]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/arm/arm.h
arm-cores.def (arm1156t2-s, [...]): Use v6t2 tuning.
[thirdparty/gcc.git] / gcc / config / arm / arm.h
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
6 and Martin Simmons (@harleqn.co.uk).
7 More major hacks by Richard Earnshaw (rearnsha@arm.com)
8 Minor hacks by Nick Clifton (nickc@cygnus.com)
9
10 This file is part of GCC.
11
12 GCC is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published
14 by the Free Software Foundation; either version 3, or (at your
15 option) any later version.
16
17 GCC is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
20 License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
25
26 #ifndef GCC_ARM_H
27 #define GCC_ARM_H
28
29 /* We can't use enum machine_mode inside a generator file because it
30 hasn't been created yet; we shouldn't be using any code that
31 needs the real definition though, so this ought to be safe. */
32 #ifdef GENERATOR_FILE
33 #define MACHMODE int
34 #else
35 #include "insn-modes.h"
36 #define MACHMODE enum machine_mode
37 #endif
38
39 #include "config/vxworks-dummy.h"
40
41 /* The architecture define. */
42 extern char arm_arch_name[];
43
44 /* Target CPU builtins. */
45 #define TARGET_CPU_CPP_BUILTINS() \
46 do \
47 { \
48 /* Define __arm__ even when in thumb mode, for \
49 consistency with armcc. */ \
50 builtin_define ("__arm__"); \
51 builtin_define ("__APCS_32__"); \
52 if (TARGET_THUMB) \
53 builtin_define ("__thumb__"); \
54 if (TARGET_THUMB2) \
55 builtin_define ("__thumb2__"); \
56 \
57 if (TARGET_BIG_END) \
58 { \
59 builtin_define ("__ARMEB__"); \
60 if (TARGET_THUMB) \
61 builtin_define ("__THUMBEB__"); \
62 if (TARGET_LITTLE_WORDS) \
63 builtin_define ("__ARMWEL__"); \
64 } \
65 else \
66 { \
67 builtin_define ("__ARMEL__"); \
68 if (TARGET_THUMB) \
69 builtin_define ("__THUMBEL__"); \
70 } \
71 \
72 if (TARGET_SOFT_FLOAT) \
73 builtin_define ("__SOFTFP__"); \
74 \
75 if (TARGET_VFP) \
76 builtin_define ("__VFP_FP__"); \
77 \
78 if (TARGET_NEON) \
79 builtin_define ("__ARM_NEON__"); \
80 \
81 /* Add a define for interworking. \
82 Needed when building libgcc.a. */ \
83 if (arm_cpp_interwork) \
84 builtin_define ("__THUMB_INTERWORK__"); \
85 \
86 builtin_assert ("cpu=arm"); \
87 builtin_assert ("machine=arm"); \
88 \
89 builtin_define (arm_arch_name); \
90 if (arm_arch_cirrus) \
91 builtin_define ("__MAVERICK__"); \
92 if (arm_arch_xscale) \
93 builtin_define ("__XSCALE__"); \
94 if (arm_arch_iwmmxt) \
95 builtin_define ("__IWMMXT__"); \
96 if (TARGET_AAPCS_BASED) \
97 { \
98 if (arm_pcs_default == ARM_PCS_AAPCS_VFP) \
99 builtin_define ("__ARM_PCS_VFP"); \
100 else if (arm_pcs_default == ARM_PCS_AAPCS) \
101 builtin_define ("__ARM_PCS"); \
102 builtin_define ("__ARM_EABI__"); \
103 } \
104 if (TARGET_IDIV) \
105 builtin_define ("__ARM_ARCH_EXT_IDIV__"); \
106 } while (0)
107
108 #include "config/arm/arm-opts.h"
109
110 enum target_cpus
111 {
112 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
113 TARGET_CPU_##IDENT,
114 #include "arm-cores.def"
115 #undef ARM_CORE
116 TARGET_CPU_generic
117 };
118
119 /* The processor for which instructions should be scheduled. */
120 extern enum processor_type arm_tune;
121
122 enum arm_sync_generator_tag
123 {
124 arm_sync_generator_omn,
125 arm_sync_generator_omrn
126 };
127
128 /* Wrapper to pass around a polymorphic pointer to a sync instruction
129 generator and. */
130 struct arm_sync_generator
131 {
132 enum arm_sync_generator_tag op;
133 union
134 {
135 rtx (* omn) (rtx, rtx, rtx);
136 rtx (* omrn) (rtx, rtx, rtx, rtx);
137 } u;
138 };
139
140 typedef enum arm_cond_code
141 {
142 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
143 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
144 }
145 arm_cc;
146
147 extern arm_cc arm_current_cc;
148
149 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
150
151 extern int arm_target_label;
152 extern int arm_ccfsm_state;
153 extern GTY(()) rtx arm_target_insn;
154 /* The label of the current constant pool. */
155 extern rtx pool_vector_label;
156 /* Set to 1 when a return insn is output, this means that the epilogue
157 is not needed. */
158 extern int return_used_this_function;
159 /* Callback to output language specific object attributes. */
160 extern void (*arm_lang_output_object_attributes_hook)(void);
161 \f
162 /* Just in case configure has failed to define anything. */
163 #ifndef TARGET_CPU_DEFAULT
164 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
165 #endif
166
167
168 #undef CPP_SPEC
169 #define CPP_SPEC "%(subtarget_cpp_spec) \
170 %{mfloat-abi=soft:%{mfloat-abi=hard: \
171 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
172 %{mbig-endian:%{mlittle-endian: \
173 %e-mbig-endian and -mlittle-endian may not be used together}}"
174
175 #ifndef CC1_SPEC
176 #define CC1_SPEC ""
177 #endif
178
179 /* This macro defines names of additional specifications to put in the specs
180 that can be used in various specifications like CC1_SPEC. Its definition
181 is an initializer with a subgrouping for each command option.
182
183 Each subgrouping contains a string constant, that defines the
184 specification name, and a string constant that used by the GCC driver
185 program.
186
187 Do not define this macro if it does not need to do anything. */
188 #define EXTRA_SPECS \
189 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
190 SUBTARGET_EXTRA_SPECS
191
192 #ifndef SUBTARGET_EXTRA_SPECS
193 #define SUBTARGET_EXTRA_SPECS
194 #endif
195
196 #ifndef SUBTARGET_CPP_SPEC
197 #define SUBTARGET_CPP_SPEC ""
198 #endif
199 \f
200 /* Run-time Target Specification. */
201 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
202 /* Use hardware floating point instructions. */
203 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
204 /* Use hardware floating point calling convention. */
205 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
206 #define TARGET_FPA (arm_fpu_desc->model == ARM_FP_MODEL_FPA)
207 #define TARGET_MAVERICK (arm_fpu_desc->model == ARM_FP_MODEL_MAVERICK)
208 #define TARGET_VFP (arm_fpu_desc->model == ARM_FP_MODEL_VFP)
209 #define TARGET_IWMMXT (arm_arch_iwmmxt)
210 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
211 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
212 #define TARGET_ARM (! TARGET_THUMB)
213 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
214 #define TARGET_BACKTRACE (leaf_function_p () \
215 ? TARGET_TPCS_LEAF_FRAME \
216 : TARGET_TPCS_FRAME)
217 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN)
218 #define TARGET_AAPCS_BASED \
219 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
220
221 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
222 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
223
224 /* Only 16-bit thumb code. */
225 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
226 /* Arm or Thumb-2 32-bit code. */
227 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
228 /* 32-bit Thumb-2 code. */
229 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
230 /* Thumb-1 only. */
231 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
232 /* FPA emulator without LFM. */
233 #define TARGET_FPA_EMU2 (TARGET_FPA && arm_fpu_desc->rev == 2)
234
235 /* The following two macros concern the ability to execute coprocessor
236 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
237 only ever tested when we know we are generating for VFP hardware; we need
238 to be more careful with TARGET_NEON as noted below. */
239
240 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
241 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
242
243 /* FPU supports VFPv3 instructions. */
244 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
245
246 /* FPU only supports VFP single-precision instructions. */
247 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
248
249 /* FPU supports VFP double-precision instructions. */
250 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
251
252 /* FPU supports half-precision floating-point with NEON element load/store. */
253 #define TARGET_NEON_FP16 \
254 (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
255
256 /* FPU supports VFP half-precision floating-point. */
257 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
258
259 /* FPU supports Neon instructions. The setting of this macro gets
260 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
261 and TARGET_HARD_FLOAT to ensure that NEON instructions are
262 available. */
263 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
264 && TARGET_VFP && arm_fpu_desc->neon)
265
266 /* "DSP" multiply instructions, eg. SMULxy. */
267 #define TARGET_DSP_MULTIPLY \
268 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
269 /* Integer SIMD instructions, and extend-accumulate instructions. */
270 #define TARGET_INT_SIMD \
271 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
272
273 /* Should MOVW/MOVT be used in preference to a constant pool. */
274 #define TARGET_USE_MOVT \
275 (arm_arch_thumb2 && !optimize_size && !current_tune->prefer_constant_pool)
276
277 /* We could use unified syntax for arm mode, but for now we just use it
278 for Thumb-2. */
279 #define TARGET_UNIFIED_ASM TARGET_THUMB2
280
281 /* Nonzero if this chip provides the DMB instruction. */
282 #define TARGET_HAVE_DMB (arm_arch7)
283
284 /* Nonzero if this chip implements a memory barrier via CP15. */
285 #define TARGET_HAVE_DMB_MCR (arm_arch6k && ! TARGET_HAVE_DMB)
286
287 /* Nonzero if this chip implements a memory barrier instruction. */
288 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
289
290 /* Nonzero if this chip supports ldrex and strex */
291 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) || arm_arch7)
292
293 /* Nonzero if this chip supports ldrex{bhd} and strex{bhd}. */
294 #define TARGET_HAVE_LDREXBHD ((arm_arch6k && TARGET_ARM) || arm_arch7)
295
296 /* Nonzero if integer division instructions supported. */
297 #define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \
298 || (TARGET_THUMB2 && arm_arch_thumb_hwdiv))
299
300 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
301 then TARGET_AAPCS_BASED must be true -- but the converse does not
302 hold. TARGET_BPABI implies the use of the BPABI runtime library,
303 etc., in addition to just the AAPCS calling conventions. */
304 #ifndef TARGET_BPABI
305 #define TARGET_BPABI false
306 #endif
307
308 /* Support for a compile-time default CPU, et cetera. The rules are:
309 --with-arch is ignored if -march or -mcpu are specified.
310 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
311 by --with-arch.
312 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
313 by -march).
314 --with-float is ignored if -mfloat-abi is specified.
315 --with-fpu is ignored if -mfpu is specified.
316 --with-abi is ignored is -mabi is specified. */
317 #define OPTION_DEFAULT_SPECS \
318 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
319 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
320 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
321 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
322 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
323 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
324 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"},
325
326 /* Which floating point model to use. */
327 enum arm_fp_model
328 {
329 ARM_FP_MODEL_UNKNOWN,
330 /* FPA model (Hardware or software). */
331 ARM_FP_MODEL_FPA,
332 /* Cirrus Maverick floating point model. */
333 ARM_FP_MODEL_MAVERICK,
334 /* VFP floating point model. */
335 ARM_FP_MODEL_VFP
336 };
337
338 enum vfp_reg_type
339 {
340 VFP_NONE = 0,
341 VFP_REG_D16,
342 VFP_REG_D32,
343 VFP_REG_SINGLE
344 };
345
346 extern const struct arm_fpu_desc
347 {
348 const char *name;
349 enum arm_fp_model model;
350 int rev;
351 enum vfp_reg_type regs;
352 int neon;
353 int fp16;
354 } *arm_fpu_desc;
355
356 /* Which floating point hardware to schedule for. */
357 extern int arm_fpu_attr;
358
359 #ifndef TARGET_DEFAULT_FLOAT_ABI
360 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
361 #endif
362
363 #define LARGEST_EXPONENT_IS_NORMAL(bits) \
364 ((bits) == 16 && arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)
365
366 #ifndef ARM_DEFAULT_ABI
367 #define ARM_DEFAULT_ABI ARM_ABI_APCS
368 #endif
369
370 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
371 extern int arm_arch3m;
372
373 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
374 extern int arm_arch4;
375
376 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
377 extern int arm_arch4t;
378
379 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
380 extern int arm_arch5;
381
382 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
383 extern int arm_arch5e;
384
385 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
386 extern int arm_arch6;
387
388 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
389 extern int arm_arch6k;
390
391 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
392 extern int arm_arch7;
393
394 /* Nonzero if instructions not present in the 'M' profile can be used. */
395 extern int arm_arch_notm;
396
397 /* Nonzero if instructions present in ARMv7E-M can be used. */
398 extern int arm_arch7em;
399
400 /* Nonzero if this chip can benefit from load scheduling. */
401 extern int arm_ld_sched;
402
403 /* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2. */
404 extern int thumb_code;
405
406 /* Nonzero if generating Thumb-1 code. */
407 extern int thumb1_code;
408
409 /* Nonzero if this chip is a StrongARM. */
410 extern int arm_tune_strongarm;
411
412 /* Nonzero if this chip is a Cirrus variant. */
413 extern int arm_arch_cirrus;
414
415 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
416 extern int arm_arch_iwmmxt;
417
418 /* Nonzero if this chip is an XScale. */
419 extern int arm_arch_xscale;
420
421 /* Nonzero if tuning for XScale. */
422 extern int arm_tune_xscale;
423
424 /* Nonzero if tuning for stores via the write buffer. */
425 extern int arm_tune_wbuf;
426
427 /* Nonzero if tuning for Cortex-A9. */
428 extern int arm_tune_cortex_a9;
429
430 /* Nonzero if we should define __THUMB_INTERWORK__ in the
431 preprocessor.
432 XXX This is a bit of a hack, it's intended to help work around
433 problems in GLD which doesn't understand that armv5t code is
434 interworking clean. */
435 extern int arm_cpp_interwork;
436
437 /* Nonzero if chip supports Thumb 2. */
438 extern int arm_arch_thumb2;
439
440 /* Nonzero if chip supports integer division instruction in ARM mode. */
441 extern int arm_arch_arm_hwdiv;
442
443 /* Nonzero if chip supports integer division instruction in Thumb mode. */
444 extern int arm_arch_thumb_hwdiv;
445
446 #ifndef TARGET_DEFAULT
447 #define TARGET_DEFAULT (MASK_APCS_FRAME)
448 #endif
449
450 /* Nonzero if PIC code requires explicit qualifiers to generate
451 PLT and GOT relocs rather than the assembler doing so implicitly.
452 Subtargets can override these if required. */
453 #ifndef NEED_GOT_RELOC
454 #define NEED_GOT_RELOC 0
455 #endif
456 #ifndef NEED_PLT_RELOC
457 #define NEED_PLT_RELOC 0
458 #endif
459
460 /* Nonzero if we need to refer to the GOT with a PC-relative
461 offset. In other words, generate
462
463 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
464
465 rather than
466
467 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
468
469 The default is true, which matches NetBSD. Subtargets can
470 override this if required. */
471 #ifndef GOT_PCREL
472 #define GOT_PCREL 1
473 #endif
474 \f
475 /* Target machine storage Layout. */
476
477
478 /* Define this macro if it is advisable to hold scalars in registers
479 in a wider mode than that declared by the program. In such cases,
480 the value is constrained to be within the bounds of the declared
481 type, but kept valid in the wider mode. The signedness of the
482 extension may differ from that of the type. */
483
484 /* It is far faster to zero extend chars than to sign extend them */
485
486 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
487 if (GET_MODE_CLASS (MODE) == MODE_INT \
488 && GET_MODE_SIZE (MODE) < 4) \
489 { \
490 if (MODE == QImode) \
491 UNSIGNEDP = 1; \
492 else if (MODE == HImode) \
493 UNSIGNEDP = 1; \
494 (MODE) = SImode; \
495 }
496
497 /* Define this if most significant bit is lowest numbered
498 in instructions that operate on numbered bit-fields. */
499 #define BITS_BIG_ENDIAN 0
500
501 /* Define this if most significant byte of a word is the lowest numbered.
502 Most ARM processors are run in little endian mode, so that is the default.
503 If you want to have it run-time selectable, change the definition in a
504 cover file to be TARGET_BIG_ENDIAN. */
505 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
506
507 /* Define this if most significant word of a multiword number is the lowest
508 numbered.
509 This is always false, even when in big-endian mode. */
510 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
511
512 /* Define this if most significant word of doubles is the lowest numbered.
513 The rules are different based on whether or not we use FPA-format,
514 VFP-format or some other floating point co-processor's format doubles. */
515 #define FLOAT_WORDS_BIG_ENDIAN (arm_float_words_big_endian ())
516
517 #define UNITS_PER_WORD 4
518
519 /* True if natural alignment is used for doubleword types. */
520 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
521
522 #define DOUBLEWORD_ALIGNMENT 64
523
524 #define PARM_BOUNDARY 32
525
526 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
527
528 #define PREFERRED_STACK_BOUNDARY \
529 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
530
531 #define FUNCTION_BOUNDARY ((TARGET_THUMB && optimize_size) ? 16 : 32)
532
533 /* The lowest bit is used to indicate Thumb-mode functions, so the
534 vbit must go into the delta field of pointers to member
535 functions. */
536 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
537
538 #define EMPTY_FIELD_BOUNDARY 32
539
540 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
541
542 /* XXX Blah -- this macro is used directly by libobjc. Since it
543 supports no vector modes, cut out the complexity and fall back
544 on BIGGEST_FIELD_ALIGNMENT. */
545 #ifdef IN_TARGET_LIBS
546 #define BIGGEST_FIELD_ALIGNMENT 64
547 #endif
548
549 /* Make strings word-aligned so strcpy from constants will be faster. */
550 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
551
552 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
553 ((TREE_CODE (EXP) == STRING_CST \
554 && !optimize_size \
555 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
556 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
557
558 /* Align definitions of arrays, unions and structures so that
559 initializations and copies can be made more efficient. This is not
560 ABI-changing, so it only affects places where we can see the
561 definition. Increasing the alignment tends to introduce padding,
562 so don't do this when optimizing for size/conserving stack space. */
563 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
564 (((COND) && ((ALIGN) < BITS_PER_WORD) \
565 && (TREE_CODE (EXP) == ARRAY_TYPE \
566 || TREE_CODE (EXP) == UNION_TYPE \
567 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
568
569 /* Align global data. */
570 #define DATA_ALIGNMENT(EXP, ALIGN) \
571 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
572
573 /* Similarly, make sure that objects on the stack are sensibly aligned. */
574 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
575 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
576
577 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
578 value set in previous versions of this toolchain was 8, which produces more
579 compact structures. The command line option -mstructure_size_boundary=<n>
580 can be used to change this value. For compatibility with the ARM SDK
581 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
582 0020D) page 2-20 says "Structures are aligned on word boundaries".
583 The AAPCS specifies a value of 8. */
584 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
585
586 /* This is the value used to initialize arm_structure_size_boundary. If a
587 particular arm target wants to change the default value it should change
588 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
589 for an example of this. */
590 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
591 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
592 #endif
593
594 /* Nonzero if move instructions will actually fail to work
595 when given unaligned data. */
596 #define STRICT_ALIGNMENT 1
597
598 /* wchar_t is unsigned under the AAPCS. */
599 #ifndef WCHAR_TYPE
600 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
601
602 #define WCHAR_TYPE_SIZE BITS_PER_WORD
603 #endif
604
605 #ifndef SIZE_TYPE
606 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
607 #endif
608
609 #ifndef PTRDIFF_TYPE
610 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
611 #endif
612
613 /* AAPCS requires that structure alignment is affected by bitfields. */
614 #ifndef PCC_BITFIELD_TYPE_MATTERS
615 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
616 #endif
617
618 \f
619 /* Standard register usage. */
620
621 /* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
622 (S - saved over call).
623
624 r0 * argument word/integer result
625 r1-r3 argument word
626
627 r4-r8 S register variable
628 r9 S (rfp) register variable (real frame pointer)
629
630 r10 F S (sl) stack limit (used by -mapcs-stack-check)
631 r11 F S (fp) argument pointer
632 r12 (ip) temp workspace
633 r13 F S (sp) lower end of current stack frame
634 r14 (lr) link address/workspace
635 r15 F (pc) program counter
636
637 f0 floating point result
638 f1-f3 floating point scratch
639
640 f4-f7 S floating point variable
641
642 cc This is NOT a real register, but is used internally
643 to represent things that use or set the condition
644 codes.
645 sfp This isn't either. It is used during rtl generation
646 since the offset between the frame pointer and the
647 auto's isn't known until after register allocation.
648 afp Nor this, we only need this because of non-local
649 goto. Without it fp appears to be used and the
650 elimination code won't get rid of sfp. It tracks
651 fp exactly at all times.
652
653 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
654
655 /*
656 mvf0 Cirrus floating point result
657 mvf1-mvf3 Cirrus floating point scratch
658 mvf4-mvf15 S Cirrus floating point variable. */
659
660 /* s0-s15 VFP scratch (aka d0-d7).
661 s16-s31 S VFP variable (aka d8-d15).
662 vfpcc Not a real register. Represents the VFP condition
663 code flags. */
664
665 /* The stack backtrace structure is as follows:
666 fp points to here: | save code pointer | [fp]
667 | return link value | [fp, #-4]
668 | return sp value | [fp, #-8]
669 | return fp value | [fp, #-12]
670 [| saved r10 value |]
671 [| saved r9 value |]
672 [| saved r8 value |]
673 [| saved r7 value |]
674 [| saved r6 value |]
675 [| saved r5 value |]
676 [| saved r4 value |]
677 [| saved r3 value |]
678 [| saved r2 value |]
679 [| saved r1 value |]
680 [| saved r0 value |]
681 [| saved f7 value |] three words
682 [| saved f6 value |] three words
683 [| saved f5 value |] three words
684 [| saved f4 value |] three words
685 r0-r3 are not normally saved in a C function. */
686
687 /* 1 for registers that have pervasive standard uses
688 and are not available for the register allocator. */
689 #define FIXED_REGISTERS \
690 { \
691 0,0,0,0,0,0,0,0, \
692 0,0,0,0,0,1,0,1, \
693 0,0,0,0,0,0,0,0, \
694 1,1,1, \
695 1,1,1,1,1,1,1,1, \
696 1,1,1,1,1,1,1,1, \
697 1,1,1,1,1,1,1,1, \
698 1,1,1,1,1,1,1,1, \
699 1,1,1,1, \
700 1,1,1,1,1,1,1,1, \
701 1,1,1,1,1,1,1,1, \
702 1,1,1,1,1,1,1,1, \
703 1,1,1,1,1,1,1,1, \
704 1,1,1,1,1,1,1,1, \
705 1,1,1,1,1,1,1,1, \
706 1,1,1,1,1,1,1,1, \
707 1,1,1,1,1,1,1,1, \
708 1 \
709 }
710
711 /* 1 for registers not available across function calls.
712 These must include the FIXED_REGISTERS and also any
713 registers that can be used without being saved.
714 The latter must include the registers where values are returned
715 and the register where structure-value addresses are passed.
716 Aside from that, you can include as many other registers as you like.
717 The CC is not preserved over function calls on the ARM 6, so it is
718 easier to assume this for all. SFP is preserved, since FP is. */
719 #define CALL_USED_REGISTERS \
720 { \
721 1,1,1,1,0,0,0,0, \
722 0,0,0,0,1,1,1,1, \
723 1,1,1,1,0,0,0,0, \
724 1,1,1, \
725 1,1,1,1,1,1,1,1, \
726 1,1,1,1,1,1,1,1, \
727 1,1,1,1,1,1,1,1, \
728 1,1,1,1,1,1,1,1, \
729 1,1,1,1, \
730 1,1,1,1,1,1,1,1, \
731 1,1,1,1,1,1,1,1, \
732 1,1,1,1,1,1,1,1, \
733 1,1,1,1,1,1,1,1, \
734 1,1,1,1,1,1,1,1, \
735 1,1,1,1,1,1,1,1, \
736 1,1,1,1,1,1,1,1, \
737 1,1,1,1,1,1,1,1, \
738 1 \
739 }
740
741 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
742 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
743 #endif
744
745 /* These are a couple of extensions to the formats accepted
746 by asm_fprintf:
747 %@ prints out ASM_COMMENT_START
748 %r prints out REGISTER_PREFIX reg_names[arg] */
749 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
750 case '@': \
751 fputs (ASM_COMMENT_START, FILE); \
752 break; \
753 \
754 case 'r': \
755 fputs (REGISTER_PREFIX, FILE); \
756 fputs (reg_names [va_arg (ARGS, int)], FILE); \
757 break;
758
759 /* Round X up to the nearest word. */
760 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
761
762 /* Convert fron bytes to ints. */
763 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
764
765 /* The number of (integer) registers required to hold a quantity of type MODE.
766 Also used for VFP registers. */
767 #define ARM_NUM_REGS(MODE) \
768 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
769
770 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
771 #define ARM_NUM_REGS2(MODE, TYPE) \
772 ARM_NUM_INTS ((MODE) == BLKmode ? \
773 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
774
775 /* The number of (integer) argument register available. */
776 #define NUM_ARG_REGS 4
777
778 /* And similarly for the VFP. */
779 #define NUM_VFP_ARG_REGS 16
780
781 /* Return the register number of the N'th (integer) argument. */
782 #define ARG_REGISTER(N) (N - 1)
783
784 /* Specify the registers used for certain standard purposes.
785 The values of these macros are register numbers. */
786
787 /* The number of the last argument register. */
788 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
789
790 /* The numbers of the Thumb register ranges. */
791 #define FIRST_LO_REGNUM 0
792 #define LAST_LO_REGNUM 7
793 #define FIRST_HI_REGNUM 8
794 #define LAST_HI_REGNUM 11
795
796 /* Overridden by config/arm/bpabi.h. */
797 #ifndef ARM_UNWIND_INFO
798 #define ARM_UNWIND_INFO 0
799 #endif
800
801 /* Use r0 and r1 to pass exception handling information. */
802 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
803
804 /* The register that holds the return address in exception handlers. */
805 #define ARM_EH_STACKADJ_REGNUM 2
806 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
807
808 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
809 as an invisible last argument (possible since varargs don't exist in
810 Pascal), so the following is not true. */
811 #define STATIC_CHAIN_REGNUM 12
812
813 /* Define this to be where the real frame pointer is if it is not possible to
814 work out the offset between the frame pointer and the automatic variables
815 until after register allocation has taken place. FRAME_POINTER_REGNUM
816 should point to a special register that we will make sure is eliminated.
817
818 For the Thumb we have another problem. The TPCS defines the frame pointer
819 as r11, and GCC believes that it is always possible to use the frame pointer
820 as base register for addressing purposes. (See comments in
821 find_reloads_address()). But - the Thumb does not allow high registers,
822 including r11, to be used as base address registers. Hence our problem.
823
824 The solution used here, and in the old thumb port is to use r7 instead of
825 r11 as the hard frame pointer and to have special code to generate
826 backtrace structures on the stack (if required to do so via a command line
827 option) using r11. This is the only 'user visible' use of r11 as a frame
828 pointer. */
829 #define ARM_HARD_FRAME_POINTER_REGNUM 11
830 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
831
832 #define HARD_FRAME_POINTER_REGNUM \
833 (TARGET_ARM \
834 ? ARM_HARD_FRAME_POINTER_REGNUM \
835 : THUMB_HARD_FRAME_POINTER_REGNUM)
836
837 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
838 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
839
840 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
841
842 /* Register to use for pushing function arguments. */
843 #define STACK_POINTER_REGNUM SP_REGNUM
844
845 /* ARM floating pointer registers. */
846 #define FIRST_FPA_REGNUM 16
847 #define LAST_FPA_REGNUM 23
848 #define IS_FPA_REGNUM(REGNUM) \
849 (((REGNUM) >= FIRST_FPA_REGNUM) && ((REGNUM) <= LAST_FPA_REGNUM))
850
851 #define FIRST_IWMMXT_GR_REGNUM 43
852 #define LAST_IWMMXT_GR_REGNUM 46
853 #define FIRST_IWMMXT_REGNUM 47
854 #define LAST_IWMMXT_REGNUM 62
855 #define IS_IWMMXT_REGNUM(REGNUM) \
856 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
857 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
858 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
859
860 /* Base register for access to local variables of the function. */
861 #define FRAME_POINTER_REGNUM 25
862
863 /* Base register for access to arguments of the function. */
864 #define ARG_POINTER_REGNUM 26
865
866 #define FIRST_CIRRUS_FP_REGNUM 27
867 #define LAST_CIRRUS_FP_REGNUM 42
868 #define IS_CIRRUS_REGNUM(REGNUM) \
869 (((REGNUM) >= FIRST_CIRRUS_FP_REGNUM) && ((REGNUM) <= LAST_CIRRUS_FP_REGNUM))
870
871 #define FIRST_VFP_REGNUM 63
872 #define D7_VFP_REGNUM 78 /* Registers 77 and 78 == VFP reg D7. */
873 #define LAST_VFP_REGNUM \
874 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
875
876 #define IS_VFP_REGNUM(REGNUM) \
877 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
878
879 /* VFP registers are split into two types: those defined by VFP versions < 3
880 have D registers overlaid on consecutive pairs of S registers. VFP version 3
881 defines 16 new D registers (d16-d31) which, for simplicity and correctness
882 in various parts of the backend, we implement as "fake" single-precision
883 registers (which would be S32-S63, but cannot be used in that way). The
884 following macros define these ranges of registers. */
885 #define LAST_LO_VFP_REGNUM 94
886 #define FIRST_HI_VFP_REGNUM 95
887 #define LAST_HI_VFP_REGNUM 126
888
889 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
890 ((REGNUM) <= LAST_LO_VFP_REGNUM)
891
892 /* DFmode values are only valid in even register pairs. */
893 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
894 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
895
896 /* Neon Quad values must start at a multiple of four registers. */
897 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
898 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
899
900 /* Neon structures of vectors must be in even register pairs and there
901 must be enough registers available. Because of various patterns
902 requiring quad registers, we require them to start at a multiple of
903 four. */
904 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
905 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
906 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
907
908 /* The number of hard registers is 16 ARM + 8 FPA + 1 CC + 1 SFP + 1 AFP. */
909 /* + 16 Cirrus registers take us up to 43. */
910 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
911 /* VFP (VFP3) adds 32 (64) + 1 more. */
912 #define FIRST_PSEUDO_REGISTER 128
913
914 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
915
916 /* Value should be nonzero if functions must have frame pointers.
917 Zero means the frame pointer need not be set up (and parms may be accessed
918 via the stack pointer) in functions that seem suitable.
919 If we have to have a frame pointer we might as well make use of it.
920 APCS says that the frame pointer does not need to be pushed in leaf
921 functions, or simple tail call functions. */
922
923 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
924 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
925 #endif
926
927 /* Return number of consecutive hard regs needed starting at reg REGNO
928 to hold something of mode MODE.
929 This is ordinarily the length in words of a value of mode MODE
930 but can be less for certain modes in special long registers.
931
932 On the ARM regs are UNITS_PER_WORD bits wide; FPA regs can hold any FP
933 mode. */
934 #define HARD_REGNO_NREGS(REGNO, MODE) \
935 ((TARGET_32BIT \
936 && REGNO >= FIRST_FPA_REGNUM \
937 && REGNO != FRAME_POINTER_REGNUM \
938 && REGNO != ARG_POINTER_REGNUM) \
939 && !IS_VFP_REGNUM (REGNO) \
940 ? 1 : ARM_NUM_REGS (MODE))
941
942 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
943 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
944 arm_hard_regno_mode_ok ((REGNO), (MODE))
945
946 /* Value is 1 if it is a good idea to tie two pseudo registers
947 when one has mode MODE1 and one has mode MODE2.
948 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
949 for any hard reg, then this must be 0 for correct output. */
950 #define MODES_TIEABLE_P(MODE1, MODE2) \
951 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
952
953 #define VALID_IWMMXT_REG_MODE(MODE) \
954 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
955
956 /* Modes valid for Neon D registers. */
957 #define VALID_NEON_DREG_MODE(MODE) \
958 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
959 || (MODE) == V2SFmode || (MODE) == DImode)
960
961 /* Modes valid for Neon Q registers. */
962 #define VALID_NEON_QREG_MODE(MODE) \
963 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
964 || (MODE) == V4SFmode || (MODE) == V2DImode)
965
966 /* Structure modes valid for Neon registers. */
967 #define VALID_NEON_STRUCT_MODE(MODE) \
968 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
969 || (MODE) == CImode || (MODE) == XImode)
970
971 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
972 extern int arm_regs_in_sequence[];
973
974 /* The order in which register should be allocated. It is good to use ip
975 since no saving is required (though calls clobber it) and it never contains
976 function parameters. It is quite good to use lr since other calls may
977 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
978 least likely to contain a function parameter; in addition results are
979 returned in r0.
980 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
981 then D8-D15. The reason for doing this is to attempt to reduce register
982 pressure when both single- and double-precision registers are used in a
983 function. */
984
985 #define REG_ALLOC_ORDER \
986 { \
987 3, 2, 1, 0, 12, 14, 4, 5, \
988 6, 7, 8, 10, 9, 11, 13, 15, \
989 16, 17, 18, 19, 20, 21, 22, 23, \
990 27, 28, 29, 30, 31, 32, 33, 34, \
991 35, 36, 37, 38, 39, 40, 41, 42, \
992 43, 44, 45, 46, 47, 48, 49, 50, \
993 51, 52, 53, 54, 55, 56, 57, 58, \
994 59, 60, 61, 62, \
995 24, 25, 26, \
996 95, 96, 97, 98, 99, 100, 101, 102, \
997 103, 104, 105, 106, 107, 108, 109, 110, \
998 111, 112, 113, 114, 115, 116, 117, 118, \
999 119, 120, 121, 122, 123, 124, 125, 126, \
1000 78, 77, 76, 75, 74, 73, 72, 71, \
1001 70, 69, 68, 67, 66, 65, 64, 63, \
1002 79, 80, 81, 82, 83, 84, 85, 86, \
1003 87, 88, 89, 90, 91, 92, 93, 94, \
1004 127 \
1005 }
1006
1007 /* Use different register alloc ordering for Thumb. */
1008 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1009
1010 /* Tell IRA to use the order we define rather than messing it up with its
1011 own cost calculations. */
1012 #define HONOR_REG_ALLOC_ORDER
1013
1014 /* Interrupt functions can only use registers that have already been
1015 saved by the prologue, even if they would normally be
1016 call-clobbered. */
1017 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1018 (! IS_INTERRUPT (cfun->machine->func_type) || \
1019 df_regs_ever_live_p (DST))
1020 \f
1021 /* Register and constant classes. */
1022
1023 /* Register classes: used to be simple, just all ARM regs or all FPA regs
1024 Now that the Thumb is involved it has become more complicated. */
1025 enum reg_class
1026 {
1027 NO_REGS,
1028 FPA_REGS,
1029 CIRRUS_REGS,
1030 VFP_D0_D7_REGS,
1031 VFP_LO_REGS,
1032 VFP_HI_REGS,
1033 VFP_REGS,
1034 IWMMXT_GR_REGS,
1035 IWMMXT_REGS,
1036 LO_REGS,
1037 STACK_REG,
1038 BASE_REGS,
1039 HI_REGS,
1040 CC_REG,
1041 VFPCC_REG,
1042 GENERAL_REGS,
1043 CORE_REGS,
1044 ALL_REGS,
1045 LIM_REG_CLASSES
1046 };
1047
1048 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1049
1050 /* Give names of register classes as strings for dump file. */
1051 #define REG_CLASS_NAMES \
1052 { \
1053 "NO_REGS", \
1054 "FPA_REGS", \
1055 "CIRRUS_REGS", \
1056 "VFP_D0_D7_REGS", \
1057 "VFP_LO_REGS", \
1058 "VFP_HI_REGS", \
1059 "VFP_REGS", \
1060 "IWMMXT_GR_REGS", \
1061 "IWMMXT_REGS", \
1062 "LO_REGS", \
1063 "STACK_REG", \
1064 "BASE_REGS", \
1065 "HI_REGS", \
1066 "CC_REG", \
1067 "VFPCC_REG", \
1068 "GENERAL_REGS", \
1069 "CORE_REGS", \
1070 "ALL_REGS", \
1071 }
1072
1073 /* Define which registers fit in which classes.
1074 This is an initializer for a vector of HARD_REG_SET
1075 of length N_REG_CLASSES. */
1076 #define REG_CLASS_CONTENTS \
1077 { \
1078 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1079 { 0x00FF0000, 0x00000000, 0x00000000, 0x00000000 }, /* FPA_REGS */ \
1080 { 0xF8000000, 0x000007FF, 0x00000000, 0x00000000 }, /* CIRRUS_REGS */ \
1081 { 0x00000000, 0x80000000, 0x00007FFF, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1082 { 0x00000000, 0x80000000, 0x7FFFFFFF, 0x00000000 }, /* VFP_LO_REGS */ \
1083 { 0x00000000, 0x00000000, 0x80000000, 0x7FFFFFFF }, /* VFP_HI_REGS */ \
1084 { 0x00000000, 0x80000000, 0xFFFFFFFF, 0x7FFFFFFF }, /* VFP_REGS */ \
1085 { 0x00000000, 0x00007800, 0x00000000, 0x00000000 }, /* IWMMXT_GR_REGS */ \
1086 { 0x00000000, 0x7FFF8000, 0x00000000, 0x00000000 }, /* IWMMXT_REGS */ \
1087 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1088 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1089 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1090 { 0x0000DF00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1091 { 0x01000000, 0x00000000, 0x00000000, 0x00000000 }, /* CC_REG */ \
1092 { 0x00000000, 0x00000000, 0x00000000, 0x80000000 }, /* VFPCC_REG */ \
1093 { 0x0000DFFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1094 { 0x0000FFFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1095 { 0xFAFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF } /* ALL_REGS */ \
1096 }
1097
1098 /* Any of the VFP register classes. */
1099 #define IS_VFP_CLASS(X) \
1100 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1101 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1102
1103 /* The same information, inverted:
1104 Return the class number of the smallest class containing
1105 reg number REGNO. This could be a conditional expression
1106 or could index an array. */
1107 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1108
1109 /* FPA registers can't do subreg as all values are reformatted to internal
1110 precision. In VFPv1, VFP registers could only be accessed in the mode
1111 they were set, so subregs would be invalid there too. However, we don't
1112 support VFPv1 at the moment, and the restriction was lifted in VFPv2. */
1113 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1114 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1115 ? reg_classes_intersect_p (FPA_REGS, (CLASS)) \
1116 : 0)
1117
1118 /* The class value for index registers, and the one for base regs. */
1119 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1120 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1121
1122 /* For the Thumb the high registers cannot be used as base registers
1123 when addressing quantities in QI or HI mode; if we don't know the
1124 mode, then we must be conservative. */
1125 #define MODE_BASE_REG_CLASS(MODE) \
1126 (TARGET_ARM || (TARGET_THUMB2 && !optimize_size) ? CORE_REGS : \
1127 (((MODE) == SImode) ? BASE_REGS : LO_REGS))
1128
1129 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1130 instead of BASE_REGS. */
1131 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1132
1133 /* When this hook returns true for MODE, the compiler allows
1134 registers explicitly used in the rtl to be used as spill registers
1135 but prevents the compiler from extending the lifetime of these
1136 registers. */
1137 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1138 arm_small_register_classes_for_mode_p
1139
1140 /* Given an rtx X being reloaded into a reg required to be
1141 in class CLASS, return the class of reg to actually use.
1142 In general this is just CLASS, but for the Thumb core registers and
1143 immediate constants we prefer a LO_REGS class or a subset. */
1144 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1145 (TARGET_32BIT ? (CLASS) : \
1146 ((CLASS) == GENERAL_REGS || (CLASS) == HI_REGS \
1147 || (CLASS) == NO_REGS || (CLASS) == STACK_REG \
1148 ? LO_REGS : (CLASS)))
1149
1150 /* Must leave BASE_REGS reloads alone */
1151 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1152 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1153 ? ((true_regnum (X) == -1 ? LO_REGS \
1154 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1155 : NO_REGS)) \
1156 : NO_REGS)
1157
1158 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1159 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1160 ? ((true_regnum (X) == -1 ? LO_REGS \
1161 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1162 : NO_REGS)) \
1163 : NO_REGS)
1164
1165 /* Return the register class of a scratch register needed to copy IN into
1166 or out of a register in CLASS in MODE. If it can be done directly,
1167 NO_REGS is returned. */
1168 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1169 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1170 ((TARGET_VFP && TARGET_HARD_FLOAT \
1171 && IS_VFP_CLASS (CLASS)) \
1172 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1173 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1174 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1175 : TARGET_32BIT \
1176 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1177 ? GENERAL_REGS : NO_REGS) \
1178 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1179
1180 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1181 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1182 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1183 ((TARGET_VFP && TARGET_HARD_FLOAT \
1184 && IS_VFP_CLASS (CLASS)) \
1185 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1186 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1187 coproc_secondary_reload_class (MODE, X, TRUE) : \
1188 /* Cannot load constants into Cirrus registers. */ \
1189 (TARGET_MAVERICK && TARGET_HARD_FLOAT \
1190 && (CLASS) == CIRRUS_REGS \
1191 && (CONSTANT_P (X) || GET_CODE (X) == SYMBOL_REF)) \
1192 ? GENERAL_REGS : \
1193 (TARGET_32BIT ? \
1194 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1195 && CONSTANT_P (X)) \
1196 ? GENERAL_REGS : \
1197 (((MODE) == HImode && ! arm_arch4 \
1198 && (GET_CODE (X) == MEM \
1199 || ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG) \
1200 && true_regnum (X) == -1))) \
1201 ? GENERAL_REGS : NO_REGS) \
1202 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1203
1204 /* Try a machine-dependent way of reloading an illegitimate address
1205 operand. If we find one, push the reload and jump to WIN. This
1206 macro is used in only one place: `find_reloads_address' in reload.c.
1207
1208 For the ARM, we wish to handle large displacements off a base
1209 register by splitting the addend across a MOV and the mem insn.
1210 This can cut the number of reloads needed. */
1211 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
1212 do \
1213 { \
1214 if (arm_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND)) \
1215 goto WIN; \
1216 } \
1217 while (0)
1218
1219 /* XXX If an HImode FP+large_offset address is converted to an HImode
1220 SP+large_offset address, then reload won't know how to fix it. It sees
1221 only that SP isn't valid for HImode, and so reloads the SP into an index
1222 register, but the resulting address is still invalid because the offset
1223 is too big. We fix it here instead by reloading the entire address. */
1224 /* We could probably achieve better results by defining PROMOTE_MODE to help
1225 cope with the variances between the Thumb's signed and unsigned byte and
1226 halfword load instructions. */
1227 /* ??? This should be safe for thumb2, but we may be able to do better. */
1228 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN) \
1229 do { \
1230 rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1231 if (new_x) \
1232 { \
1233 X = new_x; \
1234 goto WIN; \
1235 } \
1236 } while (0)
1237
1238 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
1239 if (TARGET_ARM) \
1240 ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1241 else \
1242 THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1243
1244 /* Return the maximum number of consecutive registers
1245 needed to represent mode MODE in a register of class CLASS.
1246 ARM regs are UNITS_PER_WORD bits while FPA regs can hold any FP mode */
1247 #define CLASS_MAX_NREGS(CLASS, MODE) \
1248 (((CLASS) == FPA_REGS || (CLASS) == CIRRUS_REGS) ? 1 : ARM_NUM_REGS (MODE))
1249
1250 /* If defined, gives a class of registers that cannot be used as the
1251 operand of a SUBREG that changes the mode of the object illegally. */
1252
1253 /* Moves between FPA_REGS and GENERAL_REGS are two memory insns.
1254 Moves between VFP_REGS and GENERAL_REGS are a single insn, but
1255 it is typically more expensive than a single memory access. We set
1256 the cost to less than two memory accesses so that floating
1257 point to integer conversion does not go through memory. */
1258 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1259 (TARGET_32BIT ? \
1260 ((FROM) == FPA_REGS && (TO) != FPA_REGS ? 20 : \
1261 (FROM) != FPA_REGS && (TO) == FPA_REGS ? 20 : \
1262 IS_VFP_CLASS (FROM) && !IS_VFP_CLASS (TO) ? 15 : \
1263 !IS_VFP_CLASS (FROM) && IS_VFP_CLASS (TO) ? 15 : \
1264 (FROM) == IWMMXT_REGS && (TO) != IWMMXT_REGS ? 4 : \
1265 (FROM) != IWMMXT_REGS && (TO) == IWMMXT_REGS ? 4 : \
1266 (FROM) == IWMMXT_GR_REGS || (TO) == IWMMXT_GR_REGS ? 20 : \
1267 (FROM) == CIRRUS_REGS && (TO) != CIRRUS_REGS ? 20 : \
1268 (FROM) != CIRRUS_REGS && (TO) == CIRRUS_REGS ? 20 : \
1269 2) \
1270 : \
1271 ((FROM) == HI_REGS || (TO) == HI_REGS) ? 4 : 2)
1272 \f
1273 /* Stack layout; function entry, exit and calling. */
1274
1275 /* Define this if pushing a word on the stack
1276 makes the stack pointer a smaller address. */
1277 #define STACK_GROWS_DOWNWARD 1
1278
1279 /* Define this to nonzero if the nominal address of the stack frame
1280 is at the high-address end of the local variables;
1281 that is, each additional local variable allocated
1282 goes at a more negative offset in the frame. */
1283 #define FRAME_GROWS_DOWNWARD 1
1284
1285 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1286 When present, it is one word in size, and sits at the top of the frame,
1287 between the soft frame pointer and either r7 or r11.
1288
1289 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1290 and only then if some outgoing arguments are passed on the stack. It would
1291 be tempting to also check whether the stack arguments are passed by indirect
1292 calls, but there seems to be no reason in principle why a post-reload pass
1293 couldn't convert a direct call into an indirect one. */
1294 #define CALLER_INTERWORKING_SLOT_SIZE \
1295 (TARGET_CALLER_INTERWORKING \
1296 && crtl->outgoing_args_size != 0 \
1297 ? UNITS_PER_WORD : 0)
1298
1299 /* Offset within stack frame to start allocating local variables at.
1300 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1301 first local allocated. Otherwise, it is the offset to the BEGINNING
1302 of the first local allocated. */
1303 #define STARTING_FRAME_OFFSET 0
1304
1305 /* If we generate an insn to push BYTES bytes,
1306 this says how many the stack pointer really advances by. */
1307 /* The push insns do not do this rounding implicitly.
1308 So don't define this. */
1309 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1310
1311 /* Define this if the maximum size of all the outgoing args is to be
1312 accumulated and pushed during the prologue. The amount can be
1313 found in the variable crtl->outgoing_args_size. */
1314 #define ACCUMULATE_OUTGOING_ARGS 1
1315
1316 /* Offset of first parameter from the argument pointer register value. */
1317 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1318
1319 /* Define how to find the value returned by a library function
1320 assuming the value has mode MODE. */
1321 #define LIBCALL_VALUE(MODE) \
1322 (TARGET_AAPCS_BASED ? aapcs_libcall_value (MODE) \
1323 : (TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_FPA \
1324 && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1325 ? gen_rtx_REG (MODE, FIRST_FPA_REGNUM) \
1326 : TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK \
1327 && GET_MODE_CLASS (MODE) == MODE_FLOAT \
1328 ? gen_rtx_REG (MODE, FIRST_CIRRUS_FP_REGNUM) \
1329 : TARGET_IWMMXT_ABI && arm_vector_mode_supported_p (MODE) \
1330 ? gen_rtx_REG (MODE, FIRST_IWMMXT_REGNUM) \
1331 : gen_rtx_REG (MODE, ARG_REGISTER (1)))
1332
1333 /* 1 if REGNO is a possible register number for a function value. */
1334 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1335 ((REGNO) == ARG_REGISTER (1) \
1336 || (TARGET_AAPCS_BASED && TARGET_32BIT \
1337 && TARGET_VFP && TARGET_HARD_FLOAT \
1338 && (REGNO) == FIRST_VFP_REGNUM) \
1339 || (TARGET_32BIT && ((REGNO) == FIRST_CIRRUS_FP_REGNUM) \
1340 && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK) \
1341 || ((REGNO) == FIRST_IWMMXT_REGNUM && TARGET_IWMMXT_ABI) \
1342 || (TARGET_32BIT && ((REGNO) == FIRST_FPA_REGNUM) \
1343 && TARGET_HARD_FLOAT_ABI && TARGET_FPA))
1344
1345 /* Amount of memory needed for an untyped call to save all possible return
1346 registers. */
1347 #define APPLY_RESULT_SIZE arm_apply_result_size()
1348
1349 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1350 values must be in memory. On the ARM, they need only do so if larger
1351 than a word, or if they contain elements offset from zero in the struct. */
1352 #define DEFAULT_PCC_STRUCT_RETURN 0
1353
1354 /* These bits describe the different types of function supported
1355 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1356 normal function and an interworked function, for example. Knowing the
1357 type of a function is important for determining its prologue and
1358 epilogue sequences.
1359 Note value 7 is currently unassigned. Also note that the interrupt
1360 function types all have bit 2 set, so that they can be tested for easily.
1361 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1362 machine_function structure is initialized (to zero) func_type will
1363 default to unknown. This will force the first use of arm_current_func_type
1364 to call arm_compute_func_type. */
1365 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1366 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1367 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1368 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1369 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1370 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1371
1372 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1373
1374 /* In addition functions can have several type modifiers,
1375 outlined by these bit masks: */
1376 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1377 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1378 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1379 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1380 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1381
1382 /* Some macros to test these flags. */
1383 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1384 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1385 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1386 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1387 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1388 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1389
1390
1391 /* Structure used to hold the function stack frame layout. Offsets are
1392 relative to the stack pointer on function entry. Positive offsets are
1393 in the direction of stack growth.
1394 Only soft_frame is used in thumb mode. */
1395
1396 typedef struct GTY(()) arm_stack_offsets
1397 {
1398 int saved_args; /* ARG_POINTER_REGNUM. */
1399 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1400 int saved_regs;
1401 int soft_frame; /* FRAME_POINTER_REGNUM. */
1402 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1403 int outgoing_args; /* STACK_POINTER_REGNUM. */
1404 unsigned int saved_regs_mask;
1405 }
1406 arm_stack_offsets;
1407
1408 #ifndef GENERATOR_FILE
1409 /* A C structure for machine-specific, per-function data.
1410 This is added to the cfun structure. */
1411 typedef struct GTY(()) machine_function
1412 {
1413 /* Additional stack adjustment in __builtin_eh_throw. */
1414 rtx eh_epilogue_sp_ofs;
1415 /* Records if LR has to be saved for far jumps. */
1416 int far_jump_used;
1417 /* Records if ARG_POINTER was ever live. */
1418 int arg_pointer_live;
1419 /* Records if the save of LR has been eliminated. */
1420 int lr_save_eliminated;
1421 /* The size of the stack frame. Only valid after reload. */
1422 arm_stack_offsets stack_offsets;
1423 /* Records the type of the current function. */
1424 unsigned long func_type;
1425 /* Record if the function has a variable argument list. */
1426 int uses_anonymous_args;
1427 /* Records if sibcalls are blocked because an argument
1428 register is needed to preserve stack alignment. */
1429 int sibcall_blocked;
1430 /* The PIC register for this function. This might be a pseudo. */
1431 rtx pic_reg;
1432 /* Labels for per-function Thumb call-via stubs. One per potential calling
1433 register. We can never call via LR or PC. We can call via SP if a
1434 trampoline happens to be on the top of the stack. */
1435 rtx call_via[14];
1436 /* Set to 1 when a return insn is output, this means that the epilogue
1437 is not needed. */
1438 int return_used_this_function;
1439 /* When outputting Thumb-1 code, record the last insn that provides
1440 information about condition codes, and the comparison operands. */
1441 rtx thumb1_cc_insn;
1442 rtx thumb1_cc_op0;
1443 rtx thumb1_cc_op1;
1444 /* Also record the CC mode that is supported. */
1445 enum machine_mode thumb1_cc_mode;
1446 }
1447 machine_function;
1448 #endif
1449
1450 /* As in the machine_function, a global set of call-via labels, for code
1451 that is in text_section. */
1452 extern GTY(()) rtx thumb_call_via_label[14];
1453
1454 /* The number of potential ways of assigning to a co-processor. */
1455 #define ARM_NUM_COPROC_SLOTS 1
1456
1457 /* Enumeration of procedure calling standard variants. We don't really
1458 support all of these yet. */
1459 enum arm_pcs
1460 {
1461 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1462 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1463 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1464 /* This must be the last AAPCS variant. */
1465 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1466 ARM_PCS_ATPCS, /* ATPCS. */
1467 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1468 ARM_PCS_UNKNOWN
1469 };
1470
1471 /* Default procedure calling standard of current compilation unit. */
1472 extern enum arm_pcs arm_pcs_default;
1473
1474 /* A C type for declaring a variable that is used as the first argument of
1475 `FUNCTION_ARG' and other related values. */
1476 typedef struct
1477 {
1478 /* This is the number of registers of arguments scanned so far. */
1479 int nregs;
1480 /* This is the number of iWMMXt register arguments scanned so far. */
1481 int iwmmxt_nregs;
1482 int named_count;
1483 int nargs;
1484 /* Which procedure call variant to use for this call. */
1485 enum arm_pcs pcs_variant;
1486
1487 /* AAPCS related state tracking. */
1488 int aapcs_arg_processed; /* No need to lay out this argument again. */
1489 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1490 this argument, or -1 if using core
1491 registers. */
1492 int aapcs_ncrn;
1493 int aapcs_next_ncrn;
1494 rtx aapcs_reg; /* Register assigned to this argument. */
1495 int aapcs_partial; /* How many bytes are passed in regs (if
1496 split between core regs and stack.
1497 Zero otherwise. */
1498 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1499 int can_split; /* Argument can be split between core regs
1500 and the stack. */
1501 /* Private data for tracking VFP register allocation */
1502 unsigned aapcs_vfp_regs_free;
1503 unsigned aapcs_vfp_reg_alloc;
1504 int aapcs_vfp_rcount;
1505 MACHMODE aapcs_vfp_rmode;
1506 } CUMULATIVE_ARGS;
1507
1508 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1509 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1510
1511 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1512 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1513
1514 /* For AAPCS, padding should never be below the argument. For other ABIs,
1515 * mimic the default. */
1516 #define PAD_VARARGS_DOWN \
1517 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1518
1519 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1520 for a call to a function whose data type is FNTYPE.
1521 For a library call, FNTYPE is 0.
1522 On the ARM, the offset starts at 0. */
1523 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1524 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1525
1526 /* 1 if N is a possible register number for function argument passing.
1527 On the ARM, r0-r3 are used to pass args. */
1528 #define FUNCTION_ARG_REGNO_P(REGNO) \
1529 (IN_RANGE ((REGNO), 0, 3) \
1530 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \
1531 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1532 || (TARGET_IWMMXT_ABI \
1533 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1534
1535 \f
1536 /* If your target environment doesn't prefix user functions with an
1537 underscore, you may wish to re-define this to prevent any conflicts. */
1538 #ifndef ARM_MCOUNT_NAME
1539 #define ARM_MCOUNT_NAME "*mcount"
1540 #endif
1541
1542 /* Call the function profiler with a given profile label. The Acorn
1543 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1544 On the ARM the full profile code will look like:
1545 .data
1546 LP1
1547 .word 0
1548 .text
1549 mov ip, lr
1550 bl mcount
1551 .word LP1
1552
1553 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1554 will output the .text section.
1555
1556 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1557 ``prof'' doesn't seem to mind about this!
1558
1559 Note - this version of the code is designed to work in both ARM and
1560 Thumb modes. */
1561 #ifndef ARM_FUNCTION_PROFILER
1562 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1563 { \
1564 char temp[20]; \
1565 rtx sym; \
1566 \
1567 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1568 IP_REGNUM, LR_REGNUM); \
1569 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1570 fputc ('\n', STREAM); \
1571 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1572 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1573 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1574 }
1575 #endif
1576
1577 #ifdef THUMB_FUNCTION_PROFILER
1578 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1579 if (TARGET_ARM) \
1580 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1581 else \
1582 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1583 #else
1584 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1585 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1586 #endif
1587
1588 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1589 the stack pointer does not matter. The value is tested only in
1590 functions that have frame pointers.
1591 No definition is equivalent to always zero.
1592
1593 On the ARM, the function epilogue recovers the stack pointer from the
1594 frame. */
1595 #define EXIT_IGNORE_STACK 1
1596
1597 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNUM)
1598
1599 /* Determine if the epilogue should be output as RTL.
1600 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1601 #define USE_RETURN_INSN(ISCOND) \
1602 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1603
1604 /* Definitions for register eliminations.
1605
1606 This is an array of structures. Each structure initializes one pair
1607 of eliminable registers. The "from" register number is given first,
1608 followed by "to". Eliminations of the same "from" register are listed
1609 in order of preference.
1610
1611 We have two registers that can be eliminated on the ARM. First, the
1612 arg pointer register can often be eliminated in favor of the stack
1613 pointer register. Secondly, the pseudo frame pointer register can always
1614 be eliminated; it is replaced with either the stack or the real frame
1615 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1616 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1617
1618 #define ELIMINABLE_REGS \
1619 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1620 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1621 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1622 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1623 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1624 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1625 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1626
1627 /* Define the offset between two registers, one to be eliminated, and the
1628 other its replacement, at the start of a routine. */
1629 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1630 if (TARGET_ARM) \
1631 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1632 else \
1633 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1634
1635 /* Special case handling of the location of arguments passed on the stack. */
1636 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1637
1638 /* Initialize data used by insn expanders. This is called from insn_emit,
1639 once for every function before code is generated. */
1640 #define INIT_EXPANDERS arm_init_expanders ()
1641
1642 /* Length in units of the trampoline for entering a nested function. */
1643 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1644
1645 /* Alignment required for a trampoline in bits. */
1646 #define TRAMPOLINE_ALIGNMENT 32
1647 \f
1648 /* Addressing modes, and classification of registers for them. */
1649 #define HAVE_POST_INCREMENT 1
1650 #define HAVE_PRE_INCREMENT TARGET_32BIT
1651 #define HAVE_POST_DECREMENT TARGET_32BIT
1652 #define HAVE_PRE_DECREMENT TARGET_32BIT
1653 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1654 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1655 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1656 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1657
1658 /* Macros to check register numbers against specific register classes. */
1659
1660 /* These assume that REGNO is a hard or pseudo reg number.
1661 They give nonzero only if REGNO is a hard reg of the suitable class
1662 or a pseudo reg currently allocated to a suitable hard reg.
1663 Since they use reg_renumber, they are safe only once reg_renumber
1664 has been allocated, which happens in local-alloc.c. */
1665 #define TEST_REGNO(R, TEST, VALUE) \
1666 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1667
1668 /* Don't allow the pc to be used. */
1669 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1670 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1671 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1672 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1673
1674 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1675 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1676 || (GET_MODE_SIZE (MODE) >= 4 \
1677 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1678
1679 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1680 (TARGET_THUMB1 \
1681 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1682 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1683
1684 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1685 For Thumb, we can not use SP + reg, so reject SP. */
1686 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1687 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1688
1689 /* For ARM code, we don't care about the mode, but for Thumb, the index
1690 must be suitable for use in a QImode load. */
1691 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1692 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1693 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1694
1695 /* Maximum number of registers that can appear in a valid memory address.
1696 Shifts in addresses can't be by a register. */
1697 #define MAX_REGS_PER_ADDRESS 2
1698
1699 /* Recognize any constant value that is a valid address. */
1700 /* XXX We can address any constant, eventually... */
1701 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1702 #define CONSTANT_ADDRESS_P(X) \
1703 (GET_CODE (X) == SYMBOL_REF \
1704 && (CONSTANT_POOL_ADDRESS_P (X) \
1705 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1706
1707 /* True if SYMBOL + OFFSET constants must refer to something within
1708 SYMBOL's section. */
1709 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1710
1711 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1712 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1713 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1714 #endif
1715
1716 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1717 #define SUBTARGET_NAME_ENCODING_LENGTHS
1718 #endif
1719
1720 /* This is a C fragment for the inside of a switch statement.
1721 Each case label should return the number of characters to
1722 be stripped from the start of a function's name, if that
1723 name starts with the indicated character. */
1724 #define ARM_NAME_ENCODING_LENGTHS \
1725 case '*': return 1; \
1726 SUBTARGET_NAME_ENCODING_LENGTHS
1727
1728 /* This is how to output a reference to a user-level label named NAME.
1729 `assemble_name' uses this. */
1730 #undef ASM_OUTPUT_LABELREF
1731 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1732 arm_asm_output_labelref (FILE, NAME)
1733
1734 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1735 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1736 if (TARGET_THUMB2) \
1737 thumb2_asm_output_opcode (STREAM);
1738
1739 /* The EABI specifies that constructors should go in .init_array.
1740 Other targets use .ctors for compatibility. */
1741 #ifndef ARM_EABI_CTORS_SECTION_OP
1742 #define ARM_EABI_CTORS_SECTION_OP \
1743 "\t.section\t.init_array,\"aw\",%init_array"
1744 #endif
1745 #ifndef ARM_EABI_DTORS_SECTION_OP
1746 #define ARM_EABI_DTORS_SECTION_OP \
1747 "\t.section\t.fini_array,\"aw\",%fini_array"
1748 #endif
1749 #define ARM_CTORS_SECTION_OP \
1750 "\t.section\t.ctors,\"aw\",%progbits"
1751 #define ARM_DTORS_SECTION_OP \
1752 "\t.section\t.dtors,\"aw\",%progbits"
1753
1754 /* Define CTORS_SECTION_ASM_OP. */
1755 #undef CTORS_SECTION_ASM_OP
1756 #undef DTORS_SECTION_ASM_OP
1757 #ifndef IN_LIBGCC2
1758 # define CTORS_SECTION_ASM_OP \
1759 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1760 # define DTORS_SECTION_ASM_OP \
1761 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1762 #else /* !defined (IN_LIBGCC2) */
1763 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1764 so we cannot use the definition above. */
1765 # ifdef __ARM_EABI__
1766 /* The .ctors section is not part of the EABI, so we do not define
1767 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1768 from trying to use it. We do define it when doing normal
1769 compilation, as .init_array can be used instead of .ctors. */
1770 /* There is no need to emit begin or end markers when using
1771 init_array; the dynamic linker will compute the size of the
1772 array itself based on special symbols created by the static
1773 linker. However, we do need to arrange to set up
1774 exception-handling here. */
1775 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1776 # define CTOR_LIST_END /* empty */
1777 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1778 # define DTOR_LIST_END /* empty */
1779 # else /* !defined (__ARM_EABI__) */
1780 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1781 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1782 # endif /* !defined (__ARM_EABI__) */
1783 #endif /* !defined (IN_LIBCC2) */
1784
1785 /* True if the operating system can merge entities with vague linkage
1786 (e.g., symbols in COMDAT group) during dynamic linking. */
1787 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1788 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1789 #endif
1790
1791 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1792
1793 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1794 and check its validity for a certain class.
1795 We have two alternate definitions for each of them.
1796 The usual definition accepts all pseudo regs; the other rejects
1797 them unless they have been allocated suitable hard regs.
1798 The symbol REG_OK_STRICT causes the latter definition to be used.
1799 Thumb-2 has the same restrictions as arm. */
1800 #ifndef REG_OK_STRICT
1801
1802 #define ARM_REG_OK_FOR_BASE_P(X) \
1803 (REGNO (X) <= LAST_ARM_REGNUM \
1804 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1805 || REGNO (X) == FRAME_POINTER_REGNUM \
1806 || REGNO (X) == ARG_POINTER_REGNUM)
1807
1808 #define ARM_REG_OK_FOR_INDEX_P(X) \
1809 ((REGNO (X) <= LAST_ARM_REGNUM \
1810 && REGNO (X) != STACK_POINTER_REGNUM) \
1811 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1812 || REGNO (X) == FRAME_POINTER_REGNUM \
1813 || REGNO (X) == ARG_POINTER_REGNUM)
1814
1815 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1816 (REGNO (X) <= LAST_LO_REGNUM \
1817 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1818 || (GET_MODE_SIZE (MODE) >= 4 \
1819 && (REGNO (X) == STACK_POINTER_REGNUM \
1820 || (X) == hard_frame_pointer_rtx \
1821 || (X) == arg_pointer_rtx)))
1822
1823 #define REG_STRICT_P 0
1824
1825 #else /* REG_OK_STRICT */
1826
1827 #define ARM_REG_OK_FOR_BASE_P(X) \
1828 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1829
1830 #define ARM_REG_OK_FOR_INDEX_P(X) \
1831 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1832
1833 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1834 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1835
1836 #define REG_STRICT_P 1
1837
1838 #endif /* REG_OK_STRICT */
1839
1840 /* Now define some helpers in terms of the above. */
1841
1842 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1843 (TARGET_THUMB1 \
1844 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1845 : ARM_REG_OK_FOR_BASE_P (X))
1846
1847 /* For 16-bit Thumb, a valid index register is anything that can be used in
1848 a byte load instruction. */
1849 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1850 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1851
1852 /* Nonzero if X is a hard reg that can be used as an index
1853 or if it is a pseudo reg. On the Thumb, the stack pointer
1854 is not suitable. */
1855 #define REG_OK_FOR_INDEX_P(X) \
1856 (TARGET_THUMB1 \
1857 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1858 : ARM_REG_OK_FOR_INDEX_P (X))
1859
1860 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1861 For Thumb, we can not use SP + reg, so reject SP. */
1862 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1863 REG_OK_FOR_INDEX_P (X)
1864 \f
1865 #define ARM_BASE_REGISTER_RTX_P(X) \
1866 (GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X))
1867
1868 #define ARM_INDEX_REGISTER_RTX_P(X) \
1869 (GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X))
1870 \f
1871 /* Specify the machine mode that this machine uses
1872 for the index in the tablejump instruction. */
1873 #define CASE_VECTOR_MODE Pmode
1874
1875 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
1876 || (TARGET_THUMB1 \
1877 && (optimize_size || flag_pic)))
1878
1879 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
1880 (TARGET_THUMB1 \
1881 ? (min >= 0 && max < 512 \
1882 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
1883 : min >= -256 && max < 256 \
1884 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
1885 : min >= 0 && max < 8192 \
1886 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
1887 : min >= -4096 && max < 4096 \
1888 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
1889 : SImode) \
1890 : ((min < 0 || max >= 0x2000 || !TARGET_THUMB2) ? SImode \
1891 : (max >= 0x200) ? HImode \
1892 : QImode))
1893
1894 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1895 unsigned is probably best, but may break some code. */
1896 #ifndef DEFAULT_SIGNED_CHAR
1897 #define DEFAULT_SIGNED_CHAR 0
1898 #endif
1899
1900 /* Max number of bytes we can move from memory to memory
1901 in one reasonably fast instruction. */
1902 #define MOVE_MAX 4
1903
1904 #undef MOVE_RATIO
1905 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1906
1907 /* Define if operations between registers always perform the operation
1908 on the full register even if a narrower mode is specified. */
1909 #define WORD_REGISTER_OPERATIONS
1910
1911 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1912 will either zero-extend or sign-extend. The value of this macro should
1913 be the code that says which one of the two operations is implicitly
1914 done, UNKNOWN if none. */
1915 #define LOAD_EXTEND_OP(MODE) \
1916 (TARGET_THUMB ? ZERO_EXTEND : \
1917 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
1918 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
1919
1920 /* Nonzero if access to memory by bytes is slow and undesirable. */
1921 #define SLOW_BYTE_ACCESS 0
1922
1923 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
1924
1925 /* Immediate shift counts are truncated by the output routines (or was it
1926 the assembler?). Shift counts in a register are truncated by ARM. Note
1927 that the native compiler puts too large (> 32) immediate shift counts
1928 into a register and shifts by the register, letting the ARM decide what
1929 to do instead of doing that itself. */
1930 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
1931 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1932 On the arm, Y in a register is used modulo 256 for the shift. Only for
1933 rotates is modulo 32 used. */
1934 /* #define SHIFT_COUNT_TRUNCATED 1 */
1935
1936 /* All integers have the same format so truncation is easy. */
1937 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1938
1939 /* Calling from registers is a massive pain. */
1940 #define NO_FUNCTION_CSE 1
1941
1942 /* The machine modes of pointers and functions */
1943 #define Pmode SImode
1944 #define FUNCTION_MODE Pmode
1945
1946 #define ARM_FRAME_RTX(X) \
1947 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
1948 || (X) == arg_pointer_rtx)
1949
1950 /* Moves to and from memory are quite expensive */
1951 #define MEMORY_MOVE_COST(M, CLASS, IN) \
1952 (TARGET_32BIT ? 10 : \
1953 ((GET_MODE_SIZE (M) < 4 ? 8 : 2 * GET_MODE_SIZE (M)) \
1954 * (CLASS == LO_REGS ? 1 : 2)))
1955
1956 /* Try to generate sequences that don't involve branches, we can then use
1957 conditional instructions */
1958 #define BRANCH_COST(speed_p, predictable_p) \
1959 (TARGET_32BIT ? (TARGET_THUMB2 && !speed_p ? 1 : 4) \
1960 : (optimize > 0 ? 2 : 0))
1961 \f
1962 /* Position Independent Code. */
1963 /* We decide which register to use based on the compilation options and
1964 the assembler in use; this is more general than the APCS restriction of
1965 using sb (r9) all the time. */
1966 extern unsigned arm_pic_register;
1967
1968 /* The register number of the register used to address a table of static
1969 data addresses in memory. */
1970 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
1971
1972 /* We can't directly access anything that contains a symbol,
1973 nor can we indirect via the constant pool. One exception is
1974 UNSPEC_TLS, which is always PIC. */
1975 #define LEGITIMATE_PIC_OPERAND_P(X) \
1976 (!(symbol_mentioned_p (X) \
1977 || label_mentioned_p (X) \
1978 || (GET_CODE (X) == SYMBOL_REF \
1979 && CONSTANT_POOL_ADDRESS_P (X) \
1980 && (symbol_mentioned_p (get_pool_constant (X)) \
1981 || label_mentioned_p (get_pool_constant (X))))) \
1982 || tls_mentioned_p (X))
1983
1984 /* We need to know when we are making a constant pool; this determines
1985 whether data needs to be in the GOT or can be referenced via a GOT
1986 offset. */
1987 extern int making_const_table;
1988 \f
1989 /* Handle pragmas for compatibility with Intel's compilers. */
1990 /* Also abuse this to register additional C specific EABI attributes. */
1991 #define REGISTER_TARGET_PRAGMAS() do { \
1992 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
1993 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
1994 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
1995 arm_lang_object_attributes_init(); \
1996 } while (0)
1997
1998 /* Condition code information. */
1999 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2000 return the mode to be used for the comparison. */
2001
2002 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2003
2004 #define REVERSIBLE_CC_MODE(MODE) 1
2005
2006 #define REVERSE_CONDITION(CODE,MODE) \
2007 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2008 ? reverse_condition_maybe_unordered (code) \
2009 : reverse_condition (code))
2010
2011 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
2012 (CODE) = arm_canonicalize_comparison (CODE, &(OP0), &(OP1))
2013
2014 /* The arm5 clz instruction returns 32. */
2015 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2016 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2017 \f
2018 #define CC_STATUS_INIT \
2019 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2020
2021 #undef ASM_APP_OFF
2022 #define ASM_APP_OFF (TARGET_THUMB1 ? "\t.code\t16\n" : \
2023 TARGET_THUMB2 ? "\t.thumb\n" : "")
2024
2025 /* Output a push or a pop instruction (only used when profiling).
2026 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2027 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2028 that r7 isn't used by the function profiler, so we can use it as a
2029 scratch reg. WARNING: This isn't safe in the general case! It may be
2030 sensitive to future changes in final.c:profile_function. */
2031 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2032 do \
2033 { \
2034 if (TARGET_ARM) \
2035 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
2036 STACK_POINTER_REGNUM, REGNO); \
2037 else if (TARGET_THUMB1 \
2038 && (REGNO) == STATIC_CHAIN_REGNUM) \
2039 { \
2040 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2041 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2042 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2043 } \
2044 else \
2045 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2046 } while (0)
2047
2048
2049 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2050 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2051 do \
2052 { \
2053 if (TARGET_ARM) \
2054 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
2055 STACK_POINTER_REGNUM, REGNO); \
2056 else if (TARGET_THUMB1 \
2057 && (REGNO) == STATIC_CHAIN_REGNUM) \
2058 { \
2059 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2060 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2061 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2062 } \
2063 else \
2064 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2065 } while (0)
2066
2067 /* Jump table alignment is explicit in ASM_OUTPUT_CASE_LABEL. */
2068 #define ADDR_VEC_ALIGN(JUMPTABLE) 0
2069
2070 /* This is how to output a label which precedes a jumptable. Since
2071 Thumb instructions are 2 bytes, we may need explicit alignment here. */
2072 #undef ASM_OUTPUT_CASE_LABEL
2073 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \
2074 do \
2075 { \
2076 if (TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) \
2077 ASM_OUTPUT_ALIGN (FILE, 2); \
2078 (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); \
2079 } \
2080 while (0)
2081
2082 /* Make sure subsequent insns are aligned after a TBB. */
2083 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE) \
2084 do \
2085 { \
2086 if (GET_MODE (PATTERN (JUMPTABLE)) == QImode) \
2087 ASM_OUTPUT_ALIGN (FILE, 1); \
2088 } \
2089 while (0)
2090
2091 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2092 do \
2093 { \
2094 if (TARGET_THUMB) \
2095 { \
2096 if (is_called_in_ARM_mode (DECL) \
2097 || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY \
2098 && cfun->is_thunk)) \
2099 fprintf (STREAM, "\t.code 32\n") ; \
2100 else if (TARGET_THUMB1) \
2101 fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ; \
2102 else \
2103 fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ; \
2104 } \
2105 if (TARGET_POKE_FUNCTION_NAME) \
2106 arm_poke_function_name (STREAM, (const char *) NAME); \
2107 } \
2108 while (0)
2109
2110 /* For aliases of functions we use .thumb_set instead. */
2111 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2112 do \
2113 { \
2114 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2115 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2116 \
2117 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2118 { \
2119 fprintf (FILE, "\t.thumb_set "); \
2120 assemble_name (FILE, LABEL1); \
2121 fprintf (FILE, ","); \
2122 assemble_name (FILE, LABEL2); \
2123 fprintf (FILE, "\n"); \
2124 } \
2125 else \
2126 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2127 } \
2128 while (0)
2129
2130 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2131 /* To support -falign-* switches we need to use .p2align so
2132 that alignment directives in code sections will be padded
2133 with no-op instructions, rather than zeroes. */
2134 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2135 if ((LOG) != 0) \
2136 { \
2137 if ((MAX_SKIP) == 0) \
2138 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2139 else \
2140 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2141 (int) (LOG), (int) (MAX_SKIP)); \
2142 }
2143 #endif
2144 \f
2145 /* Add two bytes to the length of conditionally executed Thumb-2
2146 instructions for the IT instruction. */
2147 #define ADJUST_INSN_LENGTH(insn, length) \
2148 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2149 length += 2;
2150
2151 /* Only perform branch elimination (by making instructions conditional) if
2152 we're optimizing. For Thumb-2 check if any IT instructions need
2153 outputting. */
2154 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2155 if (TARGET_ARM && optimize) \
2156 arm_final_prescan_insn (INSN); \
2157 else if (TARGET_THUMB2) \
2158 thumb2_final_prescan_insn (INSN); \
2159 else if (TARGET_THUMB1) \
2160 thumb1_final_prescan_insn (INSN)
2161
2162 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2163 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2164 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2165 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2166 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2167 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2168 : 0))))
2169
2170 /* A C expression whose value is RTL representing the value of the return
2171 address for the frame COUNT steps up from the current frame. */
2172
2173 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2174 arm_return_addr (COUNT, FRAME)
2175
2176 /* Mask of the bits in the PC that contain the real return address
2177 when running in 26-bit mode. */
2178 #define RETURN_ADDR_MASK26 (0x03fffffc)
2179
2180 /* Pick up the return address upon entry to a procedure. Used for
2181 dwarf2 unwind information. This also enables the table driven
2182 mechanism. */
2183 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2184 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2185
2186 /* Used to mask out junk bits from the return address, such as
2187 processor state, interrupt status, condition codes and the like. */
2188 #define MASK_RETURN_ADDR \
2189 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2190 in 26 bit mode, the condition codes must be masked out of the \
2191 return address. This does not apply to ARM6 and later processors \
2192 when running in 32 bit mode. */ \
2193 ((arm_arch4 || TARGET_THUMB) \
2194 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2195 : arm_gen_return_addr_mask ())
2196
2197 \f
2198 /* Do not emit .note.GNU-stack by default. */
2199 #ifndef NEED_INDICATE_EXEC_STACK
2200 #define NEED_INDICATE_EXEC_STACK 0
2201 #endif
2202
2203 /* The maximum number of parallel loads or stores we support in an ldm/stm
2204 instruction. */
2205 #define MAX_LDM_STM_OPS 4
2206
2207 #endif /* ! GCC_ARM_H */