just in case configure has failed to define anything. */
146 #ifndef TARGET_CPU_DEFAULT
147 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
148 #endif
149
150
151 #undef CPP_SPEC
152 #define CPP_SPEC "%(subtarget_cpp_spec) \
153 %{msoft-float:%{mhard-float: \
154 %e-msoft-float and -mhard_float may not be used together}} \
155 %{mbig-endian:%{mlittle-endian: \
156 %e-mbig-endian and -mlittle-endian may not be used together}}"
157
158 #ifndef CC1_SPEC
159 #define CC1_SPEC ""
160 #endif
161
162 /* This macro defines names of additional specifications to put in the specs
163 that can be used in various specifications like CC1_SPEC. Its definition
164 is an initializer with a subgrouping for each command option.
165
166 Each subgrouping contains a string constant, that defines the
167 specification name, and a string constant that used by the GCC driver
168 program.
169
170 Do not define this macro if it does not need to do anything. */
171 #define EXTRA_SPECS \
172 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
173 SUBTARGET_EXTRA_SPECS
174
175 #ifndef SUBTARGET_EXTRA_SPECS
176 #define SUBTARGET_EXTRA_SPECS
177 #endif
178
179 #ifndef SUBTARGET_CPP_SPEC
180 #define SUBTARGET_CPP_SPEC ""
181 #endif
182 \f
183 /* Run-time Target Specification. */
184 #ifndef TARGET_VERSION
185 #define TARGET_VERSION fputs (" (ARM/generic)", stderr);
186 #endif
187
188 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
189 /* Use hardware floating point instructions. */
190 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
191 /* Use hardware floating point calling convention. */
192 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
193 #define TARGET_FPA (arm_fpu_desc->model == ARM_FP_MODEL_FPA)
194 #define TARGET_MAVERICK (arm_fpu_desc->model == ARM_FP_MODEL_MAVERICK)
195 #define TARGET_VFP (arm_fpu_desc->model == ARM_FP_MODEL_VFP)
196 #define TARGET_IWMMXT (arm_arch_iwmmxt)
197 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
198 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
199 #define TARGET_ARM (! TARGET_THUMB)
200 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
201 #define TARGET_BACKTRACE (leaf_function_p () \
202 ? TARGET_TPCS_LEAF_FRAME \
203 : TARGET_TPCS_FRAME)
204 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN)
205 #define TARGET_AAPCS_BASED \
206 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
207
208 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
209 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
210
211 /* Only 16-bit thumb code. */
212 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
213 /* Arm or Thumb-2 32-bit code. */
214 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
215 /* 32-bit Thumb-2 code. */
216 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
217 /* Thumb-1 only. */
218 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
219 /* FPA emulator without LFM. */
220 #define TARGET_FPA_EMU2 (TARGET_FPA && arm_fpu_desc->rev == 2)
221
222 /* The following two macros concern the ability to execute coprocessor
223 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
224 only ever tested when we know we are generating for VFP hardware; we need
225 to be more careful with TARGET_NEON as noted below. */
226
227 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
228 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
229
230 /* FPU supports VFPv3 instructions. */
231 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
232
233 /* FPU only supports VFP single-precision instructions. */
234 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
235
236 /* FPU supports VFP double-precision instructions. */
237 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
238
239 /* FPU supports half-precision floating-point with NEON element load/store. */
240 #define TARGET_NEON_FP16 \
241 (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
242
243 /* FPU supports VFP half-precision floating-point. */
244 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
245
246 /* FPU supports Neon instructions. The setting of this macro gets
247 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
248 and TARGET_HARD_FLOAT to ensure that NEON instructions are
249 available. */
250 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
251 && TARGET_VFP && arm_fpu_desc->neon)
252
253 /* "DSP" multiply instructions, eg. SMULxy. */
254 #define TARGET_DSP_MULTIPLY \
255 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
256 /* Integer SIMD instructions, and extend-accumulate instructions. */
257 #define TARGET_INT_SIMD \
258 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
259
260 /* Should MOVW/MOVT be used in preference to a constant pool. */
261 #define TARGET_USE_MOVT (arm_arch_thumb2 && !optimize_size)
262
263 /* We could use unified syntax for arm mode, but for now we just use it
264 for Thumb-2. */
265 #define TARGET_UNIFIED_ASM TARGET_THUMB2
266
267
268 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
269 then TARGET_AAPCS_BASED must be true -- but the converse does not
270 hold. TARGET_BPABI implies the use of the BPABI runtime library,
271 etc., in addition to just the AAPCS calling conventions. */
272 #ifndef TARGET_BPABI
273 #define TARGET_BPABI false
274 #endif
275
276 /* Support for a compile-time default CPU, et cetera. The rules are:
277 --with-arch is ignored if -march or -mcpu are specified.
278 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
279 by --with-arch.
280 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
281 by -march).
282 --with-float is ignored if -mhard-float, -msoft-float or -mfloat-abi are
283 specified.
284 --with-fpu is ignored if -mfpu is specified.
285 --with-abi is ignored is -mabi is specified. */
286 #define OPTION_DEFAULT_SPECS \
287 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
288 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
289 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
290 {"float", \
291 "%{!msoft-float:%{!mhard-float:%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}}}" }, \
292 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
293 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
294 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"},
295
296 /* Which floating point model to use. */
297 enum arm_fp_model
298 {
299 ARM_FP_MODEL_UNKNOWN,
300 /* FPA model (Hardware or software). */
301 ARM_FP_MODEL_FPA,
302 /* Cirrus Maverick floating point model. */
303 ARM_FP_MODEL_MAVERICK,
304 /* VFP floating point model. */
305 ARM_FP_MODEL_VFP
306 };
307
308 enum vfp_reg_type
309 {
310 VFP_NONE = 0,
311 VFP_REG_D16,
312 VFP_REG_D32,
313 VFP_REG_SINGLE
314 };
315
316 extern const struct arm_fpu_desc
317 {
318 const char *name;
319 enum arm_fp_model model;
320 int rev;
321 enum vfp_reg_type regs;
322 int neon;
323 int fp16;
324 } *arm_fpu_desc;
325
326 /* Which floating point hardware to schedule for. */
327 extern int arm_fpu_attr;
328
329 enum float_abi_type
330 {
331 ARM_FLOAT_ABI_SOFT,
332 ARM_FLOAT_ABI_SOFTFP,
333 ARM_FLOAT_ABI_HARD
334 };
335
336 extern enum float_abi_type arm_float_abi;
337
338 #ifndef TARGET_DEFAULT_FLOAT_ABI
339 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
340 #endif
341
342 /* Which __fp16 format to use.
343 The enumeration values correspond to the numbering for the
344 Tag_ABI_FP_16bit_format attribute.
345 */
346 enum arm_fp16_format_type
347 {
348 ARM_FP16_FORMAT_NONE = 0,
349 ARM_FP16_FORMAT_IEEE = 1,
350 ARM_FP16_FORMAT_ALTERNATIVE = 2
351 };
352
353 extern enum arm_fp16_format_type arm_fp16_format;
354 #define LARGEST_EXPONENT_IS_NORMAL(bits) \
355 ((bits) == 16 && arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)
356
357 /* Which ABI to use. */
358 enum arm_abi_type
359 {
360 ARM_ABI_APCS,
361 ARM_ABI_ATPCS,
362 ARM_ABI_AAPCS,
363 ARM_ABI_IWMMXT,
364 ARM_ABI_AAPCS_LINUX
365 };
366
367 extern enum arm_abi_type arm_abi;
368
369 #ifndef ARM_DEFAULT_ABI
370 #define ARM_DEFAULT_ABI ARM_ABI_APCS
371 #endif
372
373 /* Which thread pointer access sequence to use. */
374 enum arm_tp_type {
375 TP_AUTO,
376 TP_SOFT,
377 TP_CP15
378 };
379
380 extern enum arm_tp_type target_thread_pointer;
381
382 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
383 extern int arm_arch3m;
384
385 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
386 extern int arm_arch4;
387
388 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
389 extern int arm_arch4t;
390
391 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
392 extern int arm_arch5;
393
394 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
395 extern int arm_arch5e;
396
397 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
398 extern int arm_arch6;
399
400 /* Nonzero if instructions not present in the 'M' profile can be used. */
401 extern int arm_arch_notm;
402
403 /* Nonzero if instructions present in ARMv7E-M can be used. */
404 extern int arm_arch7em;
405
406 /* Nonzero if this chip can benefit from load scheduling. */
407 extern int arm_ld_sched;
408
409 /* Nonzero if generating thumb code. */
410 extern int thumb_code;
411
412 /* Nonzero if this chip is a StrongARM. */
413 extern int arm_tune_strongarm;
414
415 /* Nonzero if this chip is a Cirrus variant. */
416 extern int arm_arch_cirrus;
417
418 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
419 extern int arm_arch_iwmmxt;
420
421 /* Nonzero if this chip is an XScale. */
422 extern int arm_arch_xscale;
423
424 /* Nonzero if tuning for XScale. */
425 extern int arm_tune_xscale;
426
427 /* Nonzero if tuning for stores via the write buffer. */
428 extern int arm_tune_wbuf;
429
430 /* Nonzero if tuning for Cortex-A9. */
431 extern int arm_tune_cortex_a9;
432
433 /* Nonzero if we should define __THUMB_INTERWORK__ in the
434 preprocessor.
435 XXX This is a bit of a hack, it's intended to help work around
436 problems in GLD which doesn't understand that armv5t code is
437 interworking clean. */
438 extern int arm_cpp_interwork;
439
440 /* Nonzero if chip supports Thumb 2. */
441 extern int arm_arch_thumb2;
442
443 /* Nonzero if chip supports integer division instruction. */
444 extern int arm_arch_hwdiv;
445
446 #ifndef TARGET_DEFAULT
447 #define TARGET_DEFAULT (MASK_APCS_FRAME)
448 #endif
449
450 /* The frame pointer register used in gcc has nothing to do with debugging;
451 that is controlled by the APCS-FRAME option. */
452 #define CAN_DEBUG_WITHOUT_FP
453
454 #define OVERRIDE_OPTIONS arm_override_options ()
455
456 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
457 arm_optimization_options ((LEVEL), (SIZE))
458
459 /* Nonzero if PIC code requires explicit qualifiers to generate
460 PLT and GOT relocs rather than the assembler doing so implicitly.
461 Subtargets can override these if required. */
462 #ifndef NEED_GOT_RELOC
463 #define NEED_GOT_RELOC 0
464 #endif
465 #ifndef NEED_PLT_RELOC
466 #define NEED_PLT_RELOC 0
467 #endif
468
469 /* Nonzero if we need to refer to the GOT with a PC-relative
470 offset. In other words, generate
471
472 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
473
474 rather than
475
476 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
477
478 The default is true, which matches NetBSD. Subtargets can
479 override this if required. */
480 #ifndef GOT_PCREL
481 #define GOT_PCREL 1
482 #endif
483 \f
484 /* Target machine storage Layout. */
485
486
487 /* Define this macro if it is advisable to hold scalars in registers
488 in a wider mode than that declared by the program. In such cases,
489 the value is constrained to be within the bounds of the declared
490 type, but kept valid in the wider mode. The signedness of the
491 extension may differ from that of the type. */
492
493 /* It is far faster to zero extend chars than to sign extend them */
494
495 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
496 if (GET_MODE_CLASS (MODE) == MODE_INT \
497 && GET_MODE_SIZE (MODE) < 4) \
498 { \
499 if (MODE == QImode) \
500 UNSIGNEDP = 1; \
501 else if (MODE == HImode) \
502 UNSIGNEDP = 1; \
503 (MODE) = SImode; \
504 }
505
506 /* Define this if most significant bit is lowest numbered
507 in instructions that operate on numbered bit-fields. */
508 #define BITS_BIG_ENDIAN 0
509
510 /* Define this if most significant byte of a word is the lowest numbered.
511 Most ARM processors are run in little endian mode, so that is the default.
512 If you want to have it run-time selectable, change the definition in a
513 cover file to be TARGET_BIG_ENDIAN. */
514 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
515
516 /* Define this if most significant word of a multiword number is the lowest
517 numbered.
518 This is always false, even when in big-endian mode. */
519 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
520
521 /* LIBGCC2_WORDS_BIG_ENDIAN has to be a constant, so we define this based
522 on processor pre-defineds when compiling libgcc2.c. */
523 #if defined(__ARMEB__) && !defined(__ARMWEL__)
524 #define LIBGCC2_WORDS_BIG_ENDIAN 1
525 #else
526 #define LIBGCC2_WORDS_BIG_ENDIAN 0
527 #endif
528
529 /* Define this if most significant word of doubles is the lowest numbered.
530 The rules are different based on whether or not we use FPA-format,
531 VFP-format or some other floating point co-processor's format doubles. */
532 #define FLOAT_WORDS_BIG_ENDIAN (arm_float_words_big_endian ())
533
534 #define UNITS_PER_WORD 4
535
536 /* Use the option -mvectorize-with-neon-quad to override the use of doubleword
537 registers when autovectorizing for Neon, at least until multiple vector
538 widths are supported properly by the middle-end. */
539 #define UNITS_PER_SIMD_WORD(MODE) \
540 (TARGET_NEON ? (TARGET_NEON_VECTORIZE_QUAD ? 16 : 8) : UNITS_PER_WORD)
541
542 /* True if natural alignment is used for doubleword types. */
543 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
544
545 #define DOUBLEWORD_ALIGNMENT 64
546
547 #define PARM_BOUNDARY 32
548
549 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
550
551 #define PREFERRED_STACK_BOUNDARY \
552 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
553
554 #define FUNCTION_BOUNDARY ((TARGET_THUMB && optimize_size) ? 16 : 32)
555
556 /* The lowest bit is used to indicate Thumb-mode functions, so the
557 vbit must go into the delta field of pointers to member
558 functions. */
559 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
560
561 #define EMPTY_FIELD_BOUNDARY 32
562
563 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
564
565 /* XXX Blah -- this macro is used directly by libobjc. Since it
566 supports no vector modes, cut out the complexity and fall back
567 on BIGGEST_FIELD_ALIGNMENT. */
568 #ifdef IN_TARGET_LIBS
569 #define BIGGEST_FIELD_ALIGNMENT 64
570 #endif
571
572 /* Make strings word-aligned so strcpy from constants will be faster. */
573 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
574
575 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
576 ((TREE_CODE (EXP) == STRING_CST \
577 && !optimize_size \
578 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
579 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
580
581 /* Align definitions of arrays, unions and structures so that
582 initializations and copies can be made more efficient. This is not
583 ABI-changing, so it only affects places where we can see the
584 definition. */
585 #define DATA_ALIGNMENT(EXP, ALIGN) \
586 ((((ALIGN) < BITS_PER_WORD) \
587 && (TREE_CODE (EXP) == ARRAY_TYPE \
588 || TREE_CODE (EXP) == UNION_TYPE \
589 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
590
591 /* Similarly, make sure that objects on the stack are sensibly aligned. */
592 #define LOCAL_ALIGNMENT(EXP, ALIGN) DATA_ALIGNMENT(EXP, ALIGN)
593
594 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
595 value set in previous versions of this toolchain was 8, which produces more
596 compact structures. The command line option -mstructure_size_boundary=<n>
597 can be used to change this value. For compatibility with the ARM SDK
598 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
599 0020D) page 2-20 says "Structures are aligned on word boundaries".
600 The AAPCS specifies a value of 8. */
601 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
602 extern int arm_structure_size_boundary;
603
604 /* This is the value used to initialize arm_structure_size_boundary. If a
605 particular arm target wants to change the default value it should change
606 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
607 for an example of this. */
608 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
609 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
610 #endif
611
612 /* Nonzero if move instructions will actually fail to work
613 when given unaligned data. */
614 #define STRICT_ALIGNMENT 1
615
616 /* wchar_t is unsigned under the AAPCS. */
617 #ifndef WCHAR_TYPE
618 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
619
620 #define WCHAR_TYPE_SIZE BITS_PER_WORD
621 #endif
622
623 #ifndef SIZE_TYPE
624 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
625 #endif
626
627 #ifndef PTRDIFF_TYPE
628 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
629 #endif
630
631 /* AAPCS requires that structure alignment is affected by bitfields. */
632 #ifndef PCC_BITFIELD_TYPE_MATTERS
633 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
634 #endif
635
636 \f
637 /* Standard register usage. */
638
639 /* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
640 (S - saved over call).
641
642 r0 * argument word/integer result
643 r1-r3 argument word
644
645 r4-r8 S register variable
646 r9 S (rfp) register variable (real frame pointer)
647
648 r10 F S (sl) stack limit (used by -mapcs-stack-check)
649 r11 F S (fp) argument pointer
650 r12 (ip) temp workspace
651 r13 F S (sp) lower end of current stack frame
652 r14 (lr) link address/workspace
653 r15 F (pc) program counter
654
655 f0 floating point result
656 f1-f3 floating point scratch
657
658 f4-f7 S floating point variable
659
660 cc This is NOT a real register, but is used internally
661 to represent things that use or set the condition
662 codes.
663 sfp This isn't either. It is used during rtl generation
664 since the offset between the frame pointer and the
665 auto's isn't known until after register allocation.
666 afp Nor this, we only need this because of non-local
667 goto. Without it fp appears to be used and the
668 elimination code won't get rid of sfp. It tracks
669 fp exactly at all times.
670
671 *: See CONDITIONAL_REGISTER_USAGE */
672
673 /*
674 mvf0 Cirrus floating point result
675 mvf1-mvf3 Cirrus floating point scratch
676 mvf4-mvf15 S Cirrus floating point variable. */
677
678 /* s0-s15 VFP scratch (aka d0-d7).
679 s16-s31 S VFP variable (aka d8-d15).
680 vfpcc Not a real register. Represents the VFP condition
681 code flags. */
682
683 /* The stack backtrace structure is as follows:
684 fp points to here: | save code pointer | [fp]
685 | return link value | [fp, #-4]
686 | return sp value | [fp, #-8]
687 | return fp value | [fp, #-12]
688 [| saved r10 value |]
689 [| saved r9 value |]
690 [| saved r8 value |]
691 [| saved r7 value |]
692 [| saved r6 value |]
693 [| saved r5 value |]
694 [| saved r4 value |]
695 [| saved r3 value |]
696 [| saved r2 value |]
697 [| saved r1 value |]
698 [| saved r0 value |]
699 [| saved f7 value |] three words
700 [| saved f6 value |] three words
701 [| saved f5 value |] three words
702 [| saved f4 value |] three words
703 r0-r3 are not normally saved in a C function. */
704
705 /* 1 for registers that have pervasive standard uses
706 and are not available for the register allocator. */
707 #define FIXED_REGISTERS \
708 { \
709 0,0,0,0,0,0,0,0, \
710 0,0,0,0,0,1,0,1, \
711 0,0,0,0,0,0,0,0, \
712 1,1,1, \
713 1,1,1,1,1,1,1,1, \
714 1,1,1,1,1,1,1,1, \
715 1,1,1,1,1,1,1,1, \
716 1,1,1,1,1,1,1,1, \
717 1,1,1,1, \
718 1,1,1,1,1,1,1,1, \
719 1,1,1,1,1,1,1,1, \
720 1,1,1,1,1,1,1,1, \
721 1,1,1,1,1,1,1,1, \
722 1,1,1,1,1,1,1,1, \
723 1,1,1,1,1,1,1,1, \
724 1,1,1,1,1,1,1,1, \
725 1,1,1,1,1,1,1,1, \
726 1 \
727 }
728
729 /* 1 for registers not available across function calls.
730 These must include the FIXED_REGISTERS and also any
731 registers that can be used without being saved.
732 The latter must include the registers where values are returned
733 and the register where structure-value addresses are passed.
734 Aside from that, you can include as many other registers as you like.
735 The CC is not preserved over function calls on the ARM 6, so it is
736 easier to assume this for all. SFP is preserved, since FP is. */
737 #define CALL_USED_REGISTERS \
738 { \
739 1,1,1,1,0,0,0,0, \
740 0,0,0,0,1,1,1,1, \
741 1,1,1,1,0,0,0,0, \
742 1,1,1, \
743 1,1,1,1,1,1,1,1, \
744 1,1,1,1,1,1,1,1, \
745 1,1,1,1,1,1,1,1, \
746 1,1,1,1,1,1,1,1, \
747 1,1,1,1, \
748 1,1,1,1,1,1,1,1, \
749 1,1,1,1,1,1,1,1, \
750 1,1,1,1,1,1,1,1, \
751 1,1,1,1,1,1,1,1, \
752 1,1,1,1,1,1,1,1, \
753 1,1,1,1,1,1,1,1, \
754 1,1,1,1,1,1,1,1, \
755 1,1,1,1,1,1,1,1, \
756 1 \
757 }
758
759 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
760 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
761 #endif
762
763 #define CONDITIONAL_REGISTER_USAGE \
764 { \
765 int regno; \
766 \
767 if (TARGET_SOFT_FLOAT || TARGET_THUMB1 || !TARGET_FPA) \
768 { \
769 for (regno = FIRST_FPA_REGNUM; \
770 regno <= LAST_FPA_REGNUM; ++regno) \
771 fixed_regs[regno] = call_used_regs[regno] = 1; \
772 } \
773 \
774 if (TARGET_THUMB1 && optimize_size) \
775 { \
776 /* When optimizing for size on Thumb-1, it's better not \
777 to use the HI regs, because of the overhead of \
778 stacking them. */ \
779 for (regno = FIRST_HI_REGNUM; \
780 regno <= LAST_HI_REGNUM; ++regno) \
781 fixed_regs[regno] = call_used_regs[regno] = 1; \
782 } \
783 \
784 /* The link register can be clobbered by any branch insn, \
785 but we have no way to track that at present, so mark \
786 it as unavailable. */ \
787 if (TARGET_THUMB1) \
788 fixed_regs[LR_REGNUM] = call_used_regs[LR_REGNUM] = 1; \
789 \
790 if (TARGET_32BIT && TARGET_HARD_FLOAT) \
791 { \
792 if (TARGET_MAVERICK) \
793 { \
794 for (regno = FIRST_FPA_REGNUM; \
795 regno <= LAST_FPA_REGNUM; ++ regno) \
796 fixed_regs[regno] = call_used_regs[regno] = 1; \
797 for (regno = FIRST_CIRRUS_FP_REGNUM; \
798 regno <= LAST_CIRRUS_FP_REGNUM; ++ regno) \
799 { \
800 fixed_regs[regno] = 0; \
801 call_used_regs[regno] = regno < FIRST_CIRRUS_FP_REGNUM + 4; \
802 } \
803 } \
804 if (TARGET_VFP) \
805 { \
806 /* VFPv3 registers are disabled when earlier VFP \
807 versions are selected due to the definition of \
808 LAST_VFP_REGNUM. */ \
809 for (regno = FIRST_VFP_REGNUM; \
810 regno <= LAST_VFP_REGNUM; ++ regno) \
811 { \
812 fixed_regs[regno] = 0; \
813 call_used_regs[regno] = regno < FIRST_VFP_REGNUM + 16 \
814 || regno >= FIRST_VFP_REGNUM + 32; \
815 } \
816 } \
817 } \
818 \
819 if (TARGET_REALLY_IWMMXT) \
820 { \
821 regno = FIRST_IWMMXT_GR_REGNUM; \
822 /* The 2002/10/09 revision of the XScale ABI has wCG0 \
823 and wCG1 as call-preserved registers. The 2002/11/21 \
824 revision changed this so that all wCG registers are \
825 scratch registers. */ \
826 for (regno = FIRST_IWMMXT_GR_REGNUM; \
827 regno <= LAST_IWMMXT_GR_REGNUM; ++ regno) \
828 fixed_regs[regno] = 0; \
829 /* The XScale ABI has wR0 - wR9 as scratch registers, \
830 the rest as call-preserved registers. */ \
831 for (regno = FIRST_IWMMXT_REGNUM; \
832 regno <= LAST_IWMMXT_REGNUM; ++ regno) \
833 { \
834 fixed_regs[regno] = 0; \
835 call_used_regs[regno] = regno < FIRST_IWMMXT_REGNUM + 10; \
836 } \
837 } \
838 \
839 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
840 { \
841 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
842 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
843 } \
844 else if (TARGET_APCS_STACK) \
845 { \
846 fixed_regs[10] = 1; \
847 call_used_regs[10] = 1; \
848 } \
849 /* -mcaller-super-interworking reserves r11 for calls to \
850 _interwork_r11_call_via_rN(). Making the register global \
851 is an easy way of ensuring that it remains valid for all \
852 calls. */ \
853 if (TARGET_APCS_FRAME || TARGET_CALLER_INTERWORKING \
854 || TARGET_TPCS_FRAME || TARGET_TPCS_LEAF_FRAME) \
855 { \
856 fixed_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \
857 call_used_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \
858 if (TARGET_CALLER_INTERWORKING) \
859 global_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \
860 } \
861 SUBTARGET_CONDITIONAL_REGISTER_USAGE \
862 }
863
864 /* These are a couple of extensions to the formats accepted
865 by asm_fprintf:
866 %@ prints out ASM_COMMENT_START
867 %r prints out REGISTER_PREFIX reg_names[arg] */
868 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
869 case '@': \
870 fputs (ASM_COMMENT_START, FILE); \
871 break; \
872 \
873 case 'r': \
874 fputs (REGISTER_PREFIX, FILE); \
875 fputs (reg_names [va_arg (ARGS, int)], FILE); \
876 break;
877
878 /* Round X up to the nearest word. */
879 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
880
881 /* Convert fron bytes to ints. */
882 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
883
884 /* The number of (integer) registers required to hold a quantity of type MODE.
885 Also used for VFP registers. */
886 #define ARM_NUM_REGS(MODE) \
887 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
888
889 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
890 #define ARM_NUM_REGS2(MODE, TYPE) \
891 ARM_NUM_INTS ((MODE) == BLKmode ? \
892 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
893
894 /* The number of (integer) argument register available. */
895 #define NUM_ARG_REGS 4
896
897 /* And similarly for the VFP. */
898 #define NUM_VFP_ARG_REGS 16
899
900 /* Return the register number of the N'th (integer) argument. */
901 #define ARG_REGISTER(N) (N - 1)
902
903 /* Specify the registers used for certain standard purposes.
904 The values of these macros are register numbers. */
905
906 /* The number of the last argument register. */
907 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
908
909 /* The numbers of the Thumb register ranges. */
910 #define FIRST_LO_REGNUM 0
911 #define LAST_LO_REGNUM 7
912 #define FIRST_HI_REGNUM 8
913 #define LAST_HI_REGNUM 11
914
915 #ifndef TARGET_UNWIND_INFO
916 /* We use sjlj exceptions for backwards compatibility. */
917 #define MUST_USE_SJLJ_EXCEPTIONS 1
918 #endif
919
920 /* We can generate DWARF2 Unwind info, even though we don't use it. */
921 #define DWARF2_UNWIND_INFO 1
922
923 /* Use r0 and r1 to pass exception handling information. */
924 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
925
926 /* The register that holds the return address in exception handlers. */
927 #define ARM_EH_STACKADJ_REGNUM 2
928 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
929
930 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
931 as an invisible last argument (possible since varargs don't exist in
932 Pascal), so the following is not true. */
933 #define STATIC_CHAIN_REGNUM 12
934
935 /* Define this to be where the real frame pointer is if it is not possible to
936 work out the offset between the frame pointer and the automatic variables
937 until after register allocation has taken place. FRAME_POINTER_REGNUM
938 should point to a special register that we will make sure is eliminated.
939
940 For the Thumb we have another problem. The TPCS defines the frame pointer
941 as r11, and GCC believes that it is always possible to use the frame pointer
942 as base register for addressing purposes. (See comments in
943 find_reloads_address()). But - the Thumb does not allow high registers,
944 including r11, to be used as base address registers. Hence our problem.
945
946 The solution used here, and in the old thumb port is to use r7 instead of
947 r11 as the hard frame pointer and to have special code to generate
948 backtrace structures on the stack (if required to do so via a command line
949 option) using r11. This is the only 'user visible' use of r11 as a frame
950 pointer. */
951 #define ARM_HARD_FRAME_POINTER_REGNUM 11
952 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
953
954 #define HARD_FRAME_POINTER_REGNUM \
955 (TARGET_ARM \
956 ? ARM_HARD_FRAME_POINTER_REGNUM \
957 : THUMB_HARD_FRAME_POINTER_REGNUM)
958
959 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
960
961 /* Register to use for pushing function arguments. */
962 #define STACK_POINTER_REGNUM SP_REGNUM
963
964 /* ARM floating pointer registers. */
965 #define FIRST_FPA_REGNUM 16
966 #define LAST_FPA_REGNUM 23
967 #define IS_FPA_REGNUM(REGNUM) \
968 (((REGNUM) >= FIRST_FPA_REGNUM) && ((REGNUM) <= LAST_FPA_REGNUM))
969
970 #define FIRST_IWMMXT_GR_REGNUM 43
971 #define LAST_IWMMXT_GR_REGNUM 46
972 #define FIRST_IWMMXT_REGNUM 47
973 #define LAST_IWMMXT_REGNUM 62
974 #define IS_IWMMXT_REGNUM(REGNUM) \
975 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
976 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
977 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
978
979 /* Base register for access to local variables of the function. */
980 #define FRAME_POINTER_REGNUM 25
981
982 /* Base register for access to arguments of the function. */
983 #define ARG_POINTER_REGNUM 26
984
985 #define FIRST_CIRRUS_FP_REGNUM 27
986 #define LAST_CIRRUS_FP_REGNUM 42
987 #define IS_CIRRUS_REGNUM(REGNUM) \
988 (((REGNUM) >= FIRST_CIRRUS_FP_REGNUM) && ((REGNUM) <= LAST_CIRRUS_FP_REGNUM))
989
990 #define FIRST_VFP_REGNUM 63
991 #define D7_VFP_REGNUM 78 /* Registers 77 and 78 == VFP reg D7. */
992 #define LAST_VFP_REGNUM \
993 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
994
995 #define IS_VFP_REGNUM(REGNUM) \
996 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
997
998 /* VFP registers are split into two types: those defined by VFP versions < 3
999 have D registers overlaid on consecutive pairs of S registers. VFP version 3
1000 defines 16 new D registers (d16-d31) which, for simplicity and correctness
1001 in various parts of the backend, we implement as "fake" single-precision
1002 registers (which would be S32-S63, but cannot be used in that way). The
1003 following macros define these ranges of registers. */
1004 #define LAST_LO_VFP_REGNUM 94
1005 #define FIRST_HI_VFP_REGNUM 95
1006 #define LAST_HI_VFP_REGNUM 126
1007
1008 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
1009 ((REGNUM) <= LAST_LO_VFP_REGNUM)
1010
1011 /* DFmode values are only valid in even register pairs. */
1012 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
1013 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
1014
1015 /* Neon Quad values must start at a multiple of four registers. */
1016 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
1017 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
1018
1019 /* Neon structures of vectors must be in even register pairs and there
1020 must be enough registers available. Because of various patterns
1021 requiring quad registers, we require them to start at a multiple of
1022 four. */
1023 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
1024 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
1025 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
1026
1027 /* The number of hard registers is 16 ARM + 8 FPA + 1 CC + 1 SFP + 1 AFP. */
1028 /* + 16 Cirrus registers take us up to 43. */
1029 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
1030 /* VFP (VFP3) adds 32 (64) + 1 more. */
1031 #define FIRST_PSEUDO_REGISTER 128
1032
1033 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1034
1035 /* Value should be nonzero if functions must have frame pointers.
1036 Zero means the frame pointer need not be set up (and parms may be accessed
1037 via the stack pointer) in functions that seem suitable.
1038 If we have to have a frame pointer we might as well make use of it.
1039 APCS says that the frame pointer does not need to be pushed in leaf
1040 functions, or simple tail call functions. */
1041
1042 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1043 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1044 #endif
1045
1046 /* Return number of consecutive hard regs needed starting at reg REGNO
1047 to hold something of mode MODE.
1048 This is ordinarily the length in words of a value of mode MODE
1049 but can be less for certain modes in special long registers.
1050
1051 On the ARM regs are UNITS_PER_WORD bits wide; FPA regs can hold any FP
1052 mode. */
1053 #define HARD_REGNO_NREGS(REGNO, MODE) \
1054 ((TARGET_32BIT \
1055 && REGNO >= FIRST_FPA_REGNUM \
1056 && REGNO != FRAME_POINTER_REGNUM \
1057 && REGNO != ARG_POINTER_REGNUM) \
1058 && !IS_VFP_REGNUM (REGNO) \
1059 ? 1 : ARM_NUM_REGS (MODE))
1060
1061 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
1062 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1063 arm_hard_regno_mode_ok ((REGNO), (MODE))
1064
1065 /* Value is 1 if it is a good idea to tie two pseudo registers
1066 when one has mode MODE1 and one has mode MODE2.
1067 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1068 for any hard reg, then this must be 0 for correct output. */
1069 #define MODES_TIEABLE_P(MODE1, MODE2) \
1070 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
1071
1072 #define VALID_IWMMXT_REG_MODE(MODE) \
1073 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1074
1075 /* Modes valid for Neon D registers. */
1076 #define VALID_NEON_DREG_MODE(MODE) \
1077 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1078 || (MODE) == V2SFmode || (MODE) == DImode)
1079
1080 /* Modes valid for Neon Q registers. */
1081 #define VALID_NEON_QREG_MODE(MODE) \
1082 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1083 || (MODE) == V4SFmode || (MODE) == V2DImode)
1084
1085 /* Structure modes valid for Neon registers. */
1086 #define VALID_NEON_STRUCT_MODE(MODE) \
1087 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1088 || (MODE) == CImode || (MODE) == XImode)
1089
1090 /* The order in which register should be allocated. It is good to use ip
1091 since no saving is required (though calls clobber it) and it never contains
1092 function parameters. It is quite good to use lr since other calls may
1093 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1094 least likely to contain a function parameter; in addition results are
1095 returned in r0.
1096 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1097 then D8-D15. The reason for doing this is to attempt to reduce register
1098 pressure when both single- and double-precision registers are used in a
1099 function. */
1100
1101 #define REG_ALLOC_ORDER \
1102 { \
1103 3, 2, 1, 0, 12, 14, 4, 5, \
1104 6, 7, 8, 10, 9, 11, 13, 15, \
1105 16, 17, 18, 19, 20, 21, 22, 23, \
1106 27, 28, 29, 30, 31, 32, 33, 34, \
1107 35, 36, 37, 38, 39, 40, 41, 42, \
1108 43, 44, 45, 46, 47, 48, 49, 50, \
1109 51, 52, 53, 54, 55, 56, 57, 58, \
1110 59, 60, 61, 62, \
1111 24, 25, 26, \
1112 95, 96, 97, 98, 99, 100, 101, 102, \
1113 103, 104, 105, 106, 107, 108, 109, 110, \
1114 111, 112, 113, 114, 115, 116, 117, 118, \
1115 119, 120, 121, 122, 123, 124, 125, 126, \
1116 78, 77, 76, 75, 74, 73, 72, 71, \
1117 70, 69, 68, 67, 66, 65, 64, 63, \
1118 79, 80, 81, 82, 83, 84, 85, 86, \
1119 87, 88, 89, 90, 91, 92, 93, 94, \
1120 127 \
1121 }
1122
1123 /* Use different register alloc ordering for Thumb. */
1124 #define ORDER_REGS_FOR_LOCAL_ALLOC arm_order_regs_for_local_alloc ()
1125
1126 /* Interrupt functions can only use registers that have already been
1127 saved by the prologue, even if they would normally be
1128 call-clobbered. */
1129 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1130 (! IS_INTERRUPT (cfun->machine->func_type) || \
1131 df_regs_ever_live_p (DST))
1132 \f
1133 /* Register and constant classes. */
1134
1135 /* Register classes: used to be simple, just all ARM regs or all FPA regs
1136 Now that the Thumb is involved it has become more complicated. */
1137 enum reg_class
1138 {
1139 NO_REGS,
1140 FPA_REGS,
1141 CIRRUS_REGS,
1142 VFP_D0_D7_REGS,
1143 VFP_LO_REGS,
1144 VFP_HI_REGS,
1145 VFP_REGS,
1146 IWMMXT_GR_REGS,
1147 IWMMXT_REGS,
1148 LO_REGS,
1149 STACK_REG,
1150 BASE_REGS,
1151 HI_REGS,
1152 CC_REG,
1153 VFPCC_REG,
1154 GENERAL_REGS,
1155 CORE_REGS,
1156 ALL_REGS,
1157 LIM_REG_CLASSES
1158 };
1159
1160 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1161
1162 /* Give names of register classes as strings for dump file. */
1163 #define REG_CLASS_NAMES \
1164 { \
1165 "NO_REGS", \
1166 "FPA_REGS", \
1167 "CIRRUS_REGS", \
1168 "VFP_D0_D7_REGS", \
1169 "VFP_LO_REGS", \
1170 "VFP_HI_REGS", \
1171 "VFP_REGS", \
1172 "IWMMXT_GR_REGS", \
1173 "IWMMXT_REGS", \
1174 "LO_REGS", \
1175 "STACK_REG", \
1176 "BASE_REGS", \
1177 "HI_REGS", \
1178 "CC_REG", \
1179 "VFPCC_REG", \
1180 "GENERAL_REGS", \
1181 "CORE_REGS", \
1182 "ALL_REGS", \
1183 }
1184
1185 /* Define which registers fit in which classes.
1186 This is an initializer for a vector of HARD_REG_SET
1187 of length N_REG_CLASSES. */
1188 #define REG_CLASS_CONTENTS \
1189 { \
1190 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1191 { 0x00FF0000, 0x00000000, 0x00000000, 0x00000000 }, /* FPA_REGS */ \
1192 { 0xF8000000, 0x000007FF, 0x00000000, 0x00000000 }, /* CIRRUS_REGS */ \
1193 { 0x00000000, 0x80000000, 0x00007FFF, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1194 { 0x00000000, 0x80000000, 0x7FFFFFFF, 0x00000000 }, /* VFP_LO_REGS */ \
1195 { 0x00000000, 0x00000000, 0x80000000, 0x7FFFFFFF }, /* VFP_HI_REGS */ \
1196 { 0x00000000, 0x80000000, 0xFFFFFFFF, 0x7FFFFFFF }, /* VFP_REGS */ \
1197 { 0x00000000, 0x00007800, 0x00000000, 0x00000000 }, /* IWMMXT_GR_REGS */ \
1198 { 0x00000000, 0x7FFF8000, 0x00000000, 0x00000000 }, /* IWMMXT_REGS */ \
1199 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1200 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1201 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1202 { 0x0000DF00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1203 { 0x01000000, 0x00000000, 0x00000000, 0x00000000 }, /* CC_REG */ \
1204 { 0x00000000, 0x00000000, 0x00000000, 0x80000000 }, /* VFPCC_REG */ \
1205 { 0x0200DFFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1206 { 0x0200FFFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1207 { 0xFAFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF } /* ALL_REGS */ \
1208 }
1209
1210 /* Any of the VFP register classes. */
1211 #define IS_VFP_CLASS(X) \
1212 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1213 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1214
1215 /* The same information, inverted:
1216 Return the class number of the smallest class containing
1217 reg number REGNO. This could be a conditional expression
1218 or could index an array. */
1219 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1220
1221 /* The following macro defines cover classes for Integrated Register
1222 Allocator. Cover classes is a set of non-intersected register
1223 classes covering all hard registers used for register allocation
1224 purpose. Any move between two registers of a cover class should be
1225 cheaper than load or store of the registers. The macro value is
1226 array of register classes with LIM_REG_CLASSES used as the end
1227 marker. */
1228
1229 #define IRA_COVER_CLASSES \
1230 { \
1231 GENERAL_REGS, FPA_REGS, CIRRUS_REGS, VFP_REGS, IWMMXT_GR_REGS, IWMMXT_REGS,\
1232 LIM_REG_CLASSES \
1233 }
1234
1235 /* FPA registers can't do subreg as all values are reformatted to internal
1236 precision. VFP registers may only be accessed in the mode they
1237 were set. */
1238 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1239 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1240 ? reg_classes_intersect_p (FPA_REGS, (CLASS)) \
1241 || reg_classes_intersect_p (VFP_REGS, (CLASS)) \
1242 : 0)
1243
1244 /* We need to define this for LO_REGS on thumb. Otherwise we can end up
1245 using r0-r4 for function arguments, r7 for the stack frame and don't
1246 have enough left over to do doubleword arithmetic. */
1247 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1248 ((TARGET_THUMB && (CLASS) == LO_REGS) \
1249 || (CLASS) == CC_REG)
1250
1251 /* The class value for index registers, and the one for base regs. */
1252 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1253 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1254
1255 /* For the Thumb the high registers cannot be used as base registers
1256 when addressing quantities in QI or HI mode; if we don't know the
1257 mode, then we must be conservative. */
1258 #define MODE_BASE_REG_CLASS(MODE) \
1259 (TARGET_32BIT ? CORE_REGS : \
1260 (((MODE) == SImode) ? BASE_REGS : LO_REGS))
1261
1262 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1263 instead of BASE_REGS. */
1264 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1265
1266 /* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1267 registers explicitly used in the rtl to be used as spill registers
1268 but prevents the compiler from extending the lifetime of these
1269 registers. */
1270 #define SMALL_REGISTER_CLASSES TARGET_THUMB1
1271
1272 /* Given an rtx X being reloaded into a reg required to be
1273 in class CLASS, return the class of reg to actually use.
1274 In general this is just CLASS, but for the Thumb core registers and
1275 immediate constants we prefer a LO_REGS class or a subset. */
1276 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1277 (TARGET_32BIT ? (CLASS) : \
1278 ((CLASS) == GENERAL_REGS || (CLASS) == HI_REGS \
1279 || (CLASS) == NO_REGS || (CLASS) == STACK_REG \
1280 ? LO_REGS : (CLASS)))
1281
1282 /* Must leave BASE_REGS reloads alone */
1283 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1284 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1285 ? ((true_regnum (X) == -1 ? LO_REGS \
1286 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1287 : NO_REGS)) \
1288 : NO_REGS)
1289
1290 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1291 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1292 ? ((true_regnum (X) == -1 ? LO_REGS \
1293 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1294 : NO_REGS)) \
1295 : NO_REGS)
1296
1297 /* Return the register class of a scratch register needed to copy IN into
1298 or out of a register in CLASS in MODE. If it can be done directly,
1299 NO_REGS is returned. */
1300 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1301 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1302 ((TARGET_VFP && TARGET_HARD_FLOAT \
1303 && IS_VFP_CLASS (CLASS)) \
1304 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1305 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1306 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1307 : TARGET_32BIT \
1308 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1309 ? GENERAL_REGS : NO_REGS) \
1310 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1311
1312 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1313 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1314 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1315 ((TARGET_VFP && TARGET_HARD_FLOAT \
1316 && IS_VFP_CLASS (CLASS)) \
1317 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1318 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1319 coproc_secondary_reload_class (MODE, X, TRUE) : \
1320 /* Cannot load constants into Cirrus registers. */ \
1321 (TARGET_MAVERICK && TARGET_HARD_FLOAT \
1322 && (CLASS) == CIRRUS_REGS \
1323 && (CONSTANT_P (X) || GET_CODE (X) == SYMBOL_REF)) \
1324 ? GENERAL_REGS : \
1325 (TARGET_32BIT ? \
1326 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1327 && CONSTANT_P (X)) \
1328 ? GENERAL_REGS : \
1329 (((MODE) == HImode && ! arm_arch4 \
1330 && (GET_CODE (X) == MEM \
1331 || ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG) \
1332 && true_regnum (X) == -1))) \
1333 ? GENERAL_REGS : NO_REGS) \
1334 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1335
1336 /* Try a machine-dependent way of reloading an illegitimate address
1337 operand. If we find one, push the reload and jump to WIN. This
1338 macro is used in only one place: `find_reloads_address' in reload.c.
1339
1340 For the ARM, we wish to handle large displacements off a base
1341 register by splitting the addend across a MOV and the mem insn.
1342 This can cut the number of reloads needed. */
1343 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
1344 do \
1345 { \
1346 if (GET_CODE (X) == PLUS \
1347 && GET_CODE (XEXP (X, 0)) == REG \
1348 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
1349 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
1350 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1351 { \
1352 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1353 HOST_WIDE_INT low, high; \
1354 \
1355 if (MODE == DImode || (MODE == DFmode && TARGET_SOFT_FLOAT)) \
1356 low = ((val & 0xf) ^ 0x8) - 0x8; \
1357 else if (TARGET_MAVERICK && TARGET_HARD_FLOAT) \
1358 /* Need to be careful, -256 is not a valid offset. */ \
1359 low = val >= 0 ? (val & 0xff) : -((-val) & 0xff); \
1360 else if (MODE == SImode \
1361 || (MODE == SFmode && TARGET_SOFT_FLOAT) \
1362 || ((MODE == HImode || MODE == QImode) && ! arm_arch4)) \
1363 /* Need to be careful, -4096 is not a valid offset. */ \
1364 low = val >= 0 ? (val & 0xfff) : -((-val) & 0xfff); \
1365 else if ((MODE == HImode || MODE == QImode) && arm_arch4) \
1366 /* Need to be careful, -256 is not a valid offset. */ \
1367 low = val >= 0 ? (val & 0xff) : -((-val) & 0xff); \
1368 else if (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1369 && TARGET_HARD_FLOAT && TARGET_FPA) \
1370 /* Need to be careful, -1024 is not a valid offset. */ \
1371 low = val >= 0 ? (val & 0x3ff) : -((-val) & 0x3ff); \
1372 else \
1373 break; \
1374 \
1375 high = ((((val - low) & (unsigned HOST_WIDE_INT) 0xffffffff) \
1376 ^ (unsigned HOST_WIDE_INT) 0x80000000) \
1377 - (unsigned HOST_WIDE_INT) 0x80000000); \
1378 /* Check for overflow or zero */ \
1379 if (low == 0 || high == 0 || (high + low != val)) \
1380 break; \
1381 \
1382 /* Reload the high part into a base reg; leave the low part \
1383 in the mem. */ \
1384 X = gen_rtx_PLUS (GET_MODE (X), \
1385 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
1386 GEN_INT (high)), \
1387 GEN_INT (low)); \
1388 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
1389 MODE_BASE_REG_CLASS (MODE), GET_MODE (X), \
1390 VOIDmode, 0, 0, OPNUM, TYPE); \
1391 goto WIN; \
1392 } \
1393 } \
1394 while (0)
1395
1396 /* XXX If an HImode FP+large_offset address is converted to an HImode
1397 SP+large_offset address, then reload won't know how to fix it. It sees
1398 only that SP isn't valid for HImode, and so reloads the SP into an index
1399 register, but the resulting address is still invalid because the offset
1400 is too big. We fix it here instead by reloading the entire address. */
1401 /* We could probably achieve better results by defining PROMOTE_MODE to help
1402 cope with the variances between the Thumb's signed and unsigned byte and
1403 halfword load instructions. */
1404 /* ??? This should be safe for thumb2, but we may be able to do better. */
1405 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN) \
1406 do { \
1407 rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1408 if (new_x) \
1409 { \
1410 X = new_x; \
1411 goto WIN; \
1412 } \
1413 } while (0)
1414
1415 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
1416 if (TARGET_ARM) \
1417 ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1418 else \
1419 THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1420
1421 /* Return the maximum number of consecutive registers
1422 needed to represent mode MODE in a register of class CLASS.
1423 ARM regs are UNITS_PER_WORD bits while FPA regs can hold any FP mode */
1424 #define CLASS_MAX_NREGS(CLASS, MODE) \
1425 (((CLASS) == FPA_REGS || (CLASS) == CIRRUS_REGS) ? 1 : ARM_NUM_REGS (MODE))
1426
1427 /* If defined, gives a class of registers that cannot be used as the
1428 operand of a SUBREG that changes the mode of the object illegally. */
1429
1430 /* Moves between FPA_REGS and GENERAL_REGS are two memory insns.
1431 Moves between VFP_REGS and GENERAL_REGS are a single insn, but
1432 it is typically more expensive than a single memory access. We set
1433 the cost to less than two memory accesses so that floating
1434 point to integer conversion does not go through memory. */
1435 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1436 (TARGET_32BIT ? \
1437 ((FROM) == FPA_REGS && (TO) != FPA_REGS ? 20 : \
1438 (FROM) != FPA_REGS && (TO) == FPA_REGS ? 20 : \
1439 IS_VFP_CLASS (FROM) && !IS_VFP_CLASS (TO) ? 15 : \
1440 !IS_VFP_CLASS (FROM) && IS_VFP_CLASS (TO) ? 15 : \
1441 (FROM) == IWMMXT_REGS && (TO) != IWMMXT_REGS ? 4 : \
1442 (FROM) != IWMMXT_REGS && (TO) == IWMMXT_REGS ? 4 : \
1443 (FROM) == IWMMXT_GR_REGS || (TO) == IWMMXT_GR_REGS ? 20 : \
1444 (FROM) == CIRRUS_REGS && (TO) != CIRRUS_REGS ? 20 : \
1445 (FROM) != CIRRUS_REGS && (TO) == CIRRUS_REGS ? 20 : \
1446 2) \
1447 : \
1448 ((FROM) == HI_REGS || (TO) == HI_REGS) ? 4 : 2)
1449 \f
1450 /* Stack layout; function entry, exit and calling. */
1451
1452 /* Define this if pushing a word on the stack
1453 makes the stack pointer a smaller address. */
1454 #define STACK_GROWS_DOWNWARD 1
1455
1456 /* Define this to nonzero if the nominal address of the stack frame
1457 is at the high-address end of the local variables;
1458 that is, each additional local variable allocated
1459 goes at a more negative offset in the frame. */
1460 #define FRAME_GROWS_DOWNWARD 1
1461
1462 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1463 When present, it is one word in size, and sits at the top of the frame,
1464 between the soft frame pointer and either r7 or r11.
1465
1466 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1467 and only then if some outgoing arguments are passed on the stack. It would
1468 be tempting to also check whether the stack arguments are passed by indirect
1469 calls, but there seems to be no reason in principle why a post-reload pass
1470 couldn't convert a direct call into an indirect one. */
1471 #define CALLER_INTERWORKING_SLOT_SIZE \
1472 (TARGET_CALLER_INTERWORKING \
1473 && crtl->outgoing_args_size != 0 \
1474 ? UNITS_PER_WORD : 0)
1475
1476 /* Offset within stack frame to start allocating local variables at.
1477 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1478 first local allocated. Otherwise, it is the offset to the BEGINNING
1479 of the first local allocated. */
1480 #define STARTING_FRAME_OFFSET 0
1481
1482 /* If we generate an insn to push BYTES bytes,
1483 this says how many the stack pointer really advances by. */
1484 /* The push insns do not do this rounding implicitly.
1485 So don't define this. */
1486 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1487
1488 /* Define this if the maximum size of all the outgoing args is to be
1489 accumulated and pushed during the prologue. The amount can be
1490 found in the variable crtl->outgoing_args_size. */
1491 #define ACCUMULATE_OUTGOING_ARGS 1
1492
1493 /* Offset of first parameter from the argument pointer register value. */
1494 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1495
1496 /* Value is the number of byte of arguments automatically
1497 popped when returning from a subroutine call.
1498 FUNDECL is the declaration node of the function (as a tree),
1499 FUNTYPE is the data type of the function (as a tree),
1500 or for a library call it is an identifier node for the subroutine name.
1501 SIZE is the number of bytes of arguments passed on the stack.
1502
1503 On the ARM, the caller does not pop any of its arguments that were passed
1504 on the stack. */
1505 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
1506
1507 /* Define how to find the value returned by a library function
1508 assuming the value has mode MODE. */
1509 #define LIBCALL_VALUE(MODE) \
1510 (TARGET_AAPCS_BASED ? aapcs_libcall_value (MODE) \
1511 : (TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_FPA \
1512 && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1513 ? gen_rtx_REG (MODE, FIRST_FPA_REGNUM) \
1514 : TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK \
1515 && GET_MODE_CLASS (MODE) == MODE_FLOAT \
1516 ? gen_rtx_REG (MODE, FIRST_CIRRUS_FP_REGNUM) \
1517 : TARGET_IWMMXT_ABI && arm_vector_mode_supported_p (MODE) \
1518 ? gen_rtx_REG (MODE, FIRST_IWMMXT_REGNUM) \
1519 : gen_rtx_REG (MODE, ARG_REGISTER (1)))
1520
1521 /* 1 if REGNO is a possible register number for a function value. */
1522 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1523 ((REGNO) == ARG_REGISTER (1) \
1524 || (TARGET_AAPCS_BASED && TARGET_32BIT \
1525 && TARGET_VFP && TARGET_HARD_FLOAT \
1526 && (REGNO) == FIRST_VFP_REGNUM) \
1527 || (TARGET_32BIT && ((REGNO) == FIRST_CIRRUS_FP_REGNUM) \
1528 && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK) \
1529 || ((REGNO) == FIRST_IWMMXT_REGNUM && TARGET_IWMMXT_ABI) \
1530 || (TARGET_32BIT && ((REGNO) == FIRST_FPA_REGNUM) \
1531 && TARGET_HARD_FLOAT_ABI && TARGET_FPA))
1532
1533 /* Amount of memory needed for an untyped call to save all possible return
1534 registers. */
1535 #define APPLY_RESULT_SIZE arm_apply_result_size()
1536
1537 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1538 values must be in memory. On the ARM, they need only do so if larger
1539 than a word, or if they contain elements offset from zero in the struct. */
1540 #define DEFAULT_PCC_STRUCT_RETURN 0
1541
1542 /* These bits describe the different types of function supported
1543 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1544 normal function and an interworked function, for example. Knowing the
1545 type of a function is important for determining its prologue and
1546 epilogue sequences.
1547 Note value 7 is currently unassigned. Also note that the interrupt
1548 function types all have bit 2 set, so that they can be tested for easily.
1549 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1550 machine_function structure is initialized (to zero) func_type will
1551 default to unknown. This will force the first use of arm_current_func_type
1552 to call arm_compute_func_type. */
1553 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1554 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1555 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1556 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1557 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1558 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1559
1560 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1561
1562 /* In addition functions can have several type modifiers,
1563 outlined by these bit masks: */
1564 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1565 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1566 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1567 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1568 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1569
1570 /* Some macros to test these flags. */
1571 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1572 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1573 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1574 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1575 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1576 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1577
1578
1579 /* Structure used to hold the function stack frame layout. Offsets are
1580 relative to the stack pointer on function entry. Positive offsets are
1581 in the direction of stack growth.
1582 Only soft_frame is used in thumb mode. */
1583
1584 typedef struct GTY(()) arm_stack_offsets
1585 {
1586 int saved_args; /* ARG_POINTER_REGNUM. */
1587 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1588 int saved_regs;
1589 int soft_frame; /* FRAME_POINTER_REGNUM. */
1590 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1591 int outgoing_args; /* STACK_POINTER_REGNUM. */
1592 unsigned int saved_regs_mask;
1593 }
1594 arm_stack_offsets;
1595
1596 /* A C structure for machine-specific, per-function data.
1597 This is added to the cfun structure. */
1598 typedef struct GTY(()) machine_function
1599 {
1600 /* Additional stack adjustment in __builtin_eh_throw. */
1601 rtx eh_epilogue_sp_ofs;
1602 /* Records if LR has to be saved for far jumps. */
1603 int far_jump_used;
1604 /* Records if ARG_POINTER was ever live. */
1605 int arg_pointer_live;
1606 /* Records if the save of LR has been eliminated. */
1607 int lr_save_eliminated;
1608 /* The size of the stack frame. Only valid after reload. */
1609 arm_stack_offsets stack_offsets;
1610 /* Records the type of the current function. */
1611 unsigned long func_type;
1612 /* Record if the function has a variable argument list. */
1613 int uses_anonymous_args;
1614 /* Records if sibcalls are blocked because an argument
1615 register is needed to preserve stack alignment. */
1616 int sibcall_blocked;
1617 /* The PIC register for this function. This might be a pseudo. */
1618 rtx pic_reg;
1619 /* Labels for per-function Thumb call-via stubs. One per potential calling
1620 register. We can never call via LR or PC. We can call via SP if a
1621 trampoline happens to be on the top of the stack. */
1622 rtx call_via[14];
1623 /* Set to 1 when a return insn is output, this means that the epilogue
1624 is not needed. */
1625 int return_used_this_function;
1626 }
1627 machine_function;
1628
1629 /* As in the machine_function, a global set of call-via labels, for code
1630 that is in text_section. */
1631 extern GTY(()) rtx thumb_call_via_label[14];
1632
1633 /* The number of potential ways of assigning to a co-processor. */
1634 #define ARM_NUM_COPROC_SLOTS 1
1635
1636 /* Enumeration of procedure calling standard variants. We don't really
1637 support all of these yet. */
1638 enum arm_pcs
1639 {
1640 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1641 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1642 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1643 /* This must be the last AAPCS variant. */
1644 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1645 ARM_PCS_ATPCS, /* ATPCS. */
1646 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1647 ARM_PCS_UNKNOWN
1648 };
1649
1650 /* A C type for declaring a variable that is used as the first argument of
1651 `FUNCTION_ARG' and other related values. */
1652 typedef struct
1653 {
1654 /* This is the number of registers of arguments scanned so far. */
1655 int nregs;
1656 /* This is the number of iWMMXt register arguments scanned so far. */
1657 int iwmmxt_nregs;
1658 int named_count;
1659 int nargs;
1660 /* Which procedure call variant to use for this call. */
1661 enum arm_pcs pcs_variant;
1662
1663 /* AAPCS related state tracking. */
1664 int aapcs_arg_processed; /* No need to lay out this argument again. */
1665 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1666 this argument, or -1 if using core
1667 registers. */
1668 int aapcs_ncrn;
1669 int aapcs_next_ncrn;
1670 rtx aapcs_reg; /* Register assigned to this argument. */
1671 int aapcs_partial; /* How many bytes are passed in regs (if
1672 split between core regs and stack.
1673 Zero otherwise. */
1674 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1675 int can_split; /* Argument can be split between core regs
1676 and the stack. */
1677 /* Private data for tracking VFP register allocation */
1678 unsigned aapcs_vfp_regs_free;
1679 unsigned aapcs_vfp_reg_alloc;
1680 int aapcs_vfp_rcount;
1681 MACHMODE aapcs_vfp_rmode;
1682 } CUMULATIVE_ARGS;
1683
1684 /* Define where to put the arguments to a function.
1685 Value is zero to push the argument on the stack,
1686 or a hard register in which to store the argument.
1687
1688 MODE is the argument's machine mode.
1689 TYPE is the data type of the argument (as a tree).
1690 This is null for libcalls where that information may
1691 not be available.
1692 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1693 the preceding args and about the function being called.
1694 NAMED is nonzero if this argument is a named parameter
1695 (otherwise it is an extra parameter matching an ellipsis).
1696
1697 On the ARM, normally the first 16 bytes are passed in registers r0-r3; all
1698 other arguments are passed on the stack. If (NAMED == 0) (which happens
1699 only in assign_parms, since TARGET_SETUP_INCOMING_VARARGS is
1700 defined), say it is passed in the stack (function_prologue will
1701 indeed make it pass in the stack if necessary). */
1702 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1703 arm_function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1704
1705 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1706 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1707
1708 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1709 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1710
1711 /* For AAPCS, padding should never be below the argument. For other ABIs,
1712 * mimic the default. */
1713 #define PAD_VARARGS_DOWN \
1714 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1715
1716 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1717 for a call to a function whose data type is FNTYPE.
1718 For a library call, FNTYPE is 0.
1719 On the ARM, the offset starts at 0. */
1720 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1721 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1722
1723 /* Update the data in CUM to advance over an argument
1724 of mode MODE and data type TYPE.
1725 (TYPE is null for libcalls where that information may not be available.) */
1726 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1727 arm_function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1728
1729 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1730 argument with the specified mode and type. If it is not defined,
1731 `PARM_BOUNDARY' is used for all arguments. */
1732 #define FUNCTION_ARG_BOUNDARY(MODE,TYPE) \
1733 ((ARM_DOUBLEWORD_ALIGN && arm_needs_doubleword_align (MODE, TYPE)) \
1734 ? DOUBLEWORD_ALIGNMENT \
1735 : PARM_BOUNDARY )
1736
1737 /* 1 if N is a possible register number for function argument passing.
1738 On the ARM, r0-r3 are used to pass args. */
1739 #define FUNCTION_ARG_REGNO_P(REGNO) \
1740 (IN_RANGE ((REGNO), 0, 3) \
1741 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \
1742 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1743 || (TARGET_IWMMXT_ABI \
1744 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1745
1746 \f
1747 /* If your target environment doesn't prefix user functions with an
1748 underscore, you may wish to re-define this to prevent any conflicts. */
1749 #ifndef ARM_MCOUNT_NAME
1750 #define ARM_MCOUNT_NAME "*mcount"
1751 #endif
1752
1753 /* Call the function profiler with a given profile label. The Acorn
1754 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1755 On the ARM the full profile code will look like:
1756 .data
1757 LP1
1758 .word 0
1759 .text
1760 mov ip, lr
1761 bl mcount
1762 .word LP1
1763
1764 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1765 will output the .text section.
1766
1767 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1768 ``prof'' doesn't seem to mind about this!
1769
1770 Note - this version of the code is designed to work in both ARM and
1771 Thumb modes. */
1772 #ifndef ARM_FUNCTION_PROFILER
1773 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1774 { \
1775 char temp[20]; \
1776 rtx sym; \
1777 \
1778 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1779 IP_REGNUM, LR_REGNUM); \
1780 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1781 fputc ('\n', STREAM); \
1782 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1783 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1784 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1785 }
1786 #endif
1787
1788 #ifdef THUMB_FUNCTION_PROFILER
1789 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1790 if (TARGET_ARM) \
1791 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1792 else \
1793 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1794 #else
1795 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1796 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1797 #endif
1798
1799 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1800 the stack pointer does not matter. The value is tested only in
1801 functions that have frame pointers.
1802 No definition is equivalent to always zero.
1803
1804 On the ARM, the function epilogue recovers the stack pointer from the
1805 frame. */
1806 #define EXIT_IGNORE_STACK 1
1807
1808 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNUM)
1809
1810 /* Determine if the epilogue should be output as RTL.
1811 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1812 /* This is disabled for Thumb-2 because it will confuse the
1813 conditional insn counter. */
1814 #define USE_RETURN_INSN(ISCOND) \
1815 (TARGET_ARM ? use_return_insn (ISCOND, NULL) : 0)
1816
1817 /* Definitions for register eliminations.
1818
1819 This is an array of structures. Each structure initializes one pair
1820 of eliminable registers. The "from" register number is given first,
1821 followed by "to". Eliminations of the same "from" register are listed
1822 in order of preference.
1823
1824 We have two registers that can be eliminated on the ARM. First, the
1825 arg pointer register can often be eliminated in favor of the stack
1826 pointer register. Secondly, the pseudo frame pointer register can always
1827 be eliminated; it is replaced with either the stack or the real frame
1828 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1829 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1830
1831 #define ELIMINABLE_REGS \
1832 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1833 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1834 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1835 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1836 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1837 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1838 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1839
1840 /* Define the offset between two registers, one to be eliminated, and the
1841 other its replacement, at the start of a routine. */
1842 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1843 if (TARGET_ARM) \
1844 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1845 else \
1846 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1847
1848 /* Special case handling of the location of arguments passed on the stack. */
1849 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1850
1851 /* Initialize data used by insn expanders. This is called from insn_emit,
1852 once for every function before code is generated. */
1853 #define INIT_EXPANDERS arm_init_expanders ()
1854
1855 /* Length in units of the trampoline for entering a nested function. */
1856 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1857
1858 /* Alignment required for a trampoline in bits. */
1859 #define TRAMPOLINE_ALIGNMENT 32
1860 \f
1861 /* Addressing modes, and classification of registers for them. */
1862 #define HAVE_POST_INCREMENT 1
1863 #define HAVE_PRE_INCREMENT TARGET_32BIT
1864 #define HAVE_POST_DECREMENT TARGET_32BIT
1865 #define HAVE_PRE_DECREMENT TARGET_32BIT
1866 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1867 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1868 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1869 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1870
1871 /* Macros to check register numbers against specific register classes. */
1872
1873 /* These assume that REGNO is a hard or pseudo reg number.
1874 They give nonzero only if REGNO is a hard reg of the suitable class
1875 or a pseudo reg currently allocated to a suitable hard reg.
1876 Since they use reg_renumber, they are safe only once reg_renumber
1877 has been allocated, which happens in local-alloc.c. */
1878 #define TEST_REGNO(R, TEST, VALUE) \
1879 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1880
1881 /* Don't allow the pc to be used. */
1882 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1883 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1884 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1885 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1886
1887 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1888 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1889 || (GET_MODE_SIZE (MODE) >= 4 \
1890 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1891
1892 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1893 (TARGET_THUMB1 \
1894 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1895 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1896
1897 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1898 For Thumb, we can not use SP + reg, so reject SP. */
1899 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1900 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1901
1902 /* For ARM code, we don't care about the mode, but for Thumb, the index
1903 must be suitable for use in a QImode load. */
1904 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1905 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1906 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1907
1908 /* Maximum number of registers that can appear in a valid memory address.
1909 Shifts in addresses can't be by a register. */
1910 #define MAX_REGS_PER_ADDRESS 2
1911
1912 /* Recognize any constant value that is a valid address. */
1913 /* XXX We can address any constant, eventually... */
1914 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1915 #define CONSTANT_ADDRESS_P(X) \
1916 (GET_CODE (X) == SYMBOL_REF \
1917 && (CONSTANT_POOL_ADDRESS_P (X) \
1918 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1919
1920 /* True if SYMBOL + OFFSET constants must refer to something within
1921 SYMBOL's section. */
1922 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1923
1924 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1925 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1926 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1927 #endif
1928
1929 /* Nonzero if the constant value X is a legitimate general operand.
1930 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1931
1932 On the ARM, allow any integer (invalid ones are removed later by insn
1933 patterns), nice doubles and symbol_refs which refer to the function's
1934 constant pool XXX.
1935
1936 When generating pic allow anything. */
1937 #define ARM_LEGITIMATE_CONSTANT_P(X) (flag_pic || ! label_mentioned_p (X))
1938
1939 #define THUMB_LEGITIMATE_CONSTANT_P(X) \
1940 ( GET_CODE (X) == CONST_INT \
1941 || GET_CODE (X) == CONST_DOUBLE \
1942 || CONSTANT_ADDRESS_P (X) \
1943 || flag_pic)
1944
1945 #define LEGITIMATE_CONSTANT_P(X) \
1946 (!arm_cannot_force_const_mem (X) \
1947 && (TARGET_32BIT ? ARM_LEGITIMATE_CONSTANT_P (X) \
1948 : THUMB_LEGITIMATE_CONSTANT_P (X)))
1949
1950 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1951 #define SUBTARGET_NAME_ENCODING_LENGTHS
1952 #endif
1953
1954 /* This is a C fragment for the inside of a switch statement.
1955 Each case label should return the number of characters to
1956 be stripped from the start of a function's name, if that
1957 name starts with the indicated character. */
1958 #define ARM_NAME_ENCODING_LENGTHS \
1959 case '*': return 1; \
1960 SUBTARGET_NAME_ENCODING_LENGTHS
1961
1962 /* This is how to output a reference to a user-level label named NAME.
1963 `assemble_name' uses this. */
1964 #undef ASM_OUTPUT_LABELREF
1965 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1966 arm_asm_output_labelref (FILE, NAME)
1967
1968 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1969 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1970 if (TARGET_THUMB2) \
1971 thumb2_asm_output_opcode (STREAM);
1972
1973 /* The EABI specifies that constructors should go in .init_array.
1974 Other targets use .ctors for compatibility. */
1975 #ifndef ARM_EABI_CTORS_SECTION_OP
1976 #define ARM_EABI_CTORS_SECTION_OP \
1977 "\t.section\t.init_array,\"aw\",%init_array"
1978 #endif
1979 #ifndef ARM_EABI_DTORS_SECTION_OP
1980 #define ARM_EABI_DTORS_SECTION_OP \
1981 "\t.section\t.fini_array,\"aw\",%fini_array"
1982 #endif
1983 #define ARM_CTORS_SECTION_OP \
1984 "\t.section\t.ctors,\"aw\",%progbits"
1985 #define ARM_DTORS_SECTION_OP \
1986 "\t.section\t.dtors,\"aw\",%progbits"
1987
1988 /* Define CTORS_SECTION_ASM_OP. */
1989 #undef CTORS_SECTION_ASM_OP
1990 #undef DTORS_SECTION_ASM_OP
1991 #ifndef IN_LIBGCC2
1992 # define CTORS_SECTION_ASM_OP \
1993 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1994 # define DTORS_SECTION_ASM_OP \
1995 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1996 #else /* !defined (IN_LIBGCC2) */
1997 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1998 so we cannot use the definition above. */
1999 # ifdef __ARM_EABI__
2000 /* The .ctors section is not part of the EABI, so we do not define
2001 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
2002 from trying to use it. We do define it when doing normal
2003 compilation, as .init_array can be used instead of .ctors. */
2004 /* There is no need to emit begin or end markers when using
2005 init_array; the dynamic linker will compute the size of the
2006 array itself based on special symbols created by the static
2007 linker. However, we do need to arrange to set up
2008 exception-handling here. */
2009 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
2010 # define CTOR_LIST_END /* empty */
2011 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
2012 # define DTOR_LIST_END /* empty */
2013 # else /* !defined (__ARM_EABI__) */
2014 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
2015 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
2016 # endif /* !defined (__ARM_EABI__) */
2017 #endif /* !defined (IN_LIBCC2) */
2018
2019 /* True if the operating system can merge entities with vague linkage
2020 (e.g., symbols in COMDAT group) during dynamic linking. */
2021 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
2022 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
2023 #endif
2024
2025 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
2026
2027 #ifdef TARGET_UNWIND_INFO
2028 #define ARM_EABI_UNWIND_TABLES \
2029 ((!USING_SJLJ_EXCEPTIONS && flag_exceptions) || flag_unwind_tables)
2030 #else
2031 #define ARM_EABI_UNWIND_TABLES 0
2032 #endif
2033
2034 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2035 and check its validity for a certain class.
2036 We have two alternate definitions for each of them.
2037 The usual definition accepts all pseudo regs; the other rejects
2038 them unless they have been allocated suitable hard regs.
2039 The symbol REG_OK_STRICT causes the latter definition to be used.
2040 Thumb-2 has the same restrictions as arm. */
2041 #ifndef REG_OK_STRICT
2042
2043 #define ARM_REG_OK_FOR_BASE_P(X) \
2044 (REGNO (X) <= LAST_ARM_REGNUM \
2045 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
2046 || REGNO (X) == FRAME_POINTER_REGNUM \
2047 || REGNO (X) == ARG_POINTER_REGNUM)
2048
2049 #define ARM_REG_OK_FOR_INDEX_P(X) \
2050 ((REGNO (X) <= LAST_ARM_REGNUM \
2051 && REGNO (X) != STACK_POINTER_REGNUM) \
2052 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
2053 || REGNO (X) == FRAME_POINTER_REGNUM \
2054 || REGNO (X) == ARG_POINTER_REGNUM)
2055
2056 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
2057 (REGNO (X) <= LAST_LO_REGNUM \
2058 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
2059 || (GET_MODE_SIZE (MODE) >= 4 \
2060 && (REGNO (X) == STACK_POINTER_REGNUM \
2061 || (X) == hard_frame_pointer_rtx \
2062 || (X) == arg_pointer_rtx)))
2063
2064 #define REG_STRICT_P 0
2065
2066 #else /* REG_OK_STRICT */
2067
2068 #define ARM_REG_OK_FOR_BASE_P(X) \
2069 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
2070
2071 #define ARM_REG_OK_FOR_INDEX_P(X) \
2072 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
2073
2074 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
2075 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
2076
2077 #define REG_STRICT_P 1
2078
2079 #endif /* REG_OK_STRICT */
2080
2081 /* Now define some helpers in terms of the above. */
2082
2083 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2084 (TARGET_THUMB1 \
2085 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
2086 : ARM_REG_OK_FOR_BASE_P (X))
2087
2088 /* For 16-bit Thumb, a valid index register is anything that can be used in
2089 a byte load instruction. */
2090 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
2091 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
2092
2093 /* Nonzero if X is a hard reg that can be used as an index
2094 or if it is a pseudo reg. On the Thumb, the stack pointer
2095 is not suitable. */
2096 #define REG_OK_FOR_INDEX_P(X) \
2097 (TARGET_THUMB1 \
2098 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
2099 : ARM_REG_OK_FOR_INDEX_P (X))
2100
2101 /* Nonzero if X can be the base register in a reg+reg addressing mode.
2102 For Thumb, we can not use SP + reg, so reject SP. */
2103 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
2104 REG_OK_FOR_INDEX_P (X)
2105 \f
2106 #define ARM_BASE_REGISTER_RTX_P(X) \
2107 (GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X))
2108
2109 #define ARM_INDEX_REGISTER_RTX_P(X) \
2110 (GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X))
2111 \f
2112 /* Define this for compatibility reasons. */
2113 #define HANDLE_PRAGMA_PACK_PUSH_POP
2114
2115 /* Specify the machine mode that this machine uses
2116 for the index in the tablejump instruction. */
2117 #define CASE_VECTOR_MODE Pmode
2118
2119 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
2120 || (TARGET_THUMB1 \
2121 && (optimize_size || flag_pic)))
2122
2123 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
2124 (TARGET_THUMB1 \
2125 ? (min >= 0 && max < 512 \
2126 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
2127 : min >= -256 && max < 256 \
2128 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
2129 : min >= 0 && max < 8192 \
2130 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
2131 : min >= -4096 && max < 4096 \
2132 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
2133 : SImode) \
2134 : ((min < 0 || max >= 0x2000 || !TARGET_THUMB2) ? SImode \
2135 : (max >= 0x200) ? HImode \
2136 : QImode))
2137
2138 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
2139 unsigned is probably best, but may break some code. */
2140 #ifndef DEFAULT_SIGNED_CHAR
2141 #define DEFAULT_SIGNED_CHAR 0
2142 #endif
2143
2144 /* Max number of bytes we can move from memory to memory
2145 in one reasonably fast instruction. */
2146 #define MOVE_MAX 4
2147
2148 #undef MOVE_RATIO
2149 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
2150
2151 /* Define if operations between registers always perform the operation
2152 on the full register even if a narrower mode is specified. */
2153 #define WORD_REGISTER_OPERATIONS
2154
2155 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2156 will either zero-extend or sign-extend. The value of this macro should
2157 be the code that says which one of the two operations is implicitly
2158 done, UNKNOWN if none. */
2159 #define LOAD_EXTEND_OP(MODE) \
2160 (TARGET_THUMB ? ZERO_EXTEND : \
2161 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
2162 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
2163
2164 /* Nonzero if access to memory by bytes is slow and undesirable. */
2165 #define SLOW_BYTE_ACCESS 0
2166
2167 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
2168
2169 /* Immediate shift counts are truncated by the output routines (or was it
2170 the assembler?). Shift counts in a register are truncated by ARM. Note
2171 that the native compiler puts too large (> 32) immediate shift counts
2172 into a register and shifts by the register, letting the ARM decide what
2173 to do instead of doing that itself. */
2174 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
2175 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2176 On the arm, Y in a register is used modulo 256 for the shift. Only for
2177 rotates is modulo 32 used. */
2178 /* #define SHIFT_COUNT_TRUNCATED 1 */
2179
2180 /* All integers have the same format so truncation is easy. */
2181 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2182
2183 /* Calling from registers is a massive pain. */
2184 #define NO_FUNCTION_CSE 1
2185
2186 /* The machine modes of pointers and functions */
2187 #define Pmode SImode
2188 #define FUNCTION_MODE Pmode
2189
2190 #define ARM_FRAME_RTX(X) \
2191 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
2192 || (X) == arg_pointer_rtx)
2193
2194 /* Moves to and from memory are quite expensive */
2195 #define MEMORY_MOVE_COST(M, CLASS, IN) \
2196 (TARGET_32BIT ? 10 : \
2197 ((GET_MODE_SIZE (M) < 4 ? 8 : 2 * GET_MODE_SIZE (M)) \
2198 * (CLASS == LO_REGS ? 1 : 2)))
2199
2200 /* Try to generate sequences that don't involve branches, we can then use
2201 conditional instructions */
2202 #define BRANCH_COST(speed_p, predictable_p) \
2203 (TARGET_32BIT ? 4 : (optimize > 0 ? 2 : 0))
2204 \f
2205 /* Position Independent Code. */
2206 /* We decide which register to use based on the compilation options and
2207 the assembler in use; this is more general than the APCS restriction of
2208 using sb (r9) all the time. */
2209 extern unsigned arm_pic_register;
2210
2211 /* The register number of the register used to address a table of static
2212 data addresses in memory. */
2213 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2214
2215 /* We can't directly access anything that contains a symbol,
2216 nor can we indirect via the constant pool. One exception is
2217 UNSPEC_TLS, which is always PIC. */
2218 #define LEGITIMATE_PIC_OPERAND_P(X) \
2219 (!(symbol_mentioned_p (X) \
2220 || label_mentioned_p (X) \
2221 || (GET_CODE (X) == SYMBOL_REF \
2222 && CONSTANT_POOL_ADDRESS_P (X) \
2223 && (symbol_mentioned_p (get_pool_constant (X)) \
2224 || label_mentioned_p (get_pool_constant (X))))) \
2225 || tls_mentioned_p (X))
2226
2227 /* We need to know when we are making a constant pool; this determines
2228 whether data needs to be in the GOT or can be referenced via a GOT
2229 offset. */
2230 extern int making_const_table;
2231 \f
2232 /* Handle pragmas for compatibility with Intel's compilers. */
2233 /* Also abuse this to register additional C specific EABI attributes. */
2234 #define REGISTER_TARGET_PRAGMAS() do { \
2235 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
2236 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
2237 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
2238 arm_lang_object_attributes_init(); \
2239 } while (0)
2240
2241 /* Condition code information. */
2242 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2243 return the mode to be used for the comparison. */
2244
2245 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2246
2247 #define REVERSIBLE_CC_MODE(MODE) 1
2248
2249 #define REVERSE_CONDITION(CODE,MODE) \
2250 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2251 ? reverse_condition_maybe_unordered (code) \
2252 : reverse_condition (code))
2253
2254 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
2255 do \
2256 { \
2257 if (GET_CODE (OP1) == CONST_INT \
2258 && ! (const_ok_for_arm (INTVAL (OP1)) \
2259 || (const_ok_for_arm (- INTVAL (OP1))))) \
2260 { \
2261 rtx const_op = OP1; \
2262 CODE = arm_canonicalize_comparison ((CODE), GET_MODE (OP0), \
2263 &const_op); \
2264 OP1 = const_op; \
2265 } \
2266 } \
2267 while (0)
2268
2269 /* The arm5 clz instruction returns 32. */
2270 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2271 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2272 \f
2273 #undef ASM_APP_OFF
2274 #define ASM_APP_OFF (TARGET_THUMB1 ? "\t.code\t16\n" : \
2275 TARGET_THUMB2 ? "\t.thumb\n" : "")
2276
2277 /* Output a push or a pop instruction (only used when profiling).
2278 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2279 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2280 that r7 isn't used by the function profiler, so we can use it as a
2281 scratch reg. WARNING: This isn't safe in the general case! It may be
2282 sensitive to future changes in final.c:profile_function. */
2283 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2284 do \
2285 { \
2286 if (TARGET_ARM) \
2287 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
2288 STACK_POINTER_REGNUM, REGNO); \
2289 else if (TARGET_THUMB1 \
2290 && (REGNO) == STATIC_CHAIN_REGNUM) \
2291 { \
2292 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2293 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2294 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2295 } \
2296 else \
2297 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2298 } while (0)
2299
2300
2301 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2302 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2303 do \
2304 { \
2305 if (TARGET_ARM) \
2306 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
2307 STACK_POINTER_REGNUM, REGNO); \
2308 else if (TARGET_THUMB1 \
2309 && (REGNO) == STATIC_CHAIN_REGNUM) \
2310 { \
2311 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2312 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2313 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2314 } \
2315 else \
2316 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2317 } while (0)
2318
2319 /* Jump table alignment is explicit in ASM_OUTPUT_CASE_LABEL. */
2320 #define ADDR_VEC_ALIGN(JUMPTABLE) 0
2321
2322 /* This is how to output a label which precedes a jumptable. Since
2323 Thumb instructions are 2 bytes, we may need explicit alignment here. */
2324 #undef ASM_OUTPUT_CASE_LABEL
2325 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \
2326 do \
2327 { \
2328 if (TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) \
2329 ASM_OUTPUT_ALIGN (FILE, 2); \
2330 (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); \
2331 } \
2332 while (0)
2333
2334 /* Make sure subsequent insns are aligned after a TBB. */
2335 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE) \
2336 do \
2337 { \
2338 if (GET_MODE (PATTERN (JUMPTABLE)) == QImode) \
2339 ASM_OUTPUT_ALIGN (FILE, 1); \
2340 } \
2341 while (0)
2342
2343 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2344 do \
2345 { \
2346 if (TARGET_THUMB) \
2347 { \
2348 if (is_called_in_ARM_mode (DECL) \
2349 || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY \
2350 && cfun->is_thunk)) \
2351 fprintf (STREAM, "\t.code 32\n") ; \
2352 else if (TARGET_THUMB1) \
2353 fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ; \
2354 else \
2355 fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ; \
2356 } \
2357 if (TARGET_POKE_FUNCTION_NAME) \
2358 arm_poke_function_name (STREAM, (const char *) NAME); \
2359 } \
2360 while (0)
2361
2362 /* For aliases of functions we use .thumb_set instead. */
2363 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2364 do \
2365 { \
2366 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2367 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2368 \
2369 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2370 { \
2371 fprintf (FILE, "\t.thumb_set "); \
2372 assemble_name (FILE, LABEL1); \
2373 fprintf (FILE, ","); \
2374 assemble_name (FILE, LABEL2); \
2375 fprintf (FILE, "\n"); \
2376 } \
2377 else \
2378 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2379 } \
2380 while (0)
2381
2382 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2383 /* To support -falign-* switches we need to use .p2align so
2384 that alignment directives in code sections will be padded
2385 with no-op instructions, rather than zeroes. */
2386 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2387 if ((LOG) != 0) \
2388 { \
2389 if ((MAX_SKIP) == 0) \
2390 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2391 else \
2392 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2393 (int) (LOG), (int) (MAX_SKIP)); \
2394 }
2395 #endif
2396 \f
2397 /* Add two bytes to the length of conditionally executed Thumb-2
2398 instructions for the IT instruction. */
2399 #define ADJUST_INSN_LENGTH(insn, length) \
2400 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2401 length += 2;
2402
2403 /* Only perform branch elimination (by making instructions conditional) if
2404 we're optimizing. For Thumb-2 check if any IT instructions need
2405 outputting. */
2406 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2407 if (TARGET_ARM && optimize) \
2408 arm_final_prescan_insn (INSN); \
2409 else if (TARGET_THUMB2) \
2410 thumb2_final_prescan_insn (INSN); \
2411 else if (TARGET_THUMB1) \
2412 thumb1_final_prescan_insn (INSN)
2413
2414 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2415 (CODE == '@' || CODE == '|' || CODE == '.' \
2416 || CODE == '(' || CODE == ')' || CODE == '#' \
2417 || (TARGET_32BIT && (CODE == '?')) \
2418 || (TARGET_THUMB2 && (CODE == '!')) \
2419 || (TARGET_THUMB && (CODE == '_')))
2420
2421 /* Output an operand of an instruction. */
2422 #define PRINT_OPERAND(STREAM, X, CODE) \
2423 arm_print_operand (STREAM, X, CODE)
2424
2425 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2426 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2427 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2428 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2429 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2430 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2431 : 0))))
2432
2433 /* Output the address of an operand. */
2434 #define ARM_PRINT_OPERAND_ADDRESS(STREAM, X) \
2435 { \
2436 int is_minus = GET_CODE (X) == MINUS; \
2437 \
2438 if (GET_CODE (X) == REG) \
2439 asm_fprintf (STREAM, "[%r, #0]", REGNO (X)); \
2440 else if (GET_CODE (X) == PLUS || is_minus) \
2441 { \
2442 rtx base = XEXP (X, 0); \
2443 rtx index = XEXP (X, 1); \
2444 HOST_WIDE_INT offset = 0; \
2445 if (GET_CODE (base) != REG \
2446 || (GET_CODE (index) == REG && REGNO (index) == SP_REGNUM)) \
2447 { \
2448 /* Ensure that BASE is a register. */ \
2449 /* (one of them must be). */ \
2450 /* Also ensure the SP is not used as in index register. */ \
2451 rtx temp = base; \
2452 base = index; \
2453 index = temp; \
2454 } \
2455 switch (GET_CODE (index)) \
2456 { \
2457 case CONST_INT: \
2458 offset = INTVAL (index); \
2459 if (is_minus) \
2460 offset = -offset; \
2461 asm_fprintf (STREAM, "[%r, #%wd]", \
2462 REGNO (base), offset); \
2463 break; \
2464 \
2465 case REG: \
2466 asm_fprintf (STREAM, "[%r, %s%r]", \
2467 REGNO (base), is_minus ? "-" : "", \
2468 REGNO (index)); \
2469 break; \
2470 \
2471 case MULT: \
2472 case ASHIFTRT: \
2473 case LSHIFTRT: \
2474 case ASHIFT: \
2475 case ROTATERT: \
2476 { \
2477 asm_fprintf (STREAM, "[%r, %s%r", \
2478 REGNO (base), is_minus ? "-" : "", \
2479 REGNO (XEXP (index, 0))); \
2480 arm_print_operand (STREAM, index, 'S'); \
2481 fputs ("]", STREAM); \
2482 break; \
2483 } \
2484 \
2485 default: \
2486 gcc_unreachable (); \
2487 } \
2488 } \
2489 else if (GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC \
2490 || GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC) \
2491 { \
2492 extern enum machine_mode output_memory_reference_mode; \
2493 \
2494 gcc_assert (GET_CODE (XEXP (X, 0)) == REG); \
2495 \
2496 if (GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC) \
2497 asm_fprintf (STREAM, "[%r, #%s%d]!", \
2498 REGNO (XEXP (X, 0)), \
2499 GET_CODE (X) == PRE_DEC ? "-" : "", \
2500 GET_MODE_SIZE (output_memory_reference_mode)); \
2501 else \
2502 asm_fprintf (STREAM, "[%r], #%s%d", \
2503 REGNO (XEXP (X, 0)), \
2504 GET_CODE (X) == POST_DEC ? "-" : "", \
2505 GET_MODE_SIZE (output_memory_reference_mode)); \
2506 } \
2507 else if (GET_CODE (X) == PRE_MODIFY) \
2508 { \
2509 asm_fprintf (STREAM, "[%r, ", REGNO (XEXP (X, 0))); \
2510 if (GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT) \
2511 asm_fprintf (STREAM, "#%wd]!", \
2512 INTVAL (XEXP (XEXP (X, 1), 1))); \
2513 else \
2514 asm_fprintf (STREAM, "%r]!", \
2515 REGNO (XEXP (XEXP (X, 1), 1))); \
2516 } \
2517 else if (GET_CODE (X) == POST_MODIFY) \
2518 { \
2519 asm_fprintf (STREAM, "[%r], ", REGNO (XEXP (X, 0))); \
2520 if (GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT) \
2521 asm_fprintf (STREAM, "#%wd", \
2522 INTVAL (XEXP (XEXP (X, 1), 1))); \
2523 else \
2524 asm_fprintf (STREAM, "%r", \
2525 REGNO (XEXP (XEXP (X, 1), 1))); \
2526 } \
2527 else output_addr_const (STREAM, X); \
2528 }
2529
2530 #define THUMB_PRINT_OPERAND_ADDRESS(STREAM, X) \
2531 { \
2532 if (GET_CODE (X) == REG) \
2533 asm_fprintf (STREAM, "[%r]", REGNO (X)); \
2534 else if (GET_CODE (X) == POST_INC) \
2535 asm_fprintf (STREAM, "%r!", REGNO (XEXP (X, 0))); \
2536 else if (GET_CODE (X) == PLUS) \
2537 { \
2538 gcc_assert (GET_CODE (XEXP (X, 0)) == REG); \
2539 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2540 asm_fprintf (STREAM, "[%r, #%wd]", \
2541 REGNO (XEXP (X, 0)), \
2542 INTVAL (XEXP (X, 1))); \
2543 else \
2544 asm_fprintf (STREAM, "[%r, %r]", \
2545 REGNO (XEXP (X, 0)), \
2546 REGNO (XEXP (X, 1))); \
2547 } \
2548 else \
2549 output_addr_const (STREAM, X); \
2550 }
2551
2552 #define PRINT_OPERAND_ADDRESS(STREAM, X) \
2553 if (TARGET_32BIT) \
2554 ARM_PRINT_OPERAND_ADDRESS (STREAM, X) \
2555 else \
2556 THUMB_PRINT_OPERAND_ADDRESS (STREAM, X)
2557
2558 #define OUTPUT_ADDR_CONST_EXTRA(file, x, fail) \
2559 if (arm_output_addr_const_extra (file, x) == FALSE) \
2560 goto fail
2561
2562 /* A C expression whose value is RTL representing the value of the return
2563 address for the frame COUNT steps up from the current frame. */
2564
2565 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2566 arm_return_addr (COUNT, FRAME)
2567
2568 /* Mask of the bits in the PC that contain the real return address
2569 when running in 26-bit mode. */
2570 #define RETURN_ADDR_MASK26 (0x03fffffc)
2571
2572 /* Pick up the return address upon entry to a procedure. Used for
2573 dwarf2 unwind information. This also enables the table driven
2574 mechanism. */
2575 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2576 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2577
2578 /* Used to mask out junk bits from the return address, such as
2579 processor state, interrupt status, condition codes and the like. */
2580 #define MASK_RETURN_ADDR \
2581 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2582 in 26 bit mode, the condition codes must be masked out of the \
2583 return address. This does not apply to ARM6 and later processors \
2584 when running in 32 bit mode. */ \
2585 ((arm_arch4 || TARGET_THUMB) \
2586 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2587 : arm_gen_return_addr_mask ())
2588
2589 \f
2590 /* Neon defines builtins from ARM_BUILTIN_MAX upwards, though they don't have
2591 symbolic names defined here (which would require too much duplication).
2592 FIXME? */
2593 enum arm_builtins
2594 {
2595 ARM_BUILTIN_GETWCX,
2596 ARM_BUILTIN_SETWCX,
2597
2598 ARM_BUILTIN_WZERO,
2599
2600 ARM_BUILTIN_WAVG2BR,
2601 ARM_BUILTIN_WAVG2HR,
2602 ARM_BUILTIN_WAVG2B,
2603 ARM_BUILTIN_WAVG2H,
2604
2605 ARM_BUILTIN_WACCB,
2606 ARM_BUILTIN_WACCH,
2607 ARM_BUILTIN_WACCW,
2608
2609 ARM_BUILTIN_WMACS,
2610 ARM_BUILTIN_WMACSZ,
2611 ARM_BUILTIN_WMACU,
2612 ARM_BUILTIN_WMACUZ,
2613
2614 ARM_BUILTIN_WSADB,
2615 ARM_BUILTIN_WSADBZ,
2616 ARM_BUILTIN_WSADH,
2617 ARM_BUILTIN_WSADHZ,
2618
2619 ARM_BUILTIN_WALIGN,
2620
2621 ARM_BUILTIN_TMIA,
2622 ARM_BUILTIN_TMIAPH,
2623 ARM_BUILTIN_TMIABB,
2624 ARM_BUILTIN_TMIABT,
2625 ARM_BUILTIN_TMIATB,
2626 ARM_BUILTIN_TMIATT,
2627
2628 ARM_BUILTIN_TMOVMSKB,
2629 ARM_BUILTIN_TMOVMSKH,
2630 ARM_BUILTIN_TMOVMSKW,
2631
2632 ARM_BUILTIN_TBCSTB,
2633 ARM_BUILTIN_TBCSTH,
2634 ARM_BUILTIN_TBCSTW,
2635
2636 ARM_BUILTIN_WMADDS,
2637 ARM_BUILTIN_WMADDU,
2638
2639 ARM_BUILTIN_WPACKHSS,
2640 ARM_BUILTIN_WPACKWSS,
2641 ARM_BUILTIN_WPACKDSS,
2642 ARM_BUILTIN_WPACKHUS,
2643 ARM_BUILTIN_WPACKWUS,
2644 ARM_BUILTIN_WPACKDUS,
2645
2646 ARM_BUILTIN_WADDB,
2647 ARM_BUILTIN_WADDH,
2648 ARM_BUILTIN_WADDW,
2649 ARM_BUILTIN_WADDSSB,
2650 ARM_BUILTIN_WADDSSH,
2651 ARM_BUILTIN_WADDSSW,
2652 ARM_BUILTIN_WADDUSB,
2653 ARM_BUILTIN_WADDUSH,
2654 ARM_BUILTIN_WADDUSW,
2655 ARM_BUILTIN_WSUBB,
2656 ARM_BUILTIN_WSUBH,
2657 ARM_BUILTIN_WSUBW,
2658 ARM_BUILTIN_WSUBSSB,
2659 ARM_BUILTIN_WSUBSSH,
2660 ARM_BUILTIN_WSUBSSW,
2661 ARM_BUILTIN_WSUBUSB,
2662 ARM_BUILTIN_WSUBUSH,
2663 ARM_BUILTIN_WSUBUSW,
2664
2665 ARM_BUILTIN_WAND,
2666 ARM_BUILTIN_WANDN,
2667 ARM_BUILTIN_WOR,
2668 ARM_BUILTIN_WXOR,
2669
2670 ARM_BUILTIN_WCMPEQB,
2671 ARM_BUILTIN_WCMPEQH,
2672 ARM_BUILTIN_WCMPEQW,
2673 ARM_BUILTIN_WCMPGTUB,
2674 ARM_BUILTIN_WCMPGTUH,
2675 ARM_BUILTIN_WCMPGTUW,
2676 ARM_BUILTIN_WCMPGTSB,
2677 ARM_BUILTIN_WCMPGTSH,
2678 ARM_BUILTIN_WCMPGTSW,
2679
2680 ARM_BUILTIN_TEXTRMSB,
2681 ARM_BUILTIN_TEXTRMSH,
2682 ARM_BUILTIN_TEXTRMSW,
2683 ARM_BUILTIN_TEXTRMUB,
2684 ARM_BUILTIN_TEXTRMUH,
2685 ARM_BUILTIN_TEXTRMUW,
2686 ARM_BUILTIN_TINSRB,
2687 ARM_BUILTIN_TINSRH,
2688 ARM_BUILTIN_TINSRW,
2689
2690 ARM_BUILTIN_WMAXSW,
2691 ARM_BUILTIN_WMAXSH,
2692 ARM_BUILTIN_WMAXSB,
2693 ARM_BUILTIN_WMAXUW,
2694 ARM_BUILTIN_WMAXUH,
2695 ARM_BUILTIN_WMAXUB,
2696 ARM_BUILTIN_WMINSW,
2697 ARM_BUILTIN_WMINSH,
2698 ARM_BUILTIN_WMINSB,
2699 ARM_BUILTIN_WMINUW,
2700 ARM_BUILTIN_WMINUH,
2701 ARM_BUILTIN_WMINUB,
2702
2703 ARM_BUILTIN_WMULUM,
2704 ARM_BUILTIN_WMULSM,
2705 ARM_BUILTIN_WMULUL,
2706
2707 ARM_BUILTIN_PSADBH,
2708 ARM_BUILTIN_WSHUFH,
2709
2710 ARM_BUILTIN_WSLLH,
2711 ARM_BUILTIN_WSLLW,
2712 ARM_BUILTIN_WSLLD,
2713 ARM_BUILTIN_WSRAH,
2714 ARM_BUILTIN_WSRAW,
2715 ARM_BUILTIN_WSRAD,
2716 ARM_BUILTIN_WSRLH,
2717 ARM_BUILTIN_WSRLW,
2718 ARM_BUILTIN_WSRLD,
2719 ARM_BUILTIN_WRORH,
2720 ARM_BUILTIN_WRORW,
2721 ARM_BUILTIN_WRORD,
2722 ARM_BUILTIN_WSLLHI,
2723 ARM_BUILTIN_WSLLWI,
2724 ARM_BUILTIN_WSLLDI,
2725 ARM_BUILTIN_WSRAHI,
2726 ARM_BUILTIN_WSRAWI,
2727 ARM_BUILTIN_WSRADI,
2728 ARM_BUILTIN_WSRLHI,
2729 ARM_BUILTIN_WSRLWI,
2730 ARM_BUILTIN_WSRLDI,
2731 ARM_BUILTIN_WRORHI,
2732 ARM_BUILTIN_WRORWI,
2733 ARM_BUILTIN_WRORDI,
2734
2735 ARM_BUILTIN_WUNPCKIHB,
2736 ARM_BUILTIN_WUNPCKIHH,
2737 ARM_BUILTIN_WUNPCKIHW,
2738 ARM_BUILTIN_WUNPCKILB,
2739 ARM_BUILTIN_WUNPCKILH,
2740 ARM_BUILTIN_WUNPCKILW,
2741
2742 ARM_BUILTIN_WUNPCKEHSB,
2743 ARM_BUILTIN_WUNPCKEHSH,
2744 ARM_BUILTIN_WUNPCKEHSW,
2745 ARM_BUILTIN_WUNPCKEHUB,
2746 ARM_BUILTIN_WUNPCKEHUH,
2747 ARM_BUILTIN_WUNPCKEHUW,
2748 ARM_BUILTIN_WUNPCKELSB,
2749 ARM_BUILTIN_WUNPCKELSH,
2750 ARM_BUILTIN_WUNPCKELSW,
2751 ARM_BUILTIN_WUNPCKELUB,
2752 ARM_BUILTIN_WUNPCKELUH,
2753 ARM_BUILTIN_WUNPCKELUW,
2754
2755 ARM_BUILTIN_THREAD_POINTER,
2756
2757 ARM_BUILTIN_NEON_BASE,
2758
2759 ARM_BUILTIN_MAX = ARM_BUILTIN_NEON_BASE /* FIXME: Wrong! */
2760 };
2761
2762 /* Do not emit .note.GNU-stack by default. */
2763 #ifndef NEED_INDICATE_EXEC_STACK
2764 #define NEED_INDICATE_EXEC_STACK 0
2765 #endif
2766
2767 #endif /* ! GCC_ARM_H */