]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/h8300/h8300.c
trans.c: Include header files.
[thirdparty/gcc.git] / gcc / config / h8300 / h8300.c
1 /* Subroutines for insn-output.c for Renesas H8/300.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Steve Chamberlain (sac@cygnus.com),
4 Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "stringpool.h"
33 #include "attribs.h"
34 #include "optabs.h"
35 #include "regs.h"
36 #include "emit-rtl.h"
37 #include "recog.h"
38 #include "diagnostic-core.h"
39 #include "alias.h"
40 #include "stor-layout.h"
41 #include "varasm.h"
42 #include "calls.h"
43 #include "conditions.h"
44 #include "output.h"
45 #include "insn-attr.h"
46 #include "flags.h"
47 #include "explow.h"
48 #include "expr.h"
49 #include "tm-constrs.h"
50 #include "builtins.h"
51
52 /* This file should be included last. */
53 #include "target-def.h"
54
55 /* Classifies a h8300_src_operand or h8300_dst_operand.
56
57 H8OP_IMMEDIATE
58 A constant operand of some sort.
59
60 H8OP_REGISTER
61 An ordinary register.
62
63 H8OP_MEM_ABSOLUTE
64 A memory reference with a constant address.
65
66 H8OP_MEM_BASE
67 A memory reference with a register as its address.
68
69 H8OP_MEM_COMPLEX
70 Some other kind of memory reference. */
71 enum h8300_operand_class
72 {
73 H8OP_IMMEDIATE,
74 H8OP_REGISTER,
75 H8OP_MEM_ABSOLUTE,
76 H8OP_MEM_BASE,
77 H8OP_MEM_COMPLEX,
78 NUM_H8OPS
79 };
80
81 /* For a general two-operand instruction, element [X][Y] gives
82 the length of the opcode fields when the first operand has class
83 (X + 1) and the second has class Y. */
84 typedef unsigned char h8300_length_table[NUM_H8OPS - 1][NUM_H8OPS];
85
86 /* Forward declarations. */
87 static const char *byte_reg (rtx, int);
88 static int h8300_interrupt_function_p (tree);
89 static int h8300_saveall_function_p (tree);
90 static int h8300_monitor_function_p (tree);
91 static int h8300_os_task_function_p (tree);
92 static void h8300_emit_stack_adjustment (int, HOST_WIDE_INT, bool);
93 static HOST_WIDE_INT round_frame_size (HOST_WIDE_INT);
94 static unsigned int compute_saved_regs (void);
95 static const char *cond_string (enum rtx_code);
96 static unsigned int h8300_asm_insn_count (const char *);
97 static tree h8300_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
98 static tree h8300_handle_eightbit_data_attribute (tree *, tree, tree, int, bool *);
99 static tree h8300_handle_tiny_data_attribute (tree *, tree, tree, int, bool *);
100 static void h8300_print_operand_address (FILE *, machine_mode, rtx);
101 static void h8300_print_operand (FILE *, rtx, int);
102 static bool h8300_print_operand_punct_valid_p (unsigned char code);
103 #ifndef OBJECT_FORMAT_ELF
104 static void h8300_asm_named_section (const char *, unsigned int, tree);
105 #endif
106 static int h8300_register_move_cost (machine_mode, reg_class_t, reg_class_t);
107 static int h8300_and_costs (rtx);
108 static int h8300_shift_costs (rtx);
109 static void h8300_push_pop (int, int, bool, bool);
110 static int h8300_stack_offset_p (rtx, int);
111 static int h8300_ldm_stm_regno (rtx, int, int, int);
112 static void h8300_reorg (void);
113 static unsigned int h8300_constant_length (rtx);
114 static unsigned int h8300_displacement_length (rtx, int);
115 static unsigned int h8300_classify_operand (rtx, int, enum h8300_operand_class *);
116 static unsigned int h8300_length_from_table (rtx, rtx, const h8300_length_table *);
117 static unsigned int h8300_unary_length (rtx);
118 static unsigned int h8300_short_immediate_length (rtx);
119 static unsigned int h8300_bitfield_length (rtx, rtx);
120 static unsigned int h8300_binary_length (rtx_insn *, const h8300_length_table *);
121 static bool h8300_short_move_mem_p (rtx, enum rtx_code);
122 static unsigned int h8300_move_length (rtx *, const h8300_length_table *);
123 static bool h8300_hard_regno_scratch_ok (unsigned int);
124 static rtx h8300_get_index (rtx, machine_mode mode, int *);
125
126 /* CPU_TYPE, says what cpu we're compiling for. */
127 int cpu_type;
128
129 /* True if a #pragma interrupt has been seen for the current function. */
130 static int pragma_interrupt;
131
132 /* True if a #pragma saveall has been seen for the current function. */
133 static int pragma_saveall;
134
135 static const char *const names_big[] =
136 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" };
137
138 static const char *const names_extended[] =
139 { "er0", "er1", "er2", "er3", "er4", "er5", "er6", "er7" };
140
141 static const char *const names_upper_extended[] =
142 { "e0", "e1", "e2", "e3", "e4", "e5", "e6", "e7" };
143
144 /* Points to one of the above. */
145 /* ??? The above could be put in an array indexed by CPU_TYPE. */
146 const char * const *h8_reg_names;
147
148 /* Various operations needed by the following, indexed by CPU_TYPE. */
149
150 const char *h8_push_op, *h8_pop_op, *h8_mov_op;
151
152 /* Value of MOVE_RATIO. */
153 int h8300_move_ratio;
154 \f
155 /* See below where shifts are handled for explanation of this enum. */
156
157 enum shift_alg
158 {
159 SHIFT_INLINE,
160 SHIFT_ROT_AND,
161 SHIFT_SPECIAL,
162 SHIFT_LOOP
163 };
164
165 /* Symbols of the various shifts which can be used as indices. */
166
167 enum shift_type
168 {
169 SHIFT_ASHIFT, SHIFT_LSHIFTRT, SHIFT_ASHIFTRT
170 };
171
172 /* Macros to keep the shift algorithm tables small. */
173 #define INL SHIFT_INLINE
174 #define ROT SHIFT_ROT_AND
175 #define LOP SHIFT_LOOP
176 #define SPC SHIFT_SPECIAL
177
178 /* The shift algorithms for each machine, mode, shift type, and shift
179 count are defined below. The three tables below correspond to
180 QImode, HImode, and SImode, respectively. Each table is organized
181 by, in the order of indices, machine, shift type, and shift count. */
182
183 static enum shift_alg shift_alg_qi[3][3][8] = {
184 {
185 /* TARGET_H8300 */
186 /* 0 1 2 3 4 5 6 7 */
187 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
188 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
189 { INL, INL, INL, INL, INL, LOP, LOP, SPC } /* SHIFT_ASHIFTRT */
190 },
191 {
192 /* TARGET_H8300H */
193 /* 0 1 2 3 4 5 6 7 */
194 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
195 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
196 { INL, INL, INL, INL, INL, LOP, LOP, SPC } /* SHIFT_ASHIFTRT */
197 },
198 {
199 /* TARGET_H8300S */
200 /* 0 1 2 3 4 5 6 7 */
201 { INL, INL, INL, INL, INL, INL, ROT, ROT }, /* SHIFT_ASHIFT */
202 { INL, INL, INL, INL, INL, INL, ROT, ROT }, /* SHIFT_LSHIFTRT */
203 { INL, INL, INL, INL, INL, INL, INL, SPC } /* SHIFT_ASHIFTRT */
204 }
205 };
206
207 static enum shift_alg shift_alg_hi[3][3][16] = {
208 {
209 /* TARGET_H8300 */
210 /* 0 1 2 3 4 5 6 7 */
211 /* 8 9 10 11 12 13 14 15 */
212 { INL, INL, INL, INL, INL, INL, INL, SPC,
213 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
214 { INL, INL, INL, INL, INL, LOP, LOP, SPC,
215 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
216 { INL, INL, INL, INL, INL, LOP, LOP, SPC,
217 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
218 },
219 {
220 /* TARGET_H8300H */
221 /* 0 1 2 3 4 5 6 7 */
222 /* 8 9 10 11 12 13 14 15 */
223 { INL, INL, INL, INL, INL, INL, INL, SPC,
224 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
225 { INL, INL, INL, INL, INL, INL, INL, SPC,
226 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
227 { INL, INL, INL, INL, INL, INL, INL, SPC,
228 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
229 },
230 {
231 /* TARGET_H8300S */
232 /* 0 1 2 3 4 5 6 7 */
233 /* 8 9 10 11 12 13 14 15 */
234 { INL, INL, INL, INL, INL, INL, INL, INL,
235 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
236 { INL, INL, INL, INL, INL, INL, INL, INL,
237 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
238 { INL, INL, INL, INL, INL, INL, INL, INL,
239 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
240 }
241 };
242
243 static enum shift_alg shift_alg_si[3][3][32] = {
244 {
245 /* TARGET_H8300 */
246 /* 0 1 2 3 4 5 6 7 */
247 /* 8 9 10 11 12 13 14 15 */
248 /* 16 17 18 19 20 21 22 23 */
249 /* 24 25 26 27 28 29 30 31 */
250 { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
251 SPC, LOP, LOP, LOP, LOP, LOP, LOP, LOP,
252 SPC, SPC, SPC, SPC, SPC, LOP, LOP, LOP,
253 SPC, SPC, SPC, SPC, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFT */
254 { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
255 SPC, SPC, LOP, LOP, LOP, LOP, LOP, SPC,
256 SPC, SPC, SPC, LOP, LOP, LOP, LOP, LOP,
257 SPC, SPC, SPC, SPC, SPC, LOP, LOP, SPC }, /* SHIFT_LSHIFTRT */
258 { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
259 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
260 SPC, SPC, LOP, LOP, LOP, LOP, LOP, LOP,
261 SPC, SPC, SPC, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
262 },
263 {
264 /* TARGET_H8300H */
265 /* 0 1 2 3 4 5 6 7 */
266 /* 8 9 10 11 12 13 14 15 */
267 /* 16 17 18 19 20 21 22 23 */
268 /* 24 25 26 27 28 29 30 31 */
269 { INL, INL, INL, INL, INL, LOP, LOP, LOP,
270 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
271 SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
272 SPC, LOP, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
273 { INL, INL, INL, INL, INL, LOP, LOP, LOP,
274 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
275 SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
276 SPC, LOP, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
277 { INL, INL, INL, INL, INL, LOP, LOP, LOP,
278 SPC, LOP, LOP, LOP, LOP, LOP, LOP, LOP,
279 SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
280 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
281 },
282 {
283 /* TARGET_H8300S */
284 /* 0 1 2 3 4 5 6 7 */
285 /* 8 9 10 11 12 13 14 15 */
286 /* 16 17 18 19 20 21 22 23 */
287 /* 24 25 26 27 28 29 30 31 */
288 { INL, INL, INL, INL, INL, INL, INL, INL,
289 INL, INL, INL, LOP, LOP, LOP, LOP, SPC,
290 SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
291 SPC, SPC, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
292 { INL, INL, INL, INL, INL, INL, INL, INL,
293 INL, INL, INL, LOP, LOP, LOP, LOP, SPC,
294 SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
295 SPC, SPC, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
296 { INL, INL, INL, INL, INL, INL, INL, INL,
297 INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
298 SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
299 SPC, SPC, LOP, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
300 }
301 };
302
303 #undef INL
304 #undef ROT
305 #undef LOP
306 #undef SPC
307
308 enum h8_cpu
309 {
310 H8_300,
311 H8_300H,
312 H8_S
313 };
314
315 /* Initialize various cpu specific globals at start up. */
316
317 static void
318 h8300_option_override (void)
319 {
320 static const char *const h8_push_ops[2] = { "push" , "push.l" };
321 static const char *const h8_pop_ops[2] = { "pop" , "pop.l" };
322 static const char *const h8_mov_ops[2] = { "mov.w", "mov.l" };
323
324 #ifndef OBJECT_FORMAT_ELF
325 if (TARGET_H8300SX)
326 {
327 error ("-msx is not supported in coff");
328 target_flags |= MASK_H8300S;
329 }
330 #endif
331
332 if (TARGET_H8300)
333 {
334 cpu_type = (int) CPU_H8300;
335 h8_reg_names = names_big;
336 }
337 else
338 {
339 /* For this we treat the H8/300H and H8S the same. */
340 cpu_type = (int) CPU_H8300H;
341 h8_reg_names = names_extended;
342 }
343 h8_push_op = h8_push_ops[cpu_type];
344 h8_pop_op = h8_pop_ops[cpu_type];
345 h8_mov_op = h8_mov_ops[cpu_type];
346
347 if (!TARGET_H8300S && TARGET_MAC)
348 {
349 error ("-ms2600 is used without -ms");
350 target_flags |= MASK_H8300S_1;
351 }
352
353 if (TARGET_H8300 && TARGET_NORMAL_MODE)
354 {
355 error ("-mn is used without -mh or -ms or -msx");
356 target_flags ^= MASK_NORMAL_MODE;
357 }
358
359 if (! TARGET_H8300S && TARGET_EXR)
360 {
361 error ("-mexr is used without -ms");
362 target_flags |= MASK_H8300S_1;
363 }
364
365 if (TARGET_H8300 && TARGET_INT32)
366 {
367 error ("-mint32 is not supported for H8300 and H8300L targets");
368 target_flags ^= MASK_INT32;
369 }
370
371 if ((!TARGET_H8300S && TARGET_EXR) && (!TARGET_H8300SX && TARGET_EXR))
372 {
373 error ("-mexr is used without -ms or -msx");
374 target_flags |= MASK_H8300S_1;
375 }
376
377 if ((!TARGET_H8300S && TARGET_NEXR) && (!TARGET_H8300SX && TARGET_NEXR))
378 {
379 warning (OPT_mno_exr, "-mno-exr valid only with -ms or -msx \
380 - Option ignored!");
381 }
382
383 #ifdef H8300_LINUX
384 if ((TARGET_NORMAL_MODE))
385 {
386 error ("-mn is not supported for linux targets");
387 target_flags ^= MASK_NORMAL_MODE;
388 }
389 #endif
390
391 /* Some of the shifts are optimized for speed by default.
392 See http://gcc.gnu.org/ml/gcc-patches/2002-07/msg01858.html
393 If optimizing for size, change shift_alg for those shift to
394 SHIFT_LOOP. */
395 if (optimize_size)
396 {
397 /* H8/300 */
398 shift_alg_hi[H8_300][SHIFT_ASHIFT][5] = SHIFT_LOOP;
399 shift_alg_hi[H8_300][SHIFT_ASHIFT][6] = SHIFT_LOOP;
400 shift_alg_hi[H8_300][SHIFT_ASHIFT][13] = SHIFT_LOOP;
401 shift_alg_hi[H8_300][SHIFT_ASHIFT][14] = SHIFT_LOOP;
402
403 shift_alg_hi[H8_300][SHIFT_LSHIFTRT][13] = SHIFT_LOOP;
404 shift_alg_hi[H8_300][SHIFT_LSHIFTRT][14] = SHIFT_LOOP;
405
406 shift_alg_hi[H8_300][SHIFT_ASHIFTRT][13] = SHIFT_LOOP;
407 shift_alg_hi[H8_300][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
408
409 /* H8/300H */
410 shift_alg_hi[H8_300H][SHIFT_ASHIFT][5] = SHIFT_LOOP;
411 shift_alg_hi[H8_300H][SHIFT_ASHIFT][6] = SHIFT_LOOP;
412
413 shift_alg_hi[H8_300H][SHIFT_LSHIFTRT][5] = SHIFT_LOOP;
414 shift_alg_hi[H8_300H][SHIFT_LSHIFTRT][6] = SHIFT_LOOP;
415
416 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][5] = SHIFT_LOOP;
417 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][6] = SHIFT_LOOP;
418 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][13] = SHIFT_LOOP;
419 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
420
421 /* H8S */
422 shift_alg_hi[H8_S][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
423 }
424
425 /* Work out a value for MOVE_RATIO. */
426 if (!TARGET_H8300SX)
427 {
428 /* Memory-memory moves are quite expensive without the
429 h8sx instructions. */
430 h8300_move_ratio = 3;
431 }
432 else if (flag_omit_frame_pointer)
433 {
434 /* movmd sequences are fairly cheap when er6 isn't fixed. They can
435 sometimes be as short as two individual memory-to-memory moves,
436 but since they use all the call-saved registers, it seems better
437 to allow up to three moves here. */
438 h8300_move_ratio = 4;
439 }
440 else if (optimize_size)
441 {
442 /* In this case we don't use movmd sequences since they tend
443 to be longer than calls to memcpy(). Memory-to-memory
444 moves are cheaper than for !TARGET_H8300SX, so it makes
445 sense to have a slightly higher threshold. */
446 h8300_move_ratio = 4;
447 }
448 else
449 {
450 /* We use movmd sequences for some moves since it can be quicker
451 than calling memcpy(). The sequences will need to save and
452 restore er6 though, so bump up the cost. */
453 h8300_move_ratio = 6;
454 }
455
456 /* This target defaults to strict volatile bitfields. */
457 if (flag_strict_volatile_bitfields < 0 && abi_version_at_least(2))
458 flag_strict_volatile_bitfields = 1;
459 }
460
461 /* Return the byte register name for a register rtx X. B should be 0
462 if you want a lower byte register. B should be 1 if you want an
463 upper byte register. */
464
465 static const char *
466 byte_reg (rtx x, int b)
467 {
468 static const char *const names_small[] = {
469 "r0l", "r0h", "r1l", "r1h", "r2l", "r2h", "r3l", "r3h",
470 "r4l", "r4h", "r5l", "r5h", "r6l", "r6h", "r7l", "r7h"
471 };
472
473 gcc_assert (REG_P (x));
474
475 return names_small[REGNO (x) * 2 + b];
476 }
477
478 /* REGNO must be saved/restored across calls if this macro is true. */
479
480 #define WORD_REG_USED(regno) \
481 (regno < SP_REG \
482 /* No need to save registers if this function will not return. */ \
483 && ! TREE_THIS_VOLATILE (current_function_decl) \
484 && (h8300_saveall_function_p (current_function_decl) \
485 /* Save any call saved register that was used. */ \
486 || (df_regs_ever_live_p (regno) && !call_used_regs[regno]) \
487 /* Save the frame pointer if it was used. */ \
488 || (regno == HARD_FRAME_POINTER_REGNUM && df_regs_ever_live_p (regno)) \
489 /* Save any register used in an interrupt handler. */ \
490 || (h8300_current_function_interrupt_function_p () \
491 && df_regs_ever_live_p (regno)) \
492 /* Save call clobbered registers in non-leaf interrupt \
493 handlers. */ \
494 || (h8300_current_function_interrupt_function_p () \
495 && call_used_regs[regno] \
496 && !crtl->is_leaf)))
497
498 /* We use this to wrap all emitted insns in the prologue. */
499 static rtx_insn *
500 F (rtx_insn *x, bool set_it)
501 {
502 if (set_it)
503 RTX_FRAME_RELATED_P (x) = 1;
504 return x;
505 }
506
507 /* Mark all the subexpressions of the PARALLEL rtx PAR as
508 frame-related. Return PAR.
509
510 dwarf2out.c:dwarf2out_frame_debug_expr ignores sub-expressions of a
511 PARALLEL rtx other than the first if they do not have the
512 FRAME_RELATED flag set on them. */
513 static rtx
514 Fpa (rtx par)
515 {
516 int len = XVECLEN (par, 0);
517 int i;
518
519 for (i = 0; i < len; i++)
520 RTX_FRAME_RELATED_P (XVECEXP (par, 0, i)) = 1;
521
522 return par;
523 }
524
525 /* Output assembly language to FILE for the operation OP with operand size
526 SIZE to adjust the stack pointer. */
527
528 static void
529 h8300_emit_stack_adjustment (int sign, HOST_WIDE_INT size, bool in_prologue)
530 {
531 /* If the frame size is 0, we don't have anything to do. */
532 if (size == 0)
533 return;
534
535 /* H8/300 cannot add/subtract a large constant with a single
536 instruction. If a temporary register is available, load the
537 constant to it and then do the addition. */
538 if (TARGET_H8300
539 && size > 4
540 && !h8300_current_function_interrupt_function_p ()
541 && !(cfun->static_chain_decl != NULL && sign < 0))
542 {
543 rtx r3 = gen_rtx_REG (Pmode, 3);
544 F (emit_insn (gen_movhi (r3, GEN_INT (sign * size))), in_prologue);
545 F (emit_insn (gen_addhi3 (stack_pointer_rtx,
546 stack_pointer_rtx, r3)), in_prologue);
547 }
548 else
549 {
550 /* The stack adjustment made here is further optimized by the
551 splitter. In case of H8/300, the splitter always splits the
552 addition emitted here to make the adjustment interrupt-safe.
553 FIXME: We don't always tag those, because we don't know what
554 the splitter will do. */
555 if (Pmode == HImode)
556 {
557 rtx_insn *x = emit_insn (gen_addhi3 (stack_pointer_rtx,
558 stack_pointer_rtx,
559 GEN_INT (sign * size)));
560 if (size < 4)
561 F (x, in_prologue);
562 }
563 else
564 F (emit_insn (gen_addsi3 (stack_pointer_rtx,
565 stack_pointer_rtx, GEN_INT (sign * size))), in_prologue);
566 }
567 }
568
569 /* Round up frame size SIZE. */
570
571 static HOST_WIDE_INT
572 round_frame_size (HOST_WIDE_INT size)
573 {
574 return ((size + STACK_BOUNDARY / BITS_PER_UNIT - 1)
575 & -STACK_BOUNDARY / BITS_PER_UNIT);
576 }
577
578 /* Compute which registers to push/pop.
579 Return a bit vector of registers. */
580
581 static unsigned int
582 compute_saved_regs (void)
583 {
584 unsigned int saved_regs = 0;
585 int regno;
586
587 /* Construct a bit vector of registers to be pushed/popped. */
588 for (regno = 0; regno <= HARD_FRAME_POINTER_REGNUM; regno++)
589 {
590 if (WORD_REG_USED (regno))
591 saved_regs |= 1 << regno;
592 }
593
594 /* Don't push/pop the frame pointer as it is treated separately. */
595 if (frame_pointer_needed)
596 saved_regs &= ~(1 << HARD_FRAME_POINTER_REGNUM);
597
598 return saved_regs;
599 }
600
601 /* Emit an insn to push register RN. */
602
603 static rtx
604 push (int rn, bool in_prologue)
605 {
606 rtx reg = gen_rtx_REG (word_mode, rn);
607 rtx x;
608
609 if (TARGET_H8300)
610 x = gen_push_h8300 (reg);
611 else if (!TARGET_NORMAL_MODE)
612 x = gen_push_h8300hs_advanced (reg);
613 else
614 x = gen_push_h8300hs_normal (reg);
615 x = F (emit_insn (x), in_prologue);
616 add_reg_note (x, REG_INC, stack_pointer_rtx);
617 return x;
618 }
619
620 /* Emit an insn to pop register RN. */
621
622 static rtx
623 pop (int rn)
624 {
625 rtx reg = gen_rtx_REG (word_mode, rn);
626 rtx x;
627
628 if (TARGET_H8300)
629 x = gen_pop_h8300 (reg);
630 else if (!TARGET_NORMAL_MODE)
631 x = gen_pop_h8300hs_advanced (reg);
632 else
633 x = gen_pop_h8300hs_normal (reg);
634 x = emit_insn (x);
635 add_reg_note (x, REG_INC, stack_pointer_rtx);
636 return x;
637 }
638
639 /* Emit an instruction to push or pop NREGS consecutive registers
640 starting at register REGNO. POP_P selects a pop rather than a
641 push and RETURN_P is true if the instruction should return.
642
643 It must be possible to do the requested operation in a single
644 instruction. If NREGS == 1 && !RETURN_P, use a normal push
645 or pop insn. Otherwise emit a parallel of the form:
646
647 (parallel
648 [(return) ;; if RETURN_P
649 (save or restore REGNO)
650 (save or restore REGNO + 1)
651 ...
652 (save or restore REGNO + NREGS - 1)
653 (set sp (plus sp (const_int adjust)))] */
654
655 static void
656 h8300_push_pop (int regno, int nregs, bool pop_p, bool return_p)
657 {
658 int i, j;
659 rtvec vec;
660 rtx sp, offset, x;
661
662 /* See whether we can use a simple push or pop. */
663 if (!return_p && nregs == 1)
664 {
665 if (pop_p)
666 pop (regno);
667 else
668 push (regno, false);
669 return;
670 }
671
672 /* We need one element for the return insn, if present, one for each
673 register, and one for stack adjustment. */
674 vec = rtvec_alloc ((return_p ? 1 : 0) + nregs + 1);
675 sp = stack_pointer_rtx;
676 i = 0;
677
678 /* Add the return instruction. */
679 if (return_p)
680 {
681 RTVEC_ELT (vec, i) = ret_rtx;
682 i++;
683 }
684
685 /* Add the register moves. */
686 for (j = 0; j < nregs; j++)
687 {
688 rtx lhs, rhs;
689
690 if (pop_p)
691 {
692 /* Register REGNO + NREGS - 1 is popped first. Before the
693 stack adjustment, its slot is at address @sp. */
694 lhs = gen_rtx_REG (SImode, regno + j);
695 rhs = gen_rtx_MEM (SImode, plus_constant (Pmode, sp,
696 (nregs - j - 1) * 4));
697 }
698 else
699 {
700 /* Register REGNO is pushed first and will be stored at @(-4,sp). */
701 lhs = gen_rtx_MEM (SImode, plus_constant (Pmode, sp, (j + 1) * -4));
702 rhs = gen_rtx_REG (SImode, regno + j);
703 }
704 RTVEC_ELT (vec, i + j) = gen_rtx_SET (lhs, rhs);
705 }
706
707 /* Add the stack adjustment. */
708 offset = GEN_INT ((pop_p ? nregs : -nregs) * 4);
709 RTVEC_ELT (vec, i + j) = gen_rtx_SET (sp, gen_rtx_PLUS (Pmode, sp, offset));
710
711 x = gen_rtx_PARALLEL (VOIDmode, vec);
712 if (!pop_p)
713 x = Fpa (x);
714
715 if (return_p)
716 emit_jump_insn (x);
717 else
718 emit_insn (x);
719 }
720
721 /* Return true if X has the value sp + OFFSET. */
722
723 static int
724 h8300_stack_offset_p (rtx x, int offset)
725 {
726 if (offset == 0)
727 return x == stack_pointer_rtx;
728
729 return (GET_CODE (x) == PLUS
730 && XEXP (x, 0) == stack_pointer_rtx
731 && GET_CODE (XEXP (x, 1)) == CONST_INT
732 && INTVAL (XEXP (x, 1)) == offset);
733 }
734
735 /* A subroutine of h8300_ldm_stm_parallel. X is one pattern in
736 something that may be an ldm or stm instruction. If it fits
737 the required template, return the register it loads or stores,
738 otherwise return -1.
739
740 LOAD_P is true if X should be a load, false if it should be a store.
741 NREGS is the number of registers that the whole instruction is expected
742 to load or store. INDEX is the index of the register that X should
743 load or store, relative to the lowest-numbered register. */
744
745 static int
746 h8300_ldm_stm_regno (rtx x, int load_p, int index, int nregs)
747 {
748 int regindex, memindex, offset;
749
750 if (load_p)
751 regindex = 0, memindex = 1, offset = (nregs - index - 1) * 4;
752 else
753 memindex = 0, regindex = 1, offset = (index + 1) * -4;
754
755 if (GET_CODE (x) == SET
756 && GET_CODE (XEXP (x, regindex)) == REG
757 && GET_CODE (XEXP (x, memindex)) == MEM
758 && h8300_stack_offset_p (XEXP (XEXP (x, memindex), 0), offset))
759 return REGNO (XEXP (x, regindex));
760
761 return -1;
762 }
763
764 /* Return true if the elements of VEC starting at FIRST describe an
765 ldm or stm instruction (LOAD_P says which). */
766
767 int
768 h8300_ldm_stm_parallel (rtvec vec, int load_p, int first)
769 {
770 rtx last;
771 int nregs, i, regno, adjust;
772
773 /* There must be a stack adjustment, a register move, and at least one
774 other operation (a return or another register move). */
775 if (GET_NUM_ELEM (vec) < 3)
776 return false;
777
778 /* Get the range of registers to be pushed or popped. */
779 nregs = GET_NUM_ELEM (vec) - first - 1;
780 regno = h8300_ldm_stm_regno (RTVEC_ELT (vec, first), load_p, 0, nregs);
781
782 /* Check that the call to h8300_ldm_stm_regno succeeded and
783 that we're only dealing with GPRs. */
784 if (regno < 0 || regno + nregs > 8)
785 return false;
786
787 /* 2-register h8s instructions must start with an even-numbered register.
788 3- and 4-register instructions must start with er0 or er4. */
789 if (!TARGET_H8300SX)
790 {
791 if ((regno & 1) != 0)
792 return false;
793 if (nregs > 2 && (regno & 3) != 0)
794 return false;
795 }
796
797 /* Check the other loads or stores. */
798 for (i = 1; i < nregs; i++)
799 if (h8300_ldm_stm_regno (RTVEC_ELT (vec, first + i), load_p, i, nregs)
800 != regno + i)
801 return false;
802
803 /* Check the stack adjustment. */
804 last = RTVEC_ELT (vec, first + nregs);
805 adjust = (load_p ? nregs : -nregs) * 4;
806 return (GET_CODE (last) == SET
807 && SET_DEST (last) == stack_pointer_rtx
808 && h8300_stack_offset_p (SET_SRC (last), adjust));
809 }
810
811 /* This is what the stack looks like after the prolog of
812 a function with a frame has been set up:
813
814 <args>
815 PC
816 FP <- fp
817 <locals>
818 <saved registers> <- sp
819
820 This is what the stack looks like after the prolog of
821 a function which doesn't have a frame:
822
823 <args>
824 PC
825 <locals>
826 <saved registers> <- sp
827 */
828
829 /* Generate RTL code for the function prologue. */
830
831 void
832 h8300_expand_prologue (void)
833 {
834 int regno;
835 int saved_regs;
836 int n_regs;
837
838 /* If the current function has the OS_Task attribute set, then
839 we have a naked prologue. */
840 if (h8300_os_task_function_p (current_function_decl))
841 return;
842
843 if (h8300_monitor_function_p (current_function_decl))
844 /* The monitor function act as normal functions, which means it
845 can accept parameters and return values. In addition to this,
846 interrupts are masked in prologue and return with "rte" in epilogue. */
847 emit_insn (gen_monitor_prologue ());
848
849 if (frame_pointer_needed)
850 {
851 /* Push fp. */
852 push (HARD_FRAME_POINTER_REGNUM, true);
853 F (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx), true);
854 }
855
856 /* Push the rest of the registers in ascending order. */
857 saved_regs = compute_saved_regs ();
858 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno += n_regs)
859 {
860 n_regs = 1;
861 if (saved_regs & (1 << regno))
862 {
863 if (TARGET_H8300S)
864 {
865 /* See how many registers we can push at the same time. */
866 if ((!TARGET_H8300SX || (regno & 3) == 0)
867 && ((saved_regs >> regno) & 0x0f) == 0x0f)
868 n_regs = 4;
869
870 else if ((!TARGET_H8300SX || (regno & 3) == 0)
871 && ((saved_regs >> regno) & 0x07) == 0x07)
872 n_regs = 3;
873
874 else if ((!TARGET_H8300SX || (regno & 1) == 0)
875 && ((saved_regs >> regno) & 0x03) == 0x03)
876 n_regs = 2;
877 }
878
879 h8300_push_pop (regno, n_regs, false, false);
880 }
881 }
882
883 /* Leave room for locals. */
884 h8300_emit_stack_adjustment (-1, round_frame_size (get_frame_size ()), true);
885
886 if (flag_stack_usage_info)
887 current_function_static_stack_size
888 = round_frame_size (get_frame_size ())
889 + (__builtin_popcount (saved_regs) * UNITS_PER_WORD)
890 + (frame_pointer_needed ? UNITS_PER_WORD : 0);
891 }
892
893 /* Return nonzero if we can use "rts" for the function currently being
894 compiled. */
895
896 int
897 h8300_can_use_return_insn_p (void)
898 {
899 return (reload_completed
900 && !frame_pointer_needed
901 && get_frame_size () == 0
902 && compute_saved_regs () == 0);
903 }
904
905 /* Generate RTL code for the function epilogue. */
906
907 void
908 h8300_expand_epilogue (void)
909 {
910 int regno;
911 int saved_regs;
912 int n_regs;
913 HOST_WIDE_INT frame_size;
914 bool returned_p;
915
916 if (h8300_os_task_function_p (current_function_decl))
917 /* OS_Task epilogues are nearly naked -- they just have an
918 rts instruction. */
919 return;
920
921 frame_size = round_frame_size (get_frame_size ());
922 returned_p = false;
923
924 /* Deallocate locals. */
925 h8300_emit_stack_adjustment (1, frame_size, false);
926
927 /* Pop the saved registers in descending order. */
928 saved_regs = compute_saved_regs ();
929 for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno -= n_regs)
930 {
931 n_regs = 1;
932 if (saved_regs & (1 << regno))
933 {
934 if (TARGET_H8300S)
935 {
936 /* See how many registers we can pop at the same time. */
937 if ((TARGET_H8300SX || (regno & 3) == 3)
938 && ((saved_regs << 3 >> regno) & 0x0f) == 0x0f)
939 n_regs = 4;
940
941 else if ((TARGET_H8300SX || (regno & 3) == 2)
942 && ((saved_regs << 2 >> regno) & 0x07) == 0x07)
943 n_regs = 3;
944
945 else if ((TARGET_H8300SX || (regno & 1) == 1)
946 && ((saved_regs << 1 >> regno) & 0x03) == 0x03)
947 n_regs = 2;
948 }
949
950 /* See if this pop would be the last insn before the return.
951 If so, use rte/l or rts/l instead of pop or ldm.l. */
952 if (TARGET_H8300SX
953 && !frame_pointer_needed
954 && frame_size == 0
955 && (saved_regs & ((1 << (regno - n_regs + 1)) - 1)) == 0)
956 returned_p = true;
957
958 h8300_push_pop (regno - n_regs + 1, n_regs, true, returned_p);
959 }
960 }
961
962 /* Pop frame pointer if we had one. */
963 if (frame_pointer_needed)
964 {
965 if (TARGET_H8300SX)
966 returned_p = true;
967 h8300_push_pop (HARD_FRAME_POINTER_REGNUM, 1, true, returned_p);
968 }
969
970 if (!returned_p)
971 emit_jump_insn (ret_rtx);
972 }
973
974 /* Return nonzero if the current function is an interrupt
975 function. */
976
977 int
978 h8300_current_function_interrupt_function_p (void)
979 {
980 return (h8300_interrupt_function_p (current_function_decl));
981 }
982
983 int
984 h8300_current_function_monitor_function_p ()
985 {
986 return (h8300_monitor_function_p (current_function_decl));
987 }
988
989 /* Output assembly code for the start of the file. */
990
991 static void
992 h8300_file_start (void)
993 {
994 default_file_start ();
995
996 if (TARGET_H8300SX)
997 fputs (TARGET_NORMAL_MODE ? "\t.h8300sxn\n" : "\t.h8300sx\n", asm_out_file);
998 else if (TARGET_H8300S)
999 fputs (TARGET_NORMAL_MODE ? "\t.h8300sn\n" : "\t.h8300s\n", asm_out_file);
1000 else if (TARGET_H8300H)
1001 fputs (TARGET_NORMAL_MODE ? "\t.h8300hn\n" : "\t.h8300h\n", asm_out_file);
1002 }
1003
1004 /* Output assembly language code for the end of file. */
1005
1006 static void
1007 h8300_file_end (void)
1008 {
1009 fputs ("\t.end\n", asm_out_file);
1010 }
1011 \f
1012 /* Split an add of a small constant into two adds/subs insns.
1013
1014 If USE_INCDEC_P is nonzero, we generate the last insn using inc/dec
1015 instead of adds/subs. */
1016
1017 void
1018 split_adds_subs (machine_mode mode, rtx *operands)
1019 {
1020 HOST_WIDE_INT val = INTVAL (operands[1]);
1021 rtx reg = operands[0];
1022 HOST_WIDE_INT sign = 1;
1023 HOST_WIDE_INT amount;
1024 rtx (*gen_add) (rtx, rtx, rtx);
1025
1026 /* Force VAL to be positive so that we do not have to consider the
1027 sign. */
1028 if (val < 0)
1029 {
1030 val = -val;
1031 sign = -1;
1032 }
1033
1034 switch (mode)
1035 {
1036 case HImode:
1037 gen_add = gen_addhi3;
1038 break;
1039
1040 case SImode:
1041 gen_add = gen_addsi3;
1042 break;
1043
1044 default:
1045 gcc_unreachable ();
1046 }
1047
1048 /* Try different amounts in descending order. */
1049 for (amount = (TARGET_H8300H || TARGET_H8300S) ? 4 : 2;
1050 amount > 0;
1051 amount /= 2)
1052 {
1053 for (; val >= amount; val -= amount)
1054 emit_insn (gen_add (reg, reg, GEN_INT (sign * amount)));
1055 }
1056
1057 return;
1058 }
1059
1060 /* Handle machine specific pragmas for compatibility with existing
1061 compilers for the H8/300.
1062
1063 pragma saveall generates prologue/epilogue code which saves and
1064 restores all the registers on function entry.
1065
1066 pragma interrupt saves and restores all registers, and exits with
1067 an rte instruction rather than an rts. A pointer to a function
1068 with this attribute may be safely used in an interrupt vector. */
1069
1070 void
1071 h8300_pr_interrupt (struct cpp_reader *pfile ATTRIBUTE_UNUSED)
1072 {
1073 pragma_interrupt = 1;
1074 }
1075
1076 void
1077 h8300_pr_saveall (struct cpp_reader *pfile ATTRIBUTE_UNUSED)
1078 {
1079 pragma_saveall = 1;
1080 }
1081
1082 /* If the next function argument with MODE and TYPE is to be passed in
1083 a register, return a reg RTX for the hard register in which to pass
1084 the argument. CUM represents the state after the last argument.
1085 If the argument is to be pushed, NULL_RTX is returned.
1086
1087 On the H8/300 all normal args are pushed, unless -mquickcall in which
1088 case the first 3 arguments are passed in registers. */
1089
1090 static rtx
1091 h8300_function_arg (cumulative_args_t cum_v, machine_mode mode,
1092 const_tree type, bool named)
1093 {
1094 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1095
1096 static const char *const hand_list[] = {
1097 "__main",
1098 "__cmpsi2",
1099 "__divhi3",
1100 "__modhi3",
1101 "__udivhi3",
1102 "__umodhi3",
1103 "__divsi3",
1104 "__modsi3",
1105 "__udivsi3",
1106 "__umodsi3",
1107 "__mulhi3",
1108 "__mulsi3",
1109 "__reg_memcpy",
1110 "__reg_memset",
1111 "__ucmpsi2",
1112 0,
1113 };
1114
1115 rtx result = NULL_RTX;
1116 const char *fname;
1117 int regpass = 0;
1118
1119 /* Never pass unnamed arguments in registers. */
1120 if (!named)
1121 return NULL_RTX;
1122
1123 /* Pass 3 regs worth of data in regs when user asked on the command line. */
1124 if (TARGET_QUICKCALL)
1125 regpass = 3;
1126
1127 /* If calling hand written assembler, use 4 regs of args. */
1128 if (cum->libcall)
1129 {
1130 const char * const *p;
1131
1132 fname = XSTR (cum->libcall, 0);
1133
1134 /* See if this libcall is one of the hand coded ones. */
1135 for (p = hand_list; *p && strcmp (*p, fname) != 0; p++)
1136 ;
1137
1138 if (*p)
1139 regpass = 4;
1140 }
1141
1142 if (regpass)
1143 {
1144 int size;
1145
1146 if (mode == BLKmode)
1147 size = int_size_in_bytes (type);
1148 else
1149 size = GET_MODE_SIZE (mode);
1150
1151 if (size + cum->nbytes <= regpass * UNITS_PER_WORD
1152 && cum->nbytes / UNITS_PER_WORD <= 3)
1153 result = gen_rtx_REG (mode, cum->nbytes / UNITS_PER_WORD);
1154 }
1155
1156 return result;
1157 }
1158
1159 /* Update the data in CUM to advance over an argument
1160 of mode MODE and data type TYPE.
1161 (TYPE is null for libcalls where that information may not be available.) */
1162
1163 static void
1164 h8300_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
1165 const_tree type, bool named ATTRIBUTE_UNUSED)
1166 {
1167 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1168
1169 cum->nbytes += (mode != BLKmode
1170 ? (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD
1171 : (int_size_in_bytes (type) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD);
1172 }
1173
1174 \f
1175 /* Implements TARGET_REGISTER_MOVE_COST.
1176
1177 Any SI register-to-register move may need to be reloaded,
1178 so inmplement h8300_register_move_cost to return > 2 so that reload never
1179 shortcuts. */
1180
1181 static int
1182 h8300_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
1183 reg_class_t from, reg_class_t to)
1184 {
1185 if (from == MAC_REGS || to == MAC_REG)
1186 return 6;
1187 else
1188 return 3;
1189 }
1190
1191 /* Compute the cost of an and insn. */
1192
1193 static int
1194 h8300_and_costs (rtx x)
1195 {
1196 rtx operands[4];
1197
1198 if (GET_MODE (x) == QImode)
1199 return 1;
1200
1201 if (GET_MODE (x) != HImode
1202 && GET_MODE (x) != SImode)
1203 return 100;
1204
1205 operands[0] = NULL;
1206 operands[1] = XEXP (x, 0);
1207 operands[2] = XEXP (x, 1);
1208 operands[3] = x;
1209 return compute_logical_op_length (GET_MODE (x), operands) / 2;
1210 }
1211
1212 /* Compute the cost of a shift insn. */
1213
1214 static int
1215 h8300_shift_costs (rtx x)
1216 {
1217 rtx operands[4];
1218
1219 if (GET_MODE (x) != QImode
1220 && GET_MODE (x) != HImode
1221 && GET_MODE (x) != SImode)
1222 return 100;
1223
1224 operands[0] = NULL;
1225 operands[1] = NULL;
1226 operands[2] = XEXP (x, 1);
1227 operands[3] = x;
1228 return compute_a_shift_length (NULL, operands) / 2;
1229 }
1230
1231 /* Worker function for TARGET_RTX_COSTS. */
1232
1233 static bool
1234 h8300_rtx_costs (rtx x, machine_mode mode ATTRIBUTE_UNUSED, int outer_code,
1235 int opno ATTRIBUTE_UNUSED, int *total, bool speed)
1236 {
1237 int code = GET_CODE (x);
1238
1239 if (TARGET_H8300SX && outer_code == MEM)
1240 {
1241 /* Estimate the number of execution states needed to calculate
1242 the address. */
1243 if (register_operand (x, VOIDmode)
1244 || GET_CODE (x) == POST_INC
1245 || GET_CODE (x) == POST_DEC
1246 || CONSTANT_P (x))
1247 *total = 0;
1248 else
1249 *total = COSTS_N_INSNS (1);
1250 return true;
1251 }
1252
1253 switch (code)
1254 {
1255 case CONST_INT:
1256 {
1257 HOST_WIDE_INT n = INTVAL (x);
1258
1259 if (TARGET_H8300SX)
1260 {
1261 /* Constant operands need the same number of processor
1262 states as register operands. Although we could try to
1263 use a size-based cost for !speed, the lack of
1264 of a mode makes the results very unpredictable. */
1265 *total = 0;
1266 return true;
1267 }
1268 if (-4 <= n && n <= 4)
1269 {
1270 switch ((int) n)
1271 {
1272 case 0:
1273 *total = 0;
1274 return true;
1275 case 1:
1276 case 2:
1277 case -1:
1278 case -2:
1279 *total = 0 + (outer_code == SET);
1280 return true;
1281 case 4:
1282 case -4:
1283 if (TARGET_H8300H || TARGET_H8300S)
1284 *total = 0 + (outer_code == SET);
1285 else
1286 *total = 1;
1287 return true;
1288 }
1289 }
1290 *total = 1;
1291 return true;
1292 }
1293
1294 case CONST:
1295 case LABEL_REF:
1296 case SYMBOL_REF:
1297 if (TARGET_H8300SX)
1298 {
1299 /* See comment for CONST_INT. */
1300 *total = 0;
1301 return true;
1302 }
1303 *total = 3;
1304 return true;
1305
1306 case CONST_DOUBLE:
1307 *total = 20;
1308 return true;
1309
1310 case COMPARE:
1311 if (XEXP (x, 1) == const0_rtx)
1312 *total = 0;
1313 return false;
1314
1315 case AND:
1316 if (!h8300_dst_operand (XEXP (x, 0), VOIDmode)
1317 || !h8300_src_operand (XEXP (x, 1), VOIDmode))
1318 return false;
1319 *total = COSTS_N_INSNS (h8300_and_costs (x));
1320 return true;
1321
1322 /* We say that MOD and DIV are so expensive because otherwise we'll
1323 generate some really horrible code for division of a power of two. */
1324 case MOD:
1325 case DIV:
1326 case UMOD:
1327 case UDIV:
1328 if (TARGET_H8300SX)
1329 switch (GET_MODE (x))
1330 {
1331 case QImode:
1332 case HImode:
1333 *total = COSTS_N_INSNS (!speed ? 4 : 10);
1334 return false;
1335
1336 case SImode:
1337 *total = COSTS_N_INSNS (!speed ? 4 : 18);
1338 return false;
1339
1340 default:
1341 break;
1342 }
1343 *total = COSTS_N_INSNS (12);
1344 return true;
1345
1346 case MULT:
1347 if (TARGET_H8300SX)
1348 switch (GET_MODE (x))
1349 {
1350 case QImode:
1351 case HImode:
1352 *total = COSTS_N_INSNS (2);
1353 return false;
1354
1355 case SImode:
1356 *total = COSTS_N_INSNS (5);
1357 return false;
1358
1359 default:
1360 break;
1361 }
1362 *total = COSTS_N_INSNS (4);
1363 return true;
1364
1365 case ASHIFT:
1366 case ASHIFTRT:
1367 case LSHIFTRT:
1368 if (h8sx_binary_shift_operator (x, VOIDmode))
1369 {
1370 *total = COSTS_N_INSNS (2);
1371 return false;
1372 }
1373 else if (h8sx_unary_shift_operator (x, VOIDmode))
1374 {
1375 *total = COSTS_N_INSNS (1);
1376 return false;
1377 }
1378 *total = COSTS_N_INSNS (h8300_shift_costs (x));
1379 return true;
1380
1381 case ROTATE:
1382 case ROTATERT:
1383 if (GET_MODE (x) == HImode)
1384 *total = 2;
1385 else
1386 *total = 8;
1387 return true;
1388
1389 default:
1390 *total = COSTS_N_INSNS (1);
1391 return false;
1392 }
1393 }
1394 \f
1395 /* Documentation for the machine specific operand escapes:
1396
1397 'E' like s but negative.
1398 'F' like t but negative.
1399 'G' constant just the negative
1400 'R' print operand as a byte:8 address if appropriate, else fall back to
1401 'X' handling.
1402 'S' print operand as a long word
1403 'T' print operand as a word
1404 'V' find the set bit, and print its number.
1405 'W' find the clear bit, and print its number.
1406 'X' print operand as a byte
1407 'Y' print either l or h depending on whether last 'Z' operand < 8 or >= 8.
1408 If this operand isn't a register, fall back to 'R' handling.
1409 'Z' print int & 7.
1410 'c' print the opcode corresponding to rtl
1411 'e' first word of 32-bit value - if reg, then least reg. if mem
1412 then least. if const then most sig word
1413 'f' second word of 32-bit value - if reg, then biggest reg. if mem
1414 then +2. if const then least sig word
1415 'j' print operand as condition code.
1416 'k' print operand as reverse condition code.
1417 'm' convert an integer operand to a size suffix (.b, .w or .l)
1418 'o' print an integer without a leading '#'
1419 's' print as low byte of 16-bit value
1420 't' print as high byte of 16-bit value
1421 'w' print as low byte of 32-bit value
1422 'x' print as 2nd byte of 32-bit value
1423 'y' print as 3rd byte of 32-bit value
1424 'z' print as msb of 32-bit value
1425 */
1426
1427 /* Return assembly language string which identifies a comparison type. */
1428
1429 static const char *
1430 cond_string (enum rtx_code code)
1431 {
1432 switch (code)
1433 {
1434 case NE:
1435 return "ne";
1436 case EQ:
1437 return "eq";
1438 case GE:
1439 return "ge";
1440 case GT:
1441 return "gt";
1442 case LE:
1443 return "le";
1444 case LT:
1445 return "lt";
1446 case GEU:
1447 return "hs";
1448 case GTU:
1449 return "hi";
1450 case LEU:
1451 return "ls";
1452 case LTU:
1453 return "lo";
1454 default:
1455 gcc_unreachable ();
1456 }
1457 }
1458
1459 /* Print operand X using operand code CODE to assembly language output file
1460 FILE. */
1461
1462 static void
1463 h8300_print_operand (FILE *file, rtx x, int code)
1464 {
1465 /* This is used for communication between codes V,W,Z and Y. */
1466 static int bitint;
1467
1468 switch (code)
1469 {
1470 case 'C':
1471 if (h8300_constant_length (x) == 2)
1472 fprintf (file, ":16");
1473 else
1474 fprintf (file, ":32");
1475 return;
1476 case 'E':
1477 switch (GET_CODE (x))
1478 {
1479 case REG:
1480 fprintf (file, "%sl", names_big[REGNO (x)]);
1481 break;
1482 case CONST_INT:
1483 fprintf (file, "#%ld", (-INTVAL (x)) & 0xff);
1484 break;
1485 default:
1486 gcc_unreachable ();
1487 }
1488 break;
1489 case 'F':
1490 switch (GET_CODE (x))
1491 {
1492 case REG:
1493 fprintf (file, "%sh", names_big[REGNO (x)]);
1494 break;
1495 case CONST_INT:
1496 fprintf (file, "#%ld", ((-INTVAL (x)) & 0xff00) >> 8);
1497 break;
1498 default:
1499 gcc_unreachable ();
1500 }
1501 break;
1502 case 'G':
1503 gcc_assert (GET_CODE (x) == CONST_INT);
1504 fprintf (file, "#%ld", 0xff & (-INTVAL (x)));
1505 break;
1506 case 'S':
1507 if (GET_CODE (x) == REG)
1508 fprintf (file, "%s", names_extended[REGNO (x)]);
1509 else
1510 goto def;
1511 break;
1512 case 'T':
1513 if (GET_CODE (x) == REG)
1514 fprintf (file, "%s", names_big[REGNO (x)]);
1515 else
1516 goto def;
1517 break;
1518 case 'V':
1519 bitint = (INTVAL (x) & 0xffff);
1520 if ((exact_log2 ((bitint >> 8) & 0xff)) == -1)
1521 bitint = exact_log2 (bitint & 0xff);
1522 else
1523 bitint = exact_log2 ((bitint >> 8) & 0xff);
1524 gcc_assert (bitint >= 0);
1525 fprintf (file, "#%d", bitint);
1526 break;
1527 case 'W':
1528 bitint = ((~INTVAL (x)) & 0xffff);
1529 if ((exact_log2 ((bitint >> 8) & 0xff)) == -1 )
1530 bitint = exact_log2 (bitint & 0xff);
1531 else
1532 bitint = (exact_log2 ((bitint >> 8) & 0xff));
1533 gcc_assert (bitint >= 0);
1534 fprintf (file, "#%d", bitint);
1535 break;
1536 case 'R':
1537 case 'X':
1538 if (GET_CODE (x) == REG)
1539 fprintf (file, "%s", byte_reg (x, 0));
1540 else
1541 goto def;
1542 break;
1543 case 'Y':
1544 gcc_assert (bitint >= 0);
1545 if (GET_CODE (x) == REG)
1546 fprintf (file, "%s%c", names_big[REGNO (x)], bitint > 7 ? 'h' : 'l');
1547 else
1548 h8300_print_operand (file, x, 'R');
1549 bitint = -1;
1550 break;
1551 case 'Z':
1552 bitint = INTVAL (x);
1553 fprintf (file, "#%d", bitint & 7);
1554 break;
1555 case 'c':
1556 switch (GET_CODE (x))
1557 {
1558 case IOR:
1559 fprintf (file, "or");
1560 break;
1561 case XOR:
1562 fprintf (file, "xor");
1563 break;
1564 case AND:
1565 fprintf (file, "and");
1566 break;
1567 default:
1568 break;
1569 }
1570 break;
1571 case 'e':
1572 switch (GET_CODE (x))
1573 {
1574 case REG:
1575 if (TARGET_H8300)
1576 fprintf (file, "%s", names_big[REGNO (x)]);
1577 else
1578 fprintf (file, "%s", names_upper_extended[REGNO (x)]);
1579 break;
1580 case MEM:
1581 h8300_print_operand (file, x, 0);
1582 break;
1583 case CONST_INT:
1584 fprintf (file, "#%ld", ((INTVAL (x) >> 16) & 0xffff));
1585 break;
1586 case CONST_DOUBLE:
1587 {
1588 long val;
1589 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), val);
1590 fprintf (file, "#%ld", ((val >> 16) & 0xffff));
1591 break;
1592 }
1593 default:
1594 gcc_unreachable ();
1595 break;
1596 }
1597 break;
1598 case 'f':
1599 switch (GET_CODE (x))
1600 {
1601 case REG:
1602 if (TARGET_H8300)
1603 fprintf (file, "%s", names_big[REGNO (x) + 1]);
1604 else
1605 fprintf (file, "%s", names_big[REGNO (x)]);
1606 break;
1607 case MEM:
1608 x = adjust_address (x, HImode, 2);
1609 h8300_print_operand (file, x, 0);
1610 break;
1611 case CONST_INT:
1612 fprintf (file, "#%ld", INTVAL (x) & 0xffff);
1613 break;
1614 case CONST_DOUBLE:
1615 {
1616 long val;
1617 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), val);
1618 fprintf (file, "#%ld", (val & 0xffff));
1619 break;
1620 }
1621 default:
1622 gcc_unreachable ();
1623 }
1624 break;
1625 case 'j':
1626 fputs (cond_string (GET_CODE (x)), file);
1627 break;
1628 case 'k':
1629 fputs (cond_string (reverse_condition (GET_CODE (x))), file);
1630 break;
1631 case 'm':
1632 gcc_assert (GET_CODE (x) == CONST_INT);
1633 switch (INTVAL (x))
1634 {
1635 case 1:
1636 fputs (".b", file);
1637 break;
1638
1639 case 2:
1640 fputs (".w", file);
1641 break;
1642
1643 case 4:
1644 fputs (".l", file);
1645 break;
1646
1647 default:
1648 gcc_unreachable ();
1649 }
1650 break;
1651 case 'o':
1652 h8300_print_operand_address (file, VOIDmode, x);
1653 break;
1654 case 's':
1655 if (GET_CODE (x) == CONST_INT)
1656 fprintf (file, "#%ld", (INTVAL (x)) & 0xff);
1657 else
1658 fprintf (file, "%s", byte_reg (x, 0));
1659 break;
1660 case 't':
1661 if (GET_CODE (x) == CONST_INT)
1662 fprintf (file, "#%ld", (INTVAL (x) >> 8) & 0xff);
1663 else
1664 fprintf (file, "%s", byte_reg (x, 1));
1665 break;
1666 case 'w':
1667 if (GET_CODE (x) == CONST_INT)
1668 fprintf (file, "#%ld", INTVAL (x) & 0xff);
1669 else
1670 fprintf (file, "%s",
1671 byte_reg (x, TARGET_H8300 ? 2 : 0));
1672 break;
1673 case 'x':
1674 if (GET_CODE (x) == CONST_INT)
1675 fprintf (file, "#%ld", (INTVAL (x) >> 8) & 0xff);
1676 else
1677 fprintf (file, "%s",
1678 byte_reg (x, TARGET_H8300 ? 3 : 1));
1679 break;
1680 case 'y':
1681 if (GET_CODE (x) == CONST_INT)
1682 fprintf (file, "#%ld", (INTVAL (x) >> 16) & 0xff);
1683 else
1684 fprintf (file, "%s", byte_reg (x, 0));
1685 break;
1686 case 'z':
1687 if (GET_CODE (x) == CONST_INT)
1688 fprintf (file, "#%ld", (INTVAL (x) >> 24) & 0xff);
1689 else
1690 fprintf (file, "%s", byte_reg (x, 1));
1691 break;
1692
1693 default:
1694 def:
1695 switch (GET_CODE (x))
1696 {
1697 case REG:
1698 switch (GET_MODE (x))
1699 {
1700 case QImode:
1701 #if 0 /* Is it asm ("mov.b %0,r2l", ...) */
1702 fprintf (file, "%s", byte_reg (x, 0));
1703 #else /* ... or is it asm ("mov.b %0l,r2l", ...) */
1704 fprintf (file, "%s", names_big[REGNO (x)]);
1705 #endif
1706 break;
1707 case HImode:
1708 fprintf (file, "%s", names_big[REGNO (x)]);
1709 break;
1710 case SImode:
1711 case SFmode:
1712 fprintf (file, "%s", names_extended[REGNO (x)]);
1713 break;
1714 default:
1715 gcc_unreachable ();
1716 }
1717 break;
1718
1719 case MEM:
1720 {
1721 rtx addr = XEXP (x, 0);
1722
1723 fprintf (file, "@");
1724 output_address (GET_MODE (x), addr);
1725
1726 /* Add a length suffix to constant addresses. Although this
1727 is often unnecessary, it helps to avoid ambiguity in the
1728 syntax of mova. If we wrote an insn like:
1729
1730 mova/w.l @(1,@foo.b),er0
1731
1732 then .b would be considered part of the symbol name.
1733 Adding a length after foo will avoid this. */
1734 if (CONSTANT_P (addr))
1735 switch (code)
1736 {
1737 case 'R':
1738 /* Used for mov.b and bit operations. */
1739 if (h8300_eightbit_constant_address_p (addr))
1740 {
1741 fprintf (file, ":8");
1742 break;
1743 }
1744
1745 /* FALLTHRU */
1746
1747 /* We should not get here if we are processing bit
1748 operations on H8/300 or H8/300H because 'U'
1749 constraint does not allow bit operations on the
1750 tiny area on these machines. */
1751
1752 case 'X':
1753 case 'T':
1754 case 'S':
1755 if (h8300_constant_length (addr) == 2)
1756 fprintf (file, ":16");
1757 else
1758 fprintf (file, ":32");
1759 break;
1760 default:
1761 break;
1762 }
1763 }
1764 break;
1765
1766 case CONST_INT:
1767 case SYMBOL_REF:
1768 case CONST:
1769 case LABEL_REF:
1770 fprintf (file, "#");
1771 h8300_print_operand_address (file, VOIDmode, x);
1772 break;
1773 case CONST_DOUBLE:
1774 {
1775 long val;
1776 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), val);
1777 fprintf (file, "#%ld", val);
1778 break;
1779 }
1780 default:
1781 break;
1782 }
1783 }
1784 }
1785
1786 /* Implements TARGET_PRINT_OPERAND_PUNCT_VALID_P. */
1787
1788 static bool
1789 h8300_print_operand_punct_valid_p (unsigned char code)
1790 {
1791 return (code == '#');
1792 }
1793
1794 /* Output assembly language output for the address ADDR to FILE. */
1795
1796 static void
1797 h8300_print_operand_address (FILE *file, machine_mode mode, rtx addr)
1798 {
1799 rtx index;
1800 int size;
1801
1802 switch (GET_CODE (addr))
1803 {
1804 case REG:
1805 fprintf (file, "%s", h8_reg_names[REGNO (addr)]);
1806 break;
1807
1808 case PRE_DEC:
1809 fprintf (file, "-%s", h8_reg_names[REGNO (XEXP (addr, 0))]);
1810 break;
1811
1812 case POST_INC:
1813 fprintf (file, "%s+", h8_reg_names[REGNO (XEXP (addr, 0))]);
1814 break;
1815
1816 case PRE_INC:
1817 fprintf (file, "+%s", h8_reg_names[REGNO (XEXP (addr, 0))]);
1818 break;
1819
1820 case POST_DEC:
1821 fprintf (file, "%s-", h8_reg_names[REGNO (XEXP (addr, 0))]);
1822 break;
1823
1824 case PLUS:
1825 fprintf (file, "(");
1826
1827 index = h8300_get_index (XEXP (addr, 0), VOIDmode, &size);
1828 if (GET_CODE (index) == REG)
1829 {
1830 /* reg,foo */
1831 h8300_print_operand_address (file, mode, XEXP (addr, 1));
1832 fprintf (file, ",");
1833 switch (size)
1834 {
1835 case 0:
1836 h8300_print_operand_address (file, mode, index);
1837 break;
1838
1839 case 1:
1840 h8300_print_operand (file, index, 'X');
1841 fputs (".b", file);
1842 break;
1843
1844 case 2:
1845 h8300_print_operand (file, index, 'T');
1846 fputs (".w", file);
1847 break;
1848
1849 case 4:
1850 h8300_print_operand (file, index, 'S');
1851 fputs (".l", file);
1852 break;
1853 }
1854 /* h8300_print_operand_address (file, XEXP (addr, 0)); */
1855 }
1856 else
1857 {
1858 /* foo+k */
1859 h8300_print_operand_address (file, mode, XEXP (addr, 0));
1860 fprintf (file, "+");
1861 h8300_print_operand_address (file, mode, XEXP (addr, 1));
1862 }
1863 fprintf (file, ")");
1864 break;
1865
1866 case CONST_INT:
1867 {
1868 /* Since the H8/300 only has 16-bit pointers, negative values are also
1869 those >= 32768. This happens for example with pointer minus a
1870 constant. We don't want to turn (char *p - 2) into
1871 (char *p + 65534) because loop unrolling can build upon this
1872 (IE: char *p + 131068). */
1873 int n = INTVAL (addr);
1874 if (TARGET_H8300)
1875 n = (int) (short) n;
1876 fprintf (file, "%d", n);
1877 break;
1878 }
1879
1880 default:
1881 output_addr_const (file, addr);
1882 break;
1883 }
1884 }
1885 \f
1886 /* Output all insn addresses and their sizes into the assembly language
1887 output file. This is helpful for debugging whether the length attributes
1888 in the md file are correct. This is not meant to be a user selectable
1889 option. */
1890
1891 void
1892 final_prescan_insn (rtx_insn *insn, rtx *operand ATTRIBUTE_UNUSED,
1893 int num_operands ATTRIBUTE_UNUSED)
1894 {
1895 /* This holds the last insn address. */
1896 static int last_insn_address = 0;
1897
1898 const int uid = INSN_UID (insn);
1899
1900 if (TARGET_ADDRESSES)
1901 {
1902 fprintf (asm_out_file, "; 0x%x %d\n", INSN_ADDRESSES (uid),
1903 INSN_ADDRESSES (uid) - last_insn_address);
1904 last_insn_address = INSN_ADDRESSES (uid);
1905 }
1906 }
1907
1908 /* Prepare for an SI sized move. */
1909
1910 int
1911 h8300_expand_movsi (rtx operands[])
1912 {
1913 rtx src = operands[1];
1914 rtx dst = operands[0];
1915 if (!reload_in_progress && !reload_completed)
1916 {
1917 if (!register_operand (dst, GET_MODE (dst)))
1918 {
1919 rtx tmp = gen_reg_rtx (GET_MODE (dst));
1920 emit_move_insn (tmp, src);
1921 operands[1] = tmp;
1922 }
1923 }
1924 return 0;
1925 }
1926
1927 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1928 Frame pointer elimination is automatically handled.
1929
1930 For the h8300, if frame pointer elimination is being done, we would like to
1931 convert ap and rp into sp, not fp.
1932
1933 All other eliminations are valid. */
1934
1935 static bool
1936 h8300_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
1937 {
1938 return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
1939 }
1940
1941 /* Conditionally modify register usage based on target flags. */
1942
1943 static void
1944 h8300_conditional_register_usage (void)
1945 {
1946 if (!TARGET_MAC)
1947 fixed_regs[MAC_REG] = call_used_regs[MAC_REG] = 1;
1948 }
1949
1950 /* Function for INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET).
1951 Define the offset between two registers, one to be eliminated, and
1952 the other its replacement, at the start of a routine. */
1953
1954 int
1955 h8300_initial_elimination_offset (int from, int to)
1956 {
1957 /* The number of bytes that the return address takes on the stack. */
1958 int pc_size = POINTER_SIZE / BITS_PER_UNIT;
1959
1960 /* The number of bytes that the saved frame pointer takes on the stack. */
1961 int fp_size = frame_pointer_needed * UNITS_PER_WORD;
1962
1963 /* The number of bytes that the saved registers, excluding the frame
1964 pointer, take on the stack. */
1965 int saved_regs_size = 0;
1966
1967 /* The number of bytes that the locals takes on the stack. */
1968 int frame_size = round_frame_size (get_frame_size ());
1969
1970 int regno;
1971
1972 for (regno = 0; regno <= HARD_FRAME_POINTER_REGNUM; regno++)
1973 if (WORD_REG_USED (regno))
1974 saved_regs_size += UNITS_PER_WORD;
1975
1976 /* Adjust saved_regs_size because the above loop took the frame
1977 pointer int account. */
1978 saved_regs_size -= fp_size;
1979
1980 switch (to)
1981 {
1982 case HARD_FRAME_POINTER_REGNUM:
1983 switch (from)
1984 {
1985 case ARG_POINTER_REGNUM:
1986 return pc_size + fp_size;
1987 case RETURN_ADDRESS_POINTER_REGNUM:
1988 return fp_size;
1989 case FRAME_POINTER_REGNUM:
1990 return -saved_regs_size;
1991 default:
1992 gcc_unreachable ();
1993 }
1994 break;
1995 case STACK_POINTER_REGNUM:
1996 switch (from)
1997 {
1998 case ARG_POINTER_REGNUM:
1999 return pc_size + saved_regs_size + frame_size;
2000 case RETURN_ADDRESS_POINTER_REGNUM:
2001 return saved_regs_size + frame_size;
2002 case FRAME_POINTER_REGNUM:
2003 return frame_size;
2004 default:
2005 gcc_unreachable ();
2006 }
2007 break;
2008 default:
2009 gcc_unreachable ();
2010 }
2011 gcc_unreachable ();
2012 }
2013
2014 /* Worker function for RETURN_ADDR_RTX. */
2015
2016 rtx
2017 h8300_return_addr_rtx (int count, rtx frame)
2018 {
2019 rtx ret;
2020
2021 if (count == 0)
2022 ret = gen_rtx_MEM (Pmode,
2023 gen_rtx_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM));
2024 else if (flag_omit_frame_pointer)
2025 return (rtx) 0;
2026 else
2027 ret = gen_rtx_MEM (Pmode,
2028 memory_address (Pmode,
2029 plus_constant (Pmode, frame,
2030 UNITS_PER_WORD)));
2031 set_mem_alias_set (ret, get_frame_alias_set ());
2032 return ret;
2033 }
2034
2035 /* Update the condition code from the insn. */
2036
2037 void
2038 notice_update_cc (rtx body, rtx_insn *insn)
2039 {
2040 rtx set;
2041
2042 switch (get_attr_cc (insn))
2043 {
2044 case CC_NONE:
2045 /* Insn does not affect CC at all. */
2046 break;
2047
2048 case CC_NONE_0HIT:
2049 /* Insn does not change CC, but the 0'th operand has been changed. */
2050 if (cc_status.value1 != 0
2051 && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value1))
2052 cc_status.value1 = 0;
2053 if (cc_status.value2 != 0
2054 && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value2))
2055 cc_status.value2 = 0;
2056 break;
2057
2058 case CC_SET_ZN:
2059 /* Insn sets the Z,N flags of CC to recog_data.operand[0].
2060 The V flag is unusable. The C flag may or may not be known but
2061 that's ok because alter_cond will change tests to use EQ/NE. */
2062 CC_STATUS_INIT;
2063 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
2064 set = single_set (insn);
2065 cc_status.value1 = SET_SRC (set);
2066 if (SET_DEST (set) != cc0_rtx)
2067 cc_status.value2 = SET_DEST (set);
2068 break;
2069
2070 case CC_SET_ZNV:
2071 /* Insn sets the Z,N,V flags of CC to recog_data.operand[0].
2072 The C flag may or may not be known but that's ok because
2073 alter_cond will change tests to use EQ/NE. */
2074 CC_STATUS_INIT;
2075 cc_status.flags |= CC_NO_CARRY;
2076 set = single_set (insn);
2077 cc_status.value1 = SET_SRC (set);
2078 if (SET_DEST (set) != cc0_rtx)
2079 {
2080 /* If the destination is STRICT_LOW_PART, strip off
2081 STRICT_LOW_PART. */
2082 if (GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
2083 cc_status.value2 = XEXP (SET_DEST (set), 0);
2084 else
2085 cc_status.value2 = SET_DEST (set);
2086 }
2087 break;
2088
2089 case CC_COMPARE:
2090 /* The insn is a compare instruction. */
2091 CC_STATUS_INIT;
2092 cc_status.value1 = SET_SRC (body);
2093 break;
2094
2095 case CC_CLOBBER:
2096 /* Insn doesn't leave CC in a usable state. */
2097 CC_STATUS_INIT;
2098 break;
2099 }
2100 }
2101 \f
2102 /* Given that X occurs in an address of the form (plus X constant),
2103 return the part of X that is expected to be a register. There are
2104 four kinds of addressing mode to recognize:
2105
2106 @(dd,Rn)
2107 @(dd,RnL.b)
2108 @(dd,Rn.w)
2109 @(dd,ERn.l)
2110
2111 If SIZE is nonnull, and the address is one of the last three forms,
2112 set *SIZE to the index multiplication factor. Set it to 0 for
2113 plain @(dd,Rn) addresses.
2114
2115 MODE is the mode of the value being accessed. It can be VOIDmode
2116 if the address is known to be valid, but its mode is unknown. */
2117
2118 static rtx
2119 h8300_get_index (rtx x, machine_mode mode, int *size)
2120 {
2121 int dummy, factor;
2122
2123 if (size == 0)
2124 size = &dummy;
2125
2126 factor = (mode == VOIDmode ? 0 : GET_MODE_SIZE (mode));
2127 if (TARGET_H8300SX
2128 && factor <= 4
2129 && (mode == VOIDmode
2130 || GET_MODE_CLASS (mode) == MODE_INT
2131 || GET_MODE_CLASS (mode) == MODE_FLOAT))
2132 {
2133 if (factor <= 1 && GET_CODE (x) == ZERO_EXTEND)
2134 {
2135 /* When accessing byte-sized values, the index can be
2136 a zero-extended QImode or HImode register. */
2137 *size = GET_MODE_SIZE (GET_MODE (XEXP (x, 0)));
2138 return XEXP (x, 0);
2139 }
2140 else
2141 {
2142 /* We're looking for addresses of the form:
2143
2144 (mult X I)
2145 or (mult (zero_extend X) I)
2146
2147 where I is the size of the operand being accessed.
2148 The canonical form of the second expression is:
2149
2150 (and (mult (subreg X) I) J)
2151
2152 where J == GET_MODE_MASK (GET_MODE (X)) * I. */
2153 rtx index;
2154
2155 if (GET_CODE (x) == AND
2156 && GET_CODE (XEXP (x, 1)) == CONST_INT
2157 && (factor == 0
2158 || INTVAL (XEXP (x, 1)) == 0xff * factor
2159 || INTVAL (XEXP (x, 1)) == 0xffff * factor))
2160 {
2161 index = XEXP (x, 0);
2162 *size = (INTVAL (XEXP (x, 1)) >= 0xffff ? 2 : 1);
2163 }
2164 else
2165 {
2166 index = x;
2167 *size = 4;
2168 }
2169
2170 if (GET_CODE (index) == MULT
2171 && GET_CODE (XEXP (index, 1)) == CONST_INT
2172 && (factor == 0 || factor == INTVAL (XEXP (index, 1))))
2173 return XEXP (index, 0);
2174 }
2175 }
2176 *size = 0;
2177 return x;
2178 }
2179 \f
2180 /* Worker function for TARGET_MODE_DEPENDENT_ADDRESS_P.
2181
2182 On the H8/300, the predecrement and postincrement address depend thus
2183 (the amount of decrement or increment being the length of the operand). */
2184
2185 static bool
2186 h8300_mode_dependent_address_p (const_rtx addr,
2187 addr_space_t as ATTRIBUTE_UNUSED)
2188 {
2189 if (GET_CODE (addr) == PLUS
2190 && h8300_get_index (XEXP (addr, 0), VOIDmode, 0) != XEXP (addr, 0))
2191 return true;
2192
2193 return false;
2194 }
2195 \f
2196 static const h8300_length_table addb_length_table =
2197 {
2198 /* #xx Rs @aa @Rs @xx */
2199 { 2, 2, 4, 4, 4 }, /* add.b xx,Rd */
2200 { 4, 4, 4, 4, 6 }, /* add.b xx,@aa */
2201 { 4, 4, 4, 4, 6 }, /* add.b xx,@Rd */
2202 { 6, 4, 4, 4, 6 } /* add.b xx,@xx */
2203 };
2204
2205 static const h8300_length_table addw_length_table =
2206 {
2207 /* #xx Rs @aa @Rs @xx */
2208 { 2, 2, 4, 4, 4 }, /* add.w xx,Rd */
2209 { 4, 4, 4, 4, 6 }, /* add.w xx,@aa */
2210 { 4, 4, 4, 4, 6 }, /* add.w xx,@Rd */
2211 { 4, 4, 4, 4, 6 } /* add.w xx,@xx */
2212 };
2213
2214 static const h8300_length_table addl_length_table =
2215 {
2216 /* #xx Rs @aa @Rs @xx */
2217 { 2, 2, 4, 4, 4 }, /* add.l xx,Rd */
2218 { 4, 4, 6, 6, 6 }, /* add.l xx,@aa */
2219 { 4, 4, 6, 6, 6 }, /* add.l xx,@Rd */
2220 { 4, 4, 6, 6, 6 } /* add.l xx,@xx */
2221 };
2222
2223 #define logicb_length_table addb_length_table
2224 #define logicw_length_table addw_length_table
2225
2226 static const h8300_length_table logicl_length_table =
2227 {
2228 /* #xx Rs @aa @Rs @xx */
2229 { 2, 4, 4, 4, 4 }, /* and.l xx,Rd */
2230 { 4, 4, 6, 6, 6 }, /* and.l xx,@aa */
2231 { 4, 4, 6, 6, 6 }, /* and.l xx,@Rd */
2232 { 4, 4, 6, 6, 6 } /* and.l xx,@xx */
2233 };
2234
2235 static const h8300_length_table movb_length_table =
2236 {
2237 /* #xx Rs @aa @Rs @xx */
2238 { 2, 2, 2, 2, 4 }, /* mov.b xx,Rd */
2239 { 4, 2, 4, 4, 4 }, /* mov.b xx,@aa */
2240 { 4, 2, 4, 4, 4 }, /* mov.b xx,@Rd */
2241 { 4, 4, 4, 4, 4 } /* mov.b xx,@xx */
2242 };
2243
2244 #define movw_length_table movb_length_table
2245
2246 static const h8300_length_table movl_length_table =
2247 {
2248 /* #xx Rs @aa @Rs @xx */
2249 { 2, 2, 4, 4, 4 }, /* mov.l xx,Rd */
2250 { 4, 4, 4, 4, 4 }, /* mov.l xx,@aa */
2251 { 4, 4, 4, 4, 4 }, /* mov.l xx,@Rd */
2252 { 4, 4, 4, 4, 4 } /* mov.l xx,@xx */
2253 };
2254
2255 /* Return the size of the given address or displacement constant. */
2256
2257 static unsigned int
2258 h8300_constant_length (rtx constant)
2259 {
2260 /* Check for (@d:16,Reg). */
2261 if (GET_CODE (constant) == CONST_INT
2262 && IN_RANGE (INTVAL (constant), -0x8000, 0x7fff))
2263 return 2;
2264
2265 /* Check for (@d:16,Reg) in cases where the displacement is
2266 an absolute address. */
2267 if (Pmode == HImode || h8300_tiny_constant_address_p (constant))
2268 return 2;
2269
2270 return 4;
2271 }
2272
2273 /* Return the size of a displacement field in address ADDR, which should
2274 have the form (plus X constant). SIZE is the number of bytes being
2275 accessed. */
2276
2277 static unsigned int
2278 h8300_displacement_length (rtx addr, int size)
2279 {
2280 rtx offset;
2281
2282 offset = XEXP (addr, 1);
2283
2284 /* Check for @(d:2,Reg). */
2285 if (register_operand (XEXP (addr, 0), VOIDmode)
2286 && GET_CODE (offset) == CONST_INT
2287 && (INTVAL (offset) == size
2288 || INTVAL (offset) == size * 2
2289 || INTVAL (offset) == size * 3))
2290 return 0;
2291
2292 return h8300_constant_length (offset);
2293 }
2294
2295 /* Store the class of operand OP in *OPCLASS and return the length of any
2296 extra operand fields. SIZE is the number of bytes in OP. OPCLASS
2297 can be null if only the length is needed. */
2298
2299 static unsigned int
2300 h8300_classify_operand (rtx op, int size, enum h8300_operand_class *opclass)
2301 {
2302 enum h8300_operand_class dummy;
2303
2304 if (opclass == 0)
2305 opclass = &dummy;
2306
2307 if (CONSTANT_P (op))
2308 {
2309 *opclass = H8OP_IMMEDIATE;
2310
2311 /* Byte-sized immediates are stored in the opcode fields. */
2312 if (size == 1)
2313 return 0;
2314
2315 /* If this is a 32-bit instruction, see whether the constant
2316 will fit into a 16-bit immediate field. */
2317 if (TARGET_H8300SX
2318 && size == 4
2319 && GET_CODE (op) == CONST_INT
2320 && IN_RANGE (INTVAL (op), 0, 0xffff))
2321 return 2;
2322
2323 return size;
2324 }
2325 else if (GET_CODE (op) == MEM)
2326 {
2327 op = XEXP (op, 0);
2328 if (CONSTANT_P (op))
2329 {
2330 *opclass = H8OP_MEM_ABSOLUTE;
2331 return h8300_constant_length (op);
2332 }
2333 else if (GET_CODE (op) == PLUS && CONSTANT_P (XEXP (op, 1)))
2334 {
2335 *opclass = H8OP_MEM_COMPLEX;
2336 return h8300_displacement_length (op, size);
2337 }
2338 else if (GET_RTX_CLASS (GET_CODE (op)) == RTX_AUTOINC)
2339 {
2340 *opclass = H8OP_MEM_COMPLEX;
2341 return 0;
2342 }
2343 else if (register_operand (op, VOIDmode))
2344 {
2345 *opclass = H8OP_MEM_BASE;
2346 return 0;
2347 }
2348 }
2349 gcc_assert (register_operand (op, VOIDmode));
2350 *opclass = H8OP_REGISTER;
2351 return 0;
2352 }
2353
2354 /* Return the length of the instruction described by TABLE given that
2355 its operands are OP1 and OP2. OP1 must be an h8300_dst_operand
2356 and OP2 must be an h8300_src_operand. */
2357
2358 static unsigned int
2359 h8300_length_from_table (rtx op1, rtx op2, const h8300_length_table *table)
2360 {
2361 enum h8300_operand_class op1_class, op2_class;
2362 unsigned int size, immediate_length;
2363
2364 size = GET_MODE_SIZE (GET_MODE (op1));
2365 immediate_length = (h8300_classify_operand (op1, size, &op1_class)
2366 + h8300_classify_operand (op2, size, &op2_class));
2367 return immediate_length + (*table)[op1_class - 1][op2_class];
2368 }
2369
2370 /* Return the length of a unary instruction such as neg or not given that
2371 its operand is OP. */
2372
2373 unsigned int
2374 h8300_unary_length (rtx op)
2375 {
2376 enum h8300_operand_class opclass;
2377 unsigned int size, operand_length;
2378
2379 size = GET_MODE_SIZE (GET_MODE (op));
2380 operand_length = h8300_classify_operand (op, size, &opclass);
2381 switch (opclass)
2382 {
2383 case H8OP_REGISTER:
2384 return 2;
2385
2386 case H8OP_MEM_BASE:
2387 return (size == 4 ? 6 : 4);
2388
2389 case H8OP_MEM_ABSOLUTE:
2390 return operand_length + (size == 4 ? 6 : 4);
2391
2392 case H8OP_MEM_COMPLEX:
2393 return operand_length + 6;
2394
2395 default:
2396 gcc_unreachable ();
2397 }
2398 }
2399
2400 /* Likewise short immediate instructions such as add.w #xx:3,OP. */
2401
2402 static unsigned int
2403 h8300_short_immediate_length (rtx op)
2404 {
2405 enum h8300_operand_class opclass;
2406 unsigned int size, operand_length;
2407
2408 size = GET_MODE_SIZE (GET_MODE (op));
2409 operand_length = h8300_classify_operand (op, size, &opclass);
2410
2411 switch (opclass)
2412 {
2413 case H8OP_REGISTER:
2414 return 2;
2415
2416 case H8OP_MEM_BASE:
2417 case H8OP_MEM_ABSOLUTE:
2418 case H8OP_MEM_COMPLEX:
2419 return 4 + operand_length;
2420
2421 default:
2422 gcc_unreachable ();
2423 }
2424 }
2425
2426 /* Likewise bitfield load and store instructions. */
2427
2428 static unsigned int
2429 h8300_bitfield_length (rtx op, rtx op2)
2430 {
2431 enum h8300_operand_class opclass;
2432 unsigned int size, operand_length;
2433
2434 if (GET_CODE (op) == REG)
2435 op = op2;
2436 gcc_assert (GET_CODE (op) != REG);
2437
2438 size = GET_MODE_SIZE (GET_MODE (op));
2439 operand_length = h8300_classify_operand (op, size, &opclass);
2440
2441 switch (opclass)
2442 {
2443 case H8OP_MEM_BASE:
2444 case H8OP_MEM_ABSOLUTE:
2445 case H8OP_MEM_COMPLEX:
2446 return 4 + operand_length;
2447
2448 default:
2449 gcc_unreachable ();
2450 }
2451 }
2452
2453 /* Calculate the length of general binary instruction INSN using TABLE. */
2454
2455 static unsigned int
2456 h8300_binary_length (rtx_insn *insn, const h8300_length_table *table)
2457 {
2458 rtx set;
2459
2460 set = single_set (insn);
2461 gcc_assert (set);
2462
2463 if (BINARY_P (SET_SRC (set)))
2464 return h8300_length_from_table (XEXP (SET_SRC (set), 0),
2465 XEXP (SET_SRC (set), 1), table);
2466 else
2467 {
2468 gcc_assert (GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == RTX_TERNARY);
2469 return h8300_length_from_table (XEXP (XEXP (SET_SRC (set), 1), 0),
2470 XEXP (XEXP (SET_SRC (set), 1), 1),
2471 table);
2472 }
2473 }
2474
2475 /* Subroutine of h8300_move_length. Return true if OP is 1- or 2-byte
2476 memory reference and either (1) it has the form @(d:16,Rn) or
2477 (2) its address has the code given by INC_CODE. */
2478
2479 static bool
2480 h8300_short_move_mem_p (rtx op, enum rtx_code inc_code)
2481 {
2482 rtx addr;
2483 unsigned int size;
2484
2485 if (GET_CODE (op) != MEM)
2486 return false;
2487
2488 addr = XEXP (op, 0);
2489 size = GET_MODE_SIZE (GET_MODE (op));
2490 if (size != 1 && size != 2)
2491 return false;
2492
2493 return (GET_CODE (addr) == inc_code
2494 || (GET_CODE (addr) == PLUS
2495 && GET_CODE (XEXP (addr, 0)) == REG
2496 && h8300_displacement_length (addr, size) == 2));
2497 }
2498
2499 /* Calculate the length of move instruction INSN using the given length
2500 table. Although the tables are correct for most cases, there is some
2501 irregularity in the length of mov.b and mov.w. The following forms:
2502
2503 mov @ERs+, Rd
2504 mov @(d:16,ERs), Rd
2505 mov Rs, @-ERd
2506 mov Rs, @(d:16,ERd)
2507
2508 are two bytes shorter than most other "mov Rs, @complex" or
2509 "mov @complex,Rd" combinations. */
2510
2511 static unsigned int
2512 h8300_move_length (rtx *operands, const h8300_length_table *table)
2513 {
2514 unsigned int size;
2515
2516 size = h8300_length_from_table (operands[0], operands[1], table);
2517 if (REG_P (operands[0]) && h8300_short_move_mem_p (operands[1], POST_INC))
2518 size -= 2;
2519 if (REG_P (operands[1]) && h8300_short_move_mem_p (operands[0], PRE_DEC))
2520 size -= 2;
2521 return size;
2522 }
2523
2524 /* Return the length of a mova instruction with the given operands.
2525 DEST is the register destination, SRC is the source address and
2526 OFFSET is the 16-bit or 32-bit displacement. */
2527
2528 static unsigned int
2529 h8300_mova_length (rtx dest, rtx src, rtx offset)
2530 {
2531 unsigned int size;
2532
2533 size = (2
2534 + h8300_constant_length (offset)
2535 + h8300_classify_operand (src, GET_MODE_SIZE (GET_MODE (src)), 0));
2536 if (!REG_P (dest) || !REG_P (src) || REGNO (src) != REGNO (dest))
2537 size += 2;
2538 return size;
2539 }
2540
2541 /* Compute the length of INSN based on its length_table attribute.
2542 OPERANDS is the array of its operands. */
2543
2544 unsigned int
2545 h8300_insn_length_from_table (rtx_insn *insn, rtx * operands)
2546 {
2547 switch (get_attr_length_table (insn))
2548 {
2549 case LENGTH_TABLE_NONE:
2550 gcc_unreachable ();
2551
2552 case LENGTH_TABLE_ADDB:
2553 return h8300_binary_length (insn, &addb_length_table);
2554
2555 case LENGTH_TABLE_ADDW:
2556 return h8300_binary_length (insn, &addw_length_table);
2557
2558 case LENGTH_TABLE_ADDL:
2559 return h8300_binary_length (insn, &addl_length_table);
2560
2561 case LENGTH_TABLE_LOGICB:
2562 return h8300_binary_length (insn, &logicb_length_table);
2563
2564 case LENGTH_TABLE_MOVB:
2565 return h8300_move_length (operands, &movb_length_table);
2566
2567 case LENGTH_TABLE_MOVW:
2568 return h8300_move_length (operands, &movw_length_table);
2569
2570 case LENGTH_TABLE_MOVL:
2571 return h8300_move_length (operands, &movl_length_table);
2572
2573 case LENGTH_TABLE_MOVA:
2574 return h8300_mova_length (operands[0], operands[1], operands[2]);
2575
2576 case LENGTH_TABLE_MOVA_ZERO:
2577 return h8300_mova_length (operands[0], operands[1], const0_rtx);
2578
2579 case LENGTH_TABLE_UNARY:
2580 return h8300_unary_length (operands[0]);
2581
2582 case LENGTH_TABLE_MOV_IMM4:
2583 return 2 + h8300_classify_operand (operands[0], 0, 0);
2584
2585 case LENGTH_TABLE_SHORT_IMMEDIATE:
2586 return h8300_short_immediate_length (operands[0]);
2587
2588 case LENGTH_TABLE_BITFIELD:
2589 return h8300_bitfield_length (operands[0], operands[1]);
2590
2591 case LENGTH_TABLE_BITBRANCH:
2592 return h8300_bitfield_length (operands[1], operands[2]) - 2;
2593
2594 default:
2595 gcc_unreachable ();
2596 }
2597 }
2598
2599 /* Return true if LHS and RHS are memory references that can be mapped
2600 to the same h8sx assembly operand. LHS appears as the destination of
2601 an instruction and RHS appears as a source.
2602
2603 Three cases are allowed:
2604
2605 - RHS is @+Rn or @-Rn, LHS is @Rn
2606 - RHS is @Rn, LHS is @Rn+ or @Rn-
2607 - RHS and LHS have the same address and neither has side effects. */
2608
2609 bool
2610 h8sx_mergeable_memrefs_p (rtx lhs, rtx rhs)
2611 {
2612 if (GET_CODE (rhs) == MEM && GET_CODE (lhs) == MEM)
2613 {
2614 rhs = XEXP (rhs, 0);
2615 lhs = XEXP (lhs, 0);
2616
2617 if (GET_CODE (rhs) == PRE_INC || GET_CODE (rhs) == PRE_DEC)
2618 return rtx_equal_p (XEXP (rhs, 0), lhs);
2619
2620 if (GET_CODE (lhs) == POST_INC || GET_CODE (lhs) == POST_DEC)
2621 return rtx_equal_p (rhs, XEXP (lhs, 0));
2622
2623 if (rtx_equal_p (rhs, lhs))
2624 return true;
2625 }
2626 return false;
2627 }
2628
2629 /* Return true if OPERANDS[1] can be mapped to the same assembly
2630 operand as OPERANDS[0]. */
2631
2632 bool
2633 h8300_operands_match_p (rtx *operands)
2634 {
2635 if (register_operand (operands[0], VOIDmode)
2636 && register_operand (operands[1], VOIDmode))
2637 return true;
2638
2639 if (h8sx_mergeable_memrefs_p (operands[0], operands[1]))
2640 return true;
2641
2642 return false;
2643 }
2644 \f
2645 /* Try using movmd to move LENGTH bytes from memory region SRC to memory
2646 region DEST. The two regions do not overlap and have the common
2647 alignment given by ALIGNMENT. Return true on success.
2648
2649 Using movmd for variable-length moves seems to involve some
2650 complex trade-offs. For instance:
2651
2652 - Preparing for a movmd instruction is similar to preparing
2653 for a memcpy. The main difference is that the arguments
2654 are moved into er4, er5 and er6 rather than er0, er1 and er2.
2655
2656 - Since movmd clobbers the frame pointer, we need to save
2657 and restore it somehow when frame_pointer_needed. This can
2658 sometimes make movmd sequences longer than calls to memcpy().
2659
2660 - The counter register is 16 bits, so the instruction is only
2661 suitable for variable-length moves when sizeof (size_t) == 2.
2662 That's only true in normal mode.
2663
2664 - We will often lack static alignment information. Falling back
2665 on movmd.b would likely be slower than calling memcpy(), at least
2666 for big moves.
2667
2668 This function therefore only uses movmd when the length is a
2669 known constant, and only then if -fomit-frame-pointer is in
2670 effect or if we're not optimizing for size.
2671
2672 At the moment the function uses movmd for all in-range constants,
2673 but it might be better to fall back on memcpy() for large moves
2674 if ALIGNMENT == 1. */
2675
2676 bool
2677 h8sx_emit_movmd (rtx dest, rtx src, rtx length,
2678 HOST_WIDE_INT alignment)
2679 {
2680 if (!flag_omit_frame_pointer && optimize_size)
2681 return false;
2682
2683 if (GET_CODE (length) == CONST_INT)
2684 {
2685 rtx dest_reg, src_reg, first_dest, first_src;
2686 HOST_WIDE_INT n;
2687 int factor;
2688
2689 /* Use movmd.l if the alignment allows it, otherwise fall back
2690 on movmd.b. */
2691 factor = (alignment >= 2 ? 4 : 1);
2692
2693 /* Make sure the length is within range. We can handle counter
2694 values up to 65536, although HImode truncation will make
2695 the count appear negative in rtl dumps. */
2696 n = INTVAL (length);
2697 if (n <= 0 || n / factor > 65536)
2698 return false;
2699
2700 /* Create temporary registers for the source and destination
2701 pointers. Initialize them to the start of each region. */
2702 dest_reg = copy_addr_to_reg (XEXP (dest, 0));
2703 src_reg = copy_addr_to_reg (XEXP (src, 0));
2704
2705 /* Create references to the movmd source and destination blocks. */
2706 first_dest = replace_equiv_address (dest, dest_reg);
2707 first_src = replace_equiv_address (src, src_reg);
2708
2709 set_mem_size (first_dest, n & -factor);
2710 set_mem_size (first_src, n & -factor);
2711
2712 length = copy_to_mode_reg (HImode, gen_int_mode (n / factor, HImode));
2713 emit_insn (gen_movmd (first_dest, first_src, length, GEN_INT (factor)));
2714
2715 if ((n & -factor) != n)
2716 {
2717 /* Move SRC and DEST past the region we just copied.
2718 This is done to update the memory attributes. */
2719 dest = adjust_address (dest, BLKmode, n & -factor);
2720 src = adjust_address (src, BLKmode, n & -factor);
2721
2722 /* Replace the addresses with the source and destination
2723 registers, which movmd has left with the right values. */
2724 dest = replace_equiv_address (dest, dest_reg);
2725 src = replace_equiv_address (src, src_reg);
2726
2727 /* Mop up the left-over bytes. */
2728 if (n & 2)
2729 emit_move_insn (adjust_address (dest, HImode, 0),
2730 adjust_address (src, HImode, 0));
2731 if (n & 1)
2732 emit_move_insn (adjust_address (dest, QImode, n & 2),
2733 adjust_address (src, QImode, n & 2));
2734 }
2735 return true;
2736 }
2737 return false;
2738 }
2739
2740 /* Move ADDR into er6 after pushing its old value onto the stack. */
2741
2742 void
2743 h8300_swap_into_er6 (rtx addr)
2744 {
2745 rtx insn = push (HARD_FRAME_POINTER_REGNUM, false);
2746 if (frame_pointer_needed)
2747 add_reg_note (insn, REG_CFA_DEF_CFA,
2748 plus_constant (Pmode, gen_rtx_MEM (Pmode, stack_pointer_rtx),
2749 2 * UNITS_PER_WORD));
2750 else
2751 add_reg_note (insn, REG_CFA_ADJUST_CFA,
2752 gen_rtx_SET (stack_pointer_rtx,
2753 plus_constant (Pmode, stack_pointer_rtx, 4)));
2754
2755 emit_move_insn (hard_frame_pointer_rtx, addr);
2756 if (REGNO (addr) == SP_REG)
2757 emit_move_insn (hard_frame_pointer_rtx,
2758 plus_constant (Pmode, hard_frame_pointer_rtx,
2759 GET_MODE_SIZE (word_mode)));
2760 }
2761
2762 /* Move the current value of er6 into ADDR and pop its old value
2763 from the stack. */
2764
2765 void
2766 h8300_swap_out_of_er6 (rtx addr)
2767 {
2768 rtx insn;
2769
2770 if (REGNO (addr) != SP_REG)
2771 emit_move_insn (addr, hard_frame_pointer_rtx);
2772
2773 insn = pop (HARD_FRAME_POINTER_REGNUM);
2774 if (frame_pointer_needed)
2775 add_reg_note (insn, REG_CFA_DEF_CFA,
2776 plus_constant (Pmode, hard_frame_pointer_rtx,
2777 2 * UNITS_PER_WORD));
2778 else
2779 add_reg_note (insn, REG_CFA_ADJUST_CFA,
2780 gen_rtx_SET (stack_pointer_rtx,
2781 plus_constant (Pmode, stack_pointer_rtx, -4)));
2782 }
2783 \f
2784 /* Return the length of mov instruction. */
2785
2786 unsigned int
2787 compute_mov_length (rtx *operands)
2788 {
2789 /* If the mov instruction involves a memory operand, we compute the
2790 length, assuming the largest addressing mode is used, and then
2791 adjust later in the function. Otherwise, we compute and return
2792 the exact length in one step. */
2793 machine_mode mode = GET_MODE (operands[0]);
2794 rtx dest = operands[0];
2795 rtx src = operands[1];
2796 rtx addr;
2797
2798 if (GET_CODE (src) == MEM)
2799 addr = XEXP (src, 0);
2800 else if (GET_CODE (dest) == MEM)
2801 addr = XEXP (dest, 0);
2802 else
2803 addr = NULL_RTX;
2804
2805 if (TARGET_H8300)
2806 {
2807 unsigned int base_length;
2808
2809 switch (mode)
2810 {
2811 case QImode:
2812 if (addr == NULL_RTX)
2813 return 2;
2814
2815 /* The eightbit addressing is available only in QImode, so
2816 go ahead and take care of it. */
2817 if (h8300_eightbit_constant_address_p (addr))
2818 return 2;
2819
2820 base_length = 4;
2821 break;
2822
2823 case HImode:
2824 if (addr == NULL_RTX)
2825 {
2826 if (REG_P (src))
2827 return 2;
2828
2829 if (src == const0_rtx)
2830 return 2;
2831
2832 return 4;
2833 }
2834
2835 base_length = 4;
2836 break;
2837
2838 case SImode:
2839 if (addr == NULL_RTX)
2840 {
2841 if (REG_P (src))
2842 return 4;
2843
2844 if (GET_CODE (src) == CONST_INT)
2845 {
2846 if (src == const0_rtx)
2847 return 4;
2848
2849 if ((INTVAL (src) & 0xffff) == 0)
2850 return 6;
2851
2852 if ((INTVAL (src) & 0xffff) == 0)
2853 return 6;
2854
2855 if ((INTVAL (src) & 0xffff)
2856 == ((INTVAL (src) >> 16) & 0xffff))
2857 return 6;
2858 }
2859 return 8;
2860 }
2861
2862 base_length = 8;
2863 break;
2864
2865 case SFmode:
2866 if (addr == NULL_RTX)
2867 {
2868 if (REG_P (src))
2869 return 4;
2870
2871 if (satisfies_constraint_G (src))
2872 return 4;
2873
2874 return 8;
2875 }
2876
2877 base_length = 8;
2878 break;
2879
2880 default:
2881 gcc_unreachable ();
2882 }
2883
2884 /* Adjust the length based on the addressing mode used.
2885 Specifically, we subtract the difference between the actual
2886 length and the longest one, which is @(d:16,Rs). For SImode
2887 and SFmode, we double the adjustment because two mov.w are
2888 used to do the job. */
2889
2890 /* @Rs+ and @-Rd are 2 bytes shorter than the longest. */
2891 if (GET_CODE (addr) == PRE_DEC
2892 || GET_CODE (addr) == POST_INC)
2893 {
2894 if (mode == QImode || mode == HImode)
2895 return base_length - 2;
2896 else
2897 /* In SImode and SFmode, we use two mov.w instructions, so
2898 double the adjustment. */
2899 return base_length - 4;
2900 }
2901
2902 /* @Rs and @Rd are 2 bytes shorter than the longest. Note that
2903 in SImode and SFmode, the second mov.w involves an address
2904 with displacement, namely @(2,Rs) or @(2,Rd), so we subtract
2905 only 2 bytes. */
2906 if (GET_CODE (addr) == REG)
2907 return base_length - 2;
2908
2909 return base_length;
2910 }
2911 else
2912 {
2913 unsigned int base_length;
2914
2915 switch (mode)
2916 {
2917 case QImode:
2918 if (addr == NULL_RTX)
2919 return 2;
2920
2921 /* The eightbit addressing is available only in QImode, so
2922 go ahead and take care of it. */
2923 if (h8300_eightbit_constant_address_p (addr))
2924 return 2;
2925
2926 base_length = 8;
2927 break;
2928
2929 case HImode:
2930 if (addr == NULL_RTX)
2931 {
2932 if (REG_P (src))
2933 return 2;
2934
2935 if (src == const0_rtx)
2936 return 2;
2937
2938 return 4;
2939 }
2940
2941 base_length = 8;
2942 break;
2943
2944 case SImode:
2945 if (addr == NULL_RTX)
2946 {
2947 if (REG_P (src))
2948 {
2949 if (REGNO (src) == MAC_REG || REGNO (dest) == MAC_REG)
2950 return 4;
2951 else
2952 return 2;
2953 }
2954
2955 if (GET_CODE (src) == CONST_INT)
2956 {
2957 int val = INTVAL (src);
2958
2959 if (val == 0)
2960 return 2;
2961
2962 if (val == (val & 0x00ff) || val == (val & 0xff00))
2963 return 4;
2964
2965 switch (val & 0xffffffff)
2966 {
2967 case 0xffffffff:
2968 case 0xfffffffe:
2969 case 0xfffffffc:
2970 case 0x0000ffff:
2971 case 0x0000fffe:
2972 case 0xffff0000:
2973 case 0xfffe0000:
2974 case 0x00010000:
2975 case 0x00020000:
2976 return 4;
2977 }
2978 }
2979 return 6;
2980 }
2981
2982 base_length = 10;
2983 break;
2984
2985 case SFmode:
2986 if (addr == NULL_RTX)
2987 {
2988 if (REG_P (src))
2989 return 2;
2990
2991 if (satisfies_constraint_G (src))
2992 return 2;
2993
2994 return 6;
2995 }
2996
2997 base_length = 10;
2998 break;
2999
3000 default:
3001 gcc_unreachable ();
3002 }
3003
3004 /* Adjust the length based on the addressing mode used.
3005 Specifically, we subtract the difference between the actual
3006 length and the longest one, which is @(d:24,ERs). */
3007
3008 /* @ERs+ and @-ERd are 6 bytes shorter than the longest. */
3009 if (GET_CODE (addr) == PRE_DEC
3010 || GET_CODE (addr) == POST_INC)
3011 return base_length - 6;
3012
3013 /* @ERs and @ERd are 6 bytes shorter than the longest. */
3014 if (GET_CODE (addr) == REG)
3015 return base_length - 6;
3016
3017 /* @(d:16,ERs) and @(d:16,ERd) are 4 bytes shorter than the
3018 longest. */
3019 if (GET_CODE (addr) == PLUS
3020 && GET_CODE (XEXP (addr, 0)) == REG
3021 && GET_CODE (XEXP (addr, 1)) == CONST_INT
3022 && INTVAL (XEXP (addr, 1)) > -32768
3023 && INTVAL (XEXP (addr, 1)) < 32767)
3024 return base_length - 4;
3025
3026 /* @aa:16 is 4 bytes shorter than the longest. */
3027 if (h8300_tiny_constant_address_p (addr))
3028 return base_length - 4;
3029
3030 /* @aa:24 is 2 bytes shorter than the longest. */
3031 if (CONSTANT_P (addr))
3032 return base_length - 2;
3033
3034 return base_length;
3035 }
3036 }
3037 \f
3038 /* Output an addition insn. */
3039
3040 const char *
3041 output_plussi (rtx *operands)
3042 {
3043 machine_mode mode = GET_MODE (operands[0]);
3044
3045 gcc_assert (mode == SImode);
3046
3047 if (TARGET_H8300)
3048 {
3049 if (GET_CODE (operands[2]) == REG)
3050 return "add.w\t%f2,%f0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
3051
3052 if (GET_CODE (operands[2]) == CONST_INT)
3053 {
3054 HOST_WIDE_INT n = INTVAL (operands[2]);
3055
3056 if ((n & 0xffffff) == 0)
3057 return "add\t%z2,%z0";
3058 if ((n & 0xffff) == 0)
3059 return "add\t%y2,%y0\n\taddx\t%z2,%z0";
3060 if ((n & 0xff) == 0)
3061 return "add\t%x2,%x0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
3062 }
3063
3064 return "add\t%w2,%w0\n\taddx\t%x2,%x0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
3065 }
3066 else
3067 {
3068 if (GET_CODE (operands[2]) == CONST_INT
3069 && register_operand (operands[1], VOIDmode))
3070 {
3071 HOST_WIDE_INT intval = INTVAL (operands[2]);
3072
3073 if (TARGET_H8300SX && (intval >= 1 && intval <= 7))
3074 return "add.l\t%S2,%S0";
3075 if (TARGET_H8300SX && (intval >= -7 && intval <= -1))
3076 return "sub.l\t%G2,%S0";
3077
3078 /* See if we can finish with 2 bytes. */
3079
3080 switch ((unsigned int) intval & 0xffffffff)
3081 {
3082 case 0x00000001:
3083 case 0x00000002:
3084 case 0x00000004:
3085 return "adds\t%2,%S0";
3086
3087 case 0xffffffff:
3088 case 0xfffffffe:
3089 case 0xfffffffc:
3090 return "subs\t%G2,%S0";
3091
3092 case 0x00010000:
3093 case 0x00020000:
3094 operands[2] = GEN_INT (intval >> 16);
3095 return "inc.w\t%2,%e0";
3096
3097 case 0xffff0000:
3098 case 0xfffe0000:
3099 operands[2] = GEN_INT (intval >> 16);
3100 return "dec.w\t%G2,%e0";
3101 }
3102
3103 /* See if we can finish with 4 bytes. */
3104 if ((intval & 0xffff) == 0)
3105 {
3106 operands[2] = GEN_INT (intval >> 16);
3107 return "add.w\t%2,%e0";
3108 }
3109 }
3110
3111 if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0)
3112 {
3113 operands[2] = GEN_INT (-INTVAL (operands[2]));
3114 return "sub.l\t%S2,%S0";
3115 }
3116 return "add.l\t%S2,%S0";
3117 }
3118 }
3119
3120 /* ??? It would be much easier to add the h8sx stuff if a single function
3121 classified the addition as either inc/dec, adds/subs, add.w or add.l. */
3122 /* Compute the length of an addition insn. */
3123
3124 unsigned int
3125 compute_plussi_length (rtx *operands)
3126 {
3127 machine_mode mode = GET_MODE (operands[0]);
3128
3129 gcc_assert (mode == SImode);
3130
3131 if (TARGET_H8300)
3132 {
3133 if (GET_CODE (operands[2]) == REG)
3134 return 6;
3135
3136 if (GET_CODE (operands[2]) == CONST_INT)
3137 {
3138 HOST_WIDE_INT n = INTVAL (operands[2]);
3139
3140 if ((n & 0xffffff) == 0)
3141 return 2;
3142 if ((n & 0xffff) == 0)
3143 return 4;
3144 if ((n & 0xff) == 0)
3145 return 6;
3146 }
3147
3148 return 8;
3149 }
3150 else
3151 {
3152 if (GET_CODE (operands[2]) == CONST_INT
3153 && register_operand (operands[1], VOIDmode))
3154 {
3155 HOST_WIDE_INT intval = INTVAL (operands[2]);
3156
3157 if (TARGET_H8300SX && (intval >= 1 && intval <= 7))
3158 return 2;
3159 if (TARGET_H8300SX && (intval >= -7 && intval <= -1))
3160 return 2;
3161
3162 /* See if we can finish with 2 bytes. */
3163
3164 switch ((unsigned int) intval & 0xffffffff)
3165 {
3166 case 0x00000001:
3167 case 0x00000002:
3168 case 0x00000004:
3169 return 2;
3170
3171 case 0xffffffff:
3172 case 0xfffffffe:
3173 case 0xfffffffc:
3174 return 2;
3175
3176 case 0x00010000:
3177 case 0x00020000:
3178 return 2;
3179
3180 case 0xffff0000:
3181 case 0xfffe0000:
3182 return 2;
3183 }
3184
3185 /* See if we can finish with 4 bytes. */
3186 if ((intval & 0xffff) == 0)
3187 return 4;
3188 }
3189
3190 if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0)
3191 return h8300_length_from_table (operands[0],
3192 GEN_INT (-INTVAL (operands[2])),
3193 &addl_length_table);
3194 else
3195 return h8300_length_from_table (operands[0], operands[2],
3196 &addl_length_table);
3197 return 6;
3198 }
3199 }
3200
3201 /* Compute which flag bits are valid after an addition insn. */
3202
3203 enum attr_cc
3204 compute_plussi_cc (rtx *operands)
3205 {
3206 machine_mode mode = GET_MODE (operands[0]);
3207
3208 gcc_assert (mode == SImode);
3209
3210 if (TARGET_H8300)
3211 {
3212 return CC_CLOBBER;
3213 }
3214 else
3215 {
3216 if (GET_CODE (operands[2]) == CONST_INT
3217 && register_operand (operands[1], VOIDmode))
3218 {
3219 HOST_WIDE_INT intval = INTVAL (operands[2]);
3220
3221 if (TARGET_H8300SX && (intval >= 1 && intval <= 7))
3222 return CC_SET_ZN;
3223 if (TARGET_H8300SX && (intval >= -7 && intval <= -1))
3224 return CC_SET_ZN;
3225
3226 /* See if we can finish with 2 bytes. */
3227
3228 switch ((unsigned int) intval & 0xffffffff)
3229 {
3230 case 0x00000001:
3231 case 0x00000002:
3232 case 0x00000004:
3233 return CC_NONE_0HIT;
3234
3235 case 0xffffffff:
3236 case 0xfffffffe:
3237 case 0xfffffffc:
3238 return CC_NONE_0HIT;
3239
3240 case 0x00010000:
3241 case 0x00020000:
3242 return CC_CLOBBER;
3243
3244 case 0xffff0000:
3245 case 0xfffe0000:
3246 return CC_CLOBBER;
3247 }
3248
3249 /* See if we can finish with 4 bytes. */
3250 if ((intval & 0xffff) == 0)
3251 return CC_CLOBBER;
3252 }
3253
3254 return CC_SET_ZN;
3255 }
3256 }
3257 \f
3258 /* Output a logical insn. */
3259
3260 const char *
3261 output_logical_op (machine_mode mode, rtx *operands)
3262 {
3263 /* Figure out the logical op that we need to perform. */
3264 enum rtx_code code = GET_CODE (operands[3]);
3265 /* Pretend that every byte is affected if both operands are registers. */
3266 const unsigned HOST_WIDE_INT intval =
3267 (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
3268 /* Always use the full instruction if the
3269 first operand is in memory. It is better
3270 to use define_splits to generate the shorter
3271 sequence where valid. */
3272 && register_operand (operands[1], VOIDmode)
3273 ? INTVAL (operands[2]) : 0x55555555);
3274 /* The determinant of the algorithm. If we perform an AND, 0
3275 affects a bit. Otherwise, 1 affects a bit. */
3276 const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
3277 /* Break up DET into pieces. */
3278 const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
3279 const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
3280 const unsigned HOST_WIDE_INT b2 = (det >> 16) & 0xff;
3281 const unsigned HOST_WIDE_INT b3 = (det >> 24) & 0xff;
3282 const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
3283 const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
3284 int lower_half_easy_p = 0;
3285 int upper_half_easy_p = 0;
3286 /* The name of an insn. */
3287 const char *opname;
3288 char insn_buf[100];
3289
3290 switch (code)
3291 {
3292 case AND:
3293 opname = "and";
3294 break;
3295 case IOR:
3296 opname = "or";
3297 break;
3298 case XOR:
3299 opname = "xor";
3300 break;
3301 default:
3302 gcc_unreachable ();
3303 }
3304
3305 switch (mode)
3306 {
3307 case HImode:
3308 /* First, see if we can finish with one insn. */
3309 if ((TARGET_H8300H || TARGET_H8300S)
3310 && b0 != 0
3311 && b1 != 0)
3312 {
3313 sprintf (insn_buf, "%s.w\t%%T2,%%T0", opname);
3314 output_asm_insn (insn_buf, operands);
3315 }
3316 else
3317 {
3318 /* Take care of the lower byte. */
3319 if (b0 != 0)
3320 {
3321 sprintf (insn_buf, "%s\t%%s2,%%s0", opname);
3322 output_asm_insn (insn_buf, operands);
3323 }
3324 /* Take care of the upper byte. */
3325 if (b1 != 0)
3326 {
3327 sprintf (insn_buf, "%s\t%%t2,%%t0", opname);
3328 output_asm_insn (insn_buf, operands);
3329 }
3330 }
3331 break;
3332 case SImode:
3333 if (TARGET_H8300H || TARGET_H8300S)
3334 {
3335 /* Determine if the lower half can be taken care of in no more
3336 than two bytes. */
3337 lower_half_easy_p = (b0 == 0
3338 || b1 == 0
3339 || (code != IOR && w0 == 0xffff));
3340
3341 /* Determine if the upper half can be taken care of in no more
3342 than two bytes. */
3343 upper_half_easy_p = ((code != IOR && w1 == 0xffff)
3344 || (code == AND && w1 == 0xff00));
3345 }
3346
3347 /* Check if doing everything with one insn is no worse than
3348 using multiple insns. */
3349 if ((TARGET_H8300H || TARGET_H8300S)
3350 && w0 != 0 && w1 != 0
3351 && !(lower_half_easy_p && upper_half_easy_p)
3352 && !(code == IOR && w1 == 0xffff
3353 && (w0 & 0x8000) != 0 && lower_half_easy_p))
3354 {
3355 sprintf (insn_buf, "%s.l\t%%S2,%%S0", opname);
3356 output_asm_insn (insn_buf, operands);
3357 }
3358 else
3359 {
3360 /* Take care of the lower and upper words individually. For
3361 each word, we try different methods in the order of
3362
3363 1) the special insn (in case of AND or XOR),
3364 2) the word-wise insn, and
3365 3) The byte-wise insn. */
3366 if (w0 == 0xffff
3367 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
3368 output_asm_insn ((code == AND)
3369 ? "sub.w\t%f0,%f0" : "not.w\t%f0",
3370 operands);
3371 else if ((TARGET_H8300H || TARGET_H8300S)
3372 && (b0 != 0)
3373 && (b1 != 0))
3374 {
3375 sprintf (insn_buf, "%s.w\t%%f2,%%f0", opname);
3376 output_asm_insn (insn_buf, operands);
3377 }
3378 else
3379 {
3380 if (b0 != 0)
3381 {
3382 sprintf (insn_buf, "%s\t%%w2,%%w0", opname);
3383 output_asm_insn (insn_buf, operands);
3384 }
3385 if (b1 != 0)
3386 {
3387 sprintf (insn_buf, "%s\t%%x2,%%x0", opname);
3388 output_asm_insn (insn_buf, operands);
3389 }
3390 }
3391
3392 if ((w1 == 0xffff)
3393 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
3394 output_asm_insn ((code == AND)
3395 ? "sub.w\t%e0,%e0" : "not.w\t%e0",
3396 operands);
3397 else if ((TARGET_H8300H || TARGET_H8300S)
3398 && code == IOR
3399 && w1 == 0xffff
3400 && (w0 & 0x8000) != 0)
3401 {
3402 output_asm_insn ("exts.l\t%S0", operands);
3403 }
3404 else if ((TARGET_H8300H || TARGET_H8300S)
3405 && code == AND
3406 && w1 == 0xff00)
3407 {
3408 output_asm_insn ("extu.w\t%e0", operands);
3409 }
3410 else if (TARGET_H8300H || TARGET_H8300S)
3411 {
3412 if (w1 != 0)
3413 {
3414 sprintf (insn_buf, "%s.w\t%%e2,%%e0", opname);
3415 output_asm_insn (insn_buf, operands);
3416 }
3417 }
3418 else
3419 {
3420 if (b2 != 0)
3421 {
3422 sprintf (insn_buf, "%s\t%%y2,%%y0", opname);
3423 output_asm_insn (insn_buf, operands);
3424 }
3425 if (b3 != 0)
3426 {
3427 sprintf (insn_buf, "%s\t%%z2,%%z0", opname);
3428 output_asm_insn (insn_buf, operands);
3429 }
3430 }
3431 }
3432 break;
3433 default:
3434 gcc_unreachable ();
3435 }
3436 return "";
3437 }
3438
3439 /* Compute the length of a logical insn. */
3440
3441 unsigned int
3442 compute_logical_op_length (machine_mode mode, rtx *operands)
3443 {
3444 /* Figure out the logical op that we need to perform. */
3445 enum rtx_code code = GET_CODE (operands[3]);
3446 /* Pretend that every byte is affected if both operands are registers. */
3447 const unsigned HOST_WIDE_INT intval =
3448 (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
3449 /* Always use the full instruction if the
3450 first operand is in memory. It is better
3451 to use define_splits to generate the shorter
3452 sequence where valid. */
3453 && register_operand (operands[1], VOIDmode)
3454 ? INTVAL (operands[2]) : 0x55555555);
3455 /* The determinant of the algorithm. If we perform an AND, 0
3456 affects a bit. Otherwise, 1 affects a bit. */
3457 const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
3458 /* Break up DET into pieces. */
3459 const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
3460 const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
3461 const unsigned HOST_WIDE_INT b2 = (det >> 16) & 0xff;
3462 const unsigned HOST_WIDE_INT b3 = (det >> 24) & 0xff;
3463 const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
3464 const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
3465 int lower_half_easy_p = 0;
3466 int upper_half_easy_p = 0;
3467 /* Insn length. */
3468 unsigned int length = 0;
3469
3470 switch (mode)
3471 {
3472 case HImode:
3473 /* First, see if we can finish with one insn. */
3474 if ((TARGET_H8300H || TARGET_H8300S)
3475 && b0 != 0
3476 && b1 != 0)
3477 {
3478 length = h8300_length_from_table (operands[1], operands[2],
3479 &logicw_length_table);
3480 }
3481 else
3482 {
3483 /* Take care of the lower byte. */
3484 if (b0 != 0)
3485 length += 2;
3486
3487 /* Take care of the upper byte. */
3488 if (b1 != 0)
3489 length += 2;
3490 }
3491 break;
3492 case SImode:
3493 if (TARGET_H8300H || TARGET_H8300S)
3494 {
3495 /* Determine if the lower half can be taken care of in no more
3496 than two bytes. */
3497 lower_half_easy_p = (b0 == 0
3498 || b1 == 0
3499 || (code != IOR && w0 == 0xffff));
3500
3501 /* Determine if the upper half can be taken care of in no more
3502 than two bytes. */
3503 upper_half_easy_p = ((code != IOR && w1 == 0xffff)
3504 || (code == AND && w1 == 0xff00));
3505 }
3506
3507 /* Check if doing everything with one insn is no worse than
3508 using multiple insns. */
3509 if ((TARGET_H8300H || TARGET_H8300S)
3510 && w0 != 0 && w1 != 0
3511 && !(lower_half_easy_p && upper_half_easy_p)
3512 && !(code == IOR && w1 == 0xffff
3513 && (w0 & 0x8000) != 0 && lower_half_easy_p))
3514 {
3515 length = h8300_length_from_table (operands[1], operands[2],
3516 &logicl_length_table);
3517 }
3518 else
3519 {
3520 /* Take care of the lower and upper words individually. For
3521 each word, we try different methods in the order of
3522
3523 1) the special insn (in case of AND or XOR),
3524 2) the word-wise insn, and
3525 3) The byte-wise insn. */
3526 if (w0 == 0xffff
3527 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
3528 {
3529 length += 2;
3530 }
3531 else if ((TARGET_H8300H || TARGET_H8300S)
3532 && (b0 != 0)
3533 && (b1 != 0))
3534 {
3535 length += 4;
3536 }
3537 else
3538 {
3539 if (b0 != 0)
3540 length += 2;
3541
3542 if (b1 != 0)
3543 length += 2;
3544 }
3545
3546 if (w1 == 0xffff
3547 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
3548 {
3549 length += 2;
3550 }
3551 else if ((TARGET_H8300H || TARGET_H8300S)
3552 && code == IOR
3553 && w1 == 0xffff
3554 && (w0 & 0x8000) != 0)
3555 {
3556 length += 2;
3557 }
3558 else if ((TARGET_H8300H || TARGET_H8300S)
3559 && code == AND
3560 && w1 == 0xff00)
3561 {
3562 length += 2;
3563 }
3564 else if (TARGET_H8300H || TARGET_H8300S)
3565 {
3566 if (w1 != 0)
3567 length += 4;
3568 }
3569 else
3570 {
3571 if (b2 != 0)
3572 length += 2;
3573
3574 if (b3 != 0)
3575 length += 2;
3576 }
3577 }
3578 break;
3579 default:
3580 gcc_unreachable ();
3581 }
3582 return length;
3583 }
3584
3585 /* Compute which flag bits are valid after a logical insn. */
3586
3587 enum attr_cc
3588 compute_logical_op_cc (machine_mode mode, rtx *operands)
3589 {
3590 /* Figure out the logical op that we need to perform. */
3591 enum rtx_code code = GET_CODE (operands[3]);
3592 /* Pretend that every byte is affected if both operands are registers. */
3593 const unsigned HOST_WIDE_INT intval =
3594 (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
3595 /* Always use the full instruction if the
3596 first operand is in memory. It is better
3597 to use define_splits to generate the shorter
3598 sequence where valid. */
3599 && register_operand (operands[1], VOIDmode)
3600 ? INTVAL (operands[2]) : 0x55555555);
3601 /* The determinant of the algorithm. If we perform an AND, 0
3602 affects a bit. Otherwise, 1 affects a bit. */
3603 const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
3604 /* Break up DET into pieces. */
3605 const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
3606 const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
3607 const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
3608 const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
3609 int lower_half_easy_p = 0;
3610 int upper_half_easy_p = 0;
3611 /* Condition code. */
3612 enum attr_cc cc = CC_CLOBBER;
3613
3614 switch (mode)
3615 {
3616 case HImode:
3617 /* First, see if we can finish with one insn. */
3618 if ((TARGET_H8300H || TARGET_H8300S)
3619 && b0 != 0
3620 && b1 != 0)
3621 {
3622 cc = CC_SET_ZNV;
3623 }
3624 break;
3625 case SImode:
3626 if (TARGET_H8300H || TARGET_H8300S)
3627 {
3628 /* Determine if the lower half can be taken care of in no more
3629 than two bytes. */
3630 lower_half_easy_p = (b0 == 0
3631 || b1 == 0
3632 || (code != IOR && w0 == 0xffff));
3633
3634 /* Determine if the upper half can be taken care of in no more
3635 than two bytes. */
3636 upper_half_easy_p = ((code != IOR && w1 == 0xffff)
3637 || (code == AND && w1 == 0xff00));
3638 }
3639
3640 /* Check if doing everything with one insn is no worse than
3641 using multiple insns. */
3642 if ((TARGET_H8300H || TARGET_H8300S)
3643 && w0 != 0 && w1 != 0
3644 && !(lower_half_easy_p && upper_half_easy_p)
3645 && !(code == IOR && w1 == 0xffff
3646 && (w0 & 0x8000) != 0 && lower_half_easy_p))
3647 {
3648 cc = CC_SET_ZNV;
3649 }
3650 else
3651 {
3652 if ((TARGET_H8300H || TARGET_H8300S)
3653 && code == IOR
3654 && w1 == 0xffff
3655 && (w0 & 0x8000) != 0)
3656 {
3657 cc = CC_SET_ZNV;
3658 }
3659 }
3660 break;
3661 default:
3662 gcc_unreachable ();
3663 }
3664 return cc;
3665 }
3666 \f
3667 /* Expand a conditional branch. */
3668
3669 void
3670 h8300_expand_branch (rtx operands[])
3671 {
3672 enum rtx_code code = GET_CODE (operands[0]);
3673 rtx op0 = operands[1];
3674 rtx op1 = operands[2];
3675 rtx label = operands[3];
3676 rtx tmp;
3677
3678 tmp = gen_rtx_COMPARE (VOIDmode, op0, op1);
3679 emit_insn (gen_rtx_SET (cc0_rtx, tmp));
3680
3681 tmp = gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
3682 tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp,
3683 gen_rtx_LABEL_REF (VOIDmode, label),
3684 pc_rtx);
3685 emit_jump_insn (gen_rtx_SET (pc_rtx, tmp));
3686 }
3687
3688
3689 /* Expand a conditional store. */
3690
3691 void
3692 h8300_expand_store (rtx operands[])
3693 {
3694 rtx dest = operands[0];
3695 enum rtx_code code = GET_CODE (operands[1]);
3696 rtx op0 = operands[2];
3697 rtx op1 = operands[3];
3698 rtx tmp;
3699
3700 tmp = gen_rtx_COMPARE (VOIDmode, op0, op1);
3701 emit_insn (gen_rtx_SET (cc0_rtx, tmp));
3702
3703 tmp = gen_rtx_fmt_ee (code, GET_MODE (dest), cc0_rtx, const0_rtx);
3704 emit_insn (gen_rtx_SET (dest, tmp));
3705 }
3706 \f
3707 /* Shifts.
3708
3709 We devote a fair bit of code to getting efficient shifts since we
3710 can only shift one bit at a time on the H8/300 and H8/300H and only
3711 one or two bits at a time on the H8S.
3712
3713 All shift code falls into one of the following ways of
3714 implementation:
3715
3716 o SHIFT_INLINE: Emit straight line code for the shift; this is used
3717 when a straight line shift is about the same size or smaller than
3718 a loop.
3719
3720 o SHIFT_ROT_AND: Rotate the value the opposite direction, then mask
3721 off the bits we don't need. This is used when only a few of the
3722 bits in the original value will survive in the shifted value.
3723
3724 o SHIFT_SPECIAL: Often it's possible to move a byte or a word to
3725 simulate a shift by 8, 16, or 24 bits. Once moved, a few inline
3726 shifts can be added if the shift count is slightly more than 8 or
3727 16. This case also includes other oddballs that are not worth
3728 explaining here.
3729
3730 o SHIFT_LOOP: Emit a loop using one (or two on H8S) bit shifts.
3731
3732 For each shift count, we try to use code that has no trade-off
3733 between code size and speed whenever possible.
3734
3735 If the trade-off is unavoidable, we try to be reasonable.
3736 Specifically, the fastest version is one instruction longer than
3737 the shortest version, we take the fastest version. We also provide
3738 the use a way to switch back to the shortest version with -Os.
3739
3740 For the details of the shift algorithms for various shift counts,
3741 refer to shift_alg_[qhs]i. */
3742
3743 /* Classify a shift with the given mode and code. OP is the shift amount. */
3744
3745 enum h8sx_shift_type
3746 h8sx_classify_shift (machine_mode mode, enum rtx_code code, rtx op)
3747 {
3748 if (!TARGET_H8300SX)
3749 return H8SX_SHIFT_NONE;
3750
3751 switch (code)
3752 {
3753 case ASHIFT:
3754 case LSHIFTRT:
3755 /* Check for variable shifts (shll Rs,Rd and shlr Rs,Rd). */
3756 if (GET_CODE (op) != CONST_INT)
3757 return H8SX_SHIFT_BINARY;
3758
3759 /* Reject out-of-range shift amounts. */
3760 if (INTVAL (op) <= 0 || INTVAL (op) >= GET_MODE_BITSIZE (mode))
3761 return H8SX_SHIFT_NONE;
3762
3763 /* Power-of-2 shifts are effectively unary operations. */
3764 if (exact_log2 (INTVAL (op)) >= 0)
3765 return H8SX_SHIFT_UNARY;
3766
3767 return H8SX_SHIFT_BINARY;
3768
3769 case ASHIFTRT:
3770 if (op == const1_rtx || op == const2_rtx)
3771 return H8SX_SHIFT_UNARY;
3772 return H8SX_SHIFT_NONE;
3773
3774 case ROTATE:
3775 if (GET_CODE (op) == CONST_INT
3776 && (INTVAL (op) == 1
3777 || INTVAL (op) == 2
3778 || INTVAL (op) == GET_MODE_BITSIZE (mode) - 2
3779 || INTVAL (op) == GET_MODE_BITSIZE (mode) - 1))
3780 return H8SX_SHIFT_UNARY;
3781 return H8SX_SHIFT_NONE;
3782
3783 default:
3784 return H8SX_SHIFT_NONE;
3785 }
3786 }
3787
3788 /* Return the asm template for a single h8sx shift instruction.
3789 OPERANDS[0] and OPERANDS[1] are the destination, OPERANDS[2]
3790 is the source and OPERANDS[3] is the shift. SUFFIX is the
3791 size suffix ('b', 'w' or 'l') and OPTYPE is the h8300_print_operand
3792 prefix for the destination operand. */
3793
3794 const char *
3795 output_h8sx_shift (rtx *operands, int suffix, int optype)
3796 {
3797 static char buffer[16];
3798 const char *stem;
3799
3800 switch (GET_CODE (operands[3]))
3801 {
3802 case ASHIFT:
3803 stem = "shll";
3804 break;
3805
3806 case ASHIFTRT:
3807 stem = "shar";
3808 break;
3809
3810 case LSHIFTRT:
3811 stem = "shlr";
3812 break;
3813
3814 case ROTATE:
3815 stem = "rotl";
3816 if (INTVAL (operands[2]) > 2)
3817 {
3818 /* This is really a right rotate. */
3819 operands[2] = GEN_INT (GET_MODE_BITSIZE (GET_MODE (operands[0]))
3820 - INTVAL (operands[2]));
3821 stem = "rotr";
3822 }
3823 break;
3824
3825 default:
3826 gcc_unreachable ();
3827 }
3828 if (operands[2] == const1_rtx)
3829 sprintf (buffer, "%s.%c\t%%%c0", stem, suffix, optype);
3830 else
3831 sprintf (buffer, "%s.%c\t%%X2,%%%c0", stem, suffix, optype);
3832 return buffer;
3833 }
3834
3835 /* Emit code to do shifts. */
3836
3837 bool
3838 expand_a_shift (machine_mode mode, enum rtx_code code, rtx operands[])
3839 {
3840 switch (h8sx_classify_shift (mode, code, operands[2]))
3841 {
3842 case H8SX_SHIFT_BINARY:
3843 operands[1] = force_reg (mode, operands[1]);
3844 return false;
3845
3846 case H8SX_SHIFT_UNARY:
3847 return false;
3848
3849 case H8SX_SHIFT_NONE:
3850 break;
3851 }
3852
3853 emit_move_insn (copy_rtx (operands[0]), operands[1]);
3854
3855 /* Need a loop to get all the bits we want - we generate the
3856 code at emit time, but need to allocate a scratch reg now. */
3857
3858 emit_insn (gen_rtx_PARALLEL
3859 (VOIDmode,
3860 gen_rtvec (2,
3861 gen_rtx_SET (copy_rtx (operands[0]),
3862 gen_rtx_fmt_ee (code, mode,
3863 copy_rtx (operands[0]), operands[2])),
3864 gen_rtx_CLOBBER (VOIDmode,
3865 gen_rtx_SCRATCH (QImode)))));
3866 return true;
3867 }
3868
3869 /* Symbols of the various modes which can be used as indices. */
3870
3871 enum shift_mode
3872 {
3873 QIshift, HIshift, SIshift
3874 };
3875
3876 /* For single bit shift insns, record assembler and what bits of the
3877 condition code are valid afterwards (represented as various CC_FOO
3878 bits, 0 means CC isn't left in a usable state). */
3879
3880 struct shift_insn
3881 {
3882 const char *const assembler;
3883 const enum attr_cc cc_valid;
3884 };
3885
3886 /* Assembler instruction shift table.
3887
3888 These tables are used to look up the basic shifts.
3889 They are indexed by cpu, shift_type, and mode. */
3890
3891 static const struct shift_insn shift_one[2][3][3] =
3892 {
3893 /* H8/300 */
3894 {
3895 /* SHIFT_ASHIFT */
3896 {
3897 { "shll\t%X0", CC_SET_ZNV },
3898 { "add.w\t%T0,%T0", CC_SET_ZN },
3899 { "add.w\t%f0,%f0\n\taddx\t%y0,%y0\n\taddx\t%z0,%z0", CC_CLOBBER }
3900 },
3901 /* SHIFT_LSHIFTRT */
3902 {
3903 { "shlr\t%X0", CC_SET_ZNV },
3904 { "shlr\t%t0\n\trotxr\t%s0", CC_CLOBBER },
3905 { "shlr\t%z0\n\trotxr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0", CC_CLOBBER }
3906 },
3907 /* SHIFT_ASHIFTRT */
3908 {
3909 { "shar\t%X0", CC_SET_ZNV },
3910 { "shar\t%t0\n\trotxr\t%s0", CC_CLOBBER },
3911 { "shar\t%z0\n\trotxr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0", CC_CLOBBER }
3912 }
3913 },
3914 /* H8/300H */
3915 {
3916 /* SHIFT_ASHIFT */
3917 {
3918 { "shll.b\t%X0", CC_SET_ZNV },
3919 { "shll.w\t%T0", CC_SET_ZNV },
3920 { "shll.l\t%S0", CC_SET_ZNV }
3921 },
3922 /* SHIFT_LSHIFTRT */
3923 {
3924 { "shlr.b\t%X0", CC_SET_ZNV },
3925 { "shlr.w\t%T0", CC_SET_ZNV },
3926 { "shlr.l\t%S0", CC_SET_ZNV }
3927 },
3928 /* SHIFT_ASHIFTRT */
3929 {
3930 { "shar.b\t%X0", CC_SET_ZNV },
3931 { "shar.w\t%T0", CC_SET_ZNV },
3932 { "shar.l\t%S0", CC_SET_ZNV }
3933 }
3934 }
3935 };
3936
3937 static const struct shift_insn shift_two[3][3] =
3938 {
3939 /* SHIFT_ASHIFT */
3940 {
3941 { "shll.b\t#2,%X0", CC_SET_ZNV },
3942 { "shll.w\t#2,%T0", CC_SET_ZNV },
3943 { "shll.l\t#2,%S0", CC_SET_ZNV }
3944 },
3945 /* SHIFT_LSHIFTRT */
3946 {
3947 { "shlr.b\t#2,%X0", CC_SET_ZNV },
3948 { "shlr.w\t#2,%T0", CC_SET_ZNV },
3949 { "shlr.l\t#2,%S0", CC_SET_ZNV }
3950 },
3951 /* SHIFT_ASHIFTRT */
3952 {
3953 { "shar.b\t#2,%X0", CC_SET_ZNV },
3954 { "shar.w\t#2,%T0", CC_SET_ZNV },
3955 { "shar.l\t#2,%S0", CC_SET_ZNV }
3956 }
3957 };
3958
3959 /* Rotates are organized by which shift they'll be used in implementing.
3960 There's no need to record whether the cc is valid afterwards because
3961 it is the AND insn that will decide this. */
3962
3963 static const char *const rotate_one[2][3][3] =
3964 {
3965 /* H8/300 */
3966 {
3967 /* SHIFT_ASHIFT */
3968 {
3969 "rotr\t%X0",
3970 "shlr\t%t0\n\trotxr\t%s0\n\tbst\t#7,%t0",
3971 0
3972 },
3973 /* SHIFT_LSHIFTRT */
3974 {
3975 "rotl\t%X0",
3976 "shll\t%s0\n\trotxl\t%t0\n\tbst\t#0,%s0",
3977 0
3978 },
3979 /* SHIFT_ASHIFTRT */
3980 {
3981 "rotl\t%X0",
3982 "shll\t%s0\n\trotxl\t%t0\n\tbst\t#0,%s0",
3983 0
3984 }
3985 },
3986 /* H8/300H */
3987 {
3988 /* SHIFT_ASHIFT */
3989 {
3990 "rotr.b\t%X0",
3991 "rotr.w\t%T0",
3992 "rotr.l\t%S0"
3993 },
3994 /* SHIFT_LSHIFTRT */
3995 {
3996 "rotl.b\t%X0",
3997 "rotl.w\t%T0",
3998 "rotl.l\t%S0"
3999 },
4000 /* SHIFT_ASHIFTRT */
4001 {
4002 "rotl.b\t%X0",
4003 "rotl.w\t%T0",
4004 "rotl.l\t%S0"
4005 }
4006 }
4007 };
4008
4009 static const char *const rotate_two[3][3] =
4010 {
4011 /* SHIFT_ASHIFT */
4012 {
4013 "rotr.b\t#2,%X0",
4014 "rotr.w\t#2,%T0",
4015 "rotr.l\t#2,%S0"
4016 },
4017 /* SHIFT_LSHIFTRT */
4018 {
4019 "rotl.b\t#2,%X0",
4020 "rotl.w\t#2,%T0",
4021 "rotl.l\t#2,%S0"
4022 },
4023 /* SHIFT_ASHIFTRT */
4024 {
4025 "rotl.b\t#2,%X0",
4026 "rotl.w\t#2,%T0",
4027 "rotl.l\t#2,%S0"
4028 }
4029 };
4030
4031 struct shift_info {
4032 /* Shift algorithm. */
4033 enum shift_alg alg;
4034
4035 /* The number of bits to be shifted by shift1 and shift2. Valid
4036 when ALG is SHIFT_SPECIAL. */
4037 unsigned int remainder;
4038
4039 /* Special insn for a shift. Valid when ALG is SHIFT_SPECIAL. */
4040 const char *special;
4041
4042 /* Insn for a one-bit shift. Valid when ALG is either SHIFT_INLINE
4043 or SHIFT_SPECIAL, and REMAINDER is nonzero. */
4044 const char *shift1;
4045
4046 /* Insn for a two-bit shift. Valid when ALG is either SHIFT_INLINE
4047 or SHIFT_SPECIAL, and REMAINDER is nonzero. */
4048 const char *shift2;
4049
4050 /* CC status for SHIFT_INLINE. */
4051 enum attr_cc cc_inline;
4052
4053 /* CC status for SHIFT_SPECIAL. */
4054 enum attr_cc cc_special;
4055 };
4056
4057 static void get_shift_alg (enum shift_type,
4058 enum shift_mode, unsigned int,
4059 struct shift_info *);
4060
4061 /* Given SHIFT_TYPE, SHIFT_MODE, and shift count COUNT, determine the
4062 best algorithm for doing the shift. The assembler code is stored
4063 in the pointers in INFO. We achieve the maximum efficiency in most
4064 cases when !TARGET_H8300. In case of TARGET_H8300, shifts in
4065 SImode in particular have a lot of room to optimize.
4066
4067 We first determine the strategy of the shift algorithm by a table
4068 lookup. If that tells us to use a hand crafted assembly code, we
4069 go into the big switch statement to find what that is. Otherwise,
4070 we resort to a generic way, such as inlining. In either case, the
4071 result is returned through INFO. */
4072
4073 static void
4074 get_shift_alg (enum shift_type shift_type, enum shift_mode shift_mode,
4075 unsigned int count, struct shift_info *info)
4076 {
4077 enum h8_cpu cpu;
4078
4079 /* Find the target CPU. */
4080 if (TARGET_H8300)
4081 cpu = H8_300;
4082 else if (TARGET_H8300S)
4083 cpu = H8_S;
4084 else
4085 cpu = H8_300H;
4086
4087 /* Find the shift algorithm. */
4088 info->alg = SHIFT_LOOP;
4089 switch (shift_mode)
4090 {
4091 case QIshift:
4092 if (count < GET_MODE_BITSIZE (QImode))
4093 info->alg = shift_alg_qi[cpu][shift_type][count];
4094 break;
4095
4096 case HIshift:
4097 if (count < GET_MODE_BITSIZE (HImode))
4098 info->alg = shift_alg_hi[cpu][shift_type][count];
4099 break;
4100
4101 case SIshift:
4102 if (count < GET_MODE_BITSIZE (SImode))
4103 info->alg = shift_alg_si[cpu][shift_type][count];
4104 break;
4105
4106 default:
4107 gcc_unreachable ();
4108 }
4109
4110 /* Fill in INFO. Return unless we have SHIFT_SPECIAL. */
4111 switch (info->alg)
4112 {
4113 case SHIFT_INLINE:
4114 info->remainder = count;
4115 /* Fall through. */
4116
4117 case SHIFT_LOOP:
4118 /* It is up to the caller to know that looping clobbers cc. */
4119 info->shift1 = shift_one[cpu_type][shift_type][shift_mode].assembler;
4120 info->shift2 = shift_two[shift_type][shift_mode].assembler;
4121 info->cc_inline = shift_one[cpu_type][shift_type][shift_mode].cc_valid;
4122 goto end;
4123
4124 case SHIFT_ROT_AND:
4125 info->shift1 = rotate_one[cpu_type][shift_type][shift_mode];
4126 info->shift2 = rotate_two[shift_type][shift_mode];
4127 info->cc_inline = CC_CLOBBER;
4128 goto end;
4129
4130 case SHIFT_SPECIAL:
4131 /* REMAINDER is 0 for most cases, so initialize it to 0. */
4132 info->remainder = 0;
4133 info->shift1 = shift_one[cpu_type][shift_type][shift_mode].assembler;
4134 info->shift2 = shift_two[shift_type][shift_mode].assembler;
4135 info->cc_inline = shift_one[cpu_type][shift_type][shift_mode].cc_valid;
4136 info->cc_special = CC_CLOBBER;
4137 break;
4138 }
4139
4140 /* Here we only deal with SHIFT_SPECIAL. */
4141 switch (shift_mode)
4142 {
4143 case QIshift:
4144 /* For ASHIFTRT by 7 bits, the sign bit is simply replicated
4145 through the entire value. */
4146 gcc_assert (shift_type == SHIFT_ASHIFTRT && count == 7);
4147 info->special = "shll\t%X0\n\tsubx\t%X0,%X0";
4148 goto end;
4149
4150 case HIshift:
4151 if (count == 7)
4152 {
4153 switch (shift_type)
4154 {
4155 case SHIFT_ASHIFT:
4156 if (TARGET_H8300)
4157 info->special = "shar.b\t%t0\n\tmov.b\t%s0,%t0\n\trotxr.b\t%t0\n\trotr.b\t%s0\n\tand.b\t#0x80,%s0";
4158 else
4159 info->special = "shar.b\t%t0\n\tmov.b\t%s0,%t0\n\trotxr.w\t%T0\n\tand.b\t#0x80,%s0";
4160 goto end;
4161 case SHIFT_LSHIFTRT:
4162 if (TARGET_H8300)
4163 info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.b\t%s0\n\trotl.b\t%t0\n\tand.b\t#0x01,%t0";
4164 else
4165 info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.w\t%T0\n\tand.b\t#0x01,%t0";
4166 goto end;
4167 case SHIFT_ASHIFTRT:
4168 info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.b\t%s0\n\tsubx\t%t0,%t0";
4169 goto end;
4170 }
4171 }
4172 else if ((8 <= count && count <= 13)
4173 || (TARGET_H8300S && count == 14))
4174 {
4175 info->remainder = count - 8;
4176
4177 switch (shift_type)
4178 {
4179 case SHIFT_ASHIFT:
4180 info->special = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0";
4181 goto end;
4182 case SHIFT_LSHIFTRT:
4183 if (TARGET_H8300)
4184 {
4185 info->special = "mov.b\t%t0,%s0\n\tsub.b\t%t0,%t0";
4186 info->shift1 = "shlr.b\t%s0";
4187 info->cc_inline = CC_SET_ZNV;
4188 }
4189 else
4190 {
4191 info->special = "mov.b\t%t0,%s0\n\textu.w\t%T0";
4192 info->cc_special = CC_SET_ZNV;
4193 }
4194 goto end;
4195 case SHIFT_ASHIFTRT:
4196 if (TARGET_H8300)
4197 {
4198 info->special = "mov.b\t%t0,%s0\n\tbld\t#7,%s0\n\tsubx\t%t0,%t0";
4199 info->shift1 = "shar.b\t%s0";
4200 }
4201 else
4202 {
4203 info->special = "mov.b\t%t0,%s0\n\texts.w\t%T0";
4204 info->cc_special = CC_SET_ZNV;
4205 }
4206 goto end;
4207 }
4208 }
4209 else if (count == 14)
4210 {
4211 switch (shift_type)
4212 {
4213 case SHIFT_ASHIFT:
4214 if (TARGET_H8300)
4215 info->special = "mov.b\t%s0,%t0\n\trotr.b\t%t0\n\trotr.b\t%t0\n\tand.b\t#0xC0,%t0\n\tsub.b\t%s0,%s0";
4216 goto end;
4217 case SHIFT_LSHIFTRT:
4218 if (TARGET_H8300)
4219 info->special = "mov.b\t%t0,%s0\n\trotl.b\t%s0\n\trotl.b\t%s0\n\tand.b\t#3,%s0\n\tsub.b\t%t0,%t0";
4220 goto end;
4221 case SHIFT_ASHIFTRT:
4222 if (TARGET_H8300)
4223 info->special = "mov.b\t%t0,%s0\n\tshll.b\t%s0\n\tsubx.b\t%t0,%t0\n\tshll.b\t%s0\n\tmov.b\t%t0,%s0\n\tbst.b\t#0,%s0";
4224 else if (TARGET_H8300H)
4225 {
4226 info->special = "shll.b\t%t0\n\tsubx.b\t%s0,%s0\n\tshll.b\t%t0\n\trotxl.b\t%s0\n\texts.w\t%T0";
4227 info->cc_special = CC_SET_ZNV;
4228 }
4229 else /* TARGET_H8300S */
4230 gcc_unreachable ();
4231 goto end;
4232 }
4233 }
4234 else if (count == 15)
4235 {
4236 switch (shift_type)
4237 {
4238 case SHIFT_ASHIFT:
4239 info->special = "bld\t#0,%s0\n\txor\t%s0,%s0\n\txor\t%t0,%t0\n\tbst\t#7,%t0";
4240 goto end;
4241 case SHIFT_LSHIFTRT:
4242 info->special = "bld\t#7,%t0\n\txor\t%s0,%s0\n\txor\t%t0,%t0\n\tbst\t#0,%s0";
4243 goto end;
4244 case SHIFT_ASHIFTRT:
4245 info->special = "shll\t%t0\n\tsubx\t%t0,%t0\n\tmov.b\t%t0,%s0";
4246 goto end;
4247 }
4248 }
4249 gcc_unreachable ();
4250
4251 case SIshift:
4252 if (TARGET_H8300 && 8 <= count && count <= 9)
4253 {
4254 info->remainder = count - 8;
4255
4256 switch (shift_type)
4257 {
4258 case SHIFT_ASHIFT:
4259 info->special = "mov.b\t%y0,%z0\n\tmov.b\t%x0,%y0\n\tmov.b\t%w0,%x0\n\tsub.b\t%w0,%w0";
4260 goto end;
4261 case SHIFT_LSHIFTRT:
4262 info->special = "mov.b\t%x0,%w0\n\tmov.b\t%y0,%x0\n\tmov.b\t%z0,%y0\n\tsub.b\t%z0,%z0";
4263 info->shift1 = "shlr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0";
4264 goto end;
4265 case SHIFT_ASHIFTRT:
4266 info->special = "mov.b\t%x0,%w0\n\tmov.b\t%y0,%x0\n\tmov.b\t%z0,%y0\n\tshll\t%z0\n\tsubx\t%z0,%z0";
4267 goto end;
4268 }
4269 }
4270 else if (count == 8 && !TARGET_H8300)
4271 {
4272 switch (shift_type)
4273 {
4274 case SHIFT_ASHIFT:
4275 info->special = "mov.w\t%e0,%f4\n\tmov.b\t%s4,%t4\n\tmov.b\t%t0,%s4\n\tmov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tmov.w\t%f4,%e0";
4276 goto end;
4277 case SHIFT_LSHIFTRT:
4278 info->special = "mov.w\t%e0,%f4\n\tmov.b\t%t0,%s0\n\tmov.b\t%s4,%t0\n\tmov.b\t%t4,%s4\n\textu.w\t%f4\n\tmov.w\t%f4,%e0";
4279 goto end;
4280 case SHIFT_ASHIFTRT:
4281 info->special = "mov.w\t%e0,%f4\n\tmov.b\t%t0,%s0\n\tmov.b\t%s4,%t0\n\tmov.b\t%t4,%s4\n\texts.w\t%f4\n\tmov.w\t%f4,%e0";
4282 goto end;
4283 }
4284 }
4285 else if (count == 15 && TARGET_H8300)
4286 {
4287 switch (shift_type)
4288 {
4289 case SHIFT_ASHIFT:
4290 gcc_unreachable ();
4291 case SHIFT_LSHIFTRT:
4292 info->special = "bld\t#7,%z0\n\tmov.w\t%e0,%f0\n\txor\t%y0,%y0\n\txor\t%z0,%z0\n\trotxl\t%w0\n\trotxl\t%x0\n\trotxl\t%y0";
4293 goto end;
4294 case SHIFT_ASHIFTRT:
4295 info->special = "bld\t#7,%z0\n\tmov.w\t%e0,%f0\n\trotxl\t%w0\n\trotxl\t%x0\n\tsubx\t%y0,%y0\n\tsubx\t%z0,%z0";
4296 goto end;
4297 }
4298 }
4299 else if (count == 15 && !TARGET_H8300)
4300 {
4301 switch (shift_type)
4302 {
4303 case SHIFT_ASHIFT:
4304 info->special = "shlr.w\t%e0\n\tmov.w\t%f0,%e0\n\txor.w\t%f0,%f0\n\trotxr.l\t%S0";
4305 info->cc_special = CC_SET_ZNV;
4306 goto end;
4307 case SHIFT_LSHIFTRT:
4308 info->special = "shll.w\t%f0\n\tmov.w\t%e0,%f0\n\txor.w\t%e0,%e0\n\trotxl.l\t%S0";
4309 info->cc_special = CC_SET_ZNV;
4310 goto end;
4311 case SHIFT_ASHIFTRT:
4312 gcc_unreachable ();
4313 }
4314 }
4315 else if ((TARGET_H8300 && 16 <= count && count <= 20)
4316 || (TARGET_H8300H && 16 <= count && count <= 19)
4317 || (TARGET_H8300S && 16 <= count && count <= 21))
4318 {
4319 info->remainder = count - 16;
4320
4321 switch (shift_type)
4322 {
4323 case SHIFT_ASHIFT:
4324 info->special = "mov.w\t%f0,%e0\n\tsub.w\t%f0,%f0";
4325 if (TARGET_H8300)
4326 info->shift1 = "add.w\t%e0,%e0";
4327 goto end;
4328 case SHIFT_LSHIFTRT:
4329 if (TARGET_H8300)
4330 {
4331 info->special = "mov.w\t%e0,%f0\n\tsub.w\t%e0,%e0";
4332 info->shift1 = "shlr\t%x0\n\trotxr\t%w0";
4333 }
4334 else
4335 {
4336 info->special = "mov.w\t%e0,%f0\n\textu.l\t%S0";
4337 info->cc_special = CC_SET_ZNV;
4338 }
4339 goto end;
4340 case SHIFT_ASHIFTRT:
4341 if (TARGET_H8300)
4342 {
4343 info->special = "mov.w\t%e0,%f0\n\tshll\t%z0\n\tsubx\t%z0,%z0\n\tmov.b\t%z0,%y0";
4344 info->shift1 = "shar\t%x0\n\trotxr\t%w0";
4345 }
4346 else
4347 {
4348 info->special = "mov.w\t%e0,%f0\n\texts.l\t%S0";
4349 info->cc_special = CC_SET_ZNV;
4350 }
4351 goto end;
4352 }
4353 }
4354 else if (TARGET_H8300 && 24 <= count && count <= 28)
4355 {
4356 info->remainder = count - 24;
4357
4358 switch (shift_type)
4359 {
4360 case SHIFT_ASHIFT:
4361 info->special = "mov.b\t%w0,%z0\n\tsub.b\t%y0,%y0\n\tsub.w\t%f0,%f0";
4362 info->shift1 = "shll.b\t%z0";
4363 info->cc_inline = CC_SET_ZNV;
4364 goto end;
4365 case SHIFT_LSHIFTRT:
4366 info->special = "mov.b\t%z0,%w0\n\tsub.b\t%x0,%x0\n\tsub.w\t%e0,%e0";
4367 info->shift1 = "shlr.b\t%w0";
4368 info->cc_inline = CC_SET_ZNV;
4369 goto end;
4370 case SHIFT_ASHIFTRT:
4371 info->special = "mov.b\t%z0,%w0\n\tbld\t#7,%w0\n\tsubx\t%x0,%x0\n\tsubx\t%y0,%y0\n\tsubx\t%z0,%z0";
4372 info->shift1 = "shar.b\t%w0";
4373 info->cc_inline = CC_SET_ZNV;
4374 goto end;
4375 }
4376 }
4377 else if ((TARGET_H8300H && count == 24)
4378 || (TARGET_H8300S && 24 <= count && count <= 25))
4379 {
4380 info->remainder = count - 24;
4381
4382 switch (shift_type)
4383 {
4384 case SHIFT_ASHIFT:
4385 info->special = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tmov.w\t%f0,%e0\n\tsub.w\t%f0,%f0";
4386 goto end;
4387 case SHIFT_LSHIFTRT:
4388 info->special = "mov.w\t%e0,%f0\n\tmov.b\t%t0,%s0\n\textu.w\t%f0\n\textu.l\t%S0";
4389 info->cc_special = CC_SET_ZNV;
4390 goto end;
4391 case SHIFT_ASHIFTRT:
4392 info->special = "mov.w\t%e0,%f0\n\tmov.b\t%t0,%s0\n\texts.w\t%f0\n\texts.l\t%S0";
4393 info->cc_special = CC_SET_ZNV;
4394 goto end;
4395 }
4396 }
4397 else if (!TARGET_H8300 && count == 28)
4398 {
4399 switch (shift_type)
4400 {
4401 case SHIFT_ASHIFT:
4402 if (TARGET_H8300H)
4403 info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
4404 else
4405 info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\trotr.l\t#2,%S0\n\tsub.w\t%f0,%f0";
4406 goto end;
4407 case SHIFT_LSHIFTRT:
4408 if (TARGET_H8300H)
4409 {
4410 info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
4411 info->cc_special = CC_SET_ZNV;
4412 }
4413 else
4414 info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\trotl.l\t#2,%S0\n\textu.l\t%S0";
4415 goto end;
4416 case SHIFT_ASHIFTRT:
4417 gcc_unreachable ();
4418 }
4419 }
4420 else if (!TARGET_H8300 && count == 29)
4421 {
4422 switch (shift_type)
4423 {
4424 case SHIFT_ASHIFT:
4425 if (TARGET_H8300H)
4426 info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
4427 else
4428 info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
4429 goto end;
4430 case SHIFT_LSHIFTRT:
4431 if (TARGET_H8300H)
4432 {
4433 info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
4434 info->cc_special = CC_SET_ZNV;
4435 }
4436 else
4437 {
4438 info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
4439 info->cc_special = CC_SET_ZNV;
4440 }
4441 goto end;
4442 case SHIFT_ASHIFTRT:
4443 gcc_unreachable ();
4444 }
4445 }
4446 else if (!TARGET_H8300 && count == 30)
4447 {
4448 switch (shift_type)
4449 {
4450 case SHIFT_ASHIFT:
4451 if (TARGET_H8300H)
4452 info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
4453 else
4454 info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\tsub.w\t%f0,%f0";
4455 goto end;
4456 case SHIFT_LSHIFTRT:
4457 if (TARGET_H8300H)
4458 info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
4459 else
4460 info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\textu.l\t%S0";
4461 goto end;
4462 case SHIFT_ASHIFTRT:
4463 gcc_unreachable ();
4464 }
4465 }
4466 else if (count == 31)
4467 {
4468 if (TARGET_H8300)
4469 {
4470 switch (shift_type)
4471 {
4472 case SHIFT_ASHIFT:
4473 info->special = "sub.w\t%e0,%e0\n\tshlr\t%w0\n\tmov.w\t%e0,%f0\n\trotxr\t%z0";
4474 goto end;
4475 case SHIFT_LSHIFTRT:
4476 info->special = "sub.w\t%f0,%f0\n\tshll\t%z0\n\tmov.w\t%f0,%e0\n\trotxl\t%w0";
4477 goto end;
4478 case SHIFT_ASHIFTRT:
4479 info->special = "shll\t%z0\n\tsubx\t%w0,%w0\n\tmov.b\t%w0,%x0\n\tmov.w\t%f0,%e0";
4480 goto end;
4481 }
4482 }
4483 else
4484 {
4485 switch (shift_type)
4486 {
4487 case SHIFT_ASHIFT:
4488 info->special = "shlr.l\t%S0\n\txor.l\t%S0,%S0\n\trotxr.l\t%S0";
4489 info->cc_special = CC_SET_ZNV;
4490 goto end;
4491 case SHIFT_LSHIFTRT:
4492 info->special = "shll.l\t%S0\n\txor.l\t%S0,%S0\n\trotxl.l\t%S0";
4493 info->cc_special = CC_SET_ZNV;
4494 goto end;
4495 case SHIFT_ASHIFTRT:
4496 info->special = "shll\t%e0\n\tsubx\t%w0,%w0\n\texts.w\t%T0\n\texts.l\t%S0";
4497 info->cc_special = CC_SET_ZNV;
4498 goto end;
4499 }
4500 }
4501 }
4502 gcc_unreachable ();
4503
4504 default:
4505 gcc_unreachable ();
4506 }
4507
4508 end:
4509 if (!TARGET_H8300S)
4510 info->shift2 = NULL;
4511 }
4512
4513 /* Given COUNT and MODE of a shift, return 1 if a scratch reg may be
4514 needed for some shift with COUNT and MODE. Return 0 otherwise. */
4515
4516 int
4517 h8300_shift_needs_scratch_p (int count, machine_mode mode)
4518 {
4519 enum h8_cpu cpu;
4520 int a, lr, ar;
4521
4522 if (GET_MODE_BITSIZE (mode) <= count)
4523 return 1;
4524
4525 /* Find out the target CPU. */
4526 if (TARGET_H8300)
4527 cpu = H8_300;
4528 else if (TARGET_H8300S)
4529 cpu = H8_S;
4530 else
4531 cpu = H8_300H;
4532
4533 /* Find the shift algorithm. */
4534 switch (mode)
4535 {
4536 case QImode:
4537 a = shift_alg_qi[cpu][SHIFT_ASHIFT][count];
4538 lr = shift_alg_qi[cpu][SHIFT_LSHIFTRT][count];
4539 ar = shift_alg_qi[cpu][SHIFT_ASHIFTRT][count];
4540 break;
4541
4542 case HImode:
4543 a = shift_alg_hi[cpu][SHIFT_ASHIFT][count];
4544 lr = shift_alg_hi[cpu][SHIFT_LSHIFTRT][count];
4545 ar = shift_alg_hi[cpu][SHIFT_ASHIFTRT][count];
4546 break;
4547
4548 case SImode:
4549 a = shift_alg_si[cpu][SHIFT_ASHIFT][count];
4550 lr = shift_alg_si[cpu][SHIFT_LSHIFTRT][count];
4551 ar = shift_alg_si[cpu][SHIFT_ASHIFTRT][count];
4552 break;
4553
4554 default:
4555 gcc_unreachable ();
4556 }
4557
4558 /* On H8/300H, count == 8 uses a scratch register. */
4559 return (a == SHIFT_LOOP || lr == SHIFT_LOOP || ar == SHIFT_LOOP
4560 || (TARGET_H8300H && mode == SImode && count == 8));
4561 }
4562
4563 /* Output the assembler code for doing shifts. */
4564
4565 const char *
4566 output_a_shift (rtx *operands)
4567 {
4568 static int loopend_lab;
4569 rtx shift = operands[3];
4570 machine_mode mode = GET_MODE (shift);
4571 enum rtx_code code = GET_CODE (shift);
4572 enum shift_type shift_type;
4573 enum shift_mode shift_mode;
4574 struct shift_info info;
4575 int n;
4576
4577 loopend_lab++;
4578
4579 switch (mode)
4580 {
4581 case QImode:
4582 shift_mode = QIshift;
4583 break;
4584 case HImode:
4585 shift_mode = HIshift;
4586 break;
4587 case SImode:
4588 shift_mode = SIshift;
4589 break;
4590 default:
4591 gcc_unreachable ();
4592 }
4593
4594 switch (code)
4595 {
4596 case ASHIFTRT:
4597 shift_type = SHIFT_ASHIFTRT;
4598 break;
4599 case LSHIFTRT:
4600 shift_type = SHIFT_LSHIFTRT;
4601 break;
4602 case ASHIFT:
4603 shift_type = SHIFT_ASHIFT;
4604 break;
4605 default:
4606 gcc_unreachable ();
4607 }
4608
4609 /* This case must be taken care of by one of the two splitters
4610 that convert a variable shift into a loop. */
4611 gcc_assert (GET_CODE (operands[2]) == CONST_INT);
4612
4613 n = INTVAL (operands[2]);
4614
4615 /* If the count is negative, make it 0. */
4616 if (n < 0)
4617 n = 0;
4618 /* If the count is too big, truncate it.
4619 ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
4620 do the intuitive thing. */
4621 else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
4622 n = GET_MODE_BITSIZE (mode);
4623
4624 get_shift_alg (shift_type, shift_mode, n, &info);
4625
4626 switch (info.alg)
4627 {
4628 case SHIFT_SPECIAL:
4629 output_asm_insn (info.special, operands);
4630 /* Fall through. */
4631
4632 case SHIFT_INLINE:
4633 n = info.remainder;
4634
4635 /* Emit two bit shifts first. */
4636 if (info.shift2 != NULL)
4637 {
4638 for (; n > 1; n -= 2)
4639 output_asm_insn (info.shift2, operands);
4640 }
4641
4642 /* Now emit one bit shifts for any residual. */
4643 for (; n > 0; n--)
4644 output_asm_insn (info.shift1, operands);
4645 return "";
4646
4647 case SHIFT_ROT_AND:
4648 {
4649 int m = GET_MODE_BITSIZE (mode) - n;
4650 const int mask = (shift_type == SHIFT_ASHIFT
4651 ? ((1 << m) - 1) << n
4652 : (1 << m) - 1);
4653 char insn_buf[200];
4654
4655 /* Not all possibilities of rotate are supported. They shouldn't
4656 be generated, but let's watch for 'em. */
4657 gcc_assert (info.shift1);
4658
4659 /* Emit two bit rotates first. */
4660 if (info.shift2 != NULL)
4661 {
4662 for (; m > 1; m -= 2)
4663 output_asm_insn (info.shift2, operands);
4664 }
4665
4666 /* Now single bit rotates for any residual. */
4667 for (; m > 0; m--)
4668 output_asm_insn (info.shift1, operands);
4669
4670 /* Now mask off the high bits. */
4671 switch (mode)
4672 {
4673 case QImode:
4674 sprintf (insn_buf, "and\t#%d,%%X0", mask);
4675 break;
4676
4677 case HImode:
4678 gcc_assert (TARGET_H8300H || TARGET_H8300S);
4679 sprintf (insn_buf, "and.w\t#%d,%%T0", mask);
4680 break;
4681
4682 default:
4683 gcc_unreachable ();
4684 }
4685
4686 output_asm_insn (insn_buf, operands);
4687 return "";
4688 }
4689
4690 case SHIFT_LOOP:
4691 /* A loop to shift by a "large" constant value.
4692 If we have shift-by-2 insns, use them. */
4693 if (info.shift2 != NULL)
4694 {
4695 fprintf (asm_out_file, "\tmov.b #%d,%sl\n", n / 2,
4696 names_big[REGNO (operands[4])]);
4697 fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
4698 output_asm_insn (info.shift2, operands);
4699 output_asm_insn ("add #0xff,%X4", operands);
4700 fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
4701 if (n % 2)
4702 output_asm_insn (info.shift1, operands);
4703 }
4704 else
4705 {
4706 fprintf (asm_out_file, "\tmov.b #%d,%sl\n", n,
4707 names_big[REGNO (operands[4])]);
4708 fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
4709 output_asm_insn (info.shift1, operands);
4710 output_asm_insn ("add #0xff,%X4", operands);
4711 fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
4712 }
4713 return "";
4714
4715 default:
4716 gcc_unreachable ();
4717 }
4718 }
4719
4720 /* Count the number of assembly instructions in a string TEMPL. */
4721
4722 static unsigned int
4723 h8300_asm_insn_count (const char *templ)
4724 {
4725 unsigned int count = 1;
4726
4727 for (; *templ; templ++)
4728 if (*templ == '\n')
4729 count++;
4730
4731 return count;
4732 }
4733
4734 /* Compute the length of a shift insn. */
4735
4736 unsigned int
4737 compute_a_shift_length (rtx insn ATTRIBUTE_UNUSED, rtx *operands)
4738 {
4739 rtx shift = operands[3];
4740 machine_mode mode = GET_MODE (shift);
4741 enum rtx_code code = GET_CODE (shift);
4742 enum shift_type shift_type;
4743 enum shift_mode shift_mode;
4744 struct shift_info info;
4745 unsigned int wlength = 0;
4746
4747 switch (mode)
4748 {
4749 case QImode:
4750 shift_mode = QIshift;
4751 break;
4752 case HImode:
4753 shift_mode = HIshift;
4754 break;
4755 case SImode:
4756 shift_mode = SIshift;
4757 break;
4758 default:
4759 gcc_unreachable ();
4760 }
4761
4762 switch (code)
4763 {
4764 case ASHIFTRT:
4765 shift_type = SHIFT_ASHIFTRT;
4766 break;
4767 case LSHIFTRT:
4768 shift_type = SHIFT_LSHIFTRT;
4769 break;
4770 case ASHIFT:
4771 shift_type = SHIFT_ASHIFT;
4772 break;
4773 default:
4774 gcc_unreachable ();
4775 }
4776
4777 if (GET_CODE (operands[2]) != CONST_INT)
4778 {
4779 /* Get the assembler code to do one shift. */
4780 get_shift_alg (shift_type, shift_mode, 1, &info);
4781
4782 return (4 + h8300_asm_insn_count (info.shift1)) * 2;
4783 }
4784 else
4785 {
4786 int n = INTVAL (operands[2]);
4787
4788 /* If the count is negative, make it 0. */
4789 if (n < 0)
4790 n = 0;
4791 /* If the count is too big, truncate it.
4792 ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
4793 do the intuitive thing. */
4794 else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
4795 n = GET_MODE_BITSIZE (mode);
4796
4797 get_shift_alg (shift_type, shift_mode, n, &info);
4798
4799 switch (info.alg)
4800 {
4801 case SHIFT_SPECIAL:
4802 wlength += h8300_asm_insn_count (info.special);
4803
4804 /* Every assembly instruction used in SHIFT_SPECIAL case
4805 takes 2 bytes except xor.l, which takes 4 bytes, so if we
4806 see xor.l, we just pretend that xor.l counts as two insns
4807 so that the insn length will be computed correctly. */
4808 if (strstr (info.special, "xor.l") != NULL)
4809 wlength++;
4810
4811 /* Fall through. */
4812
4813 case SHIFT_INLINE:
4814 n = info.remainder;
4815
4816 if (info.shift2 != NULL)
4817 {
4818 wlength += h8300_asm_insn_count (info.shift2) * (n / 2);
4819 n = n % 2;
4820 }
4821
4822 wlength += h8300_asm_insn_count (info.shift1) * n;
4823
4824 return 2 * wlength;
4825
4826 case SHIFT_ROT_AND:
4827 {
4828 int m = GET_MODE_BITSIZE (mode) - n;
4829
4830 /* Not all possibilities of rotate are supported. They shouldn't
4831 be generated, but let's watch for 'em. */
4832 gcc_assert (info.shift1);
4833
4834 if (info.shift2 != NULL)
4835 {
4836 wlength += h8300_asm_insn_count (info.shift2) * (m / 2);
4837 m = m % 2;
4838 }
4839
4840 wlength += h8300_asm_insn_count (info.shift1) * m;
4841
4842 /* Now mask off the high bits. */
4843 switch (mode)
4844 {
4845 case QImode:
4846 wlength += 1;
4847 break;
4848 case HImode:
4849 wlength += 2;
4850 break;
4851 case SImode:
4852 gcc_assert (!TARGET_H8300);
4853 wlength += 3;
4854 break;
4855 default:
4856 gcc_unreachable ();
4857 }
4858 return 2 * wlength;
4859 }
4860
4861 case SHIFT_LOOP:
4862 /* A loop to shift by a "large" constant value.
4863 If we have shift-by-2 insns, use them. */
4864 if (info.shift2 != NULL)
4865 {
4866 wlength += 3 + h8300_asm_insn_count (info.shift2);
4867 if (n % 2)
4868 wlength += h8300_asm_insn_count (info.shift1);
4869 }
4870 else
4871 {
4872 wlength += 3 + h8300_asm_insn_count (info.shift1);
4873 }
4874 return 2 * wlength;
4875
4876 default:
4877 gcc_unreachable ();
4878 }
4879 }
4880 }
4881
4882 /* Compute which flag bits are valid after a shift insn. */
4883
4884 enum attr_cc
4885 compute_a_shift_cc (rtx insn ATTRIBUTE_UNUSED, rtx *operands)
4886 {
4887 rtx shift = operands[3];
4888 machine_mode mode = GET_MODE (shift);
4889 enum rtx_code code = GET_CODE (shift);
4890 enum shift_type shift_type;
4891 enum shift_mode shift_mode;
4892 struct shift_info info;
4893 int n;
4894
4895 switch (mode)
4896 {
4897 case QImode:
4898 shift_mode = QIshift;
4899 break;
4900 case HImode:
4901 shift_mode = HIshift;
4902 break;
4903 case SImode:
4904 shift_mode = SIshift;
4905 break;
4906 default:
4907 gcc_unreachable ();
4908 }
4909
4910 switch (code)
4911 {
4912 case ASHIFTRT:
4913 shift_type = SHIFT_ASHIFTRT;
4914 break;
4915 case LSHIFTRT:
4916 shift_type = SHIFT_LSHIFTRT;
4917 break;
4918 case ASHIFT:
4919 shift_type = SHIFT_ASHIFT;
4920 break;
4921 default:
4922 gcc_unreachable ();
4923 }
4924
4925 /* This case must be taken care of by one of the two splitters
4926 that convert a variable shift into a loop. */
4927 gcc_assert (GET_CODE (operands[2]) == CONST_INT);
4928
4929 n = INTVAL (operands[2]);
4930
4931 /* If the count is negative, make it 0. */
4932 if (n < 0)
4933 n = 0;
4934 /* If the count is too big, truncate it.
4935 ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
4936 do the intuitive thing. */
4937 else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
4938 n = GET_MODE_BITSIZE (mode);
4939
4940 get_shift_alg (shift_type, shift_mode, n, &info);
4941
4942 switch (info.alg)
4943 {
4944 case SHIFT_SPECIAL:
4945 if (info.remainder == 0)
4946 return info.cc_special;
4947
4948 /* Fall through. */
4949
4950 case SHIFT_INLINE:
4951 return info.cc_inline;
4952
4953 case SHIFT_ROT_AND:
4954 /* This case always ends with an and instruction. */
4955 return CC_SET_ZNV;
4956
4957 case SHIFT_LOOP:
4958 /* A loop to shift by a "large" constant value.
4959 If we have shift-by-2 insns, use them. */
4960 if (info.shift2 != NULL)
4961 {
4962 if (n % 2)
4963 return info.cc_inline;
4964 }
4965 return CC_CLOBBER;
4966
4967 default:
4968 gcc_unreachable ();
4969 }
4970 }
4971 \f
4972 /* A rotation by a non-constant will cause a loop to be generated, in
4973 which a rotation by one bit is used. A rotation by a constant,
4974 including the one in the loop, will be taken care of by
4975 output_a_rotate () at the insn emit time. */
4976
4977 int
4978 expand_a_rotate (rtx operands[])
4979 {
4980 rtx dst = operands[0];
4981 rtx src = operands[1];
4982 rtx rotate_amount = operands[2];
4983 machine_mode mode = GET_MODE (dst);
4984
4985 if (h8sx_classify_shift (mode, ROTATE, rotate_amount) == H8SX_SHIFT_UNARY)
4986 return false;
4987
4988 /* We rotate in place. */
4989 emit_move_insn (dst, src);
4990
4991 if (GET_CODE (rotate_amount) != CONST_INT)
4992 {
4993 rtx counter = gen_reg_rtx (QImode);
4994 rtx_code_label *start_label = gen_label_rtx ();
4995 rtx_code_label *end_label = gen_label_rtx ();
4996
4997 /* If the rotate amount is less than or equal to 0,
4998 we go out of the loop. */
4999 emit_cmp_and_jump_insns (rotate_amount, const0_rtx, LE, NULL_RTX,
5000 QImode, 0, end_label);
5001
5002 /* Initialize the loop counter. */
5003 emit_move_insn (counter, rotate_amount);
5004
5005 emit_label (start_label);
5006
5007 /* Rotate by one bit. */
5008 switch (mode)
5009 {
5010 case QImode:
5011 emit_insn (gen_rotlqi3_1 (dst, dst, const1_rtx));
5012 break;
5013 case HImode:
5014 emit_insn (gen_rotlhi3_1 (dst, dst, const1_rtx));
5015 break;
5016 case SImode:
5017 emit_insn (gen_rotlsi3_1 (dst, dst, const1_rtx));
5018 break;
5019 default:
5020 gcc_unreachable ();
5021 }
5022
5023 /* Decrement the counter by 1. */
5024 emit_insn (gen_addqi3 (counter, counter, constm1_rtx));
5025
5026 /* If the loop counter is nonzero, we go back to the beginning
5027 of the loop. */
5028 emit_cmp_and_jump_insns (counter, const0_rtx, NE, NULL_RTX, QImode, 1,
5029 start_label);
5030
5031 emit_label (end_label);
5032 }
5033 else
5034 {
5035 /* Rotate by AMOUNT bits. */
5036 switch (mode)
5037 {
5038 case QImode:
5039 emit_insn (gen_rotlqi3_1 (dst, dst, rotate_amount));
5040 break;
5041 case HImode:
5042 emit_insn (gen_rotlhi3_1 (dst, dst, rotate_amount));
5043 break;
5044 case SImode:
5045 emit_insn (gen_rotlsi3_1 (dst, dst, rotate_amount));
5046 break;
5047 default:
5048 gcc_unreachable ();
5049 }
5050 }
5051
5052 return 1;
5053 }
5054
5055 /* Output a rotate insn. */
5056
5057 const char *
5058 output_a_rotate (enum rtx_code code, rtx *operands)
5059 {
5060 rtx dst = operands[0];
5061 rtx rotate_amount = operands[2];
5062 enum shift_mode rotate_mode;
5063 enum shift_type rotate_type;
5064 const char *insn_buf;
5065 int bits;
5066 int amount;
5067 machine_mode mode = GET_MODE (dst);
5068
5069 gcc_assert (GET_CODE (rotate_amount) == CONST_INT);
5070
5071 switch (mode)
5072 {
5073 case QImode:
5074 rotate_mode = QIshift;
5075 break;
5076 case HImode:
5077 rotate_mode = HIshift;
5078 break;
5079 case SImode:
5080 rotate_mode = SIshift;
5081 break;
5082 default:
5083 gcc_unreachable ();
5084 }
5085
5086 switch (code)
5087 {
5088 case ROTATERT:
5089 rotate_type = SHIFT_ASHIFT;
5090 break;
5091 case ROTATE:
5092 rotate_type = SHIFT_LSHIFTRT;
5093 break;
5094 default:
5095 gcc_unreachable ();
5096 }
5097
5098 amount = INTVAL (rotate_amount);
5099
5100 /* Clean up AMOUNT. */
5101 if (amount < 0)
5102 amount = 0;
5103 if ((unsigned int) amount > GET_MODE_BITSIZE (mode))
5104 amount = GET_MODE_BITSIZE (mode);
5105
5106 /* Determine the faster direction. After this phase, amount will be
5107 at most a half of GET_MODE_BITSIZE (mode). */
5108 if ((unsigned int) amount > GET_MODE_BITSIZE (mode) / (unsigned) 2)
5109 {
5110 /* Flip the direction. */
5111 amount = GET_MODE_BITSIZE (mode) - amount;
5112 rotate_type =
5113 (rotate_type == SHIFT_ASHIFT) ? SHIFT_LSHIFTRT : SHIFT_ASHIFT;
5114 }
5115
5116 /* See if a byte swap (in HImode) or a word swap (in SImode) can
5117 boost up the rotation. */
5118 if ((mode == HImode && TARGET_H8300 && amount >= 5)
5119 || (mode == HImode && TARGET_H8300H && amount >= 6)
5120 || (mode == HImode && TARGET_H8300S && amount == 8)
5121 || (mode == SImode && TARGET_H8300H && amount >= 10)
5122 || (mode == SImode && TARGET_H8300S && amount >= 13))
5123 {
5124 switch (mode)
5125 {
5126 case HImode:
5127 /* This code works on any family. */
5128 insn_buf = "xor.b\t%s0,%t0\n\txor.b\t%t0,%s0\n\txor.b\t%s0,%t0";
5129 output_asm_insn (insn_buf, operands);
5130 break;
5131
5132 case SImode:
5133 /* This code works on the H8/300H and H8S. */
5134 insn_buf = "xor.w\t%e0,%f0\n\txor.w\t%f0,%e0\n\txor.w\t%e0,%f0";
5135 output_asm_insn (insn_buf, operands);
5136 break;
5137
5138 default:
5139 gcc_unreachable ();
5140 }
5141
5142 /* Adjust AMOUNT and flip the direction. */
5143 amount = GET_MODE_BITSIZE (mode) / 2 - amount;
5144 rotate_type =
5145 (rotate_type == SHIFT_ASHIFT) ? SHIFT_LSHIFTRT : SHIFT_ASHIFT;
5146 }
5147
5148 /* Output rotate insns. */
5149 for (bits = TARGET_H8300S ? 2 : 1; bits > 0; bits /= 2)
5150 {
5151 if (bits == 2)
5152 insn_buf = rotate_two[rotate_type][rotate_mode];
5153 else
5154 insn_buf = rotate_one[cpu_type][rotate_type][rotate_mode];
5155
5156 for (; amount >= bits; amount -= bits)
5157 output_asm_insn (insn_buf, operands);
5158 }
5159
5160 return "";
5161 }
5162
5163 /* Compute the length of a rotate insn. */
5164
5165 unsigned int
5166 compute_a_rotate_length (rtx *operands)
5167 {
5168 rtx src = operands[1];
5169 rtx amount_rtx = operands[2];
5170 machine_mode mode = GET_MODE (src);
5171 int amount;
5172 unsigned int length = 0;
5173
5174 gcc_assert (GET_CODE (amount_rtx) == CONST_INT);
5175
5176 amount = INTVAL (amount_rtx);
5177
5178 /* Clean up AMOUNT. */
5179 if (amount < 0)
5180 amount = 0;
5181 if ((unsigned int) amount > GET_MODE_BITSIZE (mode))
5182 amount = GET_MODE_BITSIZE (mode);
5183
5184 /* Determine the faster direction. After this phase, amount
5185 will be at most a half of GET_MODE_BITSIZE (mode). */
5186 if ((unsigned int) amount > GET_MODE_BITSIZE (mode) / (unsigned) 2)
5187 /* Flip the direction. */
5188 amount = GET_MODE_BITSIZE (mode) - amount;
5189
5190 /* See if a byte swap (in HImode) or a word swap (in SImode) can
5191 boost up the rotation. */
5192 if ((mode == HImode && TARGET_H8300 && amount >= 5)
5193 || (mode == HImode && TARGET_H8300H && amount >= 6)
5194 || (mode == HImode && TARGET_H8300S && amount == 8)
5195 || (mode == SImode && TARGET_H8300H && amount >= 10)
5196 || (mode == SImode && TARGET_H8300S && amount >= 13))
5197 {
5198 /* Adjust AMOUNT and flip the direction. */
5199 amount = GET_MODE_BITSIZE (mode) / 2 - amount;
5200 length += 6;
5201 }
5202
5203 /* We use 2-bit rotations on the H8S. */
5204 if (TARGET_H8300S)
5205 amount = amount / 2 + amount % 2;
5206
5207 /* The H8/300 uses three insns to rotate one bit, taking 6
5208 length. */
5209 length += amount * ((TARGET_H8300 && mode == HImode) ? 6 : 2);
5210
5211 return length;
5212 }
5213 \f
5214 /* Fix the operands of a gen_xxx so that it could become a bit
5215 operating insn. */
5216
5217 int
5218 fix_bit_operand (rtx *operands, enum rtx_code code)
5219 {
5220 /* The bit_operand predicate accepts any memory during RTL generation, but
5221 only 'U' memory afterwards, so if this is a MEM operand, we must force
5222 it to be valid for 'U' by reloading the address. */
5223
5224 if (code == AND
5225 ? single_zero_operand (operands[2], QImode)
5226 : single_one_operand (operands[2], QImode))
5227 {
5228 /* OK to have a memory dest. */
5229 if (GET_CODE (operands[0]) == MEM
5230 && !satisfies_constraint_U (operands[0]))
5231 {
5232 rtx mem = gen_rtx_MEM (GET_MODE (operands[0]),
5233 copy_to_mode_reg (Pmode,
5234 XEXP (operands[0], 0)));
5235 MEM_COPY_ATTRIBUTES (mem, operands[0]);
5236 operands[0] = mem;
5237 }
5238
5239 if (GET_CODE (operands[1]) == MEM
5240 && !satisfies_constraint_U (operands[1]))
5241 {
5242 rtx mem = gen_rtx_MEM (GET_MODE (operands[1]),
5243 copy_to_mode_reg (Pmode,
5244 XEXP (operands[1], 0)));
5245 MEM_COPY_ATTRIBUTES (mem, operands[0]);
5246 operands[1] = mem;
5247 }
5248 return 0;
5249 }
5250
5251 /* Dest and src op must be register. */
5252
5253 operands[1] = force_reg (QImode, operands[1]);
5254 {
5255 rtx res = gen_reg_rtx (QImode);
5256 switch (code)
5257 {
5258 case AND:
5259 emit_insn (gen_andqi3_1 (res, operands[1], operands[2]));
5260 break;
5261 case IOR:
5262 emit_insn (gen_iorqi3_1 (res, operands[1], operands[2]));
5263 break;
5264 case XOR:
5265 emit_insn (gen_xorqi3_1 (res, operands[1], operands[2]));
5266 break;
5267 default:
5268 gcc_unreachable ();
5269 }
5270 emit_insn (gen_movqi (operands[0], res));
5271 }
5272 return 1;
5273 }
5274
5275 /* Return nonzero if FUNC is an interrupt function as specified
5276 by the "interrupt" attribute. */
5277
5278 static int
5279 h8300_interrupt_function_p (tree func)
5280 {
5281 tree a;
5282
5283 if (TREE_CODE (func) != FUNCTION_DECL)
5284 return 0;
5285
5286 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
5287 return a != NULL_TREE;
5288 }
5289
5290 /* Return nonzero if FUNC is a saveall function as specified by the
5291 "saveall" attribute. */
5292
5293 static int
5294 h8300_saveall_function_p (tree func)
5295 {
5296 tree a;
5297
5298 if (TREE_CODE (func) != FUNCTION_DECL)
5299 return 0;
5300
5301 a = lookup_attribute ("saveall", DECL_ATTRIBUTES (func));
5302 return a != NULL_TREE;
5303 }
5304
5305 /* Return nonzero if FUNC is an OS_Task function as specified
5306 by the "OS_Task" attribute. */
5307
5308 static int
5309 h8300_os_task_function_p (tree func)
5310 {
5311 tree a;
5312
5313 if (TREE_CODE (func) != FUNCTION_DECL)
5314 return 0;
5315
5316 a = lookup_attribute ("OS_Task", DECL_ATTRIBUTES (func));
5317 return a != NULL_TREE;
5318 }
5319
5320 /* Return nonzero if FUNC is a monitor function as specified
5321 by the "monitor" attribute. */
5322
5323 static int
5324 h8300_monitor_function_p (tree func)
5325 {
5326 tree a;
5327
5328 if (TREE_CODE (func) != FUNCTION_DECL)
5329 return 0;
5330
5331 a = lookup_attribute ("monitor", DECL_ATTRIBUTES (func));
5332 return a != NULL_TREE;
5333 }
5334
5335 /* Return nonzero if FUNC is a function that should be called
5336 through the function vector. */
5337
5338 int
5339 h8300_funcvec_function_p (tree func)
5340 {
5341 tree a;
5342
5343 if (TREE_CODE (func) != FUNCTION_DECL)
5344 return 0;
5345
5346 a = lookup_attribute ("function_vector", DECL_ATTRIBUTES (func));
5347 return a != NULL_TREE;
5348 }
5349
5350 /* Return nonzero if DECL is a variable that's in the eight bit
5351 data area. */
5352
5353 int
5354 h8300_eightbit_data_p (tree decl)
5355 {
5356 tree a;
5357
5358 if (TREE_CODE (decl) != VAR_DECL)
5359 return 0;
5360
5361 a = lookup_attribute ("eightbit_data", DECL_ATTRIBUTES (decl));
5362 return a != NULL_TREE;
5363 }
5364
5365 /* Return nonzero if DECL is a variable that's in the tiny
5366 data area. */
5367
5368 int
5369 h8300_tiny_data_p (tree decl)
5370 {
5371 tree a;
5372
5373 if (TREE_CODE (decl) != VAR_DECL)
5374 return 0;
5375
5376 a = lookup_attribute ("tiny_data", DECL_ATTRIBUTES (decl));
5377 return a != NULL_TREE;
5378 }
5379
5380 /* Generate an 'interrupt_handler' attribute for decls. We convert
5381 all the pragmas to corresponding attributes. */
5382
5383 static void
5384 h8300_insert_attributes (tree node, tree *attributes)
5385 {
5386 if (TREE_CODE (node) == FUNCTION_DECL)
5387 {
5388 if (pragma_interrupt)
5389 {
5390 pragma_interrupt = 0;
5391
5392 /* Add an 'interrupt_handler' attribute. */
5393 *attributes = tree_cons (get_identifier ("interrupt_handler"),
5394 NULL, *attributes);
5395 }
5396
5397 if (pragma_saveall)
5398 {
5399 pragma_saveall = 0;
5400
5401 /* Add an 'saveall' attribute. */
5402 *attributes = tree_cons (get_identifier ("saveall"),
5403 NULL, *attributes);
5404 }
5405 }
5406 }
5407
5408 /* Supported attributes:
5409
5410 interrupt_handler: output a prologue and epilogue suitable for an
5411 interrupt handler.
5412
5413 saveall: output a prologue and epilogue that saves and restores
5414 all registers except the stack pointer.
5415
5416 function_vector: This function should be called through the
5417 function vector.
5418
5419 eightbit_data: This variable lives in the 8-bit data area and can
5420 be referenced with 8-bit absolute memory addresses.
5421
5422 tiny_data: This variable lives in the tiny data area and can be
5423 referenced with 16-bit absolute memory references. */
5424
5425 static const struct attribute_spec h8300_attribute_table[] =
5426 {
5427 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
5428 affects_type_identity } */
5429 { "interrupt_handler", 0, 0, true, false, false,
5430 h8300_handle_fndecl_attribute, false },
5431 { "saveall", 0, 0, true, false, false,
5432 h8300_handle_fndecl_attribute, false },
5433 { "OS_Task", 0, 0, true, false, false,
5434 h8300_handle_fndecl_attribute, false },
5435 { "monitor", 0, 0, true, false, false,
5436 h8300_handle_fndecl_attribute, false },
5437 { "function_vector", 0, 0, true, false, false,
5438 h8300_handle_fndecl_attribute, false },
5439 { "eightbit_data", 0, 0, true, false, false,
5440 h8300_handle_eightbit_data_attribute, false },
5441 { "tiny_data", 0, 0, true, false, false,
5442 h8300_handle_tiny_data_attribute, false },
5443 { NULL, 0, 0, false, false, false, NULL, false }
5444 };
5445
5446
5447 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
5448 struct attribute_spec.handler. */
5449 static tree
5450 h8300_handle_fndecl_attribute (tree *node, tree name,
5451 tree args ATTRIBUTE_UNUSED,
5452 int flags ATTRIBUTE_UNUSED,
5453 bool *no_add_attrs)
5454 {
5455 if (TREE_CODE (*node) != FUNCTION_DECL)
5456 {
5457 warning (OPT_Wattributes, "%qE attribute only applies to functions",
5458 name);
5459 *no_add_attrs = true;
5460 }
5461
5462 return NULL_TREE;
5463 }
5464
5465 /* Handle an "eightbit_data" attribute; arguments as in
5466 struct attribute_spec.handler. */
5467 static tree
5468 h8300_handle_eightbit_data_attribute (tree *node, tree name,
5469 tree args ATTRIBUTE_UNUSED,
5470 int flags ATTRIBUTE_UNUSED,
5471 bool *no_add_attrs)
5472 {
5473 tree decl = *node;
5474
5475 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
5476 {
5477 set_decl_section_name (decl, ".eight");
5478 }
5479 else
5480 {
5481 warning (OPT_Wattributes, "%qE attribute ignored",
5482 name);
5483 *no_add_attrs = true;
5484 }
5485
5486 return NULL_TREE;
5487 }
5488
5489 /* Handle an "tiny_data" attribute; arguments as in
5490 struct attribute_spec.handler. */
5491 static tree
5492 h8300_handle_tiny_data_attribute (tree *node, tree name,
5493 tree args ATTRIBUTE_UNUSED,
5494 int flags ATTRIBUTE_UNUSED,
5495 bool *no_add_attrs)
5496 {
5497 tree decl = *node;
5498
5499 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
5500 {
5501 set_decl_section_name (decl, ".tiny");
5502 }
5503 else
5504 {
5505 warning (OPT_Wattributes, "%qE attribute ignored",
5506 name);
5507 *no_add_attrs = true;
5508 }
5509
5510 return NULL_TREE;
5511 }
5512
5513 /* Mark function vectors, and various small data objects. */
5514
5515 static void
5516 h8300_encode_section_info (tree decl, rtx rtl, int first)
5517 {
5518 int extra_flags = 0;
5519
5520 default_encode_section_info (decl, rtl, first);
5521
5522 if (TREE_CODE (decl) == FUNCTION_DECL
5523 && h8300_funcvec_function_p (decl))
5524 extra_flags = SYMBOL_FLAG_FUNCVEC_FUNCTION;
5525 else if (TREE_CODE (decl) == VAR_DECL
5526 && (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
5527 {
5528 if (h8300_eightbit_data_p (decl))
5529 extra_flags = SYMBOL_FLAG_EIGHTBIT_DATA;
5530 else if (first && h8300_tiny_data_p (decl))
5531 extra_flags = SYMBOL_FLAG_TINY_DATA;
5532 }
5533
5534 if (extra_flags)
5535 SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= extra_flags;
5536 }
5537
5538 /* Output a single-bit extraction. */
5539
5540 const char *
5541 output_simode_bld (int bild, rtx operands[])
5542 {
5543 if (TARGET_H8300)
5544 {
5545 /* Clear the destination register. */
5546 output_asm_insn ("sub.w\t%e0,%e0\n\tsub.w\t%f0,%f0", operands);
5547
5548 /* Now output the bit load or bit inverse load, and store it in
5549 the destination. */
5550 if (bild)
5551 output_asm_insn ("bild\t%Z2,%Y1", operands);
5552 else
5553 output_asm_insn ("bld\t%Z2,%Y1", operands);
5554
5555 output_asm_insn ("bst\t#0,%w0", operands);
5556 }
5557 else
5558 {
5559 /* Determine if we can clear the destination first. */
5560 int clear_first = (REG_P (operands[0]) && REG_P (operands[1])
5561 && REGNO (operands[0]) != REGNO (operands[1]));
5562
5563 if (clear_first)
5564 output_asm_insn ("sub.l\t%S0,%S0", operands);
5565
5566 /* Output the bit load or bit inverse load. */
5567 if (bild)
5568 output_asm_insn ("bild\t%Z2,%Y1", operands);
5569 else
5570 output_asm_insn ("bld\t%Z2,%Y1", operands);
5571
5572 if (!clear_first)
5573 output_asm_insn ("xor.l\t%S0,%S0", operands);
5574
5575 /* Perform the bit store. */
5576 output_asm_insn ("rotxl.l\t%S0", operands);
5577 }
5578
5579 /* All done. */
5580 return "";
5581 }
5582
5583 /* Delayed-branch scheduling is more effective if we have some idea
5584 how long each instruction will be. Use a shorten_branches pass
5585 to get an initial estimate. */
5586
5587 static void
5588 h8300_reorg (void)
5589 {
5590 if (flag_delayed_branch)
5591 shorten_branches (get_insns ());
5592 }
5593
5594 #ifndef OBJECT_FORMAT_ELF
5595 static void
5596 h8300_asm_named_section (const char *name, unsigned int flags ATTRIBUTE_UNUSED,
5597 tree decl)
5598 {
5599 /* ??? Perhaps we should be using default_coff_asm_named_section. */
5600 fprintf (asm_out_file, "\t.section %s\n", name);
5601 }
5602 #endif /* ! OBJECT_FORMAT_ELF */
5603
5604 /* Nonzero if X is a constant address suitable as an 8-bit absolute,
5605 which is a special case of the 'R' operand. */
5606
5607 int
5608 h8300_eightbit_constant_address_p (rtx x)
5609 {
5610 /* The ranges of the 8-bit area. */
5611 const unsigned HOST_WIDE_INT n1 = trunc_int_for_mode (0xff00, HImode);
5612 const unsigned HOST_WIDE_INT n2 = trunc_int_for_mode (0xffff, HImode);
5613 const unsigned HOST_WIDE_INT h1 = trunc_int_for_mode (0x00ffff00, SImode);
5614 const unsigned HOST_WIDE_INT h2 = trunc_int_for_mode (0x00ffffff, SImode);
5615 const unsigned HOST_WIDE_INT s1 = trunc_int_for_mode (0xffffff00, SImode);
5616 const unsigned HOST_WIDE_INT s2 = trunc_int_for_mode (0xffffffff, SImode);
5617
5618 unsigned HOST_WIDE_INT addr;
5619
5620 /* We accept symbols declared with eightbit_data. */
5621 if (GET_CODE (x) == SYMBOL_REF)
5622 return (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_EIGHTBIT_DATA) != 0;
5623
5624 if (GET_CODE (x) == CONST
5625 && GET_CODE (XEXP (x, 0)) == PLUS
5626 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
5627 && (SYMBOL_REF_FLAGS (XEXP (XEXP (x, 0), 0)) & SYMBOL_FLAG_EIGHTBIT_DATA) != 0)
5628 return 1;
5629
5630 if (GET_CODE (x) != CONST_INT)
5631 return 0;
5632
5633 addr = INTVAL (x);
5634
5635 return (0
5636 || ((TARGET_H8300 || TARGET_NORMAL_MODE) && IN_RANGE (addr, n1, n2))
5637 || (TARGET_H8300H && IN_RANGE (addr, h1, h2))
5638 || (TARGET_H8300S && IN_RANGE (addr, s1, s2)));
5639 }
5640
5641 /* Nonzero if X is a constant address suitable as an 16-bit absolute
5642 on H8/300H and H8S. */
5643
5644 int
5645 h8300_tiny_constant_address_p (rtx x)
5646 {
5647 /* The ranges of the 16-bit area. */
5648 const unsigned HOST_WIDE_INT h1 = trunc_int_for_mode (0x00000000, SImode);
5649 const unsigned HOST_WIDE_INT h2 = trunc_int_for_mode (0x00007fff, SImode);
5650 const unsigned HOST_WIDE_INT h3 = trunc_int_for_mode (0x00ff8000, SImode);
5651 const unsigned HOST_WIDE_INT h4 = trunc_int_for_mode (0x00ffffff, SImode);
5652 const unsigned HOST_WIDE_INT s1 = trunc_int_for_mode (0x00000000, SImode);
5653 const unsigned HOST_WIDE_INT s2 = trunc_int_for_mode (0x00007fff, SImode);
5654 const unsigned HOST_WIDE_INT s3 = trunc_int_for_mode (0xffff8000, SImode);
5655 const unsigned HOST_WIDE_INT s4 = trunc_int_for_mode (0xffffffff, SImode);
5656
5657 unsigned HOST_WIDE_INT addr;
5658
5659 switch (GET_CODE (x))
5660 {
5661 case SYMBOL_REF:
5662 /* In the normal mode, any symbol fits in the 16-bit absolute
5663 address range. We also accept symbols declared with
5664 tiny_data. */
5665 return (TARGET_NORMAL_MODE
5666 || (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_TINY_DATA) != 0);
5667
5668 case CONST_INT:
5669 addr = INTVAL (x);
5670 return (TARGET_NORMAL_MODE
5671 || (TARGET_H8300H
5672 && (IN_RANGE (addr, h1, h2) || IN_RANGE (addr, h3, h4)))
5673 || (TARGET_H8300S
5674 && (IN_RANGE (addr, s1, s2) || IN_RANGE (addr, s3, s4))));
5675
5676 case CONST:
5677 return TARGET_NORMAL_MODE;
5678
5679 default:
5680 return 0;
5681 }
5682
5683 }
5684
5685 /* Return nonzero if ADDR1 and ADDR2 point to consecutive memory
5686 locations that can be accessed as a 16-bit word. */
5687
5688 int
5689 byte_accesses_mergeable_p (rtx addr1, rtx addr2)
5690 {
5691 HOST_WIDE_INT offset1, offset2;
5692 rtx reg1, reg2;
5693
5694 if (REG_P (addr1))
5695 {
5696 reg1 = addr1;
5697 offset1 = 0;
5698 }
5699 else if (GET_CODE (addr1) == PLUS
5700 && REG_P (XEXP (addr1, 0))
5701 && GET_CODE (XEXP (addr1, 1)) == CONST_INT)
5702 {
5703 reg1 = XEXP (addr1, 0);
5704 offset1 = INTVAL (XEXP (addr1, 1));
5705 }
5706 else
5707 return 0;
5708
5709 if (REG_P (addr2))
5710 {
5711 reg2 = addr2;
5712 offset2 = 0;
5713 }
5714 else if (GET_CODE (addr2) == PLUS
5715 && REG_P (XEXP (addr2, 0))
5716 && GET_CODE (XEXP (addr2, 1)) == CONST_INT)
5717 {
5718 reg2 = XEXP (addr2, 0);
5719 offset2 = INTVAL (XEXP (addr2, 1));
5720 }
5721 else
5722 return 0;
5723
5724 if (((reg1 == stack_pointer_rtx && reg2 == stack_pointer_rtx)
5725 || (reg1 == frame_pointer_rtx && reg2 == frame_pointer_rtx))
5726 && offset1 % 2 == 0
5727 && offset1 + 1 == offset2)
5728 return 1;
5729
5730 return 0;
5731 }
5732
5733 /* Return nonzero if we have the same comparison insn as I3 two insns
5734 before I3. I3 is assumed to be a comparison insn. */
5735
5736 int
5737 same_cmp_preceding_p (rtx_insn *i3)
5738 {
5739 rtx_insn *i1, *i2;
5740
5741 /* Make sure we have a sequence of three insns. */
5742 i2 = prev_nonnote_insn (i3);
5743 if (i2 == NULL)
5744 return 0;
5745 i1 = prev_nonnote_insn (i2);
5746 if (i1 == NULL)
5747 return 0;
5748
5749 return (INSN_P (i1) && rtx_equal_p (PATTERN (i1), PATTERN (i3))
5750 && any_condjump_p (i2) && onlyjump_p (i2));
5751 }
5752
5753 /* Return nonzero if we have the same comparison insn as I1 two insns
5754 after I1. I1 is assumed to be a comparison insn. */
5755
5756 int
5757 same_cmp_following_p (rtx_insn *i1)
5758 {
5759 rtx_insn *i2, *i3;
5760
5761 /* Make sure we have a sequence of three insns. */
5762 i2 = next_nonnote_insn (i1);
5763 if (i2 == NULL)
5764 return 0;
5765 i3 = next_nonnote_insn (i2);
5766 if (i3 == NULL)
5767 return 0;
5768
5769 return (INSN_P (i3) && rtx_equal_p (PATTERN (i1), PATTERN (i3))
5770 && any_condjump_p (i2) && onlyjump_p (i2));
5771 }
5772
5773 /* Return nonzero if OPERANDS are valid for stm (or ldm) that pushes
5774 (or pops) N registers. OPERANDS are assumed to be an array of
5775 registers. */
5776
5777 int
5778 h8300_regs_ok_for_stm (int n, rtx operands[])
5779 {
5780 switch (n)
5781 {
5782 case 2:
5783 return ((REGNO (operands[0]) == 0 && REGNO (operands[1]) == 1)
5784 || (REGNO (operands[0]) == 2 && REGNO (operands[1]) == 3)
5785 || (REGNO (operands[0]) == 4 && REGNO (operands[1]) == 5));
5786 case 3:
5787 return ((REGNO (operands[0]) == 0
5788 && REGNO (operands[1]) == 1
5789 && REGNO (operands[2]) == 2)
5790 || (REGNO (operands[0]) == 4
5791 && REGNO (operands[1]) == 5
5792 && REGNO (operands[2]) == 6));
5793
5794 case 4:
5795 return (REGNO (operands[0]) == 0
5796 && REGNO (operands[1]) == 1
5797 && REGNO (operands[2]) == 2
5798 && REGNO (operands[3]) == 3);
5799 default:
5800 gcc_unreachable ();
5801 }
5802 }
5803
5804 /* Return nonzero if register OLD_REG can be renamed to register NEW_REG. */
5805
5806 int
5807 h8300_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
5808 unsigned int new_reg)
5809 {
5810 /* Interrupt functions can only use registers that have already been
5811 saved by the prologue, even if they would normally be
5812 call-clobbered. */
5813
5814 if (h8300_current_function_interrupt_function_p ()
5815 && !df_regs_ever_live_p (new_reg))
5816 return 0;
5817
5818 return 1;
5819 }
5820
5821 /* Returns true if register REGNO is safe to be allocated as a scratch
5822 register in the current function. */
5823
5824 static bool
5825 h8300_hard_regno_scratch_ok (unsigned int regno)
5826 {
5827 if (h8300_current_function_interrupt_function_p ()
5828 && ! WORD_REG_USED (regno))
5829 return false;
5830
5831 return true;
5832 }
5833
5834
5835 /* Return nonzero if X is a REG or SUBREG suitable as a base register. */
5836
5837 static int
5838 h8300_rtx_ok_for_base_p (rtx x, int strict)
5839 {
5840 /* Strip off SUBREG if any. */
5841 if (GET_CODE (x) == SUBREG)
5842 x = SUBREG_REG (x);
5843
5844 return (REG_P (x)
5845 && (strict
5846 ? REG_OK_FOR_BASE_STRICT_P (x)
5847 : REG_OK_FOR_BASE_NONSTRICT_P (x)));
5848 }
5849
5850 /* Return nozero if X is a legitimate address. On the H8/300, a
5851 legitimate address has the form REG, REG+CONSTANT_ADDRESS or
5852 CONSTANT_ADDRESS. */
5853
5854 static bool
5855 h8300_legitimate_address_p (machine_mode mode, rtx x, bool strict)
5856 {
5857 /* The register indirect addresses like @er0 is always valid. */
5858 if (h8300_rtx_ok_for_base_p (x, strict))
5859 return 1;
5860
5861 if (CONSTANT_ADDRESS_P (x))
5862 return 1;
5863
5864 if (TARGET_H8300SX
5865 && ( GET_CODE (x) == PRE_INC
5866 || GET_CODE (x) == PRE_DEC
5867 || GET_CODE (x) == POST_INC
5868 || GET_CODE (x) == POST_DEC)
5869 && h8300_rtx_ok_for_base_p (XEXP (x, 0), strict))
5870 return 1;
5871
5872 if (GET_CODE (x) == PLUS
5873 && CONSTANT_ADDRESS_P (XEXP (x, 1))
5874 && h8300_rtx_ok_for_base_p (h8300_get_index (XEXP (x, 0),
5875 mode, 0), strict))
5876 return 1;
5877
5878 return 0;
5879 }
5880
5881 /* Worker function for HARD_REGNO_NREGS.
5882
5883 We pretend the MAC register is 32bits -- we don't have any data
5884 types on the H8 series to handle more than 32bits. */
5885
5886 int
5887 h8300_hard_regno_nregs (int regno ATTRIBUTE_UNUSED, machine_mode mode)
5888 {
5889 return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
5890 }
5891
5892 /* Worker function for HARD_REGNO_MODE_OK. */
5893
5894 int
5895 h8300_hard_regno_mode_ok (int regno, machine_mode mode)
5896 {
5897 if (TARGET_H8300)
5898 /* If an even reg, then anything goes. Otherwise the mode must be
5899 QI or HI. */
5900 return ((regno & 1) == 0) || (mode == HImode) || (mode == QImode);
5901 else
5902 /* MAC register can only be of SImode. Otherwise, anything
5903 goes. */
5904 return regno == MAC_REG ? mode == SImode : 1;
5905 }
5906
5907 /* Helper function for the move patterns. Make sure a move is legitimate. */
5908
5909 bool
5910 h8300_move_ok (rtx dest, rtx src)
5911 {
5912 rtx addr, other;
5913
5914 /* Validate that at least one operand is a register. */
5915 if (MEM_P (dest))
5916 {
5917 if (MEM_P (src) || CONSTANT_P (src))
5918 return false;
5919 addr = XEXP (dest, 0);
5920 other = src;
5921 }
5922 else if (MEM_P (src))
5923 {
5924 addr = XEXP (src, 0);
5925 other = dest;
5926 }
5927 else
5928 return true;
5929
5930 /* Validate that auto-inc doesn't affect OTHER. */
5931 if (GET_RTX_CLASS (GET_CODE (addr)) != RTX_AUTOINC)
5932 return true;
5933 addr = XEXP (addr, 0);
5934
5935 if (addr == stack_pointer_rtx)
5936 return register_no_sp_elim_operand (other, VOIDmode);
5937 else
5938 return !reg_overlap_mentioned_p(other, addr);
5939 }
5940 \f
5941 /* Perform target dependent optabs initialization. */
5942 static void
5943 h8300_init_libfuncs (void)
5944 {
5945 set_optab_libfunc (smul_optab, HImode, "__mulhi3");
5946 set_optab_libfunc (sdiv_optab, HImode, "__divhi3");
5947 set_optab_libfunc (udiv_optab, HImode, "__udivhi3");
5948 set_optab_libfunc (smod_optab, HImode, "__modhi3");
5949 set_optab_libfunc (umod_optab, HImode, "__umodhi3");
5950 }
5951 \f
5952 /* Worker function for TARGET_FUNCTION_VALUE.
5953
5954 On the H8 the return value is in R0/R1. */
5955
5956 static rtx
5957 h8300_function_value (const_tree ret_type,
5958 const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
5959 bool outgoing ATTRIBUTE_UNUSED)
5960 {
5961 return gen_rtx_REG (TYPE_MODE (ret_type), R0_REG);
5962 }
5963
5964 /* Worker function for TARGET_LIBCALL_VALUE.
5965
5966 On the H8 the return value is in R0/R1. */
5967
5968 static rtx
5969 h8300_libcall_value (machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
5970 {
5971 return gen_rtx_REG (mode, R0_REG);
5972 }
5973
5974 /* Worker function for TARGET_FUNCTION_VALUE_REGNO_P.
5975
5976 On the H8, R0 is the only register thus used. */
5977
5978 static bool
5979 h8300_function_value_regno_p (const unsigned int regno)
5980 {
5981 return (regno == R0_REG);
5982 }
5983
5984 /* Worker function for TARGET_RETURN_IN_MEMORY. */
5985
5986 static bool
5987 h8300_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
5988 {
5989 return (TYPE_MODE (type) == BLKmode
5990 || GET_MODE_SIZE (TYPE_MODE (type)) > (TARGET_H8300 ? 4 : 8));
5991 }
5992 \f
5993 /* We emit the entire trampoline here. Depending on the pointer size,
5994 we use a different trampoline.
5995
5996 Pmode == HImode
5997 vvvv context
5998 1 0000 7903xxxx mov.w #0x1234,r3
5999 2 0004 5A00xxxx jmp @0x1234
6000 ^^^^ function
6001
6002 Pmode == SImode
6003 vvvvvvvv context
6004 2 0000 7A03xxxxxxxx mov.l #0x12345678,er3
6005 3 0006 5Axxxxxx jmp @0x123456
6006 ^^^^^^ function
6007 */
6008
6009 static void
6010 h8300_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt)
6011 {
6012 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
6013 rtx mem;
6014
6015 if (Pmode == HImode)
6016 {
6017 mem = adjust_address (m_tramp, HImode, 0);
6018 emit_move_insn (mem, GEN_INT (0x7903));
6019 mem = adjust_address (m_tramp, Pmode, 2);
6020 emit_move_insn (mem, cxt);
6021 mem = adjust_address (m_tramp, HImode, 4);
6022 emit_move_insn (mem, GEN_INT (0x5a00));
6023 mem = adjust_address (m_tramp, Pmode, 6);
6024 emit_move_insn (mem, fnaddr);
6025 }
6026 else
6027 {
6028 rtx tem;
6029
6030 mem = adjust_address (m_tramp, HImode, 0);
6031 emit_move_insn (mem, GEN_INT (0x7a03));
6032 mem = adjust_address (m_tramp, Pmode, 2);
6033 emit_move_insn (mem, cxt);
6034
6035 tem = copy_to_reg (fnaddr);
6036 emit_insn (gen_andsi3 (tem, tem, GEN_INT (0x00ffffff)));
6037 emit_insn (gen_iorsi3 (tem, tem, GEN_INT (0x5a000000)));
6038 mem = adjust_address (m_tramp, SImode, 6);
6039 emit_move_insn (mem, tem);
6040 }
6041 }
6042 \f
6043 /* Initialize the GCC target structure. */
6044 #undef TARGET_ATTRIBUTE_TABLE
6045 #define TARGET_ATTRIBUTE_TABLE h8300_attribute_table
6046
6047 #undef TARGET_ASM_ALIGNED_HI_OP
6048 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
6049
6050 #undef TARGET_ASM_FILE_START
6051 #define TARGET_ASM_FILE_START h8300_file_start
6052 #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
6053 #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
6054
6055 #undef TARGET_ASM_FILE_END
6056 #define TARGET_ASM_FILE_END h8300_file_end
6057
6058 #undef TARGET_PRINT_OPERAND
6059 #define TARGET_PRINT_OPERAND h8300_print_operand
6060 #undef TARGET_PRINT_OPERAND_ADDRESS
6061 #define TARGET_PRINT_OPERAND_ADDRESS h8300_print_operand_address
6062 #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
6063 #define TARGET_PRINT_OPERAND_PUNCT_VALID_P h8300_print_operand_punct_valid_p
6064
6065 #undef TARGET_ENCODE_SECTION_INFO
6066 #define TARGET_ENCODE_SECTION_INFO h8300_encode_section_info
6067
6068 #undef TARGET_INSERT_ATTRIBUTES
6069 #define TARGET_INSERT_ATTRIBUTES h8300_insert_attributes
6070
6071 #undef TARGET_REGISTER_MOVE_COST
6072 #define TARGET_REGISTER_MOVE_COST h8300_register_move_cost
6073
6074 #undef TARGET_RTX_COSTS
6075 #define TARGET_RTX_COSTS h8300_rtx_costs
6076
6077 #undef TARGET_INIT_LIBFUNCS
6078 #define TARGET_INIT_LIBFUNCS h8300_init_libfuncs
6079
6080 #undef TARGET_FUNCTION_VALUE
6081 #define TARGET_FUNCTION_VALUE h8300_function_value
6082
6083 #undef TARGET_LIBCALL_VALUE
6084 #define TARGET_LIBCALL_VALUE h8300_libcall_value
6085
6086 #undef TARGET_FUNCTION_VALUE_REGNO_P
6087 #define TARGET_FUNCTION_VALUE_REGNO_P h8300_function_value_regno_p
6088
6089 #undef TARGET_RETURN_IN_MEMORY
6090 #define TARGET_RETURN_IN_MEMORY h8300_return_in_memory
6091
6092 #undef TARGET_FUNCTION_ARG
6093 #define TARGET_FUNCTION_ARG h8300_function_arg
6094
6095 #undef TARGET_FUNCTION_ARG_ADVANCE
6096 #define TARGET_FUNCTION_ARG_ADVANCE h8300_function_arg_advance
6097
6098 #undef TARGET_MACHINE_DEPENDENT_REORG
6099 #define TARGET_MACHINE_DEPENDENT_REORG h8300_reorg
6100
6101 #undef TARGET_HARD_REGNO_SCRATCH_OK
6102 #define TARGET_HARD_REGNO_SCRATCH_OK h8300_hard_regno_scratch_ok
6103
6104 #undef TARGET_LRA_P
6105 #define TARGET_LRA_P hook_bool_void_false
6106
6107 #undef TARGET_LEGITIMATE_ADDRESS_P
6108 #define TARGET_LEGITIMATE_ADDRESS_P h8300_legitimate_address_p
6109
6110 #undef TARGET_CAN_ELIMINATE
6111 #define TARGET_CAN_ELIMINATE h8300_can_eliminate
6112
6113 #undef TARGET_CONDITIONAL_REGISTER_USAGE
6114 #define TARGET_CONDITIONAL_REGISTER_USAGE h8300_conditional_register_usage
6115
6116 #undef TARGET_TRAMPOLINE_INIT
6117 #define TARGET_TRAMPOLINE_INIT h8300_trampoline_init
6118
6119 #undef TARGET_OPTION_OVERRIDE
6120 #define TARGET_OPTION_OVERRIDE h8300_option_override
6121
6122 #undef TARGET_MODE_DEPENDENT_ADDRESS_P
6123 #define TARGET_MODE_DEPENDENT_ADDRESS_P h8300_mode_dependent_address_p
6124
6125 struct gcc_target targetm = TARGET_INITIALIZER;