]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/c6x/c6x.h
c6x.md (collapse-ndfa, [...]): New automata_options.
[thirdparty/gcc.git] / gcc / config / c6x / c6x.h
1 /* Target Definitions for TI C6X.
2 Copyright (C) 2010, 2011 Free Software Foundation, Inc.
3 Contributed by Andrew Jenner <andrew@codesourcery.com>
4 Contributed by Bernd Schmidt <bernds@codesourcery.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published
10 by the Free Software Foundation; either version 3, or (at your
11 option) any later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_C6X_H
23 #define GCC_C6X_H
24
25 /* Feature bit definitions that enable specific insns. */
26 #define C6X_INSNS_C62X 1
27 #define C6X_INSNS_C64X 2
28 #define C6X_INSNS_C64XP 4
29 #define C6X_INSNS_C67X 8
30 #define C6X_INSNS_C67XP 16
31 #define C6X_INSNS_C674X 32
32 #define C6X_INSNS_ATOMIC 64
33 #define C6X_INSNS_ALL_CPU_BITS 127
34
35 #define C6X_DEFAULT_INSN_MASK \
36 (C6X_INSNS_C62X | C6X_INSNS_C64X | C6X_INSNS_C64XP)
37
38 /* A mask of allowed insn types, as defined above. */
39 extern unsigned long c6x_insn_mask;
40
41 /* Value of -march= */
42 extern c6x_cpu_t c6x_arch;
43 #define C6X_DEFAULT_ARCH C6X_CPU_C64XP
44
45 /* True if the target has C64x instructions. */
46 #define TARGET_INSNS_64 ((c6x_insn_mask & C6X_INSNS_C64X) != 0)
47 /* True if the target has C64x+ instructions. */
48 #define TARGET_INSNS_64PLUS ((c6x_insn_mask & C6X_INSNS_C64XP) != 0)
49 /* True if the target has C67x instructions. */
50 #define TARGET_INSNS_67 ((c6x_insn_mask & C6X_INSNS_C67X) != 0)
51 /* True if the target has C67x+ instructions. */
52 #define TARGET_INSNS_67PLUS ((c6x_insn_mask & C6X_INSNS_C67XP) != 0)
53
54 /* True if the target supports doubleword loads. */
55 #define TARGET_LDDW (TARGET_INSNS_64 || TARGET_INSNS_67)
56 /* True if the target supports doubleword loads. */
57 #define TARGET_STDW TARGET_INSNS_64
58 /* True if the target supports the MPY32 family of instructions. */
59 #define TARGET_MPY32 TARGET_INSNS_64PLUS
60 /* True if the target has floating point hardware. */
61 #define TARGET_FP TARGET_INSNS_67
62 /* True if the target has C67x+ floating point extensions. */
63 #define TARGET_FP_EXT TARGET_INSNS_67PLUS
64
65 #define TARGET_DEFAULT 0
66
67 /* Run-time Target. */
68
69 #define TARGET_CPU_CPP_BUILTINS() \
70 do \
71 { \
72 builtin_assert ("machine=tic6x"); \
73 builtin_assert ("cpu=tic6x"); \
74 builtin_define ("__TMS320C6X__"); \
75 builtin_define ("_TMS320C6X"); \
76 \
77 if (TARGET_DSBT) \
78 builtin_define ("__DSBT__"); \
79 \
80 if (TARGET_BIG_ENDIAN) \
81 builtin_define ("_BIG_ENDIAN"); \
82 else \
83 builtin_define ("_LITTLE_ENDIAN"); \
84 \
85 switch (c6x_arch) \
86 { \
87 case C6X_CPU_C62X: \
88 builtin_define ("_TMS320C6200"); \
89 break; \
90 \
91 case C6X_CPU_C64XP: \
92 builtin_define ("_TMS320C6400_PLUS"); \
93 /* ... fall through ... */ \
94 case C6X_CPU_C64X: \
95 builtin_define ("_TMS320C6400"); \
96 break; \
97 \
98 case C6X_CPU_C67XP: \
99 builtin_define ("_TMS320C6700_PLUS"); \
100 /* ... fall through ... */ \
101 case C6X_CPU_C67X: \
102 builtin_define ("_TMS320C6700"); \
103 break; \
104 \
105 case C6X_CPU_C674X: \
106 builtin_define ("_TMS320C6740"); \
107 builtin_define ("_TMS320C6700_PLUS"); \
108 builtin_define ("_TMS320C6700"); \
109 builtin_define ("_TMS320C6400_PLUS"); \
110 builtin_define ("_TMS320C6400"); \
111 break; \
112 } \
113 } while (0)
114
115 #define OPTION_DEFAULT_SPECS \
116 {"arch", "%{!march=*:-march=%(VALUE)}" }
117
118 /* Storage Layout. */
119
120 #define BITS_BIG_ENDIAN 0
121 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
122 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
123
124 #define REG_WORDS_BIG_ENDIAN 0
125
126 #define UNITS_PER_WORD 4
127 #define PARM_BOUNDARY 8
128 #define STACK_BOUNDARY 64
129 #define FUNCTION_BOUNDARY 32
130 #define BIGGEST_ALIGNMENT 64
131 #define STRICT_ALIGNMENT 1
132
133 /* The ABI requires static arrays must be at least 8 byte aligned.
134 Really only externally visible arrays must be aligned this way, as
135 only those are directly visible from another compilation unit. But
136 we don't have that information available here. */
137 #define DATA_ALIGNMENT(TYPE, ALIGN) \
138 (((ALIGN) < BITS_PER_UNIT * 8 && TREE_CODE (TYPE) == ARRAY_TYPE) \
139 ? BITS_PER_UNIT * 8 : (ALIGN))
140
141 /* Type Layout. */
142
143 #define DEFAULT_SIGNED_CHAR 1
144
145 #undef SIZE_TYPE
146 #define SIZE_TYPE "unsigned int"
147 #undef PTRDIFF_TYPE
148 #define PTRDIFF_TYPE "int"
149
150 /* Registers. */
151
152 #define FIRST_PSEUDO_REGISTER 67
153 #define FIXED_REGISTERS \
154 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
155 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
156 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, \
157 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
158 1, 1, 1}
159 #define CALL_USED_REGISTERS \
160 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, \
161 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
162 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, \
163 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
164 1, 1, 1}
165
166 /* This lists call-used non-predicate registers first, followed by call-used
167 registers, followed by predicate registers. We want to avoid allocating
168 the predicate registers for other uses as much as possible. */
169 #define REG_ALLOC_ORDER \
170 { \
171 REG_A0, REG_A3, REG_A4, REG_A5, REG_A6, REG_A7, REG_A8, REG_A9, \
172 REG_A16, REG_A17, REG_A18, REG_A19, REG_A20, REG_A21, REG_A22, REG_A23, \
173 REG_A24, REG_A25, REG_A26, REG_A27, REG_A28, REG_A29, REG_A30, REG_A31, \
174 REG_B4, REG_B5, REG_B6, REG_B7, REG_B8, REG_B9, REG_B16, \
175 REG_B17, REG_B18, REG_B19, REG_B20, REG_B21, REG_B22, REG_B23, REG_B24, \
176 REG_B25, REG_B26, REG_B27, REG_B28, REG_B29, REG_B30, REG_B31, \
177 REG_A10, REG_A11, REG_A12, REG_A13, REG_A14, REG_A15, \
178 REG_B3, REG_B10, REG_B11, REG_B12, REG_B13, REG_B14, REG_B15, \
179 REG_A1, REG_A2, REG_B0, REG_B1, REG_B2, REG_ILC \
180 }
181
182 #define HARD_REGNO_NREGS(regno, mode) \
183 ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) \
184 / UNITS_PER_WORD)
185
186 #define HARD_REGNO_MODE_OK(reg, mode) (GET_MODE_SIZE (mode) <= UNITS_PER_WORD \
187 ? 1 : ((reg) & 1) == 0)
188
189 #define MODES_TIEABLE_P(mode1, mode2) \
190 ((mode1) == (mode2) || \
191 (GET_MODE_SIZE (mode1) <= UNITS_PER_WORD && \
192 GET_MODE_SIZE (mode2) <= UNITS_PER_WORD))
193
194
195 /* Register Classes. */
196
197 enum reg_class
198 {
199 NO_REGS,
200 PREDICATE_A_REGS,
201 PREDICATE_B_REGS,
202 PREDICATE_REGS,
203 PICREG,
204 SPREG,
205 CALL_USED_B_REGS,
206 NONPREDICATE_A_REGS,
207 NONPREDICATE_B_REGS,
208 NONPREDICATE_REGS,
209 A_REGS,
210 B_REGS,
211 GENERAL_REGS,
212 ALL_REGS,
213 LIM_REG_CLASSES
214 };
215
216 #define N_REG_CLASSES (int) LIM_REG_CLASSES
217
218 #define REG_CLASS_NAMES { \
219 "NO_REGS", \
220 "PREDICATE_A_REGS", \
221 "PREDICATE_B_REGS", \
222 "PREDICATE_REGS", \
223 "PICREG", \
224 "SPREG", \
225 "CALL_USED_B_REGS", \
226 "NONPREDICATE_A_REGS", \
227 "NONPREDICATE_B_REGS", \
228 "NONPREDICATE_REGS", \
229 "A_REGS", \
230 "B_REGS", \
231 "GENERAL_REGS", \
232 "ALL_REGS" }
233
234 #define REG_CLASS_CONTENTS \
235 { \
236 /* NO_REGS. */ \
237 { 0x00000000, 0x00000000, 0 }, \
238 /* PREDICATE_A_REGS. */ \
239 { 0x00000006, 0x00000000, 0 }, \
240 /* PREDICATE_B_REGS. */ \
241 { 0x00000000, 0x00000007, 0 }, \
242 /* PREDICATE_REGS. */ \
243 { 0x00000006, 0x00000007, 0 }, \
244 /* PICREG. */ \
245 { 0x00000000, 0x00004000, 0 }, \
246 /* SPREG. */ \
247 { 0x00000000, 0x00008000, 0 }, \
248 /* CALL_USED_B_REGS. */ \
249 { 0x00000000, 0xFFFF03FF, 0 }, \
250 /* NONPREDICATE_A_REGS. */ \
251 { 0xFFFFFFF9, 0x00000000, 0 }, \
252 /* NONPREDICATE_B_REGS. */ \
253 { 0x00000000, 0xFFFFFFF8, 0 }, \
254 /* NONPREDICATE_REGS. */ \
255 { 0xFFFFFFF9, 0xFFFFFFF8, 0 }, \
256 /* A_REGS. */ \
257 { 0xFFFFFFFF, 0x00000000, 3 }, \
258 /* B_REGS. */ \
259 { 0x00000000, 0xFFFFFFFF, 3 }, \
260 /* GENERAL_REGS. */ \
261 { 0xFFFFFFFF, 0xFFFFFFFF, 3 }, \
262 /* ALL_REGS. */ \
263 { 0xFFFFFFFF, 0xFFFFFFFF, 7 }, \
264 }
265
266 #define A_REGNO_P(N) ((N) <= REG_A31)
267 #define B_REGNO_P(N) ((N) >= REG_B0 && (N) <= REG_B31)
268
269 #define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X)))
270 #define CROSS_OPERANDS(X0,X1) \
271 (A_REG_P (X0) == A_REG_P (X1) ? CROSS_N : CROSS_Y)
272
273 #define REGNO_REG_CLASS(reg) \
274 ((reg) >= REG_A1 && (reg) <= REG_A2 ? PREDICATE_A_REGS \
275 : (reg) == REG_A0 && TARGET_INSNS_64 ? PREDICATE_A_REGS \
276 : (reg) >= REG_B0 && (reg) <= REG_B2 ? PREDICATE_B_REGS \
277 : A_REGNO_P (reg) ? NONPREDICATE_A_REGS \
278 : call_used_regs[reg] ? CALL_USED_B_REGS : B_REGS)
279
280 #define BASE_REG_CLASS ALL_REGS
281 #define INDEX_REG_CLASS ALL_REGS
282
283 #define REGNO_OK_FOR_BASE_STRICT_P(X) \
284 ((X) < FIRST_PSEUDO_REGISTER \
285 || (reg_renumber[X] >= 0 && reg_renumber[X] < FIRST_PSEUDO_REGISTER))
286 #define REGNO_OK_FOR_BASE_NONSTRICT_P(X) 1
287
288 #define REGNO_OK_FOR_INDEX_STRICT_P(X) \
289 ((X) < FIRST_PSEUDO_REGISTER \
290 || (reg_renumber[X] >= 0 && reg_renumber[X] < FIRST_PSEUDO_REGISTER))
291 #define REGNO_OK_FOR_INDEX_NONSTRICT_P(X) 1
292
293 #ifdef REG_OK_STRICT
294 #define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_STRICT_P (X)
295 #define REGNO_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_STRICT_P (X)
296 #else
297 #define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_NONSTRICT_P (X)
298 #define REGNO_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_NONSTRICT_P (X)
299 #endif
300
301 #define CLASS_MAX_NREGS(class, mode) \
302 ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
303
304 #define REGNO_OK_FOR_INDIRECT_JUMP_P(REGNO, MODE) B_REGNO_P (REGNO)
305
306 /* Stack and Calling. */
307
308 /* SP points to 4 bytes below the first word of the frame. */
309 #define STACK_POINTER_OFFSET 4
310 /* Likewise for AP (which is the incoming stack pointer). */
311 #define FIRST_PARM_OFFSET(fundecl) 4
312 #define STARTING_FRAME_OFFSET 0
313 #define FRAME_GROWS_DOWNWARD 1
314 #define STACK_GROWS_DOWNWARD
315
316 #define STACK_POINTER_REGNUM REG_B15
317 #define HARD_FRAME_POINTER_REGNUM REG_A15
318 /* These two always get eliminated in favour of the stack pointer
319 or the hard frame pointer. */
320 #define FRAME_POINTER_REGNUM REG_FRAME
321 #define ARG_POINTER_REGNUM REG_ARGP
322
323 #define PIC_OFFSET_TABLE_REGNUM REG_B14
324
325 /* We keep the stack pointer constant rather than using push/pop
326 instructions. */
327 #define ACCUMULATE_OUTGOING_ARGS 1
328
329 /* Before the prologue, the return address is in the B3 register. */
330 #define RETURN_ADDR_REGNO REG_B3
331 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_ADDR_REGNO)
332
333 #define RETURN_ADDR_RTX(COUNT, FRAME) c6x_return_addr_rtx (COUNT)
334
335 #define INCOMING_FRAME_SP_OFFSET 0
336 #define ARG_POINTER_CFA_OFFSET(fundecl) 0
337
338 #define STATIC_CHAIN_REGNUM REG_A2
339
340 struct c6x_args {
341 /* Number of arguments to pass in registers. */
342 int nregs;
343 /* Number of arguments passed in registers so far. */
344 int count;
345 };
346
347 #define CUMULATIVE_ARGS struct c6x_args
348
349 #define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
350 c6x_init_cumulative_args (&cum, fntype, libname, n_named_args)
351
352 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
353 (c6x_block_reg_pad_upward (MODE, TYPE, FIRST) ? upward : downward)
354
355 #define FUNCTION_ARG_REGNO_P(r) \
356 (((r) >= REG_A4 && (r) <= REG_A13) || ((r) >= REG_B4 && (r) <= REG_B13))
357
358 #define DEFAULT_PCC_STRUCT_RETURN 0
359
360 #define FUNCTION_PROFILER(file, labelno) \
361 fatal_error ("profiling is not yet implemented for this architecture")
362
363
364 /* Trampolines. */
365 #define TRAMPOLINE_SIZE 32
366 #define TRAMPOLINE_ALIGNMENT 256
367 \f
368 #define ELIMINABLE_REGS \
369 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
370 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
371 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
372 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
373
374 /* Define the offset between two registers, one to be eliminated, and the other
375 its replacement, at the start of a routine. */
376
377 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
378 ((OFFSET) = c6x_initial_elimination_offset ((FROM), (TO)))
379 \f
380 /* Addressing Modes. */
381
382 #define CONSTANT_ADDRESS_P(x) (CONSTANT_P(x) && GET_CODE(x) != CONST_DOUBLE)
383 #define MAX_REGS_PER_ADDRESS 2
384
385 #define HAVE_PRE_DECREMENT 1
386 #define HAVE_POST_DECREMENT 1
387 #define HAVE_PRE_INCREMENT 1
388 #define HAVE_POST_INCREMENT 1
389
390 /* Register forms are available, but due to scaling we currently don't
391 support them. */
392 #define HAVE_PRE_MODIFY_DISP 1
393 #define HAVE_POST_MODIFY_DISP 1
394
395 #define LEGITIMATE_PIC_OPERAND_P(X) \
396 (!symbolic_operand (X, SImode))
397 \f
398 struct GTY(()) machine_function
399 {
400 /* True if we expanded a sibling call. */
401 int contains_sibcall;
402 };
403 \f
404 /* Costs. */
405 #define NO_FUNCTION_CSE 1
406
407 #define SLOW_BYTE_ACCESS 0
408
409 #define BRANCH_COST(speed_p, predictable_p) 6
410
411 \f
412 /* Model costs for the vectorizer. */
413
414 /* Cost of conditional branch. */
415 #ifndef TARG_COND_BRANCH_COST
416 #define TARG_COND_BRANCH_COST 6
417 #endif
418
419 /* Cost of any scalar operation, excluding load and store. */
420 #ifndef TARG_SCALAR_STMT_COST
421 #define TARG_SCALAR_STMT_COST 1
422 #endif
423
424 /* Cost of scalar load. */
425 #undef TARG_SCALAR_LOAD_COST
426 #define TARG_SCALAR_LOAD_COST 2 /* load + rotate */
427
428 /* Cost of scalar store. */
429 #undef TARG_SCALAR_STORE_COST
430 #define TARG_SCALAR_STORE_COST 10
431
432 /* Cost of any vector operation, excluding load, store,
433 or vector to scalar operation. */
434 #undef TARG_VEC_STMT_COST
435 #define TARG_VEC_STMT_COST 1
436
437 /* Cost of vector to scalar operation. */
438 #undef TARG_VEC_TO_SCALAR_COST
439 #define TARG_VEC_TO_SCALAR_COST 1
440
441 /* Cost of scalar to vector operation. */
442 #undef TARG_SCALAR_TO_VEC_COST
443 #define TARG_SCALAR_TO_VEC_COST 1
444
445 /* Cost of aligned vector load. */
446 #undef TARG_VEC_LOAD_COST
447 #define TARG_VEC_LOAD_COST 1
448
449 /* Cost of misaligned vector load. */
450 #undef TARG_VEC_UNALIGNED_LOAD_COST
451 #define TARG_VEC_UNALIGNED_LOAD_COST 2
452
453 /* Cost of vector store. */
454 #undef TARG_VEC_STORE_COST
455 #define TARG_VEC_STORE_COST 1
456
457 /* Cost of vector permutation. */
458 #ifndef TARG_VEC_PERMUTE_COST
459 #define TARG_VEC_PERMUTE_COST 1
460 #endif
461
462 /* Exception handling. */
463 #define TARGET_EXTRA_CFI_SECTION(unwind) ((unwind) ? ".c6xabi.exidx" : NULL)
464 /* ttype entries (the only interesting data references used) are
465 sb-relative got-indirect (aka .ehtype). */
466 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
467 (((code) == 0 && (data) == 1) ? (DW_EH_PE_datarel | DW_EH_PE_indirect) \
468 : DW_EH_PE_absptr)
469
470 /* This should be the same as the definition in elfos.h, plus the call
471 to output special unwinding directives. */
472 #undef ASM_DECLARE_FUNCTION_NAME
473 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
474 do \
475 { \
476 c6x_output_file_unwind (FILE); \
477 ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "function"); \
478 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
479 ASM_OUTPUT_LABEL (FILE, NAME); \
480 } \
481 while (0)
482
483 /* This should be the same as the definition in elfos.h, plus the call
484 to output special unwinding directives. */
485 #undef ASM_DECLARE_FUNCTION_SIZE
486 #define ASM_DECLARE_FUNCTION_SIZE(STREAM, NAME, DECL) \
487 c6x_function_end (STREAM, NAME)
488
489 /* Arbitrarily choose A4/A5. */
490 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? (N) + 4 : INVALID_REGNUM)
491
492 /* The register that holds the return address in exception handlers. */
493 #define C6X_EH_STACKADJ_REGNUM 3
494 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, C6X_EH_STACKADJ_REGNUM)
495
496
497 /* Assembler Format. */
498
499 #define DWARF2_ASM_LINE_DEBUG_INFO 1
500
501 #undef ASM_APP_ON
502 #define ASM_APP_ON "\t; #APP \n"
503 #undef ASM_APP_OFF
504 #define ASM_APP_OFF "\t; #NO_APP \n"
505
506 #define ASM_OUTPUT_COMMON(stream, name, size, rounded)
507 #define ASM_OUTPUT_LOCAL(stream, name, size, rounded)
508
509 #define GLOBAL_ASM_OP "\t.global\t"
510
511 #define REGISTER_NAMES \
512 { \
513 "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7", \
514 "A8", "A9", "A10", "A11", "A12", "A13", "A14", "A15", \
515 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23", \
516 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31", \
517 "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7", \
518 "B8", "B9", "B10", "B11", "B12", "B13", "B14", "B15", \
519 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23", \
520 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31", \
521 "FP", "ARGP", "ILC" }
522
523 #define DBX_REGISTER_NUMBER(N) (dbx_register_map[(N)])
524
525 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
526
527 #define FINAL_PRESCAN_INSN c6x_final_prescan_insn
528
529 #define TEXT_SECTION_ASM_OP ".text;"
530 #define DATA_SECTION_ASM_OP ".data;"
531
532 #define ASM_OUTPUT_ALIGN(stream, power) \
533 do \
534 { \
535 if (power) \
536 fprintf ((stream), "\t.align\t%d\n", power); \
537 } \
538 while (0)
539
540 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
541 do { char __buf[256]; \
542 fprintf (FILE, "\t.long\t"); \
543 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
544 assemble_name (FILE, __buf); \
545 fputc ('\n', FILE); \
546 } while (0)
547
548 /* Determine whether to place EXP (an expression or a decl) should be
549 placed into one of the small data sections. */
550 #define PLACE_IN_SDATA_P(EXP) \
551 (c6x_sdata_mode == C6X_SDATA_NONE ? false \
552 : c6x_sdata_mode == C6X_SDATA_ALL ? true \
553 : !AGGREGATE_TYPE_P (TREE_TYPE (EXP)))
554
555 #define SCOMMON_ASM_OP "\t.scomm\t"
556
557 #undef ASM_OUTPUT_ALIGNED_DECL_COMMON
558 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
559 do \
560 { \
561 if (DECL != NULL && PLACE_IN_SDATA_P (DECL)) \
562 fprintf ((FILE), "%s", SCOMMON_ASM_OP); \
563 else \
564 fprintf ((FILE), "%s", COMMON_ASM_OP); \
565 assemble_name ((FILE), (NAME)); \
566 fprintf ((FILE), ",%u,%u\n", (int)(SIZE), (ALIGN) / BITS_PER_UNIT);\
567 } \
568 while (0)
569
570 /* This says how to output assembler code to declare an
571 uninitialized internal linkage data object. */
572
573 #undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
574 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
575 do { \
576 if (PLACE_IN_SDATA_P (DECL)) \
577 switch_to_section (sbss_section); \
578 else \
579 switch_to_section (bss_section); \
580 ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "object"); \
581 if (!flag_inhibit_size_directive) \
582 ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \
583 ASM_OUTPUT_ALIGN ((FILE), exact_log2((ALIGN) / BITS_PER_UNIT)); \
584 ASM_OUTPUT_LABEL(FILE, NAME); \
585 ASM_OUTPUT_SKIP((FILE), (SIZE) ? (SIZE) : 1); \
586 } while (0)
587
588 #define CASE_VECTOR_PC_RELATIVE flag_pic
589 #define JUMP_TABLES_IN_TEXT_SECTION flag_pic
590
591 #define ADDR_VEC_ALIGN(VEC) (JUMP_TABLES_IN_TEXT_SECTION ? 5 : 2)
592
593 /* This is how to output an element of a case-vector that is relative. */
594 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
595 do { char buf[100]; \
596 fputs ("\t.long ", FILE); \
597 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
598 assemble_name (FILE, buf); \
599 putc ('-', FILE); \
600 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
601 assemble_name (FILE, buf); \
602 putc ('\n', FILE); \
603 } while (0)
604
605 /* Misc. */
606
607 #define CASE_VECTOR_MODE SImode
608 #define MOVE_MAX 4
609 #define MOVE_RATIO(SPEED) 4
610 #define TRULY_NOOP_TRUNCATION(outprec, inprec) 1
611 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
612 #define Pmode SImode
613 #define FUNCTION_MODE QImode
614
615 #define CPU_UNITS_QUERY 1
616
617 extern int c6x_initial_flag_pic;
618
619 #endif /* GCC_C6X_H */