]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/arm/arm.h
re PR target/47109 (m68k-netbsdelf: collect2 build fails with undefined reference...
[thirdparty/gcc.git] / gcc / config / arm / arm.h
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
6 and Martin Simmons (@harleqn.co.uk).
7 More major hacks by Richard Earnshaw (rearnsha@arm.com)
8 Minor hacks by Nick Clifton (nickc@cygnus.com)
9
10 This file is part of GCC.
11
12 GCC is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published
14 by the Free Software Foundation; either version 3, or (at your
15 option) any later version.
16
17 GCC is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
20 License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
25
26 #ifndef GCC_ARM_H
27 #define GCC_ARM_H
28
29 /* We can't use enum machine_mode inside a generator file because it
30 hasn't been created yet; we shouldn't be using any code that
31 needs the real definition though, so this ought to be safe. */
32 #ifdef GENERATOR_FILE
33 #define MACHMODE int
34 #else
35 #include "insn-modes.h"
36 #define MACHMODE enum machine_mode
37 #endif
38
39 #include "config/vxworks-dummy.h"
40
41 /* The architecture define. */
42 extern char arm_arch_name[];
43
44 /* Target CPU builtins. */
45 #define TARGET_CPU_CPP_BUILTINS() \
46 do \
47 { \
48 /* Define __arm__ even when in thumb mode, for \
49 consistency with armcc. */ \
50 builtin_define ("__arm__"); \
51 builtin_define ("__APCS_32__"); \
52 if (TARGET_THUMB) \
53 builtin_define ("__thumb__"); \
54 if (TARGET_THUMB2) \
55 builtin_define ("__thumb2__"); \
56 \
57 if (TARGET_BIG_END) \
58 { \
59 builtin_define ("__ARMEB__"); \
60 if (TARGET_THUMB) \
61 builtin_define ("__THUMBEB__"); \
62 if (TARGET_LITTLE_WORDS) \
63 builtin_define ("__ARMWEL__"); \
64 } \
65 else \
66 { \
67 builtin_define ("__ARMEL__"); \
68 if (TARGET_THUMB) \
69 builtin_define ("__THUMBEL__"); \
70 } \
71 \
72 if (TARGET_SOFT_FLOAT) \
73 builtin_define ("__SOFTFP__"); \
74 \
75 if (TARGET_VFP) \
76 builtin_define ("__VFP_FP__"); \
77 \
78 if (TARGET_NEON) \
79 builtin_define ("__ARM_NEON__"); \
80 \
81 /* Add a define for interworking. \
82 Needed when building libgcc.a. */ \
83 if (arm_cpp_interwork) \
84 builtin_define ("__THUMB_INTERWORK__"); \
85 \
86 builtin_assert ("cpu=arm"); \
87 builtin_assert ("machine=arm"); \
88 \
89 builtin_define (arm_arch_name); \
90 if (arm_arch_cirrus) \
91 builtin_define ("__MAVERICK__"); \
92 if (arm_arch_xscale) \
93 builtin_define ("__XSCALE__"); \
94 if (arm_arch_iwmmxt) \
95 builtin_define ("__IWMMXT__"); \
96 if (TARGET_AAPCS_BASED) \
97 { \
98 if (arm_pcs_default == ARM_PCS_AAPCS_VFP) \
99 builtin_define ("__ARM_PCS_VFP"); \
100 else if (arm_pcs_default == ARM_PCS_AAPCS) \
101 builtin_define ("__ARM_PCS"); \
102 builtin_define ("__ARM_EABI__"); \
103 } \
104 } while (0)
105
106 /* The various ARM cores. */
107 enum processor_type
108 {
109 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
110 IDENT,
111 #include "arm-cores.def"
112 #undef ARM_CORE
113 /* Used to indicate that no processor has been specified. */
114 arm_none
115 };
116
117 enum target_cpus
118 {
119 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
120 TARGET_CPU_##IDENT,
121 #include "arm-cores.def"
122 #undef ARM_CORE
123 TARGET_CPU_generic
124 };
125
126 /* The processor for which instructions should be scheduled. */
127 extern enum processor_type arm_tune;
128
129 enum arm_sync_generator_tag
130 {
131 arm_sync_generator_omn,
132 arm_sync_generator_omrn
133 };
134
135 /* Wrapper to pass around a polymorphic pointer to a sync instruction
136 generator and. */
137 struct arm_sync_generator
138 {
139 enum arm_sync_generator_tag op;
140 union
141 {
142 rtx (* omn) (rtx, rtx, rtx);
143 rtx (* omrn) (rtx, rtx, rtx, rtx);
144 } u;
145 };
146
147 typedef enum arm_cond_code
148 {
149 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
150 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
151 }
152 arm_cc;
153
154 extern arm_cc arm_current_cc;
155
156 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
157
158 extern int arm_target_label;
159 extern int arm_ccfsm_state;
160 extern GTY(()) rtx arm_target_insn;
161 /* The label of the current constant pool. */
162 extern rtx pool_vector_label;
163 /* Set to 1 when a return insn is output, this means that the epilogue
164 is not needed. */
165 extern int return_used_this_function;
166 /* Callback to output language specific object attributes. */
167 extern void (*arm_lang_output_object_attributes_hook)(void);
168 \f
169 /* Just in case configure has failed to define anything. */
170 #ifndef TARGET_CPU_DEFAULT
171 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
172 #endif
173
174
175 #undef CPP_SPEC
176 #define CPP_SPEC "%(subtarget_cpp_spec) \
177 %{mfloat-abi=soft:%{mfloat-abi=hard: \
178 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
179 %{mbig-endian:%{mlittle-endian: \
180 %e-mbig-endian and -mlittle-endian may not be used together}}"
181
182 #ifndef CC1_SPEC
183 #define CC1_SPEC ""
184 #endif
185
186 /* This macro defines names of additional specifications to put in the specs
187 that can be used in various specifications like CC1_SPEC. Its definition
188 is an initializer with a subgrouping for each command option.
189
190 Each subgrouping contains a string constant, that defines the
191 specification name, and a string constant that used by the GCC driver
192 program.
193
194 Do not define this macro if it does not need to do anything. */
195 #define EXTRA_SPECS \
196 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
197 SUBTARGET_EXTRA_SPECS
198
199 #ifndef SUBTARGET_EXTRA_SPECS
200 #define SUBTARGET_EXTRA_SPECS
201 #endif
202
203 #ifndef SUBTARGET_CPP_SPEC
204 #define SUBTARGET_CPP_SPEC ""
205 #endif
206 \f
207 /* Run-time Target Specification. */
208 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
209 /* Use hardware floating point instructions. */
210 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
211 /* Use hardware floating point calling convention. */
212 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
213 #define TARGET_FPA (arm_fpu_desc->model == ARM_FP_MODEL_FPA)
214 #define TARGET_MAVERICK (arm_fpu_desc->model == ARM_FP_MODEL_MAVERICK)
215 #define TARGET_VFP (arm_fpu_desc->model == ARM_FP_MODEL_VFP)
216 #define TARGET_IWMMXT (arm_arch_iwmmxt)
217 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
218 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
219 #define TARGET_ARM (! TARGET_THUMB)
220 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
221 #define TARGET_BACKTRACE (leaf_function_p () \
222 ? TARGET_TPCS_LEAF_FRAME \
223 : TARGET_TPCS_FRAME)
224 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN)
225 #define TARGET_AAPCS_BASED \
226 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
227
228 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
229 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
230
231 /* Only 16-bit thumb code. */
232 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
233 /* Arm or Thumb-2 32-bit code. */
234 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
235 /* 32-bit Thumb-2 code. */
236 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
237 /* Thumb-1 only. */
238 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
239 /* FPA emulator without LFM. */
240 #define TARGET_FPA_EMU2 (TARGET_FPA && arm_fpu_desc->rev == 2)
241
242 /* The following two macros concern the ability to execute coprocessor
243 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
244 only ever tested when we know we are generating for VFP hardware; we need
245 to be more careful with TARGET_NEON as noted below. */
246
247 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
248 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
249
250 /* FPU supports VFPv3 instructions. */
251 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
252
253 /* FPU only supports VFP single-precision instructions. */
254 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
255
256 /* FPU supports VFP double-precision instructions. */
257 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
258
259 /* FPU supports half-precision floating-point with NEON element load/store. */
260 #define TARGET_NEON_FP16 \
261 (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
262
263 /* FPU supports VFP half-precision floating-point. */
264 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
265
266 /* FPU supports Neon instructions. The setting of this macro gets
267 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
268 and TARGET_HARD_FLOAT to ensure that NEON instructions are
269 available. */
270 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
271 && TARGET_VFP && arm_fpu_desc->neon)
272
273 /* "DSP" multiply instructions, eg. SMULxy. */
274 #define TARGET_DSP_MULTIPLY \
275 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
276 /* Integer SIMD instructions, and extend-accumulate instructions. */
277 #define TARGET_INT_SIMD \
278 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
279
280 /* Should MOVW/MOVT be used in preference to a constant pool. */
281 #define TARGET_USE_MOVT (arm_arch_thumb2 && !optimize_size)
282
283 /* We could use unified syntax for arm mode, but for now we just use it
284 for Thumb-2. */
285 #define TARGET_UNIFIED_ASM TARGET_THUMB2
286
287 /* Nonzero if this chip provides the DMB instruction. */
288 #define TARGET_HAVE_DMB (arm_arch7)
289
290 /* Nonzero if this chip implements a memory barrier via CP15. */
291 #define TARGET_HAVE_DMB_MCR (arm_arch6k && ! TARGET_HAVE_DMB)
292
293 /* Nonzero if this chip implements a memory barrier instruction. */
294 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
295
296 /* Nonzero if this chip supports ldrex and strex */
297 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) || arm_arch7)
298
299 /* Nonzero if this chip supports ldrex{bhd} and strex{bhd}. */
300 #define TARGET_HAVE_LDREXBHD ((arm_arch6k && TARGET_ARM) || arm_arch7)
301
302 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
303 then TARGET_AAPCS_BASED must be true -- but the converse does not
304 hold. TARGET_BPABI implies the use of the BPABI runtime library,
305 etc., in addition to just the AAPCS calling conventions. */
306 #ifndef TARGET_BPABI
307 #define TARGET_BPABI false
308 #endif
309
310 /* Support for a compile-time default CPU, et cetera. The rules are:
311 --with-arch is ignored if -march or -mcpu are specified.
312 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
313 by --with-arch.
314 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
315 by -march).
316 --with-float is ignored if -mfloat-abi is specified.
317 --with-fpu is ignored if -mfpu is specified.
318 --with-abi is ignored is -mabi is specified. */
319 #define OPTION_DEFAULT_SPECS \
320 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
321 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
322 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
323 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
324 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
325 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
326 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"},
327
328 /* Which floating point model to use. */
329 enum arm_fp_model
330 {
331 ARM_FP_MODEL_UNKNOWN,
332 /* FPA model (Hardware or software). */
333 ARM_FP_MODEL_FPA,
334 /* Cirrus Maverick floating point model. */
335 ARM_FP_MODEL_MAVERICK,
336 /* VFP floating point model. */
337 ARM_FP_MODEL_VFP
338 };
339
340 enum vfp_reg_type
341 {
342 VFP_NONE = 0,
343 VFP_REG_D16,
344 VFP_REG_D32,
345 VFP_REG_SINGLE
346 };
347
348 extern const struct arm_fpu_desc
349 {
350 const char *name;
351 enum arm_fp_model model;
352 int rev;
353 enum vfp_reg_type regs;
354 int neon;
355 int fp16;
356 } *arm_fpu_desc;
357
358 /* Which floating point hardware to schedule for. */
359 extern int arm_fpu_attr;
360
361 enum float_abi_type
362 {
363 ARM_FLOAT_ABI_SOFT,
364 ARM_FLOAT_ABI_SOFTFP,
365 ARM_FLOAT_ABI_HARD
366 };
367
368 extern enum float_abi_type arm_float_abi;
369
370 #ifndef TARGET_DEFAULT_FLOAT_ABI
371 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
372 #endif
373
374 /* Which __fp16 format to use.
375 The enumeration values correspond to the numbering for the
376 Tag_ABI_FP_16bit_format attribute.
377 */
378 enum arm_fp16_format_type
379 {
380 ARM_FP16_FORMAT_NONE = 0,
381 ARM_FP16_FORMAT_IEEE = 1,
382 ARM_FP16_FORMAT_ALTERNATIVE = 2
383 };
384
385 extern enum arm_fp16_format_type arm_fp16_format;
386 #define LARGEST_EXPONENT_IS_NORMAL(bits) \
387 ((bits) == 16 && arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)
388
389 /* Which ABI to use. */
390 enum arm_abi_type
391 {
392 ARM_ABI_APCS,
393 ARM_ABI_ATPCS,
394 ARM_ABI_AAPCS,
395 ARM_ABI_IWMMXT,
396 ARM_ABI_AAPCS_LINUX
397 };
398
399 extern enum arm_abi_type arm_abi;
400
401 #ifndef ARM_DEFAULT_ABI
402 #define ARM_DEFAULT_ABI ARM_ABI_APCS
403 #endif
404
405 /* Which thread pointer access sequence to use. */
406 enum arm_tp_type {
407 TP_AUTO,
408 TP_SOFT,
409 TP_CP15
410 };
411
412 extern enum arm_tp_type target_thread_pointer;
413
414 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
415 extern int arm_arch3m;
416
417 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
418 extern int arm_arch4;
419
420 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
421 extern int arm_arch4t;
422
423 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
424 extern int arm_arch5;
425
426 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
427 extern int arm_arch5e;
428
429 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
430 extern int arm_arch6;
431
432 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
433 extern int arm_arch6k;
434
435 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
436 extern int arm_arch7;
437
438 /* Nonzero if instructions not present in the 'M' profile can be used. */
439 extern int arm_arch_notm;
440
441 /* Nonzero if instructions present in ARMv7E-M can be used. */
442 extern int arm_arch7em;
443
444 /* Nonzero if this chip can benefit from load scheduling. */
445 extern int arm_ld_sched;
446
447 /* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2. */
448 extern int thumb_code;
449
450 /* Nonzero if generating Thumb-1 code. */
451 extern int thumb1_code;
452
453 /* Nonzero if this chip is a StrongARM. */
454 extern int arm_tune_strongarm;
455
456 /* Nonzero if this chip is a Cirrus variant. */
457 extern int arm_arch_cirrus;
458
459 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
460 extern int arm_arch_iwmmxt;
461
462 /* Nonzero if this chip is an XScale. */
463 extern int arm_arch_xscale;
464
465 /* Nonzero if tuning for XScale. */
466 extern int arm_tune_xscale;
467
468 /* Nonzero if tuning for stores via the write buffer. */
469 extern int arm_tune_wbuf;
470
471 /* Nonzero if tuning for Cortex-A9. */
472 extern int arm_tune_cortex_a9;
473
474 /* Nonzero if we should define __THUMB_INTERWORK__ in the
475 preprocessor.
476 XXX This is a bit of a hack, it's intended to help work around
477 problems in GLD which doesn't understand that armv5t code is
478 interworking clean. */
479 extern int arm_cpp_interwork;
480
481 /* Nonzero if chip supports Thumb 2. */
482 extern int arm_arch_thumb2;
483
484 /* Nonzero if chip supports integer division instruction. */
485 extern int arm_arch_hwdiv;
486
487 #ifndef TARGET_DEFAULT
488 #define TARGET_DEFAULT (MASK_APCS_FRAME)
489 #endif
490
491 /* Nonzero if PIC code requires explicit qualifiers to generate
492 PLT and GOT relocs rather than the assembler doing so implicitly.
493 Subtargets can override these if required. */
494 #ifndef NEED_GOT_RELOC
495 #define NEED_GOT_RELOC 0
496 #endif
497 #ifndef NEED_PLT_RELOC
498 #define NEED_PLT_RELOC 0
499 #endif
500
501 /* Nonzero if we need to refer to the GOT with a PC-relative
502 offset. In other words, generate
503
504 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
505
506 rather than
507
508 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
509
510 The default is true, which matches NetBSD. Subtargets can
511 override this if required. */
512 #ifndef GOT_PCREL
513 #define GOT_PCREL 1
514 #endif
515 \f
516 /* Target machine storage Layout. */
517
518
519 /* Define this macro if it is advisable to hold scalars in registers
520 in a wider mode than that declared by the program. In such cases,
521 the value is constrained to be within the bounds of the declared
522 type, but kept valid in the wider mode. The signedness of the
523 extension may differ from that of the type. */
524
525 /* It is far faster to zero extend chars than to sign extend them */
526
527 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
528 if (GET_MODE_CLASS (MODE) == MODE_INT \
529 && GET_MODE_SIZE (MODE) < 4) \
530 { \
531 if (MODE == QImode) \
532 UNSIGNEDP = 1; \
533 else if (MODE == HImode) \
534 UNSIGNEDP = 1; \
535 (MODE) = SImode; \
536 }
537
538 /* Define this if most significant bit is lowest numbered
539 in instructions that operate on numbered bit-fields. */
540 #define BITS_BIG_ENDIAN 0
541
542 /* Define this if most significant byte of a word is the lowest numbered.
543 Most ARM processors are run in little endian mode, so that is the default.
544 If you want to have it run-time selectable, change the definition in a
545 cover file to be TARGET_BIG_ENDIAN. */
546 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
547
548 /* Define this if most significant word of a multiword number is the lowest
549 numbered.
550 This is always false, even when in big-endian mode. */
551 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
552
553 /* Define this if most significant word of doubles is the lowest numbered.
554 The rules are different based on whether or not we use FPA-format,
555 VFP-format or some other floating point co-processor's format doubles. */
556 #define FLOAT_WORDS_BIG_ENDIAN (arm_float_words_big_endian ())
557
558 #define UNITS_PER_WORD 4
559
560 /* True if natural alignment is used for doubleword types. */
561 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
562
563 #define DOUBLEWORD_ALIGNMENT 64
564
565 #define PARM_BOUNDARY 32
566
567 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
568
569 #define PREFERRED_STACK_BOUNDARY \
570 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
571
572 #define FUNCTION_BOUNDARY ((TARGET_THUMB && optimize_size) ? 16 : 32)
573
574 /* The lowest bit is used to indicate Thumb-mode functions, so the
575 vbit must go into the delta field of pointers to member
576 functions. */
577 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
578
579 #define EMPTY_FIELD_BOUNDARY 32
580
581 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
582
583 /* XXX Blah -- this macro is used directly by libobjc. Since it
584 supports no vector modes, cut out the complexity and fall back
585 on BIGGEST_FIELD_ALIGNMENT. */
586 #ifdef IN_TARGET_LIBS
587 #define BIGGEST_FIELD_ALIGNMENT 64
588 #endif
589
590 /* Make strings word-aligned so strcpy from constants will be faster. */
591 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
592
593 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
594 ((TREE_CODE (EXP) == STRING_CST \
595 && !optimize_size \
596 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
597 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
598
599 /* Align definitions of arrays, unions and structures so that
600 initializations and copies can be made more efficient. This is not
601 ABI-changing, so it only affects places where we can see the
602 definition. Increasing the alignment tends to introduce padding,
603 so don't do this when optimizing for size/conserving stack space. */
604 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
605 (((COND) && ((ALIGN) < BITS_PER_WORD) \
606 && (TREE_CODE (EXP) == ARRAY_TYPE \
607 || TREE_CODE (EXP) == UNION_TYPE \
608 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
609
610 /* Align global data. */
611 #define DATA_ALIGNMENT(EXP, ALIGN) \
612 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
613
614 /* Similarly, make sure that objects on the stack are sensibly aligned. */
615 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
616 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
617
618 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
619 value set in previous versions of this toolchain was 8, which produces more
620 compact structures. The command line option -mstructure_size_boundary=<n>
621 can be used to change this value. For compatibility with the ARM SDK
622 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
623 0020D) page 2-20 says "Structures are aligned on word boundaries".
624 The AAPCS specifies a value of 8. */
625 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
626 extern int arm_structure_size_boundary;
627
628 /* This is the value used to initialize arm_structure_size_boundary. If a
629 particular arm target wants to change the default value it should change
630 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
631 for an example of this. */
632 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
633 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
634 #endif
635
636 /* Nonzero if move instructions will actually fail to work
637 when given unaligned data. */
638 #define STRICT_ALIGNMENT 1
639
640 /* wchar_t is unsigned under the AAPCS. */
641 #ifndef WCHAR_TYPE
642 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
643
644 #define WCHAR_TYPE_SIZE BITS_PER_WORD
645 #endif
646
647 #ifndef SIZE_TYPE
648 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
649 #endif
650
651 #ifndef PTRDIFF_TYPE
652 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
653 #endif
654
655 /* AAPCS requires that structure alignment is affected by bitfields. */
656 #ifndef PCC_BITFIELD_TYPE_MATTERS
657 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
658 #endif
659
660 \f
661 /* Standard register usage. */
662
663 /* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
664 (S - saved over call).
665
666 r0 * argument word/integer result
667 r1-r3 argument word
668
669 r4-r8 S register variable
670 r9 S (rfp) register variable (real frame pointer)
671
672 r10 F S (sl) stack limit (used by -mapcs-stack-check)
673 r11 F S (fp) argument pointer
674 r12 (ip) temp workspace
675 r13 F S (sp) lower end of current stack frame
676 r14 (lr) link address/workspace
677 r15 F (pc) program counter
678
679 f0 floating point result
680 f1-f3 floating point scratch
681
682 f4-f7 S floating point variable
683
684 cc This is NOT a real register, but is used internally
685 to represent things that use or set the condition
686 codes.
687 sfp This isn't either. It is used during rtl generation
688 since the offset between the frame pointer and the
689 auto's isn't known until after register allocation.
690 afp Nor this, we only need this because of non-local
691 goto. Without it fp appears to be used and the
692 elimination code won't get rid of sfp. It tracks
693 fp exactly at all times.
694
695 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
696
697 /*
698 mvf0 Cirrus floating point result
699 mvf1-mvf3 Cirrus floating point scratch
700 mvf4-mvf15 S Cirrus floating point variable. */
701
702 /* s0-s15 VFP scratch (aka d0-d7).
703 s16-s31 S VFP variable (aka d8-d15).
704 vfpcc Not a real register. Represents the VFP condition
705 code flags. */
706
707 /* The stack backtrace structure is as follows:
708 fp points to here: | save code pointer | [fp]
709 | return link value | [fp, #-4]
710 | return sp value | [fp, #-8]
711 | return fp value | [fp, #-12]
712 [| saved r10 value |]
713 [| saved r9 value |]
714 [| saved r8 value |]
715 [| saved r7 value |]
716 [| saved r6 value |]
717 [| saved r5 value |]
718 [| saved r4 value |]
719 [| saved r3 value |]
720 [| saved r2 value |]
721 [| saved r1 value |]
722 [| saved r0 value |]
723 [| saved f7 value |] three words
724 [| saved f6 value |] three words
725 [| saved f5 value |] three words
726 [| saved f4 value |] three words
727 r0-r3 are not normally saved in a C function. */
728
729 /* 1 for registers that have pervasive standard uses
730 and are not available for the register allocator. */
731 #define FIXED_REGISTERS \
732 { \
733 0,0,0,0,0,0,0,0, \
734 0,0,0,0,0,1,0,1, \
735 0,0,0,0,0,0,0,0, \
736 1,1,1, \
737 1,1,1,1,1,1,1,1, \
738 1,1,1,1,1,1,1,1, \
739 1,1,1,1,1,1,1,1, \
740 1,1,1,1,1,1,1,1, \
741 1,1,1,1, \
742 1,1,1,1,1,1,1,1, \
743 1,1,1,1,1,1,1,1, \
744 1,1,1,1,1,1,1,1, \
745 1,1,1,1,1,1,1,1, \
746 1,1,1,1,1,1,1,1, \
747 1,1,1,1,1,1,1,1, \
748 1,1,1,1,1,1,1,1, \
749 1,1,1,1,1,1,1,1, \
750 1 \
751 }
752
753 /* 1 for registers not available across function calls.
754 These must include the FIXED_REGISTERS and also any
755 registers that can be used without being saved.
756 The latter must include the registers where values are returned
757 and the register where structure-value addresses are passed.
758 Aside from that, you can include as many other registers as you like.
759 The CC is not preserved over function calls on the ARM 6, so it is
760 easier to assume this for all. SFP is preserved, since FP is. */
761 #define CALL_USED_REGISTERS \
762 { \
763 1,1,1,1,0,0,0,0, \
764 0,0,0,0,1,1,1,1, \
765 1,1,1,1,0,0,0,0, \
766 1,1,1, \
767 1,1,1,1,1,1,1,1, \
768 1,1,1,1,1,1,1,1, \
769 1,1,1,1,1,1,1,1, \
770 1,1,1,1,1,1,1,1, \
771 1,1,1,1, \
772 1,1,1,1,1,1,1,1, \
773 1,1,1,1,1,1,1,1, \
774 1,1,1,1,1,1,1,1, \
775 1,1,1,1,1,1,1,1, \
776 1,1,1,1,1,1,1,1, \
777 1,1,1,1,1,1,1,1, \
778 1,1,1,1,1,1,1,1, \
779 1,1,1,1,1,1,1,1, \
780 1 \
781 }
782
783 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
784 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
785 #endif
786
787 /* These are a couple of extensions to the formats accepted
788 by asm_fprintf:
789 %@ prints out ASM_COMMENT_START
790 %r prints out REGISTER_PREFIX reg_names[arg] */
791 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
792 case '@': \
793 fputs (ASM_COMMENT_START, FILE); \
794 break; \
795 \
796 case 'r': \
797 fputs (REGISTER_PREFIX, FILE); \
798 fputs (reg_names [va_arg (ARGS, int)], FILE); \
799 break;
800
801 /* Round X up to the nearest word. */
802 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
803
804 /* Convert fron bytes to ints. */
805 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
806
807 /* The number of (integer) registers required to hold a quantity of type MODE.
808 Also used for VFP registers. */
809 #define ARM_NUM_REGS(MODE) \
810 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
811
812 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
813 #define ARM_NUM_REGS2(MODE, TYPE) \
814 ARM_NUM_INTS ((MODE) == BLKmode ? \
815 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
816
817 /* The number of (integer) argument register available. */
818 #define NUM_ARG_REGS 4
819
820 /* And similarly for the VFP. */
821 #define NUM_VFP_ARG_REGS 16
822
823 /* Return the register number of the N'th (integer) argument. */
824 #define ARG_REGISTER(N) (N - 1)
825
826 /* Specify the registers used for certain standard purposes.
827 The values of these macros are register numbers. */
828
829 /* The number of the last argument register. */
830 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
831
832 /* The numbers of the Thumb register ranges. */
833 #define FIRST_LO_REGNUM 0
834 #define LAST_LO_REGNUM 7
835 #define FIRST_HI_REGNUM 8
836 #define LAST_HI_REGNUM 11
837
838 /* Overridden by config/arm/bpabi.h. */
839 #ifndef ARM_UNWIND_INFO
840 #define ARM_UNWIND_INFO 0
841 #endif
842
843 /* Use r0 and r1 to pass exception handling information. */
844 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
845
846 /* The register that holds the return address in exception handlers. */
847 #define ARM_EH_STACKADJ_REGNUM 2
848 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
849
850 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
851 as an invisible last argument (possible since varargs don't exist in
852 Pascal), so the following is not true. */
853 #define STATIC_CHAIN_REGNUM 12
854
855 /* Define this to be where the real frame pointer is if it is not possible to
856 work out the offset between the frame pointer and the automatic variables
857 until after register allocation has taken place. FRAME_POINTER_REGNUM
858 should point to a special register that we will make sure is eliminated.
859
860 For the Thumb we have another problem. The TPCS defines the frame pointer
861 as r11, and GCC believes that it is always possible to use the frame pointer
862 as base register for addressing purposes. (See comments in
863 find_reloads_address()). But - the Thumb does not allow high registers,
864 including r11, to be used as base address registers. Hence our problem.
865
866 The solution used here, and in the old thumb port is to use r7 instead of
867 r11 as the hard frame pointer and to have special code to generate
868 backtrace structures on the stack (if required to do so via a command line
869 option) using r11. This is the only 'user visible' use of r11 as a frame
870 pointer. */
871 #define ARM_HARD_FRAME_POINTER_REGNUM 11
872 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
873
874 #define HARD_FRAME_POINTER_REGNUM \
875 (TARGET_ARM \
876 ? ARM_HARD_FRAME_POINTER_REGNUM \
877 : THUMB_HARD_FRAME_POINTER_REGNUM)
878
879 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
880 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
881
882 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
883
884 /* Register to use for pushing function arguments. */
885 #define STACK_POINTER_REGNUM SP_REGNUM
886
887 /* ARM floating pointer registers. */
888 #define FIRST_FPA_REGNUM 16
889 #define LAST_FPA_REGNUM 23
890 #define IS_FPA_REGNUM(REGNUM) \
891 (((REGNUM) >= FIRST_FPA_REGNUM) && ((REGNUM) <= LAST_FPA_REGNUM))
892
893 #define FIRST_IWMMXT_GR_REGNUM 43
894 #define LAST_IWMMXT_GR_REGNUM 46
895 #define FIRST_IWMMXT_REGNUM 47
896 #define LAST_IWMMXT_REGNUM 62
897 #define IS_IWMMXT_REGNUM(REGNUM) \
898 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
899 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
900 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
901
902 /* Base register for access to local variables of the function. */
903 #define FRAME_POINTER_REGNUM 25
904
905 /* Base register for access to arguments of the function. */
906 #define ARG_POINTER_REGNUM 26
907
908 #define FIRST_CIRRUS_FP_REGNUM 27
909 #define LAST_CIRRUS_FP_REGNUM 42
910 #define IS_CIRRUS_REGNUM(REGNUM) \
911 (((REGNUM) >= FIRST_CIRRUS_FP_REGNUM) && ((REGNUM) <= LAST_CIRRUS_FP_REGNUM))
912
913 #define FIRST_VFP_REGNUM 63
914 #define D7_VFP_REGNUM 78 /* Registers 77 and 78 == VFP reg D7. */
915 #define LAST_VFP_REGNUM \
916 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
917
918 #define IS_VFP_REGNUM(REGNUM) \
919 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
920
921 /* VFP registers are split into two types: those defined by VFP versions < 3
922 have D registers overlaid on consecutive pairs of S registers. VFP version 3
923 defines 16 new D registers (d16-d31) which, for simplicity and correctness
924 in various parts of the backend, we implement as "fake" single-precision
925 registers (which would be S32-S63, but cannot be used in that way). The
926 following macros define these ranges of registers. */
927 #define LAST_LO_VFP_REGNUM 94
928 #define FIRST_HI_VFP_REGNUM 95
929 #define LAST_HI_VFP_REGNUM 126
930
931 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
932 ((REGNUM) <= LAST_LO_VFP_REGNUM)
933
934 /* DFmode values are only valid in even register pairs. */
935 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
936 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
937
938 /* Neon Quad values must start at a multiple of four registers. */
939 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
940 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
941
942 /* Neon structures of vectors must be in even register pairs and there
943 must be enough registers available. Because of various patterns
944 requiring quad registers, we require them to start at a multiple of
945 four. */
946 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
947 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
948 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
949
950 /* The number of hard registers is 16 ARM + 8 FPA + 1 CC + 1 SFP + 1 AFP. */
951 /* + 16 Cirrus registers take us up to 43. */
952 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
953 /* VFP (VFP3) adds 32 (64) + 1 more. */
954 #define FIRST_PSEUDO_REGISTER 128
955
956 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
957
958 /* Value should be nonzero if functions must have frame pointers.
959 Zero means the frame pointer need not be set up (and parms may be accessed
960 via the stack pointer) in functions that seem suitable.
961 If we have to have a frame pointer we might as well make use of it.
962 APCS says that the frame pointer does not need to be pushed in leaf
963 functions, or simple tail call functions. */
964
965 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
966 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
967 #endif
968
969 /* Return number of consecutive hard regs needed starting at reg REGNO
970 to hold something of mode MODE.
971 This is ordinarily the length in words of a value of mode MODE
972 but can be less for certain modes in special long registers.
973
974 On the ARM regs are UNITS_PER_WORD bits wide; FPA regs can hold any FP
975 mode. */
976 #define HARD_REGNO_NREGS(REGNO, MODE) \
977 ((TARGET_32BIT \
978 && REGNO >= FIRST_FPA_REGNUM \
979 && REGNO != FRAME_POINTER_REGNUM \
980 && REGNO != ARG_POINTER_REGNUM) \
981 && !IS_VFP_REGNUM (REGNO) \
982 ? 1 : ARM_NUM_REGS (MODE))
983
984 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
985 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
986 arm_hard_regno_mode_ok ((REGNO), (MODE))
987
988 /* Value is 1 if it is a good idea to tie two pseudo registers
989 when one has mode MODE1 and one has mode MODE2.
990 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
991 for any hard reg, then this must be 0 for correct output. */
992 #define MODES_TIEABLE_P(MODE1, MODE2) \
993 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
994
995 #define VALID_IWMMXT_REG_MODE(MODE) \
996 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
997
998 /* Modes valid for Neon D registers. */
999 #define VALID_NEON_DREG_MODE(MODE) \
1000 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1001 || (MODE) == V2SFmode || (MODE) == DImode)
1002
1003 /* Modes valid for Neon Q registers. */
1004 #define VALID_NEON_QREG_MODE(MODE) \
1005 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1006 || (MODE) == V4SFmode || (MODE) == V2DImode)
1007
1008 /* Structure modes valid for Neon registers. */
1009 #define VALID_NEON_STRUCT_MODE(MODE) \
1010 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1011 || (MODE) == CImode || (MODE) == XImode)
1012
1013 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
1014 extern int arm_regs_in_sequence[];
1015
1016 /* The order in which register should be allocated. It is good to use ip
1017 since no saving is required (though calls clobber it) and it never contains
1018 function parameters. It is quite good to use lr since other calls may
1019 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1020 least likely to contain a function parameter; in addition results are
1021 returned in r0.
1022 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1023 then D8-D15. The reason for doing this is to attempt to reduce register
1024 pressure when both single- and double-precision registers are used in a
1025 function. */
1026
1027 #define REG_ALLOC_ORDER \
1028 { \
1029 3, 2, 1, 0, 12, 14, 4, 5, \
1030 6, 7, 8, 10, 9, 11, 13, 15, \
1031 16, 17, 18, 19, 20, 21, 22, 23, \
1032 27, 28, 29, 30, 31, 32, 33, 34, \
1033 35, 36, 37, 38, 39, 40, 41, 42, \
1034 43, 44, 45, 46, 47, 48, 49, 50, \
1035 51, 52, 53, 54, 55, 56, 57, 58, \
1036 59, 60, 61, 62, \
1037 24, 25, 26, \
1038 95, 96, 97, 98, 99, 100, 101, 102, \
1039 103, 104, 105, 106, 107, 108, 109, 110, \
1040 111, 112, 113, 114, 115, 116, 117, 118, \
1041 119, 120, 121, 122, 123, 124, 125, 126, \
1042 78, 77, 76, 75, 74, 73, 72, 71, \
1043 70, 69, 68, 67, 66, 65, 64, 63, \
1044 79, 80, 81, 82, 83, 84, 85, 86, \
1045 87, 88, 89, 90, 91, 92, 93, 94, \
1046 127 \
1047 }
1048
1049 /* Use different register alloc ordering for Thumb. */
1050 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1051
1052 /* Tell IRA to use the order we define rather than messing it up with its
1053 own cost calculations. */
1054 #define HONOR_REG_ALLOC_ORDER
1055
1056 /* Interrupt functions can only use registers that have already been
1057 saved by the prologue, even if they would normally be
1058 call-clobbered. */
1059 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1060 (! IS_INTERRUPT (cfun->machine->func_type) || \
1061 df_regs_ever_live_p (DST))
1062 \f
1063 /* Register and constant classes. */
1064
1065 /* Register classes: used to be simple, just all ARM regs or all FPA regs
1066 Now that the Thumb is involved it has become more complicated. */
1067 enum reg_class
1068 {
1069 NO_REGS,
1070 FPA_REGS,
1071 CIRRUS_REGS,
1072 VFP_D0_D7_REGS,
1073 VFP_LO_REGS,
1074 VFP_HI_REGS,
1075 VFP_REGS,
1076 IWMMXT_GR_REGS,
1077 IWMMXT_REGS,
1078 LO_REGS,
1079 STACK_REG,
1080 BASE_REGS,
1081 HI_REGS,
1082 CC_REG,
1083 VFPCC_REG,
1084 GENERAL_REGS,
1085 CORE_REGS,
1086 ALL_REGS,
1087 LIM_REG_CLASSES
1088 };
1089
1090 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1091
1092 /* Give names of register classes as strings for dump file. */
1093 #define REG_CLASS_NAMES \
1094 { \
1095 "NO_REGS", \
1096 "FPA_REGS", \
1097 "CIRRUS_REGS", \
1098 "VFP_D0_D7_REGS", \
1099 "VFP_LO_REGS", \
1100 "VFP_HI_REGS", \
1101 "VFP_REGS", \
1102 "IWMMXT_GR_REGS", \
1103 "IWMMXT_REGS", \
1104 "LO_REGS", \
1105 "STACK_REG", \
1106 "BASE_REGS", \
1107 "HI_REGS", \
1108 "CC_REG", \
1109 "VFPCC_REG", \
1110 "GENERAL_REGS", \
1111 "CORE_REGS", \
1112 "ALL_REGS", \
1113 }
1114
1115 /* Define which registers fit in which classes.
1116 This is an initializer for a vector of HARD_REG_SET
1117 of length N_REG_CLASSES. */
1118 #define REG_CLASS_CONTENTS \
1119 { \
1120 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1121 { 0x00FF0000, 0x00000000, 0x00000000, 0x00000000 }, /* FPA_REGS */ \
1122 { 0xF8000000, 0x000007FF, 0x00000000, 0x00000000 }, /* CIRRUS_REGS */ \
1123 { 0x00000000, 0x80000000, 0x00007FFF, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1124 { 0x00000000, 0x80000000, 0x7FFFFFFF, 0x00000000 }, /* VFP_LO_REGS */ \
1125 { 0x00000000, 0x00000000, 0x80000000, 0x7FFFFFFF }, /* VFP_HI_REGS */ \
1126 { 0x00000000, 0x80000000, 0xFFFFFFFF, 0x7FFFFFFF }, /* VFP_REGS */ \
1127 { 0x00000000, 0x00007800, 0x00000000, 0x00000000 }, /* IWMMXT_GR_REGS */ \
1128 { 0x00000000, 0x7FFF8000, 0x00000000, 0x00000000 }, /* IWMMXT_REGS */ \
1129 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1130 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1131 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1132 { 0x0000DF00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1133 { 0x01000000, 0x00000000, 0x00000000, 0x00000000 }, /* CC_REG */ \
1134 { 0x00000000, 0x00000000, 0x00000000, 0x80000000 }, /* VFPCC_REG */ \
1135 { 0x0000DFFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1136 { 0x0000FFFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1137 { 0xFAFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF } /* ALL_REGS */ \
1138 }
1139
1140 /* Any of the VFP register classes. */
1141 #define IS_VFP_CLASS(X) \
1142 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1143 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1144
1145 /* The same information, inverted:
1146 Return the class number of the smallest class containing
1147 reg number REGNO. This could be a conditional expression
1148 or could index an array. */
1149 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1150
1151 /* FPA registers can't do subreg as all values are reformatted to internal
1152 precision. In VFPv1, VFP registers could only be accessed in the mode
1153 they were set, so subregs would be invalid there too. However, we don't
1154 support VFPv1 at the moment, and the restriction was lifted in VFPv2. */
1155 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1156 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1157 ? reg_classes_intersect_p (FPA_REGS, (CLASS)) \
1158 : 0)
1159
1160 /* The class value for index registers, and the one for base regs. */
1161 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1162 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1163
1164 /* For the Thumb the high registers cannot be used as base registers
1165 when addressing quantities in QI or HI mode; if we don't know the
1166 mode, then we must be conservative. */
1167 #define MODE_BASE_REG_CLASS(MODE) \
1168 (TARGET_32BIT ? CORE_REGS : \
1169 (((MODE) == SImode) ? BASE_REGS : LO_REGS))
1170
1171 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1172 instead of BASE_REGS. */
1173 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1174
1175 /* When this hook returns true for MODE, the compiler allows
1176 registers explicitly used in the rtl to be used as spill registers
1177 but prevents the compiler from extending the lifetime of these
1178 registers. */
1179 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1180 arm_small_register_classes_for_mode_p
1181
1182 /* Given an rtx X being reloaded into a reg required to be
1183 in class CLASS, return the class of reg to actually use.
1184 In general this is just CLASS, but for the Thumb core registers and
1185 immediate constants we prefer a LO_REGS class or a subset. */
1186 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1187 (TARGET_32BIT ? (CLASS) : \
1188 ((CLASS) == GENERAL_REGS || (CLASS) == HI_REGS \
1189 || (CLASS) == NO_REGS || (CLASS) == STACK_REG \
1190 ? LO_REGS : (CLASS)))
1191
1192 /* Must leave BASE_REGS reloads alone */
1193 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1194 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1195 ? ((true_regnum (X) == -1 ? LO_REGS \
1196 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1197 : NO_REGS)) \
1198 : NO_REGS)
1199
1200 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1201 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1202 ? ((true_regnum (X) == -1 ? LO_REGS \
1203 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1204 : NO_REGS)) \
1205 : NO_REGS)
1206
1207 /* Return the register class of a scratch register needed to copy IN into
1208 or out of a register in CLASS in MODE. If it can be done directly,
1209 NO_REGS is returned. */
1210 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1211 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1212 ((TARGET_VFP && TARGET_HARD_FLOAT \
1213 && IS_VFP_CLASS (CLASS)) \
1214 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1215 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1216 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1217 : TARGET_32BIT \
1218 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1219 ? GENERAL_REGS : NO_REGS) \
1220 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1221
1222 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1223 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1224 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1225 ((TARGET_VFP && TARGET_HARD_FLOAT \
1226 && IS_VFP_CLASS (CLASS)) \
1227 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1228 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1229 coproc_secondary_reload_class (MODE, X, TRUE) : \
1230 /* Cannot load constants into Cirrus registers. */ \
1231 (TARGET_MAVERICK && TARGET_HARD_FLOAT \
1232 && (CLASS) == CIRRUS_REGS \
1233 && (CONSTANT_P (X) || GET_CODE (X) == SYMBOL_REF)) \
1234 ? GENERAL_REGS : \
1235 (TARGET_32BIT ? \
1236 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1237 && CONSTANT_P (X)) \
1238 ? GENERAL_REGS : \
1239 (((MODE) == HImode && ! arm_arch4 \
1240 && (GET_CODE (X) == MEM \
1241 || ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG) \
1242 && true_regnum (X) == -1))) \
1243 ? GENERAL_REGS : NO_REGS) \
1244 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1245
1246 /* Try a machine-dependent way of reloading an illegitimate address
1247 operand. If we find one, push the reload and jump to WIN. This
1248 macro is used in only one place: `find_reloads_address' in reload.c.
1249
1250 For the ARM, we wish to handle large displacements off a base
1251 register by splitting the addend across a MOV and the mem insn.
1252 This can cut the number of reloads needed. */
1253 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
1254 do \
1255 { \
1256 if (arm_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND)) \
1257 goto WIN; \
1258 } \
1259 while (0)
1260
1261 /* XXX If an HImode FP+large_offset address is converted to an HImode
1262 SP+large_offset address, then reload won't know how to fix it. It sees
1263 only that SP isn't valid for HImode, and so reloads the SP into an index
1264 register, but the resulting address is still invalid because the offset
1265 is too big. We fix it here instead by reloading the entire address. */
1266 /* We could probably achieve better results by defining PROMOTE_MODE to help
1267 cope with the variances between the Thumb's signed and unsigned byte and
1268 halfword load instructions. */
1269 /* ??? This should be safe for thumb2, but we may be able to do better. */
1270 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN) \
1271 do { \
1272 rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1273 if (new_x) \
1274 { \
1275 X = new_x; \
1276 goto WIN; \
1277 } \
1278 } while (0)
1279
1280 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
1281 if (TARGET_ARM) \
1282 ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1283 else \
1284 THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1285
1286 /* Return the maximum number of consecutive registers
1287 needed to represent mode MODE in a register of class CLASS.
1288 ARM regs are UNITS_PER_WORD bits while FPA regs can hold any FP mode */
1289 #define CLASS_MAX_NREGS(CLASS, MODE) \
1290 (((CLASS) == FPA_REGS || (CLASS) == CIRRUS_REGS) ? 1 : ARM_NUM_REGS (MODE))
1291
1292 /* If defined, gives a class of registers that cannot be used as the
1293 operand of a SUBREG that changes the mode of the object illegally. */
1294
1295 /* Moves between FPA_REGS and GENERAL_REGS are two memory insns.
1296 Moves between VFP_REGS and GENERAL_REGS are a single insn, but
1297 it is typically more expensive than a single memory access. We set
1298 the cost to less than two memory accesses so that floating
1299 point to integer conversion does not go through memory. */
1300 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1301 (TARGET_32BIT ? \
1302 ((FROM) == FPA_REGS && (TO) != FPA_REGS ? 20 : \
1303 (FROM) != FPA_REGS && (TO) == FPA_REGS ? 20 : \
1304 IS_VFP_CLASS (FROM) && !IS_VFP_CLASS (TO) ? 15 : \
1305 !IS_VFP_CLASS (FROM) && IS_VFP_CLASS (TO) ? 15 : \
1306 (FROM) == IWMMXT_REGS && (TO) != IWMMXT_REGS ? 4 : \
1307 (FROM) != IWMMXT_REGS && (TO) == IWMMXT_REGS ? 4 : \
1308 (FROM) == IWMMXT_GR_REGS || (TO) == IWMMXT_GR_REGS ? 20 : \
1309 (FROM) == CIRRUS_REGS && (TO) != CIRRUS_REGS ? 20 : \
1310 (FROM) != CIRRUS_REGS && (TO) == CIRRUS_REGS ? 20 : \
1311 2) \
1312 : \
1313 ((FROM) == HI_REGS || (TO) == HI_REGS) ? 4 : 2)
1314 \f
1315 /* Stack layout; function entry, exit and calling. */
1316
1317 /* Define this if pushing a word on the stack
1318 makes the stack pointer a smaller address. */
1319 #define STACK_GROWS_DOWNWARD 1
1320
1321 /* Define this to nonzero if the nominal address of the stack frame
1322 is at the high-address end of the local variables;
1323 that is, each additional local variable allocated
1324 goes at a more negative offset in the frame. */
1325 #define FRAME_GROWS_DOWNWARD 1
1326
1327 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1328 When present, it is one word in size, and sits at the top of the frame,
1329 between the soft frame pointer and either r7 or r11.
1330
1331 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1332 and only then if some outgoing arguments are passed on the stack. It would
1333 be tempting to also check whether the stack arguments are passed by indirect
1334 calls, but there seems to be no reason in principle why a post-reload pass
1335 couldn't convert a direct call into an indirect one. */
1336 #define CALLER_INTERWORKING_SLOT_SIZE \
1337 (TARGET_CALLER_INTERWORKING \
1338 && crtl->outgoing_args_size != 0 \
1339 ? UNITS_PER_WORD : 0)
1340
1341 /* Offset within stack frame to start allocating local variables at.
1342 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1343 first local allocated. Otherwise, it is the offset to the BEGINNING
1344 of the first local allocated. */
1345 #define STARTING_FRAME_OFFSET 0
1346
1347 /* If we generate an insn to push BYTES bytes,
1348 this says how many the stack pointer really advances by. */
1349 /* The push insns do not do this rounding implicitly.
1350 So don't define this. */
1351 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1352
1353 /* Define this if the maximum size of all the outgoing args is to be
1354 accumulated and pushed during the prologue. The amount can be
1355 found in the variable crtl->outgoing_args_size. */
1356 #define ACCUMULATE_OUTGOING_ARGS 1
1357
1358 /* Offset of first parameter from the argument pointer register value. */
1359 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1360
1361 /* Define how to find the value returned by a library function
1362 assuming the value has mode MODE. */
1363 #define LIBCALL_VALUE(MODE) \
1364 (TARGET_AAPCS_BASED ? aapcs_libcall_value (MODE) \
1365 : (TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_FPA \
1366 && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1367 ? gen_rtx_REG (MODE, FIRST_FPA_REGNUM) \
1368 : TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK \
1369 && GET_MODE_CLASS (MODE) == MODE_FLOAT \
1370 ? gen_rtx_REG (MODE, FIRST_CIRRUS_FP_REGNUM) \
1371 : TARGET_IWMMXT_ABI && arm_vector_mode_supported_p (MODE) \
1372 ? gen_rtx_REG (MODE, FIRST_IWMMXT_REGNUM) \
1373 : gen_rtx_REG (MODE, ARG_REGISTER (1)))
1374
1375 /* 1 if REGNO is a possible register number for a function value. */
1376 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1377 ((REGNO) == ARG_REGISTER (1) \
1378 || (TARGET_AAPCS_BASED && TARGET_32BIT \
1379 && TARGET_VFP && TARGET_HARD_FLOAT \
1380 && (REGNO) == FIRST_VFP_REGNUM) \
1381 || (TARGET_32BIT && ((REGNO) == FIRST_CIRRUS_FP_REGNUM) \
1382 && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK) \
1383 || ((REGNO) == FIRST_IWMMXT_REGNUM && TARGET_IWMMXT_ABI) \
1384 || (TARGET_32BIT && ((REGNO) == FIRST_FPA_REGNUM) \
1385 && TARGET_HARD_FLOAT_ABI && TARGET_FPA))
1386
1387 /* Amount of memory needed for an untyped call to save all possible return
1388 registers. */
1389 #define APPLY_RESULT_SIZE arm_apply_result_size()
1390
1391 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1392 values must be in memory. On the ARM, they need only do so if larger
1393 than a word, or if they contain elements offset from zero in the struct. */
1394 #define DEFAULT_PCC_STRUCT_RETURN 0
1395
1396 /* These bits describe the different types of function supported
1397 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1398 normal function and an interworked function, for example. Knowing the
1399 type of a function is important for determining its prologue and
1400 epilogue sequences.
1401 Note value 7 is currently unassigned. Also note that the interrupt
1402 function types all have bit 2 set, so that they can be tested for easily.
1403 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1404 machine_function structure is initialized (to zero) func_type will
1405 default to unknown. This will force the first use of arm_current_func_type
1406 to call arm_compute_func_type. */
1407 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1408 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1409 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1410 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1411 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1412 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1413
1414 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1415
1416 /* In addition functions can have several type modifiers,
1417 outlined by these bit masks: */
1418 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1419 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1420 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1421 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1422 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1423
1424 /* Some macros to test these flags. */
1425 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1426 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1427 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1428 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1429 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1430 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1431
1432
1433 /* Structure used to hold the function stack frame layout. Offsets are
1434 relative to the stack pointer on function entry. Positive offsets are
1435 in the direction of stack growth.
1436 Only soft_frame is used in thumb mode. */
1437
1438 typedef struct GTY(()) arm_stack_offsets
1439 {
1440 int saved_args; /* ARG_POINTER_REGNUM. */
1441 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1442 int saved_regs;
1443 int soft_frame; /* FRAME_POINTER_REGNUM. */
1444 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1445 int outgoing_args; /* STACK_POINTER_REGNUM. */
1446 unsigned int saved_regs_mask;
1447 }
1448 arm_stack_offsets;
1449
1450 #ifndef GENERATOR_FILE
1451 /* A C structure for machine-specific, per-function data.
1452 This is added to the cfun structure. */
1453 typedef struct GTY(()) machine_function
1454 {
1455 /* Additional stack adjustment in __builtin_eh_throw. */
1456 rtx eh_epilogue_sp_ofs;
1457 /* Records if LR has to be saved for far jumps. */
1458 int far_jump_used;
1459 /* Records if ARG_POINTER was ever live. */
1460 int arg_pointer_live;
1461 /* Records if the save of LR has been eliminated. */
1462 int lr_save_eliminated;
1463 /* The size of the stack frame. Only valid after reload. */
1464 arm_stack_offsets stack_offsets;
1465 /* Records the type of the current function. */
1466 unsigned long func_type;
1467 /* Record if the function has a variable argument list. */
1468 int uses_anonymous_args;
1469 /* Records if sibcalls are blocked because an argument
1470 register is needed to preserve stack alignment. */
1471 int sibcall_blocked;
1472 /* The PIC register for this function. This might be a pseudo. */
1473 rtx pic_reg;
1474 /* Labels for per-function Thumb call-via stubs. One per potential calling
1475 register. We can never call via LR or PC. We can call via SP if a
1476 trampoline happens to be on the top of the stack. */
1477 rtx call_via[14];
1478 /* Set to 1 when a return insn is output, this means that the epilogue
1479 is not needed. */
1480 int return_used_this_function;
1481 /* When outputting Thumb-1 code, record the last insn that provides
1482 information about condition codes, and the comparison operands. */
1483 rtx thumb1_cc_insn;
1484 rtx thumb1_cc_op0;
1485 rtx thumb1_cc_op1;
1486 /* Also record the CC mode that is supported. */
1487 enum machine_mode thumb1_cc_mode;
1488 }
1489 machine_function;
1490 #endif
1491
1492 /* As in the machine_function, a global set of call-via labels, for code
1493 that is in text_section. */
1494 extern GTY(()) rtx thumb_call_via_label[14];
1495
1496 /* The number of potential ways of assigning to a co-processor. */
1497 #define ARM_NUM_COPROC_SLOTS 1
1498
1499 /* Enumeration of procedure calling standard variants. We don't really
1500 support all of these yet. */
1501 enum arm_pcs
1502 {
1503 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1504 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1505 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1506 /* This must be the last AAPCS variant. */
1507 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1508 ARM_PCS_ATPCS, /* ATPCS. */
1509 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1510 ARM_PCS_UNKNOWN
1511 };
1512
1513 /* Default procedure calling standard of current compilation unit. */
1514 extern enum arm_pcs arm_pcs_default;
1515
1516 /* A C type for declaring a variable that is used as the first argument of
1517 `FUNCTION_ARG' and other related values. */
1518 typedef struct
1519 {
1520 /* This is the number of registers of arguments scanned so far. */
1521 int nregs;
1522 /* This is the number of iWMMXt register arguments scanned so far. */
1523 int iwmmxt_nregs;
1524 int named_count;
1525 int nargs;
1526 /* Which procedure call variant to use for this call. */
1527 enum arm_pcs pcs_variant;
1528
1529 /* AAPCS related state tracking. */
1530 int aapcs_arg_processed; /* No need to lay out this argument again. */
1531 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1532 this argument, or -1 if using core
1533 registers. */
1534 int aapcs_ncrn;
1535 int aapcs_next_ncrn;
1536 rtx aapcs_reg; /* Register assigned to this argument. */
1537 int aapcs_partial; /* How many bytes are passed in regs (if
1538 split between core regs and stack.
1539 Zero otherwise. */
1540 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1541 int can_split; /* Argument can be split between core regs
1542 and the stack. */
1543 /* Private data for tracking VFP register allocation */
1544 unsigned aapcs_vfp_regs_free;
1545 unsigned aapcs_vfp_reg_alloc;
1546 int aapcs_vfp_rcount;
1547 MACHMODE aapcs_vfp_rmode;
1548 } CUMULATIVE_ARGS;
1549
1550 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1551 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1552
1553 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1554 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1555
1556 /* For AAPCS, padding should never be below the argument. For other ABIs,
1557 * mimic the default. */
1558 #define PAD_VARARGS_DOWN \
1559 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1560
1561 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1562 for a call to a function whose data type is FNTYPE.
1563 For a library call, FNTYPE is 0.
1564 On the ARM, the offset starts at 0. */
1565 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1566 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1567
1568 /* 1 if N is a possible register number for function argument passing.
1569 On the ARM, r0-r3 are used to pass args. */
1570 #define FUNCTION_ARG_REGNO_P(REGNO) \
1571 (IN_RANGE ((REGNO), 0, 3) \
1572 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \
1573 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1574 || (TARGET_IWMMXT_ABI \
1575 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1576
1577 \f
1578 /* If your target environment doesn't prefix user functions with an
1579 underscore, you may wish to re-define this to prevent any conflicts. */
1580 #ifndef ARM_MCOUNT_NAME
1581 #define ARM_MCOUNT_NAME "*mcount"
1582 #endif
1583
1584 /* Call the function profiler with a given profile label. The Acorn
1585 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1586 On the ARM the full profile code will look like:
1587 .data
1588 LP1
1589 .word 0
1590 .text
1591 mov ip, lr
1592 bl mcount
1593 .word LP1
1594
1595 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1596 will output the .text section.
1597
1598 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1599 ``prof'' doesn't seem to mind about this!
1600
1601 Note - this version of the code is designed to work in both ARM and
1602 Thumb modes. */
1603 #ifndef ARM_FUNCTION_PROFILER
1604 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1605 { \
1606 char temp[20]; \
1607 rtx sym; \
1608 \
1609 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1610 IP_REGNUM, LR_REGNUM); \
1611 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1612 fputc ('\n', STREAM); \
1613 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1614 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1615 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1616 }
1617 #endif
1618
1619 #ifdef THUMB_FUNCTION_PROFILER
1620 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1621 if (TARGET_ARM) \
1622 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1623 else \
1624 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1625 #else
1626 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1627 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1628 #endif
1629
1630 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1631 the stack pointer does not matter. The value is tested only in
1632 functions that have frame pointers.
1633 No definition is equivalent to always zero.
1634
1635 On the ARM, the function epilogue recovers the stack pointer from the
1636 frame. */
1637 #define EXIT_IGNORE_STACK 1
1638
1639 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNUM)
1640
1641 /* Determine if the epilogue should be output as RTL.
1642 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1643 #define USE_RETURN_INSN(ISCOND) \
1644 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1645
1646 /* Definitions for register eliminations.
1647
1648 This is an array of structures. Each structure initializes one pair
1649 of eliminable registers. The "from" register number is given first,
1650 followed by "to". Eliminations of the same "from" register are listed
1651 in order of preference.
1652
1653 We have two registers that can be eliminated on the ARM. First, the
1654 arg pointer register can often be eliminated in favor of the stack
1655 pointer register. Secondly, the pseudo frame pointer register can always
1656 be eliminated; it is replaced with either the stack or the real frame
1657 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1658 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1659
1660 #define ELIMINABLE_REGS \
1661 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1662 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1663 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1664 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1665 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1666 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1667 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1668
1669 /* Define the offset between two registers, one to be eliminated, and the
1670 other its replacement, at the start of a routine. */
1671 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1672 if (TARGET_ARM) \
1673 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1674 else \
1675 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1676
1677 /* Special case handling of the location of arguments passed on the stack. */
1678 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1679
1680 /* Initialize data used by insn expanders. This is called from insn_emit,
1681 once for every function before code is generated. */
1682 #define INIT_EXPANDERS arm_init_expanders ()
1683
1684 /* Length in units of the trampoline for entering a nested function. */
1685 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1686
1687 /* Alignment required for a trampoline in bits. */
1688 #define TRAMPOLINE_ALIGNMENT 32
1689 \f
1690 /* Addressing modes, and classification of registers for them. */
1691 #define HAVE_POST_INCREMENT 1
1692 #define HAVE_PRE_INCREMENT TARGET_32BIT
1693 #define HAVE_POST_DECREMENT TARGET_32BIT
1694 #define HAVE_PRE_DECREMENT TARGET_32BIT
1695 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1696 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1697 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1698 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1699
1700 /* Macros to check register numbers against specific register classes. */
1701
1702 /* These assume that REGNO is a hard or pseudo reg number.
1703 They give nonzero only if REGNO is a hard reg of the suitable class
1704 or a pseudo reg currently allocated to a suitable hard reg.
1705 Since they use reg_renumber, they are safe only once reg_renumber
1706 has been allocated, which happens in local-alloc.c. */
1707 #define TEST_REGNO(R, TEST, VALUE) \
1708 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1709
1710 /* Don't allow the pc to be used. */
1711 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1712 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1713 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1714 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1715
1716 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1717 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1718 || (GET_MODE_SIZE (MODE) >= 4 \
1719 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1720
1721 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1722 (TARGET_THUMB1 \
1723 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1724 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1725
1726 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1727 For Thumb, we can not use SP + reg, so reject SP. */
1728 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1729 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1730
1731 /* For ARM code, we don't care about the mode, but for Thumb, the index
1732 must be suitable for use in a QImode load. */
1733 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1734 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1735 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1736
1737 /* Maximum number of registers that can appear in a valid memory address.
1738 Shifts in addresses can't be by a register. */
1739 #define MAX_REGS_PER_ADDRESS 2
1740
1741 /* Recognize any constant value that is a valid address. */
1742 /* XXX We can address any constant, eventually... */
1743 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1744 #define CONSTANT_ADDRESS_P(X) \
1745 (GET_CODE (X) == SYMBOL_REF \
1746 && (CONSTANT_POOL_ADDRESS_P (X) \
1747 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1748
1749 /* True if SYMBOL + OFFSET constants must refer to something within
1750 SYMBOL's section. */
1751 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1752
1753 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1754 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1755 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1756 #endif
1757
1758 /* Nonzero if the constant value X is a legitimate general operand.
1759 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1760
1761 On the ARM, allow any integer (invalid ones are removed later by insn
1762 patterns), nice doubles and symbol_refs which refer to the function's
1763 constant pool XXX.
1764
1765 When generating pic allow anything. */
1766 #define ARM_LEGITIMATE_CONSTANT_P(X) (flag_pic || ! label_mentioned_p (X))
1767
1768 #define THUMB_LEGITIMATE_CONSTANT_P(X) \
1769 ( GET_CODE (X) == CONST_INT \
1770 || GET_CODE (X) == CONST_DOUBLE \
1771 || CONSTANT_ADDRESS_P (X) \
1772 || flag_pic)
1773
1774 #define LEGITIMATE_CONSTANT_P(X) \
1775 (!arm_cannot_force_const_mem (X) \
1776 && (TARGET_32BIT ? ARM_LEGITIMATE_CONSTANT_P (X) \
1777 : THUMB_LEGITIMATE_CONSTANT_P (X)))
1778
1779 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1780 #define SUBTARGET_NAME_ENCODING_LENGTHS
1781 #endif
1782
1783 /* This is a C fragment for the inside of a switch statement.
1784 Each case label should return the number of characters to
1785 be stripped from the start of a function's name, if that
1786 name starts with the indicated character. */
1787 #define ARM_NAME_ENCODING_LENGTHS \
1788 case '*': return 1; \
1789 SUBTARGET_NAME_ENCODING_LENGTHS
1790
1791 /* This is how to output a reference to a user-level label named NAME.
1792 `assemble_name' uses this. */
1793 #undef ASM_OUTPUT_LABELREF
1794 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1795 arm_asm_output_labelref (FILE, NAME)
1796
1797 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1798 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1799 if (TARGET_THUMB2) \
1800 thumb2_asm_output_opcode (STREAM);
1801
1802 /* The EABI specifies that constructors should go in .init_array.
1803 Other targets use .ctors for compatibility. */
1804 #ifndef ARM_EABI_CTORS_SECTION_OP
1805 #define ARM_EABI_CTORS_SECTION_OP \
1806 "\t.section\t.init_array,\"aw\",%init_array"
1807 #endif
1808 #ifndef ARM_EABI_DTORS_SECTION_OP
1809 #define ARM_EABI_DTORS_SECTION_OP \
1810 "\t.section\t.fini_array,\"aw\",%fini_array"
1811 #endif
1812 #define ARM_CTORS_SECTION_OP \
1813 "\t.section\t.ctors,\"aw\",%progbits"
1814 #define ARM_DTORS_SECTION_OP \
1815 "\t.section\t.dtors,\"aw\",%progbits"
1816
1817 /* Define CTORS_SECTION_ASM_OP. */
1818 #undef CTORS_SECTION_ASM_OP
1819 #undef DTORS_SECTION_ASM_OP
1820 #ifndef IN_LIBGCC2
1821 # define CTORS_SECTION_ASM_OP \
1822 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1823 # define DTORS_SECTION_ASM_OP \
1824 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1825 #else /* !defined (IN_LIBGCC2) */
1826 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1827 so we cannot use the definition above. */
1828 # ifdef __ARM_EABI__
1829 /* The .ctors section is not part of the EABI, so we do not define
1830 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1831 from trying to use it. We do define it when doing normal
1832 compilation, as .init_array can be used instead of .ctors. */
1833 /* There is no need to emit begin or end markers when using
1834 init_array; the dynamic linker will compute the size of the
1835 array itself based on special symbols created by the static
1836 linker. However, we do need to arrange to set up
1837 exception-handling here. */
1838 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1839 # define CTOR_LIST_END /* empty */
1840 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1841 # define DTOR_LIST_END /* empty */
1842 # else /* !defined (__ARM_EABI__) */
1843 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1844 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1845 # endif /* !defined (__ARM_EABI__) */
1846 #endif /* !defined (IN_LIBCC2) */
1847
1848 /* True if the operating system can merge entities with vague linkage
1849 (e.g., symbols in COMDAT group) during dynamic linking. */
1850 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1851 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1852 #endif
1853
1854 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1855
1856 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1857 and check its validity for a certain class.
1858 We have two alternate definitions for each of them.
1859 The usual definition accepts all pseudo regs; the other rejects
1860 them unless they have been allocated suitable hard regs.
1861 The symbol REG_OK_STRICT causes the latter definition to be used.
1862 Thumb-2 has the same restrictions as arm. */
1863 #ifndef REG_OK_STRICT
1864
1865 #define ARM_REG_OK_FOR_BASE_P(X) \
1866 (REGNO (X) <= LAST_ARM_REGNUM \
1867 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1868 || REGNO (X) == FRAME_POINTER_REGNUM \
1869 || REGNO (X) == ARG_POINTER_REGNUM)
1870
1871 #define ARM_REG_OK_FOR_INDEX_P(X) \
1872 ((REGNO (X) <= LAST_ARM_REGNUM \
1873 && REGNO (X) != STACK_POINTER_REGNUM) \
1874 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1875 || REGNO (X) == FRAME_POINTER_REGNUM \
1876 || REGNO (X) == ARG_POINTER_REGNUM)
1877
1878 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1879 (REGNO (X) <= LAST_LO_REGNUM \
1880 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1881 || (GET_MODE_SIZE (MODE) >= 4 \
1882 && (REGNO (X) == STACK_POINTER_REGNUM \
1883 || (X) == hard_frame_pointer_rtx \
1884 || (X) == arg_pointer_rtx)))
1885
1886 #define REG_STRICT_P 0
1887
1888 #else /* REG_OK_STRICT */
1889
1890 #define ARM_REG_OK_FOR_BASE_P(X) \
1891 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1892
1893 #define ARM_REG_OK_FOR_INDEX_P(X) \
1894 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1895
1896 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1897 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1898
1899 #define REG_STRICT_P 1
1900
1901 #endif /* REG_OK_STRICT */
1902
1903 /* Now define some helpers in terms of the above. */
1904
1905 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1906 (TARGET_THUMB1 \
1907 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1908 : ARM_REG_OK_FOR_BASE_P (X))
1909
1910 /* For 16-bit Thumb, a valid index register is anything that can be used in
1911 a byte load instruction. */
1912 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1913 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1914
1915 /* Nonzero if X is a hard reg that can be used as an index
1916 or if it is a pseudo reg. On the Thumb, the stack pointer
1917 is not suitable. */
1918 #define REG_OK_FOR_INDEX_P(X) \
1919 (TARGET_THUMB1 \
1920 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1921 : ARM_REG_OK_FOR_INDEX_P (X))
1922
1923 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1924 For Thumb, we can not use SP + reg, so reject SP. */
1925 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1926 REG_OK_FOR_INDEX_P (X)
1927 \f
1928 #define ARM_BASE_REGISTER_RTX_P(X) \
1929 (GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X))
1930
1931 #define ARM_INDEX_REGISTER_RTX_P(X) \
1932 (GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X))
1933 \f
1934 /* Specify the machine mode that this machine uses
1935 for the index in the tablejump instruction. */
1936 #define CASE_VECTOR_MODE Pmode
1937
1938 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
1939 || (TARGET_THUMB1 \
1940 && (optimize_size || flag_pic)))
1941
1942 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
1943 (TARGET_THUMB1 \
1944 ? (min >= 0 && max < 512 \
1945 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
1946 : min >= -256 && max < 256 \
1947 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
1948 : min >= 0 && max < 8192 \
1949 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
1950 : min >= -4096 && max < 4096 \
1951 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
1952 : SImode) \
1953 : ((min < 0 || max >= 0x2000 || !TARGET_THUMB2) ? SImode \
1954 : (max >= 0x200) ? HImode \
1955 : QImode))
1956
1957 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1958 unsigned is probably best, but may break some code. */
1959 #ifndef DEFAULT_SIGNED_CHAR
1960 #define DEFAULT_SIGNED_CHAR 0
1961 #endif
1962
1963 /* Max number of bytes we can move from memory to memory
1964 in one reasonably fast instruction. */
1965 #define MOVE_MAX 4
1966
1967 #undef MOVE_RATIO
1968 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1969
1970 /* Define if operations between registers always perform the operation
1971 on the full register even if a narrower mode is specified. */
1972 #define WORD_REGISTER_OPERATIONS
1973
1974 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1975 will either zero-extend or sign-extend. The value of this macro should
1976 be the code that says which one of the two operations is implicitly
1977 done, UNKNOWN if none. */
1978 #define LOAD_EXTEND_OP(MODE) \
1979 (TARGET_THUMB ? ZERO_EXTEND : \
1980 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
1981 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
1982
1983 /* Nonzero if access to memory by bytes is slow and undesirable. */
1984 #define SLOW_BYTE_ACCESS 0
1985
1986 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
1987
1988 /* Immediate shift counts are truncated by the output routines (or was it
1989 the assembler?). Shift counts in a register are truncated by ARM. Note
1990 that the native compiler puts too large (> 32) immediate shift counts
1991 into a register and shifts by the register, letting the ARM decide what
1992 to do instead of doing that itself. */
1993 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
1994 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1995 On the arm, Y in a register is used modulo 256 for the shift. Only for
1996 rotates is modulo 32 used. */
1997 /* #define SHIFT_COUNT_TRUNCATED 1 */
1998
1999 /* All integers have the same format so truncation is easy. */
2000 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2001
2002 /* Calling from registers is a massive pain. */
2003 #define NO_FUNCTION_CSE 1
2004
2005 /* The machine modes of pointers and functions */
2006 #define Pmode SImode
2007 #define FUNCTION_MODE Pmode
2008
2009 #define ARM_FRAME_RTX(X) \
2010 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
2011 || (X) == arg_pointer_rtx)
2012
2013 /* Moves to and from memory are quite expensive */
2014 #define MEMORY_MOVE_COST(M, CLASS, IN) \
2015 (TARGET_32BIT ? 10 : \
2016 ((GET_MODE_SIZE (M) < 4 ? 8 : 2 * GET_MODE_SIZE (M)) \
2017 * (CLASS == LO_REGS ? 1 : 2)))
2018
2019 /* Try to generate sequences that don't involve branches, we can then use
2020 conditional instructions */
2021 #define BRANCH_COST(speed_p, predictable_p) \
2022 (TARGET_32BIT ? 4 : (optimize > 0 ? 2 : 0))
2023 \f
2024 /* Position Independent Code. */
2025 /* We decide which register to use based on the compilation options and
2026 the assembler in use; this is more general than the APCS restriction of
2027 using sb (r9) all the time. */
2028 extern unsigned arm_pic_register;
2029
2030 /* The register number of the register used to address a table of static
2031 data addresses in memory. */
2032 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2033
2034 /* We can't directly access anything that contains a symbol,
2035 nor can we indirect via the constant pool. One exception is
2036 UNSPEC_TLS, which is always PIC. */
2037 #define LEGITIMATE_PIC_OPERAND_P(X) \
2038 (!(symbol_mentioned_p (X) \
2039 || label_mentioned_p (X) \
2040 || (GET_CODE (X) == SYMBOL_REF \
2041 && CONSTANT_POOL_ADDRESS_P (X) \
2042 && (symbol_mentioned_p (get_pool_constant (X)) \
2043 || label_mentioned_p (get_pool_constant (X))))) \
2044 || tls_mentioned_p (X))
2045
2046 /* We need to know when we are making a constant pool; this determines
2047 whether data needs to be in the GOT or can be referenced via a GOT
2048 offset. */
2049 extern int making_const_table;
2050 \f
2051 /* Handle pragmas for compatibility with Intel's compilers. */
2052 /* Also abuse this to register additional C specific EABI attributes. */
2053 #define REGISTER_TARGET_PRAGMAS() do { \
2054 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
2055 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
2056 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
2057 arm_lang_object_attributes_init(); \
2058 } while (0)
2059
2060 /* Condition code information. */
2061 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2062 return the mode to be used for the comparison. */
2063
2064 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2065
2066 #define REVERSIBLE_CC_MODE(MODE) 1
2067
2068 #define REVERSE_CONDITION(CODE,MODE) \
2069 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2070 ? reverse_condition_maybe_unordered (code) \
2071 : reverse_condition (code))
2072
2073 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
2074 (CODE) = arm_canonicalize_comparison (CODE, &(OP0), &(OP1))
2075
2076 /* The arm5 clz instruction returns 32. */
2077 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2078 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2079 \f
2080 #define CC_STATUS_INIT \
2081 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2082
2083 #undef ASM_APP_OFF
2084 #define ASM_APP_OFF (TARGET_THUMB1 ? "\t.code\t16\n" : \
2085 TARGET_THUMB2 ? "\t.thumb\n" : "")
2086
2087 /* Output a push or a pop instruction (only used when profiling).
2088 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2089 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2090 that r7 isn't used by the function profiler, so we can use it as a
2091 scratch reg. WARNING: This isn't safe in the general case! It may be
2092 sensitive to future changes in final.c:profile_function. */
2093 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2094 do \
2095 { \
2096 if (TARGET_ARM) \
2097 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
2098 STACK_POINTER_REGNUM, REGNO); \
2099 else if (TARGET_THUMB1 \
2100 && (REGNO) == STATIC_CHAIN_REGNUM) \
2101 { \
2102 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2103 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2104 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2105 } \
2106 else \
2107 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2108 } while (0)
2109
2110
2111 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2112 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2113 do \
2114 { \
2115 if (TARGET_ARM) \
2116 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
2117 STACK_POINTER_REGNUM, REGNO); \
2118 else if (TARGET_THUMB1 \
2119 && (REGNO) == STATIC_CHAIN_REGNUM) \
2120 { \
2121 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2122 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2123 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2124 } \
2125 else \
2126 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2127 } while (0)
2128
2129 /* Jump table alignment is explicit in ASM_OUTPUT_CASE_LABEL. */
2130 #define ADDR_VEC_ALIGN(JUMPTABLE) 0
2131
2132 /* This is how to output a label which precedes a jumptable. Since
2133 Thumb instructions are 2 bytes, we may need explicit alignment here. */
2134 #undef ASM_OUTPUT_CASE_LABEL
2135 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \
2136 do \
2137 { \
2138 if (TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) \
2139 ASM_OUTPUT_ALIGN (FILE, 2); \
2140 (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); \
2141 } \
2142 while (0)
2143
2144 /* Make sure subsequent insns are aligned after a TBB. */
2145 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE) \
2146 do \
2147 { \
2148 if (GET_MODE (PATTERN (JUMPTABLE)) == QImode) \
2149 ASM_OUTPUT_ALIGN (FILE, 1); \
2150 } \
2151 while (0)
2152
2153 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2154 do \
2155 { \
2156 if (TARGET_THUMB) \
2157 { \
2158 if (is_called_in_ARM_mode (DECL) \
2159 || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY \
2160 && cfun->is_thunk)) \
2161 fprintf (STREAM, "\t.code 32\n") ; \
2162 else if (TARGET_THUMB1) \
2163 fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ; \
2164 else \
2165 fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ; \
2166 } \
2167 if (TARGET_POKE_FUNCTION_NAME) \
2168 arm_poke_function_name (STREAM, (const char *) NAME); \
2169 } \
2170 while (0)
2171
2172 /* For aliases of functions we use .thumb_set instead. */
2173 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2174 do \
2175 { \
2176 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2177 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2178 \
2179 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2180 { \
2181 fprintf (FILE, "\t.thumb_set "); \
2182 assemble_name (FILE, LABEL1); \
2183 fprintf (FILE, ","); \
2184 assemble_name (FILE, LABEL2); \
2185 fprintf (FILE, "\n"); \
2186 } \
2187 else \
2188 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2189 } \
2190 while (0)
2191
2192 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2193 /* To support -falign-* switches we need to use .p2align so
2194 that alignment directives in code sections will be padded
2195 with no-op instructions, rather than zeroes. */
2196 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2197 if ((LOG) != 0) \
2198 { \
2199 if ((MAX_SKIP) == 0) \
2200 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2201 else \
2202 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2203 (int) (LOG), (int) (MAX_SKIP)); \
2204 }
2205 #endif
2206 \f
2207 /* Add two bytes to the length of conditionally executed Thumb-2
2208 instructions for the IT instruction. */
2209 #define ADJUST_INSN_LENGTH(insn, length) \
2210 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2211 length += 2;
2212
2213 /* Only perform branch elimination (by making instructions conditional) if
2214 we're optimizing. For Thumb-2 check if any IT instructions need
2215 outputting. */
2216 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2217 if (TARGET_ARM && optimize) \
2218 arm_final_prescan_insn (INSN); \
2219 else if (TARGET_THUMB2) \
2220 thumb2_final_prescan_insn (INSN); \
2221 else if (TARGET_THUMB1) \
2222 thumb1_final_prescan_insn (INSN)
2223
2224 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2225 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2226 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2227 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2228 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2229 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2230 : 0))))
2231
2232 /* A C expression whose value is RTL representing the value of the return
2233 address for the frame COUNT steps up from the current frame. */
2234
2235 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2236 arm_return_addr (COUNT, FRAME)
2237
2238 /* Mask of the bits in the PC that contain the real return address
2239 when running in 26-bit mode. */
2240 #define RETURN_ADDR_MASK26 (0x03fffffc)
2241
2242 /* Pick up the return address upon entry to a procedure. Used for
2243 dwarf2 unwind information. This also enables the table driven
2244 mechanism. */
2245 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2246 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2247
2248 /* Used to mask out junk bits from the return address, such as
2249 processor state, interrupt status, condition codes and the like. */
2250 #define MASK_RETURN_ADDR \
2251 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2252 in 26 bit mode, the condition codes must be masked out of the \
2253 return address. This does not apply to ARM6 and later processors \
2254 when running in 32 bit mode. */ \
2255 ((arm_arch4 || TARGET_THUMB) \
2256 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2257 : arm_gen_return_addr_mask ())
2258
2259 \f
2260 /* Neon defines builtins from ARM_BUILTIN_MAX upwards, though they don't have
2261 symbolic names defined here (which would require too much duplication).
2262 FIXME? */
2263 enum arm_builtins
2264 {
2265 ARM_BUILTIN_GETWCX,
2266 ARM_BUILTIN_SETWCX,
2267
2268 ARM_BUILTIN_WZERO,
2269
2270 ARM_BUILTIN_WAVG2BR,
2271 ARM_BUILTIN_WAVG2HR,
2272 ARM_BUILTIN_WAVG2B,
2273 ARM_BUILTIN_WAVG2H,
2274
2275 ARM_BUILTIN_WACCB,
2276 ARM_BUILTIN_WACCH,
2277 ARM_BUILTIN_WACCW,
2278
2279 ARM_BUILTIN_WMACS,
2280 ARM_BUILTIN_WMACSZ,
2281 ARM_BUILTIN_WMACU,
2282 ARM_BUILTIN_WMACUZ,
2283
2284 ARM_BUILTIN_WSADB,
2285 ARM_BUILTIN_WSADBZ,
2286 ARM_BUILTIN_WSADH,
2287 ARM_BUILTIN_WSADHZ,
2288
2289 ARM_BUILTIN_WALIGN,
2290
2291 ARM_BUILTIN_TMIA,
2292 ARM_BUILTIN_TMIAPH,
2293 ARM_BUILTIN_TMIABB,
2294 ARM_BUILTIN_TMIABT,
2295 ARM_BUILTIN_TMIATB,
2296 ARM_BUILTIN_TMIATT,
2297
2298 ARM_BUILTIN_TMOVMSKB,
2299 ARM_BUILTIN_TMOVMSKH,
2300 ARM_BUILTIN_TMOVMSKW,
2301
2302 ARM_BUILTIN_TBCSTB,
2303 ARM_BUILTIN_TBCSTH,
2304 ARM_BUILTIN_TBCSTW,
2305
2306 ARM_BUILTIN_WMADDS,
2307 ARM_BUILTIN_WMADDU,
2308
2309 ARM_BUILTIN_WPACKHSS,
2310 ARM_BUILTIN_WPACKWSS,
2311 ARM_BUILTIN_WPACKDSS,
2312 ARM_BUILTIN_WPACKHUS,
2313 ARM_BUILTIN_WPACKWUS,
2314 ARM_BUILTIN_WPACKDUS,
2315
2316 ARM_BUILTIN_WADDB,
2317 ARM_BUILTIN_WADDH,
2318 ARM_BUILTIN_WADDW,
2319 ARM_BUILTIN_WADDSSB,
2320 ARM_BUILTIN_WADDSSH,
2321 ARM_BUILTIN_WADDSSW,
2322 ARM_BUILTIN_WADDUSB,
2323 ARM_BUILTIN_WADDUSH,
2324 ARM_BUILTIN_WADDUSW,
2325 ARM_BUILTIN_WSUBB,
2326 ARM_BUILTIN_WSUBH,
2327 ARM_BUILTIN_WSUBW,
2328 ARM_BUILTIN_WSUBSSB,
2329 ARM_BUILTIN_WSUBSSH,
2330 ARM_BUILTIN_WSUBSSW,
2331 ARM_BUILTIN_WSUBUSB,
2332 ARM_BUILTIN_WSUBUSH,
2333 ARM_BUILTIN_WSUBUSW,
2334
2335 ARM_BUILTIN_WAND,
2336 ARM_BUILTIN_WANDN,
2337 ARM_BUILTIN_WOR,
2338 ARM_BUILTIN_WXOR,
2339
2340 ARM_BUILTIN_WCMPEQB,
2341 ARM_BUILTIN_WCMPEQH,
2342 ARM_BUILTIN_WCMPEQW,
2343 ARM_BUILTIN_WCMPGTUB,
2344 ARM_BUILTIN_WCMPGTUH,
2345 ARM_BUILTIN_WCMPGTUW,
2346 ARM_BUILTIN_WCMPGTSB,
2347 ARM_BUILTIN_WCMPGTSH,
2348 ARM_BUILTIN_WCMPGTSW,
2349
2350 ARM_BUILTIN_TEXTRMSB,
2351 ARM_BUILTIN_TEXTRMSH,
2352 ARM_BUILTIN_TEXTRMSW,
2353 ARM_BUILTIN_TEXTRMUB,
2354 ARM_BUILTIN_TEXTRMUH,
2355 ARM_BUILTIN_TEXTRMUW,
2356 ARM_BUILTIN_TINSRB,
2357 ARM_BUILTIN_TINSRH,
2358 ARM_BUILTIN_TINSRW,
2359
2360 ARM_BUILTIN_WMAXSW,
2361 ARM_BUILTIN_WMAXSH,
2362 ARM_BUILTIN_WMAXSB,
2363 ARM_BUILTIN_WMAXUW,
2364 ARM_BUILTIN_WMAXUH,
2365 ARM_BUILTIN_WMAXUB,
2366 ARM_BUILTIN_WMINSW,
2367 ARM_BUILTIN_WMINSH,
2368 ARM_BUILTIN_WMINSB,
2369 ARM_BUILTIN_WMINUW,
2370 ARM_BUILTIN_WMINUH,
2371 ARM_BUILTIN_WMINUB,
2372
2373 ARM_BUILTIN_WMULUM,
2374 ARM_BUILTIN_WMULSM,
2375 ARM_BUILTIN_WMULUL,
2376
2377 ARM_BUILTIN_PSADBH,
2378 ARM_BUILTIN_WSHUFH,
2379
2380 ARM_BUILTIN_WSLLH,
2381 ARM_BUILTIN_WSLLW,
2382 ARM_BUILTIN_WSLLD,
2383 ARM_BUILTIN_WSRAH,
2384 ARM_BUILTIN_WSRAW,
2385 ARM_BUILTIN_WSRAD,
2386 ARM_BUILTIN_WSRLH,
2387 ARM_BUILTIN_WSRLW,
2388 ARM_BUILTIN_WSRLD,
2389 ARM_BUILTIN_WRORH,
2390 ARM_BUILTIN_WRORW,
2391 ARM_BUILTIN_WRORD,
2392 ARM_BUILTIN_WSLLHI,
2393 ARM_BUILTIN_WSLLWI,
2394 ARM_BUILTIN_WSLLDI,
2395 ARM_BUILTIN_WSRAHI,
2396 ARM_BUILTIN_WSRAWI,
2397 ARM_BUILTIN_WSRADI,
2398 ARM_BUILTIN_WSRLHI,
2399 ARM_BUILTIN_WSRLWI,
2400 ARM_BUILTIN_WSRLDI,
2401 ARM_BUILTIN_WRORHI,
2402 ARM_BUILTIN_WRORWI,
2403 ARM_BUILTIN_WRORDI,
2404
2405 ARM_BUILTIN_WUNPCKIHB,
2406 ARM_BUILTIN_WUNPCKIHH,
2407 ARM_BUILTIN_WUNPCKIHW,
2408 ARM_BUILTIN_WUNPCKILB,
2409 ARM_BUILTIN_WUNPCKILH,
2410 ARM_BUILTIN_WUNPCKILW,
2411
2412 ARM_BUILTIN_WUNPCKEHSB,
2413 ARM_BUILTIN_WUNPCKEHSH,
2414 ARM_BUILTIN_WUNPCKEHSW,
2415 ARM_BUILTIN_WUNPCKEHUB,
2416 ARM_BUILTIN_WUNPCKEHUH,
2417 ARM_BUILTIN_WUNPCKEHUW,
2418 ARM_BUILTIN_WUNPCKELSB,
2419 ARM_BUILTIN_WUNPCKELSH,
2420 ARM_BUILTIN_WUNPCKELSW,
2421 ARM_BUILTIN_WUNPCKELUB,
2422 ARM_BUILTIN_WUNPCKELUH,
2423 ARM_BUILTIN_WUNPCKELUW,
2424
2425 ARM_BUILTIN_THREAD_POINTER,
2426
2427 ARM_BUILTIN_NEON_BASE,
2428
2429 ARM_BUILTIN_MAX = ARM_BUILTIN_NEON_BASE /* FIXME: Wrong! */
2430 };
2431
2432 /* Do not emit .note.GNU-stack by default. */
2433 #ifndef NEED_INDICATE_EXEC_STACK
2434 #define NEED_INDICATE_EXEC_STACK 0
2435 #endif
2436
2437 /* The maximum number of parallel loads or stores we support in an ldm/stm
2438 instruction. */
2439 #define MAX_LDM_STM_OPS 4
2440
2441 #endif /* ! GCC_ARM_H */