]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/frv/frv.h
Turn CONSTANT_ALIGNMENT into a hook
[thirdparty/gcc.git] / gcc / config / frv / frv.h
1 /* Target macros for the FRV port of GCC.
2 Copyright (C) 1999-2017 Free Software Foundation, Inc.
3 Contributed by Red Hat Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef __FRV_H__
22 #define __FRV_H__
23
24 /* Frv general purpose macros. */
25 /* Align an address. */
26 #define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
27 \f
28 /* Driver configuration. */
29
30 /* -fpic and -fPIC used to imply the -mlibrary-pic multilib, but with
31 FDPIC which multilib to use depends on whether FDPIC is in use or
32 not. The trick we use is to introduce -multilib-library-pic as a
33 pseudo-flag that selects the library-pic multilib, and map fpic
34 and fPIC to it only if fdpic is not selected. Also, if fdpic is
35 selected and no PIC/PIE options are present, we imply -fPIE.
36 Otherwise, if -fpic or -fPIC are enabled and we're optimizing for
37 speed, or if we have -On with n>=3, enable inlining of PLTs. As
38 for -mgprel-ro, we want to enable it by default, but not for -fpic or
39 -fpie. */
40
41 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS \
42 "%{mno-pack:\
43 %{!mhard-float:-msoft-float}\
44 %{!mmedia:-mno-media}}\
45 %{!mfdpic:%{" FPIC_SPEC ": -multilib-library-pic}}\
46 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
47 %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fPIE}}}}}}}} \
48 %{!mno-inline-plt:%{O*:%{!O0:%{!Os:%{" FPIC_SPEC ":-minline-plt} \
49 %{" NO_FPIC_SPEC ":%{!O:%{!O1:%{!O2:-minline-plt}}}}}}}} \
50 %{!mno-gprel-ro:%{" NO_FPIE1_AND_FPIC1_SPEC ":-mgprel-ro}}} \
51 "
52 #ifndef SUBTARGET_DRIVER_SELF_SPECS
53 # define SUBTARGET_DRIVER_SELF_SPECS
54 #endif
55
56 #undef ASM_SPEC
57 #define ASM_SPEC "\
58 %{G*} \
59 %{mtomcat-stats} \
60 %{!mno-eflags: \
61 %{mcpu=*} \
62 %{mgpr-*} %{mfpr-*} \
63 %{msoft-float} %{mhard-float} \
64 %{mdword} %{mno-dword} \
65 %{mdouble} %{mno-double} \
66 %{mmedia} %{mno-media} \
67 %{mmuladd} %{mno-muladd} \
68 %{mpack} %{mno-pack} \
69 %{mno-fdpic:-mnopic} %{mfdpic} \
70 %{" FPIE1_OR_FPIC1_SPEC ":-mpic} %{" FPIE2_OR_FPIC2_SPEC ":-mPIC} %{mlibrary-pic}}"
71
72 #undef STARTFILE_SPEC
73 #define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
74
75 #undef ENDFILE_SPEC
76 #define ENDFILE_SPEC "frvend%O%s"
77
78
79 #define MASK_DEFAULT_FRV \
80 (MASK_MEDIA \
81 | MASK_DOUBLE \
82 | MASK_MULADD \
83 | MASK_DWORD \
84 | MASK_PACK)
85
86 #define MASK_DEFAULT_FR500 \
87 (MASK_MEDIA | MASK_DWORD | MASK_PACK)
88
89 #define MASK_DEFAULT_FR550 \
90 (MASK_MEDIA | MASK_DWORD | MASK_PACK)
91
92 #define MASK_DEFAULT_FR450 \
93 (MASK_GPR_32 \
94 | MASK_FPR_32 \
95 | MASK_MEDIA \
96 | MASK_SOFT_FLOAT \
97 | MASK_DWORD \
98 | MASK_PACK)
99
100 #define MASK_DEFAULT_FR400 \
101 (MASK_GPR_32 \
102 | MASK_FPR_32 \
103 | MASK_MEDIA \
104 | MASK_ACC_4 \
105 | MASK_SOFT_FLOAT \
106 | MASK_DWORD \
107 | MASK_PACK)
108
109 #define MASK_DEFAULT_SIMPLE \
110 (MASK_GPR_32 | MASK_SOFT_FLOAT)
111
112 /* A C string constant that tells the GCC driver program options to pass to
113 `cc1'. It can also specify how to translate options you give to GCC into
114 options for GCC to pass to the `cc1'.
115
116 Do not define this macro if it does not need to do anything. */
117 /* For ABI compliance, we need to put bss data into the normal data section. */
118 #define CC1_SPEC "%{G*}"
119
120 #undef LINK_SPEC
121 #define LINK_SPEC "\
122 %{h*} %{v:-V} \
123 %{mfdpic:-melf32frvfd -z text} \
124 %{static:-dn -Bstatic} \
125 %{shared:-Bdynamic} \
126 %{symbolic:-Bsymbolic} \
127 %{G*}"
128
129 #undef LIB_SPEC
130 #define LIB_SPEC "--start-group -lc -lsim --end-group"
131
132 #ifndef CPU_TYPE
133 #define CPU_TYPE FRV_CPU_FR500
134 #endif
135
136 /* Run-time target specifications */
137
138 #define TARGET_CPU_CPP_BUILTINS() \
139 do \
140 { \
141 int issue_rate; \
142 \
143 builtin_define ("__frv__"); \
144 builtin_assert ("machine=frv"); \
145 \
146 issue_rate = frv_issue_rate (); \
147 if (issue_rate > 1) \
148 builtin_define_with_int_value ("__FRV_VLIW__", issue_rate); \
149 builtin_define_with_int_value ("__FRV_GPR__", NUM_GPRS); \
150 builtin_define_with_int_value ("__FRV_FPR__", NUM_FPRS); \
151 builtin_define_with_int_value ("__FRV_ACC__", NUM_ACCS); \
152 \
153 switch (frv_cpu_type) \
154 { \
155 case FRV_CPU_GENERIC: \
156 builtin_define ("__CPU_GENERIC__"); \
157 break; \
158 case FRV_CPU_FR550: \
159 builtin_define ("__CPU_FR550__"); \
160 break; \
161 case FRV_CPU_FR500: \
162 case FRV_CPU_TOMCAT: \
163 builtin_define ("__CPU_FR500__"); \
164 break; \
165 case FRV_CPU_FR450: \
166 builtin_define ("__CPU_FR450__"); \
167 break; \
168 case FRV_CPU_FR405: \
169 builtin_define ("__CPU_FR405__"); \
170 break; \
171 case FRV_CPU_FR400: \
172 builtin_define ("__CPU_FR400__"); \
173 break; \
174 case FRV_CPU_FR300: \
175 case FRV_CPU_SIMPLE: \
176 builtin_define ("__CPU_FR300__"); \
177 break; \
178 } \
179 \
180 if (TARGET_HARD_FLOAT) \
181 builtin_define ("__FRV_HARD_FLOAT__"); \
182 if (TARGET_DWORD) \
183 builtin_define ("__FRV_DWORD__"); \
184 if (TARGET_FDPIC) \
185 builtin_define ("__FRV_FDPIC__"); \
186 if (flag_leading_underscore > 0) \
187 builtin_define ("__FRV_UNDERSCORE__"); \
188 } \
189 while (0)
190
191 \f
192 #define TARGET_HAS_FPRS (TARGET_HARD_FLOAT || TARGET_MEDIA)
193
194 #define NUM_GPRS (TARGET_GPR_32? 32 : 64)
195 #define NUM_FPRS (!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
196 #define NUM_ACCS (!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
197
198 /* X is a valid accumulator number if (X & ACC_MASK) == X. */
199 #define ACC_MASK \
200 (!TARGET_MEDIA ? 0 \
201 : TARGET_ACC_4 ? 3 \
202 : frv_cpu_type == FRV_CPU_FR450 ? 11 \
203 : 7)
204
205 /* Macros to identify the blend of media instructions available. Revision 1
206 is the one found on the FR500. Revision 2 includes the changes made for
207 the FR400.
208
209 Treat the generic processor as a revision 1 machine for now, for
210 compatibility with earlier releases. */
211
212 #define TARGET_MEDIA_REV1 \
213 (TARGET_MEDIA \
214 && (frv_cpu_type == FRV_CPU_GENERIC \
215 || frv_cpu_type == FRV_CPU_FR500))
216
217 #define TARGET_MEDIA_REV2 \
218 (TARGET_MEDIA \
219 && (frv_cpu_type == FRV_CPU_FR400 \
220 || frv_cpu_type == FRV_CPU_FR405 \
221 || frv_cpu_type == FRV_CPU_FR450 \
222 || frv_cpu_type == FRV_CPU_FR550))
223
224 #define TARGET_MEDIA_FR450 \
225 (frv_cpu_type == FRV_CPU_FR450)
226
227 #define TARGET_FR500_FR550_BUILTINS \
228 (frv_cpu_type == FRV_CPU_FR500 \
229 || frv_cpu_type == FRV_CPU_FR550)
230
231 #define TARGET_FR405_BUILTINS \
232 (frv_cpu_type == FRV_CPU_FR405 \
233 || frv_cpu_type == FRV_CPU_FR450)
234
235 #ifndef HAVE_AS_TLS
236 #define HAVE_AS_TLS 0
237 #endif
238
239 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_ALIGN_LABELS ? 3 : 0)
240 \f
241 /* Small Data Area Support. */
242 /* Maximum size of variables that go in .sdata/.sbss.
243 The -msdata=foo switch also controls how small variables are handled. */
244 #ifndef SDATA_DEFAULT_SIZE
245 #define SDATA_DEFAULT_SIZE 8
246 #endif
247
248
249 /* Storage Layout */
250
251 /* Define this macro to have the value 1 if the most significant bit in a byte
252 has the lowest number; otherwise define it to have the value zero. This
253 means that bit-field instructions count from the most significant bit. If
254 the machine has no bit-field instructions, then this must still be defined,
255 but it doesn't matter which value it is defined to. This macro need not be
256 a constant.
257
258 This macro does not affect the way structure fields are packed into bytes or
259 words; that is controlled by `BYTES_BIG_ENDIAN'. */
260 #define BITS_BIG_ENDIAN 1
261
262 /* Define this macro to have the value 1 if the most significant byte in a word
263 has the lowest number. This macro need not be a constant. */
264 #define BYTES_BIG_ENDIAN 1
265
266 /* Define this macro to have the value 1 if, in a multiword object, the most
267 significant word has the lowest number. This applies to both memory
268 locations and registers; GCC fundamentally assumes that the order of
269 words in memory is the same as the order in registers. This macro need not
270 be a constant. */
271 #define WORDS_BIG_ENDIAN 1
272
273 /* Number of storage units in a word; normally 4. */
274 #define UNITS_PER_WORD 4
275
276 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
277 which has the specified mode and signedness is to be stored in a register.
278 This macro is only called when TYPE is a scalar type.
279
280 On most RISC machines, which only have operations that operate on a full
281 register, define this macro to set M to `word_mode' if M is an integer mode
282 narrower than `BITS_PER_WORD'. In most cases, only integer modes should be
283 widened because wider-precision floating-point operations are usually more
284 expensive than their narrower counterparts.
285
286 For most machines, the macro definition does not change UNSIGNEDP. However,
287 some machines, have instructions that preferentially handle either signed or
288 unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit
289 loads from memory and 32-bit add instructions sign-extend the result to 64
290 bits. On such machines, set UNSIGNEDP according to which kind of extension
291 is more efficient.
292
293 Do not define this macro if it would never modify MODE. */
294 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
295 do \
296 { \
297 if (GET_MODE_CLASS (MODE) == MODE_INT \
298 && GET_MODE_SIZE (MODE) < 4) \
299 (MODE) = SImode; \
300 } \
301 while (0)
302
303 /* Normal alignment required for function parameters on the stack, in bits.
304 All stack parameters receive at least this much alignment regardless of data
305 type. On most machines, this is the same as the size of an integer. */
306 #define PARM_BOUNDARY 32
307
308 /* Define this macro if you wish to preserve a certain alignment for the stack
309 pointer. The definition is a C expression for the desired alignment
310 (measured in bits).
311
312 If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
313 specified boundary. If `PUSH_ROUNDING' is defined and specifies a less
314 strict alignment than `STACK_BOUNDARY', the stack may be momentarily
315 unaligned while pushing arguments. */
316 #define STACK_BOUNDARY 64
317
318 /* Alignment required for a function entry point, in bits. */
319 #define FUNCTION_BOUNDARY 128
320
321 /* Biggest alignment that any data type can require on this machine,
322 in bits. */
323 #define BIGGEST_ALIGNMENT 64
324
325 /* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
326 some reason. */
327 #ifdef IN_TARGET_LIBS
328 #define BIGGEST_FIELD_ALIGNMENT 64
329 #else
330 /* An expression for the alignment of a structure field FIELD if the
331 alignment computed in the usual way is COMPUTED. GCC uses this
332 value instead of the value in `BIGGEST_ALIGNMENT' or
333 `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
334 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
335 frv_adjust_field_align (FIELD, COMPUTED)
336 #endif
337
338 /* If defined, a C expression to compute the alignment for a static variable.
339 TYPE is the data type, and ALIGN is the alignment that the object
340 would ordinarily have. The value of this macro is used instead of that
341 alignment to align the object.
342
343 If this macro is not defined, then ALIGN is used.
344
345 One use of this macro is to increase alignment of medium-size data to make
346 it all fit in fewer cache lines. Another is to cause character arrays to be
347 word-aligned so that `strcpy' calls that copy constants to character arrays
348 can be done inline. */
349 #define DATA_ALIGNMENT(TYPE, ALIGN) \
350 (TREE_CODE (TYPE) == ARRAY_TYPE \
351 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
352 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
353
354 /* Define this macro to be the value 1 if instructions will fail to work if
355 given data not on the nominal alignment. If instructions will merely go
356 slower in that case, define this macro as 0. */
357 #define STRICT_ALIGNMENT 1
358
359 #define PCC_BITFIELD_TYPE_MATTERS 1
360
361 \f
362 /* Layout of Source Language Data Types. */
363
364 #define CHAR_TYPE_SIZE 8
365 #define SHORT_TYPE_SIZE 16
366 #define INT_TYPE_SIZE 32
367 #define LONG_TYPE_SIZE 32
368 #define LONG_LONG_TYPE_SIZE 64
369 #define FLOAT_TYPE_SIZE 32
370 #define DOUBLE_TYPE_SIZE 64
371 #define LONG_DOUBLE_TYPE_SIZE 64
372
373 /* An expression whose value is 1 or 0, according to whether the type `char'
374 should be signed or unsigned by default. The user can always override this
375 default with the options `-fsigned-char' and `-funsigned-char'. */
376 #define DEFAULT_SIGNED_CHAR 1
377
378 #undef SIZE_TYPE
379 #define SIZE_TYPE "unsigned int"
380
381 #undef PTRDIFF_TYPE
382 #define PTRDIFF_TYPE "int"
383
384 #undef WCHAR_TYPE
385 #define WCHAR_TYPE "long int"
386
387 #undef WCHAR_TYPE_SIZE
388 #define WCHAR_TYPE_SIZE BITS_PER_WORD
389
390 \f
391 /* General purpose registers. */
392 #define GPR_FIRST 0 /* First gpr */
393 #define GPR_LAST (GPR_FIRST + 63) /* Last gpr */
394 #define GPR_R0 GPR_FIRST /* R0, constant 0 */
395 #define GPR_FP (GPR_FIRST + 2) /* Frame pointer */
396 #define GPR_SP (GPR_FIRST + 1) /* Stack pointer */
397 /* small data register */
398 #define SDA_BASE_REG ((unsigned)(TARGET_FDPIC ? -1 : flag_pic ? PIC_REGNO : (GPR_FIRST + 16)))
399 #define PIC_REGNO (GPR_FIRST + (TARGET_FDPIC?15:17)) /* PIC register. */
400 #define FDPIC_FPTR_REGNO (GPR_FIRST + 14) /* uClinux PIC function pointer register. */
401 #define FDPIC_REGNO (GPR_FIRST + 15) /* uClinux PIC register. */
402
403 #define HARD_REGNO_RENAME_OK(from,to) (TARGET_FDPIC ? ((to) != FDPIC_REG) : 1)
404
405 #define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
406
407 #define FPR_FIRST 64 /* First FP reg */
408 #define FPR_LAST 127 /* Last FP reg */
409
410 #define GPR_TEMP_NUM frv_condexec_temps /* # gprs to reserve for temps */
411
412 /* We reserve the last CR and CCR in each category to be used as a reload
413 register to reload the CR/CCR registers. This is a kludge. */
414 #define CC_FIRST 128 /* First ICC/FCC reg */
415 #define CC_LAST 135 /* Last ICC/FCC reg */
416 #define ICC_FIRST (CC_FIRST + 4) /* First ICC reg */
417 #define ICC_LAST (CC_FIRST + 7) /* Last ICC reg */
418 #define ICC_TEMP (CC_FIRST + 7) /* Temporary ICC reg */
419 #define FCC_FIRST (CC_FIRST) /* First FCC reg */
420 #define FCC_LAST (CC_FIRST + 3) /* Last FCC reg */
421
422 /* Amount to shift a value to locate a ICC or FCC register in the CCR
423 register and shift it to the bottom 4 bits. */
424 #define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
425
426 /* Mask to isolate a single ICC/FCC value. */
427 #define CC_MASK 0xf
428
429 /* Masks to isolate the various bits in an ICC field. */
430 #define ICC_MASK_N 0x8 /* negative */
431 #define ICC_MASK_Z 0x4 /* zero */
432 #define ICC_MASK_V 0x2 /* overflow */
433 #define ICC_MASK_C 0x1 /* carry */
434
435 /* Mask to isolate the N/Z flags in an ICC. */
436 #define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
437
438 /* Mask to isolate the Z/C flags in an ICC. */
439 #define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
440
441 /* Masks to isolate the various bits in a FCC field. */
442 #define FCC_MASK_E 0x8 /* equal */
443 #define FCC_MASK_L 0x4 /* less than */
444 #define FCC_MASK_G 0x2 /* greater than */
445 #define FCC_MASK_U 0x1 /* unordered */
446
447 /* For CCR registers, the machine wants CR4..CR7 to be used for integer
448 code and CR0..CR3 to be used for floating point. */
449 #define CR_FIRST 136 /* First CCR */
450 #define CR_LAST 143 /* Last CCR */
451 #define CR_NUM (CR_LAST-CR_FIRST+1) /* # of CCRs (8) */
452 #define ICR_FIRST (CR_FIRST + 4) /* First integer CCR */
453 #define ICR_LAST (CR_FIRST + 7) /* Last integer CCR */
454 #define ICR_TEMP ICR_LAST /* Temp integer CCR */
455 #define FCR_FIRST (CR_FIRST + 0) /* First float CCR */
456 #define FCR_LAST (CR_FIRST + 3) /* Last float CCR */
457
458 /* Amount to shift a value to locate a CR register in the CCCR special purpose
459 register and shift it to the bottom 2 bits. */
460 #define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
461
462 /* Mask to isolate a single CR value. */
463 #define CR_MASK 0x3
464
465 #define ACC_FIRST 144 /* First acc register */
466 #define ACC_LAST 155 /* Last acc register */
467
468 #define ACCG_FIRST 156 /* First accg register */
469 #define ACCG_LAST 167 /* Last accg register */
470
471 #define AP_FIRST 168 /* fake argument pointer */
472
473 #define SPR_FIRST 169
474 #define SPR_LAST 172
475 #define LR_REGNO (SPR_FIRST)
476 #define LCR_REGNO (SPR_FIRST + 1)
477 #define IACC_FIRST (SPR_FIRST + 2)
478 #define IACC_LAST (SPR_FIRST + 3)
479
480 #define GPR_P(R) IN_RANGE (R, GPR_FIRST, GPR_LAST)
481 #define GPR_OR_AP_P(R) (GPR_P (R) || (R) == ARG_POINTER_REGNUM)
482 #define FPR_P(R) IN_RANGE (R, FPR_FIRST, FPR_LAST)
483 #define CC_P(R) IN_RANGE (R, CC_FIRST, CC_LAST)
484 #define ICC_P(R) IN_RANGE (R, ICC_FIRST, ICC_LAST)
485 #define FCC_P(R) IN_RANGE (R, FCC_FIRST, FCC_LAST)
486 #define CR_P(R) IN_RANGE (R, CR_FIRST, CR_LAST)
487 #define ICR_P(R) IN_RANGE (R, ICR_FIRST, ICR_LAST)
488 #define FCR_P(R) IN_RANGE (R, FCR_FIRST, FCR_LAST)
489 #define ACC_P(R) IN_RANGE (R, ACC_FIRST, ACC_LAST)
490 #define ACCG_P(R) IN_RANGE (R, ACCG_FIRST, ACCG_LAST)
491 #define SPR_P(R) IN_RANGE (R, SPR_FIRST, SPR_LAST)
492
493 #define GPR_OR_PSEUDO_P(R) (GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
494 #define FPR_OR_PSEUDO_P(R) (FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
495 #define GPR_AP_OR_PSEUDO_P(R) (GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
496 #define CC_OR_PSEUDO_P(R) (CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
497 #define ICC_OR_PSEUDO_P(R) (ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
498 #define FCC_OR_PSEUDO_P(R) (FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
499 #define CR_OR_PSEUDO_P(R) (CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
500 #define ICR_OR_PSEUDO_P(R) (ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
501 #define FCR_OR_PSEUDO_P(R) (FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
502 #define ACC_OR_PSEUDO_P(R) (ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
503 #define ACCG_OR_PSEUDO_P(R) (ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
504
505 #define MAX_STACK_IMMEDIATE_OFFSET 2047
506
507 \f
508 /* Register Basics. */
509
510 /* Number of hardware registers known to the compiler. They receive numbers 0
511 through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
512 really is assigned the number `FIRST_PSEUDO_REGISTER'. */
513 #define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
514
515 /* The first/last register that can contain the arguments to a function. */
516 #define FIRST_ARG_REGNUM (GPR_FIRST + 8)
517 #define LAST_ARG_REGNUM (FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
518
519 /* Registers used by the exception handling functions. These should be
520 registers that are not otherwise used by the calling sequence. */
521 #define FIRST_EH_REGNUM 14
522 #define LAST_EH_REGNUM 15
523
524 /* Scratch registers used in the prologue, epilogue and thunks.
525 OFFSET_REGNO is for loading constant addends that are too big for a
526 single instruction. TEMP_REGNO is used for transferring SPRs to and from
527 the stack, and various other activities. */
528 #define OFFSET_REGNO 4
529 #define TEMP_REGNO 5
530
531 /* Registers used in the prologue. OLD_SP_REGNO is the old stack pointer,
532 which is sometimes used to set up the frame pointer. */
533 #define OLD_SP_REGNO 6
534
535 /* Registers used in the epilogue. STACKADJ_REGNO stores the exception
536 handler's stack adjustment. */
537 #define STACKADJ_REGNO 6
538
539 /* Registers used in thunks. JMP_REGNO is used for loading the target
540 address. */
541 #define JUMP_REGNO 6
542
543 #define EH_RETURN_DATA_REGNO(N) ((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
544 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
545 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, STACKADJ_REGNO)
546 #define EH_RETURN_HANDLER_RTX RETURN_ADDR_RTX (0, frame_pointer_rtx)
547
548 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNO)
549
550 /* An initializer that says which registers are used for fixed purposes all
551 throughout the compiled code and are therefore not available for general
552 allocation. These would include the stack pointer, the frame pointer
553 (except on machines where that can be used as a general register when no
554 frame pointer is needed), the program counter on machines where that is
555 considered one of the addressable registers, and any other numbered register
556 with a standard use.
557
558 This information is expressed as a sequence of numbers, separated by commas
559 and surrounded by braces. The Nth number is 1 if register N is fixed, 0
560 otherwise.
561
562 The table initialized from this macro, and the table initialized by the
563 following one, may be overridden at run time either automatically, by the
564 actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
565 command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */
566
567 /* gr0 -- Hard Zero
568 gr1 -- Stack Pointer
569 gr2 -- Frame Pointer
570 gr3 -- Hidden Parameter
571 gr16 -- Small Data reserved
572 gr17 -- Pic reserved
573 gr28 -- OS reserved
574 gr29 -- OS reserved
575 gr30 -- OS reserved
576 gr31 -- OS reserved
577 cr3 -- reserved to reload FCC registers.
578 cr7 -- reserved to reload ICC registers. */
579 #define FIXED_REGISTERS \
580 { /* Integer Registers */ \
581 1, 1, 1, 1, 0, 0, 0, 0, /* 000-007, gr0 - gr7 */ \
582 0, 0, 0, 0, 0, 0, 0, 0, /* 008-015, gr8 - gr15 */ \
583 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
584 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
585 0, 0, 0, 0, 0, 0, 0, 0, /* 032-039, gr32 - gr39 */ \
586 0, 0, 0, 0, 0, 0, 0, 0, /* 040-040, gr48 - gr47 */ \
587 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
588 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
589 /* Float Registers */ \
590 0, 0, 0, 0, 0, 0, 0, 0, /* 064-071, fr0 - fr7 */ \
591 0, 0, 0, 0, 0, 0, 0, 0, /* 072-079, fr8 - fr15 */ \
592 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
593 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
594 0, 0, 0, 0, 0, 0, 0, 0, /* 096-103, fr32 - fr39 */ \
595 0, 0, 0, 0, 0, 0, 0, 0, /* 104-111, fr48 - fr47 */ \
596 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
597 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
598 /* Condition Code Registers */ \
599 0, 0, 0, 0, /* 128-131, fcc0 - fcc3 */ \
600 0, 0, 0, 1, /* 132-135, icc0 - icc3 */ \
601 /* Conditional execution Registers (CCR) */ \
602 0, 0, 0, 0, 0, 0, 0, 1, /* 136-143, cr0 - cr7 */ \
603 /* Accumulators */ \
604 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
605 1, 1, 1, 1, /* 152-155, acc8 - acc11 */ \
606 1, 1, 1, 1, 1, 1, 1, 1, /* 156-163, accg0 - accg7 */ \
607 1, 1, 1, 1, /* 164-167, accg8 - accg11 */ \
608 /* Other registers */ \
609 1, /* 168, AP - fake arg ptr */ \
610 1, /* 169, LR - Link register*/ \
611 0, /* 170, LCR - Loop count reg*/ \
612 1, 1 /* 171-172, iacc0 */ \
613 }
614
615 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
616 general) by function calls as well as for fixed registers. This macro
617 therefore identifies the registers that are not available for general
618 allocation of values that must live across function calls.
619
620 If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
621 saves it on function entry and restores it on function exit, if the register
622 is used within the function. */
623 #define CALL_USED_REGISTERS \
624 { /* Integer Registers */ \
625 1, 1, 1, 1, 1, 1, 1, 1, /* 000-007, gr0 - gr7 */ \
626 1, 1, 1, 1, 1, 1, 1, 1, /* 008-015, gr8 - gr15 */ \
627 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
628 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
629 1, 1, 1, 1, 1, 1, 1, 1, /* 032-039, gr32 - gr39 */ \
630 1, 1, 1, 1, 1, 1, 1, 1, /* 040-040, gr48 - gr47 */ \
631 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
632 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
633 /* Float Registers */ \
634 1, 1, 1, 1, 1, 1, 1, 1, /* 064-071, fr0 - fr7 */ \
635 1, 1, 1, 1, 1, 1, 1, 1, /* 072-079, fr8 - fr15 */ \
636 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
637 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
638 1, 1, 1, 1, 1, 1, 1, 1, /* 096-103, fr32 - fr39 */ \
639 1, 1, 1, 1, 1, 1, 1, 1, /* 104-111, fr48 - fr47 */ \
640 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
641 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
642 /* Condition Code Registers */ \
643 1, 1, 1, 1, /* 128-131, fcc0 - fcc3 */ \
644 1, 1, 1, 1, /* 132-135, icc0 - icc3 */ \
645 /* Conditional execution Registers (CCR) */ \
646 1, 1, 1, 1, 1, 1, 1, 1, /* 136-143, cr0 - cr7 */ \
647 /* Accumulators */ \
648 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
649 1, 1, 1, 1, /* 152-155, acc8 - acc11 */ \
650 1, 1, 1, 1, 1, 1, 1, 1, /* 156-163, accg0 - accg7 */ \
651 1, 1, 1, 1, /* 164-167, accg8 - accg11 */ \
652 /* Other registers */ \
653 1, /* 168, AP - fake arg ptr */ \
654 1, /* 169, LR - Link register*/ \
655 1, /* 170, LCR - Loop count reg */ \
656 1, 1 /* 171-172, iacc0 */ \
657 }
658
659 \f
660 /* Order of allocation of registers. */
661
662 /* If defined, an initializer for a vector of integers, containing the numbers
663 of hard registers in the order in which GCC should prefer to use them
664 (from most preferred to least).
665
666 If this macro is not defined, registers are used lowest numbered first (all
667 else being equal).
668
669 One use of this macro is on machines where the highest numbered registers
670 must always be saved and the save-multiple-registers instruction supports
671 only sequences of consecutive registers. On such machines, define
672 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
673 allocatable register first. */
674
675 /* On the FRV, allocate GR16 and GR17 after other saved registers so that we
676 have a better chance of allocating 2 registers at a time and can use the
677 double word load/store instructions in the prologue. */
678 #define REG_ALLOC_ORDER \
679 { \
680 /* volatile registers */ \
681 GPR_FIRST + 4, GPR_FIRST + 5, GPR_FIRST + 6, GPR_FIRST + 7, \
682 GPR_FIRST + 8, GPR_FIRST + 9, GPR_FIRST + 10, GPR_FIRST + 11, \
683 GPR_FIRST + 12, GPR_FIRST + 13, GPR_FIRST + 14, GPR_FIRST + 15, \
684 GPR_FIRST + 32, GPR_FIRST + 33, GPR_FIRST + 34, GPR_FIRST + 35, \
685 GPR_FIRST + 36, GPR_FIRST + 37, GPR_FIRST + 38, GPR_FIRST + 39, \
686 GPR_FIRST + 40, GPR_FIRST + 41, GPR_FIRST + 42, GPR_FIRST + 43, \
687 GPR_FIRST + 44, GPR_FIRST + 45, GPR_FIRST + 46, GPR_FIRST + 47, \
688 \
689 FPR_FIRST + 0, FPR_FIRST + 1, FPR_FIRST + 2, FPR_FIRST + 3, \
690 FPR_FIRST + 4, FPR_FIRST + 5, FPR_FIRST + 6, FPR_FIRST + 7, \
691 FPR_FIRST + 8, FPR_FIRST + 9, FPR_FIRST + 10, FPR_FIRST + 11, \
692 FPR_FIRST + 12, FPR_FIRST + 13, FPR_FIRST + 14, FPR_FIRST + 15, \
693 FPR_FIRST + 32, FPR_FIRST + 33, FPR_FIRST + 34, FPR_FIRST + 35, \
694 FPR_FIRST + 36, FPR_FIRST + 37, FPR_FIRST + 38, FPR_FIRST + 39, \
695 FPR_FIRST + 40, FPR_FIRST + 41, FPR_FIRST + 42, FPR_FIRST + 43, \
696 FPR_FIRST + 44, FPR_FIRST + 45, FPR_FIRST + 46, FPR_FIRST + 47, \
697 \
698 ICC_FIRST + 0, ICC_FIRST + 1, ICC_FIRST + 2, ICC_FIRST + 3, \
699 FCC_FIRST + 0, FCC_FIRST + 1, FCC_FIRST + 2, FCC_FIRST + 3, \
700 CR_FIRST + 0, CR_FIRST + 1, CR_FIRST + 2, CR_FIRST + 3, \
701 CR_FIRST + 4, CR_FIRST + 5, CR_FIRST + 6, CR_FIRST + 7, \
702 \
703 /* saved registers */ \
704 GPR_FIRST + 18, GPR_FIRST + 19, \
705 GPR_FIRST + 20, GPR_FIRST + 21, GPR_FIRST + 22, GPR_FIRST + 23, \
706 GPR_FIRST + 24, GPR_FIRST + 25, GPR_FIRST + 26, GPR_FIRST + 27, \
707 GPR_FIRST + 48, GPR_FIRST + 49, GPR_FIRST + 50, GPR_FIRST + 51, \
708 GPR_FIRST + 52, GPR_FIRST + 53, GPR_FIRST + 54, GPR_FIRST + 55, \
709 GPR_FIRST + 56, GPR_FIRST + 57, GPR_FIRST + 58, GPR_FIRST + 59, \
710 GPR_FIRST + 60, GPR_FIRST + 61, GPR_FIRST + 62, GPR_FIRST + 63, \
711 GPR_FIRST + 16, GPR_FIRST + 17, \
712 \
713 FPR_FIRST + 16, FPR_FIRST + 17, FPR_FIRST + 18, FPR_FIRST + 19, \
714 FPR_FIRST + 20, FPR_FIRST + 21, FPR_FIRST + 22, FPR_FIRST + 23, \
715 FPR_FIRST + 24, FPR_FIRST + 25, FPR_FIRST + 26, FPR_FIRST + 27, \
716 FPR_FIRST + 28, FPR_FIRST + 29, FPR_FIRST + 30, FPR_FIRST + 31, \
717 FPR_FIRST + 48, FPR_FIRST + 49, FPR_FIRST + 50, FPR_FIRST + 51, \
718 FPR_FIRST + 52, FPR_FIRST + 53, FPR_FIRST + 54, FPR_FIRST + 55, \
719 FPR_FIRST + 56, FPR_FIRST + 57, FPR_FIRST + 58, FPR_FIRST + 59, \
720 FPR_FIRST + 60, FPR_FIRST + 61, FPR_FIRST + 62, FPR_FIRST + 63, \
721 \
722 /* special or fixed registers */ \
723 GPR_FIRST + 0, GPR_FIRST + 1, GPR_FIRST + 2, GPR_FIRST + 3, \
724 GPR_FIRST + 28, GPR_FIRST + 29, GPR_FIRST + 30, GPR_FIRST + 31, \
725 ACC_FIRST + 0, ACC_FIRST + 1, ACC_FIRST + 2, ACC_FIRST + 3, \
726 ACC_FIRST + 4, ACC_FIRST + 5, ACC_FIRST + 6, ACC_FIRST + 7, \
727 ACC_FIRST + 8, ACC_FIRST + 9, ACC_FIRST + 10, ACC_FIRST + 11, \
728 ACCG_FIRST + 0, ACCG_FIRST + 1, ACCG_FIRST + 2, ACCG_FIRST + 3, \
729 ACCG_FIRST + 4, ACCG_FIRST + 5, ACCG_FIRST + 6, ACCG_FIRST + 7, \
730 ACCG_FIRST + 8, ACCG_FIRST + 9, ACCG_FIRST + 10, ACCG_FIRST + 11, \
731 AP_FIRST, LR_REGNO, LCR_REGNO, \
732 IACC_FIRST + 0, IACC_FIRST + 1 \
733 }
734
735 \f
736 /* Define this macro if the compiler should avoid copies to/from CCmode
737 registers. You should only define this macro if support fo copying to/from
738 CCmode is incomplete. */
739 #define AVOID_CCMODE_COPIES
740
741 \f
742 /* Register Classes. */
743
744 /* An enumeral type that must be defined with all the register class names as
745 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
746 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
747 which is not a register class but rather tells how many classes there are.
748
749 Each register class has a number, which is the value of casting the class
750 name to type `int'. The number serves as an index in many of the tables
751 described below. */
752 enum reg_class
753 {
754 NO_REGS,
755 ICC_REGS,
756 FCC_REGS,
757 CC_REGS,
758 ICR_REGS,
759 FCR_REGS,
760 CR_REGS,
761 LCR_REG,
762 LR_REG,
763 GR8_REGS,
764 GR9_REGS,
765 GR89_REGS,
766 FDPIC_REGS,
767 FDPIC_FPTR_REGS,
768 FDPIC_CALL_REGS,
769 SPR_REGS,
770 QUAD_ACC_REGS,
771 ACCG_REGS,
772 QUAD_FPR_REGS,
773 QUAD_REGS,
774 GPR_REGS,
775 ALL_REGS,
776 LIM_REG_CLASSES
777 };
778
779 #define GENERAL_REGS GPR_REGS
780
781 /* The number of distinct register classes, defined as follows:
782
783 #define N_REG_CLASSES (int) LIM_REG_CLASSES */
784 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
785
786 /* An initializer containing the names of the register classes as C string
787 constants. These names are used in writing some of the debugging dumps. */
788 #define REG_CLASS_NAMES { \
789 "NO_REGS", \
790 "ICC_REGS", \
791 "FCC_REGS", \
792 "CC_REGS", \
793 "ICR_REGS", \
794 "FCR_REGS", \
795 "CR_REGS", \
796 "LCR_REG", \
797 "LR_REG", \
798 "GR8_REGS", \
799 "GR9_REGS", \
800 "GR89_REGS", \
801 "FDPIC_REGS", \
802 "FDPIC_FPTR_REGS", \
803 "FDPIC_CALL_REGS", \
804 "SPR_REGS", \
805 "QUAD_ACC_REGS", \
806 "ACCG_REGS", \
807 "QUAD_FPR_REGS", \
808 "QUAD_REGS", \
809 "GPR_REGS", \
810 "ALL_REGS" \
811 }
812
813 /* An initializer containing the contents of the register classes, as integers
814 which are bit masks. The Nth integer specifies the contents of class N.
815 The way the integer MASK is interpreted is that register R is in the class
816 if `MASK & (1 << R)' is 1.
817
818 When the machine has more than 32 registers, an integer does not suffice.
819 Then the integers are replaced by sub-initializers, braced groupings
820 containing several integers. Each sub-initializer must be suitable as an
821 initializer for the type `HARD_REG_SET' which is defined in
822 `hard-reg-set.h'. */
823 #define REG_CLASS_CONTENTS \
824 { /* gr0-gr31 gr32-gr63 fr0-fr31 fr32-fr-63 cc/ccr/acc ap/spr */ \
825 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS */\
826 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
827 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
828 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS */\
829 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
830 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
831 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS */\
832 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x400}, /* LCR_REGS */\
833 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x200}, /* LR_REGS */\
834 { 0x00000100,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR8_REGS */\
835 { 0x00000200,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR9_REGS */\
836 { 0x00000300,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR89_REGS */\
837 { 0x00008000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_REGS */\
838 { 0x00004000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_FPTR_REGS */\
839 { 0x0000c000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_CALL_REGS */\
840 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x1e00}, /* SPR_REGS */\
841 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* QUAD_ACC */\
842 { 0x00000000,0x00000000,0x00000000,0x00000000,0xf0000000,0xff}, /* ACCG_REGS*/\
843 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
844 { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
845 { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x100}, /* GPR_REGS */\
846 { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x1fff}, /* ALL_REGS */\
847 }
848
849 #define EVEN_ACC_REGS QUAD_ACC_REGS
850 #define ACC_REGS QUAD_ACC_REGS
851 #define FEVEN_REGS QUAD_FPR_REGS
852 #define FPR_REGS QUAD_FPR_REGS
853 #define EVEN_REGS QUAD_REGS
854
855 /* A C expression whose value is a register class containing hard register
856 REGNO. In general there is more than one such class; choose a class which
857 is "minimal", meaning that no smaller class also contains the register. */
858
859 extern enum reg_class regno_reg_class[];
860 #define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
861
862 /* A macro whose definition is the name of the class to which a valid base
863 register must belong. A base register is one used in an address which is
864 the register value plus a displacement. */
865 #define BASE_REG_CLASS GPR_REGS
866
867 /* A macro whose definition is the name of the class to which a valid index
868 register must belong. An index register is one used in an address where its
869 value is either multiplied by a scale factor or added to another register
870 (as well as added to a displacement). */
871 #define INDEX_REG_CLASS GPR_REGS
872
873 /* A C expression which is nonzero if register number NUM is suitable for use
874 as a base register in operand addresses. It may be either a suitable hard
875 register or a pseudo register that has been allocated such a hard register. */
876 #define REGNO_OK_FOR_BASE_P(NUM) \
877 ((NUM) < FIRST_PSEUDO_REGISTER \
878 ? GPR_P (NUM) \
879 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
880
881 /* A C expression which is nonzero if register number NUM is suitable for use
882 as an index register in operand addresses. It may be either a suitable hard
883 register or a pseudo register that has been allocated such a hard register.
884
885 The difference between an index register and a base register is that the
886 index register may be scaled. If an address involves the sum of two
887 registers, neither one of them scaled, then either one may be labeled the
888 "base" and the other the "index"; but whichever labeling is used must fit
889 the machine's constraints of which registers may serve in each capacity.
890 The compiler will try both labelings, looking for one that is valid, and
891 will reload one or both registers only if neither labeling works. */
892 #define REGNO_OK_FOR_INDEX_P(NUM) \
893 ((NUM) < FIRST_PSEUDO_REGISTER \
894 ? GPR_P (NUM) \
895 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
896
897 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
898 frv_secondary_reload_class (CLASS, MODE, X)
899
900 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
901 frv_secondary_reload_class (CLASS, MODE, X)
902
903 #define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
904
905 #define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
906
907 \f
908 /* Basic Stack Layout. */
909
910 /* Structure to describe information about a saved range of registers */
911
912 typedef struct frv_stack_regs {
913 const char * name; /* name of the register ranges */
914 int first; /* first register in the range */
915 int last; /* last register in the range */
916 int size_1word; /* # of bytes to be stored via 1 word stores */
917 int size_2words; /* # of bytes to be stored via 2 word stores */
918 unsigned char field_p; /* true if the registers are a single SPR */
919 unsigned char dword_p; /* true if we can do dword stores */
920 unsigned char special_p; /* true if the regs have a fixed save loc. */
921 } frv_stack_regs_t;
922
923 /* Register ranges to look into saving. */
924 #define STACK_REGS_GPR 0 /* Gprs (normally gr16..gr31, gr48..gr63) */
925 #define STACK_REGS_FPR 1 /* Fprs (normally fr16..fr31, fr48..fr63) */
926 #define STACK_REGS_LR 2 /* LR register */
927 #define STACK_REGS_CC 3 /* CCrs (normally not saved) */
928 #define STACK_REGS_LCR 5 /* lcr register */
929 #define STACK_REGS_STDARG 6 /* stdarg registers */
930 #define STACK_REGS_STRUCT 7 /* structure return (gr3) */
931 #define STACK_REGS_FP 8 /* FP register */
932 #define STACK_REGS_MAX 9 /* # of register ranges */
933
934 /* Values for save_p field. */
935 #define REG_SAVE_NO_SAVE 0 /* register not saved */
936 #define REG_SAVE_1WORD 1 /* save the register */
937 #define REG_SAVE_2WORDS 2 /* save register and register+1 */
938
939 /* Structure used to define the frv stack. */
940
941 typedef struct frv_stack {
942 int total_size; /* total bytes allocated for stack */
943 int vars_size; /* variable save area size */
944 int parameter_size; /* outgoing parameter size */
945 int stdarg_size; /* size of regs needed to be saved for stdarg */
946 int regs_size; /* size of the saved registers */
947 int regs_size_1word; /* # of bytes to be stored via 1 word stores */
948 int regs_size_2words; /* # of bytes to be stored via 2 word stores */
949 int header_size; /* size of the old FP, struct ret., LR save */
950 int pretend_size; /* size of pretend args */
951 int vars_offset; /* offset to save local variables from new SP*/
952 int regs_offset; /* offset to save registers from new SP */
953 /* register range information */
954 frv_stack_regs_t regs[STACK_REGS_MAX];
955 /* offset to store each register */
956 int reg_offset[FIRST_PSEUDO_REGISTER];
957 /* whether to save register (& reg+1) */
958 unsigned char save_p[FIRST_PSEUDO_REGISTER];
959 } frv_stack_t;
960
961 /* Define this macro if pushing a word onto the stack moves the stack pointer
962 to a smaller address. */
963 #define STACK_GROWS_DOWNWARD 1
964
965 /* Define this macro to nonzero if the addresses of local variable slots
966 are at negative offsets from the frame pointer. */
967 #define FRAME_GROWS_DOWNWARD 1
968
969 /* Offset from the frame pointer to the first local variable slot to be
970 allocated.
971
972 If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
973 first slot's length from `STARTING_FRAME_OFFSET'. Otherwise, it is found by
974 adding the length of the first slot to the value `STARTING_FRAME_OFFSET'. */
975 #define STARTING_FRAME_OFFSET 0
976
977 /* Offset from the stack pointer register to the first location at which
978 outgoing arguments are placed. If not specified, the default value of zero
979 is used. This is the proper value for most machines.
980
981 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
982 location at which outgoing arguments are placed. */
983 #define STACK_POINTER_OFFSET 0
984
985 /* Offset from the argument pointer register to the first argument's address.
986 On some machines it may depend on the data type of the function.
987
988 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
989 argument's address. */
990 #define FIRST_PARM_OFFSET(FUNDECL) 0
991
992 /* A C expression whose value is RTL representing the address in a stack frame
993 where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
994 an RTL expression for the address of the stack frame itself.
995
996 If you don't define this macro, the default is to return the value of
997 FRAMEADDR--that is, the stack frame address is also the address of the stack
998 word that points to the previous frame. */
999 #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
1000
1001 /* A C expression whose value is RTL representing the value of the return
1002 address for the frame COUNT steps up from the current frame, after the
1003 prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
1004 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
1005 defined.
1006
1007 The value of the expression must always be the correct address when COUNT is
1008 zero, but may be `NULL_RTX' if there is not way to determine the return
1009 address of other frames. */
1010 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
1011
1012 #define RETURN_POINTER_REGNUM LR_REGNO
1013
1014 /* A C expression whose value is RTL representing the location of the incoming
1015 return address at the beginning of any function, before the prologue. This
1016 RTL is either a `REG', indicating that the return value is saved in `REG',
1017 or a `MEM' representing a location in the stack.
1018
1019 You only need to define this macro if you want to support call frame
1020 debugging information like that provided by DWARF 2. */
1021 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
1022
1023 \f
1024 /* Register That Address the Stack Frame. */
1025
1026 /* The register number of the stack pointer register, which must also be a
1027 fixed register according to `FIXED_REGISTERS'. On most machines, the
1028 hardware determines which register this is. */
1029 #define STACK_POINTER_REGNUM (GPR_FIRST + 1)
1030
1031 /* The register number of the frame pointer register, which is used to access
1032 automatic variables in the stack frame. On some machines, the hardware
1033 determines which register this is. On other machines, you can choose any
1034 register you wish for this purpose. */
1035 #define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
1036
1037 /* The register number of the arg pointer register, which is used to access the
1038 function's argument list. On some machines, this is the same as the frame
1039 pointer register. On some machines, the hardware determines which register
1040 this is. On other machines, you can choose any register you wish for this
1041 purpose. If this is not the same register as the frame pointer register,
1042 then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1043 arrange to be able to eliminate it. */
1044
1045 /* On frv this is a fake register that is eliminated in
1046 terms of either the frame pointer or stack pointer. */
1047 #define ARG_POINTER_REGNUM AP_FIRST
1048
1049 /* Register numbers used for passing a function's static chain pointer. If
1050 register windows are used, the register number as seen by the called
1051 function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1052 seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
1053 are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1054
1055 The static chain register need not be a fixed register.
1056
1057 If the static chain is passed in memory, these macros should not be defined;
1058 instead, the next two macros should be defined. */
1059 #define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
1060 #define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
1061
1062 \f
1063 /* Eliminating the Frame Pointer and the Arg Pointer. */
1064
1065 /* If defined, this macro specifies a table of register pairs used to eliminate
1066 unneeded registers that point into the stack frame. If it is not defined,
1067 the only elimination attempted by the compiler is to replace references to
1068 the frame pointer with references to the stack pointer.
1069
1070 The definition of this macro is a list of structure initializations, each of
1071 which specifies an original and replacement register.
1072
1073 On some machines, the position of the argument pointer is not known until
1074 the compilation is completed. In such a case, a separate hard register must
1075 be used for the argument pointer. This register can be eliminated by
1076 replacing it with either the frame pointer or the argument pointer,
1077 depending on whether or not the frame pointer has been eliminated.
1078
1079 In this case, you might specify:
1080 #define ELIMINABLE_REGS \
1081 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1082 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1083 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1084
1085 Note that the elimination of the argument pointer with the stack pointer is
1086 specified first since that is the preferred elimination. */
1087
1088 #define ELIMINABLE_REGS \
1089 { \
1090 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1091 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1092 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
1093 }
1094
1095 /* This macro returns the initial difference between the specified pair
1096 of registers. */
1097
1098 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1099 (OFFSET) = frv_initial_elimination_offset (FROM, TO)
1100
1101 \f
1102 /* Passing Function Arguments on the Stack. */
1103
1104 /* If defined, the maximum amount of space required for outgoing arguments will
1105 be computed and placed into the variable
1106 `crtl->outgoing_args_size'. No space will be pushed onto the
1107 stack for each call; instead, the function prologue should increase the
1108 stack frame size by this amount.
1109
1110 Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1111 proper. */
1112 #define ACCUMULATE_OUTGOING_ARGS 1
1113
1114 \f
1115 /* The number of register assigned to holding function arguments. */
1116
1117 #define FRV_NUM_ARG_REGS 6
1118
1119 /* A C type for declaring a variable that is used as the first argument of
1120 `FUNCTION_ARG' and other related values. For some target machines, the type
1121 `int' suffices and can hold the number of bytes of argument so far.
1122
1123 There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1124 that have been passed on the stack. The compiler has other variables to
1125 keep track of that. For target machines on which all arguments are passed
1126 on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1127 however, the data structure must exist and should not be empty, so use
1128 `int'. */
1129 #define CUMULATIVE_ARGS int
1130
1131 /* A C statement (sans semicolon) for initializing the variable CUM for the
1132 state at the beginning of the argument list. The variable has type
1133 `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
1134 of the function which will receive the args, or 0 if the args are to a
1135 compiler support library function. The value of INDIRECT is nonzero when
1136 processing an indirect call, for example a call through a function pointer.
1137 The value of INDIRECT is zero for a call to an explicitly named function, a
1138 library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1139 arguments for the function being compiled.
1140
1141 When processing a call to a compiler support library function, LIBNAME
1142 identifies which one. It is a `symbol_ref' rtx which contains the name of
1143 the function, as a string. LIBNAME is 0 when an ordinary C function call is
1144 being processed. Thus, each time this macro is called, either LIBNAME or
1145 FNTYPE is nonzero, but never both of them at once. */
1146
1147 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1148 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
1149
1150 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1151 arguments for the function being compiled. If this macro is undefined,
1152 `INIT_CUMULATIVE_ARGS' is used instead.
1153
1154 The value passed for LIBNAME is always 0, since library routines with
1155 special calling conventions are never compiled with GCC. The argument
1156 LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'. */
1157
1158 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1159 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
1160
1161 /* A C expression that is nonzero if REGNO is the number of a hard register in
1162 which function arguments are sometimes passed. This does *not* include
1163 implicit arguments such as the static chain and the structure-value address.
1164 On many machines, no registers can be used for this purpose since all
1165 function arguments are pushed on the stack. */
1166 #define FUNCTION_ARG_REGNO_P(REGNO) \
1167 ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
1168
1169 \f
1170 /* How Scalar Function Values are Returned. */
1171
1172 /* The number of the hard register that is used to return a scalar value from a
1173 function call. */
1174 #define RETURN_VALUE_REGNUM (GPR_FIRST + 8)
1175
1176 #define FUNCTION_VALUE_REGNO_P(REGNO) frv_function_value_regno_p (REGNO)
1177
1178 \f
1179 /* How Large Values are Returned. */
1180
1181 /* The number of the register that is used to pass the structure
1182 value address. */
1183 #define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
1184
1185 \f
1186 /* Function Entry and Exit. */
1187
1188 /* Define this macro as a C expression that is nonzero if the return
1189 instruction or the function epilogue ignores the value of the stack pointer;
1190 in other words, if it is safe to delete an instruction to adjust the stack
1191 pointer before a return from the function.
1192
1193 Note that this macro's value is relevant only for functions for which frame
1194 pointers are maintained. It is never safe to delete a final stack
1195 adjustment in a function that has no frame pointer, and the compiler knows
1196 this regardless of `EXIT_IGNORE_STACK'. */
1197 #define EXIT_IGNORE_STACK 1
1198 \f
1199 /* Generating Code for Profiling. */
1200
1201 /* A C statement or compound statement to output to FILE some assembler code to
1202 call the profiling subroutine `mcount'. Before calling, the assembler code
1203 must load the address of a counter variable into a register where `mcount'
1204 expects to find the address. The name of this variable is `LP' followed by
1205 the number LABELNO, so you would generate the name using `LP%d' in a
1206 `fprintf'.
1207
1208 The details of how the address should be passed to `mcount' are determined
1209 by your operating system environment, not by GCC. To figure them out,
1210 compile a small program for profiling using the system's installed C
1211 compiler and look at the assembler code that results.
1212
1213 This declaration must be present, but it can be an abort if profiling is
1214 not implemented. */
1215
1216 #define FUNCTION_PROFILER(FILE, LABELNO)
1217
1218 /* Trampolines for Nested Functions. */
1219
1220 /* A C expression for the size in bytes of the trampoline, as an integer. */
1221 #define TRAMPOLINE_SIZE frv_trampoline_size ()
1222
1223 /* Alignment required for trampolines, in bits.
1224
1225 If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
1226 aligning trampolines. */
1227 #define TRAMPOLINE_ALIGNMENT (TARGET_FDPIC ? 64 : 32)
1228
1229 /* Define this macro if trampolines need a special subroutine to do their work.
1230 The macro should expand to a series of `asm' statements which will be
1231 compiled with GCC. They go in a library function named
1232 `__transfer_from_trampoline'.
1233
1234 If you need to avoid executing the ordinary prologue code of a compiled C
1235 function when you jump to the subroutine, you can do so by placing a special
1236 label of your own in the assembler code. Use one `asm' statement to
1237 generate an assembler label, and another to make the label global. Then
1238 trampolines can use that label to jump directly to your special assembler
1239 code. */
1240
1241 #ifdef __FRV_UNDERSCORE__
1242 #define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
1243 #else
1244 #define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
1245 #endif
1246
1247 #define Twrite _write
1248
1249 #if ! __FRV_FDPIC__
1250 #define TRANSFER_FROM_TRAMPOLINE \
1251 extern int Twrite (int, const void *, unsigned); \
1252 \
1253 void \
1254 __trampoline_setup (short * addr, int size, int fnaddr, int sc) \
1255 { \
1256 extern short __trampoline_template[]; \
1257 short * to = addr; \
1258 short * from = &__trampoline_template[0]; \
1259 int i; \
1260 \
1261 if (size < 20) \
1262 { \
1263 Twrite (2, "__trampoline_setup bad size\n", \
1264 sizeof ("__trampoline_setup bad size\n") - 1); \
1265 exit (-1); \
1266 } \
1267 \
1268 to[0] = from[0]; \
1269 to[1] = (short)(fnaddr); \
1270 to[2] = from[2]; \
1271 to[3] = (short)(sc); \
1272 to[4] = from[4]; \
1273 to[5] = (short)(fnaddr >> 16); \
1274 to[6] = from[6]; \
1275 to[7] = (short)(sc >> 16); \
1276 to[8] = from[8]; \
1277 to[9] = from[9]; \
1278 \
1279 for (i = 0; i < 20; i++) \
1280 __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1281 } \
1282 \
1283 __asm__("\n" \
1284 "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
1285 "\t.text\n" \
1286 TRAMPOLINE_TEMPLATE_NAME ":\n" \
1287 "\tsetlos #0, gr6\n" /* jump register */ \
1288 "\tsetlos #0, gr7\n" /* static chain */ \
1289 "\tsethi #0, gr6\n" \
1290 "\tsethi #0, gr7\n" \
1291 "\tjmpl @(gr0,gr6)\n");
1292 #else
1293 #define TRANSFER_FROM_TRAMPOLINE \
1294 extern int Twrite (int, const void *, unsigned); \
1295 \
1296 void \
1297 __trampoline_setup (addr, size, fnaddr, sc) \
1298 short * addr; \
1299 int size; \
1300 int fnaddr; \
1301 int sc; \
1302 { \
1303 extern short __trampoline_template[]; \
1304 short * from = &__trampoline_template[0]; \
1305 int i; \
1306 short **desc = (short **)addr; \
1307 short * to = addr + 4; \
1308 \
1309 if (size != 32) \
1310 { \
1311 Twrite (2, "__trampoline_setup bad size\n", \
1312 sizeof ("__trampoline_setup bad size\n") - 1); \
1313 exit (-1); \
1314 } \
1315 \
1316 /* Create a function descriptor with the address of the code below \
1317 and NULL as the FDPIC value. We don't need the real GOT value \
1318 here, since we don't use it, so we use NULL, that is just as \
1319 good. */ \
1320 desc[0] = to; \
1321 desc[1] = NULL; \
1322 size -= 8; \
1323 \
1324 to[0] = from[0]; \
1325 to[1] = (short)(fnaddr); \
1326 to[2] = from[2]; \
1327 to[3] = (short)(sc); \
1328 to[4] = from[4]; \
1329 to[5] = (short)(fnaddr >> 16); \
1330 to[6] = from[6]; \
1331 to[7] = (short)(sc >> 16); \
1332 to[8] = from[8]; \
1333 to[9] = from[9]; \
1334 to[10] = from[10]; \
1335 to[11] = from[11]; \
1336 \
1337 for (i = 0; i < size; i++) \
1338 __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1339 } \
1340 \
1341 __asm__("\n" \
1342 "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
1343 "\t.text\n" \
1344 TRAMPOLINE_TEMPLATE_NAME ":\n" \
1345 "\tsetlos #0, gr6\n" /* Jump register. */ \
1346 "\tsetlos #0, gr7\n" /* Static chain. */ \
1347 "\tsethi #0, gr6\n" \
1348 "\tsethi #0, gr7\n" \
1349 "\tldd @(gr6,gr0),gr14\n" \
1350 "\tjmpl @(gr14,gr0)\n" \
1351 );
1352 #endif
1353
1354 \f
1355 /* Addressing Modes. */
1356
1357 /* A number, the maximum number of registers that can appear in a valid memory
1358 address. Note that it is up to you to specify a value equal to the maximum
1359 number that `TARGET_LEGITIMATE_ADDRESS_P' would ever accept. */
1360 #define MAX_REGS_PER_ADDRESS 2
1361
1362 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1363 use as a base register. For hard registers, it should always accept those
1364 which the hardware permits and reject the others. Whether the macro accepts
1365 or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
1366 described above. This usually requires two variant definitions, of which
1367 `REG_OK_STRICT' controls the one actually used. */
1368 #ifdef REG_OK_STRICT
1369 #define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
1370 #else
1371 #define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
1372 #endif
1373
1374 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1375 use as an index register.
1376
1377 The difference between an index register and a base register is that the
1378 index register may be scaled. If an address involves the sum of two
1379 registers, neither one of them scaled, then either one may be labeled the
1380 "base" and the other the "index"; but whichever labeling is used must fit
1381 the machine's constraints of which registers may serve in each capacity.
1382 The compiler will try both labelings, looking for one that is valid, and
1383 will reload one or both registers only if neither labeling works. */
1384 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1385
1386 #define FIND_BASE_TERM frv_find_base_term
1387
1388 /* The load-and-update commands allow pre-modification in addresses.
1389 The index has to be in a register. */
1390 #define HAVE_PRE_MODIFY_REG 1
1391
1392 \f
1393 /* We define extra CC modes in frv-modes.def so we need a selector. */
1394
1395 #define SELECT_CC_MODE frv_select_cc_mode
1396
1397 /* A C expression whose value is one if it is always safe to reverse a
1398 comparison whose mode is MODE. If `SELECT_CC_MODE' can ever return MODE for
1399 a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
1400 must be zero.
1401
1402 You need not define this macro if it would always returns zero or if the
1403 floating-point format is anything other than `IEEE_FLOAT_FORMAT'. For
1404 example, here is the definition used on the SPARC, where floating-point
1405 inequality comparisons are always given `CCFPEmode':
1406
1407 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode) */
1408
1409 /* On frv, don't consider floating point comparisons to be reversible. In
1410 theory, fp equality comparisons can be reversible. */
1411 #define REVERSIBLE_CC_MODE(MODE) \
1412 ((MODE) == CCmode || (MODE) == CC_UNSmode || (MODE) == CC_NZmode)
1413
1414 \f
1415 /* Describing Relative Costs of Operations. */
1416
1417 /* A C expression for the cost of a branch instruction. A value of 1 is the
1418 default; other values are interpreted relative to that. */
1419 #define BRANCH_COST(speed_p, predictable_p) frv_branch_cost_int
1420
1421 /* Define this macro as a C expression which is nonzero if accessing less than
1422 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1423 word of memory, i.e., if such access require more than one instruction or if
1424 there is no difference in cost between byte and (aligned) word loads.
1425
1426 When this macro is not defined, the compiler will access a field by finding
1427 the smallest containing object; when it is defined, a fullword load will be
1428 used if alignment permits. Unless bytes accesses are faster than word
1429 accesses, using word accesses is preferable since it may eliminate
1430 subsequent memory access if subsequent accesses occur to other fields in the
1431 same word of the structure, but to different bytes. */
1432 #define SLOW_BYTE_ACCESS 1
1433
1434 /* Define this macro if it is as good or better to call a constant function
1435 address than to call an address kept in a register. */
1436 #define NO_FUNCTION_CSE 1
1437
1438 \f
1439 /* Dividing the output into sections. */
1440
1441 /* A C expression whose value is a string containing the assembler operation
1442 that should precede instructions and read-only data. Normally `".text"' is
1443 right. */
1444 #define TEXT_SECTION_ASM_OP "\t.text"
1445
1446 /* A C expression whose value is a string containing the assembler operation to
1447 identify the following data as writable initialized data. Normally
1448 `".data"' is right. */
1449 #define DATA_SECTION_ASM_OP "\t.data"
1450
1451 #define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
1452
1453 /* Short Data Support */
1454 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
1455
1456 #undef INIT_SECTION_ASM_OP
1457 #undef FINI_SECTION_ASM_OP
1458 #define INIT_SECTION_ASM_OP "\t.section .init,\"ax\""
1459 #define FINI_SECTION_ASM_OP "\t.section .fini,\"ax\""
1460
1461 #undef CTORS_SECTION_ASM_OP
1462 #undef DTORS_SECTION_ASM_OP
1463 #define CTORS_SECTION_ASM_OP "\t.section\t.ctors,\"a\""
1464 #define DTORS_SECTION_ASM_OP "\t.section\t.dtors,\"a\""
1465
1466 /* A C expression whose value is a string containing the assembler operation to
1467 switch to the fixup section that records all initialized pointers in a -fpic
1468 program so they can be changed program startup time if the program is loaded
1469 at a different address than linked for. */
1470 #define FIXUP_SECTION_ASM_OP "\t.section .rofixup,\"a\""
1471 \f
1472 /* Position Independent Code. */
1473
1474 /* A C expression that is nonzero if X is a legitimate immediate operand on the
1475 target machine when generating position independent code. You can assume
1476 that X satisfies `CONSTANT_P', so you need not check this. You can also
1477 assume FLAG_PIC is true, so you need not check it either. You need not
1478 define this macro if all constants (including `SYMBOL_REF') can be immediate
1479 operands when generating position independent code. */
1480 #define LEGITIMATE_PIC_OPERAND_P(X) \
1481 ( GET_CODE (X) == CONST_INT \
1482 || GET_CODE (X) == CONST_DOUBLE \
1483 || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT) \
1484 || got12_operand (X, VOIDmode)) \
1485
1486 \f
1487 /* The Overall Framework of an Assembler File. */
1488
1489 /* A C string constant describing how to begin a comment in the target
1490 assembler language. The compiler assumes that the comment will end at the
1491 end of the line. */
1492 #define ASM_COMMENT_START ";"
1493
1494 /* A C string constant for text to be output before each `asm' statement or
1495 group of consecutive ones. Normally this is `"#APP"', which is a comment
1496 that has no effect on most assemblers but tells the GNU assembler that it
1497 must check the lines that follow for all valid assembler constructs. */
1498 #define ASM_APP_ON "#APP\n"
1499
1500 /* A C string constant for text to be output after each `asm' statement or
1501 group of consecutive ones. Normally this is `"#NO_APP"', which tells the
1502 GNU assembler to resume making the time-saving assumptions that are valid
1503 for ordinary compiler output. */
1504 #define ASM_APP_OFF "#NO_APP\n"
1505
1506 \f
1507 /* Output of Data. */
1508
1509 /* This is how to output a label to dwarf/dwarf2. */
1510 #define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL) \
1511 do { \
1512 fprintf (STREAM, "\t.picptr\t"); \
1513 assemble_name (STREAM, LABEL); \
1514 } while (0)
1515
1516 /* Whether to emit the gas specific dwarf2 line number support. */
1517 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
1518 \f
1519 /* Output of Uninitialized Variables. */
1520
1521 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1522 assembler definition of a local-common-label named NAME whose size is SIZE
1523 bytes. The variable ROUNDED is the size rounded up to whatever alignment
1524 the caller wants.
1525
1526 Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
1527 before and after that, output the additional assembler syntax for defining
1528 the name, and a newline.
1529
1530 This macro controls how the assembler definitions of uninitialized static
1531 variables are output. */
1532 #undef ASM_OUTPUT_LOCAL
1533
1534 #undef ASM_OUTPUT_ALIGNED_LOCAL
1535
1536 /* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME. */
1537 extern int size_directive_output;
1538
1539 /* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
1540 parameter - the DECL of variable to be output, if there is one.
1541 This macro can be called with DECL == NULL_TREE. If you define
1542 this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
1543 `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
1544 handling the destination of the variable. */
1545 #undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
1546 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN) \
1547 do { \
1548 if ((SIZE) > 0 && (SIZE) <= (unsigned HOST_WIDE_INT) g_switch_value) \
1549 switch_to_section (get_named_section (NULL, ".sbss", 0)); \
1550 else \
1551 switch_to_section (bss_section); \
1552 ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT)); \
1553 ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL); \
1554 ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1); \
1555 } while (0)
1556
1557 \f
1558 /* Output and Generation of Labels. */
1559
1560 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1561 assembler definition of a label named NAME. Use the expression
1562 `assemble_name (STREAM, NAME)' to output the name itself; before and after
1563 that, output the additional assembler syntax for defining the name, and a
1564 newline. */
1565 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
1566 do { \
1567 assemble_name (STREAM, NAME); \
1568 fputs (":\n", STREAM); \
1569 } while (0)
1570
1571 /* Globalizing directive for a label. */
1572 #define GLOBAL_ASM_OP "\t.globl "
1573
1574 #undef ASM_GENERATE_INTERNAL_LABEL
1575 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1576 do { \
1577 sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM); \
1578 } while (0)
1579
1580 \f
1581 /* Macros Controlling Initialization Routines. */
1582
1583 #undef INIT_SECTION_ASM_OP
1584
1585 /* If defined, `main' will call `__main' despite the presence of
1586 `INIT_SECTION_ASM_OP'. This macro should be defined for systems where the
1587 init section is not actually run automatically, but is still useful for
1588 collecting the lists of constructors and destructors. */
1589 #define INVOKE__main
1590 \f
1591 /* Output of Assembler Instructions. */
1592
1593 /* A C initializer containing the assembler's names for the machine registers,
1594 each one as a C string constant. This is what translates register numbers
1595 in the compiler into assembler language. */
1596 #define REGISTER_NAMES \
1597 { \
1598 "gr0", "sp", "fp", "gr3", "gr4", "gr5", "gr6", "gr7", \
1599 "gr8", "gr9", "gr10", "gr11", "gr12", "gr13", "gr14", "gr15", \
1600 "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23", \
1601 "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31", \
1602 "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39", \
1603 "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47", \
1604 "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55", \
1605 "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63", \
1606 \
1607 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
1608 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
1609 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
1610 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
1611 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
1612 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
1613 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
1614 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
1615 \
1616 "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3", \
1617 "cc0", "cc1", "cc2", "cc3", "cc4", "cc5", "cc6", "cc7", \
1618 "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7", \
1619 "acc8", "acc9", "acc10", "acc11", \
1620 "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7", \
1621 "accg8", "accg9", "accg10", "accg11", \
1622 "ap", "lr", "lcr", "iacc0h", "iacc0l" \
1623 }
1624
1625 /* Define this macro if you are using an unusual assembler that
1626 requires different names for the machine instructions.
1627
1628 The definition is a C statement or statements which output an
1629 assembler instruction opcode to the stdio stream STREAM. The
1630 macro-operand PTR is a variable of type `char *' which points to
1631 the opcode name in its "internal" form--the form that is written
1632 in the machine description. The definition should output the
1633 opcode name to STREAM, performing any translation you desire, and
1634 increment the variable PTR to point at the end of the opcode so
1635 that it will not be output twice.
1636
1637 In fact, your macro definition may process less than the entire
1638 opcode name, or more than the opcode name; but if you want to
1639 process text that includes `%'-sequences to substitute operands,
1640 you must take care of the substitution yourself. Just be sure to
1641 increment PTR over whatever text should not be output normally.
1642
1643 If you need to look at the operand values, they can be found as the
1644 elements of `recog_operand'.
1645
1646 If the macro definition does nothing, the instruction is output in
1647 the usual way. */
1648
1649 #define ASM_OUTPUT_OPCODE(STREAM, PTR)\
1650 (PTR) = frv_asm_output_opcode (STREAM, PTR)
1651
1652 /* If defined, a C statement to be executed just prior to the output
1653 of assembler code for INSN, to modify the extracted operands so
1654 they will be output differently.
1655
1656 Here the argument OPVEC is the vector containing the operands
1657 extracted from INSN, and NOPERANDS is the number of elements of
1658 the vector which contain meaningful data for this insn. The
1659 contents of this vector are what will be used to convert the insn
1660 template into assembler code, so you can change the assembler
1661 output by changing the contents of the vector.
1662
1663 This macro is useful when various assembler syntaxes share a single
1664 file of instruction patterns; by defining this macro differently,
1665 you can cause a large class of instructions to be output
1666 differently (such as with rearranged operands). Naturally,
1667 variations in assembler syntax affecting individual insn patterns
1668 ought to be handled by writing conditional output routines in
1669 those patterns.
1670
1671 If this macro is not defined, it is equivalent to a null statement. */
1672
1673 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
1674 frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
1675
1676 #undef USER_LABEL_PREFIX
1677 #define USER_LABEL_PREFIX ""
1678 #define REGISTER_PREFIX ""
1679 #define LOCAL_LABEL_PREFIX "."
1680 #define IMMEDIATE_PREFIX "#"
1681
1682 \f
1683 /* Output of dispatch tables. */
1684
1685 /* This macro should be provided on machines where the addresses in a dispatch
1686 table are relative to the table's own address.
1687
1688 The definition should be a C statement to output to the stdio stream STREAM
1689 an assembler pseudo-instruction to generate a difference between two labels.
1690 VALUE and REL are the numbers of two internal labels. The definitions of
1691 these labels are output using `(*targetm.asm_out.internal_label)', and they must be
1692 printed in the same way here. For example,
1693
1694 fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
1695 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1696 fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
1697
1698 /* This macro should be provided on machines where the addresses in a dispatch
1699 table are absolute.
1700
1701 The definition should be a C statement to output to the stdio stream STREAM
1702 an assembler pseudo-instruction to generate a reference to a label. VALUE
1703 is the number of an internal label whose definition is output using
1704 `(*targetm.asm_out.internal_label)'. For example,
1705
1706 fprintf (STREAM, "\t.word L%d\n", VALUE) */
1707 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1708 fprintf (STREAM, "\t.word .L%d\n", VALUE)
1709
1710 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
1711 \f
1712 /* Assembler Commands for Exception Regions. */
1713
1714 /* Define this macro to 0 if your target supports DWARF 2 frame unwind
1715 information, but it does not yet work with exception handling. Otherwise,
1716 if your target supports this information (if it defines
1717 `INCOMING_RETURN_ADDR_RTX' and `OBJECT_FORMAT_ELF'), GCC will provide
1718 a default definition of 1.
1719
1720 If this macro is defined to 1, the DWARF 2 unwinder will be the default
1721 exception handling mechanism; otherwise, setjmp/longjmp will be used by
1722 default.
1723
1724 If this macro is defined to anything, the DWARF 2 unwinder will be used
1725 instead of inline unwinders and __unwind_function in the non-setjmp case. */
1726 #define DWARF2_UNWIND_INFO 1
1727
1728 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
1729 \f
1730 /* Assembler Commands for Alignment. */
1731
1732 #undef ASM_OUTPUT_SKIP
1733 #define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
1734 fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
1735
1736 /* A C statement to output to the stdio stream STREAM an assembler command to
1737 advance the location counter to a multiple of 2 to the POWER bytes. POWER
1738 will be a C expression of type `int'. */
1739 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1740 fprintf ((STREAM), "\t.p2align %d\n", (POWER))
1741
1742 /* Inside the text section, align with unpacked nops rather than zeros. */
1743 #define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
1744 fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
1745 \f
1746 /* Macros Affecting all Debug Formats. */
1747
1748 /* A C expression that returns the DBX register number for the compiler
1749 register number REGNO. In simple cases, the value of this expression may be
1750 REGNO itself. But sometimes there are some registers that the compiler
1751 knows about and DBX does not, or vice versa. In such cases, some register
1752 may need to have one number in the compiler and another for DBX.
1753
1754 If two registers have consecutive numbers inside GCC, and they can be
1755 used as a pair to hold a multiword value, then they *must* have consecutive
1756 numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers
1757 will be unable to access such a pair, because they expect register pairs to
1758 be consecutive in their own numbering scheme.
1759
1760 If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
1761 preserve register pairs, then what you must do instead is redefine the
1762 actual register numbering scheme.
1763
1764 This declaration is required. */
1765 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1766
1767 #undef PREFERRED_DEBUGGING_TYPE
1768 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1769 \f
1770 /* Miscellaneous Parameters. */
1771
1772 /* An alias for a machine mode name. This is the machine mode that elements of
1773 a jump-table should have. */
1774 #define CASE_VECTOR_MODE SImode
1775
1776 /* Define this macro if operations between registers with integral mode smaller
1777 than a word are always performed on the entire register. Most RISC machines
1778 have this property and most CISC machines do not. */
1779 #define WORD_REGISTER_OPERATIONS 1
1780
1781 /* Define this macro to be a C expression indicating when insns that read
1782 memory in MODE, an integral mode narrower than a word, set the bits outside
1783 of MODE to be either the sign-extension or the zero-extension of the data
1784 read. Return `SIGN_EXTEND' for values of MODE for which the insn
1785 sign-extends, `ZERO_EXTEND' for which it zero-extends, and `UNKNOWN' for other
1786 modes.
1787
1788 This macro is not called with MODE non-integral or with a width greater than
1789 or equal to `BITS_PER_WORD', so you may return any value in this case. Do
1790 not define this macro if it would always return `UNKNOWN'. On machines where
1791 this macro is defined, you will normally define it as the constant
1792 `SIGN_EXTEND' or `ZERO_EXTEND'. */
1793 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1794
1795 /* Define if loading short immediate values into registers sign extends. */
1796 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1797
1798 /* The maximum number of bytes that a single instruction can move quickly from
1799 memory to memory. */
1800 #define MOVE_MAX 8
1801
1802 /* An alias for the machine mode for pointers. On most machines, define this
1803 to be the integer mode corresponding to the width of a hardware pointer;
1804 `SImode' on 32-bit machine or `DImode' on 64-bit machines. On some machines
1805 you must define this to be one of the partial integer modes, such as
1806 `PSImode'.
1807
1808 The width of `Pmode' must be at least as large as the value of
1809 `POINTER_SIZE'. If it is not equal, you must define the macro
1810 `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'. */
1811 #define Pmode SImode
1812
1813 /* An alias for the machine mode used for memory references to functions being
1814 called, in `call' RTL expressions. On most machines this should be
1815 `QImode'. */
1816 #define FUNCTION_MODE QImode
1817
1818 /* A C expression for the maximum number of instructions to execute via
1819 conditional execution instructions instead of a branch. A value of
1820 BRANCH_COST+1 is the default if the machine does not use
1821 cc0, and 1 if it does use cc0. */
1822 #define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
1823
1824 /* A C expression to modify the code described by the conditional if
1825 information CE_INFO, possibly updating the tests in TRUE_EXPR, and
1826 FALSE_EXPR for converting if-then and if-then-else code to conditional
1827 instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
1828 tests cannot be converted. */
1829 #define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR) \
1830 frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
1831
1832 /* A C expression to modify the code described by the conditional if
1833 information CE_INFO, for the basic block BB, possibly updating the tests in
1834 TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
1835 if-then-else code to conditional instructions. OLD_TRUE and OLD_FALSE are
1836 the previous tests. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
1837 the tests cannot be converted. */
1838 #define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
1839 frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
1840
1841 /* A C expression to modify the code described by the conditional if
1842 information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
1843 pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
1844 insn cannot be converted to be executed conditionally. */
1845 #define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
1846 (PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
1847
1848 /* A C expression to perform any final machine dependent modifications in
1849 converting code to conditional execution in the code described by the
1850 conditional if information CE_INFO. */
1851 #define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
1852
1853 /* A C expression to cancel any machine dependent modifications in converting
1854 code to conditional execution in the code described by the conditional if
1855 information CE_INFO. */
1856 #define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
1857
1858 /* Initialize the machine-specific static data for if-conversion. */
1859 #define IFCVT_MACHDEP_INIT(CE_INFO) frv_ifcvt_machdep_init (CE_INFO)
1860
1861 /* The definition of the following macro results in that the 2nd jump
1862 optimization (after the 2nd insn scheduling) is minimal. It is
1863 necessary to define when start cycle marks of insns (TImode is used
1864 for this) is used for VLIW insn packing. Some jump optimizations
1865 make such marks invalid. These marks are corrected for some
1866 (minimal) optimizations. ??? Probably the macro is temporary.
1867 Final solution could making the 2nd jump optimizations before the
1868 2nd instruction scheduling or corrections of the marks for all jump
1869 optimizations. Although some jump optimizations are actually
1870 deoptimizations for VLIW (super-scalar) processors. */
1871
1872 #define MINIMAL_SECOND_JUMP_OPTIMIZATION
1873
1874
1875 /* If the following macro is defined and nonzero and deterministic
1876 finite state automata are used for pipeline hazard recognition, we
1877 will try to exchange insns in queue ready to improve the schedule.
1878 The more macro value, the more tries will be made. */
1879 #define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
1880
1881 /* The following macro is used only when value of
1882 FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero. The more macro value,
1883 the more tries will be made to choose better schedule. If the
1884 macro value is zero or negative there will be no multi-pass
1885 scheduling. */
1886 #define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
1887
1888 enum frv_builtins
1889 {
1890 FRV_BUILTIN_MAND,
1891 FRV_BUILTIN_MOR,
1892 FRV_BUILTIN_MXOR,
1893 FRV_BUILTIN_MNOT,
1894 FRV_BUILTIN_MAVEH,
1895 FRV_BUILTIN_MSATHS,
1896 FRV_BUILTIN_MSATHU,
1897 FRV_BUILTIN_MADDHSS,
1898 FRV_BUILTIN_MADDHUS,
1899 FRV_BUILTIN_MSUBHSS,
1900 FRV_BUILTIN_MSUBHUS,
1901 FRV_BUILTIN_MPACKH,
1902 FRV_BUILTIN_MQADDHSS,
1903 FRV_BUILTIN_MQADDHUS,
1904 FRV_BUILTIN_MQSUBHSS,
1905 FRV_BUILTIN_MQSUBHUS,
1906 FRV_BUILTIN_MUNPACKH,
1907 FRV_BUILTIN_MDPACKH,
1908 FRV_BUILTIN_MBTOH,
1909 FRV_BUILTIN_MHTOB,
1910 FRV_BUILTIN_MCOP1,
1911 FRV_BUILTIN_MCOP2,
1912 FRV_BUILTIN_MROTLI,
1913 FRV_BUILTIN_MROTRI,
1914 FRV_BUILTIN_MWCUT,
1915 FRV_BUILTIN_MSLLHI,
1916 FRV_BUILTIN_MSRLHI,
1917 FRV_BUILTIN_MSRAHI,
1918 FRV_BUILTIN_MEXPDHW,
1919 FRV_BUILTIN_MEXPDHD,
1920 FRV_BUILTIN_MMULHS,
1921 FRV_BUILTIN_MMULHU,
1922 FRV_BUILTIN_MMULXHS,
1923 FRV_BUILTIN_MMULXHU,
1924 FRV_BUILTIN_MMACHS,
1925 FRV_BUILTIN_MMACHU,
1926 FRV_BUILTIN_MMRDHS,
1927 FRV_BUILTIN_MMRDHU,
1928 FRV_BUILTIN_MQMULHS,
1929 FRV_BUILTIN_MQMULHU,
1930 FRV_BUILTIN_MQMULXHU,
1931 FRV_BUILTIN_MQMULXHS,
1932 FRV_BUILTIN_MQMACHS,
1933 FRV_BUILTIN_MQMACHU,
1934 FRV_BUILTIN_MCPXRS,
1935 FRV_BUILTIN_MCPXRU,
1936 FRV_BUILTIN_MCPXIS,
1937 FRV_BUILTIN_MCPXIU,
1938 FRV_BUILTIN_MQCPXRS,
1939 FRV_BUILTIN_MQCPXRU,
1940 FRV_BUILTIN_MQCPXIS,
1941 FRV_BUILTIN_MQCPXIU,
1942 FRV_BUILTIN_MCUT,
1943 FRV_BUILTIN_MCUTSS,
1944 FRV_BUILTIN_MWTACC,
1945 FRV_BUILTIN_MWTACCG,
1946 FRV_BUILTIN_MRDACC,
1947 FRV_BUILTIN_MRDACCG,
1948 FRV_BUILTIN_MTRAP,
1949 FRV_BUILTIN_MCLRACC,
1950 FRV_BUILTIN_MCLRACCA,
1951 FRV_BUILTIN_MDUNPACKH,
1952 FRV_BUILTIN_MBTOHE,
1953 FRV_BUILTIN_MQXMACHS,
1954 FRV_BUILTIN_MQXMACXHS,
1955 FRV_BUILTIN_MQMACXHS,
1956 FRV_BUILTIN_MADDACCS,
1957 FRV_BUILTIN_MSUBACCS,
1958 FRV_BUILTIN_MASACCS,
1959 FRV_BUILTIN_MDADDACCS,
1960 FRV_BUILTIN_MDSUBACCS,
1961 FRV_BUILTIN_MDASACCS,
1962 FRV_BUILTIN_MABSHS,
1963 FRV_BUILTIN_MDROTLI,
1964 FRV_BUILTIN_MCPLHI,
1965 FRV_BUILTIN_MCPLI,
1966 FRV_BUILTIN_MDCUTSSI,
1967 FRV_BUILTIN_MQSATHS,
1968 FRV_BUILTIN_MQLCLRHS,
1969 FRV_BUILTIN_MQLMTHS,
1970 FRV_BUILTIN_MQSLLHI,
1971 FRV_BUILTIN_MQSRAHI,
1972 FRV_BUILTIN_MHSETLOS,
1973 FRV_BUILTIN_MHSETLOH,
1974 FRV_BUILTIN_MHSETHIS,
1975 FRV_BUILTIN_MHSETHIH,
1976 FRV_BUILTIN_MHDSETS,
1977 FRV_BUILTIN_MHDSETH,
1978 FRV_BUILTIN_SMUL,
1979 FRV_BUILTIN_UMUL,
1980 FRV_BUILTIN_PREFETCH0,
1981 FRV_BUILTIN_PREFETCH,
1982 FRV_BUILTIN_SMASS,
1983 FRV_BUILTIN_SMSSS,
1984 FRV_BUILTIN_SMU,
1985 FRV_BUILTIN_SCUTSS,
1986 FRV_BUILTIN_ADDSS,
1987 FRV_BUILTIN_SUBSS,
1988 FRV_BUILTIN_SLASS,
1989 FRV_BUILTIN_IACCreadll,
1990 FRV_BUILTIN_IACCreadl,
1991 FRV_BUILTIN_IACCsetll,
1992 FRV_BUILTIN_IACCsetl,
1993 FRV_BUILTIN_SCAN,
1994 FRV_BUILTIN_READ8,
1995 FRV_BUILTIN_READ16,
1996 FRV_BUILTIN_READ32,
1997 FRV_BUILTIN_READ64,
1998 FRV_BUILTIN_WRITE8,
1999 FRV_BUILTIN_WRITE16,
2000 FRV_BUILTIN_WRITE32,
2001 FRV_BUILTIN_WRITE64
2002 };
2003 #define FRV_BUILTIN_FIRST_NONMEDIA FRV_BUILTIN_SMUL
2004
2005 /* Enable prototypes on the call rtl functions. */
2006 #define MD_CALL_PROTOTYPES 1
2007
2008 #define CPU_UNITS_QUERY 1
2009
2010 #endif /* __FRV_H__ */