]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/c4x/c4x.h
configure.in: Check whether assembler supports section merging.
[thirdparty/gcc.git] / gcc / config / c4x / c4x.h
1 /* Definitions of target machine for GNU compiler. TMS320C[34]x
2 Copyright (C) 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 Contributed by Michael Hayes (m.hayes@elec.canterbury.ac.nz)
6 and Herman Ten Brugge (Haj.Ten.Brugge@net.HCC.nl).
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "hwint.h"
26
27 /* RUN-TIME TARGET SPECIFICATION. */
28
29 #define C4x 1
30
31 /* Name of the c4x assembler. */
32
33 #define ASM_PROG "c4x-as"
34
35 /* Name of the c4x linker. */
36
37 #define LD_PROG "c4x-ld"
38
39 /* Define assembler options. */
40
41 #define ASM_SPEC "\
42 %{!mcpu=30:%{!mcpu=31:%{!mcpu=32:%{!mcpu=33:%{!mcpu=40:%{!mcpu=44:\
43 %{!m30:%{!m40:-m40}}}}}}}} \
44 %{mcpu=30:-m30} \
45 %{mcpu=31:-m31} \
46 %{mcpu=32:-m32} \
47 %{mcpu=33:-m33} \
48 %{mcpu=40:-m40} \
49 %{mcpu=44:-m44} \
50 %{m30:-m30} \
51 %{m31:-m31} \
52 %{m32:-m32} \
53 %{m33:-m33} \
54 %{m40:-m40} \
55 %{m44:-m44} \
56 %{mmemparm:-p} %{mregparm:-r} \
57 %{!mmemparm:%{!mregparm:-r}} \
58 %{mbig:-b} %{msmall:-s} \
59 %{!msmall:%{!mbig:-b}}"
60
61 /* Define linker options. */
62
63 #define LINK_SPEC "\
64 %{m30:--architecture c3x} \
65 %{m31:--architecture c3x} \
66 %{m32:--architecture c3x} \
67 %{m33:--architecture c3x} \
68 %{mcpu=30:--architecture c3x} \
69 %{mcpu=31:--architecture c3x} \
70 %{mcpu=32:--architecture c3x} \
71 %{mcpu=33:--architecture c3x}"
72
73 /* Define C preprocessor options. */
74
75 #define CPP_SPEC "\
76 %{!m30:%{!m31:%{!m32:%{!m33:%{!mcpu=30:%{!mcpu=31:%{!mcpu=32:%{!mcpu=33:\
77 %{!mcpu=40:%{!mcpu=44:%{\
78 !m40:%{!m44:-D_TMS320C4x -D_C4x -D_TMS320C40 -D_C40}}}}}}}}}}}} \
79 %{mcpu=30:-D_TMS320C3x -D_C3x -D_TMS320C30 -D_C30 } \
80 %{m30:-D_TMS320C3x -D_C3x -D_TMS320C30 -D_C30 } \
81 %{mcpu=31:-D_TMS320C3x -D_C3x -D_TMS320C31 -D_C31 } \
82 %{m31:-D_TMS320C3x -D_C3x -D_TMS320C31 -D_C31 } \
83 %{mcpu=32:-D_TMS320C3x -D_C3x -D_TMS320C32 -D_C32 } \
84 %{m32:-D_TMS320C3x -D_C3x -D_TMS320C32 -D_C32 } \
85 %{mcpu=33:-D_TMS320C3x -D_C3x -D_TMS320C33 -D_C33 } \
86 %{m33:-D_TMS320C3x -D_C3x -D_TMS320C33 -D_C33 } \
87 %{mcpu=40:-D_TMS320C4x -D_C4x -D_TMS320C40 -D_C40 } \
88 %{m40:-D_TMS320C4x -D_C4x -D_TMS320C40 -D_C40 } \
89 %{mcpu=44:-D_TMS320C4x -D_C4x -D_TMS320C44 -D_C44 } \
90 %{m44:-D_TMS320C4x -D_C4x -D_TMS320C44 -D_C44 } \
91 %{mmemparm:-U_REGPARM }%{mregparm:-D_REGPARM } \
92 %{!mmemparm:%{!mregparm:-D_REGPARM }} \
93 %{msmall:-U_BIGMODEL } %{mbig:-D_BIGMODEL } \
94 %{!msmall:%{!mbig:-D_BIGMODEL }} \
95 %{finline-functions:-D_INLINE }"
96
97 /* Specify the end file to link with. */
98
99 #define ENDFILE_SPEC ""
100
101 /* Target compilation option flags. */
102
103 #define SMALL_MEMORY_FLAG 0x0000001 /* Small memory model. */
104 #define MPYI_FLAG 0x0000002 /* Use 24-bit MPYI for C3x. */
105 #define FAST_FIX_FLAG 0x0000004 /* Fast fixing of floats. */
106 #define RPTS_FLAG 0x0000008 /* Allow use of RPTS. */
107 #define C3X_FLAG 0x0000010 /* Emit C3x code. */
108 #define TI_FLAG 0x0000020 /* Be compatible with TI assembler. */
109 #define PARANOID_FLAG 0x0000040 /* Be paranoid about DP reg. in ISRs. */
110 #define MEMPARM_FLAG 0x0000080 /* Pass arguments on stack. */
111 #define DEVEL_FLAG 0x0000100 /* Enable features under development. */
112 #define RPTB_FLAG 0x0000200 /* Enable repeat block. */
113 #define BK_FLAG 0x0000400 /* Use BK as general register. */
114 #define DB_FLAG 0x0000800 /* Use decrement and branch for C3x. */
115 #define DEBUG_FLAG 0x0001000 /* Enable debugging of GCC. */
116 #define HOIST_FLAG 0x0002000 /* Force constants into registers. */
117 #define LOOP_UNSIGNED_FLAG 0x0004000 /* Allow unsigned loop counters. */
118 #define FORCE_FLAG 0x0008000 /* Force op0 and op1 to be same. */
119 #define PRESERVE_FLOAT_FLAG 0x0010000 /* Save all 40 bits for floats. */
120 #define PARALLEL_INSN_FLAG 0x0020000 /* Allow parallel insns. */
121 #define PARALLEL_MPY_FLAG 0x0040000 /* Allow MPY||ADD, MPY||SUB insns. */
122 #define ALIASES_FLAG 0x0080000 /* Assume mem refs possibly aliased. */
123
124 #define C30_FLAG 0x0100000 /* Emit C30 code. */
125 #define C31_FLAG 0x0200000 /* Emit C31 code. */
126 #define C32_FLAG 0x0400000 /* Emit C32 code. */
127 #define C33_FLAG 0x0400000 /* Emit C33 code. */
128 #define C40_FLAG 0x1000000 /* Emit C40 code. */
129 #define C44_FLAG 0x2000000 /* Emit C44 code. */
130
131 /* Run-time compilation parameters selecting different hardware subsets.
132
133 Macro to define tables used to set the flags.
134 This is a list in braces of triplets in braces,
135 each pair being { "NAME", VALUE, "DESCRIPTION" }
136 where VALUE is the bits to set or minus the bits to clear.
137 An empty string NAME is used to identify the default VALUE. */
138
139 #define TARGET_SWITCHES \
140 { { "small", SMALL_MEMORY_FLAG, \
141 N_("Small memory model") }, \
142 { "big", -SMALL_MEMORY_FLAG, \
143 N_("Big memory model") }, \
144 { "mpyi", MPYI_FLAG, \
145 N_("Use MPYI instruction for C3x") }, \
146 { "no-mpyi", -MPYI_FLAG, \
147 N_("Do not use MPYI instruction for C3x") }, \
148 { "fast-fix", FAST_FIX_FLAG, \
149 N_("Use fast but approximate float to integer conversion") }, \
150 { "no-fast-fix", -FAST_FIX_FLAG, \
151 N_("Use slow but accurate float to integer conversion") }, \
152 { "rpts", RPTS_FLAG, \
153 N_("Enable use of RTPS instruction") }, \
154 { "no-rpts", -RPTS_FLAG, \
155 N_("Disable use of RTPS instruction") }, \
156 { "rptb", RPTB_FLAG, \
157 N_("Enable use of RTPB instruction") }, \
158 { "no-rptb", -RPTB_FLAG, \
159 N_("Disable use of RTPB instruction") }, \
160 { "30", C30_FLAG, \
161 N_("Generate code for C30 CPU")}, \
162 { "31", C31_FLAG, \
163 N_("Generate code for C31 CPU")}, \
164 { "32", C32_FLAG, \
165 N_("Generate code for C32 CPU")}, \
166 { "33", C33_FLAG, \
167 N_("Generate code for C33 CPU")}, \
168 { "40", C40_FLAG, \
169 N_("Generate code for C40 CPU")}, \
170 { "44", C44_FLAG, \
171 N_("Generate code for C44 CPU")}, \
172 { "ti", TI_FLAG, \
173 N_("Emit code compatible with TI tools")}, \
174 { "no-ti", -TI_FLAG, \
175 N_("Emit code to use GAS extensions")}, \
176 { "paranoid", PARANOID_FLAG, \
177 N_("Save DP across ISR in small memory model") }, \
178 { "no-paranoid", -PARANOID_FLAG, \
179 N_("Don't save DP across ISR in small memory model") }, \
180 { "isr-dp-reload", PARANOID_FLAG, \
181 N_("Save DP across ISR in small memory model") }, \
182 { "no-isr-dp-reload", -PARANOID_FLAG, \
183 N_("Don't save DP across ISR in small memory model") }, \
184 { "memparm", MEMPARM_FLAG, \
185 N_("Pass arguments on the stack") }, \
186 { "regparm", -MEMPARM_FLAG, \
187 N_("Pass arguments in registers") }, \
188 { "devel", DEVEL_FLAG, \
189 N_("Enable new features under development") }, \
190 { "no-devel", -DEVEL_FLAG, \
191 N_("Disable new features under development") }, \
192 { "bk", BK_FLAG, \
193 N_("Use the BK register as a general purpose register") }, \
194 { "no-bk", -BK_FLAG, \
195 N_("Do not allocate BK register") }, \
196 { "db", DB_FLAG, \
197 N_("Enable use of DB instruction") }, \
198 { "no-db", -DB_FLAG, \
199 N_("Disable use of DB instruction") }, \
200 { "debug", DEBUG_FLAG, \
201 N_("Enable debugging") }, \
202 { "no-debug", -DEBUG_FLAG, \
203 N_("Disable debugging") }, \
204 { "hoist", HOIST_FLAG, \
205 N_("Force constants into registers to improve hoisting") }, \
206 { "no-hoist", -HOIST_FLAG, \
207 N_("Don't force constants into registers") }, \
208 { "force", FORCE_FLAG, \
209 N_("Force RTL generation to emit valid 3 operand insns") }, \
210 { "no-force", -FORCE_FLAG, \
211 N_("Allow RTL generation to emit invalid 3 operand insns") }, \
212 { "loop-unsigned", LOOP_UNSIGNED_FLAG, \
213 N_("Allow unsigned interation counts for RPTB/DB") }, \
214 { "no-loop-unsigned", -LOOP_UNSIGNED_FLAG, \
215 N_("Disallow unsigned iteration counts for RPTB/DB") }, \
216 { "preserve-float", PRESERVE_FLOAT_FLAG, \
217 N_("Preserve all 40 bits of FP reg across call") }, \
218 { "no-preserve-float", -PRESERVE_FLOAT_FLAG, \
219 N_("Only preserve 32 bits of FP reg across call") }, \
220 { "parallel-insns", PARALLEL_INSN_FLAG, \
221 N_("Enable parallel instructions") }, \
222 { "no-parallel-insns", -PARALLEL_INSN_FLAG, \
223 N_("Disable parallel instructions") }, \
224 { "parallel-mpy", PARALLEL_MPY_FLAG, \
225 N_("Enable MPY||ADD and MPY||SUB instructions") }, \
226 { "no-parallel-mpy", -PARALLEL_MPY_FLAG, \
227 N_("Disable MPY||ADD and MPY||SUB instructions") }, \
228 { "aliases", ALIASES_FLAG, \
229 N_("Assume that pointers may be aliased") }, \
230 { "no-aliases", -ALIASES_FLAG, \
231 N_("Assume that pointers not aliased") }, \
232 { "", TARGET_DEFAULT, ""} }
233
234 /* Default target switches. */
235
236 /* Play safe, not the fastest code. */
237 #define TARGET_DEFAULT ALIASES_FLAG | PARALLEL_INSN_FLAG \
238 | PARALLEL_MPY_FLAG | RPTB_FLAG
239
240 /* Caveats:
241 Max iteration count for RPTB/RPTS is 2^31 + 1.
242 Max iteration count for DB is 2^31 + 1 for C40, but 2^23 + 1 for C30.
243 RPTS blocks interrupts. */
244
245
246 extern int target_flags;
247
248 #define TARGET_INLINE (! optimize_size) /* Inline MPYI. */
249 #define TARGET_SMALL_REG_CLASS 0
250
251 #define TARGET_SMALL (target_flags & SMALL_MEMORY_FLAG)
252 #define TARGET_MPYI (!TARGET_C3X || (target_flags & MPYI_FLAG))
253 #define TARGET_FAST_FIX (target_flags & FAST_FIX_FLAG)
254 #define TARGET_RPTS (target_flags & RPTS_FLAG)
255 #define TARGET_TI (target_flags & TI_FLAG)
256 #define TARGET_PARANOID (target_flags & PARANOID_FLAG)
257 #define TARGET_MEMPARM (target_flags & MEMPARM_FLAG)
258 #define TARGET_DEVEL (target_flags & DEVEL_FLAG)
259 #define TARGET_RPTB (target_flags & RPTB_FLAG \
260 && optimize >= 2)
261 #define TARGET_BK (target_flags & BK_FLAG)
262 #define TARGET_DB (! TARGET_C3X || (target_flags & DB_FLAG))
263 #define TARGET_DEBUG (target_flags & DEBUG_FLAG)
264 #define TARGET_HOIST (target_flags & HOIST_FLAG)
265 #define TARGET_LOOP_UNSIGNED (target_flags & LOOP_UNSIGNED_FLAG)
266 #define TARGET_FORCE (target_flags & FORCE_FLAG)
267 #define TARGET_PRESERVE_FLOAT (target_flags & PRESERVE_FLOAT_FLAG)
268 #define TARGET_PARALLEL ((target_flags & PARALLEL_INSN_FLAG) \
269 && optimize >= 2)
270 #define TARGET_PARALLEL_MPY (TARGET_PARALLEL \
271 && (target_flags & PARALLEL_MPY_FLAG))
272 #define TARGET_ALIASES (target_flags & ALIASES_FLAG)
273
274 #define TARGET_C3X (target_flags & C3X_FLAG)
275 #define TARGET_C30 (target_flags & C30_FLAG)
276 #define TARGET_C31 (target_flags & C31_FLAG)
277 #define TARGET_C32 (target_flags & C32_FLAG)
278 #define TARGET_C33 (target_flags & C33_FLAG)
279 #define TARGET_C40 (target_flags & C40_FLAG)
280 #define TARGET_C44 (target_flags & C44_FLAG)
281
282 /* Define some options to control code generation. */
283 #define TARGET_LOAD_ADDRESS (1 || (! TARGET_C3X && ! TARGET_SMALL))
284 /* Nonzero to convert direct memory references into HIGH/LO_SUM pairs
285 during RTL generation. */
286 #define TARGET_EXPOSE_LDP 0
287 /* Nonzero to force loading of direct memory references into a register. */
288 #define TARGET_LOAD_DIRECT_MEMS 0
289
290 /* -mrpts allows the use of the RPTS instruction irregardless.
291 -mrpts=max-cycles will use RPTS if the number of cycles is constant
292 and less than max-cycles. */
293
294 #define TARGET_RPTS_CYCLES(CYCLES) (TARGET_RPTS || (CYCLES) < c4x_rpts_cycles)
295
296 #define BCT_CHECK_LOOP_ITERATIONS !(TARGET_LOOP_UNSIGNED)
297
298 /* -mcpu=XX with XX = target DSP version number. */
299
300 /* This macro is similar to `TARGET_SWITCHES' but defines names of
301 command options that have values. Its definition is an
302 initializer with a subgrouping for each command option.
303
304 Each subgrouping contains a string constant, that defines the
305 fixed part of the option name, and the address of a variable.
306 The variable, type `char *', is set to the variable part of the
307 given option if the fixed part matches. The actual option name
308 is made by appending `-m' to the specified name.
309
310 Here is an example which defines `-mshort-data-NUMBER'. If the
311 given option is `-mshort-data-512', the variable `m88k_short_data'
312 will be set to the string `"512"'.
313
314 extern char *m88k_short_data;
315 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
316
317 extern const char *c4x_rpts_cycles_string, *c4x_cpu_version_string;
318
319 #define TARGET_OPTIONS \
320 { {"rpts=", &c4x_rpts_cycles_string, \
321 N_("Specify maximum number of iterations for RPTS") }, \
322 {"cpu=", &c4x_cpu_version_string, \
323 N_("Select CPU to generate code for") } }
324
325 /* Sometimes certain combinations of command options do not make sense
326 on a particular target machine. You can define a macro
327 `OVERRIDE_OPTIONS' to take account of this. This macro, if
328 defined, is executed once just after all the command options have
329 been parsed. */
330
331 #define OVERRIDE_OPTIONS c4x_override_options ()
332
333 /* Define this to change the optimizations performed by default. */
334
335 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) c4x_optimization_options(LEVEL, SIZE)
336
337 /* Run Time Target Specification. */
338
339 #define TARGET_VERSION fprintf (stderr, " (TMS320C[34]x, TI syntax)");
340
341 /* Storage Layout. */
342
343 #define BITS_BIG_ENDIAN 0
344 #define BYTES_BIG_ENDIAN 0
345 #define WORDS_BIG_ENDIAN 0
346
347 /* Technically, we are little endian, but we put the floats out as
348 whole longs and this makes GCC put them out in the right order. */
349
350 #define FLOAT_WORDS_BIG_ENDIAN 1
351
352 /* Note the ANSI C standard requires sizeof(char) = 1. On the C[34]x
353 all integral and floating point data types are stored in memory as
354 32-bits (floating point types can be stored as 40-bits in the
355 extended precision registers), so sizeof(char) = sizeof(short) =
356 sizeof(int) = sizeof(long) = sizeof(float) = sizeof(double) = 1. */
357
358 #define BITS_PER_UNIT 32
359 #define BITS_PER_WORD 32
360 #define UNITS_PER_WORD 1
361 #define POINTER_SIZE 32
362 #define PARM_BOUNDARY 32
363 #define STACK_BOUNDARY 32
364 #define FUNCTION_BOUNDARY 32
365 #define BIGGEST_ALIGNMENT 32
366 #define EMPTY_FIELD_BOUNDARY 32
367 #define STRICT_ALIGNMENT 0
368 #define TARGET_FLOAT_FORMAT C4X_FLOAT_FORMAT
369 #define MAX_FIXED_MODE_SIZE 64 /* HImode. */
370
371 /* If a structure has a floating point field then force structure
372 to have BLKMODE. */
373 #define MEMBER_TYPE_FORCES_BLK(FIELD) \
374 (TREE_CODE (TREE_TYPE (FIELD)) == REAL_TYPE)
375
376 /* Number of bits in the high and low parts of a two stage
377 load of an immediate constant. */
378 #define BITS_PER_HIGH 16
379 #define BITS_PER_LO_SUM 16
380
381 /* Use the internal floating point stuff in the compiler and not the
382 host floating point stuff. */
383
384 #define REAL_ARITHMETIC
385
386 /* Define register numbers. */
387
388 /* Extended-precision registers. */
389
390 #define R0_REGNO 0
391 #define R1_REGNO 1
392 #define R2_REGNO 2
393 #define R3_REGNO 3
394 #define R4_REGNO 4
395 #define R5_REGNO 5
396 #define R6_REGNO 6
397 #define R7_REGNO 7
398
399 /* Auxiliary (address) registers. */
400
401 #define AR0_REGNO 8
402 #define AR1_REGNO 9
403 #define AR2_REGNO 10
404 #define AR3_REGNO 11
405 #define AR4_REGNO 12
406 #define AR5_REGNO 13
407 #define AR6_REGNO 14
408 #define AR7_REGNO 15
409
410 /* Data page register. */
411
412 #define DP_REGNO 16
413
414 /* Index registers. */
415
416 #define IR0_REGNO 17
417 #define IR1_REGNO 18
418
419 /* Block size register. */
420
421 #define BK_REGNO 19
422
423 /* Stack pointer. */
424
425 #define SP_REGNO 20
426
427 /* Status register. */
428
429 #define ST_REGNO 21
430
431 /* Misc. interrupt registers. */
432
433 #define DIE_REGNO 22 /* C4x only. */
434 #define IE_REGNO 22 /* C3x only. */
435 #define IIE_REGNO 23 /* C4x only. */
436 #define IF_REGNO 23 /* C3x only. */
437 #define IIF_REGNO 24 /* C4x only. */
438 #define IOF_REGNO 24 /* C3x only. */
439
440 /* Repeat block registers. */
441
442 #define RS_REGNO 25
443 #define RE_REGNO 26
444 #define RC_REGNO 27
445
446 /* Additional extended-precision registers. */
447
448 #define R8_REGNO 28 /* C4x only. */
449 #define R9_REGNO 29 /* C4x only. */
450 #define R10_REGNO 30 /* C4x only. */
451 #define R11_REGNO 31 /* C4x only. */
452
453 #define FIRST_PSEUDO_REGISTER 32
454
455 /* Extended precision registers (low set). */
456
457 #define IS_R0R1_REGNO(r) \
458 ((unsigned int)((r) - R0_REGNO) <= (R1_REGNO - R0_REGNO))
459 #define IS_R2R3_REGNO(r) \
460 ((unsigned int)((r) - R2_REGNO) <= (R3_REGNO - R2_REGNO))
461 #define IS_EXT_LOW_REGNO(r) \
462 ((unsigned int)((r) - R0_REGNO) <= (R7_REGNO - R0_REGNO))
463
464 /* Extended precision registers (high set). */
465
466 #define IS_EXT_HIGH_REGNO(r) \
467 (! TARGET_C3X \
468 && ((unsigned int) ((r) - R8_REGNO) <= (R11_REGNO - R8_REGNO)))
469
470 /* Address registers. */
471
472 #define IS_AUX_REGNO(r) \
473 ((unsigned int)((r) - AR0_REGNO) <= (AR7_REGNO - AR0_REGNO))
474 #define IS_ADDR_REGNO(r) IS_AUX_REGNO(r)
475 #define IS_DP_REGNO(r) ((r) == DP_REGNO)
476 #define IS_INDEX_REGNO(r) (((r) == IR0_REGNO) || ((r) == IR1_REGNO))
477 #define IS_SP_REGNO(r) ((r) == SP_REGNO)
478 #define IS_BK_REGNO(r) (TARGET_BK && (r) == BK_REGNO)
479
480 /* Misc registers. */
481
482 #define IS_ST_REGNO(r) ((r) == ST_REGNO)
483 #define IS_RC_REGNO(r) ((r) == RC_REGNO)
484 #define IS_REPEAT_REGNO(r) (((r) >= RS_REGNO) && ((r) <= RC_REGNO))
485
486 /* Composite register sets. */
487
488 #define IS_ADDR_OR_INDEX_REGNO(r) (IS_ADDR_REGNO(r) || IS_INDEX_REGNO(r))
489 #define IS_EXT_REGNO(r) (IS_EXT_LOW_REGNO(r) || IS_EXT_HIGH_REGNO(r))
490 #define IS_STD_REGNO(r) (IS_ADDR_OR_INDEX_REGNO(r) \
491 || IS_REPEAT_REGNO(r) \
492 || IS_SP_REGNO(r) \
493 || IS_BK_REGNO(r))
494 #define IS_INT_REGNO(r) (IS_EXT_REGNO(r) || IS_STD_REGNO(r))
495 #define IS_GROUP1_REGNO(r) (IS_ADDR_OR_INDEX_REGNO(r) || IS_BK_REGNO(r))
496 #define IS_INT_CALL_SAVED_REGNO(r) (((r) == R4_REGNO) || ((r) == R5_REGNO) \
497 || ((r) == R8_REGNO))
498 #define IS_FLOAT_CALL_SAVED_REGNO(r) (((r) == R6_REGNO) || ((r) == R7_REGNO))
499
500 #define IS_PSEUDO_REGNO(r) ((r) >= FIRST_PSEUDO_REGISTER)
501 #define IS_R0R1_OR_PSEUDO_REGNO(r) (IS_R0R1_REGNO(r) || IS_PSEUDO_REGNO(r))
502 #define IS_R2R3_OR_PSEUDO_REGNO(r) (IS_R2R3_REGNO(r) || IS_PSEUDO_REGNO(r))
503 #define IS_EXT_OR_PSEUDO_REGNO(r) (IS_EXT_REGNO(r) || IS_PSEUDO_REGNO(r))
504 #define IS_STD_OR_PSEUDO_REGNO(r) (IS_STD_REGNO(r) || IS_PSEUDO_REGNO(r))
505 #define IS_INT_OR_PSEUDO_REGNO(r) (IS_INT_REGNO(r) || IS_PSEUDO_REGNO(r))
506 #define IS_ADDR_OR_PSEUDO_REGNO(r) (IS_ADDR_REGNO(r) || IS_PSEUDO_REGNO(r))
507 #define IS_INDEX_OR_PSEUDO_REGNO(r) (IS_INDEX_REGNO(r) || IS_PSEUDO_REGNO(r))
508 #define IS_EXT_LOW_OR_PSEUDO_REGNO(r) (IS_EXT_LOW_REGNO(r) \
509 || IS_PSEUDO_REGNO(r))
510 #define IS_DP_OR_PSEUDO_REGNO(r) (IS_DP_REGNO(r) || IS_PSEUDO_REGNO(r))
511 #define IS_SP_OR_PSEUDO_REGNO(r) (IS_SP_REGNO(r) || IS_PSEUDO_REGNO(r))
512 #define IS_ST_OR_PSEUDO_REGNO(r) (IS_ST_REGNO(r) || IS_PSEUDO_REGNO(r))
513 #define IS_RC_OR_PSEUDO_REGNO(r) (IS_RC_REGNO(r) || IS_PSEUDO_REGNO(r))
514
515 #define IS_PSEUDO_REG(op) (IS_PSEUDO_REGNO(REGNO(op)))
516 #define IS_ADDR_REG(op) (IS_ADDR_REGNO(REGNO(op)))
517 #define IS_INDEX_REG(op) (IS_INDEX_REGNO(REGNO(op)))
518 #define IS_GROUP1_REG(r) (IS_GROUP1_REGNO(REGNO(op)))
519 #define IS_SP_REG(op) (IS_SP_REGNO(REGNO(op)))
520 #define IS_STD_REG(op) (IS_STD_REGNO(REGNO(op)))
521 #define IS_EXT_REG(op) (IS_EXT_REGNO(REGNO(op)))
522
523 #define IS_R0R1_OR_PSEUDO_REG(op) (IS_R0R1_OR_PSEUDO_REGNO(REGNO(op)))
524 #define IS_R2R3_OR_PSEUDO_REG(op) (IS_R2R3_OR_PSEUDO_REGNO(REGNO(op)))
525 #define IS_EXT_OR_PSEUDO_REG(op) (IS_EXT_OR_PSEUDO_REGNO(REGNO(op)))
526 #define IS_STD_OR_PSEUDO_REG(op) (IS_STD_OR_PSEUDO_REGNO(REGNO(op)))
527 #define IS_EXT_LOW_OR_PSEUDO_REG(op) (IS_EXT_LOW_OR_PSEUDO_REGNO(REGNO(op)))
528 #define IS_INT_OR_PSEUDO_REG(op) (IS_INT_OR_PSEUDO_REGNO(REGNO(op)))
529
530 #define IS_ADDR_OR_PSEUDO_REG(op) (IS_ADDR_OR_PSEUDO_REGNO(REGNO(op)))
531 #define IS_INDEX_OR_PSEUDO_REG(op) (IS_INDEX_OR_PSEUDO_REGNO(REGNO(op)))
532 #define IS_DP_OR_PSEUDO_REG(op) (IS_DP_OR_PSEUDO_REGNO(REGNO(op)))
533 #define IS_SP_OR_PSEUDO_REG(op) (IS_SP_OR_PSEUDO_REGNO(REGNO(op)))
534 #define IS_ST_OR_PSEUDO_REG(op) (IS_ST_OR_PSEUDO_REGNO(REGNO(op)))
535 #define IS_RC_OR_PSEUDO_REG(op) (IS_RC_OR_PSEUDO_REGNO(REGNO(op)))
536
537 /* 1 for registers that have pervasive standard uses
538 and are not available for the register allocator. */
539
540 #define FIXED_REGISTERS \
541 { \
542 /* R0 R1 R2 R3 R4 R5 R6 R7 AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7. */ \
543 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
544 /* DP IR0 IR1 BK SP ST DIE IIE IIF RS RE RC R8 R9 R10 R11. */ \
545 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 \
546 }
547
548 /* 1 for registers not available across function calls.
549 These must include the FIXED_REGISTERS and also any
550 registers that can be used without being saved.
551 The latter must include the registers where values are returned
552 and the register where structure-value addresses are passed.
553 Aside from that, you can include as many other registers as you like.
554
555 Note that the extended precision registers are only saved in some
556 modes. The macro HARD_REGNO_CALL_CLOBBERED specifies which modes
557 get clobbered for a given regno. */
558
559 #define CALL_USED_REGISTERS \
560 { \
561 /* R0 R1 R2 R3 R4 R5 R6 R7 AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7. */ \
562 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, \
563 /* DP IR0 IR1 BK SP ST DIE IIE IIF RS RE RC R8 R9 R10 R11. */ \
564 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1 \
565 }
566
567 /* Macro to conditionally modify fixed_regs/call_used_regs. */
568
569 #define CONDITIONAL_REGISTER_USAGE \
570 { \
571 if (! TARGET_BK) \
572 { \
573 fixed_regs[BK_REGNO] = 1; \
574 call_used_regs[BK_REGNO] = 1; \
575 c4x_regclass_map[BK_REGNO] = NO_REGS; \
576 } \
577 if (TARGET_C3X) \
578 { \
579 int i; \
580 \
581 reg_names[DIE_REGNO] = "ie"; /* Clobber die. */ \
582 reg_names[IF_REGNO] = "if"; /* Clobber iie. */ \
583 reg_names[IOF_REGNO] = "iof"; /* Clobber iif. */ \
584 \
585 for (i = R8_REGNO; i <= R11_REGNO; i++) \
586 { \
587 fixed_regs[i] = call_used_regs[i] = 1; \
588 c4x_regclass_map[i] = NO_REGS; \
589 } \
590 } \
591 if (TARGET_PRESERVE_FLOAT) \
592 { \
593 c4x_caller_save_map[R6_REGNO] = HFmode; \
594 c4x_caller_save_map[R7_REGNO] = HFmode; \
595 } \
596 }
597
598 /* Order of Allocation of Registers. */
599
600 /* List the order in which to allocate registers. Each register must be
601 listed once, even those in FIXED_REGISTERS.
602
603 First allocate registers that don't need preservation across calls,
604 except index and address registers. Then allocate data registers
605 that require preservation across calls (even though this invokes an
606 extra overhead of having to save/restore these registers). Next
607 allocate the address and index registers, since using these
608 registers for arithmetic can cause pipeline stalls. Finally
609 allocated the fixed registers which won't be allocated anyhow. */
610
611 #define REG_ALLOC_ORDER \
612 {R0_REGNO, R1_REGNO, R2_REGNO, R3_REGNO, \
613 R9_REGNO, R10_REGNO, R11_REGNO, \
614 RS_REGNO, RE_REGNO, RC_REGNO, BK_REGNO, \
615 R4_REGNO, R5_REGNO, R6_REGNO, R7_REGNO, R8_REGNO, \
616 AR0_REGNO, AR1_REGNO, AR2_REGNO, AR3_REGNO, \
617 AR4_REGNO, AR5_REGNO, AR6_REGNO, AR7_REGNO, \
618 IR0_REGNO, IR1_REGNO, \
619 SP_REGNO, DP_REGNO, ST_REGNO, IE_REGNO, IF_REGNO, IOF_REGNO}
620
621 /* A C expression that is nonzero if hard register number REGNO2 can be
622 considered for use as a rename register for REGNO1 */
623
624 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
625 c4x_hard_regno_rename_ok((REGNO1), (REGNO2))
626
627 /* Determine which register classes are very likely used by spill registers.
628 local-alloc.c won't allocate pseudos that have these classes as their
629 preferred class unless they are "preferred or nothing". */
630
631 #define CLASS_LIKELY_SPILLED_P(CLASS) ((CLASS) == INDEX_REGS)
632
633 /* CCmode is wrongly defined in machmode.def. It should have a size
634 of UNITS_PER_WORD. HFmode is 40-bits and thus fits within a single
635 extended precision register. Similarly, HCmode fits within two
636 extended precision registers. */
637
638 #define HARD_REGNO_NREGS(REGNO, MODE) \
639 (((MODE) == CCmode || (MODE) == CC_NOOVmode) ? 1 : \
640 ((MODE) == HFmode) ? 1 : \
641 ((MODE) == HCmode) ? 2 : \
642 ((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
643
644
645 /* A C expression that is nonzero if the hard register REGNO is preserved
646 across a call in mode MODE. This does not have to include the call used
647 registers. */
648
649 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
650 ((IS_FLOAT_CALL_SAVED_REGNO (REGNO) && ! ((MODE) == QFmode)) \
651 || (IS_INT_CALL_SAVED_REGNO (REGNO) \
652 && ! ((MODE) == QImode || (MODE) == HImode || (MODE) == Pmode)))
653
654 /* Specify the modes required to caller save a given hard regno. */
655
656 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) (c4x_caller_save_map[REGNO])
657
658 #define HARD_REGNO_MODE_OK(REGNO, MODE) c4x_hard_regno_mode_ok(REGNO, MODE)
659
660 /* A C expression that is nonzero if it is desirable to choose
661 register allocation so as to avoid move instructions between a
662 value of mode MODE1 and a value of mode MODE2.
663
664 Value is 1 if it is a good idea to tie two pseudo registers
665 when one has mode MODE1 and one has mode MODE2.
666 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
667 for any hard reg, then this must be 0 for correct output. */
668
669 #define MODES_TIEABLE_P(MODE1, MODE2) 0
670
671
672 /* Define the classes of registers for register constraints in the
673 machine description. Also define ranges of constants.
674
675 One of the classes must always be named ALL_REGS and include all hard regs.
676 If there is more than one class, another class must be named NO_REGS
677 and contain no registers.
678
679 The name GENERAL_REGS must be the name of a class (or an alias for
680 another name such as ALL_REGS). This is the class of registers
681 that is allowed by "g" or "r" in a register constraint.
682 Also, registers outside this class are allocated only when
683 instructions express preferences for them.
684
685 The classes must be numbered in nondecreasing order; that is,
686 a larger-numbered class must never be contained completely
687 in a smaller-numbered class.
688
689 For any two classes, it is very desirable that there be another
690 class that represents their union. */
691
692 enum reg_class
693 {
694 NO_REGS,
695 R0R1_REGS, /* 't'. */
696 R2R3_REGS, /* 'u'. */
697 EXT_LOW_REGS, /* 'q'. */
698 EXT_REGS, /* 'f'. */
699 ADDR_REGS, /* 'a'. */
700 INDEX_REGS, /* 'x'. */
701 BK_REG, /* 'k'. */
702 SP_REG, /* 'b'. */
703 RC_REG, /* 'v'. */
704 COUNTER_REGS, /* */
705 INT_REGS, /* 'c'. */
706 GENERAL_REGS, /* 'r'. */
707 DP_REG, /* 'z'. */
708 ST_REG, /* 'y'. */
709 ALL_REGS,
710 LIM_REG_CLASSES
711 };
712
713 #define N_REG_CLASSES (int) LIM_REG_CLASSES
714
715 #define REG_CLASS_NAMES \
716 { \
717 "NO_REGS", \
718 "R0R1_REGS", \
719 "R2R3_REGS", \
720 "EXT_LOW_REGS", \
721 "EXT_REGS", \
722 "ADDR_REGS", \
723 "INDEX_REGS", \
724 "BK_REG", \
725 "SP_REG", \
726 "RC_REG", \
727 "COUNTER_REGS", \
728 "INT_REGS", \
729 "GENERAL_REGS", \
730 "DP_REG", \
731 "ST_REG", \
732 "ALL_REGS" \
733 }
734
735 /* Define which registers fit in which classes.
736 This is an initializer for a vector of HARD_REG_SET
737 of length N_REG_CLASSES. RC is not included in GENERAL_REGS
738 since the register allocator will often choose a general register
739 in preference to RC for the decrement_and_branch_on_count pattern. */
740
741 #define REG_CLASS_CONTENTS \
742 { \
743 {0x00000000}, /* No registers. */ \
744 {0x00000003}, /* 't' R0-R1 . */ \
745 {0x0000000c}, /* 'u' R2-R3 . */ \
746 {0x000000ff}, /* 'q' R0-R7 . */ \
747 {0xf00000ff}, /* 'f' R0-R11 */ \
748 {0x0000ff00}, /* 'a' AR0-AR7. */ \
749 {0x00060000}, /* 'x' IR0-IR1. */ \
750 {0x00080000}, /* 'k' BK. */ \
751 {0x00100000}, /* 'b' SP. */ \
752 {0x08000000}, /* 'v' RC. */ \
753 {0x0800ff00}, /* RC,AR0-AR7. */ \
754 {0x0e1eff00}, /* 'c' AR0-AR7, IR0-IR1, BK, SP, RS, RE, RC. */ \
755 {0xfe1effff}, /* 'r' R0-R11, AR0-AR7, IR0-IR1, BK, SP, RS, RE, RC. */\
756 {0x00010000}, /* 'z' DP. */ \
757 {0x00200000}, /* 'y' ST. */ \
758 {0xffffffff}, /* All registers. */ \
759 }
760
761 /* The same information, inverted:
762 Return the class number of the smallest class containing
763 reg number REGNO. This could be a conditional expression
764 or could index an array. */
765
766 #define REGNO_REG_CLASS(REGNO) (c4x_regclass_map[REGNO])
767
768 /* When SMALL_REGISTER_CLASSES is defined, the lifetime of registers
769 explicitly used in the rtl is kept as short as possible.
770
771 We only need to define SMALL_REGISTER_CLASSES if TARGET_PARALLEL_MPY
772 is defined since the MPY|ADD insns require the classes R0R1_REGS and
773 R2R3_REGS which are used by the function return registers (R0,R1) and
774 the register arguments (R2,R3), respectively. I'm reluctant to define
775 this macro since it stomps on many potential optimisations. Ideally
776 it should have a register class argument so that not all the register
777 classes gets penalised for the sake of a naughty few... For long
778 double arithmetic we need two additional registers that we can use as
779 spill registers. */
780
781 #define SMALL_REGISTER_CLASSES (TARGET_SMALL_REG_CLASS && TARGET_PARALLEL_MPY)
782
783 #define BASE_REG_CLASS ADDR_REGS
784 #define INDEX_REG_CLASS INDEX_REGS
785
786 /*
787 Register constraints for the C4x
788
789 a - address reg (ar0-ar7)
790 b - stack reg (sp)
791 c - other gp int-only reg
792 d - data/int reg (equiv. to f)
793 f - data/float reg
794 h - data/long double reg (equiv. to f)
795 k - block count (bk)
796 q - r0-r7
797 t - r0-r1
798 u - r2-r3
799 v - repeat count (rc)
800 x - index register (ir0-ir1)
801 y - status register (st)
802 z - dp reg (dp)
803
804 Memory/constant constraints for the C4x
805
806 G - short float 16-bit
807 I - signed 16-bit constant (sign extended)
808 J - signed 8-bit constant (sign extended) (C4x only)
809 K - signed 5-bit constant (sign extended) (C4x only for stik)
810 L - unsigned 16-bit constant
811 M - unsigned 8-bit constant (C4x only)
812 N - ones complement of unsigned 16-bit constant
813 Q - indirect arx + 9-bit signed displacement
814 (a *-arx(n) or *+arx(n) is used to account for the sign bit)
815 R - indirect arx + 5-bit unsigned displacement (C4x only)
816 S - indirect arx + 0, 1, or irn displacement
817 T - direct symbol ref
818 > - indirect with autoincrement
819 < - indirect with autodecrement
820 } - indirect with post-modify
821 { - indirect with pre-modify
822 */
823
824 #define REG_CLASS_FROM_LETTER(CC) \
825 ( ((CC) == 'a') ? ADDR_REGS \
826 : ((CC) == 'b') ? SP_REG \
827 : ((CC) == 'c') ? INT_REGS \
828 : ((CC) == 'd') ? EXT_REGS \
829 : ((CC) == 'f') ? EXT_REGS \
830 : ((CC) == 'h') ? EXT_REGS \
831 : ((CC) == 'k') ? BK_REG \
832 : ((CC) == 'q') ? EXT_LOW_REGS \
833 : ((CC) == 't') ? R0R1_REGS \
834 : ((CC) == 'u') ? R2R3_REGS \
835 : ((CC) == 'v') ? RC_REG \
836 : ((CC) == 'x') ? INDEX_REGS \
837 : ((CC) == 'y') ? ST_REG \
838 : ((CC) == 'z') ? DP_REG \
839 : NO_REGS )
840
841 /* These assume that REGNO is a hard or pseudo reg number.
842 They give nonzero only if REGNO is a hard reg of the suitable class
843 or a pseudo reg currently allocated to a suitable hard reg.
844 Since they use reg_renumber, they are safe only once reg_renumber
845 has been allocated, which happens in local-alloc.c. */
846
847 #define REGNO_OK_FOR_BASE_P(REGNO) \
848 (IS_ADDR_REGNO(REGNO) || IS_ADDR_REGNO((unsigned)reg_renumber[REGNO]))
849
850 #define REGNO_OK_FOR_INDEX_P(REGNO) \
851 (IS_INDEX_REGNO(REGNO) || IS_INDEX_REGNO((unsigned)reg_renumber[REGNO]))
852
853 /* If we have to generate framepointer + constant prefer an ADDR_REGS
854 register. This avoids using EXT_REGS in addqi3_noclobber_reload. */
855
856 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
857 (GET_CODE (X) == PLUS \
858 && GET_MODE (X) == Pmode \
859 && GET_CODE (XEXP ((X), 0)) == REG \
860 && GET_MODE (XEXP ((X), 0)) == Pmode \
861 && REGNO (XEXP ((X), 0)) == FRAME_POINTER_REGNUM \
862 && GET_CODE (XEXP ((X), 1)) == CONST_INT \
863 ? ADDR_REGS : (CLASS))
864
865 #define LIMIT_RELOAD_CLASS(X, CLASS) (CLASS)
866
867 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) 0
868
869 #define CLASS_MAX_NREGS(CLASS, MODE) \
870 (((MODE) == CCmode || (MODE) == CC_NOOVmode) ? 1 : ((MODE) == HFmode) ? 1 : \
871 ((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
872
873 #define IS_INT5_CONST(VAL) (((VAL) <= 15) && ((VAL) >= -16)) /* 'K'. */
874
875 #define IS_UINT5_CONST(VAL) (((VAL) <= 31) && ((VAL) >= 0)) /* 'R'. */
876
877 #define IS_INT8_CONST(VAL) (((VAL) <= 127) && ((VAL) >= -128)) /* 'J'. */
878
879 #define IS_UINT8_CONST(VAL) (((VAL) <= 255) && ((VAL) >= 0)) /* 'M'. */
880
881 #define IS_INT16_CONST(VAL) (((VAL) <= 32767) && ((VAL) >= -32768)) /* 'I'. */
882
883 #define IS_UINT16_CONST(VAL) (((VAL) <= 65535) && ((VAL) >= 0)) /* 'L'. */
884
885 #define IS_NOT_UINT16_CONST(VAL) IS_UINT16_CONST(~(VAL)) /* 'N'. */
886
887 #define IS_HIGH_CONST(VAL) \
888 (! TARGET_C3X && (((VAL) & 0xffff) == 0)) /* 'O'. */
889
890
891 #define IS_DISP1_CONST(VAL) (((VAL) <= 1) && ((VAL) >= -1)) /* 'S'. */
892
893 #define IS_DISP8_CONST(VAL) (((VAL) <= 255) && ((VAL) >= -255)) /* 'Q'. */
894
895 #define IS_DISP1_OFF_CONST(VAL) (IS_DISP1_CONST (VAL) \
896 && IS_DISP1_CONST (VAL + 1))
897
898 #define IS_DISP8_OFF_CONST(VAL) (IS_DISP8_CONST (VAL) \
899 && IS_DISP8_CONST (VAL + 1))
900
901 #define CONST_OK_FOR_LETTER_P(VAL, C) \
902 ( ((C) == 'I') ? (IS_INT16_CONST (VAL)) \
903 : ((C) == 'J') ? (! TARGET_C3X && IS_INT8_CONST (VAL)) \
904 : ((C) == 'K') ? (! TARGET_C3X && IS_INT5_CONST (VAL)) \
905 : ((C) == 'L') ? (IS_UINT16_CONST (VAL)) \
906 : ((C) == 'M') ? (! TARGET_C3X && IS_UINT8_CONST (VAL)) \
907 : ((C) == 'N') ? (IS_NOT_UINT16_CONST (VAL)) \
908 : ((C) == 'O') ? (IS_HIGH_CONST (VAL)) \
909 : 0 )
910
911 #define CONST_DOUBLE_OK_FOR_LETTER_P(OP, C) \
912 ( ((C) == 'G') ? (fp_zero_operand (OP, QFmode)) \
913 : ((C) == 'H') ? (c4x_H_constant (OP)) \
914 : 0 )
915
916 #define EXTRA_CONSTRAINT(OP, C) \
917 ( ((C) == 'Q') ? (c4x_Q_constraint (OP)) \
918 : ((C) == 'R') ? (c4x_R_constraint (OP)) \
919 : ((C) == 'S') ? (c4x_S_constraint (OP)) \
920 : ((C) == 'T') ? (c4x_T_constraint (OP)) \
921 : ((C) == 'U') ? (c4x_U_constraint (OP)) \
922 : 0 )
923
924 #define SMALL_CONST(VAL, insn) \
925 ( ((insn == NULL_RTX) || (get_attr_data (insn) == DATA_INT16)) \
926 ? IS_INT16_CONST (VAL) \
927 : ( (get_attr_data (insn) == DATA_NOT_UINT16) \
928 ? IS_NOT_UINT16_CONST (VAL) \
929 : ( (get_attr_data (insn) == DATA_HIGH_16) \
930 ? IS_HIGH_CONST (VAL) \
931 : IS_UINT16_CONST (VAL) \
932 ) \
933 ) \
934 )
935
936 /*
937 I. Routine calling with arguments in registers
938 ----------------------------------------------
939
940 The TI C3x compiler has a rather unusual register passing algorithm.
941 Data is passed in the following registers (in order):
942
943 AR2, R2, R3, RC, RS, RE
944
945 However, the first and second floating point values are always in R2
946 and R3 (and all other floats are on the stack). Structs are always
947 passed on the stack. If the last argument is an ellipsis, the
948 previous argument is passed on the stack so that its address can be
949 taken for the stdargs macros.
950
951 Because of this, we have to pre-scan the list of arguments to figure
952 out what goes where in the list.
953
954 II. Routine calling with arguments on stack
955 -------------------------------------------
956
957 Let the subroutine declared as "foo(arg0, arg1, arg2);" have local
958 variables loc0, loc1, and loc2. After the function prologue has
959 been executed, the stack frame will look like:
960
961 [stack grows towards increasing addresses]
962 I-------------I
963 5 I saved reg1 I <= SP points here
964 I-------------I
965 4 I saved reg0 I
966 I-------------I
967 3 I loc2 I
968 I-------------I
969 2 I loc1 I
970 I-------------I
971 1 I loc0 I
972 I-------------I
973 0 I old FP I <= FP (AR3) points here
974 I-------------I
975 -1 I return PC I
976 I-------------I
977 -2 I arg0 I
978 I-------------I
979 -3 I arg1 I
980 I-------------I
981 -4 I arg2 I
982 I-------------I
983
984 All local variables (locn) are accessible by means of +FP(n+1)
985 addressing, where n is the local variable number.
986
987 All stack arguments (argn) are accessible by means of -FP(n-2).
988
989 The stack pointer (SP) points to the last register saved in the
990 prologue (regn).
991
992 Note that a push instruction performs a preincrement of the stack
993 pointer. (STACK_PUSH_CODE == PRE_INC)
994
995 III. Registers used in function calling convention
996 --------------------------------------------------
997
998 Preserved across calls: R4...R5 (only by PUSH, i.e. lower 32 bits)
999 R6...R7 (only by PUSHF, i.e. upper 32 bits)
1000 AR3...AR7
1001
1002 (Because of this model, we only assign FP values in R6, R7 and
1003 only assign integer values in R4, R5.)
1004
1005 These registers are saved at each function entry and restored at
1006 the exit. Also it is expected any of these not affected by any
1007 call to user-defined (not service) functions.
1008
1009 Not preserved across calls: R0...R3
1010 R4...R5 (upper 8 bits)
1011 R6...R7 (lower 8 bits)
1012 AR0...AR2, IR0, IR1, BK, ST, RS, RE, RC
1013
1014 These registers are used arbitrary in a function without being preserved.
1015 It is also expected that any of these can be clobbered by any call.
1016
1017 Not used by GCC (except for in user "asm" statements):
1018 IE (DIE), IF (IIE), IOF (IIF)
1019
1020 These registers are never used by GCC for any data, but can be used
1021 with "asm" statements. */
1022
1023 #define C4X_ARG0 -2
1024 #define C4X_LOC0 1
1025
1026 /* Basic Stack Layout. */
1027
1028 /* The stack grows upward, stack frame grows upward, and args grow
1029 downward. */
1030
1031 #define STARTING_FRAME_OFFSET C4X_LOC0
1032 #define FIRST_PARM_OFFSET(FNDECL) (C4X_ARG0 + 1)
1033 #define ARGS_GROW_DOWNWARD
1034 #define STACK_POINTER_OFFSET 1
1035
1036 /* Define this if pushing a word on the stack
1037 makes the stack pointer a smaller address. */
1038
1039 /* #define STACK_GROWS_DOWNWARD. */
1040 /* Like the dsp16xx, i370, i960, and we32k ports. */
1041
1042 /* Define this if the nominal address of the stack frame
1043 is at the high-address end of the local variables;
1044 that is, each additional local variable allocated
1045 goes at a more negative offset in the frame. */
1046
1047 /* #define FRAME_GROWS_DOWNWARD. */
1048
1049
1050 /* Registers That Address the Stack Frame. */
1051
1052 #define STACK_POINTER_REGNUM SP_REGNO /* SP. */
1053 #define FRAME_POINTER_REGNUM AR3_REGNO /* AR3. */
1054 #define ARG_POINTER_REGNUM AR3_REGNO /* AR3. */
1055 #define STATIC_CHAIN_REGNUM AR0_REGNO /* AR0. */
1056
1057 /* Eliminating Frame Pointer and Arg Pointer. */
1058
1059 #define FRAME_POINTER_REQUIRED 0
1060
1061 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
1062 { \
1063 int regno; \
1064 int offset = 0; \
1065 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
1066 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
1067 offset += TARGET_PRESERVE_FLOAT \
1068 && IS_FLOAT_CALL_SAVED_REGNO (regno) ? 2 : 1; \
1069 (DEPTH) = -(offset + get_frame_size ()); \
1070 }
1071
1072 /* This is a hack... We need to specify a register. */
1073 #define ELIMINABLE_REGS \
1074 {{ FRAME_POINTER_REGNUM, FRAME_POINTER_REGNUM }}
1075
1076 #define CAN_ELIMINATE(FROM, TO) \
1077 (! (((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1078 || ((FROM) == FRAME_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM)))
1079
1080 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1081 { \
1082 int regno; \
1083 int offset = 0; \
1084 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
1085 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
1086 offset += TARGET_PRESERVE_FLOAT \
1087 && IS_FLOAT_CALL_SAVED_REGNO (regno) ? 2 : 1; \
1088 (OFFSET) = -(offset + get_frame_size ()); \
1089 }
1090
1091
1092 /* Passing Function Arguments on the Stack. */
1093
1094 #if 0
1095 #define PUSH_ROUNDING(BYTES) (BYTES)
1096 #endif
1097 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1098
1099 /* The following structure is used by calls.c, function.c, c4x.c. */
1100
1101 typedef struct c4x_args
1102 {
1103 int floats;
1104 int ints;
1105 int maxfloats;
1106 int maxints;
1107 int init;
1108 int var;
1109 int prototype;
1110 int args;
1111 }
1112 CUMULATIVE_ARGS;
1113
1114 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1115 (c4x_init_cumulative_args (&CUM, FNTYPE, LIBNAME))
1116
1117 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1118 (c4x_function_arg_advance (&CUM, MODE, TYPE, NAMED))
1119
1120 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1121 (c4x_function_arg(&CUM, MODE, TYPE, NAMED))
1122
1123 /* Define the profitability of saving registers around calls.
1124 We disable caller save to avoid a bug in flow.c (this also affects
1125 other targets such as m68k). Since we must use stf/sti,
1126 the profitability is marginal anyway. */
1127
1128 #define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
1129
1130 /* Never pass data by reference. */
1131
1132 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) 0
1133
1134 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1135
1136 /* 1 if N is a possible register number for function argument passing. */
1137
1138 #define FUNCTION_ARG_REGNO_P(REGNO) \
1139 ( ( ((REGNO) == AR2_REGNO) /* AR2. */ \
1140 || ((REGNO) == R2_REGNO) /* R2. */ \
1141 || ((REGNO) == R3_REGNO) /* R3. */ \
1142 || ((REGNO) == RC_REGNO) /* RC. */ \
1143 || ((REGNO) == RS_REGNO) /* RS. */ \
1144 || ((REGNO) == RE_REGNO)) /* RE. */ \
1145 ? 1 \
1146 : 0)
1147
1148 /* How Scalar Function Values Are Returned. */
1149
1150 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1151 gen_rtx(REG, TYPE_MODE(VALTYPE), R0_REGNO) /* Return in R0. */
1152
1153 #define LIBCALL_VALUE(MODE) \
1154 gen_rtx(REG, MODE, R0_REGNO) /* Return in R0. */
1155
1156 #define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == R0_REGNO)
1157
1158 /* How Large Values Are Returned. */
1159
1160 #define DEFAULT_PCC_STRUCT_RETURN 0
1161 #define STRUCT_VALUE_REGNUM AR0_REGNO /* AR0. */
1162
1163 /* Varargs handling. */
1164
1165 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1166 c4x_va_start (stdarg, valist, nextarg)
1167
1168 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1169 c4x_va_arg (valist, type)
1170
1171 /* Generating Code for Profiling. */
1172
1173 /* Note that the generated assembly uses the ^ operator to load the 16
1174 MSBs of the address. This is not supported by the TI assembler.
1175 The FUNCTION profiler needs a function mcount which gets passed
1176 a pointer to the LABELNO. */
1177
1178 #define FUNCTION_PROFILER(FILE, LABELNO) \
1179 if (! TARGET_C3X) \
1180 { \
1181 fprintf (FILE, "\tpush\tar2\n"); \
1182 fprintf (FILE, "\tldhi\t^LP%d,ar2\n", (LABELNO)); \
1183 fprintf (FILE, "\tor\t#LP%d,ar2\n", (LABELNO)); \
1184 fprintf (FILE, "\tcall\tmcount\n"); \
1185 fprintf (FILE, "\tpop\tar2\n"); \
1186 } \
1187 else \
1188 { \
1189 fprintf (FILE, "\tpush\tar2\n"); \
1190 fprintf (FILE, "\tldiu\t^LP%d,ar2\n", (LABELNO)); \
1191 fprintf (FILE, "\tlsh\t16,ar2\n"); \
1192 fprintf (FILE, "\tor\t#LP%d,ar2\n", (LABELNO)); \
1193 fprintf (FILE, "\tcall\tmcount\n"); \
1194 fprintf (FILE, "\tpop\tar2\n"); \
1195 }
1196
1197 /* There are three profiling modes for basic blocks available.
1198 The modes are selected at compile time by using the options
1199 -a or -ax of the gnu compiler.
1200 The variable `profile_block_flag' will be set according to the
1201 selected option.
1202
1203 profile_block_flag == 0, no option used:
1204
1205 No profiling done.
1206
1207 profile_block_flag == 1, -a option used.
1208
1209 Count frequency of execution of every basic block.
1210
1211 profile_block_flag == 2, -ax option used.
1212
1213 Generate code to allow several different profiling modes at run time.
1214 Available modes are:
1215 Produce a trace of all basic blocks.
1216 Count frequency of jump instructions executed.
1217 In every mode it is possible to start profiling upon entering
1218 certain functions and to disable profiling of some other functions.
1219
1220 The result of basic-block profiling will be written to a file `bb.out'.
1221 If the -ax option is used parameters for the profiling will be read
1222 from file `bb.in'.
1223
1224 */
1225
1226 #define FUNCTION_BLOCK_PROFILER(FILE, BLOCKNO) \
1227 if (profile_block_flag == 2) \
1228 { \
1229 if (! TARGET_C3X) \
1230 { \
1231 fprintf (FILE, "\tpush\tst\n"); \
1232 fprintf (FILE, "\tpush\tar2\n"); \
1233 fprintf (FILE, "\tpush\tr2\n"); \
1234 fprintf (FILE, "\tldhi\t^LPBX0,ar2\n"); \
1235 fprintf (FILE, "\tor\t#LPBX0,ar2\n"); \
1236 if (BLOCKNO > 32767) \
1237 { \
1238 fprintf (FILE, "\tldhi\t%d,r2\n", (BLOCKNO) >> 16); \
1239 fprintf (FILE, "\tor\t%d,r2\n", (BLOCKNO)); \
1240 } \
1241 else \
1242 { \
1243 fprintf (FILE, "\tldiu\t%d,r2\n", (BLOCKNO)); \
1244 } \
1245 fprintf (FILE, "\tcall\t___bb_init_trace_func\n"); \
1246 fprintf (FILE, "\tpop\tr2\n"); \
1247 fprintf (FILE, "\tpop\tar2\n"); \
1248 fprintf (FILE, "\tpop\tst\n"); \
1249 } \
1250 else \
1251 { \
1252 fprintf (FILE, "\tpush\tst\n"); \
1253 fprintf (FILE, "\tpush\tar2\n"); \
1254 fprintf (FILE, "\tpush\tr2\n"); \
1255 fprintf (FILE, "\tldiu\t^LPBX0,ar2\n"); \
1256 fprintf (FILE, "\tlsh\t16,ar2\n"); \
1257 fprintf (FILE, "\tor\t#LPBX0,ar2\n"); \
1258 if (BLOCKNO > 32767) \
1259 { \
1260 fprintf (FILE, "\tldi\t%d,r2\n", (BLOCKNO) >> 16); \
1261 fprintf (FILE, "\tlsh\t16,r2\n"); \
1262 fprintf (FILE, "\tor\t%d,r2\n", (BLOCKNO)); \
1263 } \
1264 else \
1265 { \
1266 fprintf (FILE, "\tldiu\t%d,r2\n", (BLOCKNO)); \
1267 } \
1268 fprintf (FILE, "\tcall\t___bb_init_trace_func\n"); \
1269 fprintf (FILE, "\tpop\tr2\n"); \
1270 fprintf (FILE, "\tpop\tar2\n"); \
1271 fprintf (FILE, "\tpop\tst\n"); \
1272 } \
1273 } \
1274 else \
1275 { \
1276 if (! TARGET_C3X) \
1277 { \
1278 fprintf (FILE, "\tpush\tst\n"); \
1279 fprintf (FILE, "\tpush\tar2\n"); \
1280 fprintf (FILE, "\tldhi\t^LPBX0,ar2\n"); \
1281 fprintf (FILE, "\tor\t#LPBX0,ar2\n"); \
1282 fprintf (FILE, "\tcmpi\t0,*ar2\n"); \
1283 fprintf (FILE, "\tbne\t$+2\n"); \
1284 fprintf (FILE, "\tcall\t___bb_init_func\n"); \
1285 fprintf (FILE, "\tpop\tar2\n"); \
1286 fprintf (FILE, "\tpop\tst\n"); \
1287 } \
1288 else \
1289 { \
1290 fprintf (FILE, "\tpush\tst\n"); \
1291 fprintf (FILE, "\tpush\tar2\n"); \
1292 fprintf (FILE, "\tpush\tr2\n"); \
1293 fprintf (FILE, "\tldiu\t^LPBX0,ar2\n"); \
1294 fprintf (FILE, "\tlsh\t16,ar2\n"); \
1295 fprintf (FILE, "\tor\t#LPBX0,ar2\n"); \
1296 fprintf (FILE, "\tldi\t*ar2,r2\n"); \
1297 fprintf (FILE, "\tbne\t$+2\n"); \
1298 fprintf (FILE, "\tcall\t___bb_init_func\n"); \
1299 fprintf (FILE, "\tpop\tr2\n"); \
1300 fprintf (FILE, "\tpop\tar2\n"); \
1301 fprintf (FILE, "\tpop\tst\n"); \
1302 } \
1303 }
1304
1305 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1306 if (profile_block_flag == 2) \
1307 { \
1308 if (! TARGET_C3X) \
1309 { \
1310 fprintf (FILE, "\tpush\tst\n"); \
1311 fprintf (FILE, "\tpush\tar2\n"); \
1312 fprintf (FILE, "\tpush\tar0\n"); \
1313 fprintf (FILE, "\tldhi\t^___bb,ar2\n"); \
1314 fprintf (FILE, "\tor\t#___bb,ar2\n"); \
1315 if (BLOCKNO > 32767) \
1316 { \
1317 fprintf (FILE, "\tldhi\t%d,ar0\n", (BLOCKNO) >> 16);\
1318 fprintf (FILE, "\tor\t%d,ar0\n", (BLOCKNO)); \
1319 } \
1320 else \
1321 { \
1322 fprintf (FILE, "\tldiu\t%d,ar0\n", (BLOCKNO)); \
1323 } \
1324 fprintf (FILE, "\tsti\tar0,*ar2\n"); \
1325 fprintf (FILE, "\tldhi\t^LPBX0,ar0\n"); \
1326 fprintf (FILE, "\tor\t#LPBX0,ar0\n"); \
1327 fprintf (FILE, "\tsti\tar0,*+ar2(1)\n"); \
1328 fprintf (FILE, "\tcall\t___bb_trace_func\n"); \
1329 fprintf (FILE, "\tpop\tar0\n"); \
1330 fprintf (FILE, "\tpop\tar2\n"); \
1331 fprintf (FILE, "\tpop\tst\n"); \
1332 } \
1333 else \
1334 { \
1335 fprintf (FILE, "\tpush\tst\n"); \
1336 fprintf (FILE, "\tpush\tar2\n"); \
1337 fprintf (FILE, "\tpush\tar0\n"); \
1338 fprintf (FILE, "\tldiu\t^___bb,ar2\n"); \
1339 fprintf (FILE, "\tlsh\t16,ar2\n"); \
1340 fprintf (FILE, "\tor\t#___bb,ar2\n"); \
1341 if (BLOCKNO > 32767) \
1342 { \
1343 fprintf (FILE, "\tldi\t%d,ar0\n", (BLOCKNO) >> 16); \
1344 fprintf (FILE, "\tlsh\t16,ar0\n"); \
1345 fprintf (FILE, "\tor\t%d,ar0\n", (BLOCKNO)); \
1346 } \
1347 else \
1348 { \
1349 fprintf (FILE, "\tldiu\t%d,ar0\n", (BLOCKNO)); \
1350 } \
1351 fprintf (FILE, "\tsti\tar0,*ar2\n"); \
1352 fprintf (FILE, "\tldiu\t^LPBX0,ar0\n"); \
1353 fprintf (FILE, "\tlsh\t16,ar0\n"); \
1354 fprintf (FILE, "\tor\t#LPBX0,ar0\n"); \
1355 fprintf (FILE, "\tsti\tar0,*+ar2(1)\n"); \
1356 fprintf (FILE, "\tcall\t___bb_trace_func\n"); \
1357 fprintf (FILE, "\tpop\tar0\n"); \
1358 fprintf (FILE, "\tpop\tar2\n"); \
1359 fprintf (FILE, "\tpop\tst\n"); \
1360 } \
1361 } \
1362 else \
1363 { \
1364 if (! TARGET_C3X) \
1365 { \
1366 fprintf (FILE, "\tpush\tar2\n"); \
1367 fprintf (FILE, "\tpush\tar0\n"); \
1368 fprintf (FILE, "\tldhi\t^LPBX2+%d,ar2\n", (BLOCKNO)); \
1369 fprintf (FILE, "\tor\t#LPBX2+%d,ar2\n", (BLOCKNO)); \
1370 fprintf (FILE, "\taddi3\t1,*ar2,ar0\n"); \
1371 fprintf (FILE, "\tsti\tar0,*ar2\n"); \
1372 fprintf (FILE, "\tpop\tar0\n"); \
1373 fprintf (FILE, "\tpop\tar2\n"); \
1374 } \
1375 else \
1376 { \
1377 fprintf (FILE, "\tpush\tar2\n"); \
1378 fprintf (FILE, "\tpush\tar0\n"); \
1379 fprintf (FILE, "\tldiu\t^LPBX2+%d,ar2\n", (BLOCKNO)); \
1380 fprintf (FILE, "\tlsh\t16,ar2\n"); \
1381 fprintf (FILE, "\tor\t#LPBX2+%d,ar2\n", (BLOCKNO)); \
1382 fprintf (FILE, "\tldiu\t*ar2,ar0\n"); \
1383 fprintf (FILE, "\taddi\t1,ar0\n"); \
1384 fprintf (FILE, "\tsti\tar0,*ar2\n"); \
1385 fprintf (FILE, "\tpop\tar0\n"); \
1386 fprintf (FILE, "\tpop\tar2\n"); \
1387 } \
1388 }
1389
1390 #define FUNCTION_BLOCK_PROFILER_EXIT \
1391 { \
1392 emit_insn (gen_push_st ()); \
1393 emit_insn (gen_pushqi ( \
1394 gen_rtx_REG (QImode, AR2_REGNO))); \
1395 emit_call_insn (gen_nodb_call ( \
1396 gen_rtx_SYMBOL_REF (QImode, "__bb_trace_ret")));\
1397 emit_insn (gen_popqi_unspec ( \
1398 gen_rtx_REG (QImode, AR2_REGNO))); \
1399 emit_insn (gen_pop_st ()); \
1400 }
1401
1402 #define MACHINE_STATE_SAVE(ID) \
1403 asm(" push r0"); \
1404 asm(" pushf r0"); \
1405 asm(" push r1"); \
1406 asm(" pushf r1"); \
1407 asm(" push r2"); \
1408 asm(" pushf r2"); \
1409 asm(" push r3"); \
1410 asm(" pushf r3"); \
1411 asm(" push ar0"); \
1412 asm(" push ar1"); \
1413 asm(" .if .BIGMODEL"); \
1414 asm(" push dp"); \
1415 asm(" .endif"); \
1416 asm(" push ir0"); \
1417 asm(" push ir1"); \
1418 asm(" push bk"); \
1419 asm(" push rs"); \
1420 asm(" push re"); \
1421 asm(" push rc"); \
1422 asm(" .if .tms320C40"); \
1423 asm(" push r9"); \
1424 asm(" pushf r9"); \
1425 asm(" push r10"); \
1426 asm(" pushf r10"); \
1427 asm(" push r11"); \
1428 asm(" pushf r11"); \
1429 asm(" .endif");
1430
1431 #define MACHINE_STATE_RESTORE(ID) \
1432 asm(" .if .tms320C40"); \
1433 asm(" popf r11"); \
1434 asm(" pop r11"); \
1435 asm(" popf r10"); \
1436 asm(" pop r10"); \
1437 asm(" popf r9"); \
1438 asm(" pop r9"); \
1439 asm(" .endif"); \
1440 asm(" pop rc"); \
1441 asm(" pop re"); \
1442 asm(" pop rs"); \
1443 asm(" pop bk"); \
1444 asm(" pop ir1"); \
1445 asm(" pop ir0"); \
1446 asm(" .if .BIGMODEL"); \
1447 asm(" pop dp"); \
1448 asm(" .endif"); \
1449 asm(" pop ar1"); \
1450 asm(" pop ar0"); \
1451 asm(" popf r3"); \
1452 asm(" pop r3"); \
1453 asm(" popf r2"); \
1454 asm(" pop r2"); \
1455 asm(" popf r1"); \
1456 asm(" pop r1"); \
1457 asm(" popf r0"); \
1458 asm(" pop r0"); \
1459
1460 /* Implicit Calls to Library Routines. */
1461
1462 #define MULQI3_LIBCALL "__mulqi3"
1463 #define DIVQI3_LIBCALL "__divqi3"
1464 #define UDIVQI3_LIBCALL "__udivqi3"
1465 #define MODQI3_LIBCALL "__modqi3"
1466 #define UMODQI3_LIBCALL "__umodqi3"
1467
1468 #define DIVQF3_LIBCALL "__divqf3"
1469
1470 #define MULHF3_LIBCALL "__mulhf3"
1471 #define DIVHF3_LIBCALL "__divhf3"
1472
1473 #define MULHI3_LIBCALL "__mulhi3"
1474 #define SMULHI3_LIBCALL "__smulhi3_high"
1475 #define UMULHI3_LIBCALL "__umulhi3_high"
1476 #define DIVHI3_LIBCALL "__divhi3"
1477 #define UDIVHI3_LIBCALL "__udivhi3"
1478 #define MODHI3_LIBCALL "__modhi3"
1479 #define UMODHI3_LIBCALL "__umodhi3"
1480
1481 #define FLOATHIQF2_LIBCALL "__floathiqf2"
1482 #define FLOATUNSHIQF2_LIBCALL "__ufloathiqf2"
1483 #define FIX_TRUNCQFHI2_LIBCALL "__fix_truncqfhi2"
1484 #define FIXUNS_TRUNCQFHI2_LIBCALL "__ufix_truncqfhi2"
1485
1486 #define FLOATHIHF2_LIBCALL "__floathihf2"
1487 #define FLOATUNSHIHF2_LIBCALL "__ufloathihf2"
1488 #define FIX_TRUNCHFHI2_LIBCALL "__fix_trunchfhi2"
1489 #define FIXUNS_TRUNCHFHI2_LIBCALL "__ufix_trunchfhi2"
1490
1491 #define FFS_LIBCALL "__ffs"
1492
1493 #define INIT_TARGET_OPTABS \
1494 do { \
1495 smul_optab->handlers[(int) QImode].libfunc \
1496 = init_one_libfunc (MULQI3_LIBCALL); \
1497 sdiv_optab->handlers[(int) QImode].libfunc \
1498 = init_one_libfunc (DIVQI3_LIBCALL); \
1499 udiv_optab->handlers[(int) QImode].libfunc \
1500 = init_one_libfunc (UDIVQI3_LIBCALL); \
1501 smod_optab->handlers[(int) QImode].libfunc \
1502 = init_one_libfunc (MODQI3_LIBCALL); \
1503 umod_optab->handlers[(int) QImode].libfunc \
1504 = init_one_libfunc (UMODQI3_LIBCALL); \
1505 sdiv_optab->handlers[(int) QFmode].libfunc \
1506 = init_one_libfunc (DIVQF3_LIBCALL); \
1507 smul_optab->handlers[(int) HFmode].libfunc \
1508 = init_one_libfunc (MULHF3_LIBCALL); \
1509 sdiv_optab->handlers[(int) HFmode].libfunc \
1510 = init_one_libfunc (DIVHF3_LIBCALL); \
1511 smul_optab->handlers[(int) HImode].libfunc \
1512 = init_one_libfunc (MULHI3_LIBCALL); \
1513 sdiv_optab->handlers[(int) HImode].libfunc \
1514 = init_one_libfunc (DIVHI3_LIBCALL); \
1515 udiv_optab->handlers[(int) HImode].libfunc \
1516 = init_one_libfunc (UDIVHI3_LIBCALL); \
1517 smod_optab->handlers[(int) HImode].libfunc \
1518 = init_one_libfunc (MODHI3_LIBCALL); \
1519 umod_optab->handlers[(int) HImode].libfunc \
1520 = init_one_libfunc (UMODHI3_LIBCALL); \
1521 ffs_optab->handlers[(int) QImode].libfunc \
1522 = init_one_libfunc (FFS_LIBCALL); \
1523 smulhi3_libfunc \
1524 = init_one_libfunc(SMULHI3_LIBCALL); \
1525 umulhi3_libfunc \
1526 = init_one_libfunc(UMULHI3_LIBCALL); \
1527 fix_truncqfhi2_libfunc \
1528 = init_one_libfunc(FIX_TRUNCQFHI2_LIBCALL); \
1529 fixuns_truncqfhi2_libfunc \
1530 = init_one_libfunc(FIXUNS_TRUNCQFHI2_LIBCALL); \
1531 fix_trunchfhi2_libfunc \
1532 = init_one_libfunc(FIX_TRUNCHFHI2_LIBCALL); \
1533 fixuns_trunchfhi2_libfunc \
1534 = init_one_libfunc(FIXUNS_TRUNCHFHI2_LIBCALL); \
1535 floathiqf2_libfunc \
1536 = init_one_libfunc(FLOATHIQF2_LIBCALL); \
1537 floatunshiqf2_libfunc \
1538 = init_one_libfunc(FLOATUNSHIQF2_LIBCALL); \
1539 floathihf2_libfunc \
1540 = init_one_libfunc(FLOATHIHF2_LIBCALL); \
1541 floatunshihf2_libfunc \
1542 = init_one_libfunc(FLOATUNSHIHF2_LIBCALL); \
1543 } while (0)
1544
1545 #define TARGET_MEM_FUNCTIONS
1546
1547 /* Add any extra modes needed to represent the condition code.
1548
1549 On the C4x, we have a "no-overflow" mode which is used when an ADD,
1550 SUB, NEG, or MPY insn is used to set the condition code. This is
1551 to prevent the combiner from optimising away a following CMP of the
1552 result with zero when a signed conditional branch or load insn
1553 follows.
1554
1555 The problem is a subtle one and deals with the manner in which the
1556 negative condition (N) flag is used on the C4x. This flag does not
1557 reflect the status of the actual result but of the ideal result had
1558 no overflow occured (when considering signed operands).
1559
1560 For example, 0x7fffffff + 1 => 0x80000000 Z=0 V=1 N=0 C=0. Here
1561 the flags reflect the untruncated result, not the actual result.
1562 While the actual result is less than zero, the N flag is not set
1563 since the ideal result of the addition without truncation would
1564 have been positive.
1565
1566 Note that the while the N flag is handled differently to most other
1567 architectures, the use of it is self consistent and is not the
1568 cause of the problem.
1569
1570 Logical operations set the N flag to the MSB of the result so if
1571 the result is negative, N is 1. However, integer and floating
1572 point operations set the N flag to be the MSB of the result
1573 exclusive ored with the overflow (V) flag. Thus if an overflow
1574 occurs and the result does not have the MSB set (i.e., the result
1575 looks like a positive number), the N flag is set. Conversely, if
1576 an overflow occurs and the MSB of the result is set, N is set to 0.
1577 Thus the N flag represents the sign of the result if it could have
1578 been stored without overflow but does not represent the apparent
1579 sign of the result. Note that most architectures set the N flag to
1580 be the MSB of the result.
1581
1582 The C4x approach to setting the N flag simplifies signed
1583 conditional branches and loads which only have to test the state of
1584 the N flag, whereas most architectures have to look at both the N
1585 and V flags. The disadvantage is that there is no flag giving the
1586 status of the sign bit of the operation. However, there are no
1587 conditional load or branch instructions that make use of this
1588 feature (e.g., BMI---branch minus) instruction. Note that BN and
1589 BLT are identical in the C4x.
1590
1591 To handle the problem where the N flag is set differently whenever
1592 there is an overflow we use a different CC mode, CC_NOOVmode which
1593 says that the CC reflects the comparison of the result against zero
1594 if no overflow occured.
1595
1596 For example,
1597
1598 [(set (reg:CC_NOOV 21)
1599 (compare:CC_NOOV (minus:QI (match_operand:QI 1 "src_operand" "")
1600 (match_operand:QI 2 "src_operand" ""))
1601 (const_int 0)))
1602 (set (match_operand:QI 0 "ext_reg_operand" "")
1603 (minus:QI (match_dup 1)
1604 (match_dup 2)))]
1605
1606 Note that there is no problem for insns that don't return a result
1607 like CMP, since the CC reflects the effect of operation.
1608
1609 An example of a potential problem is when GCC
1610 converts (LTU (MINUS (0x80000000) (0x7fffffff) (0x80000000)))
1611 to (LEU (MINUS (0x80000000) (0x7fffffff) (0x7fffffff)))
1612 to (GE (MINUS (0x80000000) (0x7fffffff) (0x00000000)))
1613
1614 Now (MINUS (0x80000000) (0x7fffffff)) returns 0x00000001 but the
1615 C4x sets the N flag since the result without overflow would have
1616 been 0xffffffff when treating the operands as signed integers.
1617 Thus (GE (MINUS (0x80000000) (0x7fffffff) (0x00000000))) sets the N
1618 flag but (GE (0x00000001)) does not set the N flag.
1619
1620 The upshot is that we can not use signed branch and conditional
1621 load instructions after an add, subtract, neg, abs or multiply.
1622 We must emit a compare insn to check the result against 0. */
1623
1624 #define EXTRA_CC_MODES CC(CC_NOOVmode, "CC_NOOV")
1625
1626 /* CC_NOOVmode should be used when the first operand is a PLUS, MINUS, NEG
1627 or MULT.
1628 CCmode should be used when no special processing is needed. */
1629 #define SELECT_CC_MODE(OP,X,Y) \
1630 ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
1631 || GET_CODE (X) == NEG || GET_CODE (X) == MULT \
1632 || GET_MODE (X) == ABS \
1633 || GET_CODE (Y) == PLUS || GET_CODE (Y) == MINUS \
1634 || GET_CODE (Y) == NEG || GET_CODE (Y) == MULT \
1635 || GET_MODE (Y) == ABS) \
1636 ? CC_NOOVmode : CCmode)
1637
1638 /* Addressing Modes. */
1639
1640 #define HAVE_POST_INCREMENT 1
1641 #define HAVE_PRE_INCREMENT 1
1642 #define HAVE_POST_DECREMENT 1
1643 #define HAVE_PRE_DECREMENT 1
1644 #define HAVE_PRE_MODIFY_REG 1
1645 #define HAVE_POST_MODIFY_REG 1
1646 #define HAVE_PRE_MODIFY_DISP 1
1647 #define HAVE_POST_MODIFY_DISP 1
1648
1649 /* The number of insns that can be packed into a single opcode. */
1650 #define PACK_INSNS 2
1651
1652 /* Recognize any constant value that is a valid address.
1653 We could allow arbitrary constant addresses in the large memory
1654 model but for the small memory model we can only accept addresses
1655 within the data page. I suppose we could also allow
1656 CONST PLUS SYMBOL_REF. */
1657 #define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == SYMBOL_REF)
1658
1659 /* Maximum number of registers that can appear in a valid memory
1660 address. */
1661 #define MAX_REGS_PER_ADDRESS 2
1662
1663 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1664 and check its validity for a certain class.
1665 We have two alternate definitions for each of them.
1666 The usual definition accepts all pseudo regs; the other rejects
1667 them unless they have been allocated suitable hard regs.
1668 The symbol REG_OK_STRICT causes the latter definition to be used.
1669
1670 Most source files want to accept pseudo regs in the hope that
1671 they will get allocated to the class that the insn wants them to be in.
1672 Source files for reload pass need to be strict.
1673 After reload, it makes no difference, since pseudo regs have
1674 been eliminated by then. */
1675
1676 #ifndef REG_OK_STRICT
1677
1678 /* Nonzero if X is a hard or pseudo reg that can be used as an base. */
1679
1680 #define REG_OK_FOR_BASE_P(X) IS_ADDR_OR_PSEUDO_REG(X)
1681
1682 /* Nonzero if X is a hard or pseudo reg that can be used as an index. */
1683
1684 #define REG_OK_FOR_INDEX_P(X) IS_INDEX_OR_PSEUDO_REG(X)
1685
1686 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1687 { \
1688 if (c4x_check_legit_addr (MODE, X, 0)) \
1689 goto ADDR; \
1690 }
1691
1692 #else
1693
1694 /* Nonzero if X is a hard reg that can be used as an index. */
1695
1696 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1697
1698 /* Nonzero if X is a hard reg that can be used as a base reg. */
1699
1700 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1701
1702 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1703 { \
1704 if (c4x_check_legit_addr (MODE, X, 1)) \
1705 goto ADDR; \
1706 }
1707
1708 #endif
1709
1710 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1711 { \
1712 rtx new; \
1713 new = c4x_legitimize_address (X, MODE); \
1714 if (new != NULL_RTX) \
1715 { \
1716 (X) = new; \
1717 goto WIN; \
1718 } \
1719 }
1720
1721 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1722 { \
1723 if (MODE != HImode \
1724 && MODE != HFmode \
1725 && GET_MODE (X) != HImode \
1726 && GET_MODE (X) != HFmode \
1727 && (GET_CODE (X) == CONST \
1728 || GET_CODE (X) == SYMBOL_REF \
1729 || GET_CODE (X) == LABEL_REF)) \
1730 { \
1731 if (! TARGET_SMALL) \
1732 { \
1733 int i; \
1734 X = gen_rtx_LO_SUM (GET_MODE (X), \
1735 gen_rtx_HIGH (GET_MODE (X), X), X); \
1736 i = push_reload (XEXP (X, 0), NULL_RTX, \
1737 &XEXP (X, 0), NULL, \
1738 DP_REG, GET_MODE (X), VOIDmode, 0, 0, \
1739 OPNUM, TYPE); \
1740 /* The only valid reg is DP. This is a fixed reg and will \
1741 normally not be used so force it. */ \
1742 rld[i].reg_rtx = gen_rtx_REG (Pmode, DP_REGNO); \
1743 rld[i].nocombine = 1; \
1744 } \
1745 goto WIN; \
1746 } \
1747 else if (MODE != HImode \
1748 && MODE != HFmode \
1749 && GET_MODE (X) != HImode \
1750 && GET_MODE (X) != HFmode \
1751 && GET_CODE (X) == LO_SUM \
1752 && GET_CODE (XEXP (X,0)) == HIGH \
1753 && (GET_CODE (XEXP (XEXP (X,0),0)) == CONST \
1754 || GET_CODE (XEXP (XEXP (X,0),0)) == SYMBOL_REF \
1755 || GET_CODE (XEXP (XEXP (X,0),0)) == LABEL_REF)) \
1756 { \
1757 if (! TARGET_SMALL) \
1758 { \
1759 int i = push_reload (XEXP (X, 0), NULL_RTX, \
1760 &XEXP (X, 0), NULL, \
1761 DP_REG, GET_MODE (X), VOIDmode, 0, 0, \
1762 OPNUM, TYPE); \
1763 /* The only valid reg is DP. This is a fixed reg and will \
1764 normally not be used so force it. */ \
1765 rld[i].reg_rtx = gen_rtx_REG (Pmode, DP_REGNO); \
1766 rld[i].nocombine = 1; \
1767 } \
1768 goto WIN; \
1769 } \
1770 }
1771
1772 /* No mode-dependent addresses on the C4x are autoincrements. */
1773
1774 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1775 if (GET_CODE (ADDR) == PRE_DEC \
1776 || GET_CODE (ADDR) == POST_DEC \
1777 || GET_CODE (ADDR) == PRE_INC \
1778 || GET_CODE (ADDR) == POST_INC \
1779 || GET_CODE (ADDR) == POST_MODIFY \
1780 || GET_CODE (ADDR) == PRE_MODIFY) \
1781 goto LABEL
1782
1783
1784 /* Nonzero if the constant value X is a legitimate general operand.
1785 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1786
1787 The C4x can only load 16-bit immediate values, so we only allow a
1788 restricted subset of CONST_INT and CONST_DOUBLE. Disallow
1789 LABEL_REF and SYMBOL_REF (except on the C40 with the big memory
1790 model) so that the symbols will be forced into the constant pool.
1791 On second thoughts, let's do this with the move expanders since
1792 the alias analysis has trouble if we force constant addresses
1793 into memory.
1794 */
1795
1796 #define LEGITIMATE_CONSTANT_P(X) \
1797 ((GET_CODE (X) == CONST_DOUBLE && c4x_H_constant (X)) \
1798 || (GET_CODE (X) == CONST_INT) \
1799 || (GET_CODE (X) == SYMBOL_REF) \
1800 || (GET_CODE (X) == LABEL_REF) \
1801 || (GET_CODE (X) == CONST) \
1802 || (GET_CODE (X) == HIGH && ! TARGET_C3X) \
1803 || (GET_CODE (X) == LO_SUM && ! TARGET_C3X))
1804
1805 #define LEGITIMATE_DISPLACEMENT_P(X) IS_DISP8_CONST (INTVAL (X))
1806
1807 /* Define this macro if references to a symbol must be treated
1808 differently depending on something about the variable or
1809 function named by the symbol (such as what section it is in).
1810
1811 The macro definition, if any, is executed immediately after the
1812 rtl for DECL or other node is created.
1813 The value of the rtl will be a `mem' whose address is a
1814 `symbol_ref'.
1815
1816 The usual thing for this macro to do is to a flag in the
1817 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1818 name string in the `symbol_ref' (if one bit is not enough
1819 information).
1820
1821 On the C4x we use this to indicate if a symbol is in text or
1822 data space. */
1823
1824 #define ENCODE_SECTION_INFO(DECL) c4x_encode_section_info (DECL);
1825
1826 /* Descripting Relative Cost of Operations. */
1827
1828 /* Provide the costs of a rtl expression. This is in the body of a
1829 switch on CODE.
1830
1831 Note that we return, rather than break so that rtx_cost doesn't
1832 include CONST_COSTS otherwise expand_mult will think that it is
1833 cheaper to synthesise a multiply rather than to use a multiply
1834 instruction. I think this is because the algorithm synth_mult
1835 doesn't take into account the loading of the operands, whereas the
1836 calculation of mult_cost does.
1837 */
1838
1839
1840 #define RTX_COSTS(RTX, CODE, OUTER_CODE) \
1841 case PLUS: \
1842 case MINUS: \
1843 case AND: \
1844 case IOR: \
1845 case XOR: \
1846 case ASHIFT: \
1847 case ASHIFTRT: \
1848 case LSHIFTRT: \
1849 return COSTS_N_INSNS (1); \
1850 case MULT: \
1851 return COSTS_N_INSNS (GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT \
1852 || TARGET_MPYI ? 1 : 14); \
1853 case DIV: \
1854 case UDIV: \
1855 case MOD: \
1856 case UMOD: \
1857 return COSTS_N_INSNS (GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT \
1858 ? 15 : 50);
1859
1860 /* Compute the cost of computing a constant rtl expression RTX
1861 whose rtx-code is CODE. The body of this macro is a portion
1862 of a switch statement. If the code is computed here,
1863 return it with a return statement. Otherwise, break from the switch.
1864
1865 An insn is assumed to cost 4 units.
1866 COSTS_N_INSNS (N) is defined as (N) * 4 - 2.
1867
1868 Some small integers are effectively free for the C40. We should
1869 also consider if we are using the small memory model. With
1870 the big memory model we require an extra insn for a constant
1871 loaded from memory.
1872
1873 This is used by expand_binop to decide whether to force a constant
1874 into a register. If the cost is greater than 2 and the constant
1875 is used within a short loop, it gets forced into a register.
1876 Ideally, there should be some weighting as to how mnay times it is used
1877 within the loop. */
1878
1879 #define SHIFT_CODE_P(C) ((C) == ASHIFT || (C) == ASHIFTRT || (C) == LSHIFTRT)
1880
1881 #define LOGICAL_CODE_P(C) ((C) == NOT || (C) == AND \
1882 || (C) == IOR || (C) == XOR)
1883
1884 #define NON_COMMUTATIVE_CODE_P ((C) == MINUS || (C) == COMPARE)
1885
1886 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1887 case CONST_INT: \
1888 if (c4x_J_constant (RTX)) \
1889 return 0; \
1890 if (! TARGET_C3X \
1891 && OUTER_CODE == AND \
1892 && GET_CODE (RTX) == CONST_INT \
1893 && (INTVAL (RTX) == 255 || INTVAL (RTX) == 65535)) \
1894 return 0; \
1895 if (! TARGET_C3X \
1896 && (OUTER_CODE == ASHIFTRT || OUTER_CODE == LSHIFTRT) \
1897 && GET_CODE (RTX) == CONST_INT \
1898 && (INTVAL (RTX) == 16 || INTVAL (RTX) == 24)) \
1899 return 0; \
1900 if (TARGET_C3X && SHIFT_CODE_P (OUTER_CODE)) \
1901 return 3; \
1902 if (LOGICAL_CODE_P (OUTER_CODE) \
1903 ? c4x_L_constant (RTX) : c4x_I_constant (RTX)) \
1904 return 2; \
1905 case CONST: \
1906 case LABEL_REF: \
1907 case SYMBOL_REF: \
1908 return 4; \
1909 case CONST_DOUBLE: \
1910 if (c4x_H_constant (RTX)) \
1911 return 2; \
1912 if (GET_MODE (RTX) == QFmode) \
1913 return 4; \
1914 else \
1915 return 8;
1916
1917 /* Compute the cost of an address. This is meant to approximate the size
1918 and/or execution delay of an insn using that address. If the cost is
1919 approximated by the RTL complexity, including CONST_COSTS above, as
1920 is usually the case for CISC machines, this macro should not be defined.
1921 For aggressively RISCy machines, only one insn format is allowed, so
1922 this macro should be a constant. The value of this macro only matters
1923 for valid addresses. We handle the most common address without
1924 a call to c4x_address_cost. */
1925
1926 #define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : c4x_address_cost (ADDR))
1927
1928 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
1929 if (REG_P (OP1) && ! REG_P (OP0)) \
1930 { \
1931 rtx tmp = OP0; OP0 = OP1 ; OP1 = tmp; \
1932 CODE = swap_condition (CODE); \
1933 }
1934
1935 #define EXT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, EXT_REGS))
1936 #define ADDR_CLASS_P(CLASS) (reg_class_subset_p (CLASS, ADDR_REGS))
1937 #define INDEX_CLASS_P(CLASS) (reg_class_subset_p (CLASS, INDEX_REGS))
1938 #define EXPENSIVE_CLASS_P(CLASS) (ADDR_CLASS_P(CLASS) \
1939 || INDEX_CLASS_P(CLASS) || (CLASS) == SP_REG)
1940
1941 /* Compute extra cost of moving data between one register class
1942 and another. */
1943
1944 #define REGISTER_MOVE_COST(MODE, FROM, TO) 2
1945
1946 /* Memory move cost is same as fast register move. Maybe this should
1947 be bumped up?. */
1948
1949 #define MEMORY_MOVE_COST(M,C,I) 4
1950
1951 /* Branches are kind of expensive (even with delayed branching) so
1952 make their cost higher. */
1953
1954 #define BRANCH_COST 8
1955
1956 #define WORD_REGISTER_OPERATIONS
1957
1958 /* Dividing the Output into Sections. */
1959
1960 #define TEXT_SECTION_ASM_OP "\t.text"
1961
1962 #define DATA_SECTION_ASM_OP "\t.data"
1963
1964 #define USE_CONST_SECTION 1
1965
1966 #define CONST_SECTION_ASM_OP "\t.sect\t\".const\""
1967
1968 /* Do not use .init section so __main will be called on startup. This will
1969 call __do_global_ctors and prepare for __do_global_dtors on exit. */
1970
1971 #if 0
1972 #define INIT_SECTION_ASM_OP "\t.sect\t\".init\""
1973 #endif
1974
1975 #define FINI_SECTION_ASM_OP "\t.sect\t\".fini\""
1976
1977 #undef EXTRA_SECTIONS
1978 #define EXTRA_SECTIONS in_const, in_init, in_fini
1979
1980 #undef EXTRA_SECTION_FUNCTIONS
1981 #define EXTRA_SECTION_FUNCTIONS \
1982 CONST_SECTION_FUNCTION \
1983 INIT_SECTION_FUNCTION \
1984 FINI_SECTION_FUNCTION
1985
1986 #define INIT_SECTION_FUNCTION \
1987 void \
1988 init_section () \
1989 { \
1990 if (in_section != in_init) \
1991 { \
1992 fprintf (asm_out_file, ";\t.init\n"); \
1993 in_section = in_init; \
1994 } \
1995 }
1996
1997 #define FINI_SECTION_FUNCTION \
1998 void \
1999 fini_section () \
2000 { \
2001 if (in_section != in_fini) \
2002 { \
2003 fprintf (asm_out_file, "%s\n", FINI_SECTION_ASM_OP); \
2004 in_section = in_fini; \
2005 } \
2006 }
2007
2008 #define READONLY_DATA_SECTION() const_section ()
2009
2010 #define CONST_SECTION_FUNCTION \
2011 void \
2012 const_section () \
2013 { \
2014 if (! USE_CONST_SECTION) \
2015 text_section(); \
2016 else if (in_section != in_const) \
2017 { \
2018 fprintf (asm_out_file, "%s\n", CONST_SECTION_ASM_OP); \
2019 in_section = in_const; \
2020 } \
2021 }
2022
2023 #define ASM_STABS_OP "\t.stabs\t"
2024
2025 /* Switch into a generic section. */
2026 #define TARGET_ASM_NAMED_SECTION c4x_asm_named_section
2027
2028 /* A C statement or statements to switch to the appropriate
2029 section for output of DECL. DECL is either a `VAR_DECL' node
2030 or a constant of some sort. RELOC indicates whether forming
2031 the initial value of DECL requires link-time relocations. */
2032
2033 #define SELECT_SECTION(DECL, RELOC, ALIGN) \
2034 { \
2035 if (TREE_CODE (DECL) == STRING_CST) \
2036 { \
2037 if (! flag_writable_strings) \
2038 const_section (); \
2039 else \
2040 data_section (); \
2041 } \
2042 else if (TREE_CODE (DECL) == VAR_DECL) \
2043 { \
2044 if ((0 && RELOC) /* Should be (flag_pic && RELOC). */ \
2045 || ! TREE_READONLY (DECL) || TREE_SIDE_EFFECTS (DECL) \
2046 || ! DECL_INITIAL (DECL) \
2047 || (DECL_INITIAL (DECL) != error_mark_node \
2048 && ! TREE_CONSTANT (DECL_INITIAL (DECL)))) \
2049 data_section (); \
2050 else \
2051 const_section (); \
2052 } \
2053 else \
2054 const_section (); \
2055 }
2056
2057 /* The TI assembler wants to have hex numbers this way. */
2058
2059 #undef HOST_WIDE_INT_PRINT_HEX
2060 #ifndef HOST_WIDE_INT_PRINT_HEX
2061 # if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
2062 # define HOST_WIDE_INT_PRINT_HEX "0%xh"
2063 # else
2064 # if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
2065 # define HOST_WIDE_INT_PRINT_HEX "0%lxh"
2066 # else
2067 # define HOST_WIDE_INT_PRINT_HEX "0%llxh"
2068 # endif
2069 # endif
2070 #endif /* ! HOST_WIDE_INT_PRINT_HEX */
2071
2072 /* A C statement or statements to switch to the appropriate
2073 section for output of RTX in mode MODE. RTX is some kind
2074 of constant in RTL. The argument MODE is redundant except
2075 in the case of a `const_int' rtx. Currently, these always
2076 go into the const section. */
2077
2078 #define SELECT_RTX_SECTION(MODE, RTX, ALIGN) const_section()
2079
2080
2081 /* Overall Framework of an Assembler File. */
2082 /* We need to have a data section we can identify so that we can set
2083 the DP register back to a data pointer in the small memory model.
2084 This is only required for ISRs if we are paranoid that someone
2085 may have quietly changed this register on the sly. */
2086
2087 #define ASM_FILE_START(FILE) \
2088 { \
2089 int dspversion = 0; \
2090 if (TARGET_C30) dspversion = 30; \
2091 if (TARGET_C31) dspversion = 31; \
2092 if (TARGET_C32) dspversion = 32; \
2093 if (TARGET_C40) dspversion = 40; \
2094 if (TARGET_C44) dspversion = 44; \
2095 fprintf (FILE, "\t.version\t%d\n", dspversion); \
2096 fprintf (FILE, "\t.file\t"); \
2097 if (TARGET_TI) \
2098 { \
2099 char *p; \
2100 char *after_dir = main_input_filename; \
2101 for (p = main_input_filename; *p; p++) \
2102 if (*p == '/') \
2103 after_dir = p + 1; \
2104 output_quoted_string (FILE, after_dir); \
2105 } \
2106 else \
2107 output_quoted_string (FILE, main_input_filename); \
2108 fputs ("\n\t.data\ndata_sec:\n", FILE); \
2109 }
2110
2111 #define ASM_COMMENT_START ";"
2112
2113 #define ASM_APP_ON ""
2114 #define ASM_APP_OFF ""
2115
2116 /* Output float/double constants QFmode. */
2117
2118 #define ASM_OUTPUT_BYTE_FLOAT(FILE, VALUE) \
2119 do { \
2120 long l; \
2121 char str[30]; \
2122 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
2123 REAL_VALUE_TO_DECIMAL (VALUE, "%20lf", str); \
2124 if (sizeof (int) == sizeof (long)) \
2125 fprintf (FILE, "\t.word\t0%08xh\t; %s\n", l, str);\
2126 else \
2127 fprintf (FILE, "\t.word\t0%08lxh\t; %s\n", l, str);\
2128 } while (0);
2129
2130 /* Output long double constants HFmode.
2131 The first word contains the exponent and first part of the mantissa
2132 in the same manner as QFmode. The second word contains the full
2133 mantissa. We should ensure that the two words are allocated within
2134 the same page for the large memory model since we only output a single
2135 LDP instruction. FIXME. The simplest solution probably is to output
2136 a LDP for each load. */
2137
2138 #define ASM_OUTPUT_SHORT_FLOAT(FILE, VALUE) \
2139 do { \
2140 long l[2]; \
2141 char str[30]; \
2142 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
2143 REAL_VALUE_TO_DECIMAL (VALUE, "%20lf", str); \
2144 l[1] = (l[0] << 8) | ((l[1] >> 24) & 0xff); \
2145 if (sizeof (int) == sizeof (long)) \
2146 fprintf (FILE, "\t.word\t0%08xh\t; %s\n\t.word\t0%08xh\n", \
2147 l[0], str, l[1]); \
2148 else \
2149 fprintf (FILE, "\t.word\t0%08lxh\t; %s\n\t.word\t0%08lxh\n", \
2150 l[0], str, l[1]); \
2151 } while (0);
2152
2153 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
2154 do { \
2155 fprintf (FILE, "\t.word\t"); \
2156 output_addr_const (FILE, VALUE); \
2157 if (GET_CODE (VALUE) != SYMBOL_REF) \
2158 fprintf (FILE, " ; 0%08xh\n", INTVAL (VALUE)); \
2159 else \
2160 fputc ('\n', FILE); \
2161 } while (0);
2162
2163 #define ASM_OUTPUT_BYTE(FILE, VALUE) \
2164 fprintf (FILE, "\t.word\t0%xh\n", (VALUE))
2165
2166 #define ASM_OUTPUT_ASCII(FILE, PTR, LEN) c4x_output_ascii (FILE, PTR, LEN)
2167
2168 /* Output and Generation of Labels. */
2169
2170 #define NO_DOT_IN_LABEL /* Only required for TI format. */
2171
2172 #define ASM_OUTPUT_LABEL(FILE, NAME) \
2173 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0);
2174
2175 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
2176 do { \
2177 fprintf (FILE, "\t.global\t"); \
2178 assemble_name (FILE, NAME); \
2179 fputs ("\n", FILE); \
2180 c4x_global_label (NAME); \
2181 } while (0);
2182
2183 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2184 c4x_external_ref (NAME)
2185
2186 /* A C statement to output on FILE an assembler pseudo-op to
2187 declare a library function named external.
2188 (Only needed to keep asm30 happy for ___divqf3 etc.) */
2189
2190 #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
2191 c4x_external_ref (XSTR (FUN, 0))
2192
2193 #define ASM_FILE_END(FILE) \
2194 c4x_file_end (FILE)
2195
2196 /* The prefix to add to user-visible assembler symbols. */
2197
2198 #define USER_LABEL_PREFIX "_"
2199
2200 /* This is how to output an internal numbered label where
2201 PREFIX is the class of label and NUM is the number within the class. */
2202
2203 #define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \
2204 asm_fprintf (FILE, "%s%d:\n", PREFIX, NUM)
2205
2206 /* This is how to store into the string LABEL
2207 the symbol_ref name of an internal numbered label where
2208 PREFIX is the class of label and NUM is the number within the class.
2209 This is suitable for output with `assemble_name'. */
2210
2211 #define ASM_GENERATE_INTERNAL_LABEL(BUFFER, PREFIX, NUM) \
2212 sprintf (BUFFER, "*%s%d", PREFIX, NUM)
2213
2214 /* Store in OUTPUT a string (made with alloca) containing
2215 an assembler-name for a local static variable named NAME.
2216 LABELNO is an integer which is different for each call. */
2217
2218 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2219 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2220 sprintf ((OUTPUT), "%s$%d", (NAME), (LABELNO)))
2221
2222 /* A C statement to output to the stdio stream STREAM assembler code which
2223 defines (equates) the symbol NAME to have the value VALUE. */
2224
2225 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
2226 do { \
2227 assemble_name (STREAM, NAME); \
2228 fprintf (STREAM, "\t.set\t%s\n", VALUE); \
2229 } while (0)
2230
2231 /* Output of Dispatch Tables. */
2232
2233 /* This is how to output an element of a case-vector that is absolute. */
2234
2235 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2236 fprintf (FILE, "\t.long\tL%d\n", VALUE);
2237
2238 /* This is how to output an element of a case-vector that is relative. */
2239
2240 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2241 fprintf (FILE, "\t.long\tL%d-L%d\n", VALUE, REL);
2242
2243 #undef SIZE_TYPE
2244 #define SIZE_TYPE "unsigned int"
2245
2246 #undef PTRDIFF_TYPE
2247 #define PTRDIFF_TYPE "int"
2248
2249 #undef WCHAR_TYPE
2250 #define WCHAR_TYPE "long int"
2251
2252 #undef WCHAR_TYPE_SIZE
2253 #define WCHAR_TYPE_SIZE 32
2254
2255 #define INT_TYPE_SIZE 32
2256 #define LONG_LONG_TYPE_SIZE 64
2257 #define FLOAT_TYPE_SIZE 32
2258 #define DOUBLE_TYPE_SIZE 32
2259 #define LONG_DOUBLE_TYPE_SIZE 64 /* Actually only 40. */
2260
2261 /* Allow #sccs in preprocessor. */
2262
2263 #define SCCS_DIRECTIVE
2264
2265 /* Output #ident as a .ident. */
2266
2267 #define ASM_OUTPUT_IDENT(FILE, NAME) \
2268 fprintf (FILE, "\t.ident \"%s\"\n", NAME);
2269
2270 #define CPP_PREDEFINES ""
2271
2272 /* Output of Uninitialized Variables. */
2273
2274 /* This says how to output an assembler line to define a local
2275 uninitialized variable. */
2276
2277 #undef ASM_OUTPUT_LOCAL
2278 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
2279 ( fputs ("\t.bss\t", FILE), \
2280 assemble_name (FILE, (NAME)), \
2281 fprintf (FILE, ",%u\n", (ROUNDED)))
2282
2283 /* This says how to output an assembler line to define a global
2284 uninitialized variable. */
2285
2286 #undef ASM_OUTPUT_COMMON
2287 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2288 ( fputs ("\t.globl\t", FILE), \
2289 assemble_name (FILE, (NAME)), \
2290 fputs ("\n\t.bss\t", FILE), \
2291 assemble_name (FILE, (NAME)), \
2292 fprintf (FILE, ",%u\n", (ROUNDED)))
2293
2294 #undef ASM_OUTPUT_BSS
2295 #define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2296 ( fputs ("\t.globl\t", FILE), \
2297 assemble_name (FILE, (NAME)), \
2298 fputs ("\n\t.bss\t", FILE), \
2299 assemble_name (FILE, (NAME)), \
2300 fprintf (FILE, ",%u\n", (SIZE)))
2301
2302 /* Macros Controlling Initialization Routines. */
2303
2304 #define OBJECT_FORMAT_COFF
2305 #define REAL_NM_FILE_NAME "c4x-nm"
2306
2307 /* Output of Assembler Instructions. */
2308
2309 /* Register names when used for integer modes. */
2310
2311 #define REGISTER_NAMES \
2312 { \
2313 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2314 "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", \
2315 "dp", "ir0", "ir1", "bk", "sp", "st", "die", "iie", \
2316 "iif", "rs", "re", "rc", "r8", "r9", "r10", "r11" \
2317 }
2318
2319 /* Alternate register names when used for floating point modes. */
2320
2321 #define FLOAT_REGISTER_NAMES \
2322 { \
2323 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2324 "ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", \
2325 "dp", "ir0", "ir1", "bk", "sp", "st", "die", "iie", \
2326 "iif", "rs", "re", "rc", "f8", "f9", "f10", "f11" \
2327 }
2328
2329 #define PRINT_OPERAND(FILE, X, CODE) c4x_print_operand(FILE, X, CODE)
2330
2331 /* Determine which codes are valid without a following integer. These must
2332 not be alphabetic. */
2333
2334 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '#')
2335
2336 #define PRINT_OPERAND_ADDRESS(FILE, X) c4x_print_operand_address(FILE, X)
2337
2338 /* C4x specific pragmas. */
2339 #define REGISTER_TARGET_PRAGMAS(PFILE) do { \
2340 cpp_register_pragma (PFILE, 0, "CODE_SECTION", c4x_pr_CODE_SECTION); \
2341 cpp_register_pragma (PFILE, 0, "DATA_SECTION", c4x_pr_DATA_SECTION); \
2342 cpp_register_pragma (PFILE, 0, "FUNC_CANNOT_INLINE", c4x_pr_ignored); \
2343 cpp_register_pragma (PFILE, 0, "FUNC_EXT_CALLED", c4x_pr_ignored); \
2344 cpp_register_pragma (PFILE, 0, "FUNC_IS_PURE", c4x_pr_FUNC_IS_PURE); \
2345 cpp_register_pragma (PFILE, 0, "FUNC_IS_SYSTEM", c4x_pr_ignored); \
2346 cpp_register_pragma (PFILE, 0, "FUNC_NEVER_RETURNS", \
2347 c4x_pr_FUNC_NEVER_RETURNS); \
2348 cpp_register_pragma (PFILE, 0, "FUNC_NO_GLOBAL_ASG", c4x_pr_ignored); \
2349 cpp_register_pragma (PFILE, 0, "FUNC_NO_IND_ASG", c4x_pr_ignored); \
2350 cpp_register_pragma (PFILE, 0, "INTERRUPT", c4x_pr_INTERRUPT); \
2351 c4x_init_pragma (&c_lex); \
2352 } while (0)
2353
2354 /* Assembler Commands for Alignment. */
2355
2356 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
2357 { int c = SIZE; \
2358 for (; c > 0; --c) \
2359 fprintf (FILE,"\t.word\t0\n"); \
2360 }
2361
2362 #define ASM_NO_SKIP_IN_TEXT 1
2363
2364 /* I'm not sure about this one. FIXME. */
2365
2366 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
2367 if ((LOG) != 0) \
2368 fprintf (FILE, "\t.align\t%d\n", (1 << (LOG)))
2369
2370
2371 /* Macros for SDB and DWARF Output (use .sdef instead of .def
2372 to avoid conflict with TI's use of .def). */
2373
2374 #define SDB_DELIM "\n"
2375 #define SDB_DEBUGGING_INFO
2376
2377 /* Don't use octal since this can confuse gas for the c4x. */
2378 #define PUT_SDB_TYPE(a) fprintf(asm_out_file, "\t.type\t0x%x%s", a, SDB_DELIM)
2379
2380 #define PUT_SDB_DEF(A) \
2381 do { fprintf (asm_out_file, "\t.sdef\t"); \
2382 ASM_OUTPUT_LABELREF (asm_out_file, A); \
2383 fprintf (asm_out_file, SDB_DELIM); } while (0)
2384
2385 #define PUT_SDB_PLAIN_DEF(A) \
2386 fprintf (asm_out_file,"\t.sdef\t.%s%s", A, SDB_DELIM)
2387
2388 #define PUT_SDB_BLOCK_START(LINE) \
2389 fprintf (asm_out_file, \
2390 "\t.sdef\t.bb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \
2391 SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
2392
2393 #define PUT_SDB_BLOCK_END(LINE) \
2394 fprintf (asm_out_file, \
2395 "\t.sdef\t.eb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \
2396 SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
2397
2398 #define PUT_SDB_FUNCTION_START(LINE) \
2399 fprintf (asm_out_file, \
2400 "\t.sdef\t.bf%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \
2401 SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
2402
2403 /* Note we output relative line numbers for .ef which gas converts
2404 to absolute line numbers. The TI compiler outputs absolute line numbers
2405 in the .sym directive which gas does not support. */
2406 #define PUT_SDB_FUNCTION_END(LINE) \
2407 fprintf (asm_out_file, \
2408 "\t.sdef\t.ef%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \
2409 SDB_DELIM, SDB_DELIM, SDB_DELIM, \
2410 (LINE), SDB_DELIM)
2411
2412 #define PUT_SDB_EPILOGUE_END(NAME) \
2413 do { fprintf (asm_out_file, "\t.sdef\t"); \
2414 ASM_OUTPUT_LABELREF (asm_out_file, NAME); \
2415 fprintf (asm_out_file, \
2416 "%s\t.val\t.%s\t.scl\t-1%s\t.endef\n", \
2417 SDB_DELIM, SDB_DELIM, SDB_DELIM); } while (0)
2418
2419 /* This is the kind of divide that is easiest to do in the general case. */
2420
2421 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2422
2423 /* Define this as 1 if `char' should by default be signed; else as 0. */
2424
2425 #define DEFAULT_SIGNED_CHAR 1
2426
2427 /* A function address in a call instruction is a byte address (for
2428 indexing purposes) so give the MEM rtx a byte's mode. */
2429
2430 #define FUNCTION_MODE QImode
2431
2432 #define SLOW_BYTE_ACCESS 0
2433
2434 /* Specify the machine mode that pointers have. After generation of
2435 RTL, the compiler makes no further distinction between pointers and
2436 any other objects of this machine mode. */
2437
2438 #define Pmode QImode
2439
2440 /* On the C4x we can write the following code. We have to clear the cache
2441 every time we execute it because the data in the stack could change.
2442
2443 laj $+4
2444 addi3 4,r11,ar0
2445 lda *ar0,ar1
2446 lda *+ar0(1),ar0
2447 bud ar1
2448 nop
2449 nop
2450 or 1000h,st
2451 .word FNADDR
2452 .word CXT
2453
2454 On the c3x this is a bit more difficult. We have to write self
2455 modifying code here. So we have to clear the cache every time
2456 we execute it because the data in the stack could change.
2457
2458 ldiu TOP_OF_FUNCTION,ar1
2459 lsh 16,ar1
2460 or BOTTOM_OF_FUNCTION,ar1
2461 ldiu TOP_OF_STATIC,ar0
2462 bud ar1
2463 lsh 16,ar0
2464 or BOTTOM_OF_STATIC,ar0
2465 or 1000h,st
2466
2467 */
2468
2469 #define TRAMPOLINE_SIZE (TARGET_C3X ? 8 : 10)
2470
2471 #define TRAMPOLINE_TEMPLATE(FILE) \
2472 { \
2473 if (TARGET_C3X) \
2474 { \
2475 asm_fprintf (FILE, "\tldiu\t0,ar1\n"); \
2476 asm_fprintf (FILE, "\tlsh\t16,ar1\n"); \
2477 asm_fprintf (FILE, "\tor\t0,ar1\n"); \
2478 asm_fprintf (FILE, "\tldiu\t0,ar0\n"); \
2479 asm_fprintf (FILE, "\tbud\tar1\n"); \
2480 asm_fprintf (FILE, "\tlsh\t16,ar0\n"); \
2481 asm_fprintf (FILE, "\tor\t0,ar0\n"); \
2482 asm_fprintf (FILE, "\tor\t1000h,st\n"); \
2483 } \
2484 else \
2485 { \
2486 asm_fprintf (FILE, "\tlaj\t$+4\n"); \
2487 asm_fprintf (FILE, "\taddi3\t4,r11,ar0\n"); \
2488 asm_fprintf (FILE, "\tlda\t*ar0,ar1\n"); \
2489 asm_fprintf (FILE, "\tlda\t*+ar0(1),ar0\n"); \
2490 asm_fprintf (FILE, "\tbud\tar1\n"); \
2491 asm_fprintf (FILE, "\tnop\n"); \
2492 asm_fprintf (FILE, "\tnop\n"); \
2493 asm_fprintf (FILE, "\tor\t1000h,st\n"); \
2494 asm_fprintf (FILE, "\t.word\t0\n"); \
2495 asm_fprintf (FILE, "\t.word\t0\n"); \
2496 } \
2497 }
2498
2499 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
2500 { \
2501 if (TARGET_C3X) \
2502 { \
2503 rtx tmp1, tmp2; \
2504 tmp1 = expand_shift (RSHIFT_EXPR, QImode, FNADDR, \
2505 size_int (16), 0, 1); \
2506 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
2507 gen_rtx (CONST_INT, VOIDmode, 0x5069), \
2508 size_int (16), 0, 1); \
2509 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
2510 emit_move_insn (gen_rtx (MEM, QImode, \
2511 plus_constant (tramp, 0)), tmp1); \
2512 tmp1 = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, \
2513 0xffff), 0); \
2514 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
2515 gen_rtx (CONST_INT, VOIDmode, 0x1069), \
2516 size_int (16), 0, 1); \
2517 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
2518 emit_move_insn (gen_rtx (MEM, QImode, \
2519 plus_constant (tramp, 2)), tmp1); \
2520 tmp1 = expand_shift (RSHIFT_EXPR, QImode, CXT, \
2521 size_int (16), 0, 1); \
2522 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
2523 gen_rtx (CONST_INT, VOIDmode, 0x5068), \
2524 size_int (16), 0, 1); \
2525 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
2526 emit_move_insn (gen_rtx (MEM, QImode, \
2527 plus_constant (tramp, 3)), tmp1); \
2528 tmp1 = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, \
2529 0xffff), 0); \
2530 tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
2531 gen_rtx (CONST_INT, VOIDmode, 0x1068), \
2532 size_int (16), 0, 1); \
2533 emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
2534 emit_move_insn (gen_rtx (MEM, QImode, \
2535 plus_constant (tramp, 6)), tmp1); \
2536 } \
2537 else \
2538 { \
2539 emit_move_insn (gen_rtx (MEM, QImode, \
2540 plus_constant (TRAMP, 8)), FNADDR); \
2541 emit_move_insn (gen_rtx (MEM, QImode, \
2542 plus_constant (TRAMP, 9)), CXT); \
2543 } \
2544 }
2545
2546 /* Specify the machine mode that this machine uses for the index in
2547 the tablejump instruction. */
2548
2549 #define CASE_VECTOR_MODE Pmode
2550
2551 /* Max number of (32-bit) bytes we can move from memory to memory
2552 in one reasonably fast instruction. */
2553
2554 #define MOVE_MAX 1
2555
2556 /* MOVE_RATIO is the number of move instructions that is better than a
2557 block move. */
2558
2559 #define MOVE_RATIO 3
2560
2561 #define BSS_SECTION_ASM_OP "\t.bss"
2562
2563 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2564 asm_fprintf (FILE, "\tpush\t%s\n", reg_names[REGNO])
2565
2566 /* This is how to output an insn to pop a register from the stack.
2567 It need not be very fast code. */
2568
2569 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2570 asm_fprintf (FILE, "\tpop\t%s\n", reg_names[REGNO])
2571
2572 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2573 is done just by pretending it is already truncated. */
2574
2575 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2576
2577 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2578
2579 /* We need to use direct addressing for large constants and addresses
2580 that cannot fit within an instruction. We must check for these
2581 after after the final jump optimisation pass, since this may
2582 introduce a local_move insn for a SYMBOL_REF. This pass
2583 must come before delayed branch slot filling since it can generate
2584 additional instructions. */
2585
2586 #define MACHINE_DEPENDENT_REORG(INSNS) c4x_process_after_reload(INSNS)
2587
2588 #define DBR_OUTPUT_SEQEND(FILE) \
2589 if (final_sequence != NULL_RTX) \
2590 { \
2591 int count; \
2592 rtx insn = XVECEXP (final_sequence, 0, 0); \
2593 int laj = GET_CODE (insn) == CALL_INSN \
2594 || (GET_CODE (insn) == INSN \
2595 && GET_CODE (PATTERN (insn)) == TRAP_IF);\
2596 \
2597 count = dbr_sequence_length(); \
2598 while (count < (laj ? 2 : 3)) \
2599 { \
2600 fputs("\tnop\n", FILE); \
2601 count++; \
2602 } \
2603 if (laj) \
2604 fputs("\tpush\tr11\n", FILE); \
2605 }
2606
2607 #define NO_FUNCTION_CSE
2608
2609 /* We don't want a leading tab. */
2610
2611 #define ASM_OUTPUT_ASM(FILE, STRING) fprintf (FILE, "%s\n", STRING)
2612
2613 /* Define the codes that are matched by predicates in c4x.c. */
2614
2615 #define PREDICATE_CODES \
2616 {"fp_zero_operand", {CONST_DOUBLE}}, \
2617 {"const_operand", {CONST_INT, CONST_DOUBLE}}, \
2618 {"stik_const_operand", {CONST_INT}}, \
2619 {"not_const_operand", {CONST_INT}}, \
2620 {"reg_operand", {REG, SUBREG}}, \
2621 {"reg_or_const_operand", {REG, SUBREG, CONST_INT, CONST_DOUBLE}},\
2622 {"r0r1_reg_operand", {REG, SUBREG}}, \
2623 {"r2r3_reg_operand", {REG, SUBREG}}, \
2624 {"ext_low_reg_operand", {REG, SUBREG}}, \
2625 {"ext_reg_operand", {REG, SUBREG}}, \
2626 {"std_reg_operand", {REG, SUBREG}}, \
2627 {"std_or_reg_operand", {REG, SUBREG}}, \
2628 {"addr_reg_operand", {REG, SUBREG}}, \
2629 {"index_reg_operand", {REG, SUBREG}}, \
2630 {"dp_reg_operand", {REG}}, \
2631 {"sp_reg_operand", {REG}}, \
2632 {"st_reg_operand", {REG}}, \
2633 {"rc_reg_operand", {REG}}, \
2634 {"call_address_operand", {REG, SYMBOL_REF, LABEL_REF, CONST}}, \
2635 {"dst_operand", {SUBREG, REG, MEM}}, \
2636 {"src_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE}}, \
2637 {"src_hi_operand", {SUBREG, REG, MEM, CONST_DOUBLE}}, \
2638 {"lsrc_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE}}, \
2639 {"tsrc_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE}}, \
2640 {"any_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE}}, \
2641 {"par_ind_operand", {MEM}}, \
2642 {"parallel_operand", {SUBREG, REG, MEM}}, \
2643 {"symbolic_address_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2644 {"mem_operand", {MEM}},
2645
2646
2647 /* Define the intrinsic functions for the c3x/c4x. */
2648
2649 enum c4x_builtins
2650 {
2651 /* intrinsic name */
2652 C4X_BUILTIN_FIX, /* fast_ftoi */
2653 C4X_BUILTIN_FIX_ANSI, /* ansi_ftoi */
2654 C4X_BUILTIN_MPYI, /* fast_imult (only C3x) */
2655 C4X_BUILTIN_TOIEEE, /* toieee (only C4x) */
2656 C4X_BUILTIN_FRIEEE, /* frieee (only C4x) */
2657 C4X_BUILTIN_RCPF /* fast_invf (only C4x) */
2658 };