]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/epiphany/epiphany.c
Use function_arg_info for TARGET_FUNCTION_(INCOMING_)ARG
[thirdparty/gcc.git] / gcc / config / epiphany / epiphany.c
1 /* Subroutines used for code generation on the EPIPHANY cpu.
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Embecosm on behalf of Adapteva, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #define IN_TARGET_CODE 1
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "backend.h"
27 #include "target.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "tm_p.h"
33 #include "stringpool.h"
34 #include "attribs.h"
35 #include "optabs.h"
36 #include "emit-rtl.h"
37 #include "recog.h"
38 #include "diagnostic-core.h"
39 #include "alias.h"
40 #include "stor-layout.h"
41 #include "varasm.h"
42 #include "calls.h"
43 #include "output.h"
44 #include "insn-attr.h"
45 #include "explow.h"
46 #include "expr.h"
47 #include "tm-constrs.h"
48 #include "tree-pass.h" /* for current_pass */
49 #include "context.h"
50 #include "pass_manager.h"
51 #include "builtins.h"
52
53 /* Which cpu we're compiling for. */
54 int epiphany_cpu_type;
55
56 /* Name of mangle string to add to symbols to separate code compiled for each
57 cpu (or NULL). */
58 const char *epiphany_mangle_cpu;
59
60 /* Array of valid operand punctuation characters. */
61 char epiphany_punct_chars[256];
62
63 /* The rounding mode that we generally use for floating point. */
64 int epiphany_normal_fp_rounding;
65
66 /* The pass instance, for use in epiphany_optimize_mode_switching. */
67 static opt_pass *pass_mode_switch_use;
68
69 static void epiphany_init_reg_tables (void);
70 static int get_epiphany_condition_code (rtx);
71 static tree epiphany_handle_interrupt_attribute (tree *, tree, tree, int, bool *);
72 static tree epiphany_handle_forwarder_attribute (tree *, tree, tree, int,
73 bool *);
74 static bool epiphany_pass_by_reference (cumulative_args_t,
75 const function_arg_info &);
76 static rtx_insn *frame_insn (rtx);
77 \f
78 /* defines for the initialization of the GCC target structure. */
79 #define TARGET_ATTRIBUTE_TABLE epiphany_attribute_table
80
81 #define TARGET_PRINT_OPERAND epiphany_print_operand
82 #define TARGET_PRINT_OPERAND_ADDRESS epiphany_print_operand_address
83
84 #define TARGET_RTX_COSTS epiphany_rtx_costs
85 #define TARGET_ADDRESS_COST epiphany_address_cost
86 #define TARGET_MEMORY_MOVE_COST epiphany_memory_move_cost
87
88 #define TARGET_PROMOTE_FUNCTION_MODE epiphany_promote_function_mode
89 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
90
91 #define TARGET_RETURN_IN_MEMORY epiphany_return_in_memory
92 #define TARGET_PASS_BY_REFERENCE epiphany_pass_by_reference
93 #define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_mode_tree_bool_true
94 #define TARGET_FUNCTION_VALUE epiphany_function_value
95 #define TARGET_LIBCALL_VALUE epiphany_libcall_value
96 #define TARGET_FUNCTION_VALUE_REGNO_P epiphany_function_value_regno_p
97
98 #define TARGET_SETUP_INCOMING_VARARGS epiphany_setup_incoming_varargs
99
100 /* Using the simplistic varags handling forces us to do partial reg/stack
101 argument passing for types with larger size (> 4 bytes) than alignment. */
102 #define TARGET_ARG_PARTIAL_BYTES epiphany_arg_partial_bytes
103
104 #define TARGET_FUNCTION_OK_FOR_SIBCALL epiphany_function_ok_for_sibcall
105
106 #define TARGET_SCHED_ISSUE_RATE epiphany_issue_rate
107 #define TARGET_SCHED_ADJUST_COST epiphany_adjust_cost
108
109 #define TARGET_LRA_P hook_bool_void_false
110
111 #define TARGET_LEGITIMATE_ADDRESS_P epiphany_legitimate_address_p
112
113 #define TARGET_SECONDARY_RELOAD epiphany_secondary_reload
114
115 #define TARGET_OPTION_OVERRIDE epiphany_override_options
116
117 #define TARGET_CONDITIONAL_REGISTER_USAGE epiphany_conditional_register_usage
118
119 #define TARGET_FUNCTION_ARG epiphany_function_arg
120
121 #define TARGET_FUNCTION_ARG_ADVANCE epiphany_function_arg_advance
122
123 #define TARGET_FUNCTION_ARG_BOUNDARY epiphany_function_arg_boundary
124
125 #define TARGET_TRAMPOLINE_INIT epiphany_trampoline_init
126
127 /* Nonzero if the constant rtx value is a legitimate general operand.
128 We can handle any 32- or 64-bit constant. */
129 #define TARGET_LEGITIMATE_CONSTANT_P hook_bool_mode_rtx_true
130
131 #define TARGET_MIN_DIVISIONS_FOR_RECIP_MUL \
132 epiphany_min_divisions_for_recip_mul
133
134 #define TARGET_VECTORIZE_PREFERRED_SIMD_MODE epiphany_preferred_simd_mode
135
136 #define TARGET_VECTOR_MODE_SUPPORTED_P epiphany_vector_mode_supported_p
137
138 #define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE \
139 epiphany_vector_alignment_reachable
140
141 #define TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT \
142 epiphany_support_vector_misalignment
143
144 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK \
145 hook_bool_const_tree_hwi_hwi_const_tree_true
146 #define TARGET_ASM_OUTPUT_MI_THUNK epiphany_output_mi_thunk
147
148 /* ??? we can use larger offsets for wider-mode sized accesses, but there
149 is no concept of anchors being dependent on the modes that they are used
150 for, so we can only use an offset range that would suit all modes. */
151 #define TARGET_MAX_ANCHOR_OFFSET (optimize_size ? 31 : 2047)
152 /* We further restrict the minimum to be a multiple of eight. */
153 #define TARGET_MIN_ANCHOR_OFFSET (optimize_size ? 0 : -2040)
154
155 /* Mode switching hooks. */
156
157 #define TARGET_MODE_EMIT emit_set_fp_mode
158
159 #define TARGET_MODE_NEEDED epiphany_mode_needed
160
161 #define TARGET_MODE_PRIORITY epiphany_mode_priority
162
163 #define TARGET_MODE_ENTRY epiphany_mode_entry
164
165 #define TARGET_MODE_EXIT epiphany_mode_exit
166
167 #define TARGET_MODE_AFTER epiphany_mode_after
168
169 #include "target-def.h"
170
171 #undef TARGET_ASM_ALIGNED_HI_OP
172 #define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
173 #undef TARGET_ASM_ALIGNED_SI_OP
174 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
175
176 #undef TARGET_HARD_REGNO_MODE_OK
177 #define TARGET_HARD_REGNO_MODE_OK epiphany_hard_regno_mode_ok
178
179 #undef TARGET_CONSTANT_ALIGNMENT
180 #define TARGET_CONSTANT_ALIGNMENT epiphany_constant_alignment
181
182 #undef TARGET_STARTING_FRAME_OFFSET
183 #define TARGET_STARTING_FRAME_OFFSET epiphany_starting_frame_offset
184 \f
185 bool
186 epiphany_is_interrupt_p (tree decl)
187 {
188 tree attrs;
189
190 attrs = DECL_ATTRIBUTES (decl);
191 if (lookup_attribute ("interrupt", attrs))
192 return true;
193 else
194 return false;
195 }
196
197 /* Called from epiphany_override_options.
198 We use this to initialize various things. */
199
200 static void
201 epiphany_init (void)
202 {
203 /* N.B. this pass must not run before the first optimize_mode_switching
204 pass because of the side offect of epiphany_mode_needed on
205 MACHINE_FUNCTION(cfun)->unknown_mode_uses. But it must run before
206 pass_resolve_sw_modes. */
207 pass_mode_switch_use = make_pass_mode_switch_use (g);
208 struct register_pass_info insert_use_info
209 = { pass_mode_switch_use, "mode_sw",
210 1, PASS_POS_INSERT_AFTER
211 };
212 opt_pass *mode_sw2
213 = g->get_passes()->get_pass_mode_switching ()->clone ();
214 struct register_pass_info mode_sw2_info
215 = { mode_sw2, "mode_sw",
216 1, PASS_POS_INSERT_AFTER
217 };
218 opt_pass *mode_sw3 = make_pass_resolve_sw_modes (g);
219 struct register_pass_info mode_sw3_info
220 = { mode_sw3, "mode_sw",
221 1, PASS_POS_INSERT_AFTER
222 };
223 opt_pass *mode_sw4
224 = g->get_passes()->get_pass_split_all_insns ()->clone ();
225 struct register_pass_info mode_sw4_info
226 = { mode_sw4, "mode_sw",
227 1, PASS_POS_INSERT_AFTER
228 };
229 static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
230 #define N_ENTITIES ARRAY_SIZE (num_modes)
231
232 epiphany_init_reg_tables ();
233
234 /* Initialize array for PRINT_OPERAND_PUNCT_VALID_P. */
235 memset (epiphany_punct_chars, 0, sizeof (epiphany_punct_chars));
236 epiphany_punct_chars['-'] = 1;
237
238 epiphany_normal_fp_rounding
239 = (epiphany_normal_fp_mode == FP_MODE_ROUND_TRUNC
240 ? FP_MODE_ROUND_TRUNC : FP_MODE_ROUND_NEAREST);
241 register_pass (&mode_sw4_info);
242 register_pass (&mode_sw2_info);
243 register_pass (&mode_sw3_info);
244 register_pass (&insert_use_info);
245 register_pass (&mode_sw2_info);
246 /* Verify that NUM_MODES_FOR_MODE_SWITCHING has one value per entity. */
247 gcc_assert (N_ENTITIES == EPIPHANY_MSW_ENTITY_NUM);
248
249 #if 1 /* As long as peep2_rescan is not implemented,
250 (see http://gcc.gnu.org/ml/gcc-patches/2011-10/msg02819.html,)
251 we need a second peephole2 pass to get reasonable code. */
252 {
253 opt_pass *extra_peephole2
254 = g->get_passes ()->get_pass_peephole2 ()->clone ();
255 struct register_pass_info peep2_2_info
256 = { extra_peephole2, "peephole2",
257 1, PASS_POS_INSERT_AFTER
258 };
259
260 register_pass (&peep2_2_info);
261 }
262 #endif
263 }
264
265 /* The condition codes of the EPIPHANY, and the inverse function. */
266 static const char *const epiphany_condition_codes[] =
267 { /* 0 1 2 3 4 5 6 7 8 9 */
268 "eq", "ne", "ltu", "gteu", "gt", "lte", "gte", "lt", "gtu", "lteu",
269 /* 10 11 12 13 */
270 "beq","bne","blt", "blte",
271 };
272
273 #define EPIPHANY_INVERSE_CONDITION_CODE(X) ((X) ^ 1)
274
275 /* Returns the index of the EPIPHANY condition code string in
276 `epiphany_condition_codes'. COMPARISON should be an rtx like
277 `(eq (...) (...))'. */
278
279 static int
280 get_epiphany_condition_code (rtx comparison)
281 {
282 switch (GET_MODE (XEXP (comparison, 0)))
283 {
284 case E_CCmode:
285 switch (GET_CODE (comparison))
286 {
287 case EQ : return 0;
288 case NE : return 1;
289 case LTU : return 2;
290 case GEU : return 3;
291 case GT : return 4;
292 case LE : return 5;
293 case GE : return 6;
294 case LT : return 7;
295 case GTU : return 8;
296 case LEU : return 9;
297
298 default : gcc_unreachable ();
299 }
300 case E_CC_N_NEmode:
301 switch (GET_CODE (comparison))
302 {
303 case EQ: return 6;
304 case NE: return 7;
305 default: gcc_unreachable ();
306 }
307 case E_CC_C_LTUmode:
308 switch (GET_CODE (comparison))
309 {
310 case GEU: return 2;
311 case LTU: return 3;
312 default: gcc_unreachable ();
313 }
314 case E_CC_C_GTUmode:
315 switch (GET_CODE (comparison))
316 {
317 case LEU: return 3;
318 case GTU: return 2;
319 default: gcc_unreachable ();
320 }
321 case E_CC_FPmode:
322 switch (GET_CODE (comparison))
323 {
324 case EQ: return 10;
325 case NE: return 11;
326 case LT: return 12;
327 case LE: return 13;
328 default: gcc_unreachable ();
329 }
330 case E_CC_FP_EQmode:
331 switch (GET_CODE (comparison))
332 {
333 case EQ: return 0;
334 case NE: return 1;
335 default: gcc_unreachable ();
336 }
337 case E_CC_FP_GTEmode:
338 switch (GET_CODE (comparison))
339 {
340 case EQ: return 0;
341 case NE: return 1;
342 case GT : return 4;
343 case GE : return 6;
344 case UNLE : return 5;
345 case UNLT : return 7;
346 default: gcc_unreachable ();
347 }
348 case E_CC_FP_ORDmode:
349 switch (GET_CODE (comparison))
350 {
351 case ORDERED: return 9;
352 case UNORDERED: return 8;
353 default: gcc_unreachable ();
354 }
355 case E_CC_FP_UNEQmode:
356 switch (GET_CODE (comparison))
357 {
358 case UNEQ: return 9;
359 case LTGT: return 8;
360 default: gcc_unreachable ();
361 }
362 default: gcc_unreachable ();
363 }
364 /*NOTREACHED*/
365 return (42);
366 }
367
368
369 /* Implement TARGET_HARD_REGNO_MODE_OK. */
370
371 static bool
372 epiphany_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
373 {
374 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
375 return (regno & 1) == 0 && GPR_P (regno);
376 else
377 return true;
378 }
379
380 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
381 return the mode to be used for the comparison. */
382
383 machine_mode
384 epiphany_select_cc_mode (enum rtx_code op,
385 rtx x ATTRIBUTE_UNUSED,
386 rtx y ATTRIBUTE_UNUSED)
387 {
388 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
389 {
390 if (TARGET_SOFT_CMPSF
391 || op == ORDERED || op == UNORDERED)
392 {
393 if (op == EQ || op == NE)
394 return CC_FP_EQmode;
395 if (op == ORDERED || op == UNORDERED)
396 return CC_FP_ORDmode;
397 if (op == UNEQ || op == LTGT)
398 return CC_FP_UNEQmode;
399 return CC_FP_GTEmode;
400 }
401 return CC_FPmode;
402 }
403 /* recognize combiner pattern ashlsi_btst:
404 (parallel [
405 (set (reg:N_NE 65 cc1)
406 (compare:N_NE (zero_extract:SI (reg/v:SI 75 [ a ])
407 (const_int 1 [0x1])
408 (const_int 0 [0x0]))
409 (const_int 0 [0x0])))
410 (clobber (scratch:SI)) */
411 else if ((op == EQ || op == NE)
412 && GET_CODE (x) == ZERO_EXTRACT
413 && XEXP (x, 1) == const1_rtx
414 && CONST_INT_P (XEXP (x, 2)))
415 return CC_N_NEmode;
416 else if ((op == GEU || op == LTU) && GET_CODE (x) == PLUS)
417 return CC_C_LTUmode;
418 else if ((op == LEU || op == GTU) && GET_CODE (x) == MINUS)
419 return CC_C_GTUmode;
420 else
421 return CCmode;
422 }
423
424 enum reg_class epiphany_regno_reg_class[FIRST_PSEUDO_REGISTER];
425
426 static void
427 epiphany_init_reg_tables (void)
428 {
429 int i;
430
431 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
432 {
433 if (i == GPR_LR)
434 epiphany_regno_reg_class[i] = LR_REGS;
435 else if (i <= 7 && TARGET_PREFER_SHORT_INSN_REGS)
436 epiphany_regno_reg_class[i] = SHORT_INSN_REGS;
437 else if (call_used_regs[i]
438 && TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i))
439 epiphany_regno_reg_class[i] = SIBCALL_REGS;
440 else if (i >= CORE_CONTROL_FIRST && i <= CORE_CONTROL_LAST)
441 epiphany_regno_reg_class[i] = CORE_CONTROL_REGS;
442 else if (i < (GPR_LAST+1)
443 || i == ARG_POINTER_REGNUM || i == FRAME_POINTER_REGNUM)
444 epiphany_regno_reg_class[i] = GENERAL_REGS;
445 else if (i == CC_REGNUM)
446 epiphany_regno_reg_class[i] = NO_REGS /* CC_REG: must be NO_REGS */;
447 else
448 epiphany_regno_reg_class[i] = NO_REGS;
449 }
450 }
451 \f
452 /* EPIPHANY specific attribute support.
453
454 The EPIPHANY has these attributes:
455 interrupt - for interrupt functions.
456 short_call - the function is assumed to be reachable with the b / bl
457 instructions.
458 long_call - the function address is loaded into a register before use.
459 disinterrupt - functions which mask interrupts throughout.
460 They unmask them while calling an interruptible
461 function, though. */
462
463 static const struct attribute_spec epiphany_attribute_table[] =
464 {
465 /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
466 affects_type_identity, handler, exclude } */
467 { "interrupt", 0, 9, true, false, false, true,
468 epiphany_handle_interrupt_attribute, NULL },
469 { "forwarder_section", 1, 1, true, false, false, false,
470 epiphany_handle_forwarder_attribute, NULL },
471 { "long_call", 0, 0, false, true, true, false, NULL, NULL },
472 { "short_call", 0, 0, false, true, true, false, NULL, NULL },
473 { "disinterrupt", 0, 0, false, true, true, true, NULL, NULL },
474 { NULL, 0, 0, false, false, false, false, NULL, NULL }
475 };
476
477 /* Handle an "interrupt" attribute; arguments as in
478 struct attribute_spec.handler. */
479 static tree
480 epiphany_handle_interrupt_attribute (tree *node, tree name, tree args,
481 int flags ATTRIBUTE_UNUSED,
482 bool *no_add_attrs)
483 {
484 tree value;
485
486 if (!args)
487 {
488 gcc_assert (DECL_P (*node));
489 tree t = TREE_TYPE (*node);
490 if (TREE_CODE (t) != FUNCTION_TYPE)
491 warning (OPT_Wattributes, "%qE attribute only applies to functions",
492 name);
493 /* Argument handling and the stack layout for interrupt handlers
494 don't mix. It makes no sense in the first place, so emit an
495 error for this. */
496 else if (TYPE_ARG_TYPES (t)
497 && TREE_VALUE (TYPE_ARG_TYPES (t)) != void_type_node)
498 error_at (DECL_SOURCE_LOCATION (*node),
499 "interrupt handlers cannot have arguments");
500 return NULL_TREE;
501 }
502
503 value = TREE_VALUE (args);
504
505 if (TREE_CODE (value) != STRING_CST)
506 {
507 warning (OPT_Wattributes,
508 "argument of %qE attribute is not a string constant", name);
509 *no_add_attrs = true;
510 }
511 else if (strcmp (TREE_STRING_POINTER (value), "reset")
512 && strcmp (TREE_STRING_POINTER (value), "software_exception")
513 && strcmp (TREE_STRING_POINTER (value), "page_miss")
514 && strcmp (TREE_STRING_POINTER (value), "timer0")
515 && strcmp (TREE_STRING_POINTER (value), "timer1")
516 && strcmp (TREE_STRING_POINTER (value), "message")
517 && strcmp (TREE_STRING_POINTER (value), "dma0")
518 && strcmp (TREE_STRING_POINTER (value), "dma1")
519 && strcmp (TREE_STRING_POINTER (value), "wand")
520 && strcmp (TREE_STRING_POINTER (value), "swi"))
521 {
522 warning (OPT_Wattributes,
523 "argument of %qE attribute is not \"reset\", \"software_exception\", \"page_miss\", \"timer0\", \"timer1\", \"message\", \"dma0\", \"dma1\", \"wand\" or \"swi\"",
524 name);
525 *no_add_attrs = true;
526 return NULL_TREE;
527 }
528
529 return epiphany_handle_interrupt_attribute (node, name, TREE_CHAIN (args),
530 flags, no_add_attrs);
531 }
532
533 /* Handle a "forwarder_section" attribute; arguments as in
534 struct attribute_spec.handler. */
535 static tree
536 epiphany_handle_forwarder_attribute (tree *node ATTRIBUTE_UNUSED,
537 tree name, tree args,
538 int flags ATTRIBUTE_UNUSED,
539 bool *no_add_attrs)
540 {
541 tree value;
542
543 value = TREE_VALUE (args);
544
545 if (TREE_CODE (value) != STRING_CST)
546 {
547 warning (OPT_Wattributes,
548 "argument of %qE attribute is not a string constant", name);
549 *no_add_attrs = true;
550 }
551 return NULL_TREE;
552 }
553
554 \f
555 /* Misc. utilities. */
556
557 /* Generate a SYMBOL_REF for the special function NAME. When the address
558 can't be placed directly into a call instruction, and if possible, copy
559 it to a register so that cse / code hoisting is possible. */
560 rtx
561 sfunc_symbol (const char *name)
562 {
563 rtx sym = gen_rtx_SYMBOL_REF (Pmode, name);
564
565 /* These sfuncs should be hidden, and every dso should get a copy. */
566 SYMBOL_REF_FLAGS (sym) = SYMBOL_FLAG_FUNCTION | SYMBOL_FLAG_LOCAL;
567 if (TARGET_SHORT_CALLS)
568 ; /* Nothing to be done. */
569 else if (can_create_pseudo_p ())
570 sym = copy_to_mode_reg (Pmode, sym);
571 else /* We rely on reload to fix this up. */
572 gcc_assert (!reload_in_progress || reload_completed);
573 return sym;
574 }
575
576 /* X and Y are two things to compare using CODE in IN_MODE.
577 Emit the compare insn, construct the proper cc reg in the proper
578 mode, and return the rtx for the cc reg comparison in CMODE. */
579
580 rtx
581 gen_compare_reg (machine_mode cmode, enum rtx_code code,
582 machine_mode in_mode, rtx x, rtx y)
583 {
584 machine_mode mode = SELECT_CC_MODE (code, x, y);
585 rtx cc_reg, pat, clob0, clob1, clob2;
586
587 if (in_mode == VOIDmode)
588 in_mode = GET_MODE (x);
589 if (in_mode == VOIDmode)
590 in_mode = GET_MODE (y);
591
592 if (mode == CC_FPmode)
593 {
594 /* The epiphany has only EQ / NE / LT / LE conditions for
595 hardware floating point. */
596 if (code == GT || code == GE || code == UNLE || code == UNLT)
597 {
598 rtx tmp = x; x = y; y = tmp;
599 code = swap_condition (code);
600 }
601 cc_reg = gen_rtx_REG (mode, CCFP_REGNUM);
602 y = force_reg (in_mode, y);
603 }
604 else
605 {
606 if (mode == CC_FP_GTEmode
607 && (code == LE || code == LT || code == UNGT || code == UNGE))
608 {
609 if (flag_finite_math_only
610 && ((REG_P (x) && REGNO (x) == GPR_0)
611 || (REG_P (y) && REGNO (y) == GPR_1)))
612 switch (code)
613 {
614 case LE: code = UNLE; break;
615 case LT: code = UNLT; break;
616 case UNGT: code = GT; break;
617 case UNGE: code = GE; break;
618 default: gcc_unreachable ();
619 }
620 else
621 {
622 rtx tmp = x; x = y; y = tmp;
623 code = swap_condition (code);
624 }
625 }
626 cc_reg = gen_rtx_REG (mode, CC_REGNUM);
627 }
628 if ((mode == CC_FP_EQmode || mode == CC_FP_GTEmode
629 || mode == CC_FP_ORDmode || mode == CC_FP_UNEQmode)
630 /* mov<mode>cc might want to re-emit a comparison during ifcvt. */
631 && (!REG_P (x) || REGNO (x) != GPR_0
632 || !REG_P (y) || REGNO (y) != GPR_1))
633 {
634 rtx reg;
635
636 #if 0
637 /* ??? We should really do the r0/r1 clobber only during rtl expansion,
638 but just like the flag clobber of movsicc, we have to allow
639 this for ifcvt to work, on the assumption that we'll only want
640 to do this if these registers have been used before by the
641 pre-ifcvt code. */
642 gcc_assert (currently_expanding_to_rtl);
643 #endif
644 reg = gen_rtx_REG (in_mode, GPR_0);
645 if (reg_overlap_mentioned_p (reg, y))
646 return 0;
647 emit_move_insn (reg, x);
648 x = reg;
649 reg = gen_rtx_REG (in_mode, GPR_1);
650 emit_move_insn (reg, y);
651 y = reg;
652 }
653 else
654 x = force_reg (in_mode, x);
655
656 pat = gen_rtx_SET (cc_reg, gen_rtx_COMPARE (mode, x, y));
657 if (mode == CC_FP_EQmode || mode == CC_FP_GTEmode)
658 {
659 const char *name = mode == CC_FP_EQmode ? "__eqsf2" : "__gtesf2";
660 rtx use = gen_rtx_USE (VOIDmode, sfunc_symbol (name));
661
662 clob0 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, GPR_IP));
663 clob1 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, GPR_LR));
664 pat = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (4, pat, use, clob0, clob1));
665 }
666 else if (mode == CC_FP_ORDmode || mode == CC_FP_UNEQmode)
667 {
668 const char *name = mode == CC_FP_ORDmode ? "__ordsf2" : "__uneqsf2";
669 rtx use = gen_rtx_USE (VOIDmode, sfunc_symbol (name));
670
671 clob0 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, GPR_IP));
672 clob1 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, GPR_16));
673 clob2 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, GPR_LR));
674 pat = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (5, pat, use,
675 clob0, clob1, clob2));
676 }
677 else
678 {
679 clob0 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (in_mode));
680 pat = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, pat, clob0));
681 }
682 emit_insn (pat);
683 return gen_rtx_fmt_ee (code, cmode, cc_reg, const0_rtx);
684 }
685 \f
686 /* The ROUND_ADVANCE* macros are local to this file. */
687 /* Round SIZE up to a word boundary. */
688 #define ROUND_ADVANCE(SIZE) \
689 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
690
691 /* Round arg MODE/TYPE up to the next word boundary. */
692 #define ROUND_ADVANCE_ARG(MODE, TYPE) \
693 ((MODE) == BLKmode \
694 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
695 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))
696
697 /* Round CUM up to the necessary point for argument MODE/TYPE. */
698 #define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) \
699 (epiphany_function_arg_boundary ((MODE), (TYPE)) > BITS_PER_WORD \
700 ? (((CUM) + 1) & ~1) \
701 : (CUM))
702
703 static unsigned int
704 epiphany_function_arg_boundary (machine_mode mode, const_tree type)
705 {
706 if ((type ? TYPE_ALIGN (type) : GET_MODE_BITSIZE (mode)) <= PARM_BOUNDARY)
707 return PARM_BOUNDARY;
708 return 2 * PARM_BOUNDARY;
709 }
710
711 /* Do any needed setup for a variadic function. For the EPIPHANY, we
712 actually emit the code in epiphany_expand_prologue.
713
714 CUM has not been updated for the last named argument (which is given
715 by ARG), and we rely on this fact. */
716
717
718 static void
719 epiphany_setup_incoming_varargs (cumulative_args_t cum,
720 const function_arg_info &arg,
721 int *pretend_size, int no_rtl)
722 {
723 int first_anon_arg;
724 CUMULATIVE_ARGS next_cum;
725 machine_function_t *mf = MACHINE_FUNCTION (cfun);
726
727 /* All BLKmode values are passed by reference. */
728 gcc_assert (arg.mode != BLKmode);
729
730 next_cum = *get_cumulative_args (cum);
731 next_cum = (ROUND_ADVANCE_CUM (next_cum, arg.mode, arg.type)
732 + ROUND_ADVANCE_ARG (arg.mode, arg.type));
733 first_anon_arg = next_cum;
734
735 if (first_anon_arg < MAX_EPIPHANY_PARM_REGS && !no_rtl)
736 {
737 /* Note that first_reg_offset < MAX_EPIPHANY_PARM_REGS. */
738 int first_reg_offset = first_anon_arg;
739
740 *pretend_size = ((MAX_EPIPHANY_PARM_REGS - first_reg_offset)
741 * UNITS_PER_WORD);
742 }
743 mf->args_parsed = 1;
744 mf->pretend_args_odd = ((*pretend_size & UNITS_PER_WORD) ? 1 : 0);
745 }
746
747 static int
748 epiphany_arg_partial_bytes (cumulative_args_t cum,
749 const function_arg_info &arg)
750 {
751 int words = 0, rounded_cum;
752
753 gcc_assert (!epiphany_pass_by_reference (cum, arg));
754
755 rounded_cum = ROUND_ADVANCE_CUM (*get_cumulative_args (cum),
756 arg.mode, arg.type);
757 if (rounded_cum < MAX_EPIPHANY_PARM_REGS)
758 {
759 words = MAX_EPIPHANY_PARM_REGS - rounded_cum;
760 if (words >= ROUND_ADVANCE_ARG (arg.mode, arg.type))
761 words = 0;
762 }
763 return words * UNITS_PER_WORD;
764 }
765 \f
766 /* Cost functions. */
767
768 /* Compute a (partial) cost for rtx X. Return true if the complete
769 cost has been computed, and false if subexpressions should be
770 scanned. In either case, *TOTAL contains the cost result. */
771
772 static bool
773 epiphany_rtx_costs (rtx x, machine_mode mode, int outer_code,
774 int opno ATTRIBUTE_UNUSED,
775 int *total, bool speed ATTRIBUTE_UNUSED)
776 {
777 int code = GET_CODE (x);
778
779 switch (code)
780 {
781 /* Small integers in the right context are as cheap as registers. */
782 case CONST_INT:
783 if ((outer_code == PLUS || outer_code == MINUS)
784 && SIMM11 (INTVAL (x)))
785 {
786 *total = 0;
787 return true;
788 }
789 if (IMM16 (INTVAL (x)))
790 {
791 *total = outer_code == SET ? 0 : COSTS_N_INSNS (1);
792 return true;
793 }
794 /* FALLTHRU */
795
796 case CONST:
797 case LABEL_REF:
798 case SYMBOL_REF:
799 *total = COSTS_N_INSNS ((epiphany_small16 (x) ? 0 : 1)
800 + (outer_code == SET ? 0 : 1));
801 return true;
802
803 case CONST_DOUBLE:
804 {
805 rtx high, low;
806 split_double (x, &high, &low);
807 *total = COSTS_N_INSNS (!IMM16 (INTVAL (high))
808 + !IMM16 (INTVAL (low)));
809 return true;
810 }
811
812 case ASHIFT:
813 case ASHIFTRT:
814 case LSHIFTRT:
815 *total = COSTS_N_INSNS (1);
816 return true;
817
818 case COMPARE:
819 switch (mode)
820 {
821 /* There are a number of single-insn combiner patterns that use
822 the flag side effects of arithmetic. */
823 case E_CC_N_NEmode:
824 case E_CC_C_LTUmode:
825 case E_CC_C_GTUmode:
826 return true;
827 default:
828 return false;
829 }
830
831
832 case SET:
833 {
834 rtx src = SET_SRC (x);
835 if (BINARY_P (src))
836 *total = 0;
837 return false;
838 }
839
840 default:
841 return false;
842 }
843 }
844
845
846 /* Provide the costs of an addressing mode that contains ADDR.
847 If ADDR is not a valid address, its cost is irrelevant. */
848
849 static int
850 epiphany_address_cost (rtx addr, machine_mode mode,
851 addr_space_t as ATTRIBUTE_UNUSED, bool speed)
852 {
853 rtx reg;
854 rtx off = const0_rtx;
855 int i;
856
857 if (speed)
858 return 0;
859 /* Return 0 for addresses valid in short insns, 1 for addresses only valid
860 in long insns. */
861 switch (GET_CODE (addr))
862 {
863 case PLUS :
864 reg = XEXP (addr, 0);
865 off = XEXP (addr, 1);
866 break;
867 case POST_MODIFY:
868 reg = XEXP (addr, 0);
869 off = XEXP (addr, 1);
870 gcc_assert (GET_CODE (off) == PLUS && rtx_equal_p (reg, XEXP (off, 0)));
871 off = XEXP (off, 1);
872 if (satisfies_constraint_Rgs (reg) && satisfies_constraint_Rgs (off))
873 return 0;
874 return 1;
875 case REG:
876 default:
877 reg = addr;
878 break;
879 }
880 if (!satisfies_constraint_Rgs (reg))
881 return 1;
882 /* The offset range available for short instructions depends on the mode
883 of the memory access. */
884 /* First, make sure we have a valid integer. */
885 if (!satisfies_constraint_L (off))
886 return 1;
887 i = INTVAL (off);
888 switch (GET_MODE_SIZE (mode))
889 {
890 default:
891 case 4:
892 if (i & 1)
893 return 1;
894 i >>= 1;
895 /* Fall through. */
896 case 2:
897 if (i & 1)
898 return 1;
899 i >>= 1;
900 /* Fall through. */
901 case 1:
902 return i < -7 || i > 7;
903 }
904 }
905
906 /* Compute the cost of moving data between registers and memory.
907 For integer, load latency is twice as long as register-register moves,
908 but issue pich is the same. For floating point, load latency is three
909 times as much as a reg-reg move. */
910 static int
911 epiphany_memory_move_cost (machine_mode mode,
912 reg_class_t rclass ATTRIBUTE_UNUSED,
913 bool in ATTRIBUTE_UNUSED)
914 {
915 return GET_MODE_CLASS (mode) == MODE_INT ? 3 : 4;
916 }
917 \f
918 /* Function prologue/epilogue handlers. */
919
920 /* EPIPHANY stack frames look like:
921
922 Before call After call
923 +-----------------------+ +-----------------------+
924 | | | |
925 high | local variables, | | local variables, |
926 mem | reg save area, etc. | | reg save area, etc. |
927 | | | |
928 +-----------------------+ +-----------------------+
929 | | | |
930 | arguments on stack. | | arguments on stack. |
931 | | | |
932 SP+8->+-----------------------+FP+8m->+-----------------------+
933 | 2 word save area for | | reg parm save area, |
934 | leaf funcs / flags | | only created for |
935 SP+0->+-----------------------+ | variable argument |
936 | functions |
937 FP+8n->+-----------------------+
938 | |
939 | register save area |
940 | |
941 +-----------------------+
942 | |
943 | local variables |
944 | |
945 FP+0->+-----------------------+
946 | |
947 | alloca allocations |
948 | |
949 +-----------------------+
950 | |
951 | arguments on stack |
952 | |
953 SP+8->+-----------------------+
954 low | 2 word save area for |
955 memory | leaf funcs / flags |
956 SP+0->+-----------------------+
957
958 Notes:
959 1) The "reg parm save area" does not exist for non variable argument fns.
960 The "reg parm save area" could be eliminated if we created our
961 own TARGET_GIMPLIFY_VA_ARG_EXPR, but that has tradeoffs as well
962 (so it's not done). */
963
964 /* Structure to be filled in by epiphany_compute_frame_size with register
965 save masks, and offsets for the current function. */
966 struct epiphany_frame_info
967 {
968 unsigned int total_size; /* # bytes that the entire frame takes up. */
969 unsigned int pretend_size; /* # bytes we push and pretend caller did. */
970 unsigned int args_size; /* # bytes that outgoing arguments take up. */
971 unsigned int reg_size; /* # bytes needed to store regs. */
972 unsigned int var_size; /* # bytes that variables take up. */
973 HARD_REG_SET gmask; /* Set of saved gp registers. */
974 int initialized; /* Nonzero if frame size already calculated. */
975 int stld_sz; /* Current load/store data size for offset
976 adjustment. */
977 int need_fp; /* value to override "frame_pointer_needed */
978 /* FIRST_SLOT is the slot that is saved first, at the very start of
979 the frame, with a POST_MODIFY to allocate the frame, if the size fits,
980 or at least the parm and register save areas, otherwise.
981 In the case of a large frame, LAST_SLOT is the slot that is saved last,
982 with a POST_MODIFY to allocate the rest of the frame. */
983 int first_slot, last_slot, first_slot_offset, last_slot_offset;
984 int first_slot_size;
985 int small_threshold;
986 };
987
988 /* Current frame information calculated by epiphany_compute_frame_size. */
989 static struct epiphany_frame_info current_frame_info;
990
991 /* Zero structure to initialize current_frame_info. */
992 static struct epiphany_frame_info zero_frame_info;
993
994 /* The usual; we set up our machine_function data. */
995 static struct machine_function *
996 epiphany_init_machine_status (void)
997 {
998 struct machine_function *machine;
999
1000 /* Reset state info for each function. */
1001 current_frame_info = zero_frame_info;
1002
1003 machine = ggc_cleared_alloc<machine_function_t> ();
1004
1005 return machine;
1006 }
1007
1008 /* Implements INIT_EXPANDERS. We just set up to call the above
1009 * function. */
1010 void
1011 epiphany_init_expanders (void)
1012 {
1013 init_machine_status = epiphany_init_machine_status;
1014 }
1015
1016 /* Type of function DECL.
1017
1018 The result is cached. To reset the cache at the end of a function,
1019 call with DECL = NULL_TREE. */
1020
1021 static enum epiphany_function_type
1022 epiphany_compute_function_type (tree decl)
1023 {
1024 tree a;
1025 /* Cached value. */
1026 static enum epiphany_function_type fn_type = EPIPHANY_FUNCTION_UNKNOWN;
1027 /* Last function we were called for. */
1028 static tree last_fn = NULL_TREE;
1029
1030 /* Resetting the cached value? */
1031 if (decl == NULL_TREE)
1032 {
1033 fn_type = EPIPHANY_FUNCTION_UNKNOWN;
1034 last_fn = NULL_TREE;
1035 return fn_type;
1036 }
1037
1038 if (decl == last_fn && fn_type != EPIPHANY_FUNCTION_UNKNOWN)
1039 return fn_type;
1040
1041 /* Assume we have a normal function (not an interrupt handler). */
1042 fn_type = EPIPHANY_FUNCTION_NORMAL;
1043
1044 /* Now see if this is an interrupt handler. */
1045 for (a = DECL_ATTRIBUTES (decl);
1046 a;
1047 a = TREE_CHAIN (a))
1048 {
1049 tree name = TREE_PURPOSE (a);
1050
1051 if (name == get_identifier ("interrupt"))
1052 fn_type = EPIPHANY_FUNCTION_INTERRUPT;
1053 }
1054
1055 last_fn = decl;
1056 return fn_type;
1057 }
1058
1059 #define RETURN_ADDR_REGNUM GPR_LR
1060 #define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM))
1061 #define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM))
1062
1063 /* Tell prologue and epilogue if register REGNO should be saved / restored.
1064 The return address and frame pointer are treated separately.
1065 Don't consider them here. */
1066 #define MUST_SAVE_REGISTER(regno, interrupt_p) \
1067 ((df_regs_ever_live_p (regno) \
1068 || (interrupt_p && !crtl->is_leaf \
1069 && call_used_regs[regno] && !fixed_regs[regno])) \
1070 && (!call_used_regs[regno] || regno == GPR_LR \
1071 || (interrupt_p && regno != GPR_SP)))
1072
1073 #define MUST_SAVE_RETURN_ADDR 0
1074
1075 /* Return the bytes needed to compute the frame pointer from the current
1076 stack pointer.
1077
1078 SIZE is the size needed for local variables. */
1079
1080 static unsigned int
1081 epiphany_compute_frame_size (int size /* # of var. bytes allocated. */)
1082 {
1083 int regno;
1084 unsigned int total_size, var_size, args_size, pretend_size, reg_size;
1085 HARD_REG_SET gmask;
1086 enum epiphany_function_type fn_type;
1087 int interrupt_p;
1088 int first_slot, last_slot, first_slot_offset, last_slot_offset;
1089 int first_slot_size;
1090 int small_slots = 0;
1091
1092 var_size = size;
1093 args_size = crtl->outgoing_args_size;
1094 pretend_size = crtl->args.pretend_args_size;
1095 total_size = args_size + var_size;
1096 reg_size = 0;
1097 CLEAR_HARD_REG_SET (gmask);
1098 first_slot = -1;
1099 first_slot_offset = 0;
1100 last_slot = -1;
1101 last_slot_offset = 0;
1102 first_slot_size = UNITS_PER_WORD;
1103
1104 /* See if this is an interrupt handler. Call used registers must be saved
1105 for them too. */
1106 fn_type = epiphany_compute_function_type (current_function_decl);
1107 interrupt_p = EPIPHANY_INTERRUPT_P (fn_type);
1108
1109 /* Calculate space needed for registers. */
1110
1111 for (regno = MAX_EPIPHANY_PARM_REGS - 1; pretend_size > reg_size; regno--)
1112 {
1113 reg_size += UNITS_PER_WORD;
1114 SET_HARD_REG_BIT (gmask, regno);
1115 if (epiphany_stack_offset - reg_size == 0)
1116 first_slot = regno;
1117 }
1118
1119 if (interrupt_p)
1120 reg_size += 2 * UNITS_PER_WORD;
1121 else
1122 small_slots = epiphany_stack_offset / UNITS_PER_WORD;
1123
1124 if (frame_pointer_needed)
1125 {
1126 current_frame_info.need_fp = 1;
1127 if (!interrupt_p && first_slot < 0)
1128 first_slot = GPR_FP;
1129 }
1130 else
1131 current_frame_info.need_fp = 0;
1132 for (regno = 0; regno <= GPR_LAST; regno++)
1133 {
1134 if (MUST_SAVE_REGISTER (regno, interrupt_p))
1135 {
1136 gcc_assert (!TEST_HARD_REG_BIT (gmask, regno));
1137 reg_size += UNITS_PER_WORD;
1138 SET_HARD_REG_BIT (gmask, regno);
1139 /* FIXME: when optimizing for speed, take schedling into account
1140 when selecting these registers. */
1141 if (regno == first_slot)
1142 gcc_assert (regno == GPR_FP && frame_pointer_needed);
1143 else if (!interrupt_p && first_slot < 0)
1144 first_slot = regno;
1145 else if (last_slot < 0
1146 && (first_slot ^ regno) != 1
1147 && (!interrupt_p || regno > GPR_1))
1148 last_slot = regno;
1149 }
1150 }
1151 if (TEST_HARD_REG_BIT (gmask, GPR_LR))
1152 MACHINE_FUNCTION (cfun)->lr_clobbered = 1;
1153 /* ??? Could sometimes do better than that. */
1154 current_frame_info.small_threshold
1155 = (optimize >= 3 || interrupt_p ? 0
1156 : pretend_size ? small_slots
1157 : 4 + small_slots - (first_slot == GPR_FP));
1158
1159 /* If there might be variables with 64-bit alignment requirement, align the
1160 start of the variables. */
1161 if (var_size >= 2 * UNITS_PER_WORD
1162 /* We don't want to split a double reg save/restore across two unpaired
1163 stack slots when optimizing. This rounding could be avoided with
1164 more complex reordering of the register saves, but that would seem
1165 to be a lot of code complexity for little gain. */
1166 || (reg_size > 8 && optimize))
1167 reg_size = EPIPHANY_STACK_ALIGN (reg_size);
1168 if (((total_size + reg_size
1169 /* Reserve space for UNKNOWN_REGNUM. */
1170 + EPIPHANY_STACK_ALIGN (4))
1171 <= (unsigned) epiphany_stack_offset)
1172 && !interrupt_p
1173 && crtl->is_leaf && !frame_pointer_needed)
1174 {
1175 first_slot = -1;
1176 last_slot = -1;
1177 goto alloc_done;
1178 }
1179 else if (reg_size
1180 && !interrupt_p
1181 && reg_size < (unsigned HOST_WIDE_INT) epiphany_stack_offset)
1182 reg_size = epiphany_stack_offset;
1183 if (interrupt_p)
1184 {
1185 if (total_size + reg_size < 0x3fc)
1186 {
1187 first_slot_offset = EPIPHANY_STACK_ALIGN (total_size + reg_size);
1188 first_slot_offset += EPIPHANY_STACK_ALIGN (epiphany_stack_offset);
1189 last_slot = -1;
1190 }
1191 else
1192 {
1193 first_slot_offset = EPIPHANY_STACK_ALIGN (reg_size);
1194 last_slot_offset = EPIPHANY_STACK_ALIGN (total_size);
1195 last_slot_offset += EPIPHANY_STACK_ALIGN (epiphany_stack_offset);
1196 if (last_slot >= 0)
1197 CLEAR_HARD_REG_BIT (gmask, last_slot);
1198 }
1199 }
1200 else if (total_size + reg_size < 0x1ffc && first_slot >= 0)
1201 {
1202 first_slot_offset = EPIPHANY_STACK_ALIGN (total_size + reg_size);
1203 last_slot = -1;
1204 }
1205 else
1206 {
1207 if (total_size + reg_size <= (unsigned) epiphany_stack_offset)
1208 {
1209 gcc_assert (first_slot < 0);
1210 gcc_assert (reg_size == 0 || (int) reg_size == epiphany_stack_offset);
1211 last_slot_offset = EPIPHANY_STACK_ALIGN (total_size + reg_size);
1212 }
1213 else
1214 {
1215 first_slot_offset
1216 = (reg_size
1217 ? EPIPHANY_STACK_ALIGN (reg_size - epiphany_stack_offset) : 0);
1218 if (!first_slot_offset)
1219 {
1220 if (first_slot != GPR_FP || !current_frame_info.need_fp)
1221 last_slot = first_slot;
1222 first_slot = -1;
1223 }
1224 last_slot_offset = EPIPHANY_STACK_ALIGN (total_size);
1225 if (reg_size)
1226 last_slot_offset += EPIPHANY_STACK_ALIGN (epiphany_stack_offset);
1227 }
1228 if (last_slot >= 0)
1229 CLEAR_HARD_REG_BIT (gmask, last_slot);
1230 }
1231 alloc_done:
1232 if (first_slot >= 0)
1233 {
1234 CLEAR_HARD_REG_BIT (gmask, first_slot);
1235 if (TEST_HARD_REG_BIT (gmask, first_slot ^ 1)
1236 && epiphany_stack_offset - pretend_size >= 2 * UNITS_PER_WORD)
1237 {
1238 CLEAR_HARD_REG_BIT (gmask, first_slot ^ 1);
1239 first_slot_size = 2 * UNITS_PER_WORD;
1240 first_slot &= ~1;
1241 }
1242 }
1243 total_size = first_slot_offset + last_slot_offset;
1244
1245 /* Save computed information. */
1246 current_frame_info.total_size = total_size;
1247 current_frame_info.pretend_size = pretend_size;
1248 current_frame_info.var_size = var_size;
1249 current_frame_info.args_size = args_size;
1250 current_frame_info.reg_size = reg_size;
1251 COPY_HARD_REG_SET (current_frame_info.gmask, gmask);
1252 current_frame_info.first_slot = first_slot;
1253 current_frame_info.last_slot = last_slot;
1254 current_frame_info.first_slot_offset = first_slot_offset;
1255 current_frame_info.first_slot_size = first_slot_size;
1256 current_frame_info.last_slot_offset = last_slot_offset;
1257
1258 current_frame_info.initialized = reload_completed;
1259
1260 /* Ok, we're done. */
1261 return total_size;
1262 }
1263 \f
1264 /* Print operand X (an rtx) in assembler syntax to file FILE.
1265 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1266 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1267
1268 static void
1269 epiphany_print_operand (FILE *file, rtx x, int code)
1270 {
1271 switch (code)
1272 {
1273 case 'd':
1274 fputs (epiphany_condition_codes[get_epiphany_condition_code (x)], file);
1275 return;
1276 case 'D':
1277 fputs (epiphany_condition_codes[EPIPHANY_INVERSE_CONDITION_CODE
1278 (get_epiphany_condition_code (x))],
1279 file);
1280 return;
1281
1282 case 'X':
1283 current_frame_info.stld_sz = 8;
1284 break;
1285
1286 case 'C' :
1287 current_frame_info.stld_sz = 4;
1288 break;
1289
1290 case 'c' :
1291 current_frame_info.stld_sz = 2;
1292 break;
1293
1294 case 'f':
1295 fputs (REG_P (x) ? "jalr " : "bl ", file);
1296 break;
1297
1298 case '-':
1299 fprintf (file, "r%d", epiphany_m1reg);
1300 return;
1301
1302 case 0 :
1303 /* Do nothing special. */
1304 break;
1305 default :
1306 /* Unknown flag. */
1307 output_operand_lossage ("invalid operand output code");
1308 }
1309
1310 switch (GET_CODE (x))
1311 {
1312 rtx addr;
1313 rtx offset;
1314
1315 case REG :
1316 fputs (reg_names[REGNO (x)], file);
1317 break;
1318 case MEM :
1319 if (code == 0)
1320 current_frame_info.stld_sz = 1;
1321 fputc ('[', file);
1322 addr = XEXP (x, 0);
1323 switch (GET_CODE (addr))
1324 {
1325 case POST_INC:
1326 offset = GEN_INT (GET_MODE_SIZE (GET_MODE (x)));
1327 addr = XEXP (addr, 0);
1328 break;
1329 case POST_DEC:
1330 offset = GEN_INT (-GET_MODE_SIZE (GET_MODE (x)));
1331 addr = XEXP (addr, 0);
1332 break;
1333 case POST_MODIFY:
1334 offset = XEXP (XEXP (addr, 1), 1);
1335 addr = XEXP (addr, 0);
1336 break;
1337 default:
1338 offset = 0;
1339 break;
1340 }
1341 output_address (GET_MODE (x), addr);
1342 fputc (']', file);
1343 if (offset)
1344 {
1345 fputc (',', file);
1346 if (CONST_INT_P (offset)) switch (GET_MODE_SIZE (GET_MODE (x)))
1347 {
1348 default:
1349 gcc_unreachable ();
1350 case 8:
1351 offset = GEN_INT (INTVAL (offset) >> 3);
1352 break;
1353 case 4:
1354 offset = GEN_INT (INTVAL (offset) >> 2);
1355 break;
1356 case 2:
1357 offset = GEN_INT (INTVAL (offset) >> 1);
1358 break;
1359 case 1:
1360 break;
1361 }
1362 output_address (GET_MODE (x), offset);
1363 }
1364 break;
1365 case CONST_DOUBLE :
1366 /* We handle SFmode constants here as output_addr_const doesn't. */
1367 if (GET_MODE (x) == SFmode)
1368 {
1369 long l;
1370
1371 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), l);
1372 fprintf (file, "%s0x%08lx", IMMEDIATE_PREFIX, l);
1373 break;
1374 }
1375 /* FALLTHRU */
1376 /* Let output_addr_const deal with it. */
1377 case CONST_INT:
1378 fprintf(file,"%s",IMMEDIATE_PREFIX);
1379 if (code == 'C' || code == 'X')
1380 {
1381 fprintf (file, "%ld",
1382 (long) (INTVAL (x) / current_frame_info.stld_sz));
1383 break;
1384 }
1385 /* Fall through */
1386 default :
1387 output_addr_const (file, x);
1388 break;
1389 }
1390 }
1391
1392 /* Print a memory address as an operand to reference that memory location. */
1393
1394 static void
1395 epiphany_print_operand_address (FILE *file, machine_mode /*mode*/, rtx addr)
1396 {
1397 register rtx base, index = 0;
1398 int offset = 0;
1399
1400 switch (GET_CODE (addr))
1401 {
1402 case REG :
1403 fputs (reg_names[REGNO (addr)], file);
1404 break;
1405 case SYMBOL_REF :
1406 if (/*???*/ 0 && SYMBOL_REF_FUNCTION_P (addr))
1407 {
1408 output_addr_const (file, addr);
1409 }
1410 else
1411 {
1412 output_addr_const (file, addr);
1413 }
1414 break;
1415 case PLUS :
1416 if (GET_CODE (XEXP (addr, 0)) == CONST_INT)
1417 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);
1418 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
1419 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);
1420 else
1421 base = XEXP (addr, 0), index = XEXP (addr, 1);
1422 gcc_assert (GET_CODE (base) == REG);
1423 fputs (reg_names[REGNO (base)], file);
1424 if (index == 0)
1425 {
1426 /*
1427 ** ++rk quirky method to scale offset for ld/str.......
1428 */
1429 fprintf (file, ",%s%d", IMMEDIATE_PREFIX,
1430 offset/current_frame_info.stld_sz);
1431 }
1432 else
1433 {
1434 switch (GET_CODE (index))
1435 {
1436 case REG:
1437 fprintf (file, ",%s", reg_names[REGNO (index)]);
1438 break;
1439 case SYMBOL_REF:
1440 fputc (',', file), output_addr_const (file, index);
1441 break;
1442 default:
1443 gcc_unreachable ();
1444 }
1445 }
1446 break;
1447 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC: case POST_MODIFY:
1448 /* We shouldn't get here as we've lost the mode of the memory object
1449 (which says how much to inc/dec by.
1450 FIXME: We have the mode now, address printing can be moved into this
1451 function. */
1452 gcc_unreachable ();
1453 break;
1454 default:
1455 output_addr_const (file, addr);
1456 break;
1457 }
1458 }
1459
1460 void
1461 epiphany_final_prescan_insn (rtx_insn *insn ATTRIBUTE_UNUSED,
1462 rtx *opvec ATTRIBUTE_UNUSED,
1463 int noperands ATTRIBUTE_UNUSED)
1464 {
1465 int i = epiphany_n_nops;
1466 rtx pat ATTRIBUTE_UNUSED;
1467
1468 while (i--)
1469 fputs ("\tnop\n", asm_out_file);
1470 }
1471
1472 \f
1473 /* Worker function for TARGET_RETURN_IN_MEMORY. */
1474
1475 static bool
1476 epiphany_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
1477 {
1478 HOST_WIDE_INT size = int_size_in_bytes (type);
1479
1480 if (AGGREGATE_TYPE_P (type)
1481 && (TYPE_MODE (type) == BLKmode || TYPE_NEEDS_CONSTRUCTING (type)))
1482 return true;
1483 return (size == -1 || size > 8);
1484 }
1485
1486 /* For EPIPHANY, All aggregates and arguments greater than 8 bytes are
1487 passed by reference. */
1488
1489 static bool
1490 epiphany_pass_by_reference (cumulative_args_t, const function_arg_info &arg)
1491 {
1492 if (tree type = arg.type)
1493 {
1494 if (AGGREGATE_TYPE_P (type)
1495 && (arg.mode == BLKmode || TYPE_NEEDS_CONSTRUCTING (type)))
1496 return true;
1497 }
1498 return false;
1499 }
1500
1501
1502 static rtx
1503 epiphany_function_value (const_tree ret_type,
1504 const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
1505 bool outgoing ATTRIBUTE_UNUSED)
1506 {
1507 machine_mode mode;
1508
1509 mode = TYPE_MODE (ret_type);
1510 /* We must change the mode like PROMOTE_MODE does.
1511 ??? PROMOTE_MODE is ignored for non-scalar types.
1512 The set of types tested here has to be kept in sync
1513 with the one in explow.c:promote_mode. */
1514 if (GET_MODE_CLASS (mode) == MODE_INT
1515 && GET_MODE_SIZE (mode) < 4
1516 && (TREE_CODE (ret_type) == INTEGER_TYPE
1517 || TREE_CODE (ret_type) == ENUMERAL_TYPE
1518 || TREE_CODE (ret_type) == BOOLEAN_TYPE
1519 || TREE_CODE (ret_type) == OFFSET_TYPE))
1520 mode = SImode;
1521 return gen_rtx_REG (mode, 0);
1522 }
1523
1524 static rtx
1525 epiphany_libcall_value (machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
1526 {
1527 return gen_rtx_REG (mode, 0);
1528 }
1529
1530 static bool
1531 epiphany_function_value_regno_p (const unsigned int regno ATTRIBUTE_UNUSED)
1532 {
1533 return regno == 0;
1534 }
1535
1536 /* Fix up invalid option settings. */
1537 static void
1538 epiphany_override_options (void)
1539 {
1540 if (epiphany_stack_offset < 4)
1541 error ("stack_offset must be at least 4");
1542 if (epiphany_stack_offset & 3)
1543 error ("stack_offset must be a multiple of 4");
1544 epiphany_stack_offset = (epiphany_stack_offset + 3) & -4;
1545 if (!TARGET_SOFT_CMPSF)
1546 flag_finite_math_only = 1;
1547
1548 /* This needs to be done at start up. It's convenient to do it here. */
1549 epiphany_init ();
1550 }
1551
1552 /* For a DImode load / store SET, make a SImode set for a
1553 REG_FRAME_RELATED_EXPR note, using OFFSET to create a high or lowpart
1554 subreg. */
1555 static rtx
1556 frame_subreg_note (rtx set, int offset)
1557 {
1558 rtx src = simplify_gen_subreg (SImode, SET_SRC (set), DImode, offset);
1559 rtx dst = simplify_gen_subreg (SImode, SET_DEST (set), DImode, offset);
1560
1561 set = gen_rtx_SET (dst ,src);
1562 RTX_FRAME_RELATED_P (set) = 1;
1563 return set;
1564 }
1565
1566 static rtx_insn *
1567 frame_insn (rtx x)
1568 {
1569 int i;
1570 rtx note = NULL_RTX;
1571 rtx_insn *insn;
1572
1573 if (GET_CODE (x) == PARALLEL)
1574 {
1575 rtx part = XVECEXP (x, 0, 0);
1576
1577 if (GET_MODE (SET_DEST (part)) == DImode)
1578 {
1579 note = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (x, 0) + 1));
1580 XVECEXP (note, 0, 0) = frame_subreg_note (part, 0);
1581 XVECEXP (note, 0, 1) = frame_subreg_note (part, UNITS_PER_WORD);
1582 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
1583 {
1584 part = copy_rtx (XVECEXP (x, 0, i));
1585
1586 if (GET_CODE (part) == SET)
1587 RTX_FRAME_RELATED_P (part) = 1;
1588 XVECEXP (note, 0, i + 1) = part;
1589 }
1590 }
1591 else
1592 {
1593 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1594 {
1595 part = XVECEXP (x, 0, i);
1596
1597 if (GET_CODE (part) == SET)
1598 RTX_FRAME_RELATED_P (part) = 1;
1599 }
1600 }
1601 }
1602 else if (GET_CODE (x) == SET && GET_MODE (SET_DEST (x)) == DImode)
1603 note = gen_rtx_PARALLEL (VOIDmode,
1604 gen_rtvec (2, frame_subreg_note (x, 0),
1605 frame_subreg_note (x, UNITS_PER_WORD)));
1606 insn = emit_insn (x);
1607 RTX_FRAME_RELATED_P (insn) = 1;
1608 if (note)
1609 add_reg_note (insn, REG_FRAME_RELATED_EXPR, note);
1610 return insn;
1611 }
1612
1613 static rtx_insn *
1614 frame_move_insn (rtx to, rtx from)
1615 {
1616 return frame_insn (gen_rtx_SET (to, from));
1617 }
1618
1619 /* Generate a MEM referring to a varargs argument slot. */
1620
1621 static rtx
1622 gen_varargs_mem (machine_mode mode, rtx addr)
1623 {
1624 rtx mem = gen_rtx_MEM (mode, addr);
1625 MEM_NOTRAP_P (mem) = 1;
1626 set_mem_alias_set (mem, get_varargs_alias_set ());
1627 return mem;
1628 }
1629
1630 /* Emit instructions to save or restore registers in the range [MIN..LIMIT) .
1631 If EPILOGUE_P is 0, save; if it is one, restore.
1632 ADDR is the stack slot to save the first register to; subsequent
1633 registers are written to lower addresses.
1634 However, the order of register pairs can be reversed in order to
1635 use double-word load-store instructions. Likewise, an unpaired single
1636 word save slot can be skipped while double saves are carried out, and
1637 reused when a single register is to be saved. */
1638
1639 static void
1640 epiphany_emit_save_restore (int min, int limit, rtx addr, int epilogue_p)
1641 {
1642 int i;
1643 int stack_offset
1644 = current_frame_info.first_slot >= 0 ? epiphany_stack_offset : 0;
1645 rtx skipped_mem = NULL_RTX;
1646 int last_saved = limit - 1;
1647
1648 if (!optimize)
1649 while (last_saved >= 0
1650 && !TEST_HARD_REG_BIT (current_frame_info.gmask, last_saved))
1651 last_saved--;
1652 for (i = 0; i < limit; i++)
1653 {
1654 machine_mode mode = word_mode;
1655 rtx mem, reg;
1656 int n = i;
1657 rtx (*gen_mem) (machine_mode, rtx) = gen_frame_mem;
1658
1659 /* Make sure we push the arguments in the right order. */
1660 if (n < MAX_EPIPHANY_PARM_REGS && crtl->args.pretend_args_size)
1661 {
1662 n = MAX_EPIPHANY_PARM_REGS - 1 - n;
1663 gen_mem = gen_varargs_mem;
1664 }
1665 if (stack_offset == current_frame_info.first_slot_size
1666 && current_frame_info.first_slot >= 0)
1667 {
1668 if (current_frame_info.first_slot_size > UNITS_PER_WORD)
1669 {
1670 mode = DImode;
1671 addr = plus_constant (Pmode, addr,
1672 - (HOST_WIDE_INT) UNITS_PER_WORD);
1673 }
1674 if (i-- < min || !epilogue_p)
1675 goto next_slot;
1676 n = current_frame_info.first_slot;
1677 gen_mem = gen_frame_mem;
1678 }
1679 else if (n == UNKNOWN_REGNUM
1680 && stack_offset > current_frame_info.first_slot_size)
1681 {
1682 i--;
1683 goto next_slot;
1684 }
1685 else if (!TEST_HARD_REG_BIT (current_frame_info.gmask, n))
1686 continue;
1687 else if (i < min)
1688 goto next_slot;
1689
1690 /* Check for a register pair to save. */
1691 if (n == i
1692 && (n >= MAX_EPIPHANY_PARM_REGS || crtl->args.pretend_args_size == 0)
1693 && (n & 1) == 0 && n+1 < limit
1694 && TEST_HARD_REG_BIT (current_frame_info.gmask, n+1))
1695 {
1696 /* If it fits in the current stack slot pair, place it there. */
1697 if (GET_CODE (addr) == PLUS && (stack_offset & 7) == 0
1698 && stack_offset != 2 * UNITS_PER_WORD
1699 && (current_frame_info.last_slot < 0
1700 || INTVAL (XEXP (addr, 1)) != UNITS_PER_WORD)
1701 && (n+1 != last_saved || !skipped_mem))
1702 {
1703 mode = DImode;
1704 i++;
1705 addr = plus_constant (Pmode, addr,
1706 - (HOST_WIDE_INT) UNITS_PER_WORD);
1707 }
1708 /* If it fits in the following stack slot pair, that's fine, too. */
1709 else if (GET_CODE (addr) == PLUS && (stack_offset & 7) == 4
1710 && stack_offset != 2 * UNITS_PER_WORD
1711 && stack_offset != 3 * UNITS_PER_WORD
1712 && (current_frame_info.last_slot < 0
1713 || INTVAL (XEXP (addr, 1)) != 2 * UNITS_PER_WORD)
1714 && n + 1 != last_saved)
1715 {
1716 gcc_assert (!skipped_mem);
1717 stack_offset -= GET_MODE_SIZE (mode);
1718 skipped_mem = gen_mem (mode, addr);
1719 mode = DImode;
1720 i++;
1721 addr = plus_constant (Pmode, addr,
1722 - (HOST_WIDE_INT) 2 * UNITS_PER_WORD);
1723 }
1724 }
1725 reg = gen_rtx_REG (mode, n);
1726 if (mode != DImode && skipped_mem)
1727 mem = skipped_mem;
1728 else
1729 mem = gen_mem (mode, addr);
1730
1731 /* If we are loading / storing LR, note the offset that
1732 gen_reload_insi_ra requires. Since GPR_LR is even,
1733 we only need to test n, even if mode is DImode. */
1734 gcc_assert ((GPR_LR & 1) == 0);
1735 if (n == GPR_LR)
1736 {
1737 long lr_slot_offset = 0;
1738 rtx m_addr = XEXP (mem, 0);
1739
1740 if (GET_CODE (m_addr) == PLUS)
1741 lr_slot_offset = INTVAL (XEXP (m_addr, 1));
1742 if (frame_pointer_needed)
1743 lr_slot_offset += (current_frame_info.first_slot_offset
1744 - current_frame_info.total_size);
1745 if (MACHINE_FUNCTION (cfun)->lr_slot_known)
1746 gcc_assert (MACHINE_FUNCTION (cfun)->lr_slot_offset
1747 == lr_slot_offset);
1748 MACHINE_FUNCTION (cfun)->lr_slot_offset = lr_slot_offset;
1749 MACHINE_FUNCTION (cfun)->lr_slot_known = 1;
1750 }
1751
1752 if (!epilogue_p)
1753 frame_move_insn (mem, reg);
1754 else if (n >= MAX_EPIPHANY_PARM_REGS || !crtl->args.pretend_args_size)
1755 emit_move_insn (reg, mem);
1756 if (mem == skipped_mem)
1757 {
1758 skipped_mem = NULL_RTX;
1759 continue;
1760 }
1761 next_slot:
1762 addr = plus_constant (Pmode, addr, -(HOST_WIDE_INT) UNITS_PER_WORD);
1763 stack_offset -= GET_MODE_SIZE (mode);
1764 }
1765 }
1766
1767 void
1768 epiphany_expand_prologue (void)
1769 {
1770 int interrupt_p;
1771 enum epiphany_function_type fn_type;
1772 rtx addr, mem, off, reg;
1773
1774 if (!current_frame_info.initialized)
1775 epiphany_compute_frame_size (get_frame_size ());
1776
1777 /* It is debatable if we should adjust this by epiphany_stack_offset. */
1778 if (flag_stack_usage_info)
1779 current_function_static_stack_size = current_frame_info.total_size;
1780
1781 fn_type = epiphany_compute_function_type (current_function_decl);
1782 interrupt_p = EPIPHANY_INTERRUPT_P (fn_type);
1783
1784 if (interrupt_p)
1785 {
1786 addr = plus_constant (Pmode, stack_pointer_rtx,
1787 - (HOST_WIDE_INT) 2 * UNITS_PER_WORD);
1788 if (!lookup_attribute ("forwarder_section",
1789 DECL_ATTRIBUTES (current_function_decl))
1790 || !epiphany_is_long_call_p (XEXP (DECL_RTL (current_function_decl),
1791 0)))
1792 frame_move_insn (gen_frame_mem (DImode, addr),
1793 gen_rtx_REG (DImode, GPR_0));
1794 frame_move_insn (gen_rtx_REG (SImode, GPR_0),
1795 gen_rtx_REG (word_mode, STATUS_REGNUM));
1796 frame_move_insn (gen_rtx_REG (SImode, GPR_1),
1797 gen_rtx_REG (word_mode, IRET_REGNUM));
1798 mem = gen_frame_mem (BLKmode, stack_pointer_rtx);
1799 off = GEN_INT (-current_frame_info.first_slot_offset);
1800 frame_insn (gen_stack_adjust_add (off, mem));
1801 if (!epiphany_uninterruptible_p (current_function_decl))
1802 emit_insn (gen_gie ());
1803 addr = plus_constant (Pmode, stack_pointer_rtx,
1804 current_frame_info.first_slot_offset
1805 - (HOST_WIDE_INT) 3 * UNITS_PER_WORD);
1806 }
1807 else
1808 {
1809 addr = plus_constant (Pmode, stack_pointer_rtx,
1810 epiphany_stack_offset
1811 - (HOST_WIDE_INT) UNITS_PER_WORD);
1812 epiphany_emit_save_restore (0, current_frame_info.small_threshold,
1813 addr, 0);
1814 /* Allocate register save area; for small to medium size frames,
1815 allocate the entire frame; this is joint with one register save. */
1816 if (current_frame_info.first_slot >= 0)
1817 {
1818 machine_mode mode
1819 = (current_frame_info.first_slot_size == UNITS_PER_WORD
1820 ? word_mode : DImode);
1821
1822 off = GEN_INT (-current_frame_info.first_slot_offset);
1823 mem = gen_frame_mem (BLKmode,
1824 gen_rtx_PLUS (Pmode, stack_pointer_rtx, off));
1825 frame_insn (gen_stack_adjust_str
1826 (gen_frame_mem (mode, stack_pointer_rtx),
1827 gen_rtx_REG (mode, current_frame_info.first_slot),
1828 off, mem));
1829 addr = plus_constant (Pmode, addr,
1830 current_frame_info.first_slot_offset);
1831 }
1832 }
1833 epiphany_emit_save_restore (current_frame_info.small_threshold,
1834 FIRST_PSEUDO_REGISTER, addr, 0);
1835 if (current_frame_info.need_fp)
1836 frame_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
1837 /* For large frames, allocate bulk of frame. This is usually joint with one
1838 register save. */
1839 if (current_frame_info.last_slot >= 0)
1840 {
1841 rtx ip, mem2, note;
1842 rtx_insn *insn;
1843
1844 gcc_assert (current_frame_info.last_slot != GPR_FP
1845 || (!current_frame_info.need_fp
1846 && current_frame_info.first_slot < 0));
1847 off = GEN_INT (-current_frame_info.last_slot_offset);
1848 mem = gen_frame_mem (BLKmode,
1849 gen_rtx_PLUS (Pmode, stack_pointer_rtx, off));
1850 ip = gen_rtx_REG (Pmode, GPR_IP);
1851 frame_move_insn (ip, off);
1852 reg = gen_rtx_REG (word_mode, current_frame_info.last_slot),
1853 mem2 = gen_frame_mem (word_mode, stack_pointer_rtx),
1854 insn = frame_insn (gen_stack_adjust_str (mem2, reg, ip, mem));
1855 /* Instruction scheduling can separate the instruction setting IP from
1856 INSN so that dwarf2out_frame_debug_expr becomes confused what the
1857 temporary register is. Example: _gcov.o */
1858 note = gen_rtx_SET (stack_pointer_rtx,
1859 gen_rtx_PLUS (Pmode, stack_pointer_rtx, off));
1860 note = gen_rtx_PARALLEL (VOIDmode,
1861 gen_rtvec (2, gen_rtx_SET (mem2, reg), note));
1862 add_reg_note (insn, REG_FRAME_RELATED_EXPR, note);
1863 }
1864 /* If there is only one or no register to save, yet we have a large frame,
1865 use an add. */
1866 else if (current_frame_info.last_slot_offset)
1867 {
1868 mem = gen_frame_mem (BLKmode,
1869 plus_constant (Pmode, stack_pointer_rtx,
1870 current_frame_info.last_slot_offset));
1871 off = GEN_INT (-current_frame_info.last_slot_offset);
1872 if (!SIMM11 (INTVAL (off)))
1873 {
1874 reg = gen_rtx_REG (Pmode, GPR_IP);
1875 frame_move_insn (reg, off);
1876 off = reg;
1877 }
1878 frame_insn (gen_stack_adjust_add (off, mem));
1879 }
1880 }
1881
1882 void
1883 epiphany_expand_epilogue (int sibcall_p)
1884 {
1885 int interrupt_p;
1886 enum epiphany_function_type fn_type;
1887 rtx mem, addr, reg, off;
1888 HOST_WIDE_INT restore_offset;
1889
1890 fn_type = epiphany_compute_function_type( current_function_decl);
1891 interrupt_p = EPIPHANY_INTERRUPT_P (fn_type);
1892
1893 /* For variable frames, deallocate bulk of frame. */
1894 if (current_frame_info.need_fp)
1895 {
1896 mem = gen_frame_mem (BLKmode, stack_pointer_rtx);
1897 emit_insn (gen_stack_adjust_mov (mem));
1898 }
1899 /* Else for large static frames, deallocate bulk of frame. */
1900 else if (current_frame_info.last_slot_offset)
1901 {
1902 mem = gen_frame_mem (BLKmode, stack_pointer_rtx);
1903 reg = gen_rtx_REG (Pmode, GPR_IP);
1904 emit_move_insn (reg, GEN_INT (current_frame_info.last_slot_offset));
1905 emit_insn (gen_stack_adjust_add (reg, mem));
1906 }
1907 restore_offset = (interrupt_p
1908 ? - 3 * UNITS_PER_WORD
1909 : epiphany_stack_offset - (HOST_WIDE_INT) UNITS_PER_WORD);
1910 addr = plus_constant (Pmode, stack_pointer_rtx,
1911 (current_frame_info.first_slot_offset
1912 + restore_offset));
1913 epiphany_emit_save_restore (current_frame_info.small_threshold,
1914 FIRST_PSEUDO_REGISTER, addr, 1);
1915
1916 if (interrupt_p && !epiphany_uninterruptible_p (current_function_decl))
1917 emit_insn (gen_gid ());
1918
1919 off = GEN_INT (current_frame_info.first_slot_offset);
1920 mem = gen_frame_mem (BLKmode, stack_pointer_rtx);
1921 /* For large / variable size frames, deallocating the register save area is
1922 joint with one register restore; for medium size frames, we use a
1923 dummy post-increment load to dealloacte the whole frame. */
1924 if (!SIMM11 (INTVAL (off)) || current_frame_info.last_slot >= 0)
1925 {
1926 emit_insn (gen_stack_adjust_ldr
1927 (gen_rtx_REG (word_mode,
1928 (current_frame_info.last_slot >= 0
1929 ? current_frame_info.last_slot : GPR_IP)),
1930 gen_frame_mem (word_mode, stack_pointer_rtx),
1931 off,
1932 mem));
1933 }
1934 /* While for small frames, we deallocate the entire frame with one add. */
1935 else if (INTVAL (off))
1936 {
1937 emit_insn (gen_stack_adjust_add (off, mem));
1938 }
1939 if (interrupt_p)
1940 {
1941 emit_move_insn (gen_rtx_REG (word_mode, STATUS_REGNUM),
1942 gen_rtx_REG (SImode, GPR_0));
1943 emit_move_insn (gen_rtx_REG (word_mode, IRET_REGNUM),
1944 gen_rtx_REG (SImode, GPR_1));
1945 addr = plus_constant (Pmode, stack_pointer_rtx,
1946 - (HOST_WIDE_INT) 2 * UNITS_PER_WORD);
1947 emit_move_insn (gen_rtx_REG (DImode, GPR_0),
1948 gen_frame_mem (DImode, addr));
1949 }
1950 addr = plus_constant (Pmode, stack_pointer_rtx,
1951 epiphany_stack_offset - (HOST_WIDE_INT) UNITS_PER_WORD);
1952 epiphany_emit_save_restore (0, current_frame_info.small_threshold, addr, 1);
1953 if (!sibcall_p)
1954 {
1955 if (interrupt_p)
1956 emit_jump_insn (gen_return_internal_interrupt());
1957 else
1958 emit_jump_insn (gen_return_i ());
1959 }
1960 }
1961
1962 int
1963 epiphany_initial_elimination_offset (int from, int to)
1964 {
1965 epiphany_compute_frame_size (get_frame_size ());
1966 if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
1967 return current_frame_info.total_size - current_frame_info.reg_size;
1968 if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
1969 return current_frame_info.first_slot_offset - current_frame_info.reg_size;
1970 if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
1971 return (current_frame_info.total_size
1972 - ((current_frame_info.pretend_size + 4) & -8));
1973 if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
1974 return (current_frame_info.first_slot_offset
1975 - ((current_frame_info.pretend_size + 4) & -8));
1976 gcc_unreachable ();
1977 }
1978
1979 bool
1980 epiphany_regno_rename_ok (unsigned, unsigned dst)
1981 {
1982 enum epiphany_function_type fn_type;
1983
1984 fn_type = epiphany_compute_function_type (current_function_decl);
1985 if (!EPIPHANY_INTERRUPT_P (fn_type))
1986 return true;
1987 if (df_regs_ever_live_p (dst))
1988 return true;
1989 return false;
1990 }
1991
1992 static int
1993 epiphany_issue_rate (void)
1994 {
1995 return 2;
1996 }
1997
1998 /* Function to update the integer COST
1999 based on the relationship between INSN that is dependent on
2000 DEP_INSN through the dependence LINK. The default is to make no
2001 adjustment to COST. This can be used for example to specify to
2002 the scheduler that an output- or anti-dependence does not incur
2003 the same cost as a data-dependence. The return value should be
2004 the new value for COST. */
2005 static int
2006 epiphany_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep_insn,
2007 int cost, unsigned int)
2008 {
2009 if (dep_type == 0)
2010 {
2011 rtx dep_set;
2012
2013 if (recog_memoized (insn) < 0
2014 || recog_memoized (dep_insn) < 0)
2015 return cost;
2016
2017 dep_set = single_set (dep_insn);
2018
2019 /* The latency that we specify in the scheduling description refers
2020 to the actual output, not to an auto-increment register; for that,
2021 the latency is one. */
2022 if (dep_set && MEM_P (SET_SRC (dep_set)) && cost > 1)
2023 {
2024 rtx set = single_set (insn);
2025
2026 if (set
2027 && !reg_overlap_mentioned_p (SET_DEST (dep_set), SET_SRC (set))
2028 && (!MEM_P (SET_DEST (set))
2029 || !reg_overlap_mentioned_p (SET_DEST (dep_set),
2030 XEXP (SET_DEST (set), 0))))
2031 cost = 1;
2032 }
2033 }
2034 return cost;
2035 }
2036
2037 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
2038
2039 #define RTX_OK_FOR_BASE_P(X) \
2040 (REG_P (X) && REG_OK_FOR_BASE_P (X))
2041
2042 #define RTX_OK_FOR_INDEX_P(MODE, X) \
2043 ((GET_MODE_CLASS (MODE) != MODE_VECTOR_INT \
2044 || epiphany_vect_align >= GET_MODE_SIZE (MODE)) \
2045 && (REG_P (X) && REG_OK_FOR_INDEX_P (X)))
2046
2047 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X) \
2048 (GET_CODE (X) == PLUS \
2049 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
2050 && (RTX_OK_FOR_INDEX_P (MODE, XEXP (X, 1)) \
2051 || RTX_OK_FOR_OFFSET_P (MODE, XEXP (X, 1))))
2052
2053 static bool
2054 epiphany_legitimate_address_p (machine_mode mode, rtx x, bool strict)
2055 {
2056 #define REG_OK_FOR_BASE_P(X) \
2057 (strict ? GPR_P (REGNO (X)) : GPR_AP_OR_PSEUDO_P (REGNO (X)))
2058 if (RTX_OK_FOR_BASE_P (x))
2059 return true;
2060 if (RTX_FRAME_OFFSET_P (x))
2061 return true;
2062 if (LEGITIMATE_OFFSET_ADDRESS_P (mode, x))
2063 return true;
2064 /* If this is a misaligned stack access, don't force it to reg+index. */
2065 if (GET_MODE_SIZE (mode) == 8
2066 && GET_CODE (x) == PLUS && XEXP (x, 0) == stack_pointer_rtx
2067 /* Decomposed to SImode; GET_MODE_SIZE (SImode) == 4 */
2068 && !(INTVAL (XEXP (x, 1)) & 3)
2069 && INTVAL (XEXP (x, 1)) >= -2047 * 4
2070 && INTVAL (XEXP (x, 1)) <= 2046 * 4)
2071 return true;
2072 if (TARGET_POST_INC
2073 && (GET_CODE (x) == POST_DEC || GET_CODE (x) == POST_INC)
2074 && RTX_OK_FOR_BASE_P (XEXP ((x), 0)))
2075 return true;
2076 if ((TARGET_POST_MODIFY || reload_completed)
2077 && GET_CODE (x) == POST_MODIFY
2078 && GET_CODE (XEXP ((x), 1)) == PLUS
2079 && rtx_equal_p (XEXP ((x), 0), XEXP (XEXP ((x), 1), 0))
2080 && LEGITIMATE_OFFSET_ADDRESS_P (mode, XEXP ((x), 1)))
2081 return true;
2082 if (mode == BLKmode)
2083 return epiphany_legitimate_address_p (SImode, x, strict);
2084 return false;
2085 }
2086
2087 static reg_class_t
2088 epiphany_secondary_reload (bool in_p, rtx x, reg_class_t rclass,
2089 machine_mode mode ATTRIBUTE_UNUSED,
2090 secondary_reload_info *sri)
2091 {
2092 /* This could give more reload inheritance, but we are missing some
2093 reload infrastructure. */
2094 if (0)
2095 if (in_p && GET_CODE (x) == UNSPEC
2096 && satisfies_constraint_Sra (x) && !satisfies_constraint_Rra (x))
2097 {
2098 gcc_assert (rclass == GENERAL_REGS);
2099 sri->icode = CODE_FOR_reload_insi_ra;
2100 return NO_REGS;
2101 }
2102 return NO_REGS;
2103 }
2104
2105 bool
2106 epiphany_is_long_call_p (rtx x)
2107 {
2108 tree decl = SYMBOL_REF_DECL (x);
2109 bool ret_val = !TARGET_SHORT_CALLS;
2110 tree attrs;
2111
2112 /* ??? Is it safe to default to ret_val if decl is NULL? We should
2113 probably encode information via encode_section_info, and also
2114 have (an) option(s) to take SYMBOL_FLAG_LOCAL and/or SYMBOL_FLAG_EXTERNAL
2115 into account. */
2116 if (decl)
2117 {
2118 attrs = TYPE_ATTRIBUTES (TREE_TYPE (decl));
2119 if (lookup_attribute ("long_call", attrs))
2120 ret_val = true;
2121 else if (lookup_attribute ("short_call", attrs))
2122 ret_val = false;
2123 }
2124 return ret_val;
2125 }
2126
2127 bool
2128 epiphany_small16 (rtx x)
2129 {
2130 rtx base = x;
2131 rtx offs ATTRIBUTE_UNUSED = const0_rtx;
2132
2133 if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS)
2134 {
2135 base = XEXP (XEXP (x, 0), 0);
2136 offs = XEXP (XEXP (x, 0), 1);
2137 }
2138 if (GET_CODE (base) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (base)
2139 && epiphany_is_long_call_p (base))
2140 return false;
2141 return TARGET_SMALL16 != 0;
2142 }
2143
2144 /* Return nonzero if it is ok to make a tail-call to DECL. */
2145 static bool
2146 epiphany_function_ok_for_sibcall (tree decl, tree exp)
2147 {
2148 bool cfun_interrupt_p, call_interrupt_p;
2149
2150 cfun_interrupt_p = EPIPHANY_INTERRUPT_P (epiphany_compute_function_type
2151 (current_function_decl));
2152 if (decl)
2153 call_interrupt_p = EPIPHANY_INTERRUPT_P (epiphany_compute_function_type (decl));
2154 else
2155 {
2156 tree fn_type = TREE_TYPE (CALL_EXPR_FN (exp));
2157
2158 gcc_assert (POINTER_TYPE_P (fn_type));
2159 fn_type = TREE_TYPE (fn_type);
2160 gcc_assert (TREE_CODE (fn_type) == FUNCTION_TYPE
2161 || TREE_CODE (fn_type) == METHOD_TYPE);
2162 call_interrupt_p
2163 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (fn_type)) != NULL;
2164 }
2165
2166 /* Don't tailcall from or to an ISR routine - although we could in
2167 principle tailcall from one ISR routine to another, we'd need to
2168 handle this in sibcall_epilogue to make it work. */
2169 if (cfun_interrupt_p || call_interrupt_p)
2170 return false;
2171
2172 /* Everything else is ok. */
2173 return true;
2174 }
2175
2176 /* T is a function declaration or the MEM_EXPR of a MEM passed to a call
2177 expander.
2178 Return true iff the type of T has the uninterruptible attribute.
2179 If T is NULL, return false. */
2180 bool
2181 epiphany_uninterruptible_p (tree t)
2182 {
2183 tree attrs;
2184
2185 if (t)
2186 {
2187 attrs = TYPE_ATTRIBUTES (TREE_TYPE (t));
2188 if (lookup_attribute ("disinterrupt", attrs))
2189 return true;
2190 }
2191 return false;
2192 }
2193
2194 bool
2195 epiphany_call_uninterruptible_p (rtx mem)
2196 {
2197 rtx addr = XEXP (mem, 0);
2198 tree t = NULL_TREE;
2199
2200 if (GET_CODE (addr) == SYMBOL_REF)
2201 t = SYMBOL_REF_DECL (addr);
2202 if (!t)
2203 t = MEM_EXPR (mem);
2204 return epiphany_uninterruptible_p (t);
2205 }
2206
2207 static machine_mode
2208 epiphany_promote_function_mode (const_tree type, machine_mode mode,
2209 int *punsignedp ATTRIBUTE_UNUSED,
2210 const_tree funtype ATTRIBUTE_UNUSED,
2211 int for_return ATTRIBUTE_UNUSED)
2212 {
2213 int dummy;
2214
2215 return promote_mode (type, mode, &dummy);
2216 }
2217
2218 static void
2219 epiphany_conditional_register_usage (void)
2220 {
2221 int i;
2222
2223 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
2224 {
2225 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
2226 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
2227 }
2228 if (TARGET_HALF_REG_FILE)
2229 {
2230 for (i = 32; i <= 63; i++)
2231 {
2232 fixed_regs[i] = 1;
2233 call_used_regs[i] = 1;
2234 }
2235 }
2236 if (epiphany_m1reg >= 0)
2237 {
2238 fixed_regs[epiphany_m1reg] = 1;
2239 call_used_regs[epiphany_m1reg] = 1;
2240 }
2241 if (!TARGET_PREFER_SHORT_INSN_REGS)
2242 CLEAR_HARD_REG_SET (reg_class_contents[SHORT_INSN_REGS]);
2243 COPY_HARD_REG_SET (reg_class_contents[SIBCALL_REGS],
2244 reg_class_contents[GENERAL_REGS]);
2245 /* It would be simpler and quicker if we could just use
2246 AND_COMPL_HARD_REG_SET, alas, call_used_reg_set is yet uninitialized;
2247 it is set up later by our caller. */
2248 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2249 if (!call_used_regs[i])
2250 CLEAR_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], i);
2251 }
2252
2253 /* Determine where to put an argument to a function.
2254 Value is zero to push the argument on the stack,
2255 or a hard register in which to store the argument.
2256
2257 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2258 the preceding args and about the function being called.
2259 ARG is a description of the argument. */
2260 /* On the EPIPHANY the first MAX_EPIPHANY_PARM_REGS args are normally in
2261 registers and the rest are pushed. */
2262 static rtx
2263 epiphany_function_arg (cumulative_args_t cum_v, const function_arg_info &arg)
2264 {
2265 CUMULATIVE_ARGS cum = *get_cumulative_args (cum_v);
2266
2267 if (PASS_IN_REG_P (cum, arg.mode, arg.type))
2268 return gen_rtx_REG (arg.mode, ROUND_ADVANCE_CUM (cum, arg.mode, arg.type));
2269 return 0;
2270 }
2271
2272 /* Update the data in CUM to advance over an argument
2273 of mode MODE and data type TYPE.
2274 (TYPE is null for libcalls where that information may not be available.) */
2275 static void
2276 epiphany_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
2277 const_tree type, bool named ATTRIBUTE_UNUSED)
2278 {
2279 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
2280
2281 *cum = ROUND_ADVANCE_CUM (*cum, mode, type) + ROUND_ADVANCE_ARG (mode, type);
2282 }
2283 \f
2284 /* Nested function support.
2285 An epiphany trampoline looks like this:
2286 mov r16,%low(fnaddr)
2287 movt r16,%high(fnaddr)
2288 mov ip,%low(cxt)
2289 movt ip,%high(cxt)
2290 jr r16 */
2291
2292 #define EPIPHANY_LOW_RTX(X) \
2293 (gen_rtx_IOR (SImode, \
2294 gen_rtx_ASHIFT (SImode, \
2295 gen_rtx_AND (SImode, (X), GEN_INT (0xff)), GEN_INT (5)), \
2296 gen_rtx_ASHIFT (SImode, \
2297 gen_rtx_AND (SImode, (X), GEN_INT (0xff00)), GEN_INT (12))))
2298 #define EPIPHANY_HIGH_RTX(X) \
2299 EPIPHANY_LOW_RTX (gen_rtx_LSHIFTRT (SImode, (X), GEN_INT (16)))
2300
2301 /* Emit RTL insns to initialize the variable parts of a trampoline.
2302 FNADDR is an RTX for the address of the function's pure code.
2303 CXT is an RTX for the static chain value for the function. */
2304 static void
2305 epiphany_trampoline_init (rtx tramp_mem, tree fndecl, rtx cxt)
2306 {
2307 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
2308 rtx tramp = force_reg (Pmode, XEXP (tramp_mem, 0));
2309
2310 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (Pmode, tramp, 0)),
2311 gen_rtx_IOR (SImode, GEN_INT (0x4002000b),
2312 EPIPHANY_LOW_RTX (fnaddr)));
2313 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (Pmode, tramp, 4)),
2314 gen_rtx_IOR (SImode, GEN_INT (0x5002000b),
2315 EPIPHANY_HIGH_RTX (fnaddr)));
2316 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (Pmode, tramp, 8)),
2317 gen_rtx_IOR (SImode, GEN_INT (0x2002800b),
2318 EPIPHANY_LOW_RTX (cxt)));
2319 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (Pmode, tramp, 12)),
2320 gen_rtx_IOR (SImode, GEN_INT (0x3002800b),
2321 EPIPHANY_HIGH_RTX (cxt)));
2322 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (Pmode, tramp, 16)),
2323 GEN_INT (0x0802014f));
2324 }
2325 \f
2326 bool
2327 epiphany_optimize_mode_switching (int entity)
2328 {
2329 if (MACHINE_FUNCTION (cfun)->sw_entities_processed & (1 << entity))
2330 return false;
2331 switch (entity)
2332 {
2333 case EPIPHANY_MSW_ENTITY_AND:
2334 case EPIPHANY_MSW_ENTITY_OR:
2335 case EPIPHANY_MSW_ENTITY_CONFIG:
2336 return true;
2337 case EPIPHANY_MSW_ENTITY_NEAREST:
2338 case EPIPHANY_MSW_ENTITY_TRUNC:
2339 return optimize > 0;
2340 case EPIPHANY_MSW_ENTITY_ROUND_UNKNOWN:
2341 return MACHINE_FUNCTION (cfun)->unknown_mode_uses != 0;
2342 case EPIPHANY_MSW_ENTITY_ROUND_KNOWN:
2343 return (MACHINE_FUNCTION (cfun)->sw_entities_processed
2344 & (1 << EPIPHANY_MSW_ENTITY_ROUND_UNKNOWN)) != 0;
2345 case EPIPHANY_MSW_ENTITY_FPU_OMNIBUS:
2346 return optimize == 0 || current_pass == pass_mode_switch_use;
2347 }
2348 gcc_unreachable ();
2349 }
2350
2351 static int
2352 epiphany_mode_priority (int entity, int priority)
2353 {
2354 if (entity == EPIPHANY_MSW_ENTITY_AND || entity == EPIPHANY_MSW_ENTITY_OR
2355 || entity== EPIPHANY_MSW_ENTITY_CONFIG)
2356 return priority;
2357 if (priority > 3)
2358 switch (priority)
2359 {
2360 case 4: return FP_MODE_ROUND_UNKNOWN;
2361 case 5: return FP_MODE_NONE;
2362 default: gcc_unreachable ();
2363 }
2364 switch ((enum attr_fp_mode) epiphany_normal_fp_mode)
2365 {
2366 case FP_MODE_INT:
2367 switch (priority)
2368 {
2369 case 0: return FP_MODE_INT;
2370 case 1: return epiphany_normal_fp_rounding;
2371 case 2: return (epiphany_normal_fp_rounding == FP_MODE_ROUND_NEAREST
2372 ? FP_MODE_ROUND_TRUNC : FP_MODE_ROUND_NEAREST);
2373 case 3: return FP_MODE_CALLER;
2374 }
2375 case FP_MODE_ROUND_NEAREST:
2376 case FP_MODE_CALLER:
2377 switch (priority)
2378 {
2379 case 0: return FP_MODE_ROUND_NEAREST;
2380 case 1: return FP_MODE_ROUND_TRUNC;
2381 case 2: return FP_MODE_INT;
2382 case 3: return FP_MODE_CALLER;
2383 }
2384 case FP_MODE_ROUND_TRUNC:
2385 switch (priority)
2386 {
2387 case 0: return FP_MODE_ROUND_TRUNC;
2388 case 1: return FP_MODE_ROUND_NEAREST;
2389 case 2: return FP_MODE_INT;
2390 case 3: return FP_MODE_CALLER;
2391 }
2392 case FP_MODE_ROUND_UNKNOWN:
2393 case FP_MODE_NONE:
2394 gcc_unreachable ();
2395 }
2396 gcc_unreachable ();
2397 }
2398
2399 int
2400 epiphany_mode_needed (int entity, rtx_insn *insn)
2401 {
2402 enum attr_fp_mode mode;
2403
2404 if (recog_memoized (insn) < 0)
2405 {
2406 if (entity == EPIPHANY_MSW_ENTITY_AND
2407 || entity == EPIPHANY_MSW_ENTITY_OR
2408 || entity == EPIPHANY_MSW_ENTITY_CONFIG)
2409 return 2;
2410 return FP_MODE_NONE;
2411 }
2412 mode = get_attr_fp_mode (insn);
2413
2414 switch (entity)
2415 {
2416 case EPIPHANY_MSW_ENTITY_AND:
2417 return mode != FP_MODE_NONE && mode != FP_MODE_INT ? 1 : 2;
2418 case EPIPHANY_MSW_ENTITY_OR:
2419 return mode == FP_MODE_INT ? 1 : 2;
2420 case EPIPHANY_MSW_ENTITY_CONFIG:
2421 /* We must know/save config before we set it to something else.
2422 Where we need the original value, we are fine with having it
2423 just unchanged from the function start.
2424 Because of the nature of the mode switching optimization,
2425 a restore will be dominated by a clobber. */
2426 if (mode != FP_MODE_NONE && mode != FP_MODE_CALLER)
2427 return 1;
2428 /* A cpecial case are abnormal edges, which are deemed to clobber
2429 the mode as well. We need to pin this effect on a actually
2430 dominating insn, and one where the frame can be accessed, too, in
2431 case the pseudo used to save CONFIG doesn't get a hard register. */
2432 if (CALL_P (insn) && find_reg_note (insn, REG_EH_REGION, NULL_RTX))
2433 return 1;
2434 return 2;
2435 case EPIPHANY_MSW_ENTITY_ROUND_KNOWN:
2436 if (recog_memoized (insn) == CODE_FOR_set_fp_mode)
2437 mode = (enum attr_fp_mode) epiphany_mode_after (entity, mode, insn);
2438 /* Fall through. */
2439 case EPIPHANY_MSW_ENTITY_NEAREST:
2440 case EPIPHANY_MSW_ENTITY_TRUNC:
2441 if (mode == FP_MODE_ROUND_UNKNOWN)
2442 {
2443 MACHINE_FUNCTION (cfun)->unknown_mode_uses++;
2444 return FP_MODE_NONE;
2445 }
2446 return mode;
2447 case EPIPHANY_MSW_ENTITY_ROUND_UNKNOWN:
2448 if (mode == FP_MODE_ROUND_NEAREST || mode == FP_MODE_ROUND_TRUNC)
2449 return FP_MODE_ROUND_UNKNOWN;
2450 return mode;
2451 case EPIPHANY_MSW_ENTITY_FPU_OMNIBUS:
2452 if (mode == FP_MODE_ROUND_UNKNOWN)
2453 return epiphany_normal_fp_rounding;
2454 return mode;
2455 default:
2456 gcc_unreachable ();
2457 }
2458 }
2459
2460 static int
2461 epiphany_mode_entry_exit (int entity, bool exit)
2462 {
2463 int normal_mode = epiphany_normal_fp_mode ;
2464
2465 MACHINE_FUNCTION (cfun)->sw_entities_processed |= (1 << entity);
2466 if (epiphany_is_interrupt_p (current_function_decl))
2467 normal_mode = FP_MODE_CALLER;
2468 switch (entity)
2469 {
2470 case EPIPHANY_MSW_ENTITY_AND:
2471 if (exit)
2472 return normal_mode != FP_MODE_INT ? 1 : 2;
2473 return 0;
2474 case EPIPHANY_MSW_ENTITY_OR:
2475 if (exit)
2476 return normal_mode == FP_MODE_INT ? 1 : 2;
2477 return 0;
2478 case EPIPHANY_MSW_ENTITY_CONFIG:
2479 if (exit)
2480 return 2;
2481 return normal_mode == FP_MODE_CALLER ? 0 : 1;
2482 case EPIPHANY_MSW_ENTITY_ROUND_UNKNOWN:
2483 if (normal_mode == FP_MODE_ROUND_NEAREST
2484 || normal_mode == FP_MODE_ROUND_TRUNC)
2485 return FP_MODE_ROUND_UNKNOWN;
2486 /* Fall through. */
2487 case EPIPHANY_MSW_ENTITY_NEAREST:
2488 case EPIPHANY_MSW_ENTITY_TRUNC:
2489 case EPIPHANY_MSW_ENTITY_ROUND_KNOWN:
2490 case EPIPHANY_MSW_ENTITY_FPU_OMNIBUS:
2491 return normal_mode;
2492 default:
2493 gcc_unreachable ();
2494 }
2495 }
2496
2497 int
2498 epiphany_mode_after (int entity, int last_mode, rtx_insn *insn)
2499 {
2500 /* We have too few call-saved registers to hope to keep the masks across
2501 calls. */
2502 if (entity == EPIPHANY_MSW_ENTITY_AND || entity == EPIPHANY_MSW_ENTITY_OR)
2503 {
2504 if (CALL_P (insn))
2505 return 0;
2506 return last_mode;
2507 }
2508 /* If there is an abnormal edge, we don't want the config register to
2509 be 'saved' again at the destination.
2510 The frame pointer adjustment is inside a PARALLEL because of the
2511 flags clobber. */
2512 if (entity == EPIPHANY_MSW_ENTITY_CONFIG && NONJUMP_INSN_P (insn)
2513 && GET_CODE (PATTERN (insn)) == PARALLEL
2514 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
2515 && SET_DEST (XVECEXP (PATTERN (insn), 0, 0)) == frame_pointer_rtx)
2516 {
2517 gcc_assert (cfun->has_nonlocal_label);
2518 return 1;
2519 }
2520 if (recog_memoized (insn) < 0)
2521 return last_mode;
2522 if (get_attr_fp_mode (insn) == FP_MODE_ROUND_UNKNOWN
2523 && last_mode != FP_MODE_ROUND_NEAREST && last_mode != FP_MODE_ROUND_TRUNC)
2524 {
2525 if (entity == EPIPHANY_MSW_ENTITY_NEAREST)
2526 return FP_MODE_ROUND_NEAREST;
2527 if (entity == EPIPHANY_MSW_ENTITY_TRUNC)
2528 return FP_MODE_ROUND_TRUNC;
2529 }
2530 if (recog_memoized (insn) == CODE_FOR_set_fp_mode)
2531 {
2532 rtx src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0));
2533 int fp_mode;
2534
2535 if (REG_P (src))
2536 return FP_MODE_CALLER;
2537 fp_mode = INTVAL (XVECEXP (XEXP (src, 0), 0, 0));
2538 if (entity == EPIPHANY_MSW_ENTITY_ROUND_UNKNOWN
2539 && (fp_mode == FP_MODE_ROUND_NEAREST
2540 || fp_mode == EPIPHANY_MSW_ENTITY_TRUNC))
2541 return FP_MODE_ROUND_UNKNOWN;
2542 return fp_mode;
2543 }
2544 return last_mode;
2545 }
2546
2547 static int
2548 epiphany_mode_entry (int entity)
2549 {
2550 return epiphany_mode_entry_exit (entity, false);
2551 }
2552
2553 static int
2554 epiphany_mode_exit (int entity)
2555 {
2556 return epiphany_mode_entry_exit (entity, true);
2557 }
2558
2559 void
2560 emit_set_fp_mode (int entity, int mode, int prev_mode ATTRIBUTE_UNUSED,
2561 HARD_REG_SET regs_live ATTRIBUTE_UNUSED)
2562 {
2563 rtx save_cc, cc_reg, mask, src, src2;
2564 enum attr_fp_mode fp_mode;
2565
2566 if (!MACHINE_FUNCTION (cfun)->and_mask)
2567 {
2568 MACHINE_FUNCTION (cfun)->and_mask = gen_reg_rtx (SImode);
2569 MACHINE_FUNCTION (cfun)->or_mask = gen_reg_rtx (SImode);
2570 }
2571 if (entity == EPIPHANY_MSW_ENTITY_AND)
2572 {
2573 gcc_assert (mode >= 0 && mode <= 2);
2574 if (mode == 1)
2575 emit_move_insn (MACHINE_FUNCTION (cfun)->and_mask,
2576 gen_int_mode (0xfff1fffe, SImode));
2577 return;
2578 }
2579 else if (entity == EPIPHANY_MSW_ENTITY_OR)
2580 {
2581 gcc_assert (mode >= 0 && mode <= 2);
2582 if (mode == 1)
2583 emit_move_insn (MACHINE_FUNCTION (cfun)->or_mask, GEN_INT(0x00080000));
2584 return;
2585 }
2586 else if (entity == EPIPHANY_MSW_ENTITY_CONFIG)
2587 {
2588 /* Mode switching optimization is done after emit_initial_value_sets,
2589 so we have to take care of CONFIG_REGNUM here. */
2590 gcc_assert (mode >= 0 && mode <= 2);
2591 rtx save = get_hard_reg_initial_val (SImode, CONFIG_REGNUM);
2592 if (mode == 1)
2593 emit_insn (gen_save_config (save));
2594 return;
2595 }
2596 fp_mode = (enum attr_fp_mode) mode;
2597 src = NULL_RTX;
2598
2599 switch (fp_mode)
2600 {
2601 case FP_MODE_CALLER:
2602 /* The EPIPHANY_MSW_ENTITY_CONFIG processing must come later
2603 so that the config save gets inserted before the first use. */
2604 gcc_assert (entity > EPIPHANY_MSW_ENTITY_CONFIG);
2605 src = get_hard_reg_initial_val (SImode, CONFIG_REGNUM);
2606 mask = MACHINE_FUNCTION (cfun)->and_mask;
2607 break;
2608 case FP_MODE_ROUND_UNKNOWN:
2609 MACHINE_FUNCTION (cfun)->unknown_mode_sets++;
2610 mask = MACHINE_FUNCTION (cfun)->and_mask;
2611 break;
2612 case FP_MODE_ROUND_NEAREST:
2613 if (entity == EPIPHANY_MSW_ENTITY_TRUNC)
2614 return;
2615 mask = MACHINE_FUNCTION (cfun)->and_mask;
2616 break;
2617 case FP_MODE_ROUND_TRUNC:
2618 if (entity == EPIPHANY_MSW_ENTITY_NEAREST)
2619 return;
2620 mask = MACHINE_FUNCTION (cfun)->and_mask;
2621 break;
2622 case FP_MODE_INT:
2623 mask = MACHINE_FUNCTION (cfun)->or_mask;
2624 break;
2625 case FP_MODE_NONE:
2626 default:
2627 gcc_unreachable ();
2628 }
2629 save_cc = gen_reg_rtx (CCmode);
2630 cc_reg = gen_rtx_REG (CCmode, CC_REGNUM);
2631 emit_move_insn (save_cc, cc_reg);
2632 mask = force_reg (SImode, mask);
2633 if (!src)
2634 {
2635 rtvec v = gen_rtvec (1, GEN_INT (fp_mode));
2636
2637 src = gen_rtx_CONST (SImode, gen_rtx_UNSPEC (SImode, v, UNSPEC_FP_MODE));
2638 }
2639 if (entity == EPIPHANY_MSW_ENTITY_ROUND_KNOWN
2640 || entity == EPIPHANY_MSW_ENTITY_FPU_OMNIBUS)
2641 src2 = copy_rtx (src);
2642 else
2643 {
2644 rtvec v = gen_rtvec (1, GEN_INT (FP_MODE_ROUND_UNKNOWN));
2645
2646 src2 = gen_rtx_CONST (SImode, gen_rtx_UNSPEC (SImode, v, UNSPEC_FP_MODE));
2647 }
2648 emit_insn (gen_set_fp_mode (src, src2, mask));
2649 emit_move_insn (cc_reg, save_cc);
2650 }
2651
2652 void
2653 epiphany_expand_set_fp_mode (rtx *operands)
2654 {
2655 rtx ctrl = gen_rtx_REG (SImode, CONFIG_REGNUM);
2656 rtx src = operands[0];
2657 rtx mask_reg = operands[2];
2658 rtx scratch = operands[3];
2659 enum attr_fp_mode fp_mode;
2660
2661
2662 gcc_assert (rtx_equal_p (src, operands[1])
2663 /* Sometimes reload gets silly and reloads the same pseudo
2664 into different registers. */
2665 || (REG_P (src) && REG_P (operands[1])));
2666
2667 if (!epiphany_uninterruptible_p (current_function_decl))
2668 emit_insn (gen_gid ());
2669 emit_move_insn (scratch, ctrl);
2670
2671 if (GET_CODE (src) == REG)
2672 {
2673 /* FP_MODE_CALLER */
2674 emit_insn (gen_xorsi3 (scratch, scratch, src));
2675 emit_insn (gen_andsi3 (scratch, scratch, mask_reg));
2676 emit_insn (gen_xorsi3 (scratch, scratch, src));
2677 }
2678 else
2679 {
2680 gcc_assert (GET_CODE (src) == CONST);
2681 src = XEXP (src, 0);
2682 fp_mode = (enum attr_fp_mode) INTVAL (XVECEXP (src, 0, 0));
2683 switch (fp_mode)
2684 {
2685 case FP_MODE_ROUND_NEAREST:
2686 emit_insn (gen_andsi3 (scratch, scratch, mask_reg));
2687 break;
2688 case FP_MODE_ROUND_TRUNC:
2689 emit_insn (gen_andsi3 (scratch, scratch, mask_reg));
2690 emit_insn (gen_add2_insn (scratch, const1_rtx));
2691 break;
2692 case FP_MODE_INT:
2693 emit_insn (gen_iorsi3 (scratch, scratch, mask_reg));
2694 break;
2695 case FP_MODE_CALLER:
2696 case FP_MODE_ROUND_UNKNOWN:
2697 case FP_MODE_NONE:
2698 gcc_unreachable ();
2699 }
2700 }
2701 emit_move_insn (ctrl, scratch);
2702 if (!epiphany_uninterruptible_p (current_function_decl))
2703 emit_insn (gen_gie ());
2704 }
2705
2706 void
2707 epiphany_insert_mode_switch_use (rtx_insn *insn,
2708 int entity ATTRIBUTE_UNUSED,
2709 int mode ATTRIBUTE_UNUSED)
2710 {
2711 rtx pat = PATTERN (insn);
2712 rtvec v;
2713 int len, i;
2714 rtx near = gen_rtx_REG (SImode, FP_NEAREST_REGNUM);
2715 rtx trunc = gen_rtx_REG (SImode, FP_TRUNCATE_REGNUM);
2716
2717 if (entity != EPIPHANY_MSW_ENTITY_FPU_OMNIBUS)
2718 return;
2719 switch ((enum attr_fp_mode) get_attr_fp_mode (insn))
2720 {
2721 case FP_MODE_ROUND_NEAREST:
2722 near = gen_rtx_USE (VOIDmode, near);
2723 trunc = gen_rtx_CLOBBER (VOIDmode, trunc);
2724 break;
2725 case FP_MODE_ROUND_TRUNC:
2726 near = gen_rtx_CLOBBER (VOIDmode, near);
2727 trunc = gen_rtx_USE (VOIDmode, trunc);
2728 break;
2729 case FP_MODE_ROUND_UNKNOWN:
2730 near = gen_rtx_USE (VOIDmode, gen_rtx_REG (SImode, FP_ANYFP_REGNUM));
2731 trunc = copy_rtx (near);
2732 /* Fall through. */
2733 case FP_MODE_INT:
2734 case FP_MODE_CALLER:
2735 near = gen_rtx_USE (VOIDmode, near);
2736 trunc = gen_rtx_USE (VOIDmode, trunc);
2737 break;
2738 case FP_MODE_NONE:
2739 gcc_unreachable ();
2740 }
2741 gcc_assert (GET_CODE (pat) == PARALLEL);
2742 len = XVECLEN (pat, 0);
2743 v = rtvec_alloc (len + 2);
2744 for (i = 0; i < len; i++)
2745 RTVEC_ELT (v, i) = XVECEXP (pat, 0, i);
2746 RTVEC_ELT (v, len) = near;
2747 RTVEC_ELT (v, len + 1) = trunc;
2748 pat = gen_rtx_PARALLEL (VOIDmode, v);
2749 PATTERN (insn) = pat;
2750 MACHINE_FUNCTION (cfun)->control_use_inserted = true;
2751 }
2752
2753 bool
2754 epiphany_epilogue_uses (int regno)
2755 {
2756 if (regno == GPR_LR)
2757 return true;
2758 if (reload_completed && epiphany_is_interrupt_p (current_function_decl))
2759 {
2760 if (fixed_regs[regno]
2761 && regno != STATUS_REGNUM && regno != IRET_REGNUM
2762 && regno != FP_NEAREST_REGNUM && regno != FP_TRUNCATE_REGNUM)
2763 return false;
2764 return true;
2765 }
2766 if (regno == FP_NEAREST_REGNUM
2767 && epiphany_normal_fp_mode != FP_MODE_ROUND_TRUNC)
2768 return true;
2769 if (regno == FP_TRUNCATE_REGNUM
2770 && epiphany_normal_fp_mode != FP_MODE_ROUND_NEAREST)
2771 return true;
2772 return false;
2773 }
2774
2775 static unsigned int
2776 epiphany_min_divisions_for_recip_mul (machine_mode mode)
2777 {
2778 if (flag_reciprocal_math && mode == SFmode)
2779 /* We'll expand into a multiply-by-reciprocal anyway, so we might a well do
2780 it already at the tree level and expose it to further optimizations. */
2781 return 1;
2782 return default_min_divisions_for_recip_mul (mode);
2783 }
2784
2785 static machine_mode
2786 epiphany_preferred_simd_mode (scalar_mode mode ATTRIBUTE_UNUSED)
2787 {
2788 return TARGET_VECT_DOUBLE ? DImode : SImode;
2789 }
2790
2791 static bool
2792 epiphany_vector_mode_supported_p (machine_mode mode)
2793 {
2794 if (mode == V2SFmode)
2795 return true;
2796 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
2797 && (GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8))
2798 return true;
2799 return false;
2800 }
2801
2802 static bool
2803 epiphany_vector_alignment_reachable (const_tree type, bool is_packed)
2804 {
2805 /* Vectors which aren't in packed structures will not be less aligned than
2806 the natural alignment of their element type, so this is safe. */
2807 if (TYPE_ALIGN_UNIT (type) == 4)
2808 return !is_packed;
2809
2810 return default_builtin_vector_alignment_reachable (type, is_packed);
2811 }
2812
2813 static bool
2814 epiphany_support_vector_misalignment (machine_mode mode, const_tree type,
2815 int misalignment, bool is_packed)
2816 {
2817 if (GET_MODE_SIZE (mode) == 8 && misalignment % 4 == 0)
2818 return true;
2819 return default_builtin_support_vector_misalignment (mode, type, misalignment,
2820 is_packed);
2821 }
2822
2823 /* STRUCTURE_SIZE_BOUNDARY seems a bit crude in how it enlarges small
2824 structs. Make structs double-word-aligned it they are a double word or
2825 (potentially) larger; failing that, do the same for a size of 32 bits. */
2826 unsigned
2827 epiphany_special_round_type_align (tree type, unsigned computed,
2828 unsigned specified)
2829 {
2830 unsigned align = MAX (computed, specified);
2831 tree field;
2832 HOST_WIDE_INT total, max;
2833 unsigned try_align = FASTEST_ALIGNMENT;
2834
2835 if (maximum_field_alignment && try_align > maximum_field_alignment)
2836 try_align = maximum_field_alignment;
2837 if (align >= try_align)
2838 return align;
2839 for (max = 0, field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2840 {
2841 tree offset, size;
2842
2843 if (TREE_CODE (field) != FIELD_DECL
2844 || TREE_TYPE (field) == error_mark_node)
2845 continue;
2846 offset = bit_position (field);
2847 size = DECL_SIZE (field);
2848 if (!tree_fits_uhwi_p (offset) || !tree_fits_uhwi_p (size)
2849 || tree_to_uhwi (offset) >= try_align
2850 || tree_to_uhwi (size) >= try_align)
2851 return try_align;
2852 total = tree_to_uhwi (offset) + tree_to_uhwi (size);
2853 if (total > max)
2854 max = total;
2855 }
2856 if (max >= (HOST_WIDE_INT) try_align)
2857 align = try_align;
2858 else if (try_align > 32 && max >= 32)
2859 align = max > 32 ? 64 : 32;
2860 return align;
2861 }
2862
2863 /* Upping the alignment of arrays in structs is not only a performance
2864 enhancement, it also helps preserve assumptions about how
2865 arrays-at-the-end-of-structs work, like for struct gcov_fn_info in
2866 libgcov.c . */
2867 unsigned
2868 epiphany_adjust_field_align (tree type, unsigned computed)
2869 {
2870 if (computed == 32
2871 && TREE_CODE (type) == ARRAY_TYPE)
2872 {
2873 tree elmsz = TYPE_SIZE (TREE_TYPE (type));
2874
2875 if (!tree_fits_uhwi_p (elmsz) || tree_to_uhwi (elmsz) >= 32)
2876 return 64;
2877 }
2878 return computed;
2879 }
2880
2881 /* Output code to add DELTA to the first argument, and then jump
2882 to FUNCTION. Used for C++ multiple inheritance. */
2883 static void
2884 epiphany_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
2885 HOST_WIDE_INT delta,
2886 HOST_WIDE_INT vcall_offset,
2887 tree function)
2888 {
2889 const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk));
2890 int this_regno
2891 = aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function) ? 1 : 0;
2892 const char *this_name = reg_names[this_regno];
2893 const char *fname;
2894
2895 assemble_start_function (thunk, fnname);
2896 /* We use IP and R16 as a scratch registers. */
2897 gcc_assert (call_used_regs [GPR_IP]);
2898 gcc_assert (call_used_regs [GPR_16]);
2899
2900 /* Add DELTA. When possible use a plain add, otherwise load it into
2901 a register first. */
2902 if (delta == 0)
2903 ; /* Done. */
2904 else if (SIMM11 (delta))
2905 asm_fprintf (file, "\tadd\t%s,%s,%d\n", this_name, this_name, (int) delta);
2906 else if (delta < 0 && delta >= -0xffff)
2907 {
2908 asm_fprintf (file, "\tmov\tip,%d\n", (int) -delta);
2909 asm_fprintf (file, "\tsub\t%s,%s,ip\n", this_name, this_name);
2910 }
2911 else
2912 {
2913 asm_fprintf (file, "\tmov\tip,%%low(%ld)\n", (long) delta);
2914 if (delta & ~0xffff)
2915 asm_fprintf (file, "\tmovt\tip,%%high(%ld)\n", (long) delta);
2916 asm_fprintf (file, "\tadd\t%s,%s,ip\n", this_name, this_name);
2917 }
2918
2919 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
2920 if (vcall_offset != 0)
2921 {
2922 /* ldr ip,[this] --> temp = *this
2923 ldr ip,[ip,vcall_offset] > temp = *(*this + vcall_offset)
2924 add this,this,ip --> this+ = *(*this + vcall_offset) */
2925 asm_fprintf (file, "\tldr\tip, [%s]\n", this_name);
2926 if (vcall_offset < -0x7ff * 4 || vcall_offset > 0x7ff * 4
2927 || (vcall_offset & 3) != 0)
2928 {
2929 asm_fprintf (file, "\tmov\tr16, %%low(%ld)\n", (long) vcall_offset);
2930 asm_fprintf (file, "\tmovt\tr16, %%high(%ld)\n", (long) vcall_offset);
2931 asm_fprintf (file, "\tldr\tip, [ip,r16]\n");
2932 }
2933 else
2934 asm_fprintf (file, "\tldr\tip, [ip,%d]\n", (int) vcall_offset / 4);
2935 asm_fprintf (file, "\tadd\t%s, %s, ip\n", this_name, this_name);
2936 }
2937
2938 fname = XSTR (XEXP (DECL_RTL (function), 0), 0);
2939 if (epiphany_is_long_call_p (XEXP (DECL_RTL (function), 0)))
2940 {
2941 fputs ("\tmov\tip,%low(", file);
2942 assemble_name (file, fname);
2943 fputs (")\n\tmovt\tip,%high(", file);
2944 assemble_name (file, fname);
2945 fputs (")\n\tjr ip\n", file);
2946 }
2947 else
2948 {
2949 fputs ("\tb\t", file);
2950 assemble_name (file, fname);
2951 fputc ('\n', file);
2952 }
2953 assemble_end_function (thunk, fnname);
2954 }
2955
2956 void
2957 epiphany_start_function (FILE *file, const char *name, tree decl)
2958 {
2959 /* If the function doesn't fit into the on-chip memory, it will have a
2960 section attribute - or lack of it - that denotes it goes somewhere else.
2961 But the architecture spec says that an interrupt vector still has to
2962 point to on-chip memory. So we must place a jump there to get to the
2963 actual function implementation. The forwarder_section attribute
2964 specifies the section where this jump goes.
2965 This mechanism can also be useful to have a shortcall destination for
2966 a function that is actually placed much farther away. */
2967 tree attrs, int_attr, int_names, int_name, forwarder_attr;
2968
2969 attrs = DECL_ATTRIBUTES (decl);
2970 int_attr = lookup_attribute ("interrupt", attrs);
2971 if (int_attr)
2972 for (int_names = TREE_VALUE (int_attr); int_names;
2973 int_names = TREE_CHAIN (int_names))
2974 {
2975 char buf[99];
2976
2977 int_name = TREE_VALUE (int_names);
2978 sprintf (buf, "ivt_entry_%.80s", TREE_STRING_POINTER (int_name));
2979 switch_to_section (get_section (buf, SECTION_CODE, decl));
2980 fputs ("\tb\t", file);
2981 assemble_name (file, name);
2982 fputc ('\n', file);
2983 }
2984 forwarder_attr = lookup_attribute ("forwarder_section", attrs);
2985 if (forwarder_attr)
2986 {
2987 const char *prefix = "__forwarder_dst_";
2988 char *dst_name = (char *) alloca (strlen (prefix) + strlen (name) + 1);
2989
2990 strcpy (dst_name, prefix);
2991 strcat (dst_name, name);
2992 forwarder_attr = TREE_VALUE (TREE_VALUE (forwarder_attr));
2993 switch_to_section (get_section (TREE_STRING_POINTER (forwarder_attr),
2994 SECTION_CODE, decl));
2995 ASM_OUTPUT_FUNCTION_LABEL (file, name, decl);
2996 if (epiphany_is_long_call_p (XEXP (DECL_RTL (decl), 0)))
2997 {
2998 int tmp = GPR_0;
2999
3000 if (int_attr)
3001 fputs ("\tstrd r0,[sp,-1]\n", file);
3002 else
3003 tmp = GPR_16;
3004 gcc_assert (call_used_regs[tmp]);
3005 fprintf (file, "\tmov r%d,%%low(", tmp);
3006 assemble_name (file, dst_name);
3007 fprintf (file, ")\n"
3008 "\tmovt r%d,%%high(", tmp);
3009 assemble_name (file, dst_name);
3010 fprintf (file, ")\n"
3011 "\tjr r%d\n", tmp);
3012 }
3013 else
3014 {
3015 fputs ("\tb\t", file);
3016 assemble_name (file, dst_name);
3017 fputc ('\n', file);
3018 }
3019 name = dst_name;
3020 }
3021 switch_to_section (function_section (decl));
3022 ASM_OUTPUT_FUNCTION_LABEL (file, name, decl);
3023 }
3024
3025
3026 /* Implement TARGET_CONSTANT_ALIGNMENT. */
3027
3028 static HOST_WIDE_INT
3029 epiphany_constant_alignment (const_tree exp, HOST_WIDE_INT align)
3030 {
3031 if (TREE_CODE (exp) == STRING_CST)
3032 return MAX (align, FASTEST_ALIGNMENT);
3033 return align;
3034 }
3035
3036 /* Implement TARGET_STARTING_FRAME_OFFSET. */
3037
3038 static HOST_WIDE_INT
3039 epiphany_starting_frame_offset (void)
3040 {
3041 return epiphany_stack_offset;
3042 }
3043
3044 struct gcc_target targetm = TARGET_INITIALIZER;