]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/dsp16xx/dsp16xx.h
Merge from pch-branch up to tag pch-commit-20020603.
[thirdparty/gcc.git] / gcc / config / dsp16xx / dsp16xx.h
1 /* Definitions of target machine for GNU compiler. AT&T DSP1600.
2 Copyright (C) 1994, 1995, 1996, 1997, 1998, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Michael Collison (collison@isisinc.net).
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 extern const char *low_reg_names[];
24 extern const char *text_seg_name;
25 extern const char *rsect_text;
26 extern const char *data_seg_name;
27 extern const char *rsect_data;
28 extern const char *bss_seg_name;
29 extern const char *rsect_bss;
30 extern const char *const_seg_name;
31 extern const char *rsect_const;
32 extern const char *chip_name;
33 extern const char *save_chip_name;
34 extern GTY(()) rtx dsp16xx_compare_op0;
35 extern GTY(()) rtx dsp16xx_compare_op1;
36 extern GTY(()) rtx dsp16xx_addhf3_libcall;
37 extern GTY(()) rtx dsp16xx_subhf3_libcall;
38 extern GTY(()) rtx dsp16xx_mulhf3_libcall;
39 extern GTY(()) rtx dsp16xx_divhf3_libcall;
40 extern GTY(()) rtx dsp16xx_cmphf3_libcall;
41 extern GTY(()) rtx dsp16xx_fixhfhi2_libcall;
42 extern GTY(()) rtx dsp16xx_floathihf2_libcall;
43 extern GTY(()) rtx dsp16xx_neghf2_libcall;
44 extern GTY(()) rtx dsp16xx_umulhi3_libcall;
45 extern GTY(()) rtx dsp16xx_mulhi3_libcall;
46 extern GTY(()) rtx dsp16xx_udivqi3_libcall;
47 extern GTY(()) rtx dsp16xx_udivhi3_libcall;
48 extern GTY(()) rtx dsp16xx_divqi3_libcall;
49 extern GTY(()) rtx dsp16xx_divhi3_libcall;
50 extern GTY(()) rtx dsp16xx_modqi3_libcall;
51 extern GTY(()) rtx dsp16xx_modhi3_libcall;
52 extern GTY(()) rtx dsp16xx_umodqi3_libcall;
53 extern GTY(()) rtx dsp16xx_umodhi3_libcall;
54
55 extern GTY(()) rtx dsp16xx_ashrhi3_libcall;
56 extern GTY(()) rtx dsp16xx_ashlhi3_libcall;
57 extern GTY(()) rtx dsp16xx_lshrhi3_libcall;
58
59 /* RUN-TIME TARGET SPECIFICATION */
60 #define DSP16XX 1
61
62 /* Name of the AT&T assembler */
63
64 #define ASM_PROG "as1600"
65
66 /* Name of the AT&T linker */
67
68 #define LD_PROG "ld1600"
69
70 /* Define which switches take word arguments */
71 #define WORD_SWITCH_TAKES_ARG(STR) \
72 (!strcmp (STR, "ifile") ? 1 : \
73 0)
74
75 #undef CC1_SPEC
76 #define CC1_SPEC "%{!O*:-O}"
77
78 /* Define this as a spec to call the AT&T assembler */
79
80 #define CROSS_ASM_SPEC "%{!S:as1600 %a %i\n }"
81
82 /* Define this as a spec to call the AT&T linker */
83
84 #define CROSS_LINK_SPEC "%{!c:%{!M:%{!MM:%{!E:%{!S:ld1600 %l %X %{o*} %{m} \
85 %{r} %{s} %{t} %{u*} %{x}\
86 %{!A:%{!nostdlib:%{!nostartfiles:%S}}} %{static:}\
87 %{L*} %D %o %{!nostdlib:-le1600 %L -le1600}\
88 %{!A:%{!nostdlib:%{!nostartfiles:%E}}}\n }}}}}"
89
90 /* Nothing complicated here, just link with libc.a under normal
91 circumstances */
92 #define LIB_SPEC "-lc"
93
94 /* Specify the startup file to link with. */
95 #define STARTFILE_SPEC "%{mmap1:m1_crt0.o%s} \
96 %{mmap2:m2_crt0.o%s} \
97 %{mmap3:m3_crt0.o%s} \
98 %{mmap4:m4_crt0.o%s} \
99 %{!mmap*: %{!ifile*: m4_crt0.o%s} %{ifile*: \
100 %ea -ifile option requires a -map option}}"
101
102 /* Specify the end file to link with */
103
104 #define ENDFILE_SPEC "%{mmap1:m1_crtn.o%s} \
105 %{mmap2:m2_crtn.o%s} \
106 %{mmap3:m3_crtn.o%s} \
107 %{mmap4:m4_crtn.o%s} \
108 %{!mmap*: %{!ifile*: m4_crtn.o%s} %{ifile*: \
109 %ea -ifile option requires a -map option}}"
110
111
112 /* Tell gcc where to look for the startfile */
113 /*#define STANDARD_STARTFILE_PREFIX "/d1600/lib"*/
114
115 /* Tell gcc where to look for it's executables */
116 /*#define STANDARD_EXEC_PREFIX "/d1600/bin"*/
117
118 /* Command line options to the AT&T assembler */
119 #define ASM_SPEC "%{V} %{v:%{!V:-V}} %{g*:-g}"
120
121 /* Command line options for the AT&T linker */
122
123 #define LINK_SPEC "%{V} %{v:%{!V:-V}} %{minit:-i} \
124 %{!ifile*:%{mmap1:m1_deflt.if%s} \
125 %{mmap2:m2_deflt.if%s} \
126 %{mmap3:m3_deflt.if%s} \
127 %{mmap4:m4_deflt.if%s} \
128 %{!mmap*:m4_deflt.if%s}} \
129 %{ifile*:%*} %{r}"
130
131 /* Include path is determined from the environment variable */
132 #define INCLUDE_DEFAULTS \
133 { \
134 { 0, 0, 0 } \
135 }
136
137 /* Names to predefine in the preprocessor for this target machine. */
138 #define TARGET_CPU_CPP_BUILTINS() \
139 do \
140 { \
141 builtin_define_std ("dsp1600"); \
142 builtin_define_std ("DSP1600"); \
143 } \
144 while (0)
145
146 #ifdef __MSDOS__
147 # define TARGET_OS_CPP_BUILTINS() \
148 do \
149 { \
150 builtin_define_std ("MSDOS"); \
151 } \
152 while (0)
153 #else
154 # define TARGET_OS_CPP_BUILTINS() \
155 do \
156 { \
157 builtin_define_std ("dsp1610"); \
158 builtin_define_std ("DSP1610"); \
159 } \
160 while (0)
161 #endif
162
163 /* Run-time compilation parameters selecting different hardware subsets. */
164
165 extern int target_flags;
166
167 /* Macros used in the machine description to test the flags. */
168
169 #define MASK_REGPARM 0x00000001 /* Pass parameters in registers */
170 #define MASK_NEAR_CALL 0x00000002 /* The call is on the same 4k page */
171 #define MASK_NEAR_JUMP 0x00000004 /* The jump is on the same 4k page */
172 #define MASK_BMU 0x00000008 /* Use the 'bmu' shift instructions */
173 #define MASK_MAP1 0x00000040 /* Link with map1 */
174 #define MASK_MAP2 0x00000080 /* Link with map2 */
175 #define MASK_MAP3 0x00000100 /* Link with map3 */
176 #define MASK_MAP4 0x00000200 /* Link with map4 */
177 #define MASK_YBASE_HIGH 0x00000400 /* The ybase register window starts high */
178 #define MASK_INIT 0x00000800 /* Have the linker generate tables to
179 initialize data at startup */
180 #define MASK_RESERVE_YBASE 0x00002000 /* Reserved the ybase registers */
181 #define MASK_DEBUG 0x00004000 /* Debugging turned on*/
182 #define MASK_SAVE_TEMPS 0x00008000 /* Save temps. option seen */
183
184 /* Compile passing first two args in regs 0 and 1.
185 This exists only to test compiler features that will
186 be needed for RISC chips. It is not usable
187 and is not intended to be usable on this cpu. */
188 #define TARGET_REGPARM (target_flags & MASK_REGPARM)
189
190 /* The call is on the same 4k page, so instead of loading
191 the 'pt' register and branching, we can branch directly */
192
193 #define TARGET_NEAR_CALL (target_flags & MASK_NEAR_CALL)
194
195 /* The jump is on the same 4k page, so instead of loading
196 the 'pt' register and branching, we can branch directly */
197
198 #define TARGET_NEAR_JUMP (target_flags & MASK_NEAR_JUMP)
199
200 /* Generate shift instructions to use the 1610 Bit Manipulation
201 Unit. */
202 #define TARGET_BMU (target_flags & MASK_BMU)
203
204 #define TARGET_YBASE_HIGH (target_flags & MASK_YBASE_HIGH)
205
206 /* Direct the linker to output extra info for initialized data */
207 #define TARGET_MASK_INIT (target_flags & MASK_INIT)
208
209 #define TARGET_INLINE_MULT (target_flags & MASK_INLINE_MULT)
210
211 /* Reserve the ybase registers *(0) - *(31) */
212 #define TARGET_RESERVE_YBASE (target_flags & MASK_RESERVE_YBASE)
213
214 /* We turn this option on internally after seeing "-g" */
215 #define TARGET_DEBUG (target_flags & MASK_DEBUG)
216
217 /* We turn this option on internally after seeing "-save-temps */
218 #define TARGET_SAVE_TEMPS (target_flags & MASK_SAVE_TEMPS)
219
220
221 /* Macro to define tables used to set the flags.
222 This is a list in braces of pairs in braces,
223 each pair being { "NAME", VALUE }
224 where VALUE is the bits to set or minus the bits to clear.
225 An empty string NAME is used to identify the default VALUE. */
226
227
228 #define TARGET_SWITCHES \
229 { \
230 { "regparm", MASK_REGPARM, \
231 N_("Pass parameters in registers (default)") }, \
232 { "no-regparm", -MASK_REGPARM, \
233 N_("Don't pass parameters in registers") }, \
234 { "near-call", MASK_NEAR_JUMP, \
235 N_("Generate code for near calls") }, \
236 { "no-near-call", -MASK_NEAR_CALL, \
237 N_("Don't generate code for near calls") }, \
238 { "near-jump", MASK_NEAR_JUMP, \
239 N_("Generate code for near jumps") }, \
240 { "no-near-jump", -MASK_NEAR_JUMP, \
241 N_("Don't generate code for near jumps") }, \
242 { "bmu", MASK_BMU, \
243 N_("Generate code for a bit-manipulation unit") }, \
244 { "no-bmu", -MASK_BMU, \
245 N_("Don't generate code for a bit-manipulation unit") }, \
246 { "map1", MASK_MAP1, \
247 N_("Generate code for memory map1") }, \
248 { "map2", MASK_MAP2, \
249 N_("Generate code for memory map2") }, \
250 { "map3", MASK_MAP3, \
251 N_("Generate code for memory map3") }, \
252 { "map4", MASK_MAP4, \
253 N_("Generate code for memory map4") }, \
254 { "init", MASK_INIT, \
255 N_("Ouput extra code for initialized data") }, \
256 { "reserve-ybase", MASK_RESERVE_YBASE, \
257 N_("Don't let reg. allocator use ybase registers") }, \
258 { "debug", MASK_DEBUG, \
259 N_("Output extra debug info in Luxworks environment") }, \
260 { "save-temporaries", MASK_SAVE_TEMPS, \
261 N_("Save temp. files in Luxworks environment") }, \
262 { "", TARGET_DEFAULT, ""} \
263 }
264
265 /* Default target_flags if no switches are specified */
266 #ifndef TARGET_DEFAULT
267 #define TARGET_DEFAULT MASK_REGPARM|MASK_YBASE_HIGH
268 #endif
269
270 #define TARGET_OPTIONS \
271 { \
272 { "text=", &text_seg_name, \
273 N_("Specify alternate name for text section") }, \
274 { "data=", &data_seg_name, \
275 N_("Specify alternate name for data section") }, \
276 { "bss=", &bss_seg_name, \
277 N_("Specify alternate name for bss section") }, \
278 { "const=", &const_seg_name, \
279 N_("Specify alternate name for constant section") }, \
280 { "chip=", &chip_name, \
281 N_("Specify alternate name for dsp16xx chip") }, \
282 }
283
284 /* Sometimes certain combinations of command options do not make sense
285 on a particular target machine. You can define a macro
286 `OVERRIDE_OPTIONS' to take account of this. This macro, if
287 defined, is executed once just after all the command options have
288 been parsed.
289
290 Don't use this macro to turn on various extra optimizations for
291 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
292
293 #define OVERRIDE_OPTIONS override_options ()
294
295 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
296 { \
297 flag_gnu_linker = FALSE; \
298 \
299 if (LEVEL >= 2) \
300 { \
301 /* The dsp16xx family has so few registers \
302 * that running the first instruction \
303 * scheduling is bad for reg. allocation \
304 * since it increases lifetimes of pseudos. \
305 * So turn of first scheduling pass. \
306 */ \
307 flag_schedule_insns = FALSE; \
308 } \
309 }
310 \f
311 /* STORAGE LAYOUT */
312
313 /* Define this if most significant bit is lowest numbered
314 in instructions that operate on numbered bit-fields.
315 */
316 #define BITS_BIG_ENDIAN 0
317
318 /* Define this if most significant byte of a word is the lowest numbered.
319 We define big-endian, but since the 1600 series cannot address bytes
320 it does not matter. */
321 #define BYTES_BIG_ENDIAN 1
322
323 /* Define this if most significant word of a multiword number is numbered.
324 For the 1600 we can decide arbitrarily since there are no machine instructions for them. */
325 #define WORDS_BIG_ENDIAN 1
326
327 /* number of bits in an addressable storage unit */
328 #define BITS_PER_UNIT 16
329
330 /* Maximum number of bits in a word. */
331 #define MAX_BITS_PER_WORD 16
332
333 /* Width of a word, in units (bytes). */
334 #define UNITS_PER_WORD 1
335
336 /* Allocation boundary (in *bits*) for storing pointers in memory. */
337 #define POINTER_BOUNDARY 16
338
339 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
340 #define PARM_BOUNDARY 16
341
342 /* Boundary (in *bits*) on which stack pointer should be aligned. */
343 #define STACK_BOUNDARY 16
344
345 /* Allocation boundary (in *bits*) for the code of a function. */
346 #define FUNCTION_BOUNDARY 16
347
348 /* Biggest alignment that any data type can require on this machine, in bits. */
349 #define BIGGEST_ALIGNMENT 16
350
351 /* Biggest alignment that any structure field can require on this machine, in bits */
352 #define BIGGEST_FIELD_ALIGNMENT 16
353
354 /* Alignment of field after `int : 0' in a structure. */
355 #define EMPTY_FIELD_BOUNDARY 16
356
357 /* Number of bits which any structure or union's size must be a multiple of. Each structure
358 or union's size is rounded up to a multiple of this */
359 #define STRUCTURE_SIZE_BOUNDARY 16
360
361 /* Define this if move instructions will actually fail to work
362 when given unaligned data. */
363 #define STRICT_ALIGNMENT 1
364
365 /* An integer expression for the size in bits of the largest integer machine mode that
366 should actually be used. All integer machine modes of this size or smaller can be
367 used for structures and unions with the appropriate sizes. */
368 #define MAX_FIXED_MODE_SIZE 32
369 \f
370 /* LAYOUT OF SOURCE LANGUAGE DATA TYPES */
371
372 #define SHORT_TYPE_SIZE 16
373 #define INT_TYPE_SIZE 16
374 #define LONG_TYPE_SIZE 32
375 #define LONG_LONG_TYPE_SIZE 32
376 #define FLOAT_TYPE_SIZE 32
377 #define DOUBLE_TYPE_SIZE 32
378 #define LONG_DOUBLE_TYPE_SIZE 32
379
380 /* An expression whose value is 1 or 0, according to whether the type char should be
381 signed or unsigned by default. */
382
383 #define DEFAULT_SIGNED_CHAR 1
384
385 /* A C expression to determine whether to give an enum type only as many bytes
386 as it takes to represent the range of possible values of that type. A nonzero
387 value means to do that; a zero value means all enum types should be allocated
388 like int. */
389
390 #define DEFAULT_SHORT_ENUMS 0
391
392 /* A C expression for a string describing the name of the data type to use for
393 size values. */
394
395 #define SIZE_TYPE "unsigned int"
396
397 /* A C expression for a string describing the name of the data type to use for the
398 result of subtracting two pointers */
399
400 #define PTRDIFF_TYPE "int"
401
402 \f
403 /* REGISTER USAGE. */
404
405 #define ALL_16_BIT_REGISTERS 1
406
407 /* Number of actual hardware registers.
408 The hardware registers are assigned numbers for the compiler
409 from 0 to FIRST_PSEUDO_REGISTER-1 */
410
411 #define FIRST_PSEUDO_REGISTER (REG_YBASE31 + 1)
412
413 /* 1 for registers that have pervasive standard uses
414 and are not available for the register allocator.
415
416 The registers are laid out as follows:
417
418 {a0,a0l,a1,a1l,x,y,yl,p,pl} - Data Arithmetic Unit
419 {r0,r1,r2,r3,j,k,ybase} - Y Space Address Arithmetic Unit
420 {pt} - X Space Address Arithmetic Unit
421 {ar0,ar1,ar2,ar3} - Bit Manipulation UNit
422 {pr} - Return Address Register
423
424 We reserve r2 for the Stack Pointer.
425 We specify r3 for the Frame Pointer but allow the compiler
426 to omit it when possible since we have so few pointer registers. */
427
428 #define REG_A0 0
429 #define REG_A0L 1
430 #define REG_A1 2
431 #define REG_A1L 3
432 #define REG_X 4
433 #define REG_Y 5
434 #define REG_YL 6
435 #define REG_PROD 7
436 #define REG_PRODL 8
437 #define REG_R0 9
438 #define REG_R1 10
439 #define REG_R2 11
440 #define REG_R3 12
441 #define REG_J 13
442 #define REG_K 14
443 #define REG_YBASE 15
444 #define REG_PT 16
445 #define REG_AR0 17
446 #define REG_AR1 18
447 #define REG_AR2 19
448 #define REG_AR3 20
449 #define REG_C0 21
450 #define REG_C1 22
451 #define REG_C2 23
452 #define REG_PR 24
453 #define REG_RB 25
454 #define REG_YBASE0 26
455 #define REG_YBASE1 27
456 #define REG_YBASE2 28
457 #define REG_YBASE3 29
458 #define REG_YBASE4 30
459 #define REG_YBASE5 31
460 #define REG_YBASE6 32
461 #define REG_YBASE7 33
462 #define REG_YBASE8 34
463 #define REG_YBASE9 35
464 #define REG_YBASE10 36
465 #define REG_YBASE11 37
466 #define REG_YBASE12 38
467 #define REG_YBASE13 39
468 #define REG_YBASE14 40
469 #define REG_YBASE15 41
470 #define REG_YBASE16 42
471 #define REG_YBASE17 43
472 #define REG_YBASE18 44
473 #define REG_YBASE19 45
474 #define REG_YBASE20 46
475 #define REG_YBASE21 47
476 #define REG_YBASE22 48
477 #define REG_YBASE23 49
478 #define REG_YBASE24 50
479 #define REG_YBASE25 51
480 #define REG_YBASE26 52
481 #define REG_YBASE27 53
482 #define REG_YBASE28 54
483 #define REG_YBASE29 55
484 #define REG_YBASE30 56
485 #define REG_YBASE31 57
486
487 /* Do we have an accumulator register? */
488 #define IS_ACCUM_REG(REGNO) IN_RANGE ((REGNO), REG_A0, REG_A1L)
489 #define IS_ACCUM_LOW_REG(REGNO) ((REGNO) == REG_A0L || (REGNO) == REG_A1L)
490
491 /* Do we have a virtual ybase register */
492 #define IS_YBASE_REGISTER_WINDOW(REGNO) ((REGNO) >= REG_YBASE0 && (REGNO) <= REG_YBASE31)
493
494 #define IS_YBASE_ELIGIBLE_REG(REGNO) (IS_ACCUM_REG (REGNO) || IS_ADDRESS_REGISTER(REGNO) \
495 || REGNO == REG_X || REGNO == REG_Y || REGNO == REG_YL \
496 || REGNO == REG_PROD || REGNO == REG_PRODL)
497
498 #define IS_ADDRESS_REGISTER(REGNO) ((REGNO) >= REG_R0 && (REGNO) <= REG_R3)
499
500 #define FIXED_REGISTERS \
501 {0, 0, 0, 0, 0, 0, 0, 0, 0, \
502 0, 0, 0, 1, 0, 0, 1, \
503 1, \
504 0, 0, 0, 0, \
505 1, 1, 1, \
506 1, 0, \
507 0, 0, 0, 0, 0, 0, 0, 0, \
508 0, 0, 0, 0, 0, 0, 0, 0, \
509 0, 0, 0, 0, 0, 0, 0, 0, \
510 0, 0, 0, 0, 0, 0, 0, 0}
511
512 /* 1 for registers not available across function calls.
513 These must include the FIXED_REGISTERS and also any
514 registers that can be used without being saved.
515 The latter must include the registers where values are returned
516 and the register where structure-value addresses are passed.
517 On the 1610 'a0' holds return values from functions. 'r0' holds
518 structure-value addresses.
519
520 In addition we don't save either j, k, ybase or any of the
521 bit manipulation registers. */
522
523
524 #define CALL_USED_REGISTERS \
525 {1, 1, 1, 1, 0, 1, 1, 1, 1, /* 0-8 */ \
526 1, 0, 0, 1, 1, 1, 1, /* 9-15 */ \
527 1, /* 16 */ \
528 0, 0, 1, 1, /* 17-20 */ \
529 1, 1, 1, /* 21-23 */ \
530 1, 1, /* 24-25 */ \
531 0, 0, 0, 0, 0, 0, 0, 0, /* 26-33 */ \
532 0, 0, 0, 0, 0, 0, 0, 0, /* 34-41 */ \
533 0, 0, 0, 0, 0, 0, 0, 0, /* 42-49 */ \
534 0, 0, 0, 0, 0, 0, 0, 0} /* 50-57 */
535
536 /* List the order in which to allocate registers. Each register must be
537 listed once, even those in FIXED_REGISTERS.
538
539 We allocate in the following order:
540 */
541
542 #if 0
543 #define REG_ALLOC_ORDER \
544 { REG_R0, REG_R1, REG_R2, REG_PROD, REG_Y, REG_X, \
545 REG_PRODL, REG_YL, REG_AR0, REG_AR1, \
546 REG_RB, REG_A0, REG_A1, REG_A0L, \
547 REG_A1L, REG_AR2, REG_AR3, \
548 REG_YBASE, REG_J, REG_K, REG_PR, REG_PT, REG_C0, \
549 REG_C1, REG_C2, REG_R3, \
550 REG_YBASE0, REG_YBASE1, REG_YBASE2, REG_YBASE3, \
551 REG_YBASE4, REG_YBASE5, REG_YBASE6, REG_YBASE7, \
552 REG_YBASE8, REG_YBASE9, REG_YBASE10, REG_YBASE11, \
553 REG_YBASE12, REG_YBASE13, REG_YBASE14, REG_YBASE15, \
554 REG_YBASE16, REG_YBASE17, REG_YBASE18, REG_YBASE19, \
555 REG_YBASE20, REG_YBASE21, REG_YBASE22, REG_YBASE23, \
556 REG_YBASE24, REG_YBASE25, REG_YBASE26, REG_YBASE27, \
557 REG_YBASE28, REG_YBASE29, REG_YBASE30, REG_YBASE31 }
558 #else
559 #define REG_ALLOC_ORDER \
560 { \
561 REG_A0, REG_A0L, REG_A1, REG_A1L, REG_Y, REG_YL, \
562 REG_PROD, \
563 REG_PRODL, REG_R0, REG_J, REG_K, REG_AR2, REG_AR3, \
564 REG_X, REG_R1, REG_R2, REG_RB, REG_AR0, REG_AR1, \
565 REG_YBASE0, REG_YBASE1, REG_YBASE2, REG_YBASE3, \
566 REG_YBASE4, REG_YBASE5, REG_YBASE6, REG_YBASE7, \
567 REG_YBASE8, REG_YBASE9, REG_YBASE10, REG_YBASE11, \
568 REG_YBASE12, REG_YBASE13, REG_YBASE14, REG_YBASE15, \
569 REG_YBASE16, REG_YBASE17, REG_YBASE18, REG_YBASE19, \
570 REG_YBASE20, REG_YBASE21, REG_YBASE22, REG_YBASE23, \
571 REG_YBASE24, REG_YBASE25, REG_YBASE26, REG_YBASE27, \
572 REG_YBASE28, REG_YBASE29, REG_YBASE30, REG_YBASE31, \
573 REG_R3, REG_YBASE, REG_PT, REG_C0, REG_C1, REG_C2, \
574 REG_PR }
575 #endif
576 /* Zero or more C statements that may conditionally modify two
577 variables `fixed_regs' and `call_used_regs' (both of type `char
578 []') after they have been initialized from the two preceding
579 macros.
580
581 This is necessary in case the fixed or call-clobbered registers
582 depend on target flags.
583
584 You need not define this macro if it has no work to do.
585
586 If the usage of an entire class of registers depends on the target
587 flags, you may indicate this to GCC by using this macro to modify
588 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
589 the classes which should not be used by GCC. Also define the macro
590 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
591 letter for a class that shouldn't be used.
592
593 (However, if this class is not included in `GENERAL_REGS' and all
594 of the insn patterns whose constraints permit this class are
595 controlled by target switches, then GCC will automatically avoid
596 using these registers when the target switches are opposed to
597 them.) If the user tells us there is no BMU, we can't use
598 ar0-ar3 for register allocation */
599
600 #define CONDITIONAL_REGISTER_USAGE \
601 do \
602 { \
603 if (!TARGET_BMU) \
604 { \
605 int regno; \
606 \
607 for (regno = REG_AR0; regno <= REG_AR3; regno++) \
608 fixed_regs[regno] = call_used_regs[regno] = 1; \
609 } \
610 if (TARGET_RESERVE_YBASE) \
611 { \
612 int regno; \
613 \
614 for (regno = REG_YBASE0; regno <= REG_YBASE31; regno++) \
615 fixed_regs[regno] = call_used_regs[regno] = 1; \
616 } \
617 } \
618 while (0)
619
620 /* Determine which register classes are very likely used by spill registers.
621 local-alloc.c won't allocate pseudos that have these classes as their
622 preferred class unless they are "preferred or nothing". */
623
624 #define CLASS_LIKELY_SPILLED_P(CLASS) \
625 ((CLASS) != ALL_REGS && (CLASS) != YBASE_VIRT_REGS)
626
627 /* Return number of consecutive hard regs needed starting at reg REGNO
628 to hold something of mode MODE.
629 This is ordinarily the length in words of a value of mode MODE
630 but can be less for certain modes in special long registers. */
631
632 #define HARD_REGNO_NREGS(REGNO, MODE) \
633 (GET_MODE_SIZE(MODE))
634
635 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
636
637 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok(REGNO, MODE)
638
639 /* Value is 1 if it is a good idea to tie two pseudo registers
640 when one has mode MODE1 and one has mode MODE2.
641 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
642 for any hard reg, then this must be 0 for correct output. */
643 #define MODES_TIEABLE_P(MODE1, MODE2) \
644 (((MODE1) == (MODE2)) || \
645 (GET_MODE_CLASS((MODE1)) == MODE_FLOAT) \
646 == (GET_MODE_CLASS((MODE2)) == MODE_FLOAT))
647
648 /* Specify the registers used for certain standard purposes.
649 The values of these macros are register numbers. */
650
651 /* DSP1600 pc isn't overloaded on a register. */
652 /* #define PC_REGNUM */
653
654 /* Register to use for pushing function arguments.
655 This is r3 in our case */
656 #define STACK_POINTER_REGNUM REG_R3
657
658 /* Base register for access to local variables of the function.
659 This is r2 in our case */
660 #define FRAME_POINTER_REGNUM REG_R2
661
662 /* We can debug without the frame pointer */
663 #define CAN_DEBUG_WITHOUT_FP 1
664
665 /* The 1610 saves the return address in this register */
666 #define RETURN_ADDRESS_REGNUM REG_PR
667
668 /* Base register for access to arguments of the function. */
669 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
670
671 /* Register in which static-chain is passed to a function. */
672
673 #define STATIC_CHAIN_REGNUM 4
674
675 /* Register in which address to store a structure value
676 is passed to a function. This is 'r0' in our case */
677 #define STRUCT_VALUE_REGNUM REG_R0
678 \f
679 /* Define the classes of registers for register constraints in the
680 machine description. Also define ranges of constants.
681
682 One of the classes must always be named ALL_REGS and include all hard regs.
683 If there is more than one class, another class must be named NO_REGS
684 and contain no registers.
685
686 The name GENERAL_REGS must be the name of a class (or an alias for
687 another name such as ALL_REGS). This is the class of registers
688 that is allowed by "g" or "r" in a register constraint.
689 Also, registers outside this class are allocated only when
690 instructions express preferences for them.
691
692 The classes must be numbered in nondecreasing order; that is,
693 a larger-numbered class must never be contained completely
694 in a smaller-numbered class.
695
696 For any two classes, it is very desirable that there be another
697 class that represents their union. */
698
699
700 enum reg_class
701 {
702 NO_REGS,
703 A0H_REG,
704 A0L_REG,
705 A0_REG,
706 A1H_REG,
707 ACCUM_HIGH_REGS,
708 A1L_REG,
709 ACCUM_LOW_REGS,
710 A1_REG,
711 ACCUM_REGS,
712 X_REG,
713 X_OR_ACCUM_LOW_REGS,
714 X_OR_ACCUM_REGS,
715 YH_REG,
716 YH_OR_ACCUM_HIGH_REGS,
717 X_OR_YH_REGS,
718 YL_REG,
719 YL_OR_ACCUM_LOW_REGS,
720 X_OR_YL_REGS,
721 X_OR_Y_REGS,
722 Y_REG,
723 ACCUM_OR_Y_REGS,
724 PH_REG,
725 X_OR_PH_REGS,
726 PL_REG,
727 PL_OR_ACCUM_LOW_REGS,
728 X_OR_PL_REGS,
729 YL_OR_PL_OR_ACCUM_LOW_REGS,
730 P_REG,
731 ACCUM_OR_P_REGS,
732 YL_OR_P_REGS,
733 ACCUM_LOW_OR_YL_OR_P_REGS,
734 Y_OR_P_REGS,
735 ACCUM_Y_OR_P_REGS,
736 NO_FRAME_Y_ADDR_REGS,
737 Y_ADDR_REGS,
738 ACCUM_LOW_OR_Y_ADDR_REGS,
739 ACCUM_OR_Y_ADDR_REGS,
740 X_OR_Y_ADDR_REGS,
741 Y_OR_Y_ADDR_REGS,
742 P_OR_Y_ADDR_REGS,
743 NON_HIGH_YBASE_ELIGIBLE_REGS,
744 YBASE_ELIGIBLE_REGS,
745 J_REG,
746 J_OR_DAU_16_BIT_REGS,
747 BMU_REGS,
748 NOHIGH_NON_ADDR_REGS,
749 NON_ADDR_REGS,
750 SLOW_MEM_LOAD_REGS,
751 NOHIGH_NON_YBASE_REGS,
752 NO_ACCUM_NON_YBASE_REGS,
753 NON_YBASE_REGS,
754 YBASE_VIRT_REGS,
755 ACCUM_LOW_OR_YBASE_REGS,
756 ACCUM_OR_YBASE_REGS,
757 X_OR_YBASE_REGS,
758 Y_OR_YBASE_REGS,
759 ACCUM_LOW_YL_PL_OR_YBASE_REGS,
760 P_OR_YBASE_REGS,
761 ACCUM_Y_P_OR_YBASE_REGS,
762 Y_ADDR_OR_YBASE_REGS,
763 YBASE_OR_NOHIGH_YBASE_ELIGIBLE_REGS,
764 YBASE_OR_YBASE_ELIGIBLE_REGS,
765 NO_HIGH_ALL_REGS,
766 ALL_REGS,
767 LIM_REG_CLASSES
768 };
769
770 /* GENERAL_REGS must be the name of a register class */
771 #define GENERAL_REGS ALL_REGS
772
773 #define N_REG_CLASSES (int) LIM_REG_CLASSES
774
775 /* Give names of register classes as strings for dump file. */
776
777 #define REG_CLASS_NAMES \
778 { \
779 "NO_REGS", \
780 "A0H_REG", \
781 "A0L_REG", \
782 "A0_REG", \
783 "A1H_REG", \
784 "ACCUM_HIGH_REGS", \
785 "A1L_REG", \
786 "ACCUM_LOW_REGS", \
787 "A1_REG", \
788 "ACCUM_REGS", \
789 "X_REG", \
790 "X_OR_ACCUM_LOW_REGS", \
791 "X_OR_ACCUM_REGS", \
792 "YH_REG", \
793 "YH_OR_ACCUM_HIGH_REGS", \
794 "X_OR_YH_REGS", \
795 "YL_REG", \
796 "YL_OR_ACCUM_LOW_REGS", \
797 "X_OR_YL_REGS", \
798 "X_OR_Y_REGS", \
799 "Y_REG", \
800 "ACCUM_OR_Y_REGS", \
801 "PH_REG", \
802 "X_OR_PH_REGS", \
803 "PL_REG", \
804 "PL_OR_ACCUM_LOW_REGS", \
805 "X_OR_PL_REGS", \
806 "PL_OR_YL_OR_ACCUM_LOW_REGS", \
807 "P_REG", \
808 "ACCUM_OR_P_REGS", \
809 "YL_OR_P_REGS", \
810 "ACCUM_LOW_OR_YL_OR_P_REGS", \
811 "Y_OR_P_REGS", \
812 "ACCUM_Y_OR_P_REGS", \
813 "NO_FRAME_Y_ADDR_REGS", \
814 "Y_ADDR_REGS", \
815 "ACCUM_LOW_OR_Y_ADDR_REGS", \
816 "ACCUM_OR_Y_ADDR_REGS", \
817 "X_OR_Y_ADDR_REGS", \
818 "Y_OR_Y_ADDR_REGS", \
819 "P_OR_Y_ADDR_REGS", \
820 "NON_HIGH_YBASE_ELIGIBLE_REGS", \
821 "YBASE_ELIGIBLE_REGS", \
822 "J_REG", \
823 "J_OR_DAU_16_BIT_REGS", \
824 "BMU_REGS", \
825 "NOHIGH_NON_ADDR_REGS", \
826 "NON_ADDR_REGS", \
827 "SLOW_MEM_LOAD_REGS", \
828 "NOHIGH_NON_YBASE_REGS", \
829 "NO_ACCUM_NON_YBASE_REGS", \
830 "NON_YBASE_REGS", \
831 "YBASE_VIRT_REGS", \
832 "ACCUM_LOW_OR_YBASE_REGS", \
833 "ACCUM_OR_YBASE_REGS", \
834 "X_OR_YBASE_REGS", \
835 "Y_OR_YBASE_REGS", \
836 "ACCUM_LOW_YL_PL_OR_YBASE_REGS", \
837 "P_OR_YBASE_REGS", \
838 "ACCUM_Y_P_OR_YBASE_REGS", \
839 "Y_ADDR_OR_YBASE_REGS", \
840 "YBASE_OR_NOHIGH_YBASE_ELIGIBLE_REGS", \
841 "YBASE_OR_YBASE_ELIGIBLE_REGS", \
842 "NO_HIGH_ALL_REGS", \
843 "ALL_REGS" \
844 }
845
846 /* Define which registers fit in which classes.
847 This is an initializer for a vector of HARD_REG_SET
848 of length N_REG_CLASSES. */
849
850 #define REG_CLASS_CONTENTS \
851 { \
852 {0x00000000, 0x00000000}, /* no reg */ \
853 {0x00000001, 0x00000000}, /* a0h */ \
854 {0x00000002, 0x00000000}, /* a0l */ \
855 {0x00000003, 0x00000000}, /* a0h:a0l */ \
856 {0x00000004, 0x00000000}, /* a1h */ \
857 {0x00000005, 0x00000000}, /* accum high */ \
858 {0x00000008, 0x00000000}, /* a1l */ \
859 {0x0000000A, 0x00000000}, /* accum low */ \
860 {0x0000000c, 0x00000000}, /* a1h:a1l */ \
861 {0x0000000f, 0x00000000}, /* accum regs */ \
862 {0x00000010, 0x00000000}, /* x reg */ \
863 {0x0000001A, 0x00000000}, /* x & accum_low_regs */ \
864 {0x0000001f, 0x00000000}, /* x & accum regs */ \
865 {0x00000020, 0x00000000}, /* y high */ \
866 {0x00000025, 0x00000000}, /* yh, accum high */ \
867 {0x00000030, 0x00000000}, /* x & yh */ \
868 {0x00000040, 0x00000000}, /* y low */ \
869 {0x0000004A, 0x00000000}, /* y low, accum_low */ \
870 {0x00000050, 0x00000000}, /* x & yl */ \
871 {0x00000060, 0x00000000}, /* yl:yh */ \
872 {0x00000070, 0x00000000}, /* x, yh,a nd yl */ \
873 {0x0000006F, 0x00000000}, /* accum, y */ \
874 {0x00000080, 0x00000000}, /* p high */ \
875 {0x00000090, 0x00000000}, /* x & ph */ \
876 {0x00000100, 0x00000000}, /* p low */ \
877 {0x0000010A, 0x00000000}, /* p_low and accum_low */ \
878 {0x00000110, 0x00000000}, /* x & pl */ \
879 {0x0000014A, 0x00000000}, /* pl,yl,a1l,a0l */ \
880 {0x00000180, 0x00000000}, /* pl:ph */ \
881 {0x0000018F, 0x00000000}, /* accum, p */ \
882 {0x000001C0, 0x00000000}, /* pl:ph and yl */ \
883 {0x000001CA, 0x00000000}, /* pl:ph, yl, a0l, a1l */ \
884 {0x000001E0, 0x00000000}, /* y or p */ \
885 {0x000001EF, 0x00000000}, /* accum, y or p */ \
886 {0x00000E00, 0x00000000}, /* r0-r2 */ \
887 {0x00001E00, 0x00000000}, /* r0-r3 */ \
888 {0x00001E0A, 0x00000000}, /* r0-r3, accum_low */ \
889 {0x00001E0F, 0x00000000}, /* accum,r0-r3 */ \
890 {0x00001E10, 0x00000000}, /* x,r0-r3 */ \
891 {0x00001E60, 0x00000000}, /* y,r0-r3 */ \
892 {0x00001F80, 0x00000000}, /* p,r0-r3 */ \
893 {0x00001FDA, 0x00000000}, /* ph:pl, r0-r3, x,a0l,a1l */ \
894 {0x00001fff, 0x00000000}, /* accum,x,y,p,r0-r3 */ \
895 {0x00002000, 0x00000000}, /* j */ \
896 {0x00002025, 0x00000000}, /* j, yh, a1h, a0h */ \
897 {0x001E0000, 0x00000000}, /* ar0-ar3 */ \
898 {0x03FFE1DA, 0x00000000}, /* non_addr except yh,a0h,a1h */ \
899 {0x03FFE1FF, 0x00000000}, /* non_addr regs */ \
900 {0x03FFFF8F, 0x00000000}, /* non ybase except yh, yl, and x */ \
901 {0x03FFFFDA, 0x00000000}, /* non ybase regs except yh,a0h,a1h */ \
902 {0x03FFFFF0, 0x00000000}, /* non ybase except a0,a0l,a1,a1l */ \
903 {0x03FFFFFF, 0x00000000}, /* non ybase regs */ \
904 {0xFC000000, 0x03FFFFFF}, /* virt ybase regs */ \
905 {0xFC00000A, 0x03FFFFFF}, /* accum_low, virt ybase regs */ \
906 {0xFC00000F, 0x03FFFFFF}, /* accum, virt ybase regs */ \
907 {0xFC000010, 0x03FFFFFF}, /* x,virt ybase regs */ \
908 {0xFC000060, 0x03FFFFFF}, /* y,virt ybase regs */ \
909 {0xFC00014A, 0x03FFFFFF}, /* accum_low, yl, pl, ybase */ \
910 {0xFC000180, 0x03FFFFFF}, /* p,virt ybase regs */ \
911 {0xFC0001EF, 0x03FFFFFF}, /* accum,y,p,ybase regs */ \
912 {0xFC001E00, 0x03FFFFFF}, /* r0-r3, ybase regs */ \
913 {0xFC001FDA, 0x03FFFFFF}, /* r0-r3, pl:ph,yl,x,a1l,a0l */ \
914 {0xFC001FFF, 0x03FFFFFF}, /* virt ybase, ybase eligible regs */ \
915 {0xFCFFFFDA, 0x03FFFFFF}, /* all regs except yh,a0h,a1h */ \
916 {0xFFFFFFFF, 0x03FFFFFF} /* all regs */ \
917 }
918
919
920 /* The same information, inverted:
921 Return the class number of the smallest class containing
922 reg number REGNO. This could be a conditional expression
923 or could index an array. */
924
925 #define REGNO_REG_CLASS(REGNO) regno_reg_class(REGNO)
926
927 /* The class value for index registers, and the one for base regs. */
928
929 #define INDEX_REG_CLASS NO_REGS
930 #define BASE_REG_CLASS Y_ADDR_REGS
931
932 /* Get reg_class from a letter such as appears in the machine description. */
933
934 #define REG_CLASS_FROM_LETTER(C) \
935 dsp16xx_reg_class_from_letter(C)
936
937 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
938 secondary_reload_class(CLASS, MODE, X)
939
940 /* When defined, the compiler allows registers explicitly used in the
941 rtl to be used as spill registers but prevents the compiler from
942 extending the lifetime of these registers. */
943
944 #define SMALL_REGISTER_CLASSES 1
945
946 /* Macros to check register numbers against specific register classes. */
947
948 /* These assume that REGNO is a hard or pseudo reg number.
949 They give nonzero only if REGNO is a hard reg of the suitable class
950 or a pseudo reg currently allocated to a suitable hard reg.
951 Since they use reg_renumber, they are safe only once reg_renumber
952 has been allocated, which happens in local-alloc.c. */
953
954 /* A C expression which is nonzero if register REGNO is suitable for use
955 as a base register in operand addresses. It may be either a suitable
956 hard register or a pseudo register that has been allocated such a
957 hard register.
958
959 On the 1610 the Y address pointers can be used as a base registers */
960 #define REGNO_OK_FOR_BASE_P(REGNO) \
961 (((REGNO) >= REG_R0 && (REGNO) < REG_R3 + 1) || ((unsigned) reg_renumber[REGNO] >= REG_R0 \
962 && (unsigned) reg_renumber[REGNO] < REG_R3 + 1))
963
964 #define REGNO_OK_FOR_YBASE_P(REGNO) \
965 (((REGNO) == REG_YBASE) || ((unsigned) reg_renumber[REGNO] == REG_YBASE))
966
967 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
968
969 #ifdef ALL_16_BIT_REGISTERS
970 #define IS_32_BIT_REG(REGNO) 0
971 #else
972 #define IS_32_BIT_REG(REGNO) \
973 ((REGNO) == REG_A0 || (REGNO) == REG_A1 || (REGNO) == REG_Y || (REGNO) == REG_PROD)
974 #endif
975
976 /* Given an rtx X being reloaded into a reg required to be
977 in class CLASS, return the class of reg to actually use.
978 In general this is just CLASS; but on some machines
979 in some cases it is preferable to use a more restrictive class.
980 Also, we must ensure that a PLUS is reloaded either
981 into an accumulator or an address register. */
982
983 #define PREFERRED_RELOAD_CLASS(X,CLASS) preferred_reload_class (X, CLASS)
984
985 /* A C expression that places additional restrictions on the register
986 class to use when it is necessary to be able to hold a value of
987 mode MODE in a reload register for which class CLASS would
988 ordinarily be used.
989
990 Unlike `PREFERRED_RELOAD_CLASS', this macro should be used when
991 there are certain modes that simply can't go in certain reload
992 classes.
993
994 The value is a register class; perhaps CLASS, or perhaps another,
995 smaller class.
996
997 Don't define this macro unless the target machine has limitations
998 which require the macro to do something nontrivial. */
999
1000 #if 0
1001 #define LIMIT_RELOAD_CLASS(MODE, CLASS) dsp16xx_limit_reload_class (MODE, CLASS)
1002 #endif
1003
1004 /* A C expression for the maximum number of consecutive registers of class CLASS
1005 needed to hold a value of mode MODE */
1006 #define CLASS_MAX_NREGS(CLASS, MODE) \
1007 class_max_nregs(CLASS, MODE)
1008
1009 /* The letters 'I' through 'P' in a register constraint string
1010 can be used to stand for particular ranges of immediate operands.
1011 This macro defines what the ranges are.
1012 C is the letter, and VALUE is a constant value.
1013 Return 1 if VALUE is in the range specified by C.
1014
1015 For the 16xx, the following constraints are used:
1016 'I' requires a non-negative 16-bit value.
1017 'J' requires a non-negative 9-bit value
1018 'K' requires a constant 0 operand.
1019 'L' constant for use in add or sub from low 16-bits
1020 'M' 32-bit value -- low 16-bits zero
1021 'N' constant for use incrementing or decrementing an address register
1022 'O' constant for use with and'ing only high 16-bit
1023 'P' constant for use with and'ing only low 16-bit
1024 */
1025
1026 #define SMALL_INT(X) (SMALL_INTVAL (INTVAL (X)))
1027 #define SMALL_INTVAL(I) ((unsigned) (I) < 0x10000)
1028 #define SHORT_IMMEDIATE(X) (SHORT_INTVAL (INTVAL(X)))
1029 #define SHORT_INTVAL(I) ((unsigned) (I) < 0x100)
1030 #define ADD_LOW_16(I) ((I) >= 0 && (I) <= 32767)
1031 #define ADD_HIGH_16(I) (((I) & 0x0000ffff) == 0)
1032 #define AND_LOW_16(I) ((I) >= 0 && (I) <= 32767)
1033 #define AND_HIGH_16(I) (((I) & 0x0000ffff) == 0)
1034
1035 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1036 ((C) == 'I' ? (SMALL_INTVAL(VALUE)) \
1037 : (C) == 'J' ? (SHORT_INTVAL(VALUE)) \
1038 : (C) == 'K' ? ((VALUE) == 0) \
1039 : (C) == 'L' ? ((VALUE) >= 0 && (VALUE) <= 32767) \
1040 : (C) == 'M' ? (((VALUE) & 0x0000ffff) == 0) \
1041 : (C) == 'N' ? ((VALUE) == -1 || (VALUE) == 1 \
1042 || (VALUE) == -2 || (VALUE) == 2) \
1043 : (C) == 'O' ? (((VALUE) & 0xffff0000) == 0xffff0000) \
1044 : (C) == 'P' ? (((VALUE) & 0x0000ffff) == 0xffff) \
1045 : 0)
1046
1047 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
1048
1049 /* Optional extra constraints for this machine */
1050 #define EXTRA_CONSTRAINT(OP,C) \
1051 ((C) == 'R' ? symbolic_address_p (OP) \
1052 : 0)
1053 \f
1054 /* DESCRIBING STACK LAYOUT AND CALLING CONVENTIONS */
1055
1056 /* Define this if pushing a word on the stack
1057 makes the stack pointer a smaller address. */
1058 /* #define STACK_GROWS_DOWNWARD */
1059
1060 /* Define this if the nominal address of the stack frame
1061 is at the high-address end of the local variables;
1062 that is, each additional local variable allocated
1063 goes at a more negative offset in the frame. */
1064 /* #define FRAME_GROWS_DOWNWARD */
1065
1066 #define ARGS_GROW_DOWNWARD
1067
1068 /* We use post decrement on the 1600 because there isn't
1069 a pre-decrement addressing mode. This means that we
1070 assume the stack pointer always points at the next
1071 FREE location on the stack. */
1072 #define STACK_PUSH_CODE POST_INC
1073
1074 /* Offset within stack frame to start allocating local variables at.
1075 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1076 first local allocated. Otherwise, it is the offset to the BEGINNING
1077 of the first local allocated. */
1078 #define STARTING_FRAME_OFFSET 0
1079
1080 /* Offset from the stack pointer register to the first
1081 location at which outgoing arguments are placed. */
1082 #define STACK_POINTER_OFFSET (0)
1083
1084 struct dsp16xx_frame_info
1085 {
1086 unsigned long total_size; /* # bytes that the entire frame takes up */
1087 unsigned long var_size; /* # bytes that variables take up */
1088 unsigned long args_size; /* # bytes that outgoing arguments take up */
1089 unsigned long extra_size; /* # bytes of extra gunk */
1090 unsigned int reg_size; /* # bytes needed to store regs */
1091 long fp_save_offset; /* offset from vfp to store registers */
1092 unsigned long sp_save_offset; /* offset from new sp to store registers */
1093 int pr_save_offset; /* offset to saved PR */
1094 int initialized; /* != 0 if frame size already calculated */
1095 int num_regs; /* number of registers saved */
1096 int function_makes_calls; /* Does the function make calls */
1097 };
1098
1099 extern struct dsp16xx_frame_info current_frame_info;
1100
1101 #define RETURN_ADDR_OFF current_frame_info.pr_save_offset
1102
1103 /* If we generate an insn to push BYTES bytes,
1104 this says how many the stack pointer really advances by. */
1105 /* #define PUSH_ROUNDING(BYTES) ((BYTES)) */
1106
1107 /* If defined, the maximum amount of space required for outgoing
1108 arguments will be computed and placed into the variable
1109 'current_function_outgoing_args_size'. No space will be pushed
1110 onto the stack for each call; instead, the function prologue should
1111 increase the stack frame size by this amount.
1112
1113 It is not proper to define both 'PUSH_ROUNDING' and
1114 'ACCUMULATE_OUTGOING_ARGS'. */
1115 #define ACCUMULATE_OUTGOING_ARGS 1
1116
1117 /* Offset of first parameter from the argument pointer
1118 register value. */
1119
1120 #define FIRST_PARM_OFFSET(FNDECL) (0)
1121
1122 /* Value is 1 if returning from a function call automatically
1123 pops the arguments described by the number-of-args field in the call.
1124 FUNDECL is the declaration node of the function (as a tree),
1125 FUNTYPE is the data type of the function (as a tree),
1126 or for a library call it is an identifier node for the subroutine name. */
1127
1128 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1129
1130 /* Define how to find the value returned by a function.
1131 VALTYPE is the data type of the value (as a tree).
1132 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1133 otherwise, FUNC is 0. On the 1610 all function return their values
1134 in a0 (i.e. the upper 16 bits). If the return value is 32-bits the
1135 entire register is significant. */
1136
1137 #define VALUE_REGNO(MODE) (REG_Y)
1138
1139 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1140 gen_rtx_REG (TYPE_MODE (VALTYPE), VALUE_REGNO(TYPE_MODE(VALTYPE)))
1141
1142 /* Define how to find the value returned by a library function
1143 assuming the value has mode MODE. */
1144 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
1145
1146 /* 1 if N is a possible register number for a function value. */
1147 #define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_Y)
1148 \f
1149
1150 /* Define where to put the arguments to a function.
1151 Value is zero to push the argument on the stack,
1152 or a hard register in which to store the argument.
1153
1154 MODE is the argument's machine mode.
1155 TYPE is the data type of the argument (as a tree).
1156 This is null for libcalls where that information may
1157 not be available.
1158 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1159 the preceding args and about the function being called.
1160 NAMED is nonzero if this argument is a named parameter
1161 (otherwise it is an extra parameter matching an ellipsis). */
1162
1163 /* On the 1610 all args are pushed, except if -mregparm is specified
1164 then the first two words of arguments are passed in a0, a1. */
1165 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1166 dsp16xx_function_arg (CUM, MODE, TYPE, NAMED)
1167
1168 /* Define the first register to be used for argument passing */
1169 #define FIRST_REG_FOR_FUNCTION_ARG REG_Y
1170
1171 /* Define the profitability of saving registers around calls.
1172 NOTE: For now we turn this off because of a bug in the
1173 caller-saves code and also because i'm not sure it is helpful
1174 on the 1610. */
1175
1176 #define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
1177
1178 /* This indicates that an argument is to be passed with an invisible reference
1179 (i.e., a pointer to the object is passed).
1180
1181 On the dsp16xx, we do this if it must be passed on the stack. */
1182
1183 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1184 (MUST_PASS_IN_STACK (MODE, TYPE))
1185
1186 /* For an arg passed partly in registers and partly in memory,
1187 this is the number of registers used.
1188 For args passed entirely in registers or entirely in memory, zero. */
1189
1190 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0)
1191
1192 /* Define a data type for recording info about an argument list
1193 during the scan of that argument list. This data type should
1194 hold all necessary information about the function itself
1195 and about the args processed so far, enough to enable macros
1196 such as FUNCTION_ARG to determine where the next arg should go. */
1197 #define CUMULATIVE_ARGS int
1198
1199 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1200 for a call to a function whose data type is FNTYPE.
1201 For a library call, FNTYPE is 0. */
1202 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) ((CUM) = 0)
1203
1204 /* Update the data in CUM to advance over an argument
1205 of mode MODE and data type TYPE.
1206 (TYPE is null for libcalls where that information may not be available.) */
1207
1208 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1209 dsp16xx_function_arg_advance (&CUM, MODE,TYPE, NAMED)
1210
1211 /* 1 if N is a possible register number for function argument passing. */
1212 #define FUNCTION_ARG_REGNO_P(N) \
1213 ((N) == REG_Y || (N) == REG_YL || (N) == REG_PROD || (N) == REG_PRODL)
1214
1215 /* Output assembler code to FILE to increment profiler label # LABELNO
1216 for profiling a function entry. */
1217
1218 #define FUNCTION_PROFILER(FILE, LABELNO) \
1219 internal_error ("profiling not implemented yet")
1220
1221 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1222 the stack pointer does not matter. The value is tested only in
1223 functions that have frame pointers.
1224 No definition is equivalent to always zero. */
1225
1226 #define EXIT_IGNORE_STACK (0)
1227
1228 #define TRAMPOLINE_TEMPLATE(FILE) \
1229 internal_error ("trampolines not yet implemented");
1230
1231 /* Length in units of the trampoline for entering a nested function.
1232 This is a dummy value */
1233
1234 #define TRAMPOLINE_SIZE 20
1235
1236 /* Emit RTL insns to initialize the variable parts of a trampoline.
1237 FNADDR is an RTX for the address of the function's pure code.
1238 CXT is an RTX for the static chain value for the function. */
1239
1240 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1241 internal_error ("trampolines not yet implemented");
1242
1243 /* A C expression which is nonzero if a function must have and use a
1244 frame pointer. If its value is nonzero the functions will have a
1245 frame pointer. */
1246 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1247
1248 /* A C statement to store in the variable 'DEPTH' the difference
1249 between the frame pointer and the stack pointer values immediately
1250 after the function prologue. */
1251 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
1252 { (DEPTH) = initial_frame_pointer_offset(); \
1253 }
1254 \f
1255 /* IMPLICIT CALLS TO LIBRARY ROUTINES */
1256
1257 #define ADDHF3_LIBCALL "__Emulate_addhf3"
1258 #define SUBHF3_LIBCALL "__Emulate_subhf3"
1259 #define MULHF3_LIBCALL "__Emulate_mulhf3"
1260 #define DIVHF3_LIBCALL "__Emulate_divhf3"
1261 #define CMPHF3_LIBCALL "__Emulate_cmphf3"
1262 #define FIXHFHI2_LIBCALL "__Emulate_fixhfhi2"
1263 #define FLOATHIHF2_LIBCALL "__Emulate_floathihf2"
1264 #define NEGHF2_LIBCALL "__Emulate_neghf2"
1265
1266 #define UMULHI3_LIBCALL "__Emulate_umulhi3"
1267 #define MULHI3_LIBCALL "__Emulate_mulhi3"
1268 #define UDIVQI3_LIBCALL "__Emulate_udivqi3"
1269 #define UDIVHI3_LIBCALL "__Emulate_udivhi3"
1270 #define DIVQI3_LIBCALL "__Emulate_divqi3"
1271 #define DIVHI3_LIBCALL "__Emulate_divhi3"
1272 #define MODQI3_LIBCALL "__Emulate_modqi3"
1273 #define MODHI3_LIBCALL "__Emulate_modhi3"
1274 #define UMODQI3_LIBCALL "__Emulate_umodqi3"
1275 #define UMODHI3_LIBCALL "__Emulate_umodhi3"
1276 #define ASHRHI3_LIBCALL "__Emulate_ashrhi3"
1277 #define LSHRHI3_LIBCALL "__Emulate_lshrhi3"
1278 #define ASHLHI3_LIBCALL "__Emulate_ashlhi3"
1279 #define LSHLHI3_LIBCALL "__Emulate_lshlhi3" /* NOT USED */
1280
1281 /* Define this macro if calls to the ANSI C library functions memcpy and
1282 memset should be generated instead of the BSD function bcopy & bzero. */
1283 #define TARGET_MEM_FUNCTIONS
1284
1285 \f
1286 /* ADDRESSING MODES */
1287
1288 /* The 1610 has post-increment and decrement, but no pre-modify */
1289 #define HAVE_POST_INCREMENT 1
1290 #define HAVE_POST_DECREMENT 1
1291
1292 /* #define HAVE_PRE_DECREMENT 0 */
1293 /* #define HAVE_PRE_INCREMENT 0 */
1294
1295 /* Recognize any constant value that is a valid address. */
1296 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
1297
1298 /* Maximum number of registers that can appear in a valid memory address. */
1299 #define MAX_REGS_PER_ADDRESS 1
1300
1301 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1302 and check its validity for a certain class.
1303 We have two alternate definitions for each of them.
1304 The usual definition accepts all pseudo regs; the other rejects
1305 them unless they have been allocated suitable hard regs.
1306 The symbol REG_OK_STRICT causes the latter definition to be used.
1307
1308 Most source files want to accept pseudo regs in the hope that
1309 they will get allocated to the class that the insn wants them to be in.
1310 Source files for reload pass need to be strict.
1311 After reload, it makes no difference, since pseudo regs have
1312 been eliminated by then. */
1313
1314 #ifndef REG_OK_STRICT
1315
1316 /* Nonzero if X is a hard reg that can be used as an index
1317 or if it is a pseudo reg. */
1318 #define REG_OK_FOR_INDEX_P(X) 0
1319
1320 /* Nonzero if X is a hard reg that can be used as a base reg
1321 or if it is a pseudo reg. */
1322 #define REG_OK_FOR_BASE_P(X) \
1323 ((REGNO (X) >= REG_R0 && REGNO (X) < REG_R3 + 1 ) \
1324 || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1325
1326 /* Nonzero if X is the 'ybase' register */
1327 #define REG_OK_FOR_YBASE_P(X) \
1328 (REGNO(X) == REG_YBASE || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1329 #else
1330
1331 /* Nonzero if X is a hard reg that can be used as an index. */
1332 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1333
1334 /* Nonzero if X is a hard reg that can be used as a base reg. */
1335 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1336
1337 /* Nonzero if X is the 'ybase' register */
1338 #define REG_OK_FOR_YBASE_P(X) REGNO_OK_FOR_YBASE_P (REGNO(X))
1339
1340 #endif
1341 \f
1342 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1343 that is a valid memory address for an instruction.
1344 The MODE argument is the machine mode for the MEM expression
1345 that wants to use this address.
1346
1347 On the 1610, the actual legitimate addresses must be N (N must fit in
1348 5 bits), *rn (register indirect), *rn++, or *rn-- */
1349
1350 #define INT_FITS_5_BITS(I) ((unsigned long) (I) < 0x20)
1351 #define INT_FITS_16_BITS(I) ((unsigned long) (I) < 0x10000)
1352 #define YBASE_CONST_OFFSET(I) ((I) >= -31 && (I) <= 0)
1353 #define YBASE_OFFSET(X) (GET_CODE (X) == CONST_INT && YBASE_CONST_OFFSET (INTVAL(X)))
1354
1355 #define FITS_16_BITS(X) (GET_CODE (X) == CONST_INT && INT_FITS_16_BITS(INTVAL(X)))
1356 #define FITS_5_BITS(X) (GET_CODE (X) == CONST_INT && INT_FITS_5_BITS(INTVAL(X)))
1357 #define ILLEGAL_HIMODE_ADDR(MODE, CONST) ((MODE) == HImode && CONST == -31)
1358
1359 #define INDIRECTABLE_ADDRESS_P(X) \
1360 ((GET_CODE(X) == REG && REG_OK_FOR_BASE_P(X)) \
1361 || ((GET_CODE(X) == POST_DEC || GET_CODE(X) == POST_INC) \
1362 && REG_P(XEXP(X,0)) && REG_OK_FOR_BASE_P(XEXP(X,0))) \
1363 || (GET_CODE(X) == CONST_INT && (unsigned long) (X) < 0x20))
1364
1365
1366 #define INDEXABLE_ADDRESS_P(X,MODE) \
1367 ((GET_CODE(X) == PLUS && GET_CODE (XEXP (X,0)) == REG && \
1368 XEXP(X,0) == stack_pointer_rtx && YBASE_OFFSET(XEXP(X,1)) && \
1369 !ILLEGAL_HIMODE_ADDR(MODE, INTVAL(XEXP(X,1)))) || \
1370 (GET_CODE(X) == PLUS && GET_CODE (XEXP (X,1)) == REG && \
1371 XEXP(X,1) == stack_pointer_rtx && YBASE_OFFSET(XEXP(X,0)) && \
1372 !ILLEGAL_HIMODE_ADDR(MODE, INTVAL(XEXP(X,0)))))
1373
1374 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1375 { \
1376 if (INDIRECTABLE_ADDRESS_P(X)) \
1377 goto ADDR; \
1378 }
1379
1380 \f
1381 /* Try machine-dependent ways of modifying an illegitimate address
1382 to be legitimate. If we find one, return the new, valid address.
1383 This macro is used in only one place: `memory_address' in explow.c.
1384
1385 OLDX is the address as it was before break_out_memory_refs was called.
1386 In some cases it is useful to look at this to decide what needs to be done.
1387
1388 MODE and WIN are passed so that this macro can use
1389 GO_IF_LEGITIMATE_ADDRESS.
1390
1391 It is always safe for this macro to do nothing. It exists to recognize
1392 opportunities to optimize the output.
1393
1394 For the 1610, we need not do anything. However, if we don't,
1395 `memory_address' will try lots of things to get a valid address, most of
1396 which will result in dead code and extra pseudos. So we make the address
1397 valid here.
1398
1399 This is easy: The only valid addresses are an offset from a register
1400 and we know the address isn't valid. So just call either `force_operand'
1401 or `force_reg' unless this is a (plus (reg ...) (const_int 0)). */
1402
1403 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1404 { if (GET_CODE (X) == PLUS && XEXP (X, 1) == const0_rtx) \
1405 X = XEXP (x, 0); \
1406 if (GET_CODE (X) == MULT || GET_CODE (X) == PLUS) \
1407 X = force_operand (X, 0); \
1408 else \
1409 X = force_reg (Pmode, X); \
1410 goto WIN; \
1411 }
1412
1413 /* Go to LABEL if ADDR (a legitimate address expression)
1414 has an effect that depends on the machine mode it is used for.
1415 On the 1610, only postdecrement and postincrement address depend thus
1416 (the amount of decrement or increment being the length of the operand). */
1417
1418 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1419 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
1420
1421 /* Nonzero if the constant value X is a legitimate general operand.
1422 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1423 #define LEGITIMATE_CONSTANT_P(X) (1)
1424
1425 \f
1426 /* CONDITION CODE INFORMATION */
1427
1428 /* Store in cc_status the expressions
1429 that the condition codes will describe
1430 after execution of an instruction whose pattern is EXP.
1431 Do not alter them if the instruction would not alter the cc's. */
1432
1433 #define NOTICE_UPDATE_CC(EXP, INSN) \
1434 notice_update_cc( (EXP) )
1435 \f
1436 /* DESCRIBING RELATIVE COSTS OF OPERATIONS */
1437
1438 /* Compute the cost of computing a constant rtl expression RTX
1439 whose rtx-code is CODE. The body of this macro is a portion
1440 of a switch statement. If the code is computed here,
1441 return it with a return statement. */
1442 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1443 case CONST_INT: \
1444 return (unsigned) INTVAL (RTX) < 65536 ? 0 : 2; \
1445 case LABEL_REF: \
1446 case SYMBOL_REF: \
1447 case CONST: \
1448 return COSTS_N_INSNS (1); \
1449 \
1450 case CONST_DOUBLE: \
1451 return COSTS_N_INSNS (2);
1452
1453 /* Like CONST_COSTS but applies to nonconstant RTL expressions.
1454 This can be used, for example to indicate how costly a multiply
1455 instruction is. */
1456 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1457 case MEM: \
1458 return GET_MODE (X) == QImode ? COSTS_N_INSNS (2) : \
1459 COSTS_N_INSNS (4); \
1460 case DIV: \
1461 case MOD: \
1462 return COSTS_N_INSNS (38); \
1463 case MULT: \
1464 if (GET_MODE (X) == QImode) \
1465 return COSTS_N_INSNS (2); \
1466 else \
1467 return COSTS_N_INSNS (38); \
1468 case PLUS: \
1469 case MINUS: \
1470 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1471 { \
1472 return (1 + \
1473 rtx_cost (XEXP (X, 0), CODE) + \
1474 rtx_cost (XEXP (X, 1), CODE)); \
1475 } \
1476 else \
1477 return COSTS_N_INSNS (38); \
1478 \
1479 case AND: case IOR: case XOR: \
1480 return (1 + \
1481 rtx_cost (XEXP (X, 0), CODE) + \
1482 rtx_cost (XEXP (X, 1), CODE)); \
1483 \
1484 case NEG: case NOT: \
1485 return COSTS_N_INSNS (1); \
1486 case ASHIFT: \
1487 case ASHIFTRT: \
1488 case LSHIFTRT: \
1489 if (GET_CODE (XEXP (X,1)) == CONST_INT) \
1490 { \
1491 int number = INTVAL(XEXP (X,1)); \
1492 if (number == 1 || number == 4 || number == 8 || \
1493 number == 16) \
1494 return COSTS_N_INSNS (1); \
1495 else \
1496 { \
1497 if (TARGET_BMU) \
1498 return COSTS_N_INSNS (2); \
1499 else \
1500 return COSTS_N_INSNS (num_1600_core_shifts(number)); \
1501 } \
1502 } \
1503 if (TARGET_BMU) \
1504 return COSTS_N_INSNS (1); \
1505 else \
1506 return COSTS_N_INSNS (15);
1507
1508 /* An expression giving the cost of an addressing mode that contains
1509 address. */
1510 #define ADDRESS_COST(ADDR) dsp16xx_address_cost (ADDR)
1511
1512 /* A c expression for the cost of moving data from a register in
1513 class FROM to one in class TO. The classes are expressed using
1514 the enumeration values such as GENERAL_REGS. A value of 2 is
1515 the default. */
1516 #define REGISTER_MOVE_COST(MODE,FROM,TO) dsp16xx_register_move_cost (FROM, TO)
1517
1518 /* A C expression for the cost of moving data of mode MODE between
1519 a register and memory. A value of 2 is the default. */
1520 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1521 (GET_MODE_CLASS(MODE) == MODE_INT && MODE == QImode ? 12 \
1522 : 16)
1523
1524 /* A C expression for the cost of a branch instruction. A value of
1525 1 is the default; */
1526 #define BRANCH_COST 1
1527 \f
1528
1529 /* Define this because otherwise gcc will try to put the function address
1530 in any old pseudo register. We can only use pt. */
1531 #define NO_FUNCTION_CSE
1532
1533 /* Define this macro as a C expression which is nonzero if accessing less
1534 than a word of memory (i.e a char or short) is no faster than accessing
1535 a word of memory, i.e if such access require more than one instruction
1536 or if ther is no difference in cost between byte and (aligned) word
1537 loads. */
1538 #define SLOW_BYTE_ACCESS 1
1539
1540 /* Define this macro if unaligned accesses have a cost many times greater than
1541 aligned accesses, for example if they are emulated in a trap handler */
1542 /* define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) */
1543
1544 /* Define this macro to inhibit strength reduction of memory addresses */
1545 /* #define DONT_REDUCE_ADDR */
1546
1547 \f
1548 /* DIVIDING THE OUTPUT IN SECTIONS */
1549 /* Output before read-only data. */
1550
1551 #define DEFAULT_TEXT_SEG_NAME ".text"
1552 #define TEXT_SECTION_ASM_OP rsect_text
1553
1554 /* Output before constants and strings */
1555 #define DEFAULT_CONST_SEG_NAME ".const"
1556 #define READONLY_DATA_SECTION_ASM_OP rsect_const
1557
1558 /* Output before writable data. */
1559 #define DEFAULT_DATA_SEG_NAME ".data"
1560 #define DATA_SECTION_ASM_OP rsect_data
1561
1562 #define DEFAULT_BSS_SEG_NAME ".bss"
1563 #define BSS_SECTION_ASM_OP rsect_bss
1564
1565 /* We will default to using 1610 if the user doesn't
1566 specify it. */
1567 #define DEFAULT_CHIP_NAME "1610"
1568 \f
1569 /* THE OVERALL FRAMEWORK OF AN ASSEMBLER FILE */
1570
1571 /* Output at beginning of assembler file. */
1572 #define ASM_FILE_START(FILE) coff_dsp16xx_file_start (FILE)
1573
1574 /* A C string constant describing how to begin a comment in the target
1575 assembler language. */
1576 #define ASM_COMMENT_START ""
1577 #define ASM_COMMENT_END ""
1578
1579 /* Output to assembler file text saying following lines
1580 may contain character constants, extra white space, comments, etc. */
1581 #define ASM_APP_ON ""
1582
1583 /* Output to assembler file text saying following lines
1584 no longer contain unusual constructs. */
1585 #define ASM_APP_OFF ""
1586 \f
1587 /* OUTPUT OF DATA */
1588
1589 /* This is how we output a 'c' character string. For the 16xx
1590 assembler we have to do it one letter at a time */
1591
1592 #define ASCII_LENGTH 10
1593
1594 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1595 do { \
1596 FILE *_hide_asm_out_file = (MYFILE); \
1597 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
1598 int _hide_thissize = (MYLENGTH); \
1599 { \
1600 FILE *asm_out_file = _hide_asm_out_file; \
1601 const unsigned char *p = _hide_p; \
1602 int thissize = _hide_thissize; \
1603 int i; \
1604 \
1605 for (i = 0; i < thissize; i++) \
1606 { \
1607 register int c = p[i]; \
1608 \
1609 if (i % ASCII_LENGTH == 0) \
1610 fprintf (asm_out_file, "\tint "); \
1611 \
1612 if (c >= ' ' && c < 0177 && c != '\'') \
1613 { \
1614 putc ('\'', asm_out_file); \
1615 putc (c, asm_out_file); \
1616 putc ('\'', asm_out_file); \
1617 } \
1618 else \
1619 { \
1620 fprintf (asm_out_file, "%d", c); \
1621 /* After an octal-escape, if a digit follows, \
1622 terminate one string constant and start another. \
1623 The Vax assembler fails to stop reading the escape \
1624 after three digits, so this is the only way we \
1625 can get it to parse the data properly. \
1626 if (i < thissize - 1 && ISDIGIT (p[i + 1])) \
1627 fprintf (asm_out_file, "\'\n\tint \'"); \
1628 */ \
1629 } \
1630 /* if: \
1631 we are not at the last char (i != thissize -1) \
1632 and (we are not at a line break multiple \
1633 but i == 0) (it will be the very first time) \
1634 then put out a comma to extend. \
1635 */ \
1636 if ((i != thissize - 1) && ((i + 1) % ASCII_LENGTH)) \
1637 fprintf(asm_out_file, ","); \
1638 if (!((i + 1) % ASCII_LENGTH)) \
1639 fprintf (asm_out_file, "\n"); \
1640 } \
1641 fprintf (asm_out_file, "\n"); \
1642 } \
1643 } \
1644 while (0)
1645
1646 /* Store in OUTPUT a string (made with alloca) containing
1647 an assembler-name for a local static variable or function
1648 named NAME. LABELNO is an integer which is different for
1649 each call. */
1650
1651 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1652 do { \
1653 int len = strlen (NAME); \
1654 char *temp = (char *) alloca (len + 3); \
1655 temp[0] = 'L'; \
1656 strcpy (&temp[1], (NAME)); \
1657 temp[len + 1] = '_'; \
1658 temp[len + 2] = 0; \
1659 (OUTPUT) = (char *) alloca (strlen (NAME) + 11); \
1660 ASM_GENERATE_INTERNAL_LABEL (OUTPUT, temp, LABELNO); \
1661 } while (0)
1662 \f
1663 /* OUTPUT OF UNINITIALIZED VARIABLES */
1664
1665 /* This says how to output an assembler line
1666 to define a global common symbol. */
1667
1668 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1669 asm_output_common (FILE, NAME, SIZE, ROUNDED);
1670
1671 /* This says how to output an assembler line
1672 to define a local common symbol. */
1673
1674 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1675 asm_output_local (FILE, NAME, SIZE, ROUNDED);
1676 \f
1677 /* OUTPUT AND GENERATION OF LABELS */
1678
1679 /* This is how to output the definition of a user-level label named NAME,
1680 such as the label on a static function or variable NAME. */
1681 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1682 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1683
1684 /* This is how to output a command to make the user-level label named NAME
1685 defined for reference from other files. */
1686
1687 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1688 do { fputs (".global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1689
1690 /* A C statement to output to the stdio stream any text necessary
1691 for declaring the name of an external symbol named name which
1692 is referenced in this compilation but not defined. */
1693
1694 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1695 { \
1696 fprintf (FILE, ".extern "); \
1697 assemble_name (FILE, NAME); \
1698 fprintf (FILE, "\n"); \
1699 }
1700 /* A C statement to output on stream an assembler pseudo-op to
1701 declare a library function named external. */
1702
1703 #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
1704 { \
1705 fprintf (FILE, ".extern "); \
1706 assemble_name (FILE, XSTR (FUN, 0)); \
1707 fprintf (FILE, "\n"); \
1708 }
1709
1710 /* The prefix to add to user-visible assembler symbols. */
1711
1712 #define USER_LABEL_PREFIX "_"
1713
1714 /* This is how to output an internal numbered label where
1715 PREFIX is the class of label and NUM is the number within the class. */
1716 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1717 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1718
1719 /* This is how to store into the string LABEL
1720 the symbol_ref name of an internal numbered label where
1721 PREFIX is the class of label and NUM is the number within the class.
1722 This is suitable for output with `assemble_name'. */
1723 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1724 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1725
1726 \f
1727 /* OUTPUT OF ASSEMBLER INSTRUCTIONS */
1728
1729 /* How to refer to registers in assembler output.
1730 This sequence is indexed by compiler's hard-register-number (see above). */
1731
1732 #define REGISTER_NAMES \
1733 {"a0", "a0l", "a1", "a1l", "x", "y", "yl", "p", "pl", \
1734 "r0", "r1", "r2", "r3", "j", "k", "ybase", "pt", \
1735 "ar0", "ar1", "ar2", "ar3", \
1736 "c0", "c1", "c2", "pr", "rb", \
1737 "*(0)", "*(1)", "*(2)", "*(3)", "*(4)", "*(5)", \
1738 "*(6)", "*(7)", "*(8)", "*(9)", "*(10)", "*(11)", \
1739 "*(12)", "*(13)", "*(14)", "*(15)", "*(16)", "*(17)", \
1740 "*(18)", "*(19)", "*(20)", "*(21)", "*(22)", "*(23)", \
1741 "*(24)", "*(25)", "*(26)", "*(27)", "*(28)", "*(29)", \
1742 "*(30)", "*(31)" }
1743
1744 #define HIMODE_REGISTER_NAMES \
1745 {"a0", "a0", "a1", "a1", "x", "y", "y", "p", "p", \
1746 "r0", "r1", "r2", "r3", "j", "k", "ybase", "pt", \
1747 "ar0", "ar1", "ar2", "ar3", \
1748 "c0", "c1", "c2", "pr", "rb", \
1749 "*(0)", "*(1)", "*(2)", "*(3)", "*(4)", "*(5)", \
1750 "*(6)", "*(7)", "*(8)", "*(9)", "*(10)", "*(11)", \
1751 "*(12)", "*(13)", "*(14)", "*(15)", "*(16)", "*(17)", \
1752 "*(18)", "*(19)", "*(20)", "*(21)", "*(22)", "*(23)", \
1753 "*(24)", "*(25)", "*(26)", "*(27)", "*(28)", "*(29)", \
1754 "*(30)", "*(31)" }
1755
1756 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1757
1758 /* Print operand X (an rtx) in assembler syntax to file FILE.
1759 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1760 For `%' followed by punctuation, CODE is the punctuation and X is null.
1761
1762 DSP1610 extensions for operand codes:
1763
1764 %H - print lower 16 bits of constant
1765 %U - print upper 16 bits of constant
1766 %w - print low half of register (e.g 'a0l')
1767 %u - print upper half of register (e.g 'a0')
1768 %b - print high half of accumulator for F3 ALU instructions
1769 %h - print constant in decimal */
1770
1771 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE, X, CODE)
1772
1773
1774 /* Print a memory address as an operand to reference that memory location. */
1775
1776 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1777
1778 /* This is how to output an insn to push a register on the stack.
1779 It need not be very fast code since it is used only for profiling */
1780 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1781 internal_error ("profiling not implemented yet");
1782
1783 /* This is how to output an insn to pop a register from the stack.
1784 It need not be very fast code since it is used only for profiling */
1785 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1786 internal_error ("profiling not implemented yet");
1787 \f
1788 /* OUTPUT OF DISPATCH TABLES */
1789
1790 /* This macro should be provided on machines where the addresses in a dispatch
1791 table are relative to the table's own address. */
1792 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1793 fprintf (FILE, "\tint L%d-L%d\n", VALUE, REL)
1794
1795 /* This macro should be provided on machines where the addresses in a dispatch
1796 table are absolute. */
1797 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1798 fprintf (FILE, "\tint L%d\n", VALUE)
1799
1800 /* ASSEMBLER COMMANDS FOR ALIGNMENT */
1801
1802 /* This is how to output an assembler line that says to advance
1803 the location counter to a multiple of 2**LOG bytes. We should
1804 not have to do any alignment since the 1610 is a word machine. */
1805 #define ASM_OUTPUT_ALIGN(FILE,LOG)
1806
1807 /* Define this macro if ASM_OUTPUT_SKIP should not be used in the text section
1808 because it fails to put zero1 in the bytes that are skipped. */
1809 #define ASM_NO_SKIP_IN_TEXT 1
1810
1811 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1812 fprintf (FILE, "\t%d * int 0\n", (SIZE))
1813
1814 /* CONTROLLING DEBUGGING INFORMATION FORMAT */
1815
1816 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1817
1818 #define ASM_OUTPUT_DEF(asm_out_file, LABEL1, LABEL2) \
1819 do { \
1820 fprintf (asm_out_file, ".alias " ); \
1821 ASM_OUTPUT_LABELREF(asm_out_file, LABEL1); \
1822 fprintf (asm_out_file, "=" ); \
1823 ASM_OUTPUT_LABELREF(asm_out_file, LABEL2); \
1824 fprintf (asm_out_file, "\n" ); \
1825 } while (0)
1826
1827 \f
1828 /* MISCELLANEOUS PARAMETERS */
1829
1830 /* Specify the machine mode that this machine uses
1831 for the index in the tablejump instruction. */
1832 #define CASE_VECTOR_MODE QImode
1833
1834 /* Define as C expression which evaluates to nonzero if the tablejump
1835 instruction expects the table to contain offsets from the address of the
1836 table.
1837 Do not define this if the table should contain absolute addresses. */
1838 /* #define CASE_VECTOR_PC_RELATIVE 1 */
1839
1840 /* Max number of bytes we can move from memory to memory
1841 in one reasonably fast instruction. */
1842 #define MOVE_MAX 1
1843
1844 /* Defining this macro causes the compiler to omit a sign-extend, zero-extend,
1845 or bitwise 'and' instruction that truncates the count of a shift operation
1846 to a width equal to the number of bits needed to represent the size of the
1847 object being shifted. Do not define this macro unless the truncation applies
1848 to both shift operations and bit-field operations (if any). */
1849 /* #define SHIFT_COUNT_TRUNCATED */
1850
1851 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1852 is done just by pretending it is already truncated. */
1853 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1854
1855 /* When a prototype says `char' or `short', really pass an `int'. */
1856 #define PROMOTE_PROTOTYPES 1
1857
1858 /* An alias for the machine mode used for pointers */
1859 #define Pmode QImode
1860
1861 /* A function address in a call instruction
1862 is a byte address (for indexing purposes)
1863 so give the MEM rtx a byte's mode. */
1864 #define FUNCTION_MODE QImode
1865
1866 #if !defined(__DATE__)
1867 #define TARGET_VERSION fprintf (stderr, " (%s)", VERSION_INFO1)
1868 #else
1869 #define TARGET_VERSION fprintf (stderr, " (%s, %s)", VERSION_INFO1, __DATE__)
1870 #endif
1871
1872 #define VERSION_INFO1 "Lucent DSP16xx C Cross Compiler, version 1.3.0b"
1873
1874
1875 /* Define this as 1 if `char' should by default be signed; else as 0. */
1876 #define DEFAULT_SIGNED_CHAR 1
1877
1878 /* Define this so gcc does not output a call to __main, since we
1879 are not currently supporting c++. */
1880 #define INIT_SECTION_ASM_OP 1
1881