]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/dsp16xx/dsp16xx.h
PR c++/17413
[thirdparty/gcc.git] / gcc / config / dsp16xx / dsp16xx.h
1 /* Definitions of target machine for GNU compiler. AT&T DSP1600.
2 Copyright (C) 1994, 1995, 1996, 1997, 1998, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4 Contributed by Michael Collison (collison@isisinc.net).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 extern const char *low_reg_names[];
24 extern const char *text_seg_name;
25 extern const char *rsect_text;
26 extern const char *data_seg_name;
27 extern const char *rsect_data;
28 extern const char *bss_seg_name;
29 extern const char *rsect_bss;
30 extern const char *const_seg_name;
31 extern const char *rsect_const;
32 extern const char *chip_name;
33 extern const char *save_chip_name;
34 extern GTY(()) rtx dsp16xx_compare_op0;
35 extern GTY(()) rtx dsp16xx_compare_op1;
36 extern GTY(()) rtx dsp16xx_addhf3_libcall;
37 extern GTY(()) rtx dsp16xx_subhf3_libcall;
38 extern GTY(()) rtx dsp16xx_mulhf3_libcall;
39 extern GTY(()) rtx dsp16xx_divhf3_libcall;
40 extern GTY(()) rtx dsp16xx_cmphf3_libcall;
41 extern GTY(()) rtx dsp16xx_fixhfhi2_libcall;
42 extern GTY(()) rtx dsp16xx_floathihf2_libcall;
43 extern GTY(()) rtx dsp16xx_neghf2_libcall;
44 extern GTY(()) rtx dsp16xx_mulhi3_libcall;
45 extern GTY(()) rtx dsp16xx_udivqi3_libcall;
46 extern GTY(()) rtx dsp16xx_udivhi3_libcall;
47 extern GTY(()) rtx dsp16xx_divqi3_libcall;
48 extern GTY(()) rtx dsp16xx_divhi3_libcall;
49 extern GTY(()) rtx dsp16xx_modqi3_libcall;
50 extern GTY(()) rtx dsp16xx_modhi3_libcall;
51 extern GTY(()) rtx dsp16xx_umodqi3_libcall;
52 extern GTY(()) rtx dsp16xx_umodhi3_libcall;
53
54 extern GTY(()) rtx dsp16xx_ashrhi3_libcall;
55 extern GTY(()) rtx dsp16xx_ashlhi3_libcall;
56 extern GTY(()) rtx dsp16xx_lshrhi3_libcall;
57
58 /* RUN-TIME TARGET SPECIFICATION */
59 #define DSP16XX 1
60
61 /* Name of the AT&T assembler */
62
63 #define ASM_PROG "as1600"
64
65 /* Name of the AT&T linker */
66
67 #define LD_PROG "ld1600"
68
69 /* Define which switches take word arguments */
70 #define WORD_SWITCH_TAKES_ARG(STR) \
71 (!strcmp (STR, "ifile") ? 1 : \
72 0)
73
74 #undef CC1_SPEC
75 #define CC1_SPEC "%{!O*:-O}"
76
77 /* Define this as a spec to call the AT&T assembler */
78
79 #define CROSS_ASM_SPEC "%{!S:as1600 %a %i\n }"
80
81 /* Define this as a spec to call the AT&T linker */
82
83 #define CROSS_LINK_SPEC "%{!c:%{!M:%{!MM:%{!E:%{!S:ld1600 %l %X %{o*} %{m} \
84 %{r} %{s} %{t} %{u*} %{x}\
85 %{!A:%{!nostdlib:%{!nostartfiles:%S}}} %{static:}\
86 %{L*} %D %o %{!nostdlib:-le1600 %L -le1600}\
87 %{!A:%{!nostdlib:%{!nostartfiles:%E}}}\n }}}}}"
88
89 /* Nothing complicated here, just link with libc.a under normal
90 circumstances */
91 #define LIB_SPEC "-lc"
92
93 /* Specify the startup file to link with. */
94 #define STARTFILE_SPEC "%{mmap1:m1_crt0.o%s} \
95 %{mmap2:m2_crt0.o%s} \
96 %{mmap3:m3_crt0.o%s} \
97 %{mmap4:m4_crt0.o%s} \
98 %{!mmap*: %{!ifile*: m4_crt0.o%s} %{ifile*: \
99 %ea -ifile option requires a -map option}}"
100
101 /* Specify the end file to link with */
102
103 #define ENDFILE_SPEC "%{mmap1:m1_crtn.o%s} \
104 %{mmap2:m2_crtn.o%s} \
105 %{mmap3:m3_crtn.o%s} \
106 %{mmap4:m4_crtn.o%s} \
107 %{!mmap*: %{!ifile*: m4_crtn.o%s} %{ifile*: \
108 %ea -ifile option requires a -map option}}"
109
110
111 /* Tell gcc where to look for the startfile */
112 /*#define STANDARD_STARTFILE_PREFIX "/d1600/lib"*/
113
114 /* Tell gcc where to look for it's executables */
115 /*#define STANDARD_EXEC_PREFIX "/d1600/bin"*/
116
117 /* Command line options to the AT&T assembler */
118 #define ASM_SPEC "%{V} %{v:%{!V:-V}} %{g*:-g}"
119
120 /* Command line options for the AT&T linker */
121
122 #define LINK_SPEC "%{V} %{v:%{!V:-V}} %{minit:-i} \
123 %{!ifile*:%{mmap1:m1_deflt.if%s} \
124 %{mmap2:m2_deflt.if%s} \
125 %{mmap3:m3_deflt.if%s} \
126 %{mmap4:m4_deflt.if%s} \
127 %{!mmap*:m4_deflt.if%s}} \
128 %{ifile*:%*} %{r}"
129
130 /* Include path is determined from the environment variable */
131 #define INCLUDE_DEFAULTS \
132 { \
133 { 0, 0, 0, 0, 0 } \
134 }
135
136 /* Names to predefine in the preprocessor for this target machine. */
137 #define TARGET_CPU_CPP_BUILTINS() \
138 do \
139 { \
140 builtin_define_std ("dsp1600"); \
141 builtin_define_std ("DSP1600"); \
142 } \
143 while (0)
144
145 #ifdef __MSDOS__
146 # define TARGET_OS_CPP_BUILTINS() \
147 do \
148 { \
149 builtin_define_std ("MSDOS"); \
150 } \
151 while (0)
152 #else
153 # define TARGET_OS_CPP_BUILTINS() \
154 do \
155 { \
156 builtin_define_std ("dsp1610"); \
157 builtin_define_std ("DSP1610"); \
158 } \
159 while (0)
160 #endif
161
162 /* Run-time compilation parameters selecting different hardware subsets. */
163
164 extern int target_flags;
165
166 /* Macros used in the machine description to test the flags. */
167
168 #define MASK_REGPARM 0x00000001 /* Pass parameters in registers */
169 #define MASK_NEAR_CALL 0x00000002 /* The call is on the same 4k page */
170 #define MASK_NEAR_JUMP 0x00000004 /* The jump is on the same 4k page */
171 #define MASK_BMU 0x00000008 /* Use the 'bmu' shift instructions */
172 #define MASK_MAP1 0x00000040 /* Link with map1 */
173 #define MASK_MAP2 0x00000080 /* Link with map2 */
174 #define MASK_MAP3 0x00000100 /* Link with map3 */
175 #define MASK_MAP4 0x00000200 /* Link with map4 */
176 #define MASK_YBASE_HIGH 0x00000400 /* The ybase register window starts high */
177 #define MASK_INIT 0x00000800 /* Have the linker generate tables to
178 initialize data at startup */
179 #define MASK_RESERVE_YBASE 0x00002000 /* Reserved the ybase registers */
180 #define MASK_DEBUG 0x00004000 /* Debugging turned on*/
181 #define MASK_SAVE_TEMPS 0x00008000 /* Save temps. option seen */
182
183 /* Compile passing first two args in regs 0 and 1.
184 This exists only to test compiler features that will
185 be needed for RISC chips. It is not usable
186 and is not intended to be usable on this cpu. */
187 #define TARGET_REGPARM (target_flags & MASK_REGPARM)
188
189 /* The call is on the same 4k page, so instead of loading
190 the 'pt' register and branching, we can branch directly */
191
192 #define TARGET_NEAR_CALL (target_flags & MASK_NEAR_CALL)
193
194 /* The jump is on the same 4k page, so instead of loading
195 the 'pt' register and branching, we can branch directly */
196
197 #define TARGET_NEAR_JUMP (target_flags & MASK_NEAR_JUMP)
198
199 /* Generate shift instructions to use the 1610 Bit Manipulation
200 Unit. */
201 #define TARGET_BMU (target_flags & MASK_BMU)
202
203 #define TARGET_YBASE_HIGH (target_flags & MASK_YBASE_HIGH)
204
205 /* Direct the linker to output extra info for initialized data */
206 #define TARGET_MASK_INIT (target_flags & MASK_INIT)
207
208 #define TARGET_INLINE_MULT (target_flags & MASK_INLINE_MULT)
209
210 /* Reserve the ybase registers *(0) - *(31) */
211 #define TARGET_RESERVE_YBASE (target_flags & MASK_RESERVE_YBASE)
212
213 /* We turn this option on internally after seeing "-g" */
214 #define TARGET_DEBUG (target_flags & MASK_DEBUG)
215
216 /* We turn this option on internally after seeing "-save-temps */
217 #define TARGET_SAVE_TEMPS (target_flags & MASK_SAVE_TEMPS)
218
219
220 /* Macro to define tables used to set the flags.
221 This is a list in braces of pairs in braces,
222 each pair being { "NAME", VALUE }
223 where VALUE is the bits to set or minus the bits to clear.
224 An empty string NAME is used to identify the default VALUE. */
225
226
227 #define TARGET_SWITCHES \
228 { \
229 { "regparm", MASK_REGPARM, \
230 N_("Pass parameters in registers (default)") }, \
231 { "no-regparm", -MASK_REGPARM, \
232 N_("Don't pass parameters in registers") }, \
233 { "near-call", MASK_NEAR_JUMP, \
234 N_("Generate code for near calls") }, \
235 { "no-near-call", -MASK_NEAR_CALL, \
236 N_("Don't generate code for near calls") }, \
237 { "near-jump", MASK_NEAR_JUMP, \
238 N_("Generate code for near jumps") }, \
239 { "no-near-jump", -MASK_NEAR_JUMP, \
240 N_("Don't generate code for near jumps") }, \
241 { "bmu", MASK_BMU, \
242 N_("Generate code for a bit-manipulation unit") }, \
243 { "no-bmu", -MASK_BMU, \
244 N_("Don't generate code for a bit-manipulation unit") }, \
245 { "map1", MASK_MAP1, \
246 N_("Generate code for memory map1") }, \
247 { "map2", MASK_MAP2, \
248 N_("Generate code for memory map2") }, \
249 { "map3", MASK_MAP3, \
250 N_("Generate code for memory map3") }, \
251 { "map4", MASK_MAP4, \
252 N_("Generate code for memory map4") }, \
253 { "init", MASK_INIT, \
254 N_("Ouput extra code for initialized data") }, \
255 { "reserve-ybase", MASK_RESERVE_YBASE, \
256 N_("Don't let reg. allocator use ybase registers") }, \
257 { "debug", MASK_DEBUG, \
258 N_("Output extra debug info in Luxworks environment") }, \
259 { "save-temporaries", MASK_SAVE_TEMPS, \
260 N_("Save temp. files in Luxworks environment") }, \
261 { "", TARGET_DEFAULT, ""} \
262 }
263
264 /* Default target_flags if no switches are specified */
265 #ifndef TARGET_DEFAULT
266 #define TARGET_DEFAULT MASK_REGPARM|MASK_YBASE_HIGH
267 #endif
268
269 #define TARGET_OPTIONS \
270 { \
271 { "text=", &text_seg_name, \
272 N_("Specify alternate name for text section"), 0}, \
273 { "data=", &data_seg_name, \
274 N_("Specify alternate name for data section"), 0}, \
275 { "bss=", &bss_seg_name, \
276 N_("Specify alternate name for bss section"), 0}, \
277 { "const=", &const_seg_name, \
278 N_("Specify alternate name for constant section"), 0}, \
279 { "chip=", &chip_name, \
280 N_("Specify alternate name for dsp16xx chip"), 0}, \
281 }
282
283 /* Sometimes certain combinations of command options do not make sense
284 on a particular target machine. You can define a macro
285 `OVERRIDE_OPTIONS' to take account of this. This macro, if
286 defined, is executed once just after all the command options have
287 been parsed.
288
289 Don't use this macro to turn on various extra optimizations for
290 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
291
292 #define OVERRIDE_OPTIONS override_options ()
293
294 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
295 { \
296 if (LEVEL >= 2) \
297 { \
298 /* The dsp16xx family has so few registers \
299 * that running the first instruction \
300 * scheduling is bad for reg. allocation \
301 * since it increases lifetimes of pseudos. \
302 * So turn of first scheduling pass. \
303 */ \
304 flag_schedule_insns = FALSE; \
305 } \
306 }
307 \f
308 /* STORAGE LAYOUT */
309
310 /* Define this if most significant bit is lowest numbered
311 in instructions that operate on numbered bit-fields.
312 */
313 #define BITS_BIG_ENDIAN 0
314
315 /* Define this if most significant byte of a word is the lowest numbered.
316 We define big-endian, but since the 1600 series cannot address bytes
317 it does not matter. */
318 #define BYTES_BIG_ENDIAN 1
319
320 /* Define this if most significant word of a multiword number is numbered.
321 For the 1600 we can decide arbitrarily since there are no machine instructions for them. */
322 #define WORDS_BIG_ENDIAN 1
323
324 /* number of bits in an addressable storage unit */
325 #define BITS_PER_UNIT 16
326
327 /* Maximum number of bits in a word. */
328 #define MAX_BITS_PER_WORD 16
329
330 /* Width of a word, in units (bytes). */
331 #define UNITS_PER_WORD 1
332
333 /* Allocation boundary (in *bits*) for storing pointers in memory. */
334 #define POINTER_BOUNDARY 16
335
336 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
337 #define PARM_BOUNDARY 16
338
339 /* Boundary (in *bits*) on which stack pointer should be aligned. */
340 #define STACK_BOUNDARY 16
341
342 /* Allocation boundary (in *bits*) for the code of a function. */
343 #define FUNCTION_BOUNDARY 16
344
345 /* Biggest alignment that any data type can require on this machine, in bits. */
346 #define BIGGEST_ALIGNMENT 16
347
348 /* Biggest alignment that any structure field can require on this machine, in bits */
349 #define BIGGEST_FIELD_ALIGNMENT 16
350
351 /* Alignment of field after `int : 0' in a structure. */
352 #define EMPTY_FIELD_BOUNDARY 16
353
354 /* Number of bits which any structure or union's size must be a multiple of. Each structure
355 or union's size is rounded up to a multiple of this */
356 #define STRUCTURE_SIZE_BOUNDARY 16
357
358 /* Define this if move instructions will actually fail to work
359 when given unaligned data. */
360 #define STRICT_ALIGNMENT 1
361
362 /* An integer expression for the size in bits of the largest integer machine mode that
363 should actually be used. All integer machine modes of this size or smaller can be
364 used for structures and unions with the appropriate sizes. */
365 #define MAX_FIXED_MODE_SIZE 32
366 \f
367 /* LAYOUT OF SOURCE LANGUAGE DATA TYPES */
368
369 #define SHORT_TYPE_SIZE 16
370 #define INT_TYPE_SIZE 16
371 #define LONG_TYPE_SIZE 32
372 #define LONG_LONG_TYPE_SIZE 32
373 #define FLOAT_TYPE_SIZE 32
374 #define DOUBLE_TYPE_SIZE 32
375 #define LONG_DOUBLE_TYPE_SIZE 32
376
377 /* An expression whose value is 1 or 0, according to whether the type char should be
378 signed or unsigned by default. */
379
380 #define DEFAULT_SIGNED_CHAR 1
381
382 /* A C expression to determine whether to give an enum type only as many bytes
383 as it takes to represent the range of possible values of that type. A nonzero
384 value means to do that; a zero value means all enum types should be allocated
385 like int. */
386
387 #define DEFAULT_SHORT_ENUMS 0
388
389 /* A C expression for a string describing the name of the data type to use for
390 size values. */
391
392 #define SIZE_TYPE "unsigned int"
393
394 /* A C expression for a string describing the name of the data type to use for the
395 result of subtracting two pointers */
396
397 #define PTRDIFF_TYPE "int"
398
399 \f
400 /* REGISTER USAGE. */
401
402 #define ALL_16_BIT_REGISTERS 1
403
404 /* Number of actual hardware registers.
405 The hardware registers are assigned numbers for the compiler
406 from 0 to FIRST_PSEUDO_REGISTER-1 */
407
408 #define FIRST_PSEUDO_REGISTER (REG_YBASE31 + 1)
409
410 /* 1 for registers that have pervasive standard uses
411 and are not available for the register allocator.
412
413 The registers are laid out as follows:
414
415 {a0,a0l,a1,a1l,x,y,yl,p,pl} - Data Arithmetic Unit
416 {r0,r1,r2,r3,j,k,ybase} - Y Space Address Arithmetic Unit
417 {pt} - X Space Address Arithmetic Unit
418 {ar0,ar1,ar2,ar3} - Bit Manipulation UNit
419 {pr} - Return Address Register
420
421 We reserve r2 for the Stack Pointer.
422 We specify r3 for the Frame Pointer but allow the compiler
423 to omit it when possible since we have so few pointer registers. */
424
425 #define REG_A0 0
426 #define REG_A0L 1
427 #define REG_A1 2
428 #define REG_A1L 3
429 #define REG_X 4
430 #define REG_Y 5
431 #define REG_YL 6
432 #define REG_PROD 7
433 #define REG_PRODL 8
434 #define REG_R0 9
435 #define REG_R1 10
436 #define REG_R2 11
437 #define REG_R3 12
438 #define REG_J 13
439 #define REG_K 14
440 #define REG_YBASE 15
441 #define REG_PT 16
442 #define REG_AR0 17
443 #define REG_AR1 18
444 #define REG_AR2 19
445 #define REG_AR3 20
446 #define REG_C0 21
447 #define REG_C1 22
448 #define REG_C2 23
449 #define REG_PR 24
450 #define REG_RB 25
451 #define REG_YBASE0 26
452 #define REG_YBASE1 27
453 #define REG_YBASE2 28
454 #define REG_YBASE3 29
455 #define REG_YBASE4 30
456 #define REG_YBASE5 31
457 #define REG_YBASE6 32
458 #define REG_YBASE7 33
459 #define REG_YBASE8 34
460 #define REG_YBASE9 35
461 #define REG_YBASE10 36
462 #define REG_YBASE11 37
463 #define REG_YBASE12 38
464 #define REG_YBASE13 39
465 #define REG_YBASE14 40
466 #define REG_YBASE15 41
467 #define REG_YBASE16 42
468 #define REG_YBASE17 43
469 #define REG_YBASE18 44
470 #define REG_YBASE19 45
471 #define REG_YBASE20 46
472 #define REG_YBASE21 47
473 #define REG_YBASE22 48
474 #define REG_YBASE23 49
475 #define REG_YBASE24 50
476 #define REG_YBASE25 51
477 #define REG_YBASE26 52
478 #define REG_YBASE27 53
479 #define REG_YBASE28 54
480 #define REG_YBASE29 55
481 #define REG_YBASE30 56
482 #define REG_YBASE31 57
483
484 /* Do we have an accumulator register? */
485 #define IS_ACCUM_REG(REGNO) IN_RANGE ((REGNO), REG_A0, REG_A1L)
486 #define IS_ACCUM_LOW_REG(REGNO) ((REGNO) == REG_A0L || (REGNO) == REG_A1L)
487
488 /* Do we have a virtual ybase register */
489 #define IS_YBASE_REGISTER_WINDOW(REGNO) ((REGNO) >= REG_YBASE0 && (REGNO) <= REG_YBASE31)
490
491 #define IS_YBASE_ELIGIBLE_REG(REGNO) (IS_ACCUM_REG (REGNO) || IS_ADDRESS_REGISTER(REGNO) \
492 || REGNO == REG_X || REGNO == REG_Y || REGNO == REG_YL \
493 || REGNO == REG_PROD || REGNO == REG_PRODL)
494
495 #define IS_ADDRESS_REGISTER(REGNO) ((REGNO) >= REG_R0 && (REGNO) <= REG_R3)
496
497 #define FIXED_REGISTERS \
498 {0, 0, 0, 0, 0, 0, 0, 0, 0, \
499 0, 0, 0, 1, 0, 0, 1, \
500 1, \
501 0, 0, 0, 0, \
502 1, 1, 1, \
503 1, 0, \
504 0, 0, 0, 0, 0, 0, 0, 0, \
505 0, 0, 0, 0, 0, 0, 0, 0, \
506 0, 0, 0, 0, 0, 0, 0, 0, \
507 0, 0, 0, 0, 0, 0, 0, 0}
508
509 /* 1 for registers not available across function calls.
510 These must include the FIXED_REGISTERS and also any
511 registers that can be used without being saved.
512 The latter must include the registers where values are returned
513 and the register where structure-value addresses are passed.
514 On the 1610 'a0' holds return values from functions. 'r0' holds
515 structure-value addresses.
516
517 In addition we don't save either j, k, ybase or any of the
518 bit manipulation registers. */
519
520
521 #define CALL_USED_REGISTERS \
522 {1, 1, 1, 1, 0, 1, 1, 1, 1, /* 0-8 */ \
523 1, 0, 0, 1, 1, 1, 1, /* 9-15 */ \
524 1, /* 16 */ \
525 0, 0, 1, 1, /* 17-20 */ \
526 1, 1, 1, /* 21-23 */ \
527 1, 1, /* 24-25 */ \
528 0, 0, 0, 0, 0, 0, 0, 0, /* 26-33 */ \
529 0, 0, 0, 0, 0, 0, 0, 0, /* 34-41 */ \
530 0, 0, 0, 0, 0, 0, 0, 0, /* 42-49 */ \
531 0, 0, 0, 0, 0, 0, 0, 0} /* 50-57 */
532
533 /* List the order in which to allocate registers. Each register must be
534 listed once, even those in FIXED_REGISTERS.
535
536 We allocate in the following order:
537 */
538
539 #if 0
540 #define REG_ALLOC_ORDER \
541 { REG_R0, REG_R1, REG_R2, REG_PROD, REG_Y, REG_X, \
542 REG_PRODL, REG_YL, REG_AR0, REG_AR1, \
543 REG_RB, REG_A0, REG_A1, REG_A0L, \
544 REG_A1L, REG_AR2, REG_AR3, \
545 REG_YBASE, REG_J, REG_K, REG_PR, REG_PT, REG_C0, \
546 REG_C1, REG_C2, REG_R3, \
547 REG_YBASE0, REG_YBASE1, REG_YBASE2, REG_YBASE3, \
548 REG_YBASE4, REG_YBASE5, REG_YBASE6, REG_YBASE7, \
549 REG_YBASE8, REG_YBASE9, REG_YBASE10, REG_YBASE11, \
550 REG_YBASE12, REG_YBASE13, REG_YBASE14, REG_YBASE15, \
551 REG_YBASE16, REG_YBASE17, REG_YBASE18, REG_YBASE19, \
552 REG_YBASE20, REG_YBASE21, REG_YBASE22, REG_YBASE23, \
553 REG_YBASE24, REG_YBASE25, REG_YBASE26, REG_YBASE27, \
554 REG_YBASE28, REG_YBASE29, REG_YBASE30, REG_YBASE31 }
555 #else
556 #define REG_ALLOC_ORDER \
557 { \
558 REG_A0, REG_A0L, REG_A1, REG_A1L, REG_Y, REG_YL, \
559 REG_PROD, \
560 REG_PRODL, REG_R0, REG_J, REG_K, REG_AR2, REG_AR3, \
561 REG_X, REG_R1, REG_R2, REG_RB, REG_AR0, REG_AR1, \
562 REG_YBASE0, REG_YBASE1, REG_YBASE2, REG_YBASE3, \
563 REG_YBASE4, REG_YBASE5, REG_YBASE6, REG_YBASE7, \
564 REG_YBASE8, REG_YBASE9, REG_YBASE10, REG_YBASE11, \
565 REG_YBASE12, REG_YBASE13, REG_YBASE14, REG_YBASE15, \
566 REG_YBASE16, REG_YBASE17, REG_YBASE18, REG_YBASE19, \
567 REG_YBASE20, REG_YBASE21, REG_YBASE22, REG_YBASE23, \
568 REG_YBASE24, REG_YBASE25, REG_YBASE26, REG_YBASE27, \
569 REG_YBASE28, REG_YBASE29, REG_YBASE30, REG_YBASE31, \
570 REG_R3, REG_YBASE, REG_PT, REG_C0, REG_C1, REG_C2, \
571 REG_PR }
572 #endif
573 /* Zero or more C statements that may conditionally modify two
574 variables `fixed_regs' and `call_used_regs' (both of type `char
575 []') after they have been initialized from the two preceding
576 macros.
577
578 This is necessary in case the fixed or call-clobbered registers
579 depend on target flags.
580
581 You need not define this macro if it has no work to do.
582
583 If the usage of an entire class of registers depends on the target
584 flags, you may indicate this to GCC by using this macro to modify
585 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
586 the classes which should not be used by GCC. Also define the macro
587 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
588 letter for a class that shouldn't be used.
589
590 (However, if this class is not included in `GENERAL_REGS' and all
591 of the insn patterns whose constraints permit this class are
592 controlled by target switches, then GCC will automatically avoid
593 using these registers when the target switches are opposed to
594 them.) If the user tells us there is no BMU, we can't use
595 ar0-ar3 for register allocation */
596
597 #define CONDITIONAL_REGISTER_USAGE \
598 do \
599 { \
600 if (!TARGET_BMU) \
601 { \
602 int regno; \
603 \
604 for (regno = REG_AR0; regno <= REG_AR3; regno++) \
605 fixed_regs[regno] = call_used_regs[regno] = 1; \
606 } \
607 if (TARGET_RESERVE_YBASE) \
608 { \
609 int regno; \
610 \
611 for (regno = REG_YBASE0; regno <= REG_YBASE31; regno++) \
612 fixed_regs[regno] = call_used_regs[regno] = 1; \
613 } \
614 } \
615 while (0)
616
617 /* Determine which register classes are very likely used by spill registers.
618 local-alloc.c won't allocate pseudos that have these classes as their
619 preferred class unless they are "preferred or nothing". */
620
621 #define CLASS_LIKELY_SPILLED_P(CLASS) \
622 ((CLASS) != ALL_REGS && (CLASS) != YBASE_VIRT_REGS)
623
624 /* Return number of consecutive hard regs needed starting at reg REGNO
625 to hold something of mode MODE.
626 This is ordinarily the length in words of a value of mode MODE
627 but can be less for certain modes in special long registers. */
628
629 #define HARD_REGNO_NREGS(REGNO, MODE) \
630 (GET_MODE_SIZE(MODE))
631
632 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
633
634 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok(REGNO, MODE)
635
636 /* Value is 1 if it is a good idea to tie two pseudo registers
637 when one has mode MODE1 and one has mode MODE2.
638 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
639 for any hard reg, then this must be 0 for correct output. */
640 #define MODES_TIEABLE_P(MODE1, MODE2) \
641 (((MODE1) == (MODE2)) || \
642 (GET_MODE_CLASS((MODE1)) == MODE_FLOAT) \
643 == (GET_MODE_CLASS((MODE2)) == MODE_FLOAT))
644
645 /* Specify the registers used for certain standard purposes.
646 The values of these macros are register numbers. */
647
648 /* DSP1600 pc isn't overloaded on a register. */
649 /* #define PC_REGNUM */
650
651 /* Register to use for pushing function arguments.
652 This is r3 in our case */
653 #define STACK_POINTER_REGNUM REG_R3
654
655 /* Base register for access to local variables of the function.
656 This is r2 in our case */
657 #define FRAME_POINTER_REGNUM REG_R2
658
659 /* We can debug without the frame pointer */
660 #define CAN_DEBUG_WITHOUT_FP 1
661
662 /* The 1610 saves the return address in this register */
663 #define RETURN_ADDRESS_REGNUM REG_PR
664
665 /* Base register for access to arguments of the function. */
666 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
667
668 /* Register in which static-chain is passed to a function. */
669
670 #define STATIC_CHAIN_REGNUM 4
671
672 /* Register in which address to store a structure value
673 is passed to a function. This is 'r0' in our case */
674 #define STRUCT_VALUE_REGNUM REG_R0
675 \f
676 /* Define the classes of registers for register constraints in the
677 machine description. Also define ranges of constants.
678
679 One of the classes must always be named ALL_REGS and include all hard regs.
680 If there is more than one class, another class must be named NO_REGS
681 and contain no registers.
682
683 The name GENERAL_REGS must be the name of a class (or an alias for
684 another name such as ALL_REGS). This is the class of registers
685 that is allowed by "g" or "r" in a register constraint.
686 Also, registers outside this class are allocated only when
687 instructions express preferences for them.
688
689 The classes must be numbered in nondecreasing order; that is,
690 a larger-numbered class must never be contained completely
691 in a smaller-numbered class.
692
693 For any two classes, it is very desirable that there be another
694 class that represents their union. */
695
696
697 enum reg_class
698 {
699 NO_REGS,
700 A0H_REG,
701 A0L_REG,
702 A0_REG,
703 A1H_REG,
704 ACCUM_HIGH_REGS,
705 A1L_REG,
706 ACCUM_LOW_REGS,
707 A1_REG,
708 ACCUM_REGS,
709 X_REG,
710 X_OR_ACCUM_LOW_REGS,
711 X_OR_ACCUM_REGS,
712 YH_REG,
713 YH_OR_ACCUM_HIGH_REGS,
714 X_OR_YH_REGS,
715 YL_REG,
716 YL_OR_ACCUM_LOW_REGS,
717 X_OR_YL_REGS,
718 X_OR_Y_REGS,
719 Y_REG,
720 ACCUM_OR_Y_REGS,
721 PH_REG,
722 X_OR_PH_REGS,
723 PL_REG,
724 PL_OR_ACCUM_LOW_REGS,
725 X_OR_PL_REGS,
726 YL_OR_PL_OR_ACCUM_LOW_REGS,
727 P_REG,
728 ACCUM_OR_P_REGS,
729 YL_OR_P_REGS,
730 ACCUM_LOW_OR_YL_OR_P_REGS,
731 Y_OR_P_REGS,
732 ACCUM_Y_OR_P_REGS,
733 NO_FRAME_Y_ADDR_REGS,
734 Y_ADDR_REGS,
735 ACCUM_LOW_OR_Y_ADDR_REGS,
736 ACCUM_OR_Y_ADDR_REGS,
737 X_OR_Y_ADDR_REGS,
738 Y_OR_Y_ADDR_REGS,
739 P_OR_Y_ADDR_REGS,
740 NON_HIGH_YBASE_ELIGIBLE_REGS,
741 YBASE_ELIGIBLE_REGS,
742 J_REG,
743 J_OR_DAU_16_BIT_REGS,
744 BMU_REGS,
745 NOHIGH_NON_ADDR_REGS,
746 NON_ADDR_REGS,
747 SLOW_MEM_LOAD_REGS,
748 NOHIGH_NON_YBASE_REGS,
749 NO_ACCUM_NON_YBASE_REGS,
750 NON_YBASE_REGS,
751 YBASE_VIRT_REGS,
752 ACCUM_LOW_OR_YBASE_REGS,
753 ACCUM_OR_YBASE_REGS,
754 X_OR_YBASE_REGS,
755 Y_OR_YBASE_REGS,
756 ACCUM_LOW_YL_PL_OR_YBASE_REGS,
757 P_OR_YBASE_REGS,
758 ACCUM_Y_P_OR_YBASE_REGS,
759 Y_ADDR_OR_YBASE_REGS,
760 YBASE_OR_NOHIGH_YBASE_ELIGIBLE_REGS,
761 YBASE_OR_YBASE_ELIGIBLE_REGS,
762 NO_HIGH_ALL_REGS,
763 ALL_REGS,
764 LIM_REG_CLASSES
765 };
766
767 /* GENERAL_REGS must be the name of a register class */
768 #define GENERAL_REGS ALL_REGS
769
770 #define N_REG_CLASSES (int) LIM_REG_CLASSES
771
772 /* Give names of register classes as strings for dump file. */
773
774 #define REG_CLASS_NAMES \
775 { \
776 "NO_REGS", \
777 "A0H_REG", \
778 "A0L_REG", \
779 "A0_REG", \
780 "A1H_REG", \
781 "ACCUM_HIGH_REGS", \
782 "A1L_REG", \
783 "ACCUM_LOW_REGS", \
784 "A1_REG", \
785 "ACCUM_REGS", \
786 "X_REG", \
787 "X_OR_ACCUM_LOW_REGS", \
788 "X_OR_ACCUM_REGS", \
789 "YH_REG", \
790 "YH_OR_ACCUM_HIGH_REGS", \
791 "X_OR_YH_REGS", \
792 "YL_REG", \
793 "YL_OR_ACCUM_LOW_REGS", \
794 "X_OR_YL_REGS", \
795 "X_OR_Y_REGS", \
796 "Y_REG", \
797 "ACCUM_OR_Y_REGS", \
798 "PH_REG", \
799 "X_OR_PH_REGS", \
800 "PL_REG", \
801 "PL_OR_ACCUM_LOW_REGS", \
802 "X_OR_PL_REGS", \
803 "PL_OR_YL_OR_ACCUM_LOW_REGS", \
804 "P_REG", \
805 "ACCUM_OR_P_REGS", \
806 "YL_OR_P_REGS", \
807 "ACCUM_LOW_OR_YL_OR_P_REGS", \
808 "Y_OR_P_REGS", \
809 "ACCUM_Y_OR_P_REGS", \
810 "NO_FRAME_Y_ADDR_REGS", \
811 "Y_ADDR_REGS", \
812 "ACCUM_LOW_OR_Y_ADDR_REGS", \
813 "ACCUM_OR_Y_ADDR_REGS", \
814 "X_OR_Y_ADDR_REGS", \
815 "Y_OR_Y_ADDR_REGS", \
816 "P_OR_Y_ADDR_REGS", \
817 "NON_HIGH_YBASE_ELIGIBLE_REGS", \
818 "YBASE_ELIGIBLE_REGS", \
819 "J_REG", \
820 "J_OR_DAU_16_BIT_REGS", \
821 "BMU_REGS", \
822 "NOHIGH_NON_ADDR_REGS", \
823 "NON_ADDR_REGS", \
824 "SLOW_MEM_LOAD_REGS", \
825 "NOHIGH_NON_YBASE_REGS", \
826 "NO_ACCUM_NON_YBASE_REGS", \
827 "NON_YBASE_REGS", \
828 "YBASE_VIRT_REGS", \
829 "ACCUM_LOW_OR_YBASE_REGS", \
830 "ACCUM_OR_YBASE_REGS", \
831 "X_OR_YBASE_REGS", \
832 "Y_OR_YBASE_REGS", \
833 "ACCUM_LOW_YL_PL_OR_YBASE_REGS", \
834 "P_OR_YBASE_REGS", \
835 "ACCUM_Y_P_OR_YBASE_REGS", \
836 "Y_ADDR_OR_YBASE_REGS", \
837 "YBASE_OR_NOHIGH_YBASE_ELIGIBLE_REGS", \
838 "YBASE_OR_YBASE_ELIGIBLE_REGS", \
839 "NO_HIGH_ALL_REGS", \
840 "ALL_REGS" \
841 }
842
843 /* Define which registers fit in which classes.
844 This is an initializer for a vector of HARD_REG_SET
845 of length N_REG_CLASSES. */
846
847 #define REG_CLASS_CONTENTS \
848 { \
849 {0x00000000, 0x00000000}, /* no reg */ \
850 {0x00000001, 0x00000000}, /* a0h */ \
851 {0x00000002, 0x00000000}, /* a0l */ \
852 {0x00000003, 0x00000000}, /* a0h:a0l */ \
853 {0x00000004, 0x00000000}, /* a1h */ \
854 {0x00000005, 0x00000000}, /* accum high */ \
855 {0x00000008, 0x00000000}, /* a1l */ \
856 {0x0000000A, 0x00000000}, /* accum low */ \
857 {0x0000000c, 0x00000000}, /* a1h:a1l */ \
858 {0x0000000f, 0x00000000}, /* accum regs */ \
859 {0x00000010, 0x00000000}, /* x reg */ \
860 {0x0000001A, 0x00000000}, /* x & accum_low_regs */ \
861 {0x0000001f, 0x00000000}, /* x & accum regs */ \
862 {0x00000020, 0x00000000}, /* y high */ \
863 {0x00000025, 0x00000000}, /* yh, accum high */ \
864 {0x00000030, 0x00000000}, /* x & yh */ \
865 {0x00000040, 0x00000000}, /* y low */ \
866 {0x0000004A, 0x00000000}, /* y low, accum_low */ \
867 {0x00000050, 0x00000000}, /* x & yl */ \
868 {0x00000060, 0x00000000}, /* yl:yh */ \
869 {0x00000070, 0x00000000}, /* x, yh,a nd yl */ \
870 {0x0000006F, 0x00000000}, /* accum, y */ \
871 {0x00000080, 0x00000000}, /* p high */ \
872 {0x00000090, 0x00000000}, /* x & ph */ \
873 {0x00000100, 0x00000000}, /* p low */ \
874 {0x0000010A, 0x00000000}, /* p_low and accum_low */ \
875 {0x00000110, 0x00000000}, /* x & pl */ \
876 {0x0000014A, 0x00000000}, /* pl,yl,a1l,a0l */ \
877 {0x00000180, 0x00000000}, /* pl:ph */ \
878 {0x0000018F, 0x00000000}, /* accum, p */ \
879 {0x000001C0, 0x00000000}, /* pl:ph and yl */ \
880 {0x000001CA, 0x00000000}, /* pl:ph, yl, a0l, a1l */ \
881 {0x000001E0, 0x00000000}, /* y or p */ \
882 {0x000001EF, 0x00000000}, /* accum, y or p */ \
883 {0x00000E00, 0x00000000}, /* r0-r2 */ \
884 {0x00001E00, 0x00000000}, /* r0-r3 */ \
885 {0x00001E0A, 0x00000000}, /* r0-r3, accum_low */ \
886 {0x00001E0F, 0x00000000}, /* accum,r0-r3 */ \
887 {0x00001E10, 0x00000000}, /* x,r0-r3 */ \
888 {0x00001E60, 0x00000000}, /* y,r0-r3 */ \
889 {0x00001F80, 0x00000000}, /* p,r0-r3 */ \
890 {0x00001FDA, 0x00000000}, /* ph:pl, r0-r3, x,a0l,a1l */ \
891 {0x00001fff, 0x00000000}, /* accum,x,y,p,r0-r3 */ \
892 {0x00002000, 0x00000000}, /* j */ \
893 {0x00002025, 0x00000000}, /* j, yh, a1h, a0h */ \
894 {0x001E0000, 0x00000000}, /* ar0-ar3 */ \
895 {0x03FFE1DA, 0x00000000}, /* non_addr except yh,a0h,a1h */ \
896 {0x03FFE1FF, 0x00000000}, /* non_addr regs */ \
897 {0x03FFFF8F, 0x00000000}, /* non ybase except yh, yl, and x */ \
898 {0x03FFFFDA, 0x00000000}, /* non ybase regs except yh,a0h,a1h */ \
899 {0x03FFFFF0, 0x00000000}, /* non ybase except a0,a0l,a1,a1l */ \
900 {0x03FFFFFF, 0x00000000}, /* non ybase regs */ \
901 {0xFC000000, 0x03FFFFFF}, /* virt ybase regs */ \
902 {0xFC00000A, 0x03FFFFFF}, /* accum_low, virt ybase regs */ \
903 {0xFC00000F, 0x03FFFFFF}, /* accum, virt ybase regs */ \
904 {0xFC000010, 0x03FFFFFF}, /* x,virt ybase regs */ \
905 {0xFC000060, 0x03FFFFFF}, /* y,virt ybase regs */ \
906 {0xFC00014A, 0x03FFFFFF}, /* accum_low, yl, pl, ybase */ \
907 {0xFC000180, 0x03FFFFFF}, /* p,virt ybase regs */ \
908 {0xFC0001EF, 0x03FFFFFF}, /* accum,y,p,ybase regs */ \
909 {0xFC001E00, 0x03FFFFFF}, /* r0-r3, ybase regs */ \
910 {0xFC001FDA, 0x03FFFFFF}, /* r0-r3, pl:ph,yl,x,a1l,a0l */ \
911 {0xFC001FFF, 0x03FFFFFF}, /* virt ybase, ybase eligible regs */ \
912 {0xFCFFFFDA, 0x03FFFFFF}, /* all regs except yh,a0h,a1h */ \
913 {0xFFFFFFFF, 0x03FFFFFF} /* all regs */ \
914 }
915
916
917 /* The same information, inverted:
918 Return the class number of the smallest class containing
919 reg number REGNO. This could be a conditional expression
920 or could index an array. */
921
922 #define REGNO_REG_CLASS(REGNO) regno_reg_class(REGNO)
923
924 /* The class value for index registers, and the one for base regs. */
925
926 #define INDEX_REG_CLASS NO_REGS
927 #define BASE_REG_CLASS Y_ADDR_REGS
928
929 /* Get reg_class from a letter such as appears in the machine description. */
930
931 #define REG_CLASS_FROM_LETTER(C) \
932 dsp16xx_reg_class_from_letter(C)
933
934 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
935 secondary_reload_class(CLASS, MODE, X)
936
937 /* When defined, the compiler allows registers explicitly used in the
938 rtl to be used as spill registers but prevents the compiler from
939 extending the lifetime of these registers. */
940
941 #define SMALL_REGISTER_CLASSES 1
942
943 /* Macros to check register numbers against specific register classes. */
944
945 /* These assume that REGNO is a hard or pseudo reg number.
946 They give nonzero only if REGNO is a hard reg of the suitable class
947 or a pseudo reg currently allocated to a suitable hard reg.
948 Since they use reg_renumber, they are safe only once reg_renumber
949 has been allocated, which happens in local-alloc.c. */
950
951 /* A C expression which is nonzero if register REGNO is suitable for use
952 as a base register in operand addresses. It may be either a suitable
953 hard register or a pseudo register that has been allocated such a
954 hard register.
955
956 On the 1610 the Y address pointers can be used as a base registers */
957 #define REGNO_OK_FOR_BASE_P(REGNO) \
958 (((REGNO) >= REG_R0 && (REGNO) < REG_R3 + 1) || ((unsigned) reg_renumber[REGNO] >= REG_R0 \
959 && (unsigned) reg_renumber[REGNO] < REG_R3 + 1))
960
961 #define REGNO_OK_FOR_YBASE_P(REGNO) \
962 (((REGNO) == REG_YBASE) || ((unsigned) reg_renumber[REGNO] == REG_YBASE))
963
964 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
965
966 #ifdef ALL_16_BIT_REGISTERS
967 #define IS_32_BIT_REG(REGNO) 0
968 #else
969 #define IS_32_BIT_REG(REGNO) \
970 ((REGNO) == REG_A0 || (REGNO) == REG_A1 || (REGNO) == REG_Y || (REGNO) == REG_PROD)
971 #endif
972
973 /* Given an rtx X being reloaded into a reg required to be
974 in class CLASS, return the class of reg to actually use.
975 In general this is just CLASS; but on some machines
976 in some cases it is preferable to use a more restrictive class.
977 Also, we must ensure that a PLUS is reloaded either
978 into an accumulator or an address register. */
979
980 #define PREFERRED_RELOAD_CLASS(X,CLASS) preferred_reload_class (X, CLASS)
981
982 /* A C expression that places additional restrictions on the register
983 class to use when it is necessary to be able to hold a value of
984 mode MODE in a reload register for which class CLASS would
985 ordinarily be used.
986
987 Unlike `PREFERRED_RELOAD_CLASS', this macro should be used when
988 there are certain modes that simply can't go in certain reload
989 classes.
990
991 The value is a register class; perhaps CLASS, or perhaps another,
992 smaller class.
993
994 Don't define this macro unless the target machine has limitations
995 which require the macro to do something nontrivial. */
996
997 #if 0
998 #define LIMIT_RELOAD_CLASS(MODE, CLASS) dsp16xx_limit_reload_class (MODE, CLASS)
999 #endif
1000
1001 /* A C expression for the maximum number of consecutive registers of class CLASS
1002 needed to hold a value of mode MODE */
1003 #define CLASS_MAX_NREGS(CLASS, MODE) \
1004 class_max_nregs(CLASS, MODE)
1005
1006 /* The letters 'I' through 'P' in a register constraint string
1007 can be used to stand for particular ranges of immediate operands.
1008 This macro defines what the ranges are.
1009 C is the letter, and VALUE is a constant value.
1010 Return 1 if VALUE is in the range specified by C.
1011
1012 For the 16xx, the following constraints are used:
1013 'I' requires a non-negative 16-bit value.
1014 'J' requires a non-negative 9-bit value
1015 'K' requires a constant 0 operand.
1016 'L' constant for use in add or sub from low 16-bits
1017 'M' 32-bit value -- low 16-bits zero
1018 'N' constant for use incrementing or decrementing an address register
1019 'O' constant for use with and'ing only high 16-bit
1020 'P' constant for use with and'ing only low 16-bit
1021 */
1022
1023 #define SMALL_INT(X) (SMALL_INTVAL (INTVAL (X)))
1024 #define SMALL_INTVAL(I) ((unsigned) (I) < 0x10000)
1025 #define SHORT_IMMEDIATE(X) (SHORT_INTVAL (INTVAL(X)))
1026 #define SHORT_INTVAL(I) ((unsigned) (I) < 0x100)
1027 #define ADD_LOW_16(I) ((I) >= 0 && (I) <= 32767)
1028 #define ADD_HIGH_16(I) (((I) & 0x0000ffff) == 0)
1029 #define AND_LOW_16(I) ((I) >= 0 && (I) <= 32767)
1030 #define AND_HIGH_16(I) (((I) & 0x0000ffff) == 0)
1031
1032 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1033 ((C) == 'I' ? (SMALL_INTVAL(VALUE)) \
1034 : (C) == 'J' ? (SHORT_INTVAL(VALUE)) \
1035 : (C) == 'K' ? ((VALUE) == 0) \
1036 : (C) == 'L' ? ((VALUE) >= 0 && (VALUE) <= 32767) \
1037 : (C) == 'M' ? (((VALUE) & 0x0000ffff) == 0) \
1038 : (C) == 'N' ? ((VALUE) == -1 || (VALUE) == 1 \
1039 || (VALUE) == -2 || (VALUE) == 2) \
1040 : (C) == 'O' ? (((VALUE) & 0xffff0000) == 0xffff0000) \
1041 : (C) == 'P' ? (((VALUE) & 0x0000ffff) == 0xffff) \
1042 : 0)
1043
1044 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
1045
1046 /* Optional extra constraints for this machine */
1047 #define EXTRA_CONSTRAINT(OP,C) \
1048 ((C) == 'R' ? symbolic_address_p (OP) \
1049 : 0)
1050 \f
1051 /* DESCRIBING STACK LAYOUT AND CALLING CONVENTIONS */
1052
1053 /* Define this if pushing a word on the stack
1054 makes the stack pointer a smaller address. */
1055 /* #define STACK_GROWS_DOWNWARD */
1056
1057 /* Define this if the nominal address of the stack frame
1058 is at the high-address end of the local variables;
1059 that is, each additional local variable allocated
1060 goes at a more negative offset in the frame. */
1061 /* #define FRAME_GROWS_DOWNWARD */
1062
1063 #define ARGS_GROW_DOWNWARD
1064
1065 /* We use post decrement on the 1600 because there isn't
1066 a pre-decrement addressing mode. This means that we
1067 assume the stack pointer always points at the next
1068 FREE location on the stack. */
1069 #define STACK_PUSH_CODE POST_INC
1070
1071 /* Offset within stack frame to start allocating local variables at.
1072 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1073 first local allocated. Otherwise, it is the offset to the BEGINNING
1074 of the first local allocated. */
1075 #define STARTING_FRAME_OFFSET 0
1076
1077 /* Offset from the stack pointer register to the first
1078 location at which outgoing arguments are placed. */
1079 #define STACK_POINTER_OFFSET (0)
1080
1081 struct dsp16xx_frame_info
1082 {
1083 unsigned long total_size; /* # bytes that the entire frame takes up */
1084 unsigned long var_size; /* # bytes that variables take up */
1085 unsigned long args_size; /* # bytes that outgoing arguments take up */
1086 unsigned long extra_size; /* # bytes of extra gunk */
1087 unsigned int reg_size; /* # bytes needed to store regs */
1088 long fp_save_offset; /* offset from vfp to store registers */
1089 unsigned long sp_save_offset; /* offset from new sp to store registers */
1090 int pr_save_offset; /* offset to saved PR */
1091 int initialized; /* != 0 if frame size already calculated */
1092 int num_regs; /* number of registers saved */
1093 int function_makes_calls; /* Does the function make calls */
1094 };
1095
1096 extern struct dsp16xx_frame_info current_frame_info;
1097
1098 #define RETURN_ADDR_OFF current_frame_info.pr_save_offset
1099
1100 /* If we generate an insn to push BYTES bytes,
1101 this says how many the stack pointer really advances by. */
1102 /* #define PUSH_ROUNDING(BYTES) ((BYTES)) */
1103
1104 /* If defined, the maximum amount of space required for outgoing
1105 arguments will be computed and placed into the variable
1106 'current_function_outgoing_args_size'. No space will be pushed
1107 onto the stack for each call; instead, the function prologue should
1108 increase the stack frame size by this amount.
1109
1110 It is not proper to define both 'PUSH_ROUNDING' and
1111 'ACCUMULATE_OUTGOING_ARGS'. */
1112 #define ACCUMULATE_OUTGOING_ARGS 1
1113
1114 /* Offset of first parameter from the argument pointer
1115 register value. */
1116
1117 #define FIRST_PARM_OFFSET(FNDECL) (0)
1118
1119 /* Value is 1 if returning from a function call automatically
1120 pops the arguments described by the number-of-args field in the call.
1121 FUNDECL is the declaration node of the function (as a tree),
1122 FUNTYPE is the data type of the function (as a tree),
1123 or for a library call it is an identifier node for the subroutine name. */
1124
1125 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1126
1127 /* Define how to find the value returned by a function.
1128 VALTYPE is the data type of the value (as a tree).
1129 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1130 otherwise, FUNC is 0. On the 1610 all function return their values
1131 in a0 (i.e. the upper 16 bits). If the return value is 32-bits the
1132 entire register is significant. */
1133
1134 #define VALUE_REGNO(MODE) (REG_Y)
1135
1136 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1137 gen_rtx_REG (TYPE_MODE (VALTYPE), VALUE_REGNO(TYPE_MODE(VALTYPE)))
1138
1139 /* Define how to find the value returned by a library function
1140 assuming the value has mode MODE. */
1141 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
1142
1143 /* 1 if N is a possible register number for a function value. */
1144 #define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_Y)
1145 \f
1146
1147 /* Define where to put the arguments to a function.
1148 Value is zero to push the argument on the stack,
1149 or a hard register in which to store the argument.
1150
1151 MODE is the argument's machine mode.
1152 TYPE is the data type of the argument (as a tree).
1153 This is null for libcalls where that information may
1154 not be available.
1155 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1156 the preceding args and about the function being called.
1157 NAMED is nonzero if this argument is a named parameter
1158 (otherwise it is an extra parameter matching an ellipsis). */
1159
1160 /* On the 1610 all args are pushed, except if -mregparm is specified
1161 then the first two words of arguments are passed in a0, a1. */
1162 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1163 dsp16xx_function_arg (CUM, MODE, TYPE, NAMED)
1164
1165 /* Define the first register to be used for argument passing */
1166 #define FIRST_REG_FOR_FUNCTION_ARG REG_Y
1167
1168 /* Define the profitability of saving registers around calls.
1169 NOTE: For now we turn this off because of a bug in the
1170 caller-saves code and also because i'm not sure it is helpful
1171 on the 1610. */
1172
1173 #define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
1174
1175 /* This indicates that an argument is to be passed with an invisible reference
1176 (i.e., a pointer to the object is passed).
1177
1178 On the dsp16xx, we do this if it must be passed on the stack. */
1179
1180 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1181 (MUST_PASS_IN_STACK (MODE, TYPE))
1182
1183 /* For an arg passed partly in registers and partly in memory,
1184 this is the number of registers used.
1185 For args passed entirely in registers or entirely in memory, zero. */
1186
1187 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0)
1188
1189 /* Define a data type for recording info about an argument list
1190 during the scan of that argument list. This data type should
1191 hold all necessary information about the function itself
1192 and about the args processed so far, enough to enable macros
1193 such as FUNCTION_ARG to determine where the next arg should go. */
1194 #define CUMULATIVE_ARGS int
1195
1196 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1197 for a call to a function whose data type is FNTYPE.
1198 For a library call, FNTYPE is 0. */
1199 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1200 ((CUM) = 0)
1201
1202 /* Update the data in CUM to advance over an argument
1203 of mode MODE and data type TYPE.
1204 (TYPE is null for libcalls where that information may not be available.) */
1205
1206 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1207 dsp16xx_function_arg_advance (&CUM, MODE,TYPE, NAMED)
1208
1209 /* 1 if N is a possible register number for function argument passing. */
1210 #define FUNCTION_ARG_REGNO_P(N) \
1211 ((N) == REG_Y || (N) == REG_YL || (N) == REG_PROD || (N) == REG_PRODL)
1212
1213 /* Output assembler code to FILE to increment profiler label # LABELNO
1214 for profiling a function entry. */
1215
1216 #define FUNCTION_PROFILER(FILE, LABELNO) \
1217 internal_error ("profiling not implemented yet")
1218
1219 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1220 the stack pointer does not matter. The value is tested only in
1221 functions that have frame pointers.
1222 No definition is equivalent to always zero. */
1223
1224 #define EXIT_IGNORE_STACK (0)
1225
1226 #define TRAMPOLINE_TEMPLATE(FILE) \
1227 internal_error ("trampolines not yet implemented");
1228
1229 /* Length in units of the trampoline for entering a nested function.
1230 This is a dummy value */
1231
1232 #define TRAMPOLINE_SIZE 20
1233
1234 /* Emit RTL insns to initialize the variable parts of a trampoline.
1235 FNADDR is an RTX for the address of the function's pure code.
1236 CXT is an RTX for the static chain value for the function. */
1237
1238 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1239 internal_error ("trampolines not yet implemented");
1240
1241 /* A C expression which is nonzero if a function must have and use a
1242 frame pointer. If its value is nonzero the functions will have a
1243 frame pointer. */
1244 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1245
1246 /* A C statement to store in the variable 'DEPTH' the difference
1247 between the frame pointer and the stack pointer values immediately
1248 after the function prologue. */
1249 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
1250 { (DEPTH) = initial_frame_pointer_offset(); \
1251 }
1252 \f
1253 /* IMPLICIT CALLS TO LIBRARY ROUTINES */
1254
1255 #define ADDHF3_LIBCALL "__Emulate_addhf3"
1256 #define SUBHF3_LIBCALL "__Emulate_subhf3"
1257 #define MULHF3_LIBCALL "__Emulate_mulhf3"
1258 #define DIVHF3_LIBCALL "__Emulate_divhf3"
1259 #define CMPHF3_LIBCALL "__Emulate_cmphf3"
1260 #define FIXHFHI2_LIBCALL "__Emulate_fixhfhi2"
1261 #define FLOATHIHF2_LIBCALL "__Emulate_floathihf2"
1262 #define NEGHF2_LIBCALL "__Emulate_neghf2"
1263
1264 #define UMULHI3_LIBCALL "__Emulate_umulhi3"
1265 #define MULHI3_LIBCALL "__Emulate_mulhi3"
1266 #define UDIVQI3_LIBCALL "__Emulate_udivqi3"
1267 #define UDIVHI3_LIBCALL "__Emulate_udivhi3"
1268 #define DIVQI3_LIBCALL "__Emulate_divqi3"
1269 #define DIVHI3_LIBCALL "__Emulate_divhi3"
1270 #define MODQI3_LIBCALL "__Emulate_modqi3"
1271 #define MODHI3_LIBCALL "__Emulate_modhi3"
1272 #define UMODQI3_LIBCALL "__Emulate_umodqi3"
1273 #define UMODHI3_LIBCALL "__Emulate_umodhi3"
1274 #define ASHRHI3_LIBCALL "__Emulate_ashrhi3"
1275 #define LSHRHI3_LIBCALL "__Emulate_lshrhi3"
1276 #define ASHLHI3_LIBCALL "__Emulate_ashlhi3"
1277 #define LSHLHI3_LIBCALL "__Emulate_lshlhi3" /* NOT USED */
1278
1279 /* Define this macro if calls to the ANSI C library functions memcpy and
1280 memset should be generated instead of the BSD function bcopy & bzero. */
1281 #define TARGET_MEM_FUNCTIONS
1282
1283 \f
1284 /* ADDRESSING MODES */
1285
1286 /* The 1610 has post-increment and decrement, but no pre-modify */
1287 #define HAVE_POST_INCREMENT 1
1288 #define HAVE_POST_DECREMENT 1
1289
1290 /* Recognize any constant value that is a valid address. */
1291 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
1292
1293 /* Maximum number of registers that can appear in a valid memory address. */
1294 #define MAX_REGS_PER_ADDRESS 1
1295
1296 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1297 and check its validity for a certain class.
1298 We have two alternate definitions for each of them.
1299 The usual definition accepts all pseudo regs; the other rejects
1300 them unless they have been allocated suitable hard regs.
1301 The symbol REG_OK_STRICT causes the latter definition to be used.
1302
1303 Most source files want to accept pseudo regs in the hope that
1304 they will get allocated to the class that the insn wants them to be in.
1305 Source files for reload pass need to be strict.
1306 After reload, it makes no difference, since pseudo regs have
1307 been eliminated by then. */
1308
1309 #ifndef REG_OK_STRICT
1310
1311 /* Nonzero if X is a hard reg that can be used as an index
1312 or if it is a pseudo reg. */
1313 #define REG_OK_FOR_INDEX_P(X) 0
1314
1315 /* Nonzero if X is a hard reg that can be used as a base reg
1316 or if it is a pseudo reg. */
1317 #define REG_OK_FOR_BASE_P(X) \
1318 ((REGNO (X) >= REG_R0 && REGNO (X) < REG_R3 + 1 ) \
1319 || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1320
1321 /* Nonzero if X is the 'ybase' register */
1322 #define REG_OK_FOR_YBASE_P(X) \
1323 (REGNO(X) == REG_YBASE || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1324 #else
1325
1326 /* Nonzero if X is a hard reg that can be used as an index. */
1327 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1328
1329 /* Nonzero if X is a hard reg that can be used as a base reg. */
1330 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1331
1332 /* Nonzero if X is the 'ybase' register */
1333 #define REG_OK_FOR_YBASE_P(X) REGNO_OK_FOR_YBASE_P (REGNO(X))
1334
1335 #endif
1336 \f
1337 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1338 that is a valid memory address for an instruction.
1339 The MODE argument is the machine mode for the MEM expression
1340 that wants to use this address.
1341
1342 On the 1610, the actual legitimate addresses must be N (N must fit in
1343 5 bits), *rn (register indirect), *rn++, or *rn-- */
1344
1345 #define INT_FITS_5_BITS(I) ((unsigned long) (I) < 0x20)
1346 #define INT_FITS_16_BITS(I) ((unsigned long) (I) < 0x10000)
1347 #define YBASE_CONST_OFFSET(I) ((I) >= -31 && (I) <= 0)
1348 #define YBASE_OFFSET(X) (GET_CODE (X) == CONST_INT && YBASE_CONST_OFFSET (INTVAL(X)))
1349
1350 #define FITS_16_BITS(X) (GET_CODE (X) == CONST_INT && INT_FITS_16_BITS(INTVAL(X)))
1351 #define FITS_5_BITS(X) (GET_CODE (X) == CONST_INT && INT_FITS_5_BITS(INTVAL(X)))
1352 #define ILLEGAL_HIMODE_ADDR(MODE, CONST) ((MODE) == HImode && CONST == -31)
1353
1354 #define INDIRECTABLE_ADDRESS_P(X) \
1355 ((GET_CODE(X) == REG && REG_OK_FOR_BASE_P(X)) \
1356 || ((GET_CODE(X) == POST_DEC || GET_CODE(X) == POST_INC) \
1357 && REG_P(XEXP(X,0)) && REG_OK_FOR_BASE_P(XEXP(X,0))) \
1358 || (GET_CODE(X) == CONST_INT && (unsigned long) (X) < 0x20))
1359
1360
1361 #define INDEXABLE_ADDRESS_P(X,MODE) \
1362 ((GET_CODE(X) == PLUS && GET_CODE (XEXP (X,0)) == REG && \
1363 XEXP(X,0) == stack_pointer_rtx && YBASE_OFFSET(XEXP(X,1)) && \
1364 !ILLEGAL_HIMODE_ADDR(MODE, INTVAL(XEXP(X,1)))) || \
1365 (GET_CODE(X) == PLUS && GET_CODE (XEXP (X,1)) == REG && \
1366 XEXP(X,1) == stack_pointer_rtx && YBASE_OFFSET(XEXP(X,0)) && \
1367 !ILLEGAL_HIMODE_ADDR(MODE, INTVAL(XEXP(X,0)))))
1368
1369 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1370 { \
1371 if (INDIRECTABLE_ADDRESS_P(X)) \
1372 goto ADDR; \
1373 }
1374
1375 \f
1376 /* Try machine-dependent ways of modifying an illegitimate address
1377 to be legitimate. If we find one, return the new, valid address.
1378 This macro is used in only one place: `memory_address' in explow.c.
1379
1380 OLDX is the address as it was before break_out_memory_refs was called.
1381 In some cases it is useful to look at this to decide what needs to be done.
1382
1383 MODE and WIN are passed so that this macro can use
1384 GO_IF_LEGITIMATE_ADDRESS.
1385
1386 It is always safe for this macro to do nothing. It exists to recognize
1387 opportunities to optimize the output.
1388
1389 For the 1610, we need not do anything. However, if we don't,
1390 `memory_address' will try lots of things to get a valid address, most of
1391 which will result in dead code and extra pseudos. So we make the address
1392 valid here.
1393
1394 This is easy: The only valid addresses are an offset from a register
1395 and we know the address isn't valid. So just call either `force_operand'
1396 or `force_reg' unless this is a (plus (reg ...) (const_int 0)). */
1397
1398 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1399 { if (GET_CODE (X) == PLUS && XEXP (X, 1) == const0_rtx) \
1400 X = XEXP (x, 0); \
1401 if (GET_CODE (X) == MULT || GET_CODE (X) == PLUS) \
1402 X = force_operand (X, 0); \
1403 else \
1404 X = force_reg (Pmode, X); \
1405 goto WIN; \
1406 }
1407
1408 /* Go to LABEL if ADDR (a legitimate address expression)
1409 has an effect that depends on the machine mode it is used for.
1410 On the 1610, only postdecrement and postincrement address depend thus
1411 (the amount of decrement or increment being the length of the operand). */
1412
1413 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1414 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
1415
1416 /* Nonzero if the constant value X is a legitimate general operand.
1417 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1418 #define LEGITIMATE_CONSTANT_P(X) (1)
1419
1420 \f
1421 /* CONDITION CODE INFORMATION */
1422
1423 /* Store in cc_status the expressions
1424 that the condition codes will describe
1425 after execution of an instruction whose pattern is EXP.
1426 Do not alter them if the instruction would not alter the cc's. */
1427
1428 #define NOTICE_UPDATE_CC(EXP, INSN) \
1429 notice_update_cc( (EXP) )
1430 \f
1431 /* DESCRIBING RELATIVE COSTS OF OPERATIONS */
1432
1433 /* A c expression for the cost of moving data from a register in
1434 class FROM to one in class TO. The classes are expressed using
1435 the enumeration values such as GENERAL_REGS. A value of 2 is
1436 the default. */
1437 #define REGISTER_MOVE_COST(MODE,FROM,TO) dsp16xx_register_move_cost (FROM, TO)
1438
1439 /* A C expression for the cost of moving data of mode MODE between
1440 a register and memory. A value of 2 is the default. */
1441 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1442 (GET_MODE_CLASS(MODE) == MODE_INT && MODE == QImode ? 12 \
1443 : 16)
1444
1445 /* A C expression for the cost of a branch instruction. A value of
1446 1 is the default; */
1447 #define BRANCH_COST 1
1448 \f
1449
1450 /* Define this because otherwise gcc will try to put the function address
1451 in any old pseudo register. We can only use pt. */
1452 #define NO_FUNCTION_CSE
1453
1454 /* Define this macro as a C expression which is nonzero if accessing less
1455 than a word of memory (i.e a char or short) is no faster than accessing
1456 a word of memory, i.e if such access require more than one instruction
1457 or if there is no difference in cost between byte and (aligned) word
1458 loads. */
1459 #define SLOW_BYTE_ACCESS 1
1460
1461 /* Define this macro if unaligned accesses have a cost many times greater than
1462 aligned accesses, for example if they are emulated in a trap handler */
1463 /* define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) */
1464
1465 \f
1466 /* DIVIDING THE OUTPUT IN SECTIONS */
1467 /* Output before read-only data. */
1468
1469 #define DEFAULT_TEXT_SEG_NAME ".text"
1470 #define TEXT_SECTION_ASM_OP rsect_text
1471
1472 /* Output before constants and strings */
1473 #define DEFAULT_CONST_SEG_NAME ".const"
1474 #define READONLY_DATA_SECTION_ASM_OP rsect_const
1475
1476 /* Output before writable data. */
1477 #define DEFAULT_DATA_SEG_NAME ".data"
1478 #define DATA_SECTION_ASM_OP rsect_data
1479
1480 #define DEFAULT_BSS_SEG_NAME ".bss"
1481 #define BSS_SECTION_ASM_OP rsect_bss
1482
1483 /* We will default to using 1610 if the user doesn't
1484 specify it. */
1485 #define DEFAULT_CHIP_NAME "1610"
1486 \f
1487 /* THE OVERALL FRAMEWORK OF AN ASSEMBLER FILE */
1488
1489 /* A C string constant describing how to begin a comment in the target
1490 assembler language. */
1491 #define ASM_COMMENT_START ""
1492 #define ASM_COMMENT_END ""
1493
1494 /* Output to assembler file text saying following lines
1495 may contain character constants, extra white space, comments, etc. */
1496 #define ASM_APP_ON ""
1497
1498 /* Output to assembler file text saying following lines
1499 no longer contain unusual constructs. */
1500 #define ASM_APP_OFF ""
1501 \f
1502 /* OUTPUT OF DATA */
1503
1504 /* This is how we output a 'c' character string. For the 16xx
1505 assembler we have to do it one letter at a time */
1506
1507 #define ASCII_LENGTH 10
1508
1509 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1510 do { \
1511 FILE *_hide_asm_out_file = (MYFILE); \
1512 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
1513 int _hide_thissize = (MYLENGTH); \
1514 { \
1515 FILE *asm_out_file = _hide_asm_out_file; \
1516 const unsigned char *p = _hide_p; \
1517 int thissize = _hide_thissize; \
1518 int i; \
1519 \
1520 for (i = 0; i < thissize; i++) \
1521 { \
1522 register int c = p[i]; \
1523 \
1524 if (i % ASCII_LENGTH == 0) \
1525 fprintf (asm_out_file, "\tint "); \
1526 \
1527 if (c >= ' ' && c < 0177 && c != '\'') \
1528 { \
1529 putc ('\'', asm_out_file); \
1530 putc (c, asm_out_file); \
1531 putc ('\'', asm_out_file); \
1532 } \
1533 else \
1534 { \
1535 fprintf (asm_out_file, "%d", c); \
1536 /* After an octal-escape, if a digit follows, \
1537 terminate one string constant and start another. \
1538 The VAX assembler fails to stop reading the escape \
1539 after three digits, so this is the only way we \
1540 can get it to parse the data properly. \
1541 if (i < thissize - 1 && ISDIGIT (p[i + 1])) \
1542 fprintf (asm_out_file, "\'\n\tint \'"); \
1543 */ \
1544 } \
1545 /* if: \
1546 we are not at the last char (i != thissize -1) \
1547 and (we are not at a line break multiple \
1548 but i == 0) (it will be the very first time) \
1549 then put out a comma to extend. \
1550 */ \
1551 if ((i != thissize - 1) && ((i + 1) % ASCII_LENGTH)) \
1552 fprintf(asm_out_file, ","); \
1553 if (!((i + 1) % ASCII_LENGTH)) \
1554 fprintf (asm_out_file, "\n"); \
1555 } \
1556 fprintf (asm_out_file, "\n"); \
1557 } \
1558 } \
1559 while (0)
1560
1561 #define ASM_PN_FORMAT "*L%s_%lu"
1562 \f
1563 /* OUTPUT OF UNINITIALIZED VARIABLES */
1564
1565 /* This says how to output an assembler line
1566 to define a global common symbol. */
1567
1568 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1569 asm_output_common (FILE, NAME, SIZE, ROUNDED);
1570
1571 /* This says how to output an assembler line
1572 to define a local common symbol. */
1573
1574 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1575 asm_output_local (FILE, NAME, SIZE, ROUNDED);
1576 \f
1577 /* OUTPUT AND GENERATION OF LABELS */
1578
1579 /* Globalizing directive for a label. */
1580 #define GLOBAL_ASM_OP ".global "
1581
1582 /* A C statement to output to the stdio stream any text necessary
1583 for declaring the name of an external symbol named name which
1584 is referenced in this compilation but not defined. */
1585
1586 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1587 { \
1588 fprintf (FILE, ".extern "); \
1589 assemble_name (FILE, NAME); \
1590 fprintf (FILE, "\n"); \
1591 }
1592 /* A C statement to output on stream an assembler pseudo-op to
1593 declare a library function named external. */
1594
1595 #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
1596 { \
1597 fprintf (FILE, ".extern "); \
1598 assemble_name (FILE, XSTR (FUN, 0)); \
1599 fprintf (FILE, "\n"); \
1600 }
1601
1602 /* The prefix to add to user-visible assembler symbols. */
1603
1604 #define USER_LABEL_PREFIX "_"
1605
1606 /* This is how to store into the string LABEL
1607 the symbol_ref name of an internal numbered label where
1608 PREFIX is the class of label and NUM is the number within the class.
1609 This is suitable for output with `assemble_name'. */
1610 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1611 sprintf (LABEL, "*%s%lu", PREFIX, (unsigned long)(NUM))
1612
1613 \f
1614 /* OUTPUT OF ASSEMBLER INSTRUCTIONS */
1615
1616 /* How to refer to registers in assembler output.
1617 This sequence is indexed by compiler's hard-register-number (see above). */
1618
1619 #define REGISTER_NAMES \
1620 {"a0", "a0l", "a1", "a1l", "x", "y", "yl", "p", "pl", \
1621 "r0", "r1", "r2", "r3", "j", "k", "ybase", "pt", \
1622 "ar0", "ar1", "ar2", "ar3", \
1623 "c0", "c1", "c2", "pr", "rb", \
1624 "*(0)", "*(1)", "*(2)", "*(3)", "*(4)", "*(5)", \
1625 "*(6)", "*(7)", "*(8)", "*(9)", "*(10)", "*(11)", \
1626 "*(12)", "*(13)", "*(14)", "*(15)", "*(16)", "*(17)", \
1627 "*(18)", "*(19)", "*(20)", "*(21)", "*(22)", "*(23)", \
1628 "*(24)", "*(25)", "*(26)", "*(27)", "*(28)", "*(29)", \
1629 "*(30)", "*(31)" }
1630
1631 #define HIMODE_REGISTER_NAMES \
1632 {"a0", "a0", "a1", "a1", "x", "y", "y", "p", "p", \
1633 "r0", "r1", "r2", "r3", "j", "k", "ybase", "pt", \
1634 "ar0", "ar1", "ar2", "ar3", \
1635 "c0", "c1", "c2", "pr", "rb", \
1636 "*(0)", "*(1)", "*(2)", "*(3)", "*(4)", "*(5)", \
1637 "*(6)", "*(7)", "*(8)", "*(9)", "*(10)", "*(11)", \
1638 "*(12)", "*(13)", "*(14)", "*(15)", "*(16)", "*(17)", \
1639 "*(18)", "*(19)", "*(20)", "*(21)", "*(22)", "*(23)", \
1640 "*(24)", "*(25)", "*(26)", "*(27)", "*(28)", "*(29)", \
1641 "*(30)", "*(31)" }
1642
1643 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1644
1645 /* Print operand X (an rtx) in assembler syntax to file FILE.
1646 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1647 For `%' followed by punctuation, CODE is the punctuation and X is null.
1648
1649 DSP1610 extensions for operand codes:
1650
1651 %H - print lower 16 bits of constant
1652 %U - print upper 16 bits of constant
1653 %w - print low half of register (e.g 'a0l')
1654 %u - print upper half of register (e.g 'a0')
1655 %b - print high half of accumulator for F3 ALU instructions
1656 %h - print constant in decimal */
1657
1658 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE, X, CODE)
1659
1660
1661 /* Print a memory address as an operand to reference that memory location. */
1662
1663 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1664
1665 /* This is how to output an insn to push a register on the stack.
1666 It need not be very fast code since it is used only for profiling */
1667 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1668 internal_error ("profiling not implemented yet");
1669
1670 /* This is how to output an insn to pop a register from the stack.
1671 It need not be very fast code since it is used only for profiling */
1672 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1673 internal_error ("profiling not implemented yet");
1674 \f
1675 /* OUTPUT OF DISPATCH TABLES */
1676
1677 /* This macro should be provided on machines where the addresses in a dispatch
1678 table are relative to the table's own address. */
1679 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1680 fprintf (FILE, "\tint L%d-L%d\n", VALUE, REL)
1681
1682 /* This macro should be provided on machines where the addresses in a dispatch
1683 table are absolute. */
1684 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1685 fprintf (FILE, "\tint L%d\n", VALUE)
1686
1687 /* ASSEMBLER COMMANDS FOR ALIGNMENT */
1688
1689 /* This is how to output an assembler line that says to advance
1690 the location counter to a multiple of 2**LOG bytes. We should
1691 not have to do any alignment since the 1610 is a word machine. */
1692 #define ASM_OUTPUT_ALIGN(FILE,LOG)
1693
1694 /* Define this macro if ASM_OUTPUT_SKIP should not be used in the text section
1695 because it fails to put zero1 in the bytes that are skipped. */
1696 #define ASM_NO_SKIP_IN_TEXT 1
1697
1698 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1699 fprintf (FILE, "\t%d * int 0\n", (int)(SIZE))
1700
1701 /* CONTROLLING DEBUGGING INFORMATION FORMAT */
1702
1703 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1704
1705 #define ASM_OUTPUT_DEF(asm_out_file, LABEL1, LABEL2) \
1706 do { \
1707 fprintf (asm_out_file, ".alias " ); \
1708 ASM_OUTPUT_LABELREF(asm_out_file, LABEL1); \
1709 fprintf (asm_out_file, "=" ); \
1710 ASM_OUTPUT_LABELREF(asm_out_file, LABEL2); \
1711 fprintf (asm_out_file, "\n" ); \
1712 } while (0)
1713
1714 \f
1715 /* MISCELLANEOUS PARAMETERS */
1716
1717 /* Specify the machine mode that this machine uses
1718 for the index in the tablejump instruction. */
1719 #define CASE_VECTOR_MODE QImode
1720
1721 /* Define as C expression which evaluates to nonzero if the tablejump
1722 instruction expects the table to contain offsets from the address of the
1723 table.
1724 Do not define this if the table should contain absolute addresses. */
1725 /* #define CASE_VECTOR_PC_RELATIVE 1 */
1726
1727 /* Max number of bytes we can move from memory to memory
1728 in one reasonably fast instruction. */
1729 #define MOVE_MAX 1
1730
1731 /* Defining this macro causes the compiler to omit a sign-extend, zero-extend,
1732 or bitwise 'and' instruction that truncates the count of a shift operation
1733 to a width equal to the number of bits needed to represent the size of the
1734 object being shifted. Do not define this macro unless the truncation applies
1735 to both shift operations and bit-field operations (if any). */
1736 /* #define SHIFT_COUNT_TRUNCATED */
1737
1738 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1739 is done just by pretending it is already truncated. */
1740 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1741
1742 /* When a prototype says `char' or `short', really pass an `int'. */
1743 #define PROMOTE_PROTOTYPES 1
1744
1745 /* An alias for the machine mode used for pointers */
1746 #define Pmode QImode
1747
1748 /* A function address in a call instruction
1749 is a byte address (for indexing purposes)
1750 so give the MEM rtx a byte's mode. */
1751 #define FUNCTION_MODE QImode
1752
1753 #if !defined(__DATE__)
1754 #define TARGET_VERSION fprintf (stderr, " (%s)", VERSION_INFO1)
1755 #else
1756 #define TARGET_VERSION fprintf (stderr, " (%s, %s)", VERSION_INFO1, __DATE__)
1757 #endif
1758
1759 #define VERSION_INFO1 "Lucent DSP16xx C Cross Compiler, version 1.3.0b"
1760
1761
1762 /* Define this as 1 if `char' should by default be signed; else as 0. */
1763 #define DEFAULT_SIGNED_CHAR 1
1764
1765 /* Define this so gcc does not output a call to __main, since we
1766 are not currently supporting c++. */
1767 #define INIT_SECTION_ASM_OP 1
1768