]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/arm/arm.h
hooks.h (hook_bool_const_int_const_int_true): Declare.
[thirdparty/gcc.git] / gcc / config / arm / arm.h
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
6 and Martin Simmons (@harleqn.co.uk).
7 More major hacks by Richard Earnshaw (rearnsha@arm.com)
8 Minor hacks by Nick Clifton (nickc@cygnus.com)
9
10 This file is part of GCC.
11
12 GCC is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published
14 by the Free Software Foundation; either version 3, or (at your
15 option) any later version.
16
17 GCC is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
20 License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
25
26 #ifndef GCC_ARM_H
27 #define GCC_ARM_H
28
29 /* We can't use enum machine_mode inside a generator file because it
30 hasn't been created yet; we shouldn't be using any code that
31 needs the real definition though, so this ought to be safe. */
32 #ifdef GENERATOR_FILE
33 #define MACHMODE int
34 #else
35 #include "insn-modes.h"
36 #define MACHMODE enum machine_mode
37 #endif
38
39 #include "config/vxworks-dummy.h"
40
41 /* The architecture define. */
42 extern char arm_arch_name[];
43
44 /* Target CPU builtins. */
45 #define TARGET_CPU_CPP_BUILTINS() \
46 do \
47 { \
48 /* Define __arm__ even when in thumb mode, for \
49 consistency with armcc. */ \
50 builtin_define ("__arm__"); \
51 builtin_define ("__APCS_32__"); \
52 if (TARGET_THUMB) \
53 builtin_define ("__thumb__"); \
54 if (TARGET_THUMB2) \
55 builtin_define ("__thumb2__"); \
56 \
57 if (TARGET_BIG_END) \
58 { \
59 builtin_define ("__ARMEB__"); \
60 if (TARGET_THUMB) \
61 builtin_define ("__THUMBEB__"); \
62 if (TARGET_LITTLE_WORDS) \
63 builtin_define ("__ARMWEL__"); \
64 } \
65 else \
66 { \
67 builtin_define ("__ARMEL__"); \
68 if (TARGET_THUMB) \
69 builtin_define ("__THUMBEL__"); \
70 } \
71 \
72 if (TARGET_SOFT_FLOAT) \
73 builtin_define ("__SOFTFP__"); \
74 \
75 if (TARGET_VFP) \
76 builtin_define ("__VFP_FP__"); \
77 \
78 if (TARGET_NEON) \
79 builtin_define ("__ARM_NEON__"); \
80 \
81 /* Add a define for interworking. \
82 Needed when building libgcc.a. */ \
83 if (arm_cpp_interwork) \
84 builtin_define ("__THUMB_INTERWORK__"); \
85 \
86 builtin_assert ("cpu=arm"); \
87 builtin_assert ("machine=arm"); \
88 \
89 builtin_define (arm_arch_name); \
90 if (arm_arch_cirrus) \
91 builtin_define ("__MAVERICK__"); \
92 if (arm_arch_xscale) \
93 builtin_define ("__XSCALE__"); \
94 if (arm_arch_iwmmxt) \
95 builtin_define ("__IWMMXT__"); \
96 if (TARGET_AAPCS_BASED) \
97 builtin_define ("__ARM_EABI__"); \
98 } while (0)
99
100 /* The various ARM cores. */
101 enum processor_type
102 {
103 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
104 IDENT,
105 #include "arm-cores.def"
106 #undef ARM_CORE
107 /* Used to indicate that no processor has been specified. */
108 arm_none
109 };
110
111 enum target_cpus
112 {
113 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
114 TARGET_CPU_##IDENT,
115 #include "arm-cores.def"
116 #undef ARM_CORE
117 TARGET_CPU_generic
118 };
119
120 /* The processor for which instructions should be scheduled. */
121 extern enum processor_type arm_tune;
122
123 typedef enum arm_cond_code
124 {
125 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
126 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
127 }
128 arm_cc;
129
130 extern arm_cc arm_current_cc;
131
132 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
133
134 extern int arm_target_label;
135 extern int arm_ccfsm_state;
136 extern GTY(()) rtx arm_target_insn;
137 /* The label of the current constant pool. */
138 extern rtx pool_vector_label;
139 /* Set to 1 when a return insn is output, this means that the epilogue
140 is not needed. */
141 extern int return_used_this_function;
142 /* Callback to output language specific object attributes. */
143 extern void (*arm_lang_output_object_attributes_hook)(void);
144 \f
145 /* Just in case configure has failed to define anything. */
146 #ifndef TARGET_CPU_DEFAULT
147 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
148 #endif
149
150
151 #undef CPP_SPEC
152 #define CPP_SPEC "%(subtarget_cpp_spec) \
153 %{msoft-float:%{mhard-float: \
154 %e-msoft-float and -mhard_float may not be used together}} \
155 %{mbig-endian:%{mlittle-endian: \
156 %e-mbig-endian and -mlittle-endian may not be used together}}"
157
158 #ifndef CC1_SPEC
159 #define CC1_SPEC ""
160 #endif
161
162 /* This macro defines names of additional specifications to put in the specs
163 that can be used in various specifications like CC1_SPEC. Its definition
164 is an initializer with a subgrouping for each command option.
165
166 Each subgrouping contains a string constant, that defines the
167 specification name, and a string constant that used by the GCC driver
168 program.
169
170 Do not define this macro if it does not need to do anything. */
171 #define EXTRA_SPECS \
172 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
173 SUBTARGET_EXTRA_SPECS
174
175 #ifndef SUBTARGET_EXTRA_SPECS
176 #define SUBTARGET_EXTRA_SPECS
177 #endif
178
179 #ifndef SUBTARGET_CPP_SPEC
180 #define SUBTARGET_CPP_SPEC ""
181 #endif
182 \f
183 /* Run-time Target Specification. */
184 #ifndef TARGET_VERSION
185 #define TARGET_VERSION fputs (" (ARM/generic)", stderr);
186 #endif
187
188 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
189 /* Use hardware floating point instructions. */
190 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
191 /* Use hardware floating point calling convention. */
192 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
193 #define TARGET_FPA (arm_fp_model == ARM_FP_MODEL_FPA)
194 #define TARGET_MAVERICK (arm_fp_model == ARM_FP_MODEL_MAVERICK)
195 #define TARGET_VFP (arm_fp_model == ARM_FP_MODEL_VFP)
196 #define TARGET_IWMMXT (arm_arch_iwmmxt)
197 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
198 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
199 #define TARGET_ARM (! TARGET_THUMB)
200 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
201 #define TARGET_BACKTRACE (leaf_function_p () \
202 ? TARGET_TPCS_LEAF_FRAME \
203 : TARGET_TPCS_FRAME)
204 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN)
205 #define TARGET_AAPCS_BASED \
206 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
207
208 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
209 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
210
211 /* Only 16-bit thumb code. */
212 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
213 /* Arm or Thumb-2 32-bit code. */
214 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
215 /* 32-bit Thumb-2 code. */
216 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
217 /* Thumb-1 only. */
218 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
219
220 /* The following two macros concern the ability to execute coprocessor
221 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
222 only ever tested when we know we are generating for VFP hardware; we need
223 to be more careful with TARGET_NEON as noted below. */
224
225 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
226 #define TARGET_VFPD32 (arm_fp_model == ARM_FP_MODEL_VFP \
227 && (arm_fpu_arch == FPUTYPE_VFP3 \
228 || arm_fpu_arch == FPUTYPE_NEON \
229 || arm_fpu_arch == FPUTYPE_NEON_FP16))
230
231 /* FPU supports VFPv3 instructions. */
232 #define TARGET_VFP3 (arm_fp_model == ARM_FP_MODEL_VFP \
233 && (arm_fpu_arch == FPUTYPE_VFP3D16 \
234 || TARGET_VFPD32))
235
236 /* FPU supports NEON/VFP half-precision floating-point. */
237 #define TARGET_NEON_FP16 (arm_fpu_arch == FPUTYPE_NEON_FP16)
238
239 /* FPU supports Neon instructions. The setting of this macro gets
240 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
241 and TARGET_HARD_FLOAT to ensure that NEON instructions are
242 available. */
243 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
244 && arm_fp_model == ARM_FP_MODEL_VFP \
245 && (arm_fpu_arch == FPUTYPE_NEON \
246 || arm_fpu_arch == FPUTYPE_NEON_FP16))
247
248 /* "DSP" multiply instructions, eg. SMULxy. */
249 #define TARGET_DSP_MULTIPLY \
250 (TARGET_32BIT && arm_arch5e && arm_arch_notm)
251 /* Integer SIMD instructions, and extend-accumulate instructions. */
252 #define TARGET_INT_SIMD \
253 (TARGET_32BIT && arm_arch6 && arm_arch_notm)
254
255 /* Should MOVW/MOVT be used in preference to a constant pool. */
256 #define TARGET_USE_MOVT (arm_arch_thumb2 && !optimize_size)
257
258 /* We could use unified syntax for arm mode, but for now we just use it
259 for Thumb-2. */
260 #define TARGET_UNIFIED_ASM TARGET_THUMB2
261
262
263 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
264 then TARGET_AAPCS_BASED must be true -- but the converse does not
265 hold. TARGET_BPABI implies the use of the BPABI runtime library,
266 etc., in addition to just the AAPCS calling conventions. */
267 #ifndef TARGET_BPABI
268 #define TARGET_BPABI false
269 #endif
270
271 /* Support for a compile-time default CPU, et cetera. The rules are:
272 --with-arch is ignored if -march or -mcpu are specified.
273 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
274 by --with-arch.
275 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
276 by -march).
277 --with-float is ignored if -mhard-float, -msoft-float or -mfloat-abi are
278 specified.
279 --with-fpu is ignored if -mfpu is specified.
280 --with-abi is ignored is -mabi is specified. */
281 #define OPTION_DEFAULT_SPECS \
282 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
283 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
284 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
285 {"float", \
286 "%{!msoft-float:%{!mhard-float:%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}}}" }, \
287 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
288 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
289 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"},
290
291 /* Which floating point model to use. */
292 enum arm_fp_model
293 {
294 ARM_FP_MODEL_UNKNOWN,
295 /* FPA model (Hardware or software). */
296 ARM_FP_MODEL_FPA,
297 /* Cirrus Maverick floating point model. */
298 ARM_FP_MODEL_MAVERICK,
299 /* VFP floating point model. */
300 ARM_FP_MODEL_VFP
301 };
302
303 extern enum arm_fp_model arm_fp_model;
304
305 /* Which floating point hardware is available. Also update
306 fp_model_for_fpu in arm.c when adding entries to this list. */
307 enum fputype
308 {
309 /* No FP hardware. */
310 FPUTYPE_NONE,
311 /* Full FPA support. */
312 FPUTYPE_FPA,
313 /* Emulated FPA hardware, Issue 2 emulator (no LFM/SFM). */
314 FPUTYPE_FPA_EMU2,
315 /* Emulated FPA hardware, Issue 3 emulator. */
316 FPUTYPE_FPA_EMU3,
317 /* Cirrus Maverick floating point co-processor. */
318 FPUTYPE_MAVERICK,
319 /* VFP. */
320 FPUTYPE_VFP,
321 /* VFPv3-D16. */
322 FPUTYPE_VFP3D16,
323 /* VFPv3. */
324 FPUTYPE_VFP3,
325 /* Neon. */
326 FPUTYPE_NEON,
327 /* Neon with half-precision float extensions. */
328 FPUTYPE_NEON_FP16
329 };
330
331 /* Recast the floating point class to be the floating point attribute. */
332 #define arm_fpu_attr ((enum attr_fpu) arm_fpu_tune)
333
334 /* What type of floating point to tune for */
335 extern enum fputype arm_fpu_tune;
336
337 /* What type of floating point instructions are available */
338 extern enum fputype arm_fpu_arch;
339
340 enum float_abi_type
341 {
342 ARM_FLOAT_ABI_SOFT,
343 ARM_FLOAT_ABI_SOFTFP,
344 ARM_FLOAT_ABI_HARD
345 };
346
347 extern enum float_abi_type arm_float_abi;
348
349 #ifndef TARGET_DEFAULT_FLOAT_ABI
350 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
351 #endif
352
353 /* Which __fp16 format to use.
354 The enumeration values correspond to the numbering for the
355 Tag_ABI_FP_16bit_format attribute.
356 */
357 enum arm_fp16_format_type
358 {
359 ARM_FP16_FORMAT_NONE = 0,
360 ARM_FP16_FORMAT_IEEE = 1,
361 ARM_FP16_FORMAT_ALTERNATIVE = 2
362 };
363
364 extern enum arm_fp16_format_type arm_fp16_format;
365 #define LARGEST_EXPONENT_IS_NORMAL(bits) \
366 ((bits) == 16 && arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)
367
368 /* Which ABI to use. */
369 enum arm_abi_type
370 {
371 ARM_ABI_APCS,
372 ARM_ABI_ATPCS,
373 ARM_ABI_AAPCS,
374 ARM_ABI_IWMMXT,
375 ARM_ABI_AAPCS_LINUX
376 };
377
378 extern enum arm_abi_type arm_abi;
379
380 #ifndef ARM_DEFAULT_ABI
381 #define ARM_DEFAULT_ABI ARM_ABI_APCS
382 #endif
383
384 /* Which thread pointer access sequence to use. */
385 enum arm_tp_type {
386 TP_AUTO,
387 TP_SOFT,
388 TP_CP15
389 };
390
391 extern enum arm_tp_type target_thread_pointer;
392
393 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
394 extern int arm_arch3m;
395
396 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
397 extern int arm_arch4;
398
399 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
400 extern int arm_arch4t;
401
402 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
403 extern int arm_arch5;
404
405 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
406 extern int arm_arch5e;
407
408 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
409 extern int arm_arch6;
410
411 /* Nonzero if instructions not present in the 'M' profile can be used. */
412 extern int arm_arch_notm;
413
414 /* Nonzero if this chip can benefit from load scheduling. */
415 extern int arm_ld_sched;
416
417 /* Nonzero if generating thumb code. */
418 extern int thumb_code;
419
420 /* Nonzero if this chip is a StrongARM. */
421 extern int arm_tune_strongarm;
422
423 /* Nonzero if this chip is a Cirrus variant. */
424 extern int arm_arch_cirrus;
425
426 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
427 extern int arm_arch_iwmmxt;
428
429 /* Nonzero if this chip is an XScale. */
430 extern int arm_arch_xscale;
431
432 /* Nonzero if tuning for XScale. */
433 extern int arm_tune_xscale;
434
435 /* Nonzero if tuning for stores via the write buffer. */
436 extern int arm_tune_wbuf;
437
438 /* Nonzero if tuning for Cortex-A9. */
439 extern int arm_tune_cortex_a9;
440
441 /* Nonzero if we should define __THUMB_INTERWORK__ in the
442 preprocessor.
443 XXX This is a bit of a hack, it's intended to help work around
444 problems in GLD which doesn't understand that armv5t code is
445 interworking clean. */
446 extern int arm_cpp_interwork;
447
448 /* Nonzero if chip supports Thumb 2. */
449 extern int arm_arch_thumb2;
450
451 /* Nonzero if chip supports integer division instruction. */
452 extern int arm_arch_hwdiv;
453
454 #ifndef TARGET_DEFAULT
455 #define TARGET_DEFAULT (MASK_APCS_FRAME)
456 #endif
457
458 /* The frame pointer register used in gcc has nothing to do with debugging;
459 that is controlled by the APCS-FRAME option. */
460 #define CAN_DEBUG_WITHOUT_FP
461
462 #define OVERRIDE_OPTIONS arm_override_options ()
463
464 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
465 arm_optimization_options ((LEVEL), (SIZE))
466
467 /* Nonzero if PIC code requires explicit qualifiers to generate
468 PLT and GOT relocs rather than the assembler doing so implicitly.
469 Subtargets can override these if required. */
470 #ifndef NEED_GOT_RELOC
471 #define NEED_GOT_RELOC 0
472 #endif
473 #ifndef NEED_PLT_RELOC
474 #define NEED_PLT_RELOC 0
475 #endif
476
477 /* Nonzero if we need to refer to the GOT with a PC-relative
478 offset. In other words, generate
479
480 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
481
482 rather than
483
484 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
485
486 The default is true, which matches NetBSD. Subtargets can
487 override this if required. */
488 #ifndef GOT_PCREL
489 #define GOT_PCREL 1
490 #endif
491 \f
492 /* Target machine storage Layout. */
493
494
495 /* Define this macro if it is advisable to hold scalars in registers
496 in a wider mode than that declared by the program. In such cases,
497 the value is constrained to be within the bounds of the declared
498 type, but kept valid in the wider mode. The signedness of the
499 extension may differ from that of the type. */
500
501 /* It is far faster to zero extend chars than to sign extend them */
502
503 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
504 if (GET_MODE_CLASS (MODE) == MODE_INT \
505 && GET_MODE_SIZE (MODE) < 4) \
506 { \
507 if (MODE == QImode) \
508 UNSIGNEDP = 1; \
509 else if (MODE == HImode) \
510 UNSIGNEDP = 1; \
511 (MODE) = SImode; \
512 }
513
514 /* Define this if most significant bit is lowest numbered
515 in instructions that operate on numbered bit-fields. */
516 #define BITS_BIG_ENDIAN 0
517
518 /* Define this if most significant byte of a word is the lowest numbered.
519 Most ARM processors are run in little endian mode, so that is the default.
520 If you want to have it run-time selectable, change the definition in a
521 cover file to be TARGET_BIG_ENDIAN. */
522 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
523
524 /* Define this if most significant word of a multiword number is the lowest
525 numbered.
526 This is always false, even when in big-endian mode. */
527 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
528
529 /* LIBGCC2_WORDS_BIG_ENDIAN has to be a constant, so we define this based
530 on processor pre-defineds when compiling libgcc2.c. */
531 #if defined(__ARMEB__) && !defined(__ARMWEL__)
532 #define LIBGCC2_WORDS_BIG_ENDIAN 1
533 #else
534 #define LIBGCC2_WORDS_BIG_ENDIAN 0
535 #endif
536
537 /* Define this if most significant word of doubles is the lowest numbered.
538 The rules are different based on whether or not we use FPA-format,
539 VFP-format or some other floating point co-processor's format doubles. */
540 #define FLOAT_WORDS_BIG_ENDIAN (arm_float_words_big_endian ())
541
542 #define UNITS_PER_WORD 4
543
544 /* Use the option -mvectorize-with-neon-quad to override the use of doubleword
545 registers when autovectorizing for Neon, at least until multiple vector
546 widths are supported properly by the middle-end. */
547 #define UNITS_PER_SIMD_WORD(MODE) \
548 (TARGET_NEON ? (TARGET_NEON_VECTORIZE_QUAD ? 16 : 8) : UNITS_PER_WORD)
549
550 /* True if natural alignment is used for doubleword types. */
551 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
552
553 #define DOUBLEWORD_ALIGNMENT 64
554
555 #define PARM_BOUNDARY 32
556
557 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
558
559 #define PREFERRED_STACK_BOUNDARY \
560 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
561
562 #define FUNCTION_BOUNDARY ((TARGET_THUMB && optimize_size) ? 16 : 32)
563
564 /* The lowest bit is used to indicate Thumb-mode functions, so the
565 vbit must go into the delta field of pointers to member
566 functions. */
567 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
568
569 #define EMPTY_FIELD_BOUNDARY 32
570
571 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
572
573 /* XXX Blah -- this macro is used directly by libobjc. Since it
574 supports no vector modes, cut out the complexity and fall back
575 on BIGGEST_FIELD_ALIGNMENT. */
576 #ifdef IN_TARGET_LIBS
577 #define BIGGEST_FIELD_ALIGNMENT 64
578 #endif
579
580 /* Make strings word-aligned so strcpy from constants will be faster. */
581 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
582
583 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
584 ((TREE_CODE (EXP) == STRING_CST \
585 && !optimize_size \
586 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
587 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
588
589 /* Align definitions of arrays, unions and structures so that
590 initializations and copies can be made more efficient. This is not
591 ABI-changing, so it only affects places where we can see the
592 definition. */
593 #define DATA_ALIGNMENT(EXP, ALIGN) \
594 ((((ALIGN) < BITS_PER_WORD) \
595 && (TREE_CODE (EXP) == ARRAY_TYPE \
596 || TREE_CODE (EXP) == UNION_TYPE \
597 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
598
599 /* Similarly, make sure that objects on the stack are sensibly aligned. */
600 #define LOCAL_ALIGNMENT(EXP, ALIGN) DATA_ALIGNMENT(EXP, ALIGN)
601
602 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
603 value set in previous versions of this toolchain was 8, which produces more
604 compact structures. The command line option -mstructure_size_boundary=<n>
605 can be used to change this value. For compatibility with the ARM SDK
606 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
607 0020D) page 2-20 says "Structures are aligned on word boundaries".
608 The AAPCS specifies a value of 8. */
609 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
610 extern int arm_structure_size_boundary;
611
612 /* This is the value used to initialize arm_structure_size_boundary. If a
613 particular arm target wants to change the default value it should change
614 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
615 for an example of this. */
616 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
617 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
618 #endif
619
620 /* Nonzero if move instructions will actually fail to work
621 when given unaligned data. */
622 #define STRICT_ALIGNMENT 1
623
624 /* wchar_t is unsigned under the AAPCS. */
625 #ifndef WCHAR_TYPE
626 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
627
628 #define WCHAR_TYPE_SIZE BITS_PER_WORD
629 #endif
630
631 #ifndef SIZE_TYPE
632 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
633 #endif
634
635 #ifndef PTRDIFF_TYPE
636 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
637 #endif
638
639 /* AAPCS requires that structure alignment is affected by bitfields. */
640 #ifndef PCC_BITFIELD_TYPE_MATTERS
641 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
642 #endif
643
644 \f
645 /* Standard register usage. */
646
647 /* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
648 (S - saved over call).
649
650 r0 * argument word/integer result
651 r1-r3 argument word
652
653 r4-r8 S register variable
654 r9 S (rfp) register variable (real frame pointer)
655
656 r10 F S (sl) stack limit (used by -mapcs-stack-check)
657 r11 F S (fp) argument pointer
658 r12 (ip) temp workspace
659 r13 F S (sp) lower end of current stack frame
660 r14 (lr) link address/workspace
661 r15 F (pc) program counter
662
663 f0 floating point result
664 f1-f3 floating point scratch
665
666 f4-f7 S floating point variable
667
668 cc This is NOT a real register, but is used internally
669 to represent things that use or set the condition
670 codes.
671 sfp This isn't either. It is used during rtl generation
672 since the offset between the frame pointer and the
673 auto's isn't known until after register allocation.
674 afp Nor this, we only need this because of non-local
675 goto. Without it fp appears to be used and the
676 elimination code won't get rid of sfp. It tracks
677 fp exactly at all times.
678
679 *: See CONDITIONAL_REGISTER_USAGE */
680
681 /*
682 mvf0 Cirrus floating point result
683 mvf1-mvf3 Cirrus floating point scratch
684 mvf4-mvf15 S Cirrus floating point variable. */
685
686 /* s0-s15 VFP scratch (aka d0-d7).
687 s16-s31 S VFP variable (aka d8-d15).
688 vfpcc Not a real register. Represents the VFP condition
689 code flags. */
690
691 /* The stack backtrace structure is as follows:
692 fp points to here: | save code pointer | [fp]
693 | return link value | [fp, #-4]
694 | return sp value | [fp, #-8]
695 | return fp value | [fp, #-12]
696 [| saved r10 value |]
697 [| saved r9 value |]
698 [| saved r8 value |]
699 [| saved r7 value |]
700 [| saved r6 value |]
701 [| saved r5 value |]
702 [| saved r4 value |]
703 [| saved r3 value |]
704 [| saved r2 value |]
705 [| saved r1 value |]
706 [| saved r0 value |]
707 [| saved f7 value |] three words
708 [| saved f6 value |] three words
709 [| saved f5 value |] three words
710 [| saved f4 value |] three words
711 r0-r3 are not normally saved in a C function. */
712
713 /* 1 for registers that have pervasive standard uses
714 and are not available for the register allocator. */
715 #define FIXED_REGISTERS \
716 { \
717 0,0,0,0,0,0,0,0, \
718 0,0,0,0,0,1,0,1, \
719 0,0,0,0,0,0,0,0, \
720 1,1,1, \
721 1,1,1,1,1,1,1,1, \
722 1,1,1,1,1,1,1,1, \
723 1,1,1,1,1,1,1,1, \
724 1,1,1,1,1,1,1,1, \
725 1,1,1,1, \
726 1,1,1,1,1,1,1,1, \
727 1,1,1,1,1,1,1,1, \
728 1,1,1,1,1,1,1,1, \
729 1,1,1,1,1,1,1,1, \
730 1,1,1,1,1,1,1,1, \
731 1,1,1,1,1,1,1,1, \
732 1,1,1,1,1,1,1,1, \
733 1,1,1,1,1,1,1,1, \
734 1 \
735 }
736
737 /* 1 for registers not available across function calls.
738 These must include the FIXED_REGISTERS and also any
739 registers that can be used without being saved.
740 The latter must include the registers where values are returned
741 and the register where structure-value addresses are passed.
742 Aside from that, you can include as many other registers as you like.
743 The CC is not preserved over function calls on the ARM 6, so it is
744 easier to assume this for all. SFP is preserved, since FP is. */
745 #define CALL_USED_REGISTERS \
746 { \
747 1,1,1,1,0,0,0,0, \
748 0,0,0,0,1,1,1,1, \
749 1,1,1,1,0,0,0,0, \
750 1,1,1, \
751 1,1,1,1,1,1,1,1, \
752 1,1,1,1,1,1,1,1, \
753 1,1,1,1,1,1,1,1, \
754 1,1,1,1,1,1,1,1, \
755 1,1,1,1, \
756 1,1,1,1,1,1,1,1, \
757 1,1,1,1,1,1,1,1, \
758 1,1,1,1,1,1,1,1, \
759 1,1,1,1,1,1,1,1, \
760 1,1,1,1,1,1,1,1, \
761 1,1,1,1,1,1,1,1, \
762 1,1,1,1,1,1,1,1, \
763 1,1,1,1,1,1,1,1, \
764 1 \
765 }
766
767 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
768 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
769 #endif
770
771 #define CONDITIONAL_REGISTER_USAGE \
772 { \
773 int regno; \
774 \
775 if (TARGET_SOFT_FLOAT || TARGET_THUMB1 || !TARGET_FPA) \
776 { \
777 for (regno = FIRST_FPA_REGNUM; \
778 regno <= LAST_FPA_REGNUM; ++regno) \
779 fixed_regs[regno] = call_used_regs[regno] = 1; \
780 } \
781 \
782 if (TARGET_THUMB && optimize_size) \
783 { \
784 /* When optimizing for size, it's better not to use \
785 the HI regs, because of the overhead of stacking \
786 them. */ \
787 /* ??? Is this still true for thumb2? */ \
788 for (regno = FIRST_HI_REGNUM; \
789 regno <= LAST_HI_REGNUM; ++regno) \
790 fixed_regs[regno] = call_used_regs[regno] = 1; \
791 } \
792 \
793 /* The link register can be clobbered by any branch insn, \
794 but we have no way to track that at present, so mark \
795 it as unavailable. */ \
796 if (TARGET_THUMB1) \
797 fixed_regs[LR_REGNUM] = call_used_regs[LR_REGNUM] = 1; \
798 \
799 if (TARGET_32BIT && TARGET_HARD_FLOAT) \
800 { \
801 if (TARGET_MAVERICK) \
802 { \
803 for (regno = FIRST_FPA_REGNUM; \
804 regno <= LAST_FPA_REGNUM; ++ regno) \
805 fixed_regs[regno] = call_used_regs[regno] = 1; \
806 for (regno = FIRST_CIRRUS_FP_REGNUM; \
807 regno <= LAST_CIRRUS_FP_REGNUM; ++ regno) \
808 { \
809 fixed_regs[regno] = 0; \
810 call_used_regs[regno] = regno < FIRST_CIRRUS_FP_REGNUM + 4; \
811 } \
812 } \
813 if (TARGET_VFP) \
814 { \
815 /* VFPv3 registers are disabled when earlier VFP \
816 versions are selected due to the definition of \
817 LAST_VFP_REGNUM. */ \
818 for (regno = FIRST_VFP_REGNUM; \
819 regno <= LAST_VFP_REGNUM; ++ regno) \
820 { \
821 fixed_regs[regno] = 0; \
822 call_used_regs[regno] = regno < FIRST_VFP_REGNUM + 16 \
823 || regno >= FIRST_VFP_REGNUM + 32; \
824 } \
825 } \
826 } \
827 \
828 if (TARGET_REALLY_IWMMXT) \
829 { \
830 regno = FIRST_IWMMXT_GR_REGNUM; \
831 /* The 2002/10/09 revision of the XScale ABI has wCG0 \
832 and wCG1 as call-preserved registers. The 2002/11/21 \
833 revision changed this so that all wCG registers are \
834 scratch registers. */ \
835 for (regno = FIRST_IWMMXT_GR_REGNUM; \
836 regno <= LAST_IWMMXT_GR_REGNUM; ++ regno) \
837 fixed_regs[regno] = 0; \
838 /* The XScale ABI has wR0 - wR9 as scratch registers, \
839 the rest as call-preserved registers. */ \
840 for (regno = FIRST_IWMMXT_REGNUM; \
841 regno <= LAST_IWMMXT_REGNUM; ++ regno) \
842 { \
843 fixed_regs[regno] = 0; \
844 call_used_regs[regno] = regno < FIRST_IWMMXT_REGNUM + 10; \
845 } \
846 } \
847 \
848 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
849 { \
850 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
851 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
852 } \
853 else if (TARGET_APCS_STACK) \
854 { \
855 fixed_regs[10] = 1; \
856 call_used_regs[10] = 1; \
857 } \
858 /* -mcaller-super-interworking reserves r11 for calls to \
859 _interwork_r11_call_via_rN(). Making the register global \
860 is an easy way of ensuring that it remains valid for all \
861 calls. */ \
862 if (TARGET_APCS_FRAME || TARGET_CALLER_INTERWORKING \
863 || TARGET_TPCS_FRAME || TARGET_TPCS_LEAF_FRAME) \
864 { \
865 fixed_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \
866 call_used_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \
867 if (TARGET_CALLER_INTERWORKING) \
868 global_regs[ARM_HARD_FRAME_POINTER_REGNUM] = 1; \
869 } \
870 SUBTARGET_CONDITIONAL_REGISTER_USAGE \
871 }
872
873 /* These are a couple of extensions to the formats accepted
874 by asm_fprintf:
875 %@ prints out ASM_COMMENT_START
876 %r prints out REGISTER_PREFIX reg_names[arg] */
877 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
878 case '@': \
879 fputs (ASM_COMMENT_START, FILE); \
880 break; \
881 \
882 case 'r': \
883 fputs (REGISTER_PREFIX, FILE); \
884 fputs (reg_names [va_arg (ARGS, int)], FILE); \
885 break;
886
887 /* Round X up to the nearest word. */
888 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
889
890 /* Convert fron bytes to ints. */
891 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
892
893 /* The number of (integer) registers required to hold a quantity of type MODE.
894 Also used for VFP registers. */
895 #define ARM_NUM_REGS(MODE) \
896 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
897
898 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
899 #define ARM_NUM_REGS2(MODE, TYPE) \
900 ARM_NUM_INTS ((MODE) == BLKmode ? \
901 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
902
903 /* The number of (integer) argument register available. */
904 #define NUM_ARG_REGS 4
905
906 /* And similarly for the VFP. */
907 #define NUM_VFP_ARG_REGS 16
908
909 /* Return the register number of the N'th (integer) argument. */
910 #define ARG_REGISTER(N) (N - 1)
911
912 /* Specify the registers used for certain standard purposes.
913 The values of these macros are register numbers. */
914
915 /* The number of the last argument register. */
916 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
917
918 /* The numbers of the Thumb register ranges. */
919 #define FIRST_LO_REGNUM 0
920 #define LAST_LO_REGNUM 7
921 #define FIRST_HI_REGNUM 8
922 #define LAST_HI_REGNUM 11
923
924 #ifndef TARGET_UNWIND_INFO
925 /* We use sjlj exceptions for backwards compatibility. */
926 #define MUST_USE_SJLJ_EXCEPTIONS 1
927 #endif
928
929 /* We can generate DWARF2 Unwind info, even though we don't use it. */
930 #define DWARF2_UNWIND_INFO 1
931
932 /* Use r0 and r1 to pass exception handling information. */
933 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
934
935 /* The register that holds the return address in exception handlers. */
936 #define ARM_EH_STACKADJ_REGNUM 2
937 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
938
939 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
940 as an invisible last argument (possible since varargs don't exist in
941 Pascal), so the following is not true. */
942 #define STATIC_CHAIN_REGNUM 12
943
944 /* Define this to be where the real frame pointer is if it is not possible to
945 work out the offset between the frame pointer and the automatic variables
946 until after register allocation has taken place. FRAME_POINTER_REGNUM
947 should point to a special register that we will make sure is eliminated.
948
949 For the Thumb we have another problem. The TPCS defines the frame pointer
950 as r11, and GCC believes that it is always possible to use the frame pointer
951 as base register for addressing purposes. (See comments in
952 find_reloads_address()). But - the Thumb does not allow high registers,
953 including r11, to be used as base address registers. Hence our problem.
954
955 The solution used here, and in the old thumb port is to use r7 instead of
956 r11 as the hard frame pointer and to have special code to generate
957 backtrace structures on the stack (if required to do so via a command line
958 option) using r11. This is the only 'user visible' use of r11 as a frame
959 pointer. */
960 #define ARM_HARD_FRAME_POINTER_REGNUM 11
961 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
962
963 #define HARD_FRAME_POINTER_REGNUM \
964 (TARGET_ARM \
965 ? ARM_HARD_FRAME_POINTER_REGNUM \
966 : THUMB_HARD_FRAME_POINTER_REGNUM)
967
968 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
969
970 /* Register to use for pushing function arguments. */
971 #define STACK_POINTER_REGNUM SP_REGNUM
972
973 /* ARM floating pointer registers. */
974 #define FIRST_FPA_REGNUM 16
975 #define LAST_FPA_REGNUM 23
976 #define IS_FPA_REGNUM(REGNUM) \
977 (((REGNUM) >= FIRST_FPA_REGNUM) && ((REGNUM) <= LAST_FPA_REGNUM))
978
979 #define FIRST_IWMMXT_GR_REGNUM 43
980 #define LAST_IWMMXT_GR_REGNUM 46
981 #define FIRST_IWMMXT_REGNUM 47
982 #define LAST_IWMMXT_REGNUM 62
983 #define IS_IWMMXT_REGNUM(REGNUM) \
984 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
985 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
986 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
987
988 /* Base register for access to local variables of the function. */
989 #define FRAME_POINTER_REGNUM 25
990
991 /* Base register for access to arguments of the function. */
992 #define ARG_POINTER_REGNUM 26
993
994 #define FIRST_CIRRUS_FP_REGNUM 27
995 #define LAST_CIRRUS_FP_REGNUM 42
996 #define IS_CIRRUS_REGNUM(REGNUM) \
997 (((REGNUM) >= FIRST_CIRRUS_FP_REGNUM) && ((REGNUM) <= LAST_CIRRUS_FP_REGNUM))
998
999 #define FIRST_VFP_REGNUM 63
1000 #define D7_VFP_REGNUM 78 /* Registers 77 and 78 == VFP reg D7. */
1001 #define LAST_VFP_REGNUM \
1002 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
1003
1004 #define IS_VFP_REGNUM(REGNUM) \
1005 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
1006
1007 /* VFP registers are split into two types: those defined by VFP versions < 3
1008 have D registers overlaid on consecutive pairs of S registers. VFP version 3
1009 defines 16 new D registers (d16-d31) which, for simplicity and correctness
1010 in various parts of the backend, we implement as "fake" single-precision
1011 registers (which would be S32-S63, but cannot be used in that way). The
1012 following macros define these ranges of registers. */
1013 #define LAST_LO_VFP_REGNUM 94
1014 #define FIRST_HI_VFP_REGNUM 95
1015 #define LAST_HI_VFP_REGNUM 126
1016
1017 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
1018 ((REGNUM) <= LAST_LO_VFP_REGNUM)
1019
1020 /* DFmode values are only valid in even register pairs. */
1021 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
1022 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
1023
1024 /* Neon Quad values must start at a multiple of four registers. */
1025 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
1026 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
1027
1028 /* Neon structures of vectors must be in even register pairs and there
1029 must be enough registers available. Because of various patterns
1030 requiring quad registers, we require them to start at a multiple of
1031 four. */
1032 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
1033 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
1034 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
1035
1036 /* The number of hard registers is 16 ARM + 8 FPA + 1 CC + 1 SFP + 1 AFP. */
1037 /* + 16 Cirrus registers take us up to 43. */
1038 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
1039 /* VFP (VFP3) adds 32 (64) + 1 more. */
1040 #define FIRST_PSEUDO_REGISTER 128
1041
1042 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1043
1044 /* Value should be nonzero if functions must have frame pointers.
1045 Zero means the frame pointer need not be set up (and parms may be accessed
1046 via the stack pointer) in functions that seem suitable.
1047 If we have to have a frame pointer we might as well make use of it.
1048 APCS says that the frame pointer does not need to be pushed in leaf
1049 functions, or simple tail call functions. */
1050
1051 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1052 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1053 #endif
1054
1055 /* Return number of consecutive hard regs needed starting at reg REGNO
1056 to hold something of mode MODE.
1057 This is ordinarily the length in words of a value of mode MODE
1058 but can be less for certain modes in special long registers.
1059
1060 On the ARM regs are UNITS_PER_WORD bits wide; FPA regs can hold any FP
1061 mode. */
1062 #define HARD_REGNO_NREGS(REGNO, MODE) \
1063 ((TARGET_32BIT \
1064 && REGNO >= FIRST_FPA_REGNUM \
1065 && REGNO != FRAME_POINTER_REGNUM \
1066 && REGNO != ARG_POINTER_REGNUM) \
1067 && !IS_VFP_REGNUM (REGNO) \
1068 ? 1 : ARM_NUM_REGS (MODE))
1069
1070 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
1071 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1072 arm_hard_regno_mode_ok ((REGNO), (MODE))
1073
1074 /* Value is 1 if it is a good idea to tie two pseudo registers
1075 when one has mode MODE1 and one has mode MODE2.
1076 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1077 for any hard reg, then this must be 0 for correct output. */
1078 #define MODES_TIEABLE_P(MODE1, MODE2) \
1079 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
1080
1081 #define VALID_IWMMXT_REG_MODE(MODE) \
1082 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1083
1084 /* Modes valid for Neon D registers. */
1085 #define VALID_NEON_DREG_MODE(MODE) \
1086 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1087 || (MODE) == V2SFmode || (MODE) == DImode)
1088
1089 /* Modes valid for Neon Q registers. */
1090 #define VALID_NEON_QREG_MODE(MODE) \
1091 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1092 || (MODE) == V4SFmode || (MODE) == V2DImode)
1093
1094 /* Structure modes valid for Neon registers. */
1095 #define VALID_NEON_STRUCT_MODE(MODE) \
1096 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1097 || (MODE) == CImode || (MODE) == XImode)
1098
1099 /* The order in which register should be allocated. It is good to use ip
1100 since no saving is required (though calls clobber it) and it never contains
1101 function parameters. It is quite good to use lr since other calls may
1102 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1103 least likely to contain a function parameter; in addition results are
1104 returned in r0.
1105 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1106 then D8-D15. The reason for doing this is to attempt to reduce register
1107 pressure when both single- and double-precision registers are used in a
1108 function. */
1109
1110 #define REG_ALLOC_ORDER \
1111 { \
1112 3, 2, 1, 0, 12, 14, 4, 5, \
1113 6, 7, 8, 10, 9, 11, 13, 15, \
1114 16, 17, 18, 19, 20, 21, 22, 23, \
1115 27, 28, 29, 30, 31, 32, 33, 34, \
1116 35, 36, 37, 38, 39, 40, 41, 42, \
1117 43, 44, 45, 46, 47, 48, 49, 50, \
1118 51, 52, 53, 54, 55, 56, 57, 58, \
1119 59, 60, 61, 62, \
1120 24, 25, 26, \
1121 95, 96, 97, 98, 99, 100, 101, 102, \
1122 103, 104, 105, 106, 107, 108, 109, 110, \
1123 111, 112, 113, 114, 115, 116, 117, 118, \
1124 119, 120, 121, 122, 123, 124, 125, 126, \
1125 78, 77, 76, 75, 74, 73, 72, 71, \
1126 70, 69, 68, 67, 66, 65, 64, 63, \
1127 79, 80, 81, 82, 83, 84, 85, 86, \
1128 87, 88, 89, 90, 91, 92, 93, 94, \
1129 127 \
1130 }
1131
1132 /* Use different register alloc ordering for Thumb. */
1133 #define ORDER_REGS_FOR_LOCAL_ALLOC arm_order_regs_for_local_alloc ()
1134
1135 /* Interrupt functions can only use registers that have already been
1136 saved by the prologue, even if they would normally be
1137 call-clobbered. */
1138 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1139 (! IS_INTERRUPT (cfun->machine->func_type) || \
1140 df_regs_ever_live_p (DST))
1141 \f
1142 /* Register and constant classes. */
1143
1144 /* Register classes: used to be simple, just all ARM regs or all FPA regs
1145 Now that the Thumb is involved it has become more complicated. */
1146 enum reg_class
1147 {
1148 NO_REGS,
1149 FPA_REGS,
1150 CIRRUS_REGS,
1151 VFP_D0_D7_REGS,
1152 VFP_LO_REGS,
1153 VFP_HI_REGS,
1154 VFP_REGS,
1155 IWMMXT_GR_REGS,
1156 IWMMXT_REGS,
1157 LO_REGS,
1158 STACK_REG,
1159 BASE_REGS,
1160 HI_REGS,
1161 CC_REG,
1162 VFPCC_REG,
1163 GENERAL_REGS,
1164 CORE_REGS,
1165 ALL_REGS,
1166 LIM_REG_CLASSES
1167 };
1168
1169 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1170
1171 /* Give names of register classes as strings for dump file. */
1172 #define REG_CLASS_NAMES \
1173 { \
1174 "NO_REGS", \
1175 "FPA_REGS", \
1176 "CIRRUS_REGS", \
1177 "VFP_D0_D7_REGS", \
1178 "VFP_LO_REGS", \
1179 "VFP_HI_REGS", \
1180 "VFP_REGS", \
1181 "IWMMXT_GR_REGS", \
1182 "IWMMXT_REGS", \
1183 "LO_REGS", \
1184 "STACK_REG", \
1185 "BASE_REGS", \
1186 "HI_REGS", \
1187 "CC_REG", \
1188 "VFPCC_REG", \
1189 "GENERAL_REGS", \
1190 "CORE_REGS", \
1191 "ALL_REGS", \
1192 }
1193
1194 /* Define which registers fit in which classes.
1195 This is an initializer for a vector of HARD_REG_SET
1196 of length N_REG_CLASSES. */
1197 #define REG_CLASS_CONTENTS \
1198 { \
1199 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1200 { 0x00FF0000, 0x00000000, 0x00000000, 0x00000000 }, /* FPA_REGS */ \
1201 { 0xF8000000, 0x000007FF, 0x00000000, 0x00000000 }, /* CIRRUS_REGS */ \
1202 { 0x00000000, 0x80000000, 0x00007FFF, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1203 { 0x00000000, 0x80000000, 0x7FFFFFFF, 0x00000000 }, /* VFP_LO_REGS */ \
1204 { 0x00000000, 0x00000000, 0x80000000, 0x7FFFFFFF }, /* VFP_HI_REGS */ \
1205 { 0x00000000, 0x80000000, 0xFFFFFFFF, 0x7FFFFFFF }, /* VFP_REGS */ \
1206 { 0x00000000, 0x00007800, 0x00000000, 0x00000000 }, /* IWMMXT_GR_REGS */ \
1207 { 0x00000000, 0x7FFF8000, 0x00000000, 0x00000000 }, /* IWMMXT_REGS */ \
1208 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1209 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1210 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1211 { 0x0000DF00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1212 { 0x01000000, 0x00000000, 0x00000000, 0x00000000 }, /* CC_REG */ \
1213 { 0x00000000, 0x00000000, 0x00000000, 0x80000000 }, /* VFPCC_REG */ \
1214 { 0x0200DFFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1215 { 0x0200FFFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1216 { 0xFAFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF } /* ALL_REGS */ \
1217 }
1218
1219 /* Any of the VFP register classes. */
1220 #define IS_VFP_CLASS(X) \
1221 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1222 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1223
1224 /* The same information, inverted:
1225 Return the class number of the smallest class containing
1226 reg number REGNO. This could be a conditional expression
1227 or could index an array. */
1228 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1229
1230 /* The following macro defines cover classes for Integrated Register
1231 Allocator. Cover classes is a set of non-intersected register
1232 classes covering all hard registers used for register allocation
1233 purpose. Any move between two registers of a cover class should be
1234 cheaper than load or store of the registers. The macro value is
1235 array of register classes with LIM_REG_CLASSES used as the end
1236 marker. */
1237
1238 #define IRA_COVER_CLASSES \
1239 { \
1240 GENERAL_REGS, FPA_REGS, CIRRUS_REGS, VFP_REGS, IWMMXT_GR_REGS, IWMMXT_REGS,\
1241 LIM_REG_CLASSES \
1242 }
1243
1244 /* FPA registers can't do subreg as all values are reformatted to internal
1245 precision. VFP registers may only be accessed in the mode they
1246 were set. */
1247 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1248 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1249 ? reg_classes_intersect_p (FPA_REGS, (CLASS)) \
1250 || reg_classes_intersect_p (VFP_REGS, (CLASS)) \
1251 : 0)
1252
1253 /* We need to define this for LO_REGS on thumb. Otherwise we can end up
1254 using r0-r4 for function arguments, r7 for the stack frame and don't
1255 have enough left over to do doubleword arithmetic. */
1256 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1257 ((TARGET_THUMB && (CLASS) == LO_REGS) \
1258 || (CLASS) == CC_REG)
1259
1260 /* The class value for index registers, and the one for base regs. */
1261 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1262 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1263
1264 /* For the Thumb the high registers cannot be used as base registers
1265 when addressing quantities in QI or HI mode; if we don't know the
1266 mode, then we must be conservative. */
1267 #define MODE_BASE_REG_CLASS(MODE) \
1268 (TARGET_32BIT ? CORE_REGS : \
1269 (((MODE) == SImode) ? BASE_REGS : LO_REGS))
1270
1271 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1272 instead of BASE_REGS. */
1273 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1274
1275 /* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1276 registers explicitly used in the rtl to be used as spill registers
1277 but prevents the compiler from extending the lifetime of these
1278 registers. */
1279 #define SMALL_REGISTER_CLASSES TARGET_THUMB1
1280
1281 /* Given an rtx X being reloaded into a reg required to be
1282 in class CLASS, return the class of reg to actually use.
1283 In general this is just CLASS, but for the Thumb core registers and
1284 immediate constants we prefer a LO_REGS class or a subset. */
1285 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1286 (TARGET_ARM ? (CLASS) : \
1287 ((CLASS) == GENERAL_REGS || (CLASS) == HI_REGS \
1288 || (CLASS) == NO_REGS || (CLASS) == STACK_REG \
1289 ? LO_REGS : (CLASS)))
1290
1291 /* Must leave BASE_REGS reloads alone */
1292 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1293 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1294 ? ((true_regnum (X) == -1 ? LO_REGS \
1295 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1296 : NO_REGS)) \
1297 : NO_REGS)
1298
1299 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1300 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1301 ? ((true_regnum (X) == -1 ? LO_REGS \
1302 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1303 : NO_REGS)) \
1304 : NO_REGS)
1305
1306 /* Return the register class of a scratch register needed to copy IN into
1307 or out of a register in CLASS in MODE. If it can be done directly,
1308 NO_REGS is returned. */
1309 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1310 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1311 ((TARGET_VFP && TARGET_HARD_FLOAT \
1312 && IS_VFP_CLASS (CLASS)) \
1313 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1314 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1315 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1316 : TARGET_32BIT \
1317 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1318 ? GENERAL_REGS : NO_REGS) \
1319 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1320
1321 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1322 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1323 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1324 ((TARGET_VFP && TARGET_HARD_FLOAT \
1325 && IS_VFP_CLASS (CLASS)) \
1326 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1327 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1328 coproc_secondary_reload_class (MODE, X, TRUE) : \
1329 /* Cannot load constants into Cirrus registers. */ \
1330 (TARGET_MAVERICK && TARGET_HARD_FLOAT \
1331 && (CLASS) == CIRRUS_REGS \
1332 && (CONSTANT_P (X) || GET_CODE (X) == SYMBOL_REF)) \
1333 ? GENERAL_REGS : \
1334 (TARGET_32BIT ? \
1335 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1336 && CONSTANT_P (X)) \
1337 ? GENERAL_REGS : \
1338 (((MODE) == HImode && ! arm_arch4 \
1339 && (GET_CODE (X) == MEM \
1340 || ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG) \
1341 && true_regnum (X) == -1))) \
1342 ? GENERAL_REGS : NO_REGS) \
1343 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1344
1345 /* Try a machine-dependent way of reloading an illegitimate address
1346 operand. If we find one, push the reload and jump to WIN. This
1347 macro is used in only one place: `find_reloads_address' in reload.c.
1348
1349 For the ARM, we wish to handle large displacements off a base
1350 register by splitting the addend across a MOV and the mem insn.
1351 This can cut the number of reloads needed. */
1352 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
1353 do \
1354 { \
1355 if (GET_CODE (X) == PLUS \
1356 && GET_CODE (XEXP (X, 0)) == REG \
1357 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
1358 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
1359 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1360 { \
1361 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1362 HOST_WIDE_INT low, high; \
1363 \
1364 if (MODE == DImode || (MODE == DFmode && TARGET_SOFT_FLOAT)) \
1365 low = ((val & 0xf) ^ 0x8) - 0x8; \
1366 else if (TARGET_MAVERICK && TARGET_HARD_FLOAT) \
1367 /* Need to be careful, -256 is not a valid offset. */ \
1368 low = val >= 0 ? (val & 0xff) : -((-val) & 0xff); \
1369 else if (MODE == SImode \
1370 || (MODE == SFmode && TARGET_SOFT_FLOAT) \
1371 || ((MODE == HImode || MODE == QImode) && ! arm_arch4)) \
1372 /* Need to be careful, -4096 is not a valid offset. */ \
1373 low = val >= 0 ? (val & 0xfff) : -((-val) & 0xfff); \
1374 else if ((MODE == HImode || MODE == QImode) && arm_arch4) \
1375 /* Need to be careful, -256 is not a valid offset. */ \
1376 low = val >= 0 ? (val & 0xff) : -((-val) & 0xff); \
1377 else if (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1378 && TARGET_HARD_FLOAT && TARGET_FPA) \
1379 /* Need to be careful, -1024 is not a valid offset. */ \
1380 low = val >= 0 ? (val & 0x3ff) : -((-val) & 0x3ff); \
1381 else \
1382 break; \
1383 \
1384 high = ((((val - low) & (unsigned HOST_WIDE_INT) 0xffffffff) \
1385 ^ (unsigned HOST_WIDE_INT) 0x80000000) \
1386 - (unsigned HOST_WIDE_INT) 0x80000000); \
1387 /* Check for overflow or zero */ \
1388 if (low == 0 || high == 0 || (high + low != val)) \
1389 break; \
1390 \
1391 /* Reload the high part into a base reg; leave the low part \
1392 in the mem. */ \
1393 X = gen_rtx_PLUS (GET_MODE (X), \
1394 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
1395 GEN_INT (high)), \
1396 GEN_INT (low)); \
1397 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
1398 MODE_BASE_REG_CLASS (MODE), GET_MODE (X), \
1399 VOIDmode, 0, 0, OPNUM, TYPE); \
1400 goto WIN; \
1401 } \
1402 } \
1403 while (0)
1404
1405 /* XXX If an HImode FP+large_offset address is converted to an HImode
1406 SP+large_offset address, then reload won't know how to fix it. It sees
1407 only that SP isn't valid for HImode, and so reloads the SP into an index
1408 register, but the resulting address is still invalid because the offset
1409 is too big. We fix it here instead by reloading the entire address. */
1410 /* We could probably achieve better results by defining PROMOTE_MODE to help
1411 cope with the variances between the Thumb's signed and unsigned byte and
1412 halfword load instructions. */
1413 /* ??? This should be safe for thumb2, but we may be able to do better. */
1414 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN) \
1415 do { \
1416 rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1417 if (new_x) \
1418 { \
1419 X = new_x; \
1420 goto WIN; \
1421 } \
1422 } while (0)
1423
1424 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
1425 if (TARGET_ARM) \
1426 ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1427 else \
1428 THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1429
1430 /* Return the maximum number of consecutive registers
1431 needed to represent mode MODE in a register of class CLASS.
1432 ARM regs are UNITS_PER_WORD bits while FPA regs can hold any FP mode */
1433 #define CLASS_MAX_NREGS(CLASS, MODE) \
1434 (((CLASS) == FPA_REGS || (CLASS) == CIRRUS_REGS) ? 1 : ARM_NUM_REGS (MODE))
1435
1436 /* If defined, gives a class of registers that cannot be used as the
1437 operand of a SUBREG that changes the mode of the object illegally. */
1438
1439 /* Moves between FPA_REGS and GENERAL_REGS are two memory insns.
1440 Moves between VFP_REGS and GENERAL_REGS are a single insn, but
1441 it is typically more expensive than a single memory access. We set
1442 the cost to less than two memory accesses so that floating
1443 point to integer conversion does not go through memory. */
1444 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1445 (TARGET_32BIT ? \
1446 ((FROM) == FPA_REGS && (TO) != FPA_REGS ? 20 : \
1447 (FROM) != FPA_REGS && (TO) == FPA_REGS ? 20 : \
1448 IS_VFP_CLASS (FROM) && !IS_VFP_CLASS (TO) ? 15 : \
1449 !IS_VFP_CLASS (FROM) && IS_VFP_CLASS (TO) ? 15 : \
1450 (FROM) == IWMMXT_REGS && (TO) != IWMMXT_REGS ? 4 : \
1451 (FROM) != IWMMXT_REGS && (TO) == IWMMXT_REGS ? 4 : \
1452 (FROM) == IWMMXT_GR_REGS || (TO) == IWMMXT_GR_REGS ? 20 : \
1453 (FROM) == CIRRUS_REGS && (TO) != CIRRUS_REGS ? 20 : \
1454 (FROM) != CIRRUS_REGS && (TO) == CIRRUS_REGS ? 20 : \
1455 2) \
1456 : \
1457 ((FROM) == HI_REGS || (TO) == HI_REGS) ? 4 : 2)
1458 \f
1459 /* Stack layout; function entry, exit and calling. */
1460
1461 /* Define this if pushing a word on the stack
1462 makes the stack pointer a smaller address. */
1463 #define STACK_GROWS_DOWNWARD 1
1464
1465 /* Define this to nonzero if the nominal address of the stack frame
1466 is at the high-address end of the local variables;
1467 that is, each additional local variable allocated
1468 goes at a more negative offset in the frame. */
1469 #define FRAME_GROWS_DOWNWARD 1
1470
1471 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1472 When present, it is one word in size, and sits at the top of the frame,
1473 between the soft frame pointer and either r7 or r11.
1474
1475 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1476 and only then if some outgoing arguments are passed on the stack. It would
1477 be tempting to also check whether the stack arguments are passed by indirect
1478 calls, but there seems to be no reason in principle why a post-reload pass
1479 couldn't convert a direct call into an indirect one. */
1480 #define CALLER_INTERWORKING_SLOT_SIZE \
1481 (TARGET_CALLER_INTERWORKING \
1482 && crtl->outgoing_args_size != 0 \
1483 ? UNITS_PER_WORD : 0)
1484
1485 /* Offset within stack frame to start allocating local variables at.
1486 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1487 first local allocated. Otherwise, it is the offset to the BEGINNING
1488 of the first local allocated. */
1489 #define STARTING_FRAME_OFFSET 0
1490
1491 /* If we generate an insn to push BYTES bytes,
1492 this says how many the stack pointer really advances by. */
1493 /* The push insns do not do this rounding implicitly.
1494 So don't define this. */
1495 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1496
1497 /* Define this if the maximum size of all the outgoing args is to be
1498 accumulated and pushed during the prologue. The amount can be
1499 found in the variable crtl->outgoing_args_size. */
1500 #define ACCUMULATE_OUTGOING_ARGS 1
1501
1502 /* Offset of first parameter from the argument pointer register value. */
1503 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1504
1505 /* Value is the number of byte of arguments automatically
1506 popped when returning from a subroutine call.
1507 FUNDECL is the declaration node of the function (as a tree),
1508 FUNTYPE is the data type of the function (as a tree),
1509 or for a library call it is an identifier node for the subroutine name.
1510 SIZE is the number of bytes of arguments passed on the stack.
1511
1512 On the ARM, the caller does not pop any of its arguments that were passed
1513 on the stack. */
1514 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
1515
1516 /* Define how to find the value returned by a library function
1517 assuming the value has mode MODE. */
1518 #define LIBCALL_VALUE(MODE) \
1519 (TARGET_AAPCS_BASED ? aapcs_libcall_value (MODE) \
1520 : (TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_FPA \
1521 && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1522 ? gen_rtx_REG (MODE, FIRST_FPA_REGNUM) \
1523 : TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK \
1524 && GET_MODE_CLASS (MODE) == MODE_FLOAT \
1525 ? gen_rtx_REG (MODE, FIRST_CIRRUS_FP_REGNUM) \
1526 : TARGET_IWMMXT_ABI && arm_vector_mode_supported_p (MODE) \
1527 ? gen_rtx_REG (MODE, FIRST_IWMMXT_REGNUM) \
1528 : gen_rtx_REG (MODE, ARG_REGISTER (1)))
1529
1530 /* 1 if REGNO is a possible register number for a function value. */
1531 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1532 ((REGNO) == ARG_REGISTER (1) \
1533 || (TARGET_AAPCS_BASED && TARGET_32BIT \
1534 && TARGET_VFP && TARGET_HARD_FLOAT \
1535 && (REGNO) == FIRST_VFP_REGNUM) \
1536 || (TARGET_32BIT && ((REGNO) == FIRST_CIRRUS_FP_REGNUM) \
1537 && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK) \
1538 || ((REGNO) == FIRST_IWMMXT_REGNUM && TARGET_IWMMXT_ABI) \
1539 || (TARGET_32BIT && ((REGNO) == FIRST_FPA_REGNUM) \
1540 && TARGET_HARD_FLOAT_ABI && TARGET_FPA))
1541
1542 /* Amount of memory needed for an untyped call to save all possible return
1543 registers. */
1544 #define APPLY_RESULT_SIZE arm_apply_result_size()
1545
1546 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1547 values must be in memory. On the ARM, they need only do so if larger
1548 than a word, or if they contain elements offset from zero in the struct. */
1549 #define DEFAULT_PCC_STRUCT_RETURN 0
1550
1551 /* These bits describe the different types of function supported
1552 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1553 normal function and an interworked function, for example. Knowing the
1554 type of a function is important for determining its prologue and
1555 epilogue sequences.
1556 Note value 7 is currently unassigned. Also note that the interrupt
1557 function types all have bit 2 set, so that they can be tested for easily.
1558 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1559 machine_function structure is initialized (to zero) func_type will
1560 default to unknown. This will force the first use of arm_current_func_type
1561 to call arm_compute_func_type. */
1562 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1563 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1564 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1565 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1566 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1567 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1568
1569 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1570
1571 /* In addition functions can have several type modifiers,
1572 outlined by these bit masks: */
1573 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1574 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1575 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1576 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1577 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1578
1579 /* Some macros to test these flags. */
1580 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1581 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1582 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1583 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1584 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1585 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1586
1587
1588 /* Structure used to hold the function stack frame layout. Offsets are
1589 relative to the stack pointer on function entry. Positive offsets are
1590 in the direction of stack growth.
1591 Only soft_frame is used in thumb mode. */
1592
1593 typedef struct GTY(()) arm_stack_offsets
1594 {
1595 int saved_args; /* ARG_POINTER_REGNUM. */
1596 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1597 int saved_regs;
1598 int soft_frame; /* FRAME_POINTER_REGNUM. */
1599 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1600 int outgoing_args; /* STACK_POINTER_REGNUM. */
1601 unsigned int saved_regs_mask;
1602 }
1603 arm_stack_offsets;
1604
1605 /* A C structure for machine-specific, per-function data.
1606 This is added to the cfun structure. */
1607 typedef struct GTY(()) machine_function
1608 {
1609 /* Additional stack adjustment in __builtin_eh_throw. */
1610 rtx eh_epilogue_sp_ofs;
1611 /* Records if LR has to be saved for far jumps. */
1612 int far_jump_used;
1613 /* Records if ARG_POINTER was ever live. */
1614 int arg_pointer_live;
1615 /* Records if the save of LR has been eliminated. */
1616 int lr_save_eliminated;
1617 /* The size of the stack frame. Only valid after reload. */
1618 arm_stack_offsets stack_offsets;
1619 /* Records the type of the current function. */
1620 unsigned long func_type;
1621 /* Record if the function has a variable argument list. */
1622 int uses_anonymous_args;
1623 /* Records if sibcalls are blocked because an argument
1624 register is needed to preserve stack alignment. */
1625 int sibcall_blocked;
1626 /* The PIC register for this function. This might be a pseudo. */
1627 rtx pic_reg;
1628 /* Labels for per-function Thumb call-via stubs. One per potential calling
1629 register. We can never call via LR or PC. We can call via SP if a
1630 trampoline happens to be on the top of the stack. */
1631 rtx call_via[14];
1632 /* Set to 1 when a return insn is output, this means that the epilogue
1633 is not needed. */
1634 int return_used_this_function;
1635 }
1636 machine_function;
1637
1638 /* As in the machine_function, a global set of call-via labels, for code
1639 that is in text_section. */
1640 extern GTY(()) rtx thumb_call_via_label[14];
1641
1642 /* The number of potential ways of assigning to a co-processor. */
1643 #define ARM_NUM_COPROC_SLOTS 1
1644
1645 /* Enumeration of procedure calling standard variants. We don't really
1646 support all of these yet. */
1647 enum arm_pcs
1648 {
1649 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1650 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1651 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1652 /* This must be the last AAPCS variant. */
1653 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1654 ARM_PCS_ATPCS, /* ATPCS. */
1655 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1656 ARM_PCS_UNKNOWN
1657 };
1658
1659 /* A C type for declaring a variable that is used as the first argument of
1660 `FUNCTION_ARG' and other related values. */
1661 typedef struct
1662 {
1663 /* This is the number of registers of arguments scanned so far. */
1664 int nregs;
1665 /* This is the number of iWMMXt register arguments scanned so far. */
1666 int iwmmxt_nregs;
1667 int named_count;
1668 int nargs;
1669 /* Which procedure call variant to use for this call. */
1670 enum arm_pcs pcs_variant;
1671
1672 /* AAPCS related state tracking. */
1673 int aapcs_arg_processed; /* No need to lay out this argument again. */
1674 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1675 this argument, or -1 if using core
1676 registers. */
1677 int aapcs_ncrn;
1678 int aapcs_next_ncrn;
1679 rtx aapcs_reg; /* Register assigned to this argument. */
1680 int aapcs_partial; /* How many bytes are passed in regs (if
1681 split between core regs and stack.
1682 Zero otherwise. */
1683 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1684 int can_split; /* Argument can be split between core regs
1685 and the stack. */
1686 /* Private data for tracking VFP register allocation */
1687 unsigned aapcs_vfp_regs_free;
1688 unsigned aapcs_vfp_reg_alloc;
1689 int aapcs_vfp_rcount;
1690 MACHMODE aapcs_vfp_rmode;
1691 } CUMULATIVE_ARGS;
1692
1693 /* Define where to put the arguments to a function.
1694 Value is zero to push the argument on the stack,
1695 or a hard register in which to store the argument.
1696
1697 MODE is the argument's machine mode.
1698 TYPE is the data type of the argument (as a tree).
1699 This is null for libcalls where that information may
1700 not be available.
1701 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1702 the preceding args and about the function being called.
1703 NAMED is nonzero if this argument is a named parameter
1704 (otherwise it is an extra parameter matching an ellipsis).
1705
1706 On the ARM, normally the first 16 bytes are passed in registers r0-r3; all
1707 other arguments are passed on the stack. If (NAMED == 0) (which happens
1708 only in assign_parms, since TARGET_SETUP_INCOMING_VARARGS is
1709 defined), say it is passed in the stack (function_prologue will
1710 indeed make it pass in the stack if necessary). */
1711 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1712 arm_function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1713
1714 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1715 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1716
1717 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1718 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1719
1720 /* For AAPCS, padding should never be below the argument. For other ABIs,
1721 * mimic the default. */
1722 #define PAD_VARARGS_DOWN \
1723 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1724
1725 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1726 for a call to a function whose data type is FNTYPE.
1727 For a library call, FNTYPE is 0.
1728 On the ARM, the offset starts at 0. */
1729 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1730 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1731
1732 /* Update the data in CUM to advance over an argument
1733 of mode MODE and data type TYPE.
1734 (TYPE is null for libcalls where that information may not be available.) */
1735 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1736 arm_function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1737
1738 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1739 argument with the specified mode and type. If it is not defined,
1740 `PARM_BOUNDARY' is used for all arguments. */
1741 #define FUNCTION_ARG_BOUNDARY(MODE,TYPE) \
1742 ((ARM_DOUBLEWORD_ALIGN && arm_needs_doubleword_align (MODE, TYPE)) \
1743 ? DOUBLEWORD_ALIGNMENT \
1744 : PARM_BOUNDARY )
1745
1746 /* 1 if N is a possible register number for function argument passing.
1747 On the ARM, r0-r3 are used to pass args. */
1748 #define FUNCTION_ARG_REGNO_P(REGNO) \
1749 (IN_RANGE ((REGNO), 0, 3) \
1750 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \
1751 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1752 || (TARGET_IWMMXT_ABI \
1753 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1754
1755 \f
1756 /* If your target environment doesn't prefix user functions with an
1757 underscore, you may wish to re-define this to prevent any conflicts. */
1758 #ifndef ARM_MCOUNT_NAME
1759 #define ARM_MCOUNT_NAME "*mcount"
1760 #endif
1761
1762 /* Call the function profiler with a given profile label. The Acorn
1763 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1764 On the ARM the full profile code will look like:
1765 .data
1766 LP1
1767 .word 0
1768 .text
1769 mov ip, lr
1770 bl mcount
1771 .word LP1
1772
1773 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1774 will output the .text section.
1775
1776 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1777 ``prof'' doesn't seem to mind about this!
1778
1779 Note - this version of the code is designed to work in both ARM and
1780 Thumb modes. */
1781 #ifndef ARM_FUNCTION_PROFILER
1782 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1783 { \
1784 char temp[20]; \
1785 rtx sym; \
1786 \
1787 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1788 IP_REGNUM, LR_REGNUM); \
1789 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1790 fputc ('\n', STREAM); \
1791 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1792 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1793 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1794 }
1795 #endif
1796
1797 #ifdef THUMB_FUNCTION_PROFILER
1798 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1799 if (TARGET_ARM) \
1800 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1801 else \
1802 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1803 #else
1804 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1805 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1806 #endif
1807
1808 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1809 the stack pointer does not matter. The value is tested only in
1810 functions that have frame pointers.
1811 No definition is equivalent to always zero.
1812
1813 On the ARM, the function epilogue recovers the stack pointer from the
1814 frame. */
1815 #define EXIT_IGNORE_STACK 1
1816
1817 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNUM)
1818
1819 /* Determine if the epilogue should be output as RTL.
1820 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1821 /* This is disabled for Thumb-2 because it will confuse the
1822 conditional insn counter. */
1823 #define USE_RETURN_INSN(ISCOND) \
1824 (TARGET_ARM ? use_return_insn (ISCOND, NULL) : 0)
1825
1826 /* Definitions for register eliminations.
1827
1828 This is an array of structures. Each structure initializes one pair
1829 of eliminable registers. The "from" register number is given first,
1830 followed by "to". Eliminations of the same "from" register are listed
1831 in order of preference.
1832
1833 We have two registers that can be eliminated on the ARM. First, the
1834 arg pointer register can often be eliminated in favor of the stack
1835 pointer register. Secondly, the pseudo frame pointer register can always
1836 be eliminated; it is replaced with either the stack or the real frame
1837 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1838 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1839
1840 #define ELIMINABLE_REGS \
1841 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1842 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1843 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1844 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1845 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1846 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1847 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1848
1849 /* Define the offset between two registers, one to be eliminated, and the
1850 other its replacement, at the start of a routine. */
1851 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1852 if (TARGET_ARM) \
1853 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1854 else \
1855 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1856
1857 /* Special case handling of the location of arguments passed on the stack. */
1858 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1859
1860 /* Initialize data used by insn expanders. This is called from insn_emit,
1861 once for every function before code is generated. */
1862 #define INIT_EXPANDERS arm_init_expanders ()
1863
1864 /* Output assembler code for a block containing the constant parts
1865 of a trampoline, leaving space for the variable parts.
1866
1867 On the ARM, (if r8 is the static chain regnum, and remembering that
1868 referencing pc adds an offset of 8) the trampoline looks like:
1869 ldr r8, [pc, #0]
1870 ldr pc, [pc]
1871 .word static chain value
1872 .word function's address
1873 XXX FIXME: When the trampoline returns, r8 will be clobbered. */
1874 #define ARM_TRAMPOLINE_TEMPLATE(FILE) \
1875 { \
1876 asm_fprintf (FILE, "\tldr\t%r, [%r, #0]\n", \
1877 STATIC_CHAIN_REGNUM, PC_REGNUM); \
1878 asm_fprintf (FILE, "\tldr\t%r, [%r, #0]\n", \
1879 PC_REGNUM, PC_REGNUM); \
1880 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
1881 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
1882 }
1883
1884 /* The Thumb-2 trampoline is similar to the arm implementation.
1885 Unlike 16-bit Thumb, we enter the stub in thumb mode. */
1886 #define THUMB2_TRAMPOLINE_TEMPLATE(FILE) \
1887 { \
1888 asm_fprintf (FILE, "\tldr.w\t%r, [%r, #4]\n", \
1889 STATIC_CHAIN_REGNUM, PC_REGNUM); \
1890 asm_fprintf (FILE, "\tldr.w\t%r, [%r, #4]\n", \
1891 PC_REGNUM, PC_REGNUM); \
1892 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
1893 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
1894 }
1895
1896 #define THUMB1_TRAMPOLINE_TEMPLATE(FILE) \
1897 { \
1898 ASM_OUTPUT_ALIGN(FILE, 2); \
1899 fprintf (FILE, "\t.code\t16\n"); \
1900 fprintf (FILE, ".Ltrampoline_start:\n"); \
1901 asm_fprintf (FILE, "\tpush\t{r0, r1}\n"); \
1902 asm_fprintf (FILE, "\tldr\tr0, [%r, #8]\n", \
1903 PC_REGNUM); \
1904 asm_fprintf (FILE, "\tmov\t%r, r0\n", \
1905 STATIC_CHAIN_REGNUM); \
1906 asm_fprintf (FILE, "\tldr\tr0, [%r, #8]\n", \
1907 PC_REGNUM); \
1908 asm_fprintf (FILE, "\tstr\tr0, [%r, #4]\n", \
1909 SP_REGNUM); \
1910 asm_fprintf (FILE, "\tpop\t{r0, %r}\n", \
1911 PC_REGNUM); \
1912 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
1913 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
1914 }
1915
1916 #define TRAMPOLINE_TEMPLATE(FILE) \
1917 if (TARGET_ARM) \
1918 ARM_TRAMPOLINE_TEMPLATE (FILE) \
1919 else if (TARGET_THUMB2) \
1920 THUMB2_TRAMPOLINE_TEMPLATE (FILE) \
1921 else \
1922 THUMB1_TRAMPOLINE_TEMPLATE (FILE)
1923
1924 /* Thumb trampolines should be entered in thumb mode, so set the bottom bit
1925 of the address. */
1926 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) do \
1927 { \
1928 if (TARGET_THUMB) \
1929 (ADDR) = expand_simple_binop (Pmode, IOR, (ADDR), GEN_INT(1), \
1930 gen_reg_rtx (Pmode), 0, OPTAB_LIB_WIDEN); \
1931 } while(0)
1932
1933 /* Length in units of the trampoline for entering a nested function. */
1934 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1935
1936 /* Alignment required for a trampoline in bits. */
1937 #define TRAMPOLINE_ALIGNMENT 32
1938
1939
1940 /* Emit RTL insns to initialize the variable parts of a trampoline.
1941 FNADDR is an RTX for the address of the function's pure code.
1942 CXT is an RTX for the static chain value for the function. */
1943 #ifndef INITIALIZE_TRAMPOLINE
1944 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1945 { \
1946 emit_move_insn (gen_rtx_MEM (SImode, \
1947 plus_constant (TRAMP, \
1948 TARGET_32BIT ? 8 : 12)), \
1949 CXT); \
1950 emit_move_insn (gen_rtx_MEM (SImode, \
1951 plus_constant (TRAMP, \
1952 TARGET_32BIT ? 12 : 16)), \
1953 FNADDR); \
1954 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__clear_cache"), \
1955 LCT_NORMAL, VOIDmode, 2, TRAMP, Pmode, \
1956 plus_constant (TRAMP, TRAMPOLINE_SIZE), Pmode); \
1957 }
1958 #endif
1959
1960 \f
1961 /* Addressing modes, and classification of registers for them. */
1962 #define HAVE_POST_INCREMENT 1
1963 #define HAVE_PRE_INCREMENT TARGET_32BIT
1964 #define HAVE_POST_DECREMENT TARGET_32BIT
1965 #define HAVE_PRE_DECREMENT TARGET_32BIT
1966 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1967 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1968 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1969 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1970
1971 /* Macros to check register numbers against specific register classes. */
1972
1973 /* These assume that REGNO is a hard or pseudo reg number.
1974 They give nonzero only if REGNO is a hard reg of the suitable class
1975 or a pseudo reg currently allocated to a suitable hard reg.
1976 Since they use reg_renumber, they are safe only once reg_renumber
1977 has been allocated, which happens in local-alloc.c. */
1978 #define TEST_REGNO(R, TEST, VALUE) \
1979 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1980
1981 /* Don't allow the pc to be used. */
1982 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1983 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1984 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1985 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1986
1987 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1988 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1989 || (GET_MODE_SIZE (MODE) >= 4 \
1990 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1991
1992 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1993 (TARGET_THUMB1 \
1994 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1995 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1996
1997 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1998 For Thumb, we can not use SP + reg, so reject SP. */
1999 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
2000 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
2001
2002 /* For ARM code, we don't care about the mode, but for Thumb, the index
2003 must be suitable for use in a QImode load. */
2004 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2005 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
2006 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
2007
2008 /* Maximum number of registers that can appear in a valid memory address.
2009 Shifts in addresses can't be by a register. */
2010 #define MAX_REGS_PER_ADDRESS 2
2011
2012 /* Recognize any constant value that is a valid address. */
2013 /* XXX We can address any constant, eventually... */
2014 /* ??? Should the TARGET_ARM here also apply to thumb2? */
2015 #define CONSTANT_ADDRESS_P(X) \
2016 (GET_CODE (X) == SYMBOL_REF \
2017 && (CONSTANT_POOL_ADDRESS_P (X) \
2018 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
2019
2020 /* True if SYMBOL + OFFSET constants must refer to something within
2021 SYMBOL's section. */
2022 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
2023
2024 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
2025 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
2026 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
2027 #endif
2028
2029 /* Nonzero if the constant value X is a legitimate general operand.
2030 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
2031
2032 On the ARM, allow any integer (invalid ones are removed later by insn
2033 patterns), nice doubles and symbol_refs which refer to the function's
2034 constant pool XXX.
2035
2036 When generating pic allow anything. */
2037 #define ARM_LEGITIMATE_CONSTANT_P(X) (flag_pic || ! label_mentioned_p (X))
2038
2039 #define THUMB_LEGITIMATE_CONSTANT_P(X) \
2040 ( GET_CODE (X) == CONST_INT \
2041 || GET_CODE (X) == CONST_DOUBLE \
2042 || CONSTANT_ADDRESS_P (X) \
2043 || flag_pic)
2044
2045 #define LEGITIMATE_CONSTANT_P(X) \
2046 (!arm_cannot_force_const_mem (X) \
2047 && (TARGET_32BIT ? ARM_LEGITIMATE_CONSTANT_P (X) \
2048 : THUMB_LEGITIMATE_CONSTANT_P (X)))
2049
2050 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
2051 #define SUBTARGET_NAME_ENCODING_LENGTHS
2052 #endif
2053
2054 /* This is a C fragment for the inside of a switch statement.
2055 Each case label should return the number of characters to
2056 be stripped from the start of a function's name, if that
2057 name starts with the indicated character. */
2058 #define ARM_NAME_ENCODING_LENGTHS \
2059 case '*': return 1; \
2060 SUBTARGET_NAME_ENCODING_LENGTHS
2061
2062 /* This is how to output a reference to a user-level label named NAME.
2063 `assemble_name' uses this. */
2064 #undef ASM_OUTPUT_LABELREF
2065 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
2066 arm_asm_output_labelref (FILE, NAME)
2067
2068 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
2069 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2070 if (TARGET_THUMB2) \
2071 thumb2_asm_output_opcode (STREAM);
2072
2073 /* The EABI specifies that constructors should go in .init_array.
2074 Other targets use .ctors for compatibility. */
2075 #ifndef ARM_EABI_CTORS_SECTION_OP
2076 #define ARM_EABI_CTORS_SECTION_OP \
2077 "\t.section\t.init_array,\"aw\",%init_array"
2078 #endif
2079 #ifndef ARM_EABI_DTORS_SECTION_OP
2080 #define ARM_EABI_DTORS_SECTION_OP \
2081 "\t.section\t.fini_array,\"aw\",%fini_array"
2082 #endif
2083 #define ARM_CTORS_SECTION_OP \
2084 "\t.section\t.ctors,\"aw\",%progbits"
2085 #define ARM_DTORS_SECTION_OP \
2086 "\t.section\t.dtors,\"aw\",%progbits"
2087
2088 /* Define CTORS_SECTION_ASM_OP. */
2089 #undef CTORS_SECTION_ASM_OP
2090 #undef DTORS_SECTION_ASM_OP
2091 #ifndef IN_LIBGCC2
2092 # define CTORS_SECTION_ASM_OP \
2093 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
2094 # define DTORS_SECTION_ASM_OP \
2095 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
2096 #else /* !defined (IN_LIBGCC2) */
2097 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
2098 so we cannot use the definition above. */
2099 # ifdef __ARM_EABI__
2100 /* The .ctors section is not part of the EABI, so we do not define
2101 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
2102 from trying to use it. We do define it when doing normal
2103 compilation, as .init_array can be used instead of .ctors. */
2104 /* There is no need to emit begin or end markers when using
2105 init_array; the dynamic linker will compute the size of the
2106 array itself based on special symbols created by the static
2107 linker. However, we do need to arrange to set up
2108 exception-handling here. */
2109 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
2110 # define CTOR_LIST_END /* empty */
2111 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
2112 # define DTOR_LIST_END /* empty */
2113 # else /* !defined (__ARM_EABI__) */
2114 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
2115 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
2116 # endif /* !defined (__ARM_EABI__) */
2117 #endif /* !defined (IN_LIBCC2) */
2118
2119 /* True if the operating system can merge entities with vague linkage
2120 (e.g., symbols in COMDAT group) during dynamic linking. */
2121 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
2122 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
2123 #endif
2124
2125 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
2126
2127 #ifdef TARGET_UNWIND_INFO
2128 #define ARM_EABI_UNWIND_TABLES \
2129 ((!USING_SJLJ_EXCEPTIONS && flag_exceptions) || flag_unwind_tables)
2130 #else
2131 #define ARM_EABI_UNWIND_TABLES 0
2132 #endif
2133
2134 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2135 and check its validity for a certain class.
2136 We have two alternate definitions for each of them.
2137 The usual definition accepts all pseudo regs; the other rejects
2138 them unless they have been allocated suitable hard regs.
2139 The symbol REG_OK_STRICT causes the latter definition to be used.
2140 Thumb-2 has the same restrictions as arm. */
2141 #ifndef REG_OK_STRICT
2142
2143 #define ARM_REG_OK_FOR_BASE_P(X) \
2144 (REGNO (X) <= LAST_ARM_REGNUM \
2145 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
2146 || REGNO (X) == FRAME_POINTER_REGNUM \
2147 || REGNO (X) == ARG_POINTER_REGNUM)
2148
2149 #define ARM_REG_OK_FOR_INDEX_P(X) \
2150 ((REGNO (X) <= LAST_ARM_REGNUM \
2151 && REGNO (X) != STACK_POINTER_REGNUM) \
2152 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
2153 || REGNO (X) == FRAME_POINTER_REGNUM \
2154 || REGNO (X) == ARG_POINTER_REGNUM)
2155
2156 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
2157 (REGNO (X) <= LAST_LO_REGNUM \
2158 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
2159 || (GET_MODE_SIZE (MODE) >= 4 \
2160 && (REGNO (X) == STACK_POINTER_REGNUM \
2161 || (X) == hard_frame_pointer_rtx \
2162 || (X) == arg_pointer_rtx)))
2163
2164 #define REG_STRICT_P 0
2165
2166 #else /* REG_OK_STRICT */
2167
2168 #define ARM_REG_OK_FOR_BASE_P(X) \
2169 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
2170
2171 #define ARM_REG_OK_FOR_INDEX_P(X) \
2172 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
2173
2174 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
2175 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
2176
2177 #define REG_STRICT_P 1
2178
2179 #endif /* REG_OK_STRICT */
2180
2181 /* Now define some helpers in terms of the above. */
2182
2183 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2184 (TARGET_THUMB1 \
2185 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
2186 : ARM_REG_OK_FOR_BASE_P (X))
2187
2188 /* For 16-bit Thumb, a valid index register is anything that can be used in
2189 a byte load instruction. */
2190 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
2191 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
2192
2193 /* Nonzero if X is a hard reg that can be used as an index
2194 or if it is a pseudo reg. On the Thumb, the stack pointer
2195 is not suitable. */
2196 #define REG_OK_FOR_INDEX_P(X) \
2197 (TARGET_THUMB1 \
2198 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
2199 : ARM_REG_OK_FOR_INDEX_P (X))
2200
2201 /* Nonzero if X can be the base register in a reg+reg addressing mode.
2202 For Thumb, we can not use SP + reg, so reject SP. */
2203 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
2204 REG_OK_FOR_INDEX_P (X)
2205 \f
2206 #define ARM_BASE_REGISTER_RTX_P(X) \
2207 (GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X))
2208
2209 #define ARM_INDEX_REGISTER_RTX_P(X) \
2210 (GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X))
2211 \f
2212 /* Define this for compatibility reasons. */
2213 #define HANDLE_PRAGMA_PACK_PUSH_POP
2214
2215 /* Specify the machine mode that this machine uses
2216 for the index in the tablejump instruction. */
2217 #define CASE_VECTOR_MODE Pmode
2218
2219 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
2220 || (TARGET_THUMB \
2221 && (optimize_size || flag_pic)))
2222
2223 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
2224 (TARGET_THUMB \
2225 ? (min >= 0 && max < 512 \
2226 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
2227 : min >= -256 && max < 256 \
2228 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
2229 : min >= 0 && max < 8192 \
2230 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
2231 : min >= -4096 && max < 4096 \
2232 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
2233 : SImode) \
2234 : ((min < 0 || max >= 0x2000 || !TARGET_THUMB2) ? SImode \
2235 : (max >= 0x200) ? HImode \
2236 : QImode))
2237
2238 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
2239 unsigned is probably best, but may break some code. */
2240 #ifndef DEFAULT_SIGNED_CHAR
2241 #define DEFAULT_SIGNED_CHAR 0
2242 #endif
2243
2244 /* Max number of bytes we can move from memory to memory
2245 in one reasonably fast instruction. */
2246 #define MOVE_MAX 4
2247
2248 #undef MOVE_RATIO
2249 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
2250
2251 /* Define if operations between registers always perform the operation
2252 on the full register even if a narrower mode is specified. */
2253 #define WORD_REGISTER_OPERATIONS
2254
2255 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2256 will either zero-extend or sign-extend. The value of this macro should
2257 be the code that says which one of the two operations is implicitly
2258 done, UNKNOWN if none. */
2259 #define LOAD_EXTEND_OP(MODE) \
2260 (TARGET_THUMB ? ZERO_EXTEND : \
2261 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
2262 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
2263
2264 /* Nonzero if access to memory by bytes is slow and undesirable. */
2265 #define SLOW_BYTE_ACCESS 0
2266
2267 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
2268
2269 /* Immediate shift counts are truncated by the output routines (or was it
2270 the assembler?). Shift counts in a register are truncated by ARM. Note
2271 that the native compiler puts too large (> 32) immediate shift counts
2272 into a register and shifts by the register, letting the ARM decide what
2273 to do instead of doing that itself. */
2274 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
2275 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2276 On the arm, Y in a register is used modulo 256 for the shift. Only for
2277 rotates is modulo 32 used. */
2278 /* #define SHIFT_COUNT_TRUNCATED 1 */
2279
2280 /* All integers have the same format so truncation is easy. */
2281 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2282
2283 /* Calling from registers is a massive pain. */
2284 #define NO_FUNCTION_CSE 1
2285
2286 /* The machine modes of pointers and functions */
2287 #define Pmode SImode
2288 #define FUNCTION_MODE Pmode
2289
2290 #define ARM_FRAME_RTX(X) \
2291 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
2292 || (X) == arg_pointer_rtx)
2293
2294 /* Moves to and from memory are quite expensive */
2295 #define MEMORY_MOVE_COST(M, CLASS, IN) \
2296 (TARGET_32BIT ? 10 : \
2297 ((GET_MODE_SIZE (M) < 4 ? 8 : 2 * GET_MODE_SIZE (M)) \
2298 * (CLASS == LO_REGS ? 1 : 2)))
2299
2300 /* Try to generate sequences that don't involve branches, we can then use
2301 conditional instructions */
2302 #define BRANCH_COST(speed_p, predictable_p) \
2303 (TARGET_32BIT ? 4 : (optimize > 0 ? 2 : 0))
2304 \f
2305 /* Position Independent Code. */
2306 /* We decide which register to use based on the compilation options and
2307 the assembler in use; this is more general than the APCS restriction of
2308 using sb (r9) all the time. */
2309 extern unsigned arm_pic_register;
2310
2311 /* The register number of the register used to address a table of static
2312 data addresses in memory. */
2313 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2314
2315 /* We can't directly access anything that contains a symbol,
2316 nor can we indirect via the constant pool. One exception is
2317 UNSPEC_TLS, which is always PIC. */
2318 #define LEGITIMATE_PIC_OPERAND_P(X) \
2319 (!(symbol_mentioned_p (X) \
2320 || label_mentioned_p (X) \
2321 || (GET_CODE (X) == SYMBOL_REF \
2322 && CONSTANT_POOL_ADDRESS_P (X) \
2323 && (symbol_mentioned_p (get_pool_constant (X)) \
2324 || label_mentioned_p (get_pool_constant (X))))) \
2325 || tls_mentioned_p (X))
2326
2327 /* We need to know when we are making a constant pool; this determines
2328 whether data needs to be in the GOT or can be referenced via a GOT
2329 offset. */
2330 extern int making_const_table;
2331 \f
2332 /* Handle pragmas for compatibility with Intel's compilers. */
2333 /* Also abuse this to register additional C specific EABI attributes. */
2334 #define REGISTER_TARGET_PRAGMAS() do { \
2335 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
2336 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
2337 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
2338 arm_lang_object_attributes_init(); \
2339 } while (0)
2340
2341 /* Condition code information. */
2342 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2343 return the mode to be used for the comparison. */
2344
2345 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2346
2347 #define REVERSIBLE_CC_MODE(MODE) 1
2348
2349 #define REVERSE_CONDITION(CODE,MODE) \
2350 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2351 ? reverse_condition_maybe_unordered (code) \
2352 : reverse_condition (code))
2353
2354 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
2355 do \
2356 { \
2357 if (GET_CODE (OP1) == CONST_INT \
2358 && ! (const_ok_for_arm (INTVAL (OP1)) \
2359 || (const_ok_for_arm (- INTVAL (OP1))))) \
2360 { \
2361 rtx const_op = OP1; \
2362 CODE = arm_canonicalize_comparison ((CODE), GET_MODE (OP0), \
2363 &const_op); \
2364 OP1 = const_op; \
2365 } \
2366 } \
2367 while (0)
2368
2369 /* The arm5 clz instruction returns 32. */
2370 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2371 \f
2372 #undef ASM_APP_OFF
2373 #define ASM_APP_OFF (TARGET_THUMB1 ? "\t.code\t16\n" : \
2374 TARGET_THUMB2 ? "\t.thumb\n" : "")
2375
2376 /* Output a push or a pop instruction (only used when profiling). */
2377 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2378 do \
2379 { \
2380 if (TARGET_ARM) \
2381 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
2382 STACK_POINTER_REGNUM, REGNO); \
2383 else \
2384 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2385 } while (0)
2386
2387
2388 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2389 do \
2390 { \
2391 if (TARGET_ARM) \
2392 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
2393 STACK_POINTER_REGNUM, REGNO); \
2394 else \
2395 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2396 } while (0)
2397
2398 /* Jump table alignment is explicit in ASM_OUTPUT_CASE_LABEL. */
2399 #define ADDR_VEC_ALIGN(JUMPTABLE) 0
2400
2401 /* This is how to output a label which precedes a jumptable. Since
2402 Thumb instructions are 2 bytes, we may need explicit alignment here. */
2403 #undef ASM_OUTPUT_CASE_LABEL
2404 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \
2405 do \
2406 { \
2407 if (TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) \
2408 ASM_OUTPUT_ALIGN (FILE, 2); \
2409 (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); \
2410 } \
2411 while (0)
2412
2413 /* Make sure subsequent insns are aligned after a TBB. */
2414 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE) \
2415 do \
2416 { \
2417 if (GET_MODE (PATTERN (JUMPTABLE)) == QImode) \
2418 ASM_OUTPUT_ALIGN (FILE, 1); \
2419 } \
2420 while (0)
2421
2422 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2423 do \
2424 { \
2425 if (TARGET_THUMB) \
2426 { \
2427 if (is_called_in_ARM_mode (DECL) \
2428 || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY \
2429 && cfun->is_thunk)) \
2430 fprintf (STREAM, "\t.code 32\n") ; \
2431 else if (TARGET_THUMB1) \
2432 fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ; \
2433 else \
2434 fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ; \
2435 } \
2436 if (TARGET_POKE_FUNCTION_NAME) \
2437 arm_poke_function_name (STREAM, (const char *) NAME); \
2438 } \
2439 while (0)
2440
2441 /* For aliases of functions we use .thumb_set instead. */
2442 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2443 do \
2444 { \
2445 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2446 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2447 \
2448 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2449 { \
2450 fprintf (FILE, "\t.thumb_set "); \
2451 assemble_name (FILE, LABEL1); \
2452 fprintf (FILE, ","); \
2453 assemble_name (FILE, LABEL2); \
2454 fprintf (FILE, "\n"); \
2455 } \
2456 else \
2457 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2458 } \
2459 while (0)
2460
2461 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2462 /* To support -falign-* switches we need to use .p2align so
2463 that alignment directives in code sections will be padded
2464 with no-op instructions, rather than zeroes. */
2465 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2466 if ((LOG) != 0) \
2467 { \
2468 if ((MAX_SKIP) == 0) \
2469 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2470 else \
2471 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2472 (int) (LOG), (int) (MAX_SKIP)); \
2473 }
2474 #endif
2475 \f
2476 /* Add two bytes to the length of conditionally executed Thumb-2
2477 instructions for the IT instruction. */
2478 #define ADJUST_INSN_LENGTH(insn, length) \
2479 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2480 length += 2;
2481
2482 /* Only perform branch elimination (by making instructions conditional) if
2483 we're optimizing. For Thumb-2 check if any IT instructions need
2484 outputting. */
2485 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2486 if (TARGET_ARM && optimize) \
2487 arm_final_prescan_insn (INSN); \
2488 else if (TARGET_THUMB2) \
2489 thumb2_final_prescan_insn (INSN); \
2490 else if (TARGET_THUMB1) \
2491 thumb1_final_prescan_insn (INSN)
2492
2493 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2494 (CODE == '@' || CODE == '|' || CODE == '.' \
2495 || CODE == '(' || CODE == ')' || CODE == '#' \
2496 || (TARGET_32BIT && (CODE == '?')) \
2497 || (TARGET_THUMB2 && (CODE == '!')) \
2498 || (TARGET_THUMB && (CODE == '_')))
2499
2500 /* Output an operand of an instruction. */
2501 #define PRINT_OPERAND(STREAM, X, CODE) \
2502 arm_print_operand (STREAM, X, CODE)
2503
2504 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2505 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2506 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2507 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2508 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2509 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2510 : 0))))
2511
2512 /* Output the address of an operand. */
2513 #define ARM_PRINT_OPERAND_ADDRESS(STREAM, X) \
2514 { \
2515 int is_minus = GET_CODE (X) == MINUS; \
2516 \
2517 if (GET_CODE (X) == REG) \
2518 asm_fprintf (STREAM, "[%r, #0]", REGNO (X)); \
2519 else if (GET_CODE (X) == PLUS || is_minus) \
2520 { \
2521 rtx base = XEXP (X, 0); \
2522 rtx index = XEXP (X, 1); \
2523 HOST_WIDE_INT offset = 0; \
2524 if (GET_CODE (base) != REG \
2525 || (GET_CODE (index) == REG && REGNO (index) == SP_REGNUM)) \
2526 { \
2527 /* Ensure that BASE is a register. */ \
2528 /* (one of them must be). */ \
2529 /* Also ensure the SP is not used as in index register. */ \
2530 rtx temp = base; \
2531 base = index; \
2532 index = temp; \
2533 } \
2534 switch (GET_CODE (index)) \
2535 { \
2536 case CONST_INT: \
2537 offset = INTVAL (index); \
2538 if (is_minus) \
2539 offset = -offset; \
2540 asm_fprintf (STREAM, "[%r, #%wd]", \
2541 REGNO (base), offset); \
2542 break; \
2543 \
2544 case REG: \
2545 asm_fprintf (STREAM, "[%r, %s%r]", \
2546 REGNO (base), is_minus ? "-" : "", \
2547 REGNO (index)); \
2548 break; \
2549 \
2550 case MULT: \
2551 case ASHIFTRT: \
2552 case LSHIFTRT: \
2553 case ASHIFT: \
2554 case ROTATERT: \
2555 { \
2556 asm_fprintf (STREAM, "[%r, %s%r", \
2557 REGNO (base), is_minus ? "-" : "", \
2558 REGNO (XEXP (index, 0))); \
2559 arm_print_operand (STREAM, index, 'S'); \
2560 fputs ("]", STREAM); \
2561 break; \
2562 } \
2563 \
2564 default: \
2565 gcc_unreachable (); \
2566 } \
2567 } \
2568 else if (GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC \
2569 || GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC) \
2570 { \
2571 extern enum machine_mode output_memory_reference_mode; \
2572 \
2573 gcc_assert (GET_CODE (XEXP (X, 0)) == REG); \
2574 \
2575 if (GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC) \
2576 asm_fprintf (STREAM, "[%r, #%s%d]!", \
2577 REGNO (XEXP (X, 0)), \
2578 GET_CODE (X) == PRE_DEC ? "-" : "", \
2579 GET_MODE_SIZE (output_memory_reference_mode)); \
2580 else \
2581 asm_fprintf (STREAM, "[%r], #%s%d", \
2582 REGNO (XEXP (X, 0)), \
2583 GET_CODE (X) == POST_DEC ? "-" : "", \
2584 GET_MODE_SIZE (output_memory_reference_mode)); \
2585 } \
2586 else if (GET_CODE (X) == PRE_MODIFY) \
2587 { \
2588 asm_fprintf (STREAM, "[%r, ", REGNO (XEXP (X, 0))); \
2589 if (GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT) \
2590 asm_fprintf (STREAM, "#%wd]!", \
2591 INTVAL (XEXP (XEXP (X, 1), 1))); \
2592 else \
2593 asm_fprintf (STREAM, "%r]!", \
2594 REGNO (XEXP (XEXP (X, 1), 1))); \
2595 } \
2596 else if (GET_CODE (X) == POST_MODIFY) \
2597 { \
2598 asm_fprintf (STREAM, "[%r], ", REGNO (XEXP (X, 0))); \
2599 if (GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT) \
2600 asm_fprintf (STREAM, "#%wd", \
2601 INTVAL (XEXP (XEXP (X, 1), 1))); \
2602 else \
2603 asm_fprintf (STREAM, "%r", \
2604 REGNO (XEXP (XEXP (X, 1), 1))); \
2605 } \
2606 else output_addr_const (STREAM, X); \
2607 }
2608
2609 #define THUMB_PRINT_OPERAND_ADDRESS(STREAM, X) \
2610 { \
2611 if (GET_CODE (X) == REG) \
2612 asm_fprintf (STREAM, "[%r]", REGNO (X)); \
2613 else if (GET_CODE (X) == POST_INC) \
2614 asm_fprintf (STREAM, "%r!", REGNO (XEXP (X, 0))); \
2615 else if (GET_CODE (X) == PLUS) \
2616 { \
2617 gcc_assert (GET_CODE (XEXP (X, 0)) == REG); \
2618 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2619 asm_fprintf (STREAM, "[%r, #%wd]", \
2620 REGNO (XEXP (X, 0)), \
2621 INTVAL (XEXP (X, 1))); \
2622 else \
2623 asm_fprintf (STREAM, "[%r, %r]", \
2624 REGNO (XEXP (X, 0)), \
2625 REGNO (XEXP (X, 1))); \
2626 } \
2627 else \
2628 output_addr_const (STREAM, X); \
2629 }
2630
2631 #define PRINT_OPERAND_ADDRESS(STREAM, X) \
2632 if (TARGET_32BIT) \
2633 ARM_PRINT_OPERAND_ADDRESS (STREAM, X) \
2634 else \
2635 THUMB_PRINT_OPERAND_ADDRESS (STREAM, X)
2636
2637 #define OUTPUT_ADDR_CONST_EXTRA(file, x, fail) \
2638 if (arm_output_addr_const_extra (file, x) == FALSE) \
2639 goto fail
2640
2641 /* A C expression whose value is RTL representing the value of the return
2642 address for the frame COUNT steps up from the current frame. */
2643
2644 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2645 arm_return_addr (COUNT, FRAME)
2646
2647 /* Mask of the bits in the PC that contain the real return address
2648 when running in 26-bit mode. */
2649 #define RETURN_ADDR_MASK26 (0x03fffffc)
2650
2651 /* Pick up the return address upon entry to a procedure. Used for
2652 dwarf2 unwind information. This also enables the table driven
2653 mechanism. */
2654 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2655 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2656
2657 /* Used to mask out junk bits from the return address, such as
2658 processor state, interrupt status, condition codes and the like. */
2659 #define MASK_RETURN_ADDR \
2660 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2661 in 26 bit mode, the condition codes must be masked out of the \
2662 return address. This does not apply to ARM6 and later processors \
2663 when running in 32 bit mode. */ \
2664 ((arm_arch4 || TARGET_THUMB) \
2665 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2666 : arm_gen_return_addr_mask ())
2667
2668 \f
2669 /* Neon defines builtins from ARM_BUILTIN_MAX upwards, though they don't have
2670 symbolic names defined here (which would require too much duplication).
2671 FIXME? */
2672 enum arm_builtins
2673 {
2674 ARM_BUILTIN_GETWCX,
2675 ARM_BUILTIN_SETWCX,
2676
2677 ARM_BUILTIN_WZERO,
2678
2679 ARM_BUILTIN_WAVG2BR,
2680 ARM_BUILTIN_WAVG2HR,
2681 ARM_BUILTIN_WAVG2B,
2682 ARM_BUILTIN_WAVG2H,
2683
2684 ARM_BUILTIN_WACCB,
2685 ARM_BUILTIN_WACCH,
2686 ARM_BUILTIN_WACCW,
2687
2688 ARM_BUILTIN_WMACS,
2689 ARM_BUILTIN_WMACSZ,
2690 ARM_BUILTIN_WMACU,
2691 ARM_BUILTIN_WMACUZ,
2692
2693 ARM_BUILTIN_WSADB,
2694 ARM_BUILTIN_WSADBZ,
2695 ARM_BUILTIN_WSADH,
2696 ARM_BUILTIN_WSADHZ,
2697
2698 ARM_BUILTIN_WALIGN,
2699
2700 ARM_BUILTIN_TMIA,
2701 ARM_BUILTIN_TMIAPH,
2702 ARM_BUILTIN_TMIABB,
2703 ARM_BUILTIN_TMIABT,
2704 ARM_BUILTIN_TMIATB,
2705 ARM_BUILTIN_TMIATT,
2706
2707 ARM_BUILTIN_TMOVMSKB,
2708 ARM_BUILTIN_TMOVMSKH,
2709 ARM_BUILTIN_TMOVMSKW,
2710
2711 ARM_BUILTIN_TBCSTB,
2712 ARM_BUILTIN_TBCSTH,
2713 ARM_BUILTIN_TBCSTW,
2714
2715 ARM_BUILTIN_WMADDS,
2716 ARM_BUILTIN_WMADDU,
2717
2718 ARM_BUILTIN_WPACKHSS,
2719 ARM_BUILTIN_WPACKWSS,
2720 ARM_BUILTIN_WPACKDSS,
2721 ARM_BUILTIN_WPACKHUS,
2722 ARM_BUILTIN_WPACKWUS,
2723 ARM_BUILTIN_WPACKDUS,
2724
2725 ARM_BUILTIN_WADDB,
2726 ARM_BUILTIN_WADDH,
2727 ARM_BUILTIN_WADDW,
2728 ARM_BUILTIN_WADDSSB,
2729 ARM_BUILTIN_WADDSSH,
2730 ARM_BUILTIN_WADDSSW,
2731 ARM_BUILTIN_WADDUSB,
2732 ARM_BUILTIN_WADDUSH,
2733 ARM_BUILTIN_WADDUSW,
2734 ARM_BUILTIN_WSUBB,
2735 ARM_BUILTIN_WSUBH,
2736 ARM_BUILTIN_WSUBW,
2737 ARM_BUILTIN_WSUBSSB,
2738 ARM_BUILTIN_WSUBSSH,
2739 ARM_BUILTIN_WSUBSSW,
2740 ARM_BUILTIN_WSUBUSB,
2741 ARM_BUILTIN_WSUBUSH,
2742 ARM_BUILTIN_WSUBUSW,
2743
2744 ARM_BUILTIN_WAND,
2745 ARM_BUILTIN_WANDN,
2746 ARM_BUILTIN_WOR,
2747 ARM_BUILTIN_WXOR,
2748
2749 ARM_BUILTIN_WCMPEQB,
2750 ARM_BUILTIN_WCMPEQH,
2751 ARM_BUILTIN_WCMPEQW,
2752 ARM_BUILTIN_WCMPGTUB,
2753 ARM_BUILTIN_WCMPGTUH,
2754 ARM_BUILTIN_WCMPGTUW,
2755 ARM_BUILTIN_WCMPGTSB,
2756 ARM_BUILTIN_WCMPGTSH,
2757 ARM_BUILTIN_WCMPGTSW,
2758
2759 ARM_BUILTIN_TEXTRMSB,
2760 ARM_BUILTIN_TEXTRMSH,
2761 ARM_BUILTIN_TEXTRMSW,
2762 ARM_BUILTIN_TEXTRMUB,
2763 ARM_BUILTIN_TEXTRMUH,
2764 ARM_BUILTIN_TEXTRMUW,
2765 ARM_BUILTIN_TINSRB,
2766 ARM_BUILTIN_TINSRH,
2767 ARM_BUILTIN_TINSRW,
2768
2769 ARM_BUILTIN_WMAXSW,
2770 ARM_BUILTIN_WMAXSH,
2771 ARM_BUILTIN_WMAXSB,
2772 ARM_BUILTIN_WMAXUW,
2773 ARM_BUILTIN_WMAXUH,
2774 ARM_BUILTIN_WMAXUB,
2775 ARM_BUILTIN_WMINSW,
2776 ARM_BUILTIN_WMINSH,
2777 ARM_BUILTIN_WMINSB,
2778 ARM_BUILTIN_WMINUW,
2779 ARM_BUILTIN_WMINUH,
2780 ARM_BUILTIN_WMINUB,
2781
2782 ARM_BUILTIN_WMULUM,
2783 ARM_BUILTIN_WMULSM,
2784 ARM_BUILTIN_WMULUL,
2785
2786 ARM_BUILTIN_PSADBH,
2787 ARM_BUILTIN_WSHUFH,
2788
2789 ARM_BUILTIN_WSLLH,
2790 ARM_BUILTIN_WSLLW,
2791 ARM_BUILTIN_WSLLD,
2792 ARM_BUILTIN_WSRAH,
2793 ARM_BUILTIN_WSRAW,
2794 ARM_BUILTIN_WSRAD,
2795 ARM_BUILTIN_WSRLH,
2796 ARM_BUILTIN_WSRLW,
2797 ARM_BUILTIN_WSRLD,
2798 ARM_BUILTIN_WRORH,
2799 ARM_BUILTIN_WRORW,
2800 ARM_BUILTIN_WRORD,
2801 ARM_BUILTIN_WSLLHI,
2802 ARM_BUILTIN_WSLLWI,
2803 ARM_BUILTIN_WSLLDI,
2804 ARM_BUILTIN_WSRAHI,
2805 ARM_BUILTIN_WSRAWI,
2806 ARM_BUILTIN_WSRADI,
2807 ARM_BUILTIN_WSRLHI,
2808 ARM_BUILTIN_WSRLWI,
2809 ARM_BUILTIN_WSRLDI,
2810 ARM_BUILTIN_WRORHI,
2811 ARM_BUILTIN_WRORWI,
2812 ARM_BUILTIN_WRORDI,
2813
2814 ARM_BUILTIN_WUNPCKIHB,
2815 ARM_BUILTIN_WUNPCKIHH,
2816 ARM_BUILTIN_WUNPCKIHW,
2817 ARM_BUILTIN_WUNPCKILB,
2818 ARM_BUILTIN_WUNPCKILH,
2819 ARM_BUILTIN_WUNPCKILW,
2820
2821 ARM_BUILTIN_WUNPCKEHSB,
2822 ARM_BUILTIN_WUNPCKEHSH,
2823 ARM_BUILTIN_WUNPCKEHSW,
2824 ARM_BUILTIN_WUNPCKEHUB,
2825 ARM_BUILTIN_WUNPCKEHUH,
2826 ARM_BUILTIN_WUNPCKEHUW,
2827 ARM_BUILTIN_WUNPCKELSB,
2828 ARM_BUILTIN_WUNPCKELSH,
2829 ARM_BUILTIN_WUNPCKELSW,
2830 ARM_BUILTIN_WUNPCKELUB,
2831 ARM_BUILTIN_WUNPCKELUH,
2832 ARM_BUILTIN_WUNPCKELUW,
2833
2834 ARM_BUILTIN_THREAD_POINTER,
2835
2836 ARM_BUILTIN_NEON_BASE,
2837
2838 ARM_BUILTIN_MAX = ARM_BUILTIN_NEON_BASE /* FIXME: Wrong! */
2839 };
2840
2841 /* Do not emit .note.GNU-stack by default. */
2842 #ifndef NEED_INDICATE_EXEC_STACK
2843 #define NEED_INDICATE_EXEC_STACK 0
2844 #endif
2845
2846 #endif /* ! GCC_ARM_H */