]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/arm/arm.h
configure.ac (fixed-point): Add ARM support.
[thirdparty/gcc.git] / gcc / config / arm / arm.h
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
6 and Martin Simmons (@harleqn.co.uk).
7 More major hacks by Richard Earnshaw (rearnsha@arm.com)
8 Minor hacks by Nick Clifton (nickc@cygnus.com)
9
10 This file is part of GCC.
11
12 GCC is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published
14 by the Free Software Foundation; either version 3, or (at your
15 option) any later version.
16
17 GCC is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
20 License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
25
26 #ifndef GCC_ARM_H
27 #define GCC_ARM_H
28
29 /* We can't use enum machine_mode inside a generator file because it
30 hasn't been created yet; we shouldn't be using any code that
31 needs the real definition though, so this ought to be safe. */
32 #ifdef GENERATOR_FILE
33 #define MACHMODE int
34 #else
35 #include "insn-modes.h"
36 #define MACHMODE enum machine_mode
37 #endif
38
39 #include "config/vxworks-dummy.h"
40
41 /* The architecture define. */
42 extern char arm_arch_name[];
43
44 /* Target CPU builtins. */
45 #define TARGET_CPU_CPP_BUILTINS() \
46 do \
47 { \
48 if (TARGET_DSP_MULTIPLY) \
49 builtin_define ("__ARM_FEATURE_DSP"); \
50 /* Define __arm__ even when in thumb mode, for \
51 consistency with armcc. */ \
52 builtin_define ("__arm__"); \
53 builtin_define ("__APCS_32__"); \
54 if (TARGET_THUMB) \
55 builtin_define ("__thumb__"); \
56 if (TARGET_THUMB2) \
57 builtin_define ("__thumb2__"); \
58 \
59 if (TARGET_BIG_END) \
60 { \
61 builtin_define ("__ARMEB__"); \
62 if (TARGET_THUMB) \
63 builtin_define ("__THUMBEB__"); \
64 if (TARGET_LITTLE_WORDS) \
65 builtin_define ("__ARMWEL__"); \
66 } \
67 else \
68 { \
69 builtin_define ("__ARMEL__"); \
70 if (TARGET_THUMB) \
71 builtin_define ("__THUMBEL__"); \
72 } \
73 \
74 if (TARGET_SOFT_FLOAT) \
75 builtin_define ("__SOFTFP__"); \
76 \
77 if (TARGET_VFP) \
78 builtin_define ("__VFP_FP__"); \
79 \
80 if (TARGET_NEON) \
81 builtin_define ("__ARM_NEON__"); \
82 \
83 /* Add a define for interworking. \
84 Needed when building libgcc.a. */ \
85 if (arm_cpp_interwork) \
86 builtin_define ("__THUMB_INTERWORK__"); \
87 \
88 builtin_assert ("cpu=arm"); \
89 builtin_assert ("machine=arm"); \
90 \
91 builtin_define (arm_arch_name); \
92 if (arm_arch_cirrus) \
93 builtin_define ("__MAVERICK__"); \
94 if (arm_arch_xscale) \
95 builtin_define ("__XSCALE__"); \
96 if (arm_arch_iwmmxt) \
97 builtin_define ("__IWMMXT__"); \
98 if (TARGET_AAPCS_BASED) \
99 { \
100 if (arm_pcs_default == ARM_PCS_AAPCS_VFP) \
101 builtin_define ("__ARM_PCS_VFP"); \
102 else if (arm_pcs_default == ARM_PCS_AAPCS) \
103 builtin_define ("__ARM_PCS"); \
104 builtin_define ("__ARM_EABI__"); \
105 } \
106 if (TARGET_IDIV) \
107 builtin_define ("__ARM_ARCH_EXT_IDIV__"); \
108 } while (0)
109
110 #include "config/arm/arm-opts.h"
111
112 enum target_cpus
113 {
114 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
115 TARGET_CPU_##IDENT,
116 #include "arm-cores.def"
117 #undef ARM_CORE
118 TARGET_CPU_generic
119 };
120
121 /* The processor for which instructions should be scheduled. */
122 extern enum processor_type arm_tune;
123
124 enum arm_sync_generator_tag
125 {
126 arm_sync_generator_omn,
127 arm_sync_generator_omrn
128 };
129
130 /* Wrapper to pass around a polymorphic pointer to a sync instruction
131 generator and. */
132 struct arm_sync_generator
133 {
134 enum arm_sync_generator_tag op;
135 union
136 {
137 rtx (* omn) (rtx, rtx, rtx);
138 rtx (* omrn) (rtx, rtx, rtx, rtx);
139 } u;
140 };
141
142 typedef enum arm_cond_code
143 {
144 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
145 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
146 }
147 arm_cc;
148
149 extern arm_cc arm_current_cc;
150
151 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
152
153 extern int arm_target_label;
154 extern int arm_ccfsm_state;
155 extern GTY(()) rtx arm_target_insn;
156 /* The label of the current constant pool. */
157 extern rtx pool_vector_label;
158 /* Set to 1 when a return insn is output, this means that the epilogue
159 is not needed. */
160 extern int return_used_this_function;
161 /* Callback to output language specific object attributes. */
162 extern void (*arm_lang_output_object_attributes_hook)(void);
163 \f
164 /* Just in case configure has failed to define anything. */
165 #ifndef TARGET_CPU_DEFAULT
166 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
167 #endif
168
169
170 #undef CPP_SPEC
171 #define CPP_SPEC "%(subtarget_cpp_spec) \
172 %{mfloat-abi=soft:%{mfloat-abi=hard: \
173 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
174 %{mbig-endian:%{mlittle-endian: \
175 %e-mbig-endian and -mlittle-endian may not be used together}}"
176
177 #ifndef CC1_SPEC
178 #define CC1_SPEC ""
179 #endif
180
181 /* This macro defines names of additional specifications to put in the specs
182 that can be used in various specifications like CC1_SPEC. Its definition
183 is an initializer with a subgrouping for each command option.
184
185 Each subgrouping contains a string constant, that defines the
186 specification name, and a string constant that used by the GCC driver
187 program.
188
189 Do not define this macro if it does not need to do anything. */
190 #define EXTRA_SPECS \
191 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
192 SUBTARGET_EXTRA_SPECS
193
194 #ifndef SUBTARGET_EXTRA_SPECS
195 #define SUBTARGET_EXTRA_SPECS
196 #endif
197
198 #ifndef SUBTARGET_CPP_SPEC
199 #define SUBTARGET_CPP_SPEC ""
200 #endif
201 \f
202 /* Run-time Target Specification. */
203 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
204 /* Use hardware floating point instructions. */
205 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
206 /* Use hardware floating point calling convention. */
207 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
208 #define TARGET_FPA (arm_fpu_desc->model == ARM_FP_MODEL_FPA)
209 #define TARGET_MAVERICK (arm_fpu_desc->model == ARM_FP_MODEL_MAVERICK)
210 #define TARGET_VFP (arm_fpu_desc->model == ARM_FP_MODEL_VFP)
211 #define TARGET_IWMMXT (arm_arch_iwmmxt)
212 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
213 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
214 #define TARGET_ARM (! TARGET_THUMB)
215 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
216 #define TARGET_BACKTRACE (leaf_function_p () \
217 ? TARGET_TPCS_LEAF_FRAME \
218 : TARGET_TPCS_FRAME)
219 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN)
220 #define TARGET_AAPCS_BASED \
221 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
222
223 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
224 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
225 #define TARGET_GNU2_TLS (target_tls_dialect == TLS_GNU2)
226
227 /* Only 16-bit thumb code. */
228 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
229 /* Arm or Thumb-2 32-bit code. */
230 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
231 /* 32-bit Thumb-2 code. */
232 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
233 /* Thumb-1 only. */
234 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
235 /* FPA emulator without LFM. */
236 #define TARGET_FPA_EMU2 (TARGET_FPA && arm_fpu_desc->rev == 2)
237
238 /* The following two macros concern the ability to execute coprocessor
239 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
240 only ever tested when we know we are generating for VFP hardware; we need
241 to be more careful with TARGET_NEON as noted below. */
242
243 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
244 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
245
246 /* FPU supports VFPv3 instructions. */
247 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
248
249 /* FPU only supports VFP single-precision instructions. */
250 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
251
252 /* FPU supports VFP double-precision instructions. */
253 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
254
255 /* FPU supports half-precision floating-point with NEON element load/store. */
256 #define TARGET_NEON_FP16 \
257 (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
258
259 /* FPU supports VFP half-precision floating-point. */
260 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
261
262 /* FPU supports Neon instructions. The setting of this macro gets
263 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
264 and TARGET_HARD_FLOAT to ensure that NEON instructions are
265 available. */
266 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
267 && TARGET_VFP && arm_fpu_desc->neon)
268
269 /* "DSP" multiply instructions, eg. SMULxy. */
270 #define TARGET_DSP_MULTIPLY \
271 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
272 /* Integer SIMD instructions, and extend-accumulate instructions. */
273 #define TARGET_INT_SIMD \
274 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
275
276 /* Should MOVW/MOVT be used in preference to a constant pool. */
277 #define TARGET_USE_MOVT \
278 (arm_arch_thumb2 && !optimize_size && !current_tune->prefer_constant_pool)
279
280 /* We could use unified syntax for arm mode, but for now we just use it
281 for Thumb-2. */
282 #define TARGET_UNIFIED_ASM TARGET_THUMB2
283
284 /* Nonzero if this chip provides the DMB instruction. */
285 #define TARGET_HAVE_DMB (arm_arch7)
286
287 /* Nonzero if this chip implements a memory barrier via CP15. */
288 #define TARGET_HAVE_DMB_MCR (arm_arch6k && ! TARGET_HAVE_DMB)
289
290 /* Nonzero if this chip implements a memory barrier instruction. */
291 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
292
293 /* Nonzero if this chip supports ldrex and strex */
294 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) || arm_arch7)
295
296 /* Nonzero if this chip supports ldrex{bhd} and strex{bhd}. */
297 #define TARGET_HAVE_LDREXBHD ((arm_arch6k && TARGET_ARM) || arm_arch7)
298
299 /* Nonzero if integer division instructions supported. */
300 #define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \
301 || (TARGET_THUMB2 && arm_arch_thumb_hwdiv))
302
303 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
304 then TARGET_AAPCS_BASED must be true -- but the converse does not
305 hold. TARGET_BPABI implies the use of the BPABI runtime library,
306 etc., in addition to just the AAPCS calling conventions. */
307 #ifndef TARGET_BPABI
308 #define TARGET_BPABI false
309 #endif
310
311 /* Support for a compile-time default CPU, et cetera. The rules are:
312 --with-arch is ignored if -march or -mcpu are specified.
313 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
314 by --with-arch.
315 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
316 by -march).
317 --with-float is ignored if -mfloat-abi is specified.
318 --with-fpu is ignored if -mfpu is specified.
319 --with-abi is ignored if -mabi is specified.
320 --with-tls is ignored if -mtls-dialect is specified. */
321 #define OPTION_DEFAULT_SPECS \
322 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
323 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
324 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
325 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
326 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
327 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
328 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
329 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
330
331 /* Which floating point model to use. */
332 enum arm_fp_model
333 {
334 ARM_FP_MODEL_UNKNOWN,
335 /* FPA model (Hardware or software). */
336 ARM_FP_MODEL_FPA,
337 /* Cirrus Maverick floating point model. */
338 ARM_FP_MODEL_MAVERICK,
339 /* VFP floating point model. */
340 ARM_FP_MODEL_VFP
341 };
342
343 enum vfp_reg_type
344 {
345 VFP_NONE = 0,
346 VFP_REG_D16,
347 VFP_REG_D32,
348 VFP_REG_SINGLE
349 };
350
351 extern const struct arm_fpu_desc
352 {
353 const char *name;
354 enum arm_fp_model model;
355 int rev;
356 enum vfp_reg_type regs;
357 int neon;
358 int fp16;
359 } *arm_fpu_desc;
360
361 /* Which floating point hardware to schedule for. */
362 extern int arm_fpu_attr;
363
364 #ifndef TARGET_DEFAULT_FLOAT_ABI
365 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
366 #endif
367
368 #define LARGEST_EXPONENT_IS_NORMAL(bits) \
369 ((bits) == 16 && arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)
370
371 #ifndef ARM_DEFAULT_ABI
372 #define ARM_DEFAULT_ABI ARM_ABI_APCS
373 #endif
374
375 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
376 extern int arm_arch3m;
377
378 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
379 extern int arm_arch4;
380
381 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
382 extern int arm_arch4t;
383
384 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
385 extern int arm_arch5;
386
387 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
388 extern int arm_arch5e;
389
390 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
391 extern int arm_arch6;
392
393 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
394 extern int arm_arch6k;
395
396 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
397 extern int arm_arch7;
398
399 /* Nonzero if instructions not present in the 'M' profile can be used. */
400 extern int arm_arch_notm;
401
402 /* Nonzero if instructions present in ARMv7E-M can be used. */
403 extern int arm_arch7em;
404
405 /* Nonzero if this chip can benefit from load scheduling. */
406 extern int arm_ld_sched;
407
408 /* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2. */
409 extern int thumb_code;
410
411 /* Nonzero if generating Thumb-1 code. */
412 extern int thumb1_code;
413
414 /* Nonzero if this chip is a StrongARM. */
415 extern int arm_tune_strongarm;
416
417 /* Nonzero if this chip is a Cirrus variant. */
418 extern int arm_arch_cirrus;
419
420 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
421 extern int arm_arch_iwmmxt;
422
423 /* Nonzero if this chip is an XScale. */
424 extern int arm_arch_xscale;
425
426 /* Nonzero if tuning for XScale. */
427 extern int arm_tune_xscale;
428
429 /* Nonzero if tuning for stores via the write buffer. */
430 extern int arm_tune_wbuf;
431
432 /* Nonzero if tuning for Cortex-A9. */
433 extern int arm_tune_cortex_a9;
434
435 /* Nonzero if we should define __THUMB_INTERWORK__ in the
436 preprocessor.
437 XXX This is a bit of a hack, it's intended to help work around
438 problems in GLD which doesn't understand that armv5t code is
439 interworking clean. */
440 extern int arm_cpp_interwork;
441
442 /* Nonzero if chip supports Thumb 2. */
443 extern int arm_arch_thumb2;
444
445 /* Nonzero if chip supports integer division instruction in ARM mode. */
446 extern int arm_arch_arm_hwdiv;
447
448 /* Nonzero if chip supports integer division instruction in Thumb mode. */
449 extern int arm_arch_thumb_hwdiv;
450
451 #ifndef TARGET_DEFAULT
452 #define TARGET_DEFAULT (MASK_APCS_FRAME)
453 #endif
454
455 /* Nonzero if PIC code requires explicit qualifiers to generate
456 PLT and GOT relocs rather than the assembler doing so implicitly.
457 Subtargets can override these if required. */
458 #ifndef NEED_GOT_RELOC
459 #define NEED_GOT_RELOC 0
460 #endif
461 #ifndef NEED_PLT_RELOC
462 #define NEED_PLT_RELOC 0
463 #endif
464
465 /* Nonzero if we need to refer to the GOT with a PC-relative
466 offset. In other words, generate
467
468 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
469
470 rather than
471
472 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
473
474 The default is true, which matches NetBSD. Subtargets can
475 override this if required. */
476 #ifndef GOT_PCREL
477 #define GOT_PCREL 1
478 #endif
479 \f
480 /* Target machine storage Layout. */
481
482
483 /* Define this macro if it is advisable to hold scalars in registers
484 in a wider mode than that declared by the program. In such cases,
485 the value is constrained to be within the bounds of the declared
486 type, but kept valid in the wider mode. The signedness of the
487 extension may differ from that of the type. */
488
489 /* It is far faster to zero extend chars than to sign extend them */
490
491 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
492 if (GET_MODE_CLASS (MODE) == MODE_INT \
493 && GET_MODE_SIZE (MODE) < 4) \
494 { \
495 if (MODE == QImode) \
496 UNSIGNEDP = 1; \
497 else if (MODE == HImode) \
498 UNSIGNEDP = 1; \
499 (MODE) = SImode; \
500 }
501
502 /* Define this if most significant bit is lowest numbered
503 in instructions that operate on numbered bit-fields. */
504 #define BITS_BIG_ENDIAN 0
505
506 /* Define this if most significant byte of a word is the lowest numbered.
507 Most ARM processors are run in little endian mode, so that is the default.
508 If you want to have it run-time selectable, change the definition in a
509 cover file to be TARGET_BIG_ENDIAN. */
510 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
511
512 /* Define this if most significant word of a multiword number is the lowest
513 numbered.
514 This is always false, even when in big-endian mode. */
515 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
516
517 /* Define this if most significant word of doubles is the lowest numbered.
518 The rules are different based on whether or not we use FPA-format,
519 VFP-format or some other floating point co-processor's format doubles. */
520 #define FLOAT_WORDS_BIG_ENDIAN (arm_float_words_big_endian ())
521
522 #define UNITS_PER_WORD 4
523
524 /* True if natural alignment is used for doubleword types. */
525 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
526
527 #define DOUBLEWORD_ALIGNMENT 64
528
529 #define PARM_BOUNDARY 32
530
531 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
532
533 #define PREFERRED_STACK_BOUNDARY \
534 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
535
536 #define FUNCTION_BOUNDARY ((TARGET_THUMB && optimize_size) ? 16 : 32)
537
538 /* The lowest bit is used to indicate Thumb-mode functions, so the
539 vbit must go into the delta field of pointers to member
540 functions. */
541 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
542
543 #define EMPTY_FIELD_BOUNDARY 32
544
545 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
546
547 /* XXX Blah -- this macro is used directly by libobjc. Since it
548 supports no vector modes, cut out the complexity and fall back
549 on BIGGEST_FIELD_ALIGNMENT. */
550 #ifdef IN_TARGET_LIBS
551 #define BIGGEST_FIELD_ALIGNMENT 64
552 #endif
553
554 /* Make strings word-aligned so strcpy from constants will be faster. */
555 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
556
557 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
558 ((TREE_CODE (EXP) == STRING_CST \
559 && !optimize_size \
560 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
561 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
562
563 /* Align definitions of arrays, unions and structures so that
564 initializations and copies can be made more efficient. This is not
565 ABI-changing, so it only affects places where we can see the
566 definition. Increasing the alignment tends to introduce padding,
567 so don't do this when optimizing for size/conserving stack space. */
568 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
569 (((COND) && ((ALIGN) < BITS_PER_WORD) \
570 && (TREE_CODE (EXP) == ARRAY_TYPE \
571 || TREE_CODE (EXP) == UNION_TYPE \
572 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
573
574 /* Align global data. */
575 #define DATA_ALIGNMENT(EXP, ALIGN) \
576 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
577
578 /* Similarly, make sure that objects on the stack are sensibly aligned. */
579 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
580 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
581
582 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
583 value set in previous versions of this toolchain was 8, which produces more
584 compact structures. The command line option -mstructure_size_boundary=<n>
585 can be used to change this value. For compatibility with the ARM SDK
586 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
587 0020D) page 2-20 says "Structures are aligned on word boundaries".
588 The AAPCS specifies a value of 8. */
589 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
590
591 /* This is the value used to initialize arm_structure_size_boundary. If a
592 particular arm target wants to change the default value it should change
593 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
594 for an example of this. */
595 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
596 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
597 #endif
598
599 /* Nonzero if move instructions will actually fail to work
600 when given unaligned data. */
601 #define STRICT_ALIGNMENT 1
602
603 /* wchar_t is unsigned under the AAPCS. */
604 #ifndef WCHAR_TYPE
605 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
606
607 #define WCHAR_TYPE_SIZE BITS_PER_WORD
608 #endif
609
610 /* Sized for fixed-point types. */
611
612 #define SHORT_FRACT_TYPE_SIZE 8
613 #define FRACT_TYPE_SIZE 16
614 #define LONG_FRACT_TYPE_SIZE 32
615 #define LONG_LONG_FRACT_TYPE_SIZE 64
616
617 #define SHORT_ACCUM_TYPE_SIZE 16
618 #define ACCUM_TYPE_SIZE 32
619 #define LONG_ACCUM_TYPE_SIZE 64
620 #define LONG_LONG_ACCUM_TYPE_SIZE 64
621
622 #define MAX_FIXED_MODE_SIZE 64
623
624 #ifndef SIZE_TYPE
625 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
626 #endif
627
628 #ifndef PTRDIFF_TYPE
629 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
630 #endif
631
632 /* AAPCS requires that structure alignment is affected by bitfields. */
633 #ifndef PCC_BITFIELD_TYPE_MATTERS
634 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
635 #endif
636
637 \f
638 /* Standard register usage. */
639
640 /* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
641 (S - saved over call).
642
643 r0 * argument word/integer result
644 r1-r3 argument word
645
646 r4-r8 S register variable
647 r9 S (rfp) register variable (real frame pointer)
648
649 r10 F S (sl) stack limit (used by -mapcs-stack-check)
650 r11 F S (fp) argument pointer
651 r12 (ip) temp workspace
652 r13 F S (sp) lower end of current stack frame
653 r14 (lr) link address/workspace
654 r15 F (pc) program counter
655
656 f0 floating point result
657 f1-f3 floating point scratch
658
659 f4-f7 S floating point variable
660
661 cc This is NOT a real register, but is used internally
662 to represent things that use or set the condition
663 codes.
664 sfp This isn't either. It is used during rtl generation
665 since the offset between the frame pointer and the
666 auto's isn't known until after register allocation.
667 afp Nor this, we only need this because of non-local
668 goto. Without it fp appears to be used and the
669 elimination code won't get rid of sfp. It tracks
670 fp exactly at all times.
671
672 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
673
674 /*
675 mvf0 Cirrus floating point result
676 mvf1-mvf3 Cirrus floating point scratch
677 mvf4-mvf15 S Cirrus floating point variable. */
678
679 /* s0-s15 VFP scratch (aka d0-d7).
680 s16-s31 S VFP variable (aka d8-d15).
681 vfpcc Not a real register. Represents the VFP condition
682 code flags. */
683
684 /* The stack backtrace structure is as follows:
685 fp points to here: | save code pointer | [fp]
686 | return link value | [fp, #-4]
687 | return sp value | [fp, #-8]
688 | return fp value | [fp, #-12]
689 [| saved r10 value |]
690 [| saved r9 value |]
691 [| saved r8 value |]
692 [| saved r7 value |]
693 [| saved r6 value |]
694 [| saved r5 value |]
695 [| saved r4 value |]
696 [| saved r3 value |]
697 [| saved r2 value |]
698 [| saved r1 value |]
699 [| saved r0 value |]
700 [| saved f7 value |] three words
701 [| saved f6 value |] three words
702 [| saved f5 value |] three words
703 [| saved f4 value |] three words
704 r0-r3 are not normally saved in a C function. */
705
706 /* 1 for registers that have pervasive standard uses
707 and are not available for the register allocator. */
708 #define FIXED_REGISTERS \
709 { \
710 0,0,0,0,0,0,0,0, \
711 0,0,0,0,0,1,0,1, \
712 0,0,0,0,0,0,0,0, \
713 1,1,1, \
714 1,1,1,1,1,1,1,1, \
715 1,1,1,1,1,1,1,1, \
716 1,1,1,1,1,1,1,1, \
717 1,1,1,1,1,1,1,1, \
718 1,1,1,1, \
719 1,1,1,1,1,1,1,1, \
720 1,1,1,1,1,1,1,1, \
721 1,1,1,1,1,1,1,1, \
722 1,1,1,1,1,1,1,1, \
723 1,1,1,1,1,1,1,1, \
724 1,1,1,1,1,1,1,1, \
725 1,1,1,1,1,1,1,1, \
726 1,1,1,1,1,1,1,1, \
727 1 \
728 }
729
730 /* 1 for registers not available across function calls.
731 These must include the FIXED_REGISTERS and also any
732 registers that can be used without being saved.
733 The latter must include the registers where values are returned
734 and the register where structure-value addresses are passed.
735 Aside from that, you can include as many other registers as you like.
736 The CC is not preserved over function calls on the ARM 6, so it is
737 easier to assume this for all. SFP is preserved, since FP is. */
738 #define CALL_USED_REGISTERS \
739 { \
740 1,1,1,1,0,0,0,0, \
741 0,0,0,0,1,1,1,1, \
742 1,1,1,1,0,0,0,0, \
743 1,1,1, \
744 1,1,1,1,1,1,1,1, \
745 1,1,1,1,1,1,1,1, \
746 1,1,1,1,1,1,1,1, \
747 1,1,1,1,1,1,1,1, \
748 1,1,1,1, \
749 1,1,1,1,1,1,1,1, \
750 1,1,1,1,1,1,1,1, \
751 1,1,1,1,1,1,1,1, \
752 1,1,1,1,1,1,1,1, \
753 1,1,1,1,1,1,1,1, \
754 1,1,1,1,1,1,1,1, \
755 1,1,1,1,1,1,1,1, \
756 1,1,1,1,1,1,1,1, \
757 1 \
758 }
759
760 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
761 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
762 #endif
763
764 /* These are a couple of extensions to the formats accepted
765 by asm_fprintf:
766 %@ prints out ASM_COMMENT_START
767 %r prints out REGISTER_PREFIX reg_names[arg] */
768 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
769 case '@': \
770 fputs (ASM_COMMENT_START, FILE); \
771 break; \
772 \
773 case 'r': \
774 fputs (REGISTER_PREFIX, FILE); \
775 fputs (reg_names [va_arg (ARGS, int)], FILE); \
776 break;
777
778 /* Round X up to the nearest word. */
779 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
780
781 /* Convert fron bytes to ints. */
782 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
783
784 /* The number of (integer) registers required to hold a quantity of type MODE.
785 Also used for VFP registers. */
786 #define ARM_NUM_REGS(MODE) \
787 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
788
789 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
790 #define ARM_NUM_REGS2(MODE, TYPE) \
791 ARM_NUM_INTS ((MODE) == BLKmode ? \
792 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
793
794 /* The number of (integer) argument register available. */
795 #define NUM_ARG_REGS 4
796
797 /* And similarly for the VFP. */
798 #define NUM_VFP_ARG_REGS 16
799
800 /* Return the register number of the N'th (integer) argument. */
801 #define ARG_REGISTER(N) (N - 1)
802
803 /* Specify the registers used for certain standard purposes.
804 The values of these macros are register numbers. */
805
806 /* The number of the last argument register. */
807 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
808
809 /* The numbers of the Thumb register ranges. */
810 #define FIRST_LO_REGNUM 0
811 #define LAST_LO_REGNUM 7
812 #define FIRST_HI_REGNUM 8
813 #define LAST_HI_REGNUM 11
814
815 /* Overridden by config/arm/bpabi.h. */
816 #ifndef ARM_UNWIND_INFO
817 #define ARM_UNWIND_INFO 0
818 #endif
819
820 /* Use r0 and r1 to pass exception handling information. */
821 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
822
823 /* The register that holds the return address in exception handlers. */
824 #define ARM_EH_STACKADJ_REGNUM 2
825 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
826
827 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
828 as an invisible last argument (possible since varargs don't exist in
829 Pascal), so the following is not true. */
830 #define STATIC_CHAIN_REGNUM 12
831
832 /* Define this to be where the real frame pointer is if it is not possible to
833 work out the offset between the frame pointer and the automatic variables
834 until after register allocation has taken place. FRAME_POINTER_REGNUM
835 should point to a special register that we will make sure is eliminated.
836
837 For the Thumb we have another problem. The TPCS defines the frame pointer
838 as r11, and GCC believes that it is always possible to use the frame pointer
839 as base register for addressing purposes. (See comments in
840 find_reloads_address()). But - the Thumb does not allow high registers,
841 including r11, to be used as base address registers. Hence our problem.
842
843 The solution used here, and in the old thumb port is to use r7 instead of
844 r11 as the hard frame pointer and to have special code to generate
845 backtrace structures on the stack (if required to do so via a command line
846 option) using r11. This is the only 'user visible' use of r11 as a frame
847 pointer. */
848 #define ARM_HARD_FRAME_POINTER_REGNUM 11
849 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
850
851 #define HARD_FRAME_POINTER_REGNUM \
852 (TARGET_ARM \
853 ? ARM_HARD_FRAME_POINTER_REGNUM \
854 : THUMB_HARD_FRAME_POINTER_REGNUM)
855
856 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
857 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
858
859 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
860
861 /* Register to use for pushing function arguments. */
862 #define STACK_POINTER_REGNUM SP_REGNUM
863
864 /* ARM floating pointer registers. */
865 #define FIRST_FPA_REGNUM 16
866 #define LAST_FPA_REGNUM 23
867 #define IS_FPA_REGNUM(REGNUM) \
868 (((REGNUM) >= FIRST_FPA_REGNUM) && ((REGNUM) <= LAST_FPA_REGNUM))
869
870 #define FIRST_IWMMXT_GR_REGNUM 43
871 #define LAST_IWMMXT_GR_REGNUM 46
872 #define FIRST_IWMMXT_REGNUM 47
873 #define LAST_IWMMXT_REGNUM 62
874 #define IS_IWMMXT_REGNUM(REGNUM) \
875 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
876 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
877 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
878
879 /* Base register for access to local variables of the function. */
880 #define FRAME_POINTER_REGNUM 25
881
882 /* Base register for access to arguments of the function. */
883 #define ARG_POINTER_REGNUM 26
884
885 #define FIRST_CIRRUS_FP_REGNUM 27
886 #define LAST_CIRRUS_FP_REGNUM 42
887 #define IS_CIRRUS_REGNUM(REGNUM) \
888 (((REGNUM) >= FIRST_CIRRUS_FP_REGNUM) && ((REGNUM) <= LAST_CIRRUS_FP_REGNUM))
889
890 #define FIRST_VFP_REGNUM 63
891 #define D7_VFP_REGNUM 78 /* Registers 77 and 78 == VFP reg D7. */
892 #define LAST_VFP_REGNUM \
893 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
894
895 #define IS_VFP_REGNUM(REGNUM) \
896 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
897
898 /* VFP registers are split into two types: those defined by VFP versions < 3
899 have D registers overlaid on consecutive pairs of S registers. VFP version 3
900 defines 16 new D registers (d16-d31) which, for simplicity and correctness
901 in various parts of the backend, we implement as "fake" single-precision
902 registers (which would be S32-S63, but cannot be used in that way). The
903 following macros define these ranges of registers. */
904 #define LAST_LO_VFP_REGNUM 94
905 #define FIRST_HI_VFP_REGNUM 95
906 #define LAST_HI_VFP_REGNUM 126
907
908 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
909 ((REGNUM) <= LAST_LO_VFP_REGNUM)
910
911 /* DFmode values are only valid in even register pairs. */
912 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
913 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
914
915 /* Neon Quad values must start at a multiple of four registers. */
916 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
917 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
918
919 /* Neon structures of vectors must be in even register pairs and there
920 must be enough registers available. Because of various patterns
921 requiring quad registers, we require them to start at a multiple of
922 four. */
923 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
924 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
925 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
926
927 /* The number of hard registers is 16 ARM + 8 FPA + 1 CC + 1 SFP + 1 AFP. */
928 /* + 16 Cirrus registers take us up to 43. */
929 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
930 /* VFP (VFP3) adds 32 (64) + 1 more. */
931 #define FIRST_PSEUDO_REGISTER 128
932
933 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
934
935 /* Value should be nonzero if functions must have frame pointers.
936 Zero means the frame pointer need not be set up (and parms may be accessed
937 via the stack pointer) in functions that seem suitable.
938 If we have to have a frame pointer we might as well make use of it.
939 APCS says that the frame pointer does not need to be pushed in leaf
940 functions, or simple tail call functions. */
941
942 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
943 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
944 #endif
945
946 /* Return number of consecutive hard regs needed starting at reg REGNO
947 to hold something of mode MODE.
948 This is ordinarily the length in words of a value of mode MODE
949 but can be less for certain modes in special long registers.
950
951 On the ARM regs are UNITS_PER_WORD bits wide; FPA regs can hold any FP
952 mode. */
953 #define HARD_REGNO_NREGS(REGNO, MODE) \
954 ((TARGET_32BIT \
955 && REGNO >= FIRST_FPA_REGNUM \
956 && REGNO != FRAME_POINTER_REGNUM \
957 && REGNO != ARG_POINTER_REGNUM) \
958 && !IS_VFP_REGNUM (REGNO) \
959 ? 1 : ARM_NUM_REGS (MODE))
960
961 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
962 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
963 arm_hard_regno_mode_ok ((REGNO), (MODE))
964
965 /* Value is 1 if it is a good idea to tie two pseudo registers
966 when one has mode MODE1 and one has mode MODE2.
967 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
968 for any hard reg, then this must be 0 for correct output. */
969 #define MODES_TIEABLE_P(MODE1, MODE2) \
970 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
971
972 #define VALID_IWMMXT_REG_MODE(MODE) \
973 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
974
975 /* Modes valid for Neon D registers. */
976 #define VALID_NEON_DREG_MODE(MODE) \
977 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
978 || (MODE) == V2SFmode || (MODE) == DImode)
979
980 /* Modes valid for Neon Q registers. */
981 #define VALID_NEON_QREG_MODE(MODE) \
982 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
983 || (MODE) == V4SFmode || (MODE) == V2DImode)
984
985 /* Structure modes valid for Neon registers. */
986 #define VALID_NEON_STRUCT_MODE(MODE) \
987 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
988 || (MODE) == CImode || (MODE) == XImode)
989
990 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
991 extern int arm_regs_in_sequence[];
992
993 /* The order in which register should be allocated. It is good to use ip
994 since no saving is required (though calls clobber it) and it never contains
995 function parameters. It is quite good to use lr since other calls may
996 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
997 least likely to contain a function parameter; in addition results are
998 returned in r0.
999 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1000 then D8-D15. The reason for doing this is to attempt to reduce register
1001 pressure when both single- and double-precision registers are used in a
1002 function. */
1003
1004 #define REG_ALLOC_ORDER \
1005 { \
1006 3, 2, 1, 0, 12, 14, 4, 5, \
1007 6, 7, 8, 10, 9, 11, 13, 15, \
1008 16, 17, 18, 19, 20, 21, 22, 23, \
1009 27, 28, 29, 30, 31, 32, 33, 34, \
1010 35, 36, 37, 38, 39, 40, 41, 42, \
1011 43, 44, 45, 46, 47, 48, 49, 50, \
1012 51, 52, 53, 54, 55, 56, 57, 58, \
1013 59, 60, 61, 62, \
1014 24, 25, 26, \
1015 95, 96, 97, 98, 99, 100, 101, 102, \
1016 103, 104, 105, 106, 107, 108, 109, 110, \
1017 111, 112, 113, 114, 115, 116, 117, 118, \
1018 119, 120, 121, 122, 123, 124, 125, 126, \
1019 78, 77, 76, 75, 74, 73, 72, 71, \
1020 70, 69, 68, 67, 66, 65, 64, 63, \
1021 79, 80, 81, 82, 83, 84, 85, 86, \
1022 87, 88, 89, 90, 91, 92, 93, 94, \
1023 127 \
1024 }
1025
1026 /* Use different register alloc ordering for Thumb. */
1027 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1028
1029 /* Tell IRA to use the order we define rather than messing it up with its
1030 own cost calculations. */
1031 #define HONOR_REG_ALLOC_ORDER
1032
1033 /* Interrupt functions can only use registers that have already been
1034 saved by the prologue, even if they would normally be
1035 call-clobbered. */
1036 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1037 (! IS_INTERRUPT (cfun->machine->func_type) || \
1038 df_regs_ever_live_p (DST))
1039 \f
1040 /* Register and constant classes. */
1041
1042 /* Register classes: used to be simple, just all ARM regs or all FPA regs
1043 Now that the Thumb is involved it has become more complicated. */
1044 enum reg_class
1045 {
1046 NO_REGS,
1047 FPA_REGS,
1048 CIRRUS_REGS,
1049 VFP_D0_D7_REGS,
1050 VFP_LO_REGS,
1051 VFP_HI_REGS,
1052 VFP_REGS,
1053 IWMMXT_GR_REGS,
1054 IWMMXT_REGS,
1055 LO_REGS,
1056 STACK_REG,
1057 BASE_REGS,
1058 HI_REGS,
1059 CC_REG,
1060 VFPCC_REG,
1061 GENERAL_REGS,
1062 CORE_REGS,
1063 ALL_REGS,
1064 LIM_REG_CLASSES
1065 };
1066
1067 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1068
1069 /* Give names of register classes as strings for dump file. */
1070 #define REG_CLASS_NAMES \
1071 { \
1072 "NO_REGS", \
1073 "FPA_REGS", \
1074 "CIRRUS_REGS", \
1075 "VFP_D0_D7_REGS", \
1076 "VFP_LO_REGS", \
1077 "VFP_HI_REGS", \
1078 "VFP_REGS", \
1079 "IWMMXT_GR_REGS", \
1080 "IWMMXT_REGS", \
1081 "LO_REGS", \
1082 "STACK_REG", \
1083 "BASE_REGS", \
1084 "HI_REGS", \
1085 "CC_REG", \
1086 "VFPCC_REG", \
1087 "GENERAL_REGS", \
1088 "CORE_REGS", \
1089 "ALL_REGS", \
1090 }
1091
1092 /* Define which registers fit in which classes.
1093 This is an initializer for a vector of HARD_REG_SET
1094 of length N_REG_CLASSES. */
1095 #define REG_CLASS_CONTENTS \
1096 { \
1097 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1098 { 0x00FF0000, 0x00000000, 0x00000000, 0x00000000 }, /* FPA_REGS */ \
1099 { 0xF8000000, 0x000007FF, 0x00000000, 0x00000000 }, /* CIRRUS_REGS */ \
1100 { 0x00000000, 0x80000000, 0x00007FFF, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1101 { 0x00000000, 0x80000000, 0x7FFFFFFF, 0x00000000 }, /* VFP_LO_REGS */ \
1102 { 0x00000000, 0x00000000, 0x80000000, 0x7FFFFFFF }, /* VFP_HI_REGS */ \
1103 { 0x00000000, 0x80000000, 0xFFFFFFFF, 0x7FFFFFFF }, /* VFP_REGS */ \
1104 { 0x00000000, 0x00007800, 0x00000000, 0x00000000 }, /* IWMMXT_GR_REGS */ \
1105 { 0x00000000, 0x7FFF8000, 0x00000000, 0x00000000 }, /* IWMMXT_REGS */ \
1106 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1107 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1108 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1109 { 0x0000DF00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1110 { 0x01000000, 0x00000000, 0x00000000, 0x00000000 }, /* CC_REG */ \
1111 { 0x00000000, 0x00000000, 0x00000000, 0x80000000 }, /* VFPCC_REG */ \
1112 { 0x0000DFFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1113 { 0x0000FFFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1114 { 0xFAFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF } /* ALL_REGS */ \
1115 }
1116
1117 /* Any of the VFP register classes. */
1118 #define IS_VFP_CLASS(X) \
1119 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1120 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1121
1122 /* The same information, inverted:
1123 Return the class number of the smallest class containing
1124 reg number REGNO. This could be a conditional expression
1125 or could index an array. */
1126 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1127
1128 /* FPA registers can't do subreg as all values are reformatted to internal
1129 precision. In VFPv1, VFP registers could only be accessed in the mode
1130 they were set, so subregs would be invalid there too. However, we don't
1131 support VFPv1 at the moment, and the restriction was lifted in VFPv2. */
1132 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1133 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1134 ? reg_classes_intersect_p (FPA_REGS, (CLASS)) \
1135 : 0)
1136
1137 /* The class value for index registers, and the one for base regs. */
1138 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1139 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1140
1141 /* For the Thumb the high registers cannot be used as base registers
1142 when addressing quantities in QI or HI mode; if we don't know the
1143 mode, then we must be conservative. */
1144 #define MODE_BASE_REG_CLASS(MODE) \
1145 (TARGET_ARM || (TARGET_THUMB2 && !optimize_size) ? CORE_REGS : \
1146 (((MODE) == SImode) ? BASE_REGS : LO_REGS))
1147
1148 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1149 instead of BASE_REGS. */
1150 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1151
1152 /* When this hook returns true for MODE, the compiler allows
1153 registers explicitly used in the rtl to be used as spill registers
1154 but prevents the compiler from extending the lifetime of these
1155 registers. */
1156 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1157 arm_small_register_classes_for_mode_p
1158
1159 /* Given an rtx X being reloaded into a reg required to be
1160 in class CLASS, return the class of reg to actually use.
1161 In general this is just CLASS, but for the Thumb core registers and
1162 immediate constants we prefer a LO_REGS class or a subset. */
1163 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1164 (TARGET_32BIT ? (CLASS) : \
1165 ((CLASS) == GENERAL_REGS || (CLASS) == HI_REGS \
1166 || (CLASS) == NO_REGS || (CLASS) == STACK_REG \
1167 ? LO_REGS : (CLASS)))
1168
1169 /* Must leave BASE_REGS reloads alone */
1170 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1171 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1172 ? ((true_regnum (X) == -1 ? LO_REGS \
1173 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1174 : NO_REGS)) \
1175 : NO_REGS)
1176
1177 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1178 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1179 ? ((true_regnum (X) == -1 ? LO_REGS \
1180 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1181 : NO_REGS)) \
1182 : NO_REGS)
1183
1184 /* Return the register class of a scratch register needed to copy IN into
1185 or out of a register in CLASS in MODE. If it can be done directly,
1186 NO_REGS is returned. */
1187 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1188 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1189 ((TARGET_VFP && TARGET_HARD_FLOAT \
1190 && IS_VFP_CLASS (CLASS)) \
1191 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1192 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1193 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1194 : TARGET_32BIT \
1195 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1196 ? GENERAL_REGS : NO_REGS) \
1197 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1198
1199 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1200 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1201 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1202 ((TARGET_VFP && TARGET_HARD_FLOAT \
1203 && IS_VFP_CLASS (CLASS)) \
1204 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1205 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1206 coproc_secondary_reload_class (MODE, X, TRUE) : \
1207 /* Cannot load constants into Cirrus registers. */ \
1208 (TARGET_MAVERICK && TARGET_HARD_FLOAT \
1209 && (CLASS) == CIRRUS_REGS \
1210 && (CONSTANT_P (X) || GET_CODE (X) == SYMBOL_REF)) \
1211 ? GENERAL_REGS : \
1212 (TARGET_32BIT ? \
1213 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1214 && CONSTANT_P (X)) \
1215 ? GENERAL_REGS : \
1216 (((MODE) == HImode && ! arm_arch4 \
1217 && (GET_CODE (X) == MEM \
1218 || ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG) \
1219 && true_regnum (X) == -1))) \
1220 ? GENERAL_REGS : NO_REGS) \
1221 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1222
1223 /* Try a machine-dependent way of reloading an illegitimate address
1224 operand. If we find one, push the reload and jump to WIN. This
1225 macro is used in only one place: `find_reloads_address' in reload.c.
1226
1227 For the ARM, we wish to handle large displacements off a base
1228 register by splitting the addend across a MOV and the mem insn.
1229 This can cut the number of reloads needed. */
1230 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
1231 do \
1232 { \
1233 if (arm_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND)) \
1234 goto WIN; \
1235 } \
1236 while (0)
1237
1238 /* XXX If an HImode FP+large_offset address is converted to an HImode
1239 SP+large_offset address, then reload won't know how to fix it. It sees
1240 only that SP isn't valid for HImode, and so reloads the SP into an index
1241 register, but the resulting address is still invalid because the offset
1242 is too big. We fix it here instead by reloading the entire address. */
1243 /* We could probably achieve better results by defining PROMOTE_MODE to help
1244 cope with the variances between the Thumb's signed and unsigned byte and
1245 halfword load instructions. */
1246 /* ??? This should be safe for thumb2, but we may be able to do better. */
1247 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN) \
1248 do { \
1249 rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1250 if (new_x) \
1251 { \
1252 X = new_x; \
1253 goto WIN; \
1254 } \
1255 } while (0)
1256
1257 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
1258 if (TARGET_ARM) \
1259 ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1260 else \
1261 THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1262
1263 /* Return the maximum number of consecutive registers
1264 needed to represent mode MODE in a register of class CLASS.
1265 ARM regs are UNITS_PER_WORD bits while FPA regs can hold any FP mode */
1266 #define CLASS_MAX_NREGS(CLASS, MODE) \
1267 (((CLASS) == FPA_REGS || (CLASS) == CIRRUS_REGS) ? 1 : ARM_NUM_REGS (MODE))
1268
1269 /* If defined, gives a class of registers that cannot be used as the
1270 operand of a SUBREG that changes the mode of the object illegally. */
1271
1272 /* Moves between FPA_REGS and GENERAL_REGS are two memory insns.
1273 Moves between VFP_REGS and GENERAL_REGS are a single insn, but
1274 it is typically more expensive than a single memory access. We set
1275 the cost to less than two memory accesses so that floating
1276 point to integer conversion does not go through memory. */
1277 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1278 (TARGET_32BIT ? \
1279 ((FROM) == FPA_REGS && (TO) != FPA_REGS ? 20 : \
1280 (FROM) != FPA_REGS && (TO) == FPA_REGS ? 20 : \
1281 IS_VFP_CLASS (FROM) && !IS_VFP_CLASS (TO) ? 15 : \
1282 !IS_VFP_CLASS (FROM) && IS_VFP_CLASS (TO) ? 15 : \
1283 (FROM) == IWMMXT_REGS && (TO) != IWMMXT_REGS ? 4 : \
1284 (FROM) != IWMMXT_REGS && (TO) == IWMMXT_REGS ? 4 : \
1285 (FROM) == IWMMXT_GR_REGS || (TO) == IWMMXT_GR_REGS ? 20 : \
1286 (FROM) == CIRRUS_REGS && (TO) != CIRRUS_REGS ? 20 : \
1287 (FROM) != CIRRUS_REGS && (TO) == CIRRUS_REGS ? 20 : \
1288 2) \
1289 : \
1290 ((FROM) == HI_REGS || (TO) == HI_REGS) ? 4 : 2)
1291 \f
1292 /* Stack layout; function entry, exit and calling. */
1293
1294 /* Define this if pushing a word on the stack
1295 makes the stack pointer a smaller address. */
1296 #define STACK_GROWS_DOWNWARD 1
1297
1298 /* Define this to nonzero if the nominal address of the stack frame
1299 is at the high-address end of the local variables;
1300 that is, each additional local variable allocated
1301 goes at a more negative offset in the frame. */
1302 #define FRAME_GROWS_DOWNWARD 1
1303
1304 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1305 When present, it is one word in size, and sits at the top of the frame,
1306 between the soft frame pointer and either r7 or r11.
1307
1308 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1309 and only then if some outgoing arguments are passed on the stack. It would
1310 be tempting to also check whether the stack arguments are passed by indirect
1311 calls, but there seems to be no reason in principle why a post-reload pass
1312 couldn't convert a direct call into an indirect one. */
1313 #define CALLER_INTERWORKING_SLOT_SIZE \
1314 (TARGET_CALLER_INTERWORKING \
1315 && crtl->outgoing_args_size != 0 \
1316 ? UNITS_PER_WORD : 0)
1317
1318 /* Offset within stack frame to start allocating local variables at.
1319 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1320 first local allocated. Otherwise, it is the offset to the BEGINNING
1321 of the first local allocated. */
1322 #define STARTING_FRAME_OFFSET 0
1323
1324 /* If we generate an insn to push BYTES bytes,
1325 this says how many the stack pointer really advances by. */
1326 /* The push insns do not do this rounding implicitly.
1327 So don't define this. */
1328 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1329
1330 /* Define this if the maximum size of all the outgoing args is to be
1331 accumulated and pushed during the prologue. The amount can be
1332 found in the variable crtl->outgoing_args_size. */
1333 #define ACCUMULATE_OUTGOING_ARGS 1
1334
1335 /* Offset of first parameter from the argument pointer register value. */
1336 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1337
1338 /* Define how to find the value returned by a library function
1339 assuming the value has mode MODE. */
1340 #define LIBCALL_VALUE(MODE) \
1341 (TARGET_AAPCS_BASED ? aapcs_libcall_value (MODE) \
1342 : (TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_FPA \
1343 && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1344 ? gen_rtx_REG (MODE, FIRST_FPA_REGNUM) \
1345 : TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK \
1346 && GET_MODE_CLASS (MODE) == MODE_FLOAT \
1347 ? gen_rtx_REG (MODE, FIRST_CIRRUS_FP_REGNUM) \
1348 : TARGET_IWMMXT_ABI && arm_vector_mode_supported_p (MODE) \
1349 ? gen_rtx_REG (MODE, FIRST_IWMMXT_REGNUM) \
1350 : gen_rtx_REG (MODE, ARG_REGISTER (1)))
1351
1352 /* 1 if REGNO is a possible register number for a function value. */
1353 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1354 ((REGNO) == ARG_REGISTER (1) \
1355 || (TARGET_AAPCS_BASED && TARGET_32BIT \
1356 && TARGET_VFP && TARGET_HARD_FLOAT \
1357 && (REGNO) == FIRST_VFP_REGNUM) \
1358 || (TARGET_32BIT && ((REGNO) == FIRST_CIRRUS_FP_REGNUM) \
1359 && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK) \
1360 || ((REGNO) == FIRST_IWMMXT_REGNUM && TARGET_IWMMXT_ABI) \
1361 || (TARGET_32BIT && ((REGNO) == FIRST_FPA_REGNUM) \
1362 && TARGET_HARD_FLOAT_ABI && TARGET_FPA))
1363
1364 /* Amount of memory needed for an untyped call to save all possible return
1365 registers. */
1366 #define APPLY_RESULT_SIZE arm_apply_result_size()
1367
1368 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1369 values must be in memory. On the ARM, they need only do so if larger
1370 than a word, or if they contain elements offset from zero in the struct. */
1371 #define DEFAULT_PCC_STRUCT_RETURN 0
1372
1373 /* These bits describe the different types of function supported
1374 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1375 normal function and an interworked function, for example. Knowing the
1376 type of a function is important for determining its prologue and
1377 epilogue sequences.
1378 Note value 7 is currently unassigned. Also note that the interrupt
1379 function types all have bit 2 set, so that they can be tested for easily.
1380 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1381 machine_function structure is initialized (to zero) func_type will
1382 default to unknown. This will force the first use of arm_current_func_type
1383 to call arm_compute_func_type. */
1384 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1385 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1386 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1387 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1388 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1389 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1390
1391 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1392
1393 /* In addition functions can have several type modifiers,
1394 outlined by these bit masks: */
1395 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1396 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1397 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1398 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1399 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1400
1401 /* Some macros to test these flags. */
1402 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1403 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1404 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1405 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1406 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1407 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1408
1409
1410 /* Structure used to hold the function stack frame layout. Offsets are
1411 relative to the stack pointer on function entry. Positive offsets are
1412 in the direction of stack growth.
1413 Only soft_frame is used in thumb mode. */
1414
1415 typedef struct GTY(()) arm_stack_offsets
1416 {
1417 int saved_args; /* ARG_POINTER_REGNUM. */
1418 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1419 int saved_regs;
1420 int soft_frame; /* FRAME_POINTER_REGNUM. */
1421 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1422 int outgoing_args; /* STACK_POINTER_REGNUM. */
1423 unsigned int saved_regs_mask;
1424 }
1425 arm_stack_offsets;
1426
1427 #ifndef GENERATOR_FILE
1428 /* A C structure for machine-specific, per-function data.
1429 This is added to the cfun structure. */
1430 typedef struct GTY(()) machine_function
1431 {
1432 /* Additional stack adjustment in __builtin_eh_throw. */
1433 rtx eh_epilogue_sp_ofs;
1434 /* Records if LR has to be saved for far jumps. */
1435 int far_jump_used;
1436 /* Records if ARG_POINTER was ever live. */
1437 int arg_pointer_live;
1438 /* Records if the save of LR has been eliminated. */
1439 int lr_save_eliminated;
1440 /* The size of the stack frame. Only valid after reload. */
1441 arm_stack_offsets stack_offsets;
1442 /* Records the type of the current function. */
1443 unsigned long func_type;
1444 /* Record if the function has a variable argument list. */
1445 int uses_anonymous_args;
1446 /* Records if sibcalls are blocked because an argument
1447 register is needed to preserve stack alignment. */
1448 int sibcall_blocked;
1449 /* The PIC register for this function. This might be a pseudo. */
1450 rtx pic_reg;
1451 /* Labels for per-function Thumb call-via stubs. One per potential calling
1452 register. We can never call via LR or PC. We can call via SP if a
1453 trampoline happens to be on the top of the stack. */
1454 rtx call_via[14];
1455 /* Set to 1 when a return insn is output, this means that the epilogue
1456 is not needed. */
1457 int return_used_this_function;
1458 /* When outputting Thumb-1 code, record the last insn that provides
1459 information about condition codes, and the comparison operands. */
1460 rtx thumb1_cc_insn;
1461 rtx thumb1_cc_op0;
1462 rtx thumb1_cc_op1;
1463 /* Also record the CC mode that is supported. */
1464 enum machine_mode thumb1_cc_mode;
1465 }
1466 machine_function;
1467 #endif
1468
1469 /* As in the machine_function, a global set of call-via labels, for code
1470 that is in text_section. */
1471 extern GTY(()) rtx thumb_call_via_label[14];
1472
1473 /* The number of potential ways of assigning to a co-processor. */
1474 #define ARM_NUM_COPROC_SLOTS 1
1475
1476 /* Enumeration of procedure calling standard variants. We don't really
1477 support all of these yet. */
1478 enum arm_pcs
1479 {
1480 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1481 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1482 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1483 /* This must be the last AAPCS variant. */
1484 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1485 ARM_PCS_ATPCS, /* ATPCS. */
1486 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1487 ARM_PCS_UNKNOWN
1488 };
1489
1490 /* Default procedure calling standard of current compilation unit. */
1491 extern enum arm_pcs arm_pcs_default;
1492
1493 /* A C type for declaring a variable that is used as the first argument of
1494 `FUNCTION_ARG' and other related values. */
1495 typedef struct
1496 {
1497 /* This is the number of registers of arguments scanned so far. */
1498 int nregs;
1499 /* This is the number of iWMMXt register arguments scanned so far. */
1500 int iwmmxt_nregs;
1501 int named_count;
1502 int nargs;
1503 /* Which procedure call variant to use for this call. */
1504 enum arm_pcs pcs_variant;
1505
1506 /* AAPCS related state tracking. */
1507 int aapcs_arg_processed; /* No need to lay out this argument again. */
1508 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1509 this argument, or -1 if using core
1510 registers. */
1511 int aapcs_ncrn;
1512 int aapcs_next_ncrn;
1513 rtx aapcs_reg; /* Register assigned to this argument. */
1514 int aapcs_partial; /* How many bytes are passed in regs (if
1515 split between core regs and stack.
1516 Zero otherwise. */
1517 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1518 int can_split; /* Argument can be split between core regs
1519 and the stack. */
1520 /* Private data for tracking VFP register allocation */
1521 unsigned aapcs_vfp_regs_free;
1522 unsigned aapcs_vfp_reg_alloc;
1523 int aapcs_vfp_rcount;
1524 MACHMODE aapcs_vfp_rmode;
1525 } CUMULATIVE_ARGS;
1526
1527 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1528 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1529
1530 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1531 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1532
1533 /* For AAPCS, padding should never be below the argument. For other ABIs,
1534 * mimic the default. */
1535 #define PAD_VARARGS_DOWN \
1536 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1537
1538 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1539 for a call to a function whose data type is FNTYPE.
1540 For a library call, FNTYPE is 0.
1541 On the ARM, the offset starts at 0. */
1542 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1543 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1544
1545 /* 1 if N is a possible register number for function argument passing.
1546 On the ARM, r0-r3 are used to pass args. */
1547 #define FUNCTION_ARG_REGNO_P(REGNO) \
1548 (IN_RANGE ((REGNO), 0, 3) \
1549 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \
1550 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1551 || (TARGET_IWMMXT_ABI \
1552 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1553
1554 \f
1555 /* If your target environment doesn't prefix user functions with an
1556 underscore, you may wish to re-define this to prevent any conflicts. */
1557 #ifndef ARM_MCOUNT_NAME
1558 #define ARM_MCOUNT_NAME "*mcount"
1559 #endif
1560
1561 /* Call the function profiler with a given profile label. The Acorn
1562 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1563 On the ARM the full profile code will look like:
1564 .data
1565 LP1
1566 .word 0
1567 .text
1568 mov ip, lr
1569 bl mcount
1570 .word LP1
1571
1572 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1573 will output the .text section.
1574
1575 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1576 ``prof'' doesn't seem to mind about this!
1577
1578 Note - this version of the code is designed to work in both ARM and
1579 Thumb modes. */
1580 #ifndef ARM_FUNCTION_PROFILER
1581 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1582 { \
1583 char temp[20]; \
1584 rtx sym; \
1585 \
1586 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1587 IP_REGNUM, LR_REGNUM); \
1588 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1589 fputc ('\n', STREAM); \
1590 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1591 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1592 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1593 }
1594 #endif
1595
1596 #ifdef THUMB_FUNCTION_PROFILER
1597 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1598 if (TARGET_ARM) \
1599 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1600 else \
1601 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1602 #else
1603 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1604 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1605 #endif
1606
1607 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1608 the stack pointer does not matter. The value is tested only in
1609 functions that have frame pointers.
1610 No definition is equivalent to always zero.
1611
1612 On the ARM, the function epilogue recovers the stack pointer from the
1613 frame. */
1614 #define EXIT_IGNORE_STACK 1
1615
1616 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNUM)
1617
1618 /* Determine if the epilogue should be output as RTL.
1619 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1620 #define USE_RETURN_INSN(ISCOND) \
1621 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1622
1623 /* Definitions for register eliminations.
1624
1625 This is an array of structures. Each structure initializes one pair
1626 of eliminable registers. The "from" register number is given first,
1627 followed by "to". Eliminations of the same "from" register are listed
1628 in order of preference.
1629
1630 We have two registers that can be eliminated on the ARM. First, the
1631 arg pointer register can often be eliminated in favor of the stack
1632 pointer register. Secondly, the pseudo frame pointer register can always
1633 be eliminated; it is replaced with either the stack or the real frame
1634 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1635 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1636
1637 #define ELIMINABLE_REGS \
1638 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1639 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1640 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1641 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1642 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1643 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1644 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1645
1646 /* Define the offset between two registers, one to be eliminated, and the
1647 other its replacement, at the start of a routine. */
1648 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1649 if (TARGET_ARM) \
1650 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1651 else \
1652 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1653
1654 /* Special case handling of the location of arguments passed on the stack. */
1655 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1656
1657 /* Initialize data used by insn expanders. This is called from insn_emit,
1658 once for every function before code is generated. */
1659 #define INIT_EXPANDERS arm_init_expanders ()
1660
1661 /* Length in units of the trampoline for entering a nested function. */
1662 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1663
1664 /* Alignment required for a trampoline in bits. */
1665 #define TRAMPOLINE_ALIGNMENT 32
1666 \f
1667 /* Addressing modes, and classification of registers for them. */
1668 #define HAVE_POST_INCREMENT 1
1669 #define HAVE_PRE_INCREMENT TARGET_32BIT
1670 #define HAVE_POST_DECREMENT TARGET_32BIT
1671 #define HAVE_PRE_DECREMENT TARGET_32BIT
1672 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1673 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1674 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1675 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1676
1677 /* Macros to check register numbers against specific register classes. */
1678
1679 /* These assume that REGNO is a hard or pseudo reg number.
1680 They give nonzero only if REGNO is a hard reg of the suitable class
1681 or a pseudo reg currently allocated to a suitable hard reg.
1682 Since they use reg_renumber, they are safe only once reg_renumber
1683 has been allocated, which happens in local-alloc.c. */
1684 #define TEST_REGNO(R, TEST, VALUE) \
1685 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1686
1687 /* Don't allow the pc to be used. */
1688 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1689 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1690 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1691 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1692
1693 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1694 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1695 || (GET_MODE_SIZE (MODE) >= 4 \
1696 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1697
1698 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1699 (TARGET_THUMB1 \
1700 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1701 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1702
1703 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1704 For Thumb, we can not use SP + reg, so reject SP. */
1705 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1706 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1707
1708 /* For ARM code, we don't care about the mode, but for Thumb, the index
1709 must be suitable for use in a QImode load. */
1710 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1711 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1712 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1713
1714 /* Maximum number of registers that can appear in a valid memory address.
1715 Shifts in addresses can't be by a register. */
1716 #define MAX_REGS_PER_ADDRESS 2
1717
1718 /* Recognize any constant value that is a valid address. */
1719 /* XXX We can address any constant, eventually... */
1720 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1721 #define CONSTANT_ADDRESS_P(X) \
1722 (GET_CODE (X) == SYMBOL_REF \
1723 && (CONSTANT_POOL_ADDRESS_P (X) \
1724 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1725
1726 /* True if SYMBOL + OFFSET constants must refer to something within
1727 SYMBOL's section. */
1728 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1729
1730 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1731 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1732 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1733 #endif
1734
1735 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1736 #define SUBTARGET_NAME_ENCODING_LENGTHS
1737 #endif
1738
1739 /* This is a C fragment for the inside of a switch statement.
1740 Each case label should return the number of characters to
1741 be stripped from the start of a function's name, if that
1742 name starts with the indicated character. */
1743 #define ARM_NAME_ENCODING_LENGTHS \
1744 case '*': return 1; \
1745 SUBTARGET_NAME_ENCODING_LENGTHS
1746
1747 /* This is how to output a reference to a user-level label named NAME.
1748 `assemble_name' uses this. */
1749 #undef ASM_OUTPUT_LABELREF
1750 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1751 arm_asm_output_labelref (FILE, NAME)
1752
1753 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1754 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1755 if (TARGET_THUMB2) \
1756 thumb2_asm_output_opcode (STREAM);
1757
1758 /* The EABI specifies that constructors should go in .init_array.
1759 Other targets use .ctors for compatibility. */
1760 #ifndef ARM_EABI_CTORS_SECTION_OP
1761 #define ARM_EABI_CTORS_SECTION_OP \
1762 "\t.section\t.init_array,\"aw\",%init_array"
1763 #endif
1764 #ifndef ARM_EABI_DTORS_SECTION_OP
1765 #define ARM_EABI_DTORS_SECTION_OP \
1766 "\t.section\t.fini_array,\"aw\",%fini_array"
1767 #endif
1768 #define ARM_CTORS_SECTION_OP \
1769 "\t.section\t.ctors,\"aw\",%progbits"
1770 #define ARM_DTORS_SECTION_OP \
1771 "\t.section\t.dtors,\"aw\",%progbits"
1772
1773 /* Define CTORS_SECTION_ASM_OP. */
1774 #undef CTORS_SECTION_ASM_OP
1775 #undef DTORS_SECTION_ASM_OP
1776 #ifndef IN_LIBGCC2
1777 # define CTORS_SECTION_ASM_OP \
1778 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1779 # define DTORS_SECTION_ASM_OP \
1780 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1781 #else /* !defined (IN_LIBGCC2) */
1782 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1783 so we cannot use the definition above. */
1784 # ifdef __ARM_EABI__
1785 /* The .ctors section is not part of the EABI, so we do not define
1786 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1787 from trying to use it. We do define it when doing normal
1788 compilation, as .init_array can be used instead of .ctors. */
1789 /* There is no need to emit begin or end markers when using
1790 init_array; the dynamic linker will compute the size of the
1791 array itself based on special symbols created by the static
1792 linker. However, we do need to arrange to set up
1793 exception-handling here. */
1794 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1795 # define CTOR_LIST_END /* empty */
1796 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1797 # define DTOR_LIST_END /* empty */
1798 # else /* !defined (__ARM_EABI__) */
1799 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1800 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1801 # endif /* !defined (__ARM_EABI__) */
1802 #endif /* !defined (IN_LIBCC2) */
1803
1804 /* True if the operating system can merge entities with vague linkage
1805 (e.g., symbols in COMDAT group) during dynamic linking. */
1806 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1807 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1808 #endif
1809
1810 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1811
1812 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1813 and check its validity for a certain class.
1814 We have two alternate definitions for each of them.
1815 The usual definition accepts all pseudo regs; the other rejects
1816 them unless they have been allocated suitable hard regs.
1817 The symbol REG_OK_STRICT causes the latter definition to be used.
1818 Thumb-2 has the same restrictions as arm. */
1819 #ifndef REG_OK_STRICT
1820
1821 #define ARM_REG_OK_FOR_BASE_P(X) \
1822 (REGNO (X) <= LAST_ARM_REGNUM \
1823 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1824 || REGNO (X) == FRAME_POINTER_REGNUM \
1825 || REGNO (X) == ARG_POINTER_REGNUM)
1826
1827 #define ARM_REG_OK_FOR_INDEX_P(X) \
1828 ((REGNO (X) <= LAST_ARM_REGNUM \
1829 && REGNO (X) != STACK_POINTER_REGNUM) \
1830 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1831 || REGNO (X) == FRAME_POINTER_REGNUM \
1832 || REGNO (X) == ARG_POINTER_REGNUM)
1833
1834 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1835 (REGNO (X) <= LAST_LO_REGNUM \
1836 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1837 || (GET_MODE_SIZE (MODE) >= 4 \
1838 && (REGNO (X) == STACK_POINTER_REGNUM \
1839 || (X) == hard_frame_pointer_rtx \
1840 || (X) == arg_pointer_rtx)))
1841
1842 #define REG_STRICT_P 0
1843
1844 #else /* REG_OK_STRICT */
1845
1846 #define ARM_REG_OK_FOR_BASE_P(X) \
1847 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1848
1849 #define ARM_REG_OK_FOR_INDEX_P(X) \
1850 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1851
1852 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1853 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1854
1855 #define REG_STRICT_P 1
1856
1857 #endif /* REG_OK_STRICT */
1858
1859 /* Now define some helpers in terms of the above. */
1860
1861 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1862 (TARGET_THUMB1 \
1863 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1864 : ARM_REG_OK_FOR_BASE_P (X))
1865
1866 /* For 16-bit Thumb, a valid index register is anything that can be used in
1867 a byte load instruction. */
1868 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1869 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1870
1871 /* Nonzero if X is a hard reg that can be used as an index
1872 or if it is a pseudo reg. On the Thumb, the stack pointer
1873 is not suitable. */
1874 #define REG_OK_FOR_INDEX_P(X) \
1875 (TARGET_THUMB1 \
1876 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1877 : ARM_REG_OK_FOR_INDEX_P (X))
1878
1879 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1880 For Thumb, we can not use SP + reg, so reject SP. */
1881 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1882 REG_OK_FOR_INDEX_P (X)
1883 \f
1884 #define ARM_BASE_REGISTER_RTX_P(X) \
1885 (GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X))
1886
1887 #define ARM_INDEX_REGISTER_RTX_P(X) \
1888 (GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X))
1889 \f
1890 /* Specify the machine mode that this machine uses
1891 for the index in the tablejump instruction. */
1892 #define CASE_VECTOR_MODE Pmode
1893
1894 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
1895 || (TARGET_THUMB1 \
1896 && (optimize_size || flag_pic)))
1897
1898 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
1899 (TARGET_THUMB1 \
1900 ? (min >= 0 && max < 512 \
1901 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
1902 : min >= -256 && max < 256 \
1903 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
1904 : min >= 0 && max < 8192 \
1905 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
1906 : min >= -4096 && max < 4096 \
1907 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
1908 : SImode) \
1909 : ((min < 0 || max >= 0x2000 || !TARGET_THUMB2) ? SImode \
1910 : (max >= 0x200) ? HImode \
1911 : QImode))
1912
1913 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1914 unsigned is probably best, but may break some code. */
1915 #ifndef DEFAULT_SIGNED_CHAR
1916 #define DEFAULT_SIGNED_CHAR 0
1917 #endif
1918
1919 /* Max number of bytes we can move from memory to memory
1920 in one reasonably fast instruction. */
1921 #define MOVE_MAX 4
1922
1923 #undef MOVE_RATIO
1924 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1925
1926 /* Define if operations between registers always perform the operation
1927 on the full register even if a narrower mode is specified. */
1928 #define WORD_REGISTER_OPERATIONS
1929
1930 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1931 will either zero-extend or sign-extend. The value of this macro should
1932 be the code that says which one of the two operations is implicitly
1933 done, UNKNOWN if none. */
1934 #define LOAD_EXTEND_OP(MODE) \
1935 (TARGET_THUMB ? ZERO_EXTEND : \
1936 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
1937 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
1938
1939 /* Nonzero if access to memory by bytes is slow and undesirable. */
1940 #define SLOW_BYTE_ACCESS 0
1941
1942 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
1943
1944 /* Immediate shift counts are truncated by the output routines (or was it
1945 the assembler?). Shift counts in a register are truncated by ARM. Note
1946 that the native compiler puts too large (> 32) immediate shift counts
1947 into a register and shifts by the register, letting the ARM decide what
1948 to do instead of doing that itself. */
1949 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
1950 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1951 On the arm, Y in a register is used modulo 256 for the shift. Only for
1952 rotates is modulo 32 used. */
1953 /* #define SHIFT_COUNT_TRUNCATED 1 */
1954
1955 /* All integers have the same format so truncation is easy. */
1956 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1957
1958 /* Calling from registers is a massive pain. */
1959 #define NO_FUNCTION_CSE 1
1960
1961 /* The machine modes of pointers and functions */
1962 #define Pmode SImode
1963 #define FUNCTION_MODE Pmode
1964
1965 #define ARM_FRAME_RTX(X) \
1966 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
1967 || (X) == arg_pointer_rtx)
1968
1969 /* Moves to and from memory are quite expensive */
1970 #define MEMORY_MOVE_COST(M, CLASS, IN) \
1971 (TARGET_32BIT ? 10 : \
1972 ((GET_MODE_SIZE (M) < 4 ? 8 : 2 * GET_MODE_SIZE (M)) \
1973 * (CLASS == LO_REGS ? 1 : 2)))
1974
1975 /* Try to generate sequences that don't involve branches, we can then use
1976 conditional instructions */
1977 #define BRANCH_COST(speed_p, predictable_p) \
1978 (current_tune->branch_cost (speed_p, predictable_p))
1979
1980 \f
1981 /* Position Independent Code. */
1982 /* We decide which register to use based on the compilation options and
1983 the assembler in use; this is more general than the APCS restriction of
1984 using sb (r9) all the time. */
1985 extern unsigned arm_pic_register;
1986
1987 /* The register number of the register used to address a table of static
1988 data addresses in memory. */
1989 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
1990
1991 /* We can't directly access anything that contains a symbol,
1992 nor can we indirect via the constant pool. One exception is
1993 UNSPEC_TLS, which is always PIC. */
1994 #define LEGITIMATE_PIC_OPERAND_P(X) \
1995 (!(symbol_mentioned_p (X) \
1996 || label_mentioned_p (X) \
1997 || (GET_CODE (X) == SYMBOL_REF \
1998 && CONSTANT_POOL_ADDRESS_P (X) \
1999 && (symbol_mentioned_p (get_pool_constant (X)) \
2000 || label_mentioned_p (get_pool_constant (X))))) \
2001 || tls_mentioned_p (X))
2002
2003 /* We need to know when we are making a constant pool; this determines
2004 whether data needs to be in the GOT or can be referenced via a GOT
2005 offset. */
2006 extern int making_const_table;
2007 \f
2008 /* Handle pragmas for compatibility with Intel's compilers. */
2009 /* Also abuse this to register additional C specific EABI attributes. */
2010 #define REGISTER_TARGET_PRAGMAS() do { \
2011 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
2012 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
2013 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
2014 arm_lang_object_attributes_init(); \
2015 } while (0)
2016
2017 /* Condition code information. */
2018 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2019 return the mode to be used for the comparison. */
2020
2021 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2022
2023 #define REVERSIBLE_CC_MODE(MODE) 1
2024
2025 #define REVERSE_CONDITION(CODE,MODE) \
2026 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2027 ? reverse_condition_maybe_unordered (code) \
2028 : reverse_condition (code))
2029
2030 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
2031 (CODE) = arm_canonicalize_comparison (CODE, &(OP0), &(OP1))
2032
2033 /* The arm5 clz instruction returns 32. */
2034 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2035 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2036 \f
2037 #define CC_STATUS_INIT \
2038 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2039
2040 #undef ASM_APP_OFF
2041 #define ASM_APP_OFF (TARGET_THUMB1 ? "\t.code\t16\n" : \
2042 TARGET_THUMB2 ? "\t.thumb\n" : "")
2043
2044 /* Output a push or a pop instruction (only used when profiling).
2045 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2046 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2047 that r7 isn't used by the function profiler, so we can use it as a
2048 scratch reg. WARNING: This isn't safe in the general case! It may be
2049 sensitive to future changes in final.c:profile_function. */
2050 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2051 do \
2052 { \
2053 if (TARGET_ARM) \
2054 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
2055 STACK_POINTER_REGNUM, REGNO); \
2056 else if (TARGET_THUMB1 \
2057 && (REGNO) == STATIC_CHAIN_REGNUM) \
2058 { \
2059 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2060 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2061 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2062 } \
2063 else \
2064 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2065 } while (0)
2066
2067
2068 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2069 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2070 do \
2071 { \
2072 if (TARGET_ARM) \
2073 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
2074 STACK_POINTER_REGNUM, REGNO); \
2075 else if (TARGET_THUMB1 \
2076 && (REGNO) == STATIC_CHAIN_REGNUM) \
2077 { \
2078 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2079 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2080 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2081 } \
2082 else \
2083 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2084 } while (0)
2085
2086 /* Jump table alignment is explicit in ASM_OUTPUT_CASE_LABEL. */
2087 #define ADDR_VEC_ALIGN(JUMPTABLE) 0
2088
2089 /* This is how to output a label which precedes a jumptable. Since
2090 Thumb instructions are 2 bytes, we may need explicit alignment here. */
2091 #undef ASM_OUTPUT_CASE_LABEL
2092 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \
2093 do \
2094 { \
2095 if (TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) \
2096 ASM_OUTPUT_ALIGN (FILE, 2); \
2097 (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); \
2098 } \
2099 while (0)
2100
2101 /* Make sure subsequent insns are aligned after a TBB. */
2102 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE) \
2103 do \
2104 { \
2105 if (GET_MODE (PATTERN (JUMPTABLE)) == QImode) \
2106 ASM_OUTPUT_ALIGN (FILE, 1); \
2107 } \
2108 while (0)
2109
2110 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2111 do \
2112 { \
2113 if (TARGET_THUMB) \
2114 { \
2115 if (is_called_in_ARM_mode (DECL) \
2116 || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY \
2117 && cfun->is_thunk)) \
2118 fprintf (STREAM, "\t.code 32\n") ; \
2119 else if (TARGET_THUMB1) \
2120 fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ; \
2121 else \
2122 fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ; \
2123 } \
2124 if (TARGET_POKE_FUNCTION_NAME) \
2125 arm_poke_function_name (STREAM, (const char *) NAME); \
2126 } \
2127 while (0)
2128
2129 /* For aliases of functions we use .thumb_set instead. */
2130 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2131 do \
2132 { \
2133 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2134 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2135 \
2136 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2137 { \
2138 fprintf (FILE, "\t.thumb_set "); \
2139 assemble_name (FILE, LABEL1); \
2140 fprintf (FILE, ","); \
2141 assemble_name (FILE, LABEL2); \
2142 fprintf (FILE, "\n"); \
2143 } \
2144 else \
2145 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2146 } \
2147 while (0)
2148
2149 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2150 /* To support -falign-* switches we need to use .p2align so
2151 that alignment directives in code sections will be padded
2152 with no-op instructions, rather than zeroes. */
2153 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2154 if ((LOG) != 0) \
2155 { \
2156 if ((MAX_SKIP) == 0) \
2157 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2158 else \
2159 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2160 (int) (LOG), (int) (MAX_SKIP)); \
2161 }
2162 #endif
2163 \f
2164 /* Add two bytes to the length of conditionally executed Thumb-2
2165 instructions for the IT instruction. */
2166 #define ADJUST_INSN_LENGTH(insn, length) \
2167 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2168 length += 2;
2169
2170 /* Only perform branch elimination (by making instructions conditional) if
2171 we're optimizing. For Thumb-2 check if any IT instructions need
2172 outputting. */
2173 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2174 if (TARGET_ARM && optimize) \
2175 arm_final_prescan_insn (INSN); \
2176 else if (TARGET_THUMB2) \
2177 thumb2_final_prescan_insn (INSN); \
2178 else if (TARGET_THUMB1) \
2179 thumb1_final_prescan_insn (INSN)
2180
2181 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2182 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2183 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2184 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2185 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2186 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2187 : 0))))
2188
2189 /* A C expression whose value is RTL representing the value of the return
2190 address for the frame COUNT steps up from the current frame. */
2191
2192 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2193 arm_return_addr (COUNT, FRAME)
2194
2195 /* Mask of the bits in the PC that contain the real return address
2196 when running in 26-bit mode. */
2197 #define RETURN_ADDR_MASK26 (0x03fffffc)
2198
2199 /* Pick up the return address upon entry to a procedure. Used for
2200 dwarf2 unwind information. This also enables the table driven
2201 mechanism. */
2202 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2203 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2204
2205 /* Used to mask out junk bits from the return address, such as
2206 processor state, interrupt status, condition codes and the like. */
2207 #define MASK_RETURN_ADDR \
2208 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2209 in 26 bit mode, the condition codes must be masked out of the \
2210 return address. This does not apply to ARM6 and later processors \
2211 when running in 32 bit mode. */ \
2212 ((arm_arch4 || TARGET_THUMB) \
2213 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2214 : arm_gen_return_addr_mask ())
2215
2216 \f
2217 /* Do not emit .note.GNU-stack by default. */
2218 #ifndef NEED_INDICATE_EXEC_STACK
2219 #define NEED_INDICATE_EXEC_STACK 0
2220 #endif
2221
2222 /* The maximum number of parallel loads or stores we support in an ldm/stm
2223 instruction. */
2224 #define MAX_LDM_STM_OPS 4
2225
2226 #endif /* ! GCC_ARM_H */