]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/arm/arm.h
[multiple changes]
[thirdparty/gcc.git] / gcc / config / arm / arm.h
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
6 and Martin Simmons (@harleqn.co.uk).
7 More major hacks by Richard Earnshaw (rearnsha@arm.com)
8 Minor hacks by Nick Clifton (nickc@cygnus.com)
9
10 This file is part of GCC.
11
12 GCC is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published
14 by the Free Software Foundation; either version 3, or (at your
15 option) any later version.
16
17 GCC is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
20 License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
25
26 #ifndef GCC_ARM_H
27 #define GCC_ARM_H
28
29 /* We can't use enum machine_mode inside a generator file because it
30 hasn't been created yet; we shouldn't be using any code that
31 needs the real definition though, so this ought to be safe. */
32 #ifdef GENERATOR_FILE
33 #define MACHMODE int
34 #else
35 #include "insn-modes.h"
36 #define MACHMODE enum machine_mode
37 #endif
38
39 #include "config/vxworks-dummy.h"
40
41 /* The architecture define. */
42 extern char arm_arch_name[];
43
44 /* Target CPU builtins. */
45 #define TARGET_CPU_CPP_BUILTINS() \
46 do \
47 { \
48 /* Define __arm__ even when in thumb mode, for \
49 consistency with armcc. */ \
50 builtin_define ("__arm__"); \
51 builtin_define ("__APCS_32__"); \
52 if (TARGET_THUMB) \
53 builtin_define ("__thumb__"); \
54 if (TARGET_THUMB2) \
55 builtin_define ("__thumb2__"); \
56 \
57 if (TARGET_BIG_END) \
58 { \
59 builtin_define ("__ARMEB__"); \
60 if (TARGET_THUMB) \
61 builtin_define ("__THUMBEB__"); \
62 if (TARGET_LITTLE_WORDS) \
63 builtin_define ("__ARMWEL__"); \
64 } \
65 else \
66 { \
67 builtin_define ("__ARMEL__"); \
68 if (TARGET_THUMB) \
69 builtin_define ("__THUMBEL__"); \
70 } \
71 \
72 if (TARGET_SOFT_FLOAT) \
73 builtin_define ("__SOFTFP__"); \
74 \
75 if (TARGET_VFP) \
76 builtin_define ("__VFP_FP__"); \
77 \
78 if (TARGET_NEON) \
79 builtin_define ("__ARM_NEON__"); \
80 \
81 /* Add a define for interworking. \
82 Needed when building libgcc.a. */ \
83 if (arm_cpp_interwork) \
84 builtin_define ("__THUMB_INTERWORK__"); \
85 \
86 builtin_assert ("cpu=arm"); \
87 builtin_assert ("machine=arm"); \
88 \
89 builtin_define (arm_arch_name); \
90 if (arm_arch_cirrus) \
91 builtin_define ("__MAVERICK__"); \
92 if (arm_arch_xscale) \
93 builtin_define ("__XSCALE__"); \
94 if (arm_arch_iwmmxt) \
95 builtin_define ("__IWMMXT__"); \
96 if (TARGET_AAPCS_BASED) \
97 { \
98 if (arm_pcs_default == ARM_PCS_AAPCS_VFP) \
99 builtin_define ("__ARM_PCS_VFP"); \
100 else if (arm_pcs_default == ARM_PCS_AAPCS) \
101 builtin_define ("__ARM_PCS"); \
102 builtin_define ("__ARM_EABI__"); \
103 } \
104 } while (0)
105
106 /* The various ARM cores. */
107 enum processor_type
108 {
109 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
110 IDENT,
111 #include "arm-cores.def"
112 #undef ARM_CORE
113 /* Used to indicate that no processor has been specified. */
114 arm_none
115 };
116
117 enum target_cpus
118 {
119 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
120 TARGET_CPU_##IDENT,
121 #include "arm-cores.def"
122 #undef ARM_CORE
123 TARGET_CPU_generic
124 };
125
126 /* The processor for which instructions should be scheduled. */
127 extern enum processor_type arm_tune;
128
129 enum arm_sync_generator_tag
130 {
131 arm_sync_generator_omn,
132 arm_sync_generator_omrn
133 };
134
135 /* Wrapper to pass around a polymorphic pointer to a sync instruction
136 generator and. */
137 struct arm_sync_generator
138 {
139 enum arm_sync_generator_tag op;
140 union
141 {
142 rtx (* omn) (rtx, rtx, rtx);
143 rtx (* omrn) (rtx, rtx, rtx, rtx);
144 } u;
145 };
146
147 typedef enum arm_cond_code
148 {
149 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
150 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
151 }
152 arm_cc;
153
154 extern arm_cc arm_current_cc;
155
156 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
157
158 extern int arm_target_label;
159 extern int arm_ccfsm_state;
160 extern GTY(()) rtx arm_target_insn;
161 /* The label of the current constant pool. */
162 extern rtx pool_vector_label;
163 /* Set to 1 when a return insn is output, this means that the epilogue
164 is not needed. */
165 extern int return_used_this_function;
166 /* Callback to output language specific object attributes. */
167 extern void (*arm_lang_output_object_attributes_hook)(void);
168 \f
169 /* Just in case configure has failed to define anything. */
170 #ifndef TARGET_CPU_DEFAULT
171 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
172 #endif
173
174
175 #undef CPP_SPEC
176 #define CPP_SPEC "%(subtarget_cpp_spec) \
177 %{mfloat-abi=soft:%{mfloat-abi=hard: \
178 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
179 %{mbig-endian:%{mlittle-endian: \
180 %e-mbig-endian and -mlittle-endian may not be used together}}"
181
182 #ifndef CC1_SPEC
183 #define CC1_SPEC ""
184 #endif
185
186 /* This macro defines names of additional specifications to put in the specs
187 that can be used in various specifications like CC1_SPEC. Its definition
188 is an initializer with a subgrouping for each command option.
189
190 Each subgrouping contains a string constant, that defines the
191 specification name, and a string constant that used by the GCC driver
192 program.
193
194 Do not define this macro if it does not need to do anything. */
195 #define EXTRA_SPECS \
196 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
197 SUBTARGET_EXTRA_SPECS
198
199 #ifndef SUBTARGET_EXTRA_SPECS
200 #define SUBTARGET_EXTRA_SPECS
201 #endif
202
203 #ifndef SUBTARGET_CPP_SPEC
204 #define SUBTARGET_CPP_SPEC ""
205 #endif
206 \f
207 /* Run-time Target Specification. */
208 #ifndef TARGET_VERSION
209 #define TARGET_VERSION fputs (" (ARM/generic)", stderr);
210 #endif
211
212 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
213 /* Use hardware floating point instructions. */
214 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
215 /* Use hardware floating point calling convention. */
216 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
217 #define TARGET_FPA (arm_fpu_desc->model == ARM_FP_MODEL_FPA)
218 #define TARGET_MAVERICK (arm_fpu_desc->model == ARM_FP_MODEL_MAVERICK)
219 #define TARGET_VFP (arm_fpu_desc->model == ARM_FP_MODEL_VFP)
220 #define TARGET_IWMMXT (arm_arch_iwmmxt)
221 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
222 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
223 #define TARGET_ARM (! TARGET_THUMB)
224 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
225 #define TARGET_BACKTRACE (leaf_function_p () \
226 ? TARGET_TPCS_LEAF_FRAME \
227 : TARGET_TPCS_FRAME)
228 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN)
229 #define TARGET_AAPCS_BASED \
230 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
231
232 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
233 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
234
235 /* Only 16-bit thumb code. */
236 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
237 /* Arm or Thumb-2 32-bit code. */
238 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
239 /* 32-bit Thumb-2 code. */
240 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
241 /* Thumb-1 only. */
242 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
243 /* FPA emulator without LFM. */
244 #define TARGET_FPA_EMU2 (TARGET_FPA && arm_fpu_desc->rev == 2)
245
246 /* The following two macros concern the ability to execute coprocessor
247 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
248 only ever tested when we know we are generating for VFP hardware; we need
249 to be more careful with TARGET_NEON as noted below. */
250
251 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
252 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
253
254 /* FPU supports VFPv3 instructions. */
255 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
256
257 /* FPU only supports VFP single-precision instructions. */
258 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
259
260 /* FPU supports VFP double-precision instructions. */
261 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
262
263 /* FPU supports half-precision floating-point with NEON element load/store. */
264 #define TARGET_NEON_FP16 \
265 (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
266
267 /* FPU supports VFP half-precision floating-point. */
268 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
269
270 /* FPU supports Neon instructions. The setting of this macro gets
271 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
272 and TARGET_HARD_FLOAT to ensure that NEON instructions are
273 available. */
274 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
275 && TARGET_VFP && arm_fpu_desc->neon)
276
277 /* "DSP" multiply instructions, eg. SMULxy. */
278 #define TARGET_DSP_MULTIPLY \
279 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
280 /* Integer SIMD instructions, and extend-accumulate instructions. */
281 #define TARGET_INT_SIMD \
282 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
283
284 /* Should MOVW/MOVT be used in preference to a constant pool. */
285 #define TARGET_USE_MOVT (arm_arch_thumb2 && !optimize_size)
286
287 /* We could use unified syntax for arm mode, but for now we just use it
288 for Thumb-2. */
289 #define TARGET_UNIFIED_ASM TARGET_THUMB2
290
291 /* Nonzero if this chip provides the DMB instruction. */
292 #define TARGET_HAVE_DMB (arm_arch7)
293
294 /* Nonzero if this chip implements a memory barrier via CP15. */
295 #define TARGET_HAVE_DMB_MCR (arm_arch6k && ! TARGET_HAVE_DMB)
296
297 /* Nonzero if this chip implements a memory barrier instruction. */
298 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
299
300 /* Nonzero if this chip supports ldrex and strex */
301 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) || arm_arch7)
302
303 /* Nonzero if this chip supports ldrex{bhd} and strex{bhd}. */
304 #define TARGET_HAVE_LDREXBHD ((arm_arch6k && TARGET_ARM) || arm_arch7)
305
306 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
307 then TARGET_AAPCS_BASED must be true -- but the converse does not
308 hold. TARGET_BPABI implies the use of the BPABI runtime library,
309 etc., in addition to just the AAPCS calling conventions. */
310 #ifndef TARGET_BPABI
311 #define TARGET_BPABI false
312 #endif
313
314 /* Support for a compile-time default CPU, et cetera. The rules are:
315 --with-arch is ignored if -march or -mcpu are specified.
316 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
317 by --with-arch.
318 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
319 by -march).
320 --with-float is ignored if -mfloat-abi is specified.
321 --with-fpu is ignored if -mfpu is specified.
322 --with-abi is ignored is -mabi is specified. */
323 #define OPTION_DEFAULT_SPECS \
324 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
325 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
326 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
327 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
328 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
329 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
330 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"},
331
332 /* Which floating point model to use. */
333 enum arm_fp_model
334 {
335 ARM_FP_MODEL_UNKNOWN,
336 /* FPA model (Hardware or software). */
337 ARM_FP_MODEL_FPA,
338 /* Cirrus Maverick floating point model. */
339 ARM_FP_MODEL_MAVERICK,
340 /* VFP floating point model. */
341 ARM_FP_MODEL_VFP
342 };
343
344 enum vfp_reg_type
345 {
346 VFP_NONE = 0,
347 VFP_REG_D16,
348 VFP_REG_D32,
349 VFP_REG_SINGLE
350 };
351
352 extern const struct arm_fpu_desc
353 {
354 const char *name;
355 enum arm_fp_model model;
356 int rev;
357 enum vfp_reg_type regs;
358 int neon;
359 int fp16;
360 } *arm_fpu_desc;
361
362 /* Which floating point hardware to schedule for. */
363 extern int arm_fpu_attr;
364
365 enum float_abi_type
366 {
367 ARM_FLOAT_ABI_SOFT,
368 ARM_FLOAT_ABI_SOFTFP,
369 ARM_FLOAT_ABI_HARD
370 };
371
372 extern enum float_abi_type arm_float_abi;
373
374 #ifndef TARGET_DEFAULT_FLOAT_ABI
375 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
376 #endif
377
378 /* Which __fp16 format to use.
379 The enumeration values correspond to the numbering for the
380 Tag_ABI_FP_16bit_format attribute.
381 */
382 enum arm_fp16_format_type
383 {
384 ARM_FP16_FORMAT_NONE = 0,
385 ARM_FP16_FORMAT_IEEE = 1,
386 ARM_FP16_FORMAT_ALTERNATIVE = 2
387 };
388
389 extern enum arm_fp16_format_type arm_fp16_format;
390 #define LARGEST_EXPONENT_IS_NORMAL(bits) \
391 ((bits) == 16 && arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)
392
393 /* Which ABI to use. */
394 enum arm_abi_type
395 {
396 ARM_ABI_APCS,
397 ARM_ABI_ATPCS,
398 ARM_ABI_AAPCS,
399 ARM_ABI_IWMMXT,
400 ARM_ABI_AAPCS_LINUX
401 };
402
403 extern enum arm_abi_type arm_abi;
404
405 #ifndef ARM_DEFAULT_ABI
406 #define ARM_DEFAULT_ABI ARM_ABI_APCS
407 #endif
408
409 /* Which thread pointer access sequence to use. */
410 enum arm_tp_type {
411 TP_AUTO,
412 TP_SOFT,
413 TP_CP15
414 };
415
416 extern enum arm_tp_type target_thread_pointer;
417
418 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
419 extern int arm_arch3m;
420
421 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
422 extern int arm_arch4;
423
424 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
425 extern int arm_arch4t;
426
427 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
428 extern int arm_arch5;
429
430 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
431 extern int arm_arch5e;
432
433 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
434 extern int arm_arch6;
435
436 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
437 extern int arm_arch6k;
438
439 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
440 extern int arm_arch7;
441
442 /* Nonzero if instructions not present in the 'M' profile can be used. */
443 extern int arm_arch_notm;
444
445 /* Nonzero if instructions present in ARMv7E-M can be used. */
446 extern int arm_arch7em;
447
448 /* Nonzero if this chip can benefit from load scheduling. */
449 extern int arm_ld_sched;
450
451 /* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2. */
452 extern int thumb_code;
453
454 /* Nonzero if generating Thumb-1 code. */
455 extern int thumb1_code;
456
457 /* Nonzero if this chip is a StrongARM. */
458 extern int arm_tune_strongarm;
459
460 /* Nonzero if this chip is a Cirrus variant. */
461 extern int arm_arch_cirrus;
462
463 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
464 extern int arm_arch_iwmmxt;
465
466 /* Nonzero if this chip is an XScale. */
467 extern int arm_arch_xscale;
468
469 /* Nonzero if tuning for XScale. */
470 extern int arm_tune_xscale;
471
472 /* Nonzero if tuning for stores via the write buffer. */
473 extern int arm_tune_wbuf;
474
475 /* Nonzero if tuning for Cortex-A9. */
476 extern int arm_tune_cortex_a9;
477
478 /* Nonzero if we should define __THUMB_INTERWORK__ in the
479 preprocessor.
480 XXX This is a bit of a hack, it's intended to help work around
481 problems in GLD which doesn't understand that armv5t code is
482 interworking clean. */
483 extern int arm_cpp_interwork;
484
485 /* Nonzero if chip supports Thumb 2. */
486 extern int arm_arch_thumb2;
487
488 /* Nonzero if chip supports integer division instruction. */
489 extern int arm_arch_hwdiv;
490
491 #ifndef TARGET_DEFAULT
492 #define TARGET_DEFAULT (MASK_APCS_FRAME)
493 #endif
494
495 /* Nonzero if PIC code requires explicit qualifiers to generate
496 PLT and GOT relocs rather than the assembler doing so implicitly.
497 Subtargets can override these if required. */
498 #ifndef NEED_GOT_RELOC
499 #define NEED_GOT_RELOC 0
500 #endif
501 #ifndef NEED_PLT_RELOC
502 #define NEED_PLT_RELOC 0
503 #endif
504
505 /* Nonzero if we need to refer to the GOT with a PC-relative
506 offset. In other words, generate
507
508 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
509
510 rather than
511
512 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
513
514 The default is true, which matches NetBSD. Subtargets can
515 override this if required. */
516 #ifndef GOT_PCREL
517 #define GOT_PCREL 1
518 #endif
519 \f
520 /* Target machine storage Layout. */
521
522
523 /* Define this macro if it is advisable to hold scalars in registers
524 in a wider mode than that declared by the program. In such cases,
525 the value is constrained to be within the bounds of the declared
526 type, but kept valid in the wider mode. The signedness of the
527 extension may differ from that of the type. */
528
529 /* It is far faster to zero extend chars than to sign extend them */
530
531 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
532 if (GET_MODE_CLASS (MODE) == MODE_INT \
533 && GET_MODE_SIZE (MODE) < 4) \
534 { \
535 if (MODE == QImode) \
536 UNSIGNEDP = 1; \
537 else if (MODE == HImode) \
538 UNSIGNEDP = 1; \
539 (MODE) = SImode; \
540 }
541
542 /* Define this if most significant bit is lowest numbered
543 in instructions that operate on numbered bit-fields. */
544 #define BITS_BIG_ENDIAN 0
545
546 /* Define this if most significant byte of a word is the lowest numbered.
547 Most ARM processors are run in little endian mode, so that is the default.
548 If you want to have it run-time selectable, change the definition in a
549 cover file to be TARGET_BIG_ENDIAN. */
550 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
551
552 /* Define this if most significant word of a multiword number is the lowest
553 numbered.
554 This is always false, even when in big-endian mode. */
555 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
556
557 /* Define this if most significant word of doubles is the lowest numbered.
558 The rules are different based on whether or not we use FPA-format,
559 VFP-format or some other floating point co-processor's format doubles. */
560 #define FLOAT_WORDS_BIG_ENDIAN (arm_float_words_big_endian ())
561
562 #define UNITS_PER_WORD 4
563
564 /* True if natural alignment is used for doubleword types. */
565 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
566
567 #define DOUBLEWORD_ALIGNMENT 64
568
569 #define PARM_BOUNDARY 32
570
571 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
572
573 #define PREFERRED_STACK_BOUNDARY \
574 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
575
576 #define FUNCTION_BOUNDARY ((TARGET_THUMB && optimize_size) ? 16 : 32)
577
578 /* The lowest bit is used to indicate Thumb-mode functions, so the
579 vbit must go into the delta field of pointers to member
580 functions. */
581 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
582
583 #define EMPTY_FIELD_BOUNDARY 32
584
585 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
586
587 /* XXX Blah -- this macro is used directly by libobjc. Since it
588 supports no vector modes, cut out the complexity and fall back
589 on BIGGEST_FIELD_ALIGNMENT. */
590 #ifdef IN_TARGET_LIBS
591 #define BIGGEST_FIELD_ALIGNMENT 64
592 #endif
593
594 /* Make strings word-aligned so strcpy from constants will be faster. */
595 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
596
597 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
598 ((TREE_CODE (EXP) == STRING_CST \
599 && !optimize_size \
600 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
601 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
602
603 /* Align definitions of arrays, unions and structures so that
604 initializations and copies can be made more efficient. This is not
605 ABI-changing, so it only affects places where we can see the
606 definition. Increasing the alignment tends to introduce padding,
607 so don't do this when optimizing for size/conserving stack space. */
608 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
609 (((COND) && ((ALIGN) < BITS_PER_WORD) \
610 && (TREE_CODE (EXP) == ARRAY_TYPE \
611 || TREE_CODE (EXP) == UNION_TYPE \
612 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
613
614 /* Align global data. */
615 #define DATA_ALIGNMENT(EXP, ALIGN) \
616 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
617
618 /* Similarly, make sure that objects on the stack are sensibly aligned. */
619 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
620 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
621
622 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
623 value set in previous versions of this toolchain was 8, which produces more
624 compact structures. The command line option -mstructure_size_boundary=<n>
625 can be used to change this value. For compatibility with the ARM SDK
626 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
627 0020D) page 2-20 says "Structures are aligned on word boundaries".
628 The AAPCS specifies a value of 8. */
629 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
630 extern int arm_structure_size_boundary;
631
632 /* This is the value used to initialize arm_structure_size_boundary. If a
633 particular arm target wants to change the default value it should change
634 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
635 for an example of this. */
636 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
637 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
638 #endif
639
640 /* Nonzero if move instructions will actually fail to work
641 when given unaligned data. */
642 #define STRICT_ALIGNMENT 1
643
644 /* wchar_t is unsigned under the AAPCS. */
645 #ifndef WCHAR_TYPE
646 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
647
648 #define WCHAR_TYPE_SIZE BITS_PER_WORD
649 #endif
650
651 #ifndef SIZE_TYPE
652 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
653 #endif
654
655 #ifndef PTRDIFF_TYPE
656 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
657 #endif
658
659 /* AAPCS requires that structure alignment is affected by bitfields. */
660 #ifndef PCC_BITFIELD_TYPE_MATTERS
661 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
662 #endif
663
664 \f
665 /* Standard register usage. */
666
667 /* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
668 (S - saved over call).
669
670 r0 * argument word/integer result
671 r1-r3 argument word
672
673 r4-r8 S register variable
674 r9 S (rfp) register variable (real frame pointer)
675
676 r10 F S (sl) stack limit (used by -mapcs-stack-check)
677 r11 F S (fp) argument pointer
678 r12 (ip) temp workspace
679 r13 F S (sp) lower end of current stack frame
680 r14 (lr) link address/workspace
681 r15 F (pc) program counter
682
683 f0 floating point result
684 f1-f3 floating point scratch
685
686 f4-f7 S floating point variable
687
688 cc This is NOT a real register, but is used internally
689 to represent things that use or set the condition
690 codes.
691 sfp This isn't either. It is used during rtl generation
692 since the offset between the frame pointer and the
693 auto's isn't known until after register allocation.
694 afp Nor this, we only need this because of non-local
695 goto. Without it fp appears to be used and the
696 elimination code won't get rid of sfp. It tracks
697 fp exactly at all times.
698
699 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
700
701 /*
702 mvf0 Cirrus floating point result
703 mvf1-mvf3 Cirrus floating point scratch
704 mvf4-mvf15 S Cirrus floating point variable. */
705
706 /* s0-s15 VFP scratch (aka d0-d7).
707 s16-s31 S VFP variable (aka d8-d15).
708 vfpcc Not a real register. Represents the VFP condition
709 code flags. */
710
711 /* The stack backtrace structure is as follows:
712 fp points to here: | save code pointer | [fp]
713 | return link value | [fp, #-4]
714 | return sp value | [fp, #-8]
715 | return fp value | [fp, #-12]
716 [| saved r10 value |]
717 [| saved r9 value |]
718 [| saved r8 value |]
719 [| saved r7 value |]
720 [| saved r6 value |]
721 [| saved r5 value |]
722 [| saved r4 value |]
723 [| saved r3 value |]
724 [| saved r2 value |]
725 [| saved r1 value |]
726 [| saved r0 value |]
727 [| saved f7 value |] three words
728 [| saved f6 value |] three words
729 [| saved f5 value |] three words
730 [| saved f4 value |] three words
731 r0-r3 are not normally saved in a C function. */
732
733 /* 1 for registers that have pervasive standard uses
734 and are not available for the register allocator. */
735 #define FIXED_REGISTERS \
736 { \
737 0,0,0,0,0,0,0,0, \
738 0,0,0,0,0,1,0,1, \
739 0,0,0,0,0,0,0,0, \
740 1,1,1, \
741 1,1,1,1,1,1,1,1, \
742 1,1,1,1,1,1,1,1, \
743 1,1,1,1,1,1,1,1, \
744 1,1,1,1,1,1,1,1, \
745 1,1,1,1, \
746 1,1,1,1,1,1,1,1, \
747 1,1,1,1,1,1,1,1, \
748 1,1,1,1,1,1,1,1, \
749 1,1,1,1,1,1,1,1, \
750 1,1,1,1,1,1,1,1, \
751 1,1,1,1,1,1,1,1, \
752 1,1,1,1,1,1,1,1, \
753 1,1,1,1,1,1,1,1, \
754 1 \
755 }
756
757 /* 1 for registers not available across function calls.
758 These must include the FIXED_REGISTERS and also any
759 registers that can be used without being saved.
760 The latter must include the registers where values are returned
761 and the register where structure-value addresses are passed.
762 Aside from that, you can include as many other registers as you like.
763 The CC is not preserved over function calls on the ARM 6, so it is
764 easier to assume this for all. SFP is preserved, since FP is. */
765 #define CALL_USED_REGISTERS \
766 { \
767 1,1,1,1,0,0,0,0, \
768 0,0,0,0,1,1,1,1, \
769 1,1,1,1,0,0,0,0, \
770 1,1,1, \
771 1,1,1,1,1,1,1,1, \
772 1,1,1,1,1,1,1,1, \
773 1,1,1,1,1,1,1,1, \
774 1,1,1,1,1,1,1,1, \
775 1,1,1,1, \
776 1,1,1,1,1,1,1,1, \
777 1,1,1,1,1,1,1,1, \
778 1,1,1,1,1,1,1,1, \
779 1,1,1,1,1,1,1,1, \
780 1,1,1,1,1,1,1,1, \
781 1,1,1,1,1,1,1,1, \
782 1,1,1,1,1,1,1,1, \
783 1,1,1,1,1,1,1,1, \
784 1 \
785 }
786
787 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
788 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
789 #endif
790
791 /* These are a couple of extensions to the formats accepted
792 by asm_fprintf:
793 %@ prints out ASM_COMMENT_START
794 %r prints out REGISTER_PREFIX reg_names[arg] */
795 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
796 case '@': \
797 fputs (ASM_COMMENT_START, FILE); \
798 break; \
799 \
800 case 'r': \
801 fputs (REGISTER_PREFIX, FILE); \
802 fputs (reg_names [va_arg (ARGS, int)], FILE); \
803 break;
804
805 /* Round X up to the nearest word. */
806 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
807
808 /* Convert fron bytes to ints. */
809 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
810
811 /* The number of (integer) registers required to hold a quantity of type MODE.
812 Also used for VFP registers. */
813 #define ARM_NUM_REGS(MODE) \
814 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
815
816 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
817 #define ARM_NUM_REGS2(MODE, TYPE) \
818 ARM_NUM_INTS ((MODE) == BLKmode ? \
819 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
820
821 /* The number of (integer) argument register available. */
822 #define NUM_ARG_REGS 4
823
824 /* And similarly for the VFP. */
825 #define NUM_VFP_ARG_REGS 16
826
827 /* Return the register number of the N'th (integer) argument. */
828 #define ARG_REGISTER(N) (N - 1)
829
830 /* Specify the registers used for certain standard purposes.
831 The values of these macros are register numbers. */
832
833 /* The number of the last argument register. */
834 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
835
836 /* The numbers of the Thumb register ranges. */
837 #define FIRST_LO_REGNUM 0
838 #define LAST_LO_REGNUM 7
839 #define FIRST_HI_REGNUM 8
840 #define LAST_HI_REGNUM 11
841
842 /* Overridden by config/arm/bpabi.h. */
843 #ifndef ARM_UNWIND_INFO
844 #define ARM_UNWIND_INFO 0
845 #endif
846
847 /* Use r0 and r1 to pass exception handling information. */
848 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
849
850 /* The register that holds the return address in exception handlers. */
851 #define ARM_EH_STACKADJ_REGNUM 2
852 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
853
854 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
855 as an invisible last argument (possible since varargs don't exist in
856 Pascal), so the following is not true. */
857 #define STATIC_CHAIN_REGNUM 12
858
859 /* Define this to be where the real frame pointer is if it is not possible to
860 work out the offset between the frame pointer and the automatic variables
861 until after register allocation has taken place. FRAME_POINTER_REGNUM
862 should point to a special register that we will make sure is eliminated.
863
864 For the Thumb we have another problem. The TPCS defines the frame pointer
865 as r11, and GCC believes that it is always possible to use the frame pointer
866 as base register for addressing purposes. (See comments in
867 find_reloads_address()). But - the Thumb does not allow high registers,
868 including r11, to be used as base address registers. Hence our problem.
869
870 The solution used here, and in the old thumb port is to use r7 instead of
871 r11 as the hard frame pointer and to have special code to generate
872 backtrace structures on the stack (if required to do so via a command line
873 option) using r11. This is the only 'user visible' use of r11 as a frame
874 pointer. */
875 #define ARM_HARD_FRAME_POINTER_REGNUM 11
876 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
877
878 #define HARD_FRAME_POINTER_REGNUM \
879 (TARGET_ARM \
880 ? ARM_HARD_FRAME_POINTER_REGNUM \
881 : THUMB_HARD_FRAME_POINTER_REGNUM)
882
883 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
884 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
885
886 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
887
888 /* Register to use for pushing function arguments. */
889 #define STACK_POINTER_REGNUM SP_REGNUM
890
891 /* ARM floating pointer registers. */
892 #define FIRST_FPA_REGNUM 16
893 #define LAST_FPA_REGNUM 23
894 #define IS_FPA_REGNUM(REGNUM) \
895 (((REGNUM) >= FIRST_FPA_REGNUM) && ((REGNUM) <= LAST_FPA_REGNUM))
896
897 #define FIRST_IWMMXT_GR_REGNUM 43
898 #define LAST_IWMMXT_GR_REGNUM 46
899 #define FIRST_IWMMXT_REGNUM 47
900 #define LAST_IWMMXT_REGNUM 62
901 #define IS_IWMMXT_REGNUM(REGNUM) \
902 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
903 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
904 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
905
906 /* Base register for access to local variables of the function. */
907 #define FRAME_POINTER_REGNUM 25
908
909 /* Base register for access to arguments of the function. */
910 #define ARG_POINTER_REGNUM 26
911
912 #define FIRST_CIRRUS_FP_REGNUM 27
913 #define LAST_CIRRUS_FP_REGNUM 42
914 #define IS_CIRRUS_REGNUM(REGNUM) \
915 (((REGNUM) >= FIRST_CIRRUS_FP_REGNUM) && ((REGNUM) <= LAST_CIRRUS_FP_REGNUM))
916
917 #define FIRST_VFP_REGNUM 63
918 #define D7_VFP_REGNUM 78 /* Registers 77 and 78 == VFP reg D7. */
919 #define LAST_VFP_REGNUM \
920 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
921
922 #define IS_VFP_REGNUM(REGNUM) \
923 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
924
925 /* VFP registers are split into two types: those defined by VFP versions < 3
926 have D registers overlaid on consecutive pairs of S registers. VFP version 3
927 defines 16 new D registers (d16-d31) which, for simplicity and correctness
928 in various parts of the backend, we implement as "fake" single-precision
929 registers (which would be S32-S63, but cannot be used in that way). The
930 following macros define these ranges of registers. */
931 #define LAST_LO_VFP_REGNUM 94
932 #define FIRST_HI_VFP_REGNUM 95
933 #define LAST_HI_VFP_REGNUM 126
934
935 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
936 ((REGNUM) <= LAST_LO_VFP_REGNUM)
937
938 /* DFmode values are only valid in even register pairs. */
939 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
940 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
941
942 /* Neon Quad values must start at a multiple of four registers. */
943 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
944 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
945
946 /* Neon structures of vectors must be in even register pairs and there
947 must be enough registers available. Because of various patterns
948 requiring quad registers, we require them to start at a multiple of
949 four. */
950 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
951 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
952 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
953
954 /* The number of hard registers is 16 ARM + 8 FPA + 1 CC + 1 SFP + 1 AFP. */
955 /* + 16 Cirrus registers take us up to 43. */
956 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
957 /* VFP (VFP3) adds 32 (64) + 1 more. */
958 #define FIRST_PSEUDO_REGISTER 128
959
960 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
961
962 /* Value should be nonzero if functions must have frame pointers.
963 Zero means the frame pointer need not be set up (and parms may be accessed
964 via the stack pointer) in functions that seem suitable.
965 If we have to have a frame pointer we might as well make use of it.
966 APCS says that the frame pointer does not need to be pushed in leaf
967 functions, or simple tail call functions. */
968
969 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
970 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
971 #endif
972
973 /* Return number of consecutive hard regs needed starting at reg REGNO
974 to hold something of mode MODE.
975 This is ordinarily the length in words of a value of mode MODE
976 but can be less for certain modes in special long registers.
977
978 On the ARM regs are UNITS_PER_WORD bits wide; FPA regs can hold any FP
979 mode. */
980 #define HARD_REGNO_NREGS(REGNO, MODE) \
981 ((TARGET_32BIT \
982 && REGNO >= FIRST_FPA_REGNUM \
983 && REGNO != FRAME_POINTER_REGNUM \
984 && REGNO != ARG_POINTER_REGNUM) \
985 && !IS_VFP_REGNUM (REGNO) \
986 ? 1 : ARM_NUM_REGS (MODE))
987
988 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
989 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
990 arm_hard_regno_mode_ok ((REGNO), (MODE))
991
992 /* Value is 1 if it is a good idea to tie two pseudo registers
993 when one has mode MODE1 and one has mode MODE2.
994 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
995 for any hard reg, then this must be 0 for correct output. */
996 #define MODES_TIEABLE_P(MODE1, MODE2) \
997 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
998
999 #define VALID_IWMMXT_REG_MODE(MODE) \
1000 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1001
1002 /* Modes valid for Neon D registers. */
1003 #define VALID_NEON_DREG_MODE(MODE) \
1004 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1005 || (MODE) == V2SFmode || (MODE) == DImode)
1006
1007 /* Modes valid for Neon Q registers. */
1008 #define VALID_NEON_QREG_MODE(MODE) \
1009 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1010 || (MODE) == V4SFmode || (MODE) == V2DImode)
1011
1012 /* Structure modes valid for Neon registers. */
1013 #define VALID_NEON_STRUCT_MODE(MODE) \
1014 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1015 || (MODE) == CImode || (MODE) == XImode)
1016
1017 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
1018 extern int arm_regs_in_sequence[];
1019
1020 /* The order in which register should be allocated. It is good to use ip
1021 since no saving is required (though calls clobber it) and it never contains
1022 function parameters. It is quite good to use lr since other calls may
1023 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1024 least likely to contain a function parameter; in addition results are
1025 returned in r0.
1026 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1027 then D8-D15. The reason for doing this is to attempt to reduce register
1028 pressure when both single- and double-precision registers are used in a
1029 function. */
1030
1031 #define REG_ALLOC_ORDER \
1032 { \
1033 3, 2, 1, 0, 12, 14, 4, 5, \
1034 6, 7, 8, 10, 9, 11, 13, 15, \
1035 16, 17, 18, 19, 20, 21, 22, 23, \
1036 27, 28, 29, 30, 31, 32, 33, 34, \
1037 35, 36, 37, 38, 39, 40, 41, 42, \
1038 43, 44, 45, 46, 47, 48, 49, 50, \
1039 51, 52, 53, 54, 55, 56, 57, 58, \
1040 59, 60, 61, 62, \
1041 24, 25, 26, \
1042 95, 96, 97, 98, 99, 100, 101, 102, \
1043 103, 104, 105, 106, 107, 108, 109, 110, \
1044 111, 112, 113, 114, 115, 116, 117, 118, \
1045 119, 120, 121, 122, 123, 124, 125, 126, \
1046 78, 77, 76, 75, 74, 73, 72, 71, \
1047 70, 69, 68, 67, 66, 65, 64, 63, \
1048 79, 80, 81, 82, 83, 84, 85, 86, \
1049 87, 88, 89, 90, 91, 92, 93, 94, \
1050 127 \
1051 }
1052
1053 /* Use different register alloc ordering for Thumb. */
1054 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1055
1056 /* Tell IRA to use the order we define rather than messing it up with its
1057 own cost calculations. */
1058 #define HONOR_REG_ALLOC_ORDER
1059
1060 /* Interrupt functions can only use registers that have already been
1061 saved by the prologue, even if they would normally be
1062 call-clobbered. */
1063 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1064 (! IS_INTERRUPT (cfun->machine->func_type) || \
1065 df_regs_ever_live_p (DST))
1066 \f
1067 /* Register and constant classes. */
1068
1069 /* Register classes: used to be simple, just all ARM regs or all FPA regs
1070 Now that the Thumb is involved it has become more complicated. */
1071 enum reg_class
1072 {
1073 NO_REGS,
1074 FPA_REGS,
1075 CIRRUS_REGS,
1076 VFP_D0_D7_REGS,
1077 VFP_LO_REGS,
1078 VFP_HI_REGS,
1079 VFP_REGS,
1080 IWMMXT_GR_REGS,
1081 IWMMXT_REGS,
1082 LO_REGS,
1083 STACK_REG,
1084 BASE_REGS,
1085 HI_REGS,
1086 CC_REG,
1087 VFPCC_REG,
1088 GENERAL_REGS,
1089 CORE_REGS,
1090 ALL_REGS,
1091 LIM_REG_CLASSES
1092 };
1093
1094 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1095
1096 /* Give names of register classes as strings for dump file. */
1097 #define REG_CLASS_NAMES \
1098 { \
1099 "NO_REGS", \
1100 "FPA_REGS", \
1101 "CIRRUS_REGS", \
1102 "VFP_D0_D7_REGS", \
1103 "VFP_LO_REGS", \
1104 "VFP_HI_REGS", \
1105 "VFP_REGS", \
1106 "IWMMXT_GR_REGS", \
1107 "IWMMXT_REGS", \
1108 "LO_REGS", \
1109 "STACK_REG", \
1110 "BASE_REGS", \
1111 "HI_REGS", \
1112 "CC_REG", \
1113 "VFPCC_REG", \
1114 "GENERAL_REGS", \
1115 "CORE_REGS", \
1116 "ALL_REGS", \
1117 }
1118
1119 /* Define which registers fit in which classes.
1120 This is an initializer for a vector of HARD_REG_SET
1121 of length N_REG_CLASSES. */
1122 #define REG_CLASS_CONTENTS \
1123 { \
1124 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1125 { 0x00FF0000, 0x00000000, 0x00000000, 0x00000000 }, /* FPA_REGS */ \
1126 { 0xF8000000, 0x000007FF, 0x00000000, 0x00000000 }, /* CIRRUS_REGS */ \
1127 { 0x00000000, 0x80000000, 0x00007FFF, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1128 { 0x00000000, 0x80000000, 0x7FFFFFFF, 0x00000000 }, /* VFP_LO_REGS */ \
1129 { 0x00000000, 0x00000000, 0x80000000, 0x7FFFFFFF }, /* VFP_HI_REGS */ \
1130 { 0x00000000, 0x80000000, 0xFFFFFFFF, 0x7FFFFFFF }, /* VFP_REGS */ \
1131 { 0x00000000, 0x00007800, 0x00000000, 0x00000000 }, /* IWMMXT_GR_REGS */ \
1132 { 0x00000000, 0x7FFF8000, 0x00000000, 0x00000000 }, /* IWMMXT_REGS */ \
1133 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1134 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1135 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1136 { 0x0000DF00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1137 { 0x01000000, 0x00000000, 0x00000000, 0x00000000 }, /* CC_REG */ \
1138 { 0x00000000, 0x00000000, 0x00000000, 0x80000000 }, /* VFPCC_REG */ \
1139 { 0x0000DFFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1140 { 0x0000FFFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1141 { 0xFAFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF } /* ALL_REGS */ \
1142 }
1143
1144 /* Any of the VFP register classes. */
1145 #define IS_VFP_CLASS(X) \
1146 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1147 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1148
1149 /* The same information, inverted:
1150 Return the class number of the smallest class containing
1151 reg number REGNO. This could be a conditional expression
1152 or could index an array. */
1153 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1154
1155 /* FPA registers can't do subreg as all values are reformatted to internal
1156 precision. In VFPv1, VFP registers could only be accessed in the mode
1157 they were set, so subregs would be invalid there too. However, we don't
1158 support VFPv1 at the moment, and the restriction was lifted in VFPv2. */
1159 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1160 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1161 ? reg_classes_intersect_p (FPA_REGS, (CLASS)) \
1162 : 0)
1163
1164 /* The class value for index registers, and the one for base regs. */
1165 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1166 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1167
1168 /* For the Thumb the high registers cannot be used as base registers
1169 when addressing quantities in QI or HI mode; if we don't know the
1170 mode, then we must be conservative. */
1171 #define MODE_BASE_REG_CLASS(MODE) \
1172 (TARGET_32BIT ? CORE_REGS : \
1173 (((MODE) == SImode) ? BASE_REGS : LO_REGS))
1174
1175 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1176 instead of BASE_REGS. */
1177 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1178
1179 /* When this hook returns true for MODE, the compiler allows
1180 registers explicitly used in the rtl to be used as spill registers
1181 but prevents the compiler from extending the lifetime of these
1182 registers. */
1183 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1184 arm_small_register_classes_for_mode_p
1185
1186 /* Given an rtx X being reloaded into a reg required to be
1187 in class CLASS, return the class of reg to actually use.
1188 In general this is just CLASS, but for the Thumb core registers and
1189 immediate constants we prefer a LO_REGS class or a subset. */
1190 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1191 (TARGET_32BIT ? (CLASS) : \
1192 ((CLASS) == GENERAL_REGS || (CLASS) == HI_REGS \
1193 || (CLASS) == NO_REGS || (CLASS) == STACK_REG \
1194 ? LO_REGS : (CLASS)))
1195
1196 /* Must leave BASE_REGS reloads alone */
1197 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1198 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1199 ? ((true_regnum (X) == -1 ? LO_REGS \
1200 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1201 : NO_REGS)) \
1202 : NO_REGS)
1203
1204 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1205 ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1206 ? ((true_regnum (X) == -1 ? LO_REGS \
1207 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1208 : NO_REGS)) \
1209 : NO_REGS)
1210
1211 /* Return the register class of a scratch register needed to copy IN into
1212 or out of a register in CLASS in MODE. If it can be done directly,
1213 NO_REGS is returned. */
1214 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1215 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1216 ((TARGET_VFP && TARGET_HARD_FLOAT \
1217 && IS_VFP_CLASS (CLASS)) \
1218 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1219 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1220 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1221 : TARGET_32BIT \
1222 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1223 ? GENERAL_REGS : NO_REGS) \
1224 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1225
1226 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1227 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1228 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1229 ((TARGET_VFP && TARGET_HARD_FLOAT \
1230 && IS_VFP_CLASS (CLASS)) \
1231 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1232 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1233 coproc_secondary_reload_class (MODE, X, TRUE) : \
1234 /* Cannot load constants into Cirrus registers. */ \
1235 (TARGET_MAVERICK && TARGET_HARD_FLOAT \
1236 && (CLASS) == CIRRUS_REGS \
1237 && (CONSTANT_P (X) || GET_CODE (X) == SYMBOL_REF)) \
1238 ? GENERAL_REGS : \
1239 (TARGET_32BIT ? \
1240 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1241 && CONSTANT_P (X)) \
1242 ? GENERAL_REGS : \
1243 (((MODE) == HImode && ! arm_arch4 \
1244 && (GET_CODE (X) == MEM \
1245 || ((GET_CODE (X) == REG || GET_CODE (X) == SUBREG) \
1246 && true_regnum (X) == -1))) \
1247 ? GENERAL_REGS : NO_REGS) \
1248 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1249
1250 /* Try a machine-dependent way of reloading an illegitimate address
1251 operand. If we find one, push the reload and jump to WIN. This
1252 macro is used in only one place: `find_reloads_address' in reload.c.
1253
1254 For the ARM, we wish to handle large displacements off a base
1255 register by splitting the addend across a MOV and the mem insn.
1256 This can cut the number of reloads needed. */
1257 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
1258 do \
1259 { \
1260 if (arm_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND)) \
1261 goto WIN; \
1262 } \
1263 while (0)
1264
1265 /* XXX If an HImode FP+large_offset address is converted to an HImode
1266 SP+large_offset address, then reload won't know how to fix it. It sees
1267 only that SP isn't valid for HImode, and so reloads the SP into an index
1268 register, but the resulting address is still invalid because the offset
1269 is too big. We fix it here instead by reloading the entire address. */
1270 /* We could probably achieve better results by defining PROMOTE_MODE to help
1271 cope with the variances between the Thumb's signed and unsigned byte and
1272 halfword load instructions. */
1273 /* ??? This should be safe for thumb2, but we may be able to do better. */
1274 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN) \
1275 do { \
1276 rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1277 if (new_x) \
1278 { \
1279 X = new_x; \
1280 goto WIN; \
1281 } \
1282 } while (0)
1283
1284 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
1285 if (TARGET_ARM) \
1286 ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1287 else \
1288 THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1289
1290 /* Return the maximum number of consecutive registers
1291 needed to represent mode MODE in a register of class CLASS.
1292 ARM regs are UNITS_PER_WORD bits while FPA regs can hold any FP mode */
1293 #define CLASS_MAX_NREGS(CLASS, MODE) \
1294 (((CLASS) == FPA_REGS || (CLASS) == CIRRUS_REGS) ? 1 : ARM_NUM_REGS (MODE))
1295
1296 /* If defined, gives a class of registers that cannot be used as the
1297 operand of a SUBREG that changes the mode of the object illegally. */
1298
1299 /* Moves between FPA_REGS and GENERAL_REGS are two memory insns.
1300 Moves between VFP_REGS and GENERAL_REGS are a single insn, but
1301 it is typically more expensive than a single memory access. We set
1302 the cost to less than two memory accesses so that floating
1303 point to integer conversion does not go through memory. */
1304 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1305 (TARGET_32BIT ? \
1306 ((FROM) == FPA_REGS && (TO) != FPA_REGS ? 20 : \
1307 (FROM) != FPA_REGS && (TO) == FPA_REGS ? 20 : \
1308 IS_VFP_CLASS (FROM) && !IS_VFP_CLASS (TO) ? 15 : \
1309 !IS_VFP_CLASS (FROM) && IS_VFP_CLASS (TO) ? 15 : \
1310 (FROM) == IWMMXT_REGS && (TO) != IWMMXT_REGS ? 4 : \
1311 (FROM) != IWMMXT_REGS && (TO) == IWMMXT_REGS ? 4 : \
1312 (FROM) == IWMMXT_GR_REGS || (TO) == IWMMXT_GR_REGS ? 20 : \
1313 (FROM) == CIRRUS_REGS && (TO) != CIRRUS_REGS ? 20 : \
1314 (FROM) != CIRRUS_REGS && (TO) == CIRRUS_REGS ? 20 : \
1315 2) \
1316 : \
1317 ((FROM) == HI_REGS || (TO) == HI_REGS) ? 4 : 2)
1318 \f
1319 /* Stack layout; function entry, exit and calling. */
1320
1321 /* Define this if pushing a word on the stack
1322 makes the stack pointer a smaller address. */
1323 #define STACK_GROWS_DOWNWARD 1
1324
1325 /* Define this to nonzero if the nominal address of the stack frame
1326 is at the high-address end of the local variables;
1327 that is, each additional local variable allocated
1328 goes at a more negative offset in the frame. */
1329 #define FRAME_GROWS_DOWNWARD 1
1330
1331 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1332 When present, it is one word in size, and sits at the top of the frame,
1333 between the soft frame pointer and either r7 or r11.
1334
1335 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1336 and only then if some outgoing arguments are passed on the stack. It would
1337 be tempting to also check whether the stack arguments are passed by indirect
1338 calls, but there seems to be no reason in principle why a post-reload pass
1339 couldn't convert a direct call into an indirect one. */
1340 #define CALLER_INTERWORKING_SLOT_SIZE \
1341 (TARGET_CALLER_INTERWORKING \
1342 && crtl->outgoing_args_size != 0 \
1343 ? UNITS_PER_WORD : 0)
1344
1345 /* Offset within stack frame to start allocating local variables at.
1346 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1347 first local allocated. Otherwise, it is the offset to the BEGINNING
1348 of the first local allocated. */
1349 #define STARTING_FRAME_OFFSET 0
1350
1351 /* If we generate an insn to push BYTES bytes,
1352 this says how many the stack pointer really advances by. */
1353 /* The push insns do not do this rounding implicitly.
1354 So don't define this. */
1355 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1356
1357 /* Define this if the maximum size of all the outgoing args is to be
1358 accumulated and pushed during the prologue. The amount can be
1359 found in the variable crtl->outgoing_args_size. */
1360 #define ACCUMULATE_OUTGOING_ARGS 1
1361
1362 /* Offset of first parameter from the argument pointer register value. */
1363 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1364
1365 /* Define how to find the value returned by a library function
1366 assuming the value has mode MODE. */
1367 #define LIBCALL_VALUE(MODE) \
1368 (TARGET_AAPCS_BASED ? aapcs_libcall_value (MODE) \
1369 : (TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_FPA \
1370 && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1371 ? gen_rtx_REG (MODE, FIRST_FPA_REGNUM) \
1372 : TARGET_32BIT && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK \
1373 && GET_MODE_CLASS (MODE) == MODE_FLOAT \
1374 ? gen_rtx_REG (MODE, FIRST_CIRRUS_FP_REGNUM) \
1375 : TARGET_IWMMXT_ABI && arm_vector_mode_supported_p (MODE) \
1376 ? gen_rtx_REG (MODE, FIRST_IWMMXT_REGNUM) \
1377 : gen_rtx_REG (MODE, ARG_REGISTER (1)))
1378
1379 /* 1 if REGNO is a possible register number for a function value. */
1380 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1381 ((REGNO) == ARG_REGISTER (1) \
1382 || (TARGET_AAPCS_BASED && TARGET_32BIT \
1383 && TARGET_VFP && TARGET_HARD_FLOAT \
1384 && (REGNO) == FIRST_VFP_REGNUM) \
1385 || (TARGET_32BIT && ((REGNO) == FIRST_CIRRUS_FP_REGNUM) \
1386 && TARGET_HARD_FLOAT_ABI && TARGET_MAVERICK) \
1387 || ((REGNO) == FIRST_IWMMXT_REGNUM && TARGET_IWMMXT_ABI) \
1388 || (TARGET_32BIT && ((REGNO) == FIRST_FPA_REGNUM) \
1389 && TARGET_HARD_FLOAT_ABI && TARGET_FPA))
1390
1391 /* Amount of memory needed for an untyped call to save all possible return
1392 registers. */
1393 #define APPLY_RESULT_SIZE arm_apply_result_size()
1394
1395 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1396 values must be in memory. On the ARM, they need only do so if larger
1397 than a word, or if they contain elements offset from zero in the struct. */
1398 #define DEFAULT_PCC_STRUCT_RETURN 0
1399
1400 /* These bits describe the different types of function supported
1401 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1402 normal function and an interworked function, for example. Knowing the
1403 type of a function is important for determining its prologue and
1404 epilogue sequences.
1405 Note value 7 is currently unassigned. Also note that the interrupt
1406 function types all have bit 2 set, so that they can be tested for easily.
1407 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1408 machine_function structure is initialized (to zero) func_type will
1409 default to unknown. This will force the first use of arm_current_func_type
1410 to call arm_compute_func_type. */
1411 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1412 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1413 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1414 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1415 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1416 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1417
1418 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1419
1420 /* In addition functions can have several type modifiers,
1421 outlined by these bit masks: */
1422 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1423 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1424 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1425 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1426 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1427
1428 /* Some macros to test these flags. */
1429 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1430 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1431 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1432 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1433 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1434 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1435
1436
1437 /* Structure used to hold the function stack frame layout. Offsets are
1438 relative to the stack pointer on function entry. Positive offsets are
1439 in the direction of stack growth.
1440 Only soft_frame is used in thumb mode. */
1441
1442 typedef struct GTY(()) arm_stack_offsets
1443 {
1444 int saved_args; /* ARG_POINTER_REGNUM. */
1445 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1446 int saved_regs;
1447 int soft_frame; /* FRAME_POINTER_REGNUM. */
1448 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1449 int outgoing_args; /* STACK_POINTER_REGNUM. */
1450 unsigned int saved_regs_mask;
1451 }
1452 arm_stack_offsets;
1453
1454 #ifndef GENERATOR_FILE
1455 /* A C structure for machine-specific, per-function data.
1456 This is added to the cfun structure. */
1457 typedef struct GTY(()) machine_function
1458 {
1459 /* Additional stack adjustment in __builtin_eh_throw. */
1460 rtx eh_epilogue_sp_ofs;
1461 /* Records if LR has to be saved for far jumps. */
1462 int far_jump_used;
1463 /* Records if ARG_POINTER was ever live. */
1464 int arg_pointer_live;
1465 /* Records if the save of LR has been eliminated. */
1466 int lr_save_eliminated;
1467 /* The size of the stack frame. Only valid after reload. */
1468 arm_stack_offsets stack_offsets;
1469 /* Records the type of the current function. */
1470 unsigned long func_type;
1471 /* Record if the function has a variable argument list. */
1472 int uses_anonymous_args;
1473 /* Records if sibcalls are blocked because an argument
1474 register is needed to preserve stack alignment. */
1475 int sibcall_blocked;
1476 /* The PIC register for this function. This might be a pseudo. */
1477 rtx pic_reg;
1478 /* Labels for per-function Thumb call-via stubs. One per potential calling
1479 register. We can never call via LR or PC. We can call via SP if a
1480 trampoline happens to be on the top of the stack. */
1481 rtx call_via[14];
1482 /* Set to 1 when a return insn is output, this means that the epilogue
1483 is not needed. */
1484 int return_used_this_function;
1485 /* When outputting Thumb-1 code, record the last insn that provides
1486 information about condition codes, and the comparison operands. */
1487 rtx thumb1_cc_insn;
1488 rtx thumb1_cc_op0;
1489 rtx thumb1_cc_op1;
1490 /* Also record the CC mode that is supported. */
1491 enum machine_mode thumb1_cc_mode;
1492 }
1493 machine_function;
1494 #endif
1495
1496 /* As in the machine_function, a global set of call-via labels, for code
1497 that is in text_section. */
1498 extern GTY(()) rtx thumb_call_via_label[14];
1499
1500 /* The number of potential ways of assigning to a co-processor. */
1501 #define ARM_NUM_COPROC_SLOTS 1
1502
1503 /* Enumeration of procedure calling standard variants. We don't really
1504 support all of these yet. */
1505 enum arm_pcs
1506 {
1507 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1508 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1509 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1510 /* This must be the last AAPCS variant. */
1511 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1512 ARM_PCS_ATPCS, /* ATPCS. */
1513 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1514 ARM_PCS_UNKNOWN
1515 };
1516
1517 /* Default procedure calling standard of current compilation unit. */
1518 extern enum arm_pcs arm_pcs_default;
1519
1520 /* A C type for declaring a variable that is used as the first argument of
1521 `FUNCTION_ARG' and other related values. */
1522 typedef struct
1523 {
1524 /* This is the number of registers of arguments scanned so far. */
1525 int nregs;
1526 /* This is the number of iWMMXt register arguments scanned so far. */
1527 int iwmmxt_nregs;
1528 int named_count;
1529 int nargs;
1530 /* Which procedure call variant to use for this call. */
1531 enum arm_pcs pcs_variant;
1532
1533 /* AAPCS related state tracking. */
1534 int aapcs_arg_processed; /* No need to lay out this argument again. */
1535 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1536 this argument, or -1 if using core
1537 registers. */
1538 int aapcs_ncrn;
1539 int aapcs_next_ncrn;
1540 rtx aapcs_reg; /* Register assigned to this argument. */
1541 int aapcs_partial; /* How many bytes are passed in regs (if
1542 split between core regs and stack.
1543 Zero otherwise. */
1544 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1545 int can_split; /* Argument can be split between core regs
1546 and the stack. */
1547 /* Private data for tracking VFP register allocation */
1548 unsigned aapcs_vfp_regs_free;
1549 unsigned aapcs_vfp_reg_alloc;
1550 int aapcs_vfp_rcount;
1551 MACHMODE aapcs_vfp_rmode;
1552 } CUMULATIVE_ARGS;
1553
1554 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1555 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1556
1557 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1558 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1559
1560 /* For AAPCS, padding should never be below the argument. For other ABIs,
1561 * mimic the default. */
1562 #define PAD_VARARGS_DOWN \
1563 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1564
1565 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1566 for a call to a function whose data type is FNTYPE.
1567 For a library call, FNTYPE is 0.
1568 On the ARM, the offset starts at 0. */
1569 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1570 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1571
1572 /* 1 if N is a possible register number for function argument passing.
1573 On the ARM, r0-r3 are used to pass args. */
1574 #define FUNCTION_ARG_REGNO_P(REGNO) \
1575 (IN_RANGE ((REGNO), 0, 3) \
1576 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \
1577 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1578 || (TARGET_IWMMXT_ABI \
1579 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1580
1581 \f
1582 /* If your target environment doesn't prefix user functions with an
1583 underscore, you may wish to re-define this to prevent any conflicts. */
1584 #ifndef ARM_MCOUNT_NAME
1585 #define ARM_MCOUNT_NAME "*mcount"
1586 #endif
1587
1588 /* Call the function profiler with a given profile label. The Acorn
1589 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1590 On the ARM the full profile code will look like:
1591 .data
1592 LP1
1593 .word 0
1594 .text
1595 mov ip, lr
1596 bl mcount
1597 .word LP1
1598
1599 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1600 will output the .text section.
1601
1602 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1603 ``prof'' doesn't seem to mind about this!
1604
1605 Note - this version of the code is designed to work in both ARM and
1606 Thumb modes. */
1607 #ifndef ARM_FUNCTION_PROFILER
1608 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1609 { \
1610 char temp[20]; \
1611 rtx sym; \
1612 \
1613 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1614 IP_REGNUM, LR_REGNUM); \
1615 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1616 fputc ('\n', STREAM); \
1617 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1618 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1619 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1620 }
1621 #endif
1622
1623 #ifdef THUMB_FUNCTION_PROFILER
1624 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1625 if (TARGET_ARM) \
1626 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1627 else \
1628 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1629 #else
1630 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1631 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1632 #endif
1633
1634 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1635 the stack pointer does not matter. The value is tested only in
1636 functions that have frame pointers.
1637 No definition is equivalent to always zero.
1638
1639 On the ARM, the function epilogue recovers the stack pointer from the
1640 frame. */
1641 #define EXIT_IGNORE_STACK 1
1642
1643 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNUM)
1644
1645 /* Determine if the epilogue should be output as RTL.
1646 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1647 #define USE_RETURN_INSN(ISCOND) \
1648 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1649
1650 /* Definitions for register eliminations.
1651
1652 This is an array of structures. Each structure initializes one pair
1653 of eliminable registers. The "from" register number is given first,
1654 followed by "to". Eliminations of the same "from" register are listed
1655 in order of preference.
1656
1657 We have two registers that can be eliminated on the ARM. First, the
1658 arg pointer register can often be eliminated in favor of the stack
1659 pointer register. Secondly, the pseudo frame pointer register can always
1660 be eliminated; it is replaced with either the stack or the real frame
1661 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1662 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1663
1664 #define ELIMINABLE_REGS \
1665 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1666 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1667 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1668 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1669 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1670 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1671 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1672
1673 /* Define the offset between two registers, one to be eliminated, and the
1674 other its replacement, at the start of a routine. */
1675 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1676 if (TARGET_ARM) \
1677 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1678 else \
1679 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1680
1681 /* Special case handling of the location of arguments passed on the stack. */
1682 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1683
1684 /* Initialize data used by insn expanders. This is called from insn_emit,
1685 once for every function before code is generated. */
1686 #define INIT_EXPANDERS arm_init_expanders ()
1687
1688 /* Length in units of the trampoline for entering a nested function. */
1689 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1690
1691 /* Alignment required for a trampoline in bits. */
1692 #define TRAMPOLINE_ALIGNMENT 32
1693 \f
1694 /* Addressing modes, and classification of registers for them. */
1695 #define HAVE_POST_INCREMENT 1
1696 #define HAVE_PRE_INCREMENT TARGET_32BIT
1697 #define HAVE_POST_DECREMENT TARGET_32BIT
1698 #define HAVE_PRE_DECREMENT TARGET_32BIT
1699 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1700 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1701 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1702 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1703
1704 /* Macros to check register numbers against specific register classes. */
1705
1706 /* These assume that REGNO is a hard or pseudo reg number.
1707 They give nonzero only if REGNO is a hard reg of the suitable class
1708 or a pseudo reg currently allocated to a suitable hard reg.
1709 Since they use reg_renumber, they are safe only once reg_renumber
1710 has been allocated, which happens in local-alloc.c. */
1711 #define TEST_REGNO(R, TEST, VALUE) \
1712 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1713
1714 /* Don't allow the pc to be used. */
1715 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1716 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1717 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1718 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1719
1720 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1721 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1722 || (GET_MODE_SIZE (MODE) >= 4 \
1723 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1724
1725 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1726 (TARGET_THUMB1 \
1727 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1728 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1729
1730 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1731 For Thumb, we can not use SP + reg, so reject SP. */
1732 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1733 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1734
1735 /* For ARM code, we don't care about the mode, but for Thumb, the index
1736 must be suitable for use in a QImode load. */
1737 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1738 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1739 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1740
1741 /* Maximum number of registers that can appear in a valid memory address.
1742 Shifts in addresses can't be by a register. */
1743 #define MAX_REGS_PER_ADDRESS 2
1744
1745 /* Recognize any constant value that is a valid address. */
1746 /* XXX We can address any constant, eventually... */
1747 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1748 #define CONSTANT_ADDRESS_P(X) \
1749 (GET_CODE (X) == SYMBOL_REF \
1750 && (CONSTANT_POOL_ADDRESS_P (X) \
1751 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1752
1753 /* True if SYMBOL + OFFSET constants must refer to something within
1754 SYMBOL's section. */
1755 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1756
1757 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1758 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1759 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1760 #endif
1761
1762 /* Nonzero if the constant value X is a legitimate general operand.
1763 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1764
1765 On the ARM, allow any integer (invalid ones are removed later by insn
1766 patterns), nice doubles and symbol_refs which refer to the function's
1767 constant pool XXX.
1768
1769 When generating pic allow anything. */
1770 #define ARM_LEGITIMATE_CONSTANT_P(X) (flag_pic || ! label_mentioned_p (X))
1771
1772 #define THUMB_LEGITIMATE_CONSTANT_P(X) \
1773 ( GET_CODE (X) == CONST_INT \
1774 || GET_CODE (X) == CONST_DOUBLE \
1775 || CONSTANT_ADDRESS_P (X) \
1776 || flag_pic)
1777
1778 #define LEGITIMATE_CONSTANT_P(X) \
1779 (!arm_cannot_force_const_mem (X) \
1780 && (TARGET_32BIT ? ARM_LEGITIMATE_CONSTANT_P (X) \
1781 : THUMB_LEGITIMATE_CONSTANT_P (X)))
1782
1783 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1784 #define SUBTARGET_NAME_ENCODING_LENGTHS
1785 #endif
1786
1787 /* This is a C fragment for the inside of a switch statement.
1788 Each case label should return the number of characters to
1789 be stripped from the start of a function's name, if that
1790 name starts with the indicated character. */
1791 #define ARM_NAME_ENCODING_LENGTHS \
1792 case '*': return 1; \
1793 SUBTARGET_NAME_ENCODING_LENGTHS
1794
1795 /* This is how to output a reference to a user-level label named NAME.
1796 `assemble_name' uses this. */
1797 #undef ASM_OUTPUT_LABELREF
1798 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1799 arm_asm_output_labelref (FILE, NAME)
1800
1801 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1802 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1803 if (TARGET_THUMB2) \
1804 thumb2_asm_output_opcode (STREAM);
1805
1806 /* The EABI specifies that constructors should go in .init_array.
1807 Other targets use .ctors for compatibility. */
1808 #ifndef ARM_EABI_CTORS_SECTION_OP
1809 #define ARM_EABI_CTORS_SECTION_OP \
1810 "\t.section\t.init_array,\"aw\",%init_array"
1811 #endif
1812 #ifndef ARM_EABI_DTORS_SECTION_OP
1813 #define ARM_EABI_DTORS_SECTION_OP \
1814 "\t.section\t.fini_array,\"aw\",%fini_array"
1815 #endif
1816 #define ARM_CTORS_SECTION_OP \
1817 "\t.section\t.ctors,\"aw\",%progbits"
1818 #define ARM_DTORS_SECTION_OP \
1819 "\t.section\t.dtors,\"aw\",%progbits"
1820
1821 /* Define CTORS_SECTION_ASM_OP. */
1822 #undef CTORS_SECTION_ASM_OP
1823 #undef DTORS_SECTION_ASM_OP
1824 #ifndef IN_LIBGCC2
1825 # define CTORS_SECTION_ASM_OP \
1826 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1827 # define DTORS_SECTION_ASM_OP \
1828 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1829 #else /* !defined (IN_LIBGCC2) */
1830 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1831 so we cannot use the definition above. */
1832 # ifdef __ARM_EABI__
1833 /* The .ctors section is not part of the EABI, so we do not define
1834 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1835 from trying to use it. We do define it when doing normal
1836 compilation, as .init_array can be used instead of .ctors. */
1837 /* There is no need to emit begin or end markers when using
1838 init_array; the dynamic linker will compute the size of the
1839 array itself based on special symbols created by the static
1840 linker. However, we do need to arrange to set up
1841 exception-handling here. */
1842 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1843 # define CTOR_LIST_END /* empty */
1844 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1845 # define DTOR_LIST_END /* empty */
1846 # else /* !defined (__ARM_EABI__) */
1847 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1848 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1849 # endif /* !defined (__ARM_EABI__) */
1850 #endif /* !defined (IN_LIBCC2) */
1851
1852 /* True if the operating system can merge entities with vague linkage
1853 (e.g., symbols in COMDAT group) during dynamic linking. */
1854 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1855 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1856 #endif
1857
1858 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1859
1860 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1861 and check its validity for a certain class.
1862 We have two alternate definitions for each of them.
1863 The usual definition accepts all pseudo regs; the other rejects
1864 them unless they have been allocated suitable hard regs.
1865 The symbol REG_OK_STRICT causes the latter definition to be used.
1866 Thumb-2 has the same restrictions as arm. */
1867 #ifndef REG_OK_STRICT
1868
1869 #define ARM_REG_OK_FOR_BASE_P(X) \
1870 (REGNO (X) <= LAST_ARM_REGNUM \
1871 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1872 || REGNO (X) == FRAME_POINTER_REGNUM \
1873 || REGNO (X) == ARG_POINTER_REGNUM)
1874
1875 #define ARM_REG_OK_FOR_INDEX_P(X) \
1876 ((REGNO (X) <= LAST_ARM_REGNUM \
1877 && REGNO (X) != STACK_POINTER_REGNUM) \
1878 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1879 || REGNO (X) == FRAME_POINTER_REGNUM \
1880 || REGNO (X) == ARG_POINTER_REGNUM)
1881
1882 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1883 (REGNO (X) <= LAST_LO_REGNUM \
1884 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1885 || (GET_MODE_SIZE (MODE) >= 4 \
1886 && (REGNO (X) == STACK_POINTER_REGNUM \
1887 || (X) == hard_frame_pointer_rtx \
1888 || (X) == arg_pointer_rtx)))
1889
1890 #define REG_STRICT_P 0
1891
1892 #else /* REG_OK_STRICT */
1893
1894 #define ARM_REG_OK_FOR_BASE_P(X) \
1895 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1896
1897 #define ARM_REG_OK_FOR_INDEX_P(X) \
1898 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1899
1900 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1901 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1902
1903 #define REG_STRICT_P 1
1904
1905 #endif /* REG_OK_STRICT */
1906
1907 /* Now define some helpers in terms of the above. */
1908
1909 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1910 (TARGET_THUMB1 \
1911 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1912 : ARM_REG_OK_FOR_BASE_P (X))
1913
1914 /* For 16-bit Thumb, a valid index register is anything that can be used in
1915 a byte load instruction. */
1916 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1917 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1918
1919 /* Nonzero if X is a hard reg that can be used as an index
1920 or if it is a pseudo reg. On the Thumb, the stack pointer
1921 is not suitable. */
1922 #define REG_OK_FOR_INDEX_P(X) \
1923 (TARGET_THUMB1 \
1924 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1925 : ARM_REG_OK_FOR_INDEX_P (X))
1926
1927 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1928 For Thumb, we can not use SP + reg, so reject SP. */
1929 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1930 REG_OK_FOR_INDEX_P (X)
1931 \f
1932 #define ARM_BASE_REGISTER_RTX_P(X) \
1933 (GET_CODE (X) == REG && ARM_REG_OK_FOR_BASE_P (X))
1934
1935 #define ARM_INDEX_REGISTER_RTX_P(X) \
1936 (GET_CODE (X) == REG && ARM_REG_OK_FOR_INDEX_P (X))
1937 \f
1938 /* Specify the machine mode that this machine uses
1939 for the index in the tablejump instruction. */
1940 #define CASE_VECTOR_MODE Pmode
1941
1942 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
1943 || (TARGET_THUMB1 \
1944 && (optimize_size || flag_pic)))
1945
1946 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
1947 (TARGET_THUMB1 \
1948 ? (min >= 0 && max < 512 \
1949 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
1950 : min >= -256 && max < 256 \
1951 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
1952 : min >= 0 && max < 8192 \
1953 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
1954 : min >= -4096 && max < 4096 \
1955 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
1956 : SImode) \
1957 : ((min < 0 || max >= 0x2000 || !TARGET_THUMB2) ? SImode \
1958 : (max >= 0x200) ? HImode \
1959 : QImode))
1960
1961 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1962 unsigned is probably best, but may break some code. */
1963 #ifndef DEFAULT_SIGNED_CHAR
1964 #define DEFAULT_SIGNED_CHAR 0
1965 #endif
1966
1967 /* Max number of bytes we can move from memory to memory
1968 in one reasonably fast instruction. */
1969 #define MOVE_MAX 4
1970
1971 #undef MOVE_RATIO
1972 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1973
1974 /* Define if operations between registers always perform the operation
1975 on the full register even if a narrower mode is specified. */
1976 #define WORD_REGISTER_OPERATIONS
1977
1978 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1979 will either zero-extend or sign-extend. The value of this macro should
1980 be the code that says which one of the two operations is implicitly
1981 done, UNKNOWN if none. */
1982 #define LOAD_EXTEND_OP(MODE) \
1983 (TARGET_THUMB ? ZERO_EXTEND : \
1984 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
1985 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
1986
1987 /* Nonzero if access to memory by bytes is slow and undesirable. */
1988 #define SLOW_BYTE_ACCESS 0
1989
1990 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
1991
1992 /* Immediate shift counts are truncated by the output routines (or was it
1993 the assembler?). Shift counts in a register are truncated by ARM. Note
1994 that the native compiler puts too large (> 32) immediate shift counts
1995 into a register and shifts by the register, letting the ARM decide what
1996 to do instead of doing that itself. */
1997 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
1998 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1999 On the arm, Y in a register is used modulo 256 for the shift. Only for
2000 rotates is modulo 32 used. */
2001 /* #define SHIFT_COUNT_TRUNCATED 1 */
2002
2003 /* All integers have the same format so truncation is easy. */
2004 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2005
2006 /* Calling from registers is a massive pain. */
2007 #define NO_FUNCTION_CSE 1
2008
2009 /* The machine modes of pointers and functions */
2010 #define Pmode SImode
2011 #define FUNCTION_MODE Pmode
2012
2013 #define ARM_FRAME_RTX(X) \
2014 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
2015 || (X) == arg_pointer_rtx)
2016
2017 /* Moves to and from memory are quite expensive */
2018 #define MEMORY_MOVE_COST(M, CLASS, IN) \
2019 (TARGET_32BIT ? 10 : \
2020 ((GET_MODE_SIZE (M) < 4 ? 8 : 2 * GET_MODE_SIZE (M)) \
2021 * (CLASS == LO_REGS ? 1 : 2)))
2022
2023 /* Try to generate sequences that don't involve branches, we can then use
2024 conditional instructions */
2025 #define BRANCH_COST(speed_p, predictable_p) \
2026 (TARGET_32BIT ? 4 : (optimize > 0 ? 2 : 0))
2027 \f
2028 /* Position Independent Code. */
2029 /* We decide which register to use based on the compilation options and
2030 the assembler in use; this is more general than the APCS restriction of
2031 using sb (r9) all the time. */
2032 extern unsigned arm_pic_register;
2033
2034 /* The register number of the register used to address a table of static
2035 data addresses in memory. */
2036 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2037
2038 /* We can't directly access anything that contains a symbol,
2039 nor can we indirect via the constant pool. One exception is
2040 UNSPEC_TLS, which is always PIC. */
2041 #define LEGITIMATE_PIC_OPERAND_P(X) \
2042 (!(symbol_mentioned_p (X) \
2043 || label_mentioned_p (X) \
2044 || (GET_CODE (X) == SYMBOL_REF \
2045 && CONSTANT_POOL_ADDRESS_P (X) \
2046 && (symbol_mentioned_p (get_pool_constant (X)) \
2047 || label_mentioned_p (get_pool_constant (X))))) \
2048 || tls_mentioned_p (X))
2049
2050 /* We need to know when we are making a constant pool; this determines
2051 whether data needs to be in the GOT or can be referenced via a GOT
2052 offset. */
2053 extern int making_const_table;
2054 \f
2055 /* Handle pragmas for compatibility with Intel's compilers. */
2056 /* Also abuse this to register additional C specific EABI attributes. */
2057 #define REGISTER_TARGET_PRAGMAS() do { \
2058 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
2059 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
2060 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
2061 arm_lang_object_attributes_init(); \
2062 } while (0)
2063
2064 /* Condition code information. */
2065 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2066 return the mode to be used for the comparison. */
2067
2068 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2069
2070 #define REVERSIBLE_CC_MODE(MODE) 1
2071
2072 #define REVERSE_CONDITION(CODE,MODE) \
2073 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2074 ? reverse_condition_maybe_unordered (code) \
2075 : reverse_condition (code))
2076
2077 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
2078 (CODE) = arm_canonicalize_comparison (CODE, &(OP0), &(OP1))
2079
2080 /* The arm5 clz instruction returns 32. */
2081 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2082 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2083 \f
2084 #define CC_STATUS_INIT \
2085 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2086
2087 #undef ASM_APP_OFF
2088 #define ASM_APP_OFF (TARGET_THUMB1 ? "\t.code\t16\n" : \
2089 TARGET_THUMB2 ? "\t.thumb\n" : "")
2090
2091 /* Output a push or a pop instruction (only used when profiling).
2092 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2093 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2094 that r7 isn't used by the function profiler, so we can use it as a
2095 scratch reg. WARNING: This isn't safe in the general case! It may be
2096 sensitive to future changes in final.c:profile_function. */
2097 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2098 do \
2099 { \
2100 if (TARGET_ARM) \
2101 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
2102 STACK_POINTER_REGNUM, REGNO); \
2103 else if (TARGET_THUMB1 \
2104 && (REGNO) == STATIC_CHAIN_REGNUM) \
2105 { \
2106 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2107 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2108 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2109 } \
2110 else \
2111 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2112 } while (0)
2113
2114
2115 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2116 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2117 do \
2118 { \
2119 if (TARGET_ARM) \
2120 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
2121 STACK_POINTER_REGNUM, REGNO); \
2122 else if (TARGET_THUMB1 \
2123 && (REGNO) == STATIC_CHAIN_REGNUM) \
2124 { \
2125 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2126 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2127 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2128 } \
2129 else \
2130 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2131 } while (0)
2132
2133 /* Jump table alignment is explicit in ASM_OUTPUT_CASE_LABEL. */
2134 #define ADDR_VEC_ALIGN(JUMPTABLE) 0
2135
2136 /* This is how to output a label which precedes a jumptable. Since
2137 Thumb instructions are 2 bytes, we may need explicit alignment here. */
2138 #undef ASM_OUTPUT_CASE_LABEL
2139 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE) \
2140 do \
2141 { \
2142 if (TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) \
2143 ASM_OUTPUT_ALIGN (FILE, 2); \
2144 (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); \
2145 } \
2146 while (0)
2147
2148 /* Make sure subsequent insns are aligned after a TBB. */
2149 #define ASM_OUTPUT_CASE_END(FILE, NUM, JUMPTABLE) \
2150 do \
2151 { \
2152 if (GET_MODE (PATTERN (JUMPTABLE)) == QImode) \
2153 ASM_OUTPUT_ALIGN (FILE, 1); \
2154 } \
2155 while (0)
2156
2157 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2158 do \
2159 { \
2160 if (TARGET_THUMB) \
2161 { \
2162 if (is_called_in_ARM_mode (DECL) \
2163 || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY \
2164 && cfun->is_thunk)) \
2165 fprintf (STREAM, "\t.code 32\n") ; \
2166 else if (TARGET_THUMB1) \
2167 fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ; \
2168 else \
2169 fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ; \
2170 } \
2171 if (TARGET_POKE_FUNCTION_NAME) \
2172 arm_poke_function_name (STREAM, (const char *) NAME); \
2173 } \
2174 while (0)
2175
2176 /* For aliases of functions we use .thumb_set instead. */
2177 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2178 do \
2179 { \
2180 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2181 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2182 \
2183 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2184 { \
2185 fprintf (FILE, "\t.thumb_set "); \
2186 assemble_name (FILE, LABEL1); \
2187 fprintf (FILE, ","); \
2188 assemble_name (FILE, LABEL2); \
2189 fprintf (FILE, "\n"); \
2190 } \
2191 else \
2192 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2193 } \
2194 while (0)
2195
2196 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2197 /* To support -falign-* switches we need to use .p2align so
2198 that alignment directives in code sections will be padded
2199 with no-op instructions, rather than zeroes. */
2200 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2201 if ((LOG) != 0) \
2202 { \
2203 if ((MAX_SKIP) == 0) \
2204 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2205 else \
2206 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2207 (int) (LOG), (int) (MAX_SKIP)); \
2208 }
2209 #endif
2210 \f
2211 /* Add two bytes to the length of conditionally executed Thumb-2
2212 instructions for the IT instruction. */
2213 #define ADJUST_INSN_LENGTH(insn, length) \
2214 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2215 length += 2;
2216
2217 /* Only perform branch elimination (by making instructions conditional) if
2218 we're optimizing. For Thumb-2 check if any IT instructions need
2219 outputting. */
2220 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2221 if (TARGET_ARM && optimize) \
2222 arm_final_prescan_insn (INSN); \
2223 else if (TARGET_THUMB2) \
2224 thumb2_final_prescan_insn (INSN); \
2225 else if (TARGET_THUMB1) \
2226 thumb1_final_prescan_insn (INSN)
2227
2228 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2229 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2230 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2231 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2232 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2233 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2234 : 0))))
2235
2236 /* A C expression whose value is RTL representing the value of the return
2237 address for the frame COUNT steps up from the current frame. */
2238
2239 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2240 arm_return_addr (COUNT, FRAME)
2241
2242 /* Mask of the bits in the PC that contain the real return address
2243 when running in 26-bit mode. */
2244 #define RETURN_ADDR_MASK26 (0x03fffffc)
2245
2246 /* Pick up the return address upon entry to a procedure. Used for
2247 dwarf2 unwind information. This also enables the table driven
2248 mechanism. */
2249 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2250 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2251
2252 /* Used to mask out junk bits from the return address, such as
2253 processor state, interrupt status, condition codes and the like. */
2254 #define MASK_RETURN_ADDR \
2255 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2256 in 26 bit mode, the condition codes must be masked out of the \
2257 return address. This does not apply to ARM6 and later processors \
2258 when running in 32 bit mode. */ \
2259 ((arm_arch4 || TARGET_THUMB) \
2260 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2261 : arm_gen_return_addr_mask ())
2262
2263 \f
2264 /* Neon defines builtins from ARM_BUILTIN_MAX upwards, though they don't have
2265 symbolic names defined here (which would require too much duplication).
2266 FIXME? */
2267 enum arm_builtins
2268 {
2269 ARM_BUILTIN_GETWCX,
2270 ARM_BUILTIN_SETWCX,
2271
2272 ARM_BUILTIN_WZERO,
2273
2274 ARM_BUILTIN_WAVG2BR,
2275 ARM_BUILTIN_WAVG2HR,
2276 ARM_BUILTIN_WAVG2B,
2277 ARM_BUILTIN_WAVG2H,
2278
2279 ARM_BUILTIN_WACCB,
2280 ARM_BUILTIN_WACCH,
2281 ARM_BUILTIN_WACCW,
2282
2283 ARM_BUILTIN_WMACS,
2284 ARM_BUILTIN_WMACSZ,
2285 ARM_BUILTIN_WMACU,
2286 ARM_BUILTIN_WMACUZ,
2287
2288 ARM_BUILTIN_WSADB,
2289 ARM_BUILTIN_WSADBZ,
2290 ARM_BUILTIN_WSADH,
2291 ARM_BUILTIN_WSADHZ,
2292
2293 ARM_BUILTIN_WALIGN,
2294
2295 ARM_BUILTIN_TMIA,
2296 ARM_BUILTIN_TMIAPH,
2297 ARM_BUILTIN_TMIABB,
2298 ARM_BUILTIN_TMIABT,
2299 ARM_BUILTIN_TMIATB,
2300 ARM_BUILTIN_TMIATT,
2301
2302 ARM_BUILTIN_TMOVMSKB,
2303 ARM_BUILTIN_TMOVMSKH,
2304 ARM_BUILTIN_TMOVMSKW,
2305
2306 ARM_BUILTIN_TBCSTB,
2307 ARM_BUILTIN_TBCSTH,
2308 ARM_BUILTIN_TBCSTW,
2309
2310 ARM_BUILTIN_WMADDS,
2311 ARM_BUILTIN_WMADDU,
2312
2313 ARM_BUILTIN_WPACKHSS,
2314 ARM_BUILTIN_WPACKWSS,
2315 ARM_BUILTIN_WPACKDSS,
2316 ARM_BUILTIN_WPACKHUS,
2317 ARM_BUILTIN_WPACKWUS,
2318 ARM_BUILTIN_WPACKDUS,
2319
2320 ARM_BUILTIN_WADDB,
2321 ARM_BUILTIN_WADDH,
2322 ARM_BUILTIN_WADDW,
2323 ARM_BUILTIN_WADDSSB,
2324 ARM_BUILTIN_WADDSSH,
2325 ARM_BUILTIN_WADDSSW,
2326 ARM_BUILTIN_WADDUSB,
2327 ARM_BUILTIN_WADDUSH,
2328 ARM_BUILTIN_WADDUSW,
2329 ARM_BUILTIN_WSUBB,
2330 ARM_BUILTIN_WSUBH,
2331 ARM_BUILTIN_WSUBW,
2332 ARM_BUILTIN_WSUBSSB,
2333 ARM_BUILTIN_WSUBSSH,
2334 ARM_BUILTIN_WSUBSSW,
2335 ARM_BUILTIN_WSUBUSB,
2336 ARM_BUILTIN_WSUBUSH,
2337 ARM_BUILTIN_WSUBUSW,
2338
2339 ARM_BUILTIN_WAND,
2340 ARM_BUILTIN_WANDN,
2341 ARM_BUILTIN_WOR,
2342 ARM_BUILTIN_WXOR,
2343
2344 ARM_BUILTIN_WCMPEQB,
2345 ARM_BUILTIN_WCMPEQH,
2346 ARM_BUILTIN_WCMPEQW,
2347 ARM_BUILTIN_WCMPGTUB,
2348 ARM_BUILTIN_WCMPGTUH,
2349 ARM_BUILTIN_WCMPGTUW,
2350 ARM_BUILTIN_WCMPGTSB,
2351 ARM_BUILTIN_WCMPGTSH,
2352 ARM_BUILTIN_WCMPGTSW,
2353
2354 ARM_BUILTIN_TEXTRMSB,
2355 ARM_BUILTIN_TEXTRMSH,
2356 ARM_BUILTIN_TEXTRMSW,
2357 ARM_BUILTIN_TEXTRMUB,
2358 ARM_BUILTIN_TEXTRMUH,
2359 ARM_BUILTIN_TEXTRMUW,
2360 ARM_BUILTIN_TINSRB,
2361 ARM_BUILTIN_TINSRH,
2362 ARM_BUILTIN_TINSRW,
2363
2364 ARM_BUILTIN_WMAXSW,
2365 ARM_BUILTIN_WMAXSH,
2366 ARM_BUILTIN_WMAXSB,
2367 ARM_BUILTIN_WMAXUW,
2368 ARM_BUILTIN_WMAXUH,
2369 ARM_BUILTIN_WMAXUB,
2370 ARM_BUILTIN_WMINSW,
2371 ARM_BUILTIN_WMINSH,
2372 ARM_BUILTIN_WMINSB,
2373 ARM_BUILTIN_WMINUW,
2374 ARM_BUILTIN_WMINUH,
2375 ARM_BUILTIN_WMINUB,
2376
2377 ARM_BUILTIN_WMULUM,
2378 ARM_BUILTIN_WMULSM,
2379 ARM_BUILTIN_WMULUL,
2380
2381 ARM_BUILTIN_PSADBH,
2382 ARM_BUILTIN_WSHUFH,
2383
2384 ARM_BUILTIN_WSLLH,
2385 ARM_BUILTIN_WSLLW,
2386 ARM_BUILTIN_WSLLD,
2387 ARM_BUILTIN_WSRAH,
2388 ARM_BUILTIN_WSRAW,
2389 ARM_BUILTIN_WSRAD,
2390 ARM_BUILTIN_WSRLH,
2391 ARM_BUILTIN_WSRLW,
2392 ARM_BUILTIN_WSRLD,
2393 ARM_BUILTIN_WRORH,
2394 ARM_BUILTIN_WRORW,
2395 ARM_BUILTIN_WRORD,
2396 ARM_BUILTIN_WSLLHI,
2397 ARM_BUILTIN_WSLLWI,
2398 ARM_BUILTIN_WSLLDI,
2399 ARM_BUILTIN_WSRAHI,
2400 ARM_BUILTIN_WSRAWI,
2401 ARM_BUILTIN_WSRADI,
2402 ARM_BUILTIN_WSRLHI,
2403 ARM_BUILTIN_WSRLWI,
2404 ARM_BUILTIN_WSRLDI,
2405 ARM_BUILTIN_WRORHI,
2406 ARM_BUILTIN_WRORWI,
2407 ARM_BUILTIN_WRORDI,
2408
2409 ARM_BUILTIN_WUNPCKIHB,
2410 ARM_BUILTIN_WUNPCKIHH,
2411 ARM_BUILTIN_WUNPCKIHW,
2412 ARM_BUILTIN_WUNPCKILB,
2413 ARM_BUILTIN_WUNPCKILH,
2414 ARM_BUILTIN_WUNPCKILW,
2415
2416 ARM_BUILTIN_WUNPCKEHSB,
2417 ARM_BUILTIN_WUNPCKEHSH,
2418 ARM_BUILTIN_WUNPCKEHSW,
2419 ARM_BUILTIN_WUNPCKEHUB,
2420 ARM_BUILTIN_WUNPCKEHUH,
2421 ARM_BUILTIN_WUNPCKEHUW,
2422 ARM_BUILTIN_WUNPCKELSB,
2423 ARM_BUILTIN_WUNPCKELSH,
2424 ARM_BUILTIN_WUNPCKELSW,
2425 ARM_BUILTIN_WUNPCKELUB,
2426 ARM_BUILTIN_WUNPCKELUH,
2427 ARM_BUILTIN_WUNPCKELUW,
2428
2429 ARM_BUILTIN_THREAD_POINTER,
2430
2431 ARM_BUILTIN_NEON_BASE,
2432
2433 ARM_BUILTIN_MAX = ARM_BUILTIN_NEON_BASE /* FIXME: Wrong! */
2434 };
2435
2436 /* Do not emit .note.GNU-stack by default. */
2437 #ifndef NEED_INDICATE_EXEC_STACK
2438 #define NEED_INDICATE_EXEC_STACK 0
2439 #endif
2440
2441 /* The maximum number of parallel loads or stores we support in an ldm/stm
2442 instruction. */
2443 #define MAX_LDM_STM_OPS 4
2444
2445 #endif /* ! GCC_ARM_H */