]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/h8300/h8300.c
poly_int: PUSH_ROUNDING
[thirdparty/gcc.git] / gcc / config / h8300 / h8300.c
1 /* Subroutines for insn-output.c for Renesas H8/300.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Steve Chamberlain (sac@cygnus.com),
4 Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #define IN_TARGET_CODE 1
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "backend.h"
28 #include "target.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "df.h"
32 #include "memmodel.h"
33 #include "tm_p.h"
34 #include "stringpool.h"
35 #include "attribs.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "emit-rtl.h"
39 #include "recog.h"
40 #include "diagnostic-core.h"
41 #include "alias.h"
42 #include "stor-layout.h"
43 #include "varasm.h"
44 #include "calls.h"
45 #include "conditions.h"
46 #include "output.h"
47 #include "insn-attr.h"
48 #include "flags.h"
49 #include "explow.h"
50 #include "expr.h"
51 #include "tm-constrs.h"
52 #include "builtins.h"
53
54 /* This file should be included last. */
55 #include "target-def.h"
56
57 /* Classifies a h8300_src_operand or h8300_dst_operand.
58
59 H8OP_IMMEDIATE
60 A constant operand of some sort.
61
62 H8OP_REGISTER
63 An ordinary register.
64
65 H8OP_MEM_ABSOLUTE
66 A memory reference with a constant address.
67
68 H8OP_MEM_BASE
69 A memory reference with a register as its address.
70
71 H8OP_MEM_COMPLEX
72 Some other kind of memory reference. */
73 enum h8300_operand_class
74 {
75 H8OP_IMMEDIATE,
76 H8OP_REGISTER,
77 H8OP_MEM_ABSOLUTE,
78 H8OP_MEM_BASE,
79 H8OP_MEM_COMPLEX,
80 NUM_H8OPS
81 };
82
83 /* For a general two-operand instruction, element [X][Y] gives
84 the length of the opcode fields when the first operand has class
85 (X + 1) and the second has class Y. */
86 typedef unsigned char h8300_length_table[NUM_H8OPS - 1][NUM_H8OPS];
87
88 /* Forward declarations. */
89 static const char *byte_reg (rtx, int);
90 static int h8300_interrupt_function_p (tree);
91 static int h8300_saveall_function_p (tree);
92 static int h8300_monitor_function_p (tree);
93 static int h8300_os_task_function_p (tree);
94 static void h8300_emit_stack_adjustment (int, HOST_WIDE_INT, bool);
95 static HOST_WIDE_INT round_frame_size (HOST_WIDE_INT);
96 static unsigned int compute_saved_regs (void);
97 static const char *cond_string (enum rtx_code);
98 static unsigned int h8300_asm_insn_count (const char *);
99 static tree h8300_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
100 static tree h8300_handle_eightbit_data_attribute (tree *, tree, tree, int, bool *);
101 static tree h8300_handle_tiny_data_attribute (tree *, tree, tree, int, bool *);
102 static void h8300_print_operand_address (FILE *, machine_mode, rtx);
103 static void h8300_print_operand (FILE *, rtx, int);
104 static bool h8300_print_operand_punct_valid_p (unsigned char code);
105 #ifndef OBJECT_FORMAT_ELF
106 static void h8300_asm_named_section (const char *, unsigned int, tree);
107 #endif
108 static int h8300_register_move_cost (machine_mode, reg_class_t, reg_class_t);
109 static int h8300_and_costs (rtx);
110 static int h8300_shift_costs (rtx);
111 static void h8300_push_pop (int, int, bool, bool);
112 static int h8300_stack_offset_p (rtx, int);
113 static int h8300_ldm_stm_regno (rtx, int, int, int);
114 static void h8300_reorg (void);
115 static unsigned int h8300_constant_length (rtx);
116 static unsigned int h8300_displacement_length (rtx, int);
117 static unsigned int h8300_classify_operand (rtx, int, enum h8300_operand_class *);
118 static unsigned int h8300_length_from_table (rtx, rtx, const h8300_length_table *);
119 static unsigned int h8300_unary_length (rtx);
120 static unsigned int h8300_short_immediate_length (rtx);
121 static unsigned int h8300_bitfield_length (rtx, rtx);
122 static unsigned int h8300_binary_length (rtx_insn *, const h8300_length_table *);
123 static bool h8300_short_move_mem_p (rtx, enum rtx_code);
124 static unsigned int h8300_move_length (rtx *, const h8300_length_table *);
125 static bool h8300_hard_regno_scratch_ok (unsigned int);
126 static rtx h8300_get_index (rtx, machine_mode mode, int *);
127
128 /* CPU_TYPE, says what cpu we're compiling for. */
129 int cpu_type;
130
131 /* True if a #pragma interrupt has been seen for the current function. */
132 static int pragma_interrupt;
133
134 /* True if a #pragma saveall has been seen for the current function. */
135 static int pragma_saveall;
136
137 static const char *const names_big[] =
138 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" };
139
140 static const char *const names_extended[] =
141 { "er0", "er1", "er2", "er3", "er4", "er5", "er6", "er7" };
142
143 static const char *const names_upper_extended[] =
144 { "e0", "e1", "e2", "e3", "e4", "e5", "e6", "e7" };
145
146 /* Points to one of the above. */
147 /* ??? The above could be put in an array indexed by CPU_TYPE. */
148 const char * const *h8_reg_names;
149
150 /* Various operations needed by the following, indexed by CPU_TYPE. */
151
152 const char *h8_push_op, *h8_pop_op, *h8_mov_op;
153
154 /* Value of MOVE_RATIO. */
155 int h8300_move_ratio;
156 \f
157 /* See below where shifts are handled for explanation of this enum. */
158
159 enum shift_alg
160 {
161 SHIFT_INLINE,
162 SHIFT_ROT_AND,
163 SHIFT_SPECIAL,
164 SHIFT_LOOP
165 };
166
167 /* Symbols of the various shifts which can be used as indices. */
168
169 enum shift_type
170 {
171 SHIFT_ASHIFT, SHIFT_LSHIFTRT, SHIFT_ASHIFTRT
172 };
173
174 /* Macros to keep the shift algorithm tables small. */
175 #define INL SHIFT_INLINE
176 #define ROT SHIFT_ROT_AND
177 #define LOP SHIFT_LOOP
178 #define SPC SHIFT_SPECIAL
179
180 /* The shift algorithms for each machine, mode, shift type, and shift
181 count are defined below. The three tables below correspond to
182 QImode, HImode, and SImode, respectively. Each table is organized
183 by, in the order of indices, machine, shift type, and shift count. */
184
185 static enum shift_alg shift_alg_qi[3][3][8] = {
186 {
187 /* TARGET_H8300 */
188 /* 0 1 2 3 4 5 6 7 */
189 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
190 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
191 { INL, INL, INL, INL, INL, LOP, LOP, SPC } /* SHIFT_ASHIFTRT */
192 },
193 {
194 /* TARGET_H8300H */
195 /* 0 1 2 3 4 5 6 7 */
196 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
197 { INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
198 { INL, INL, INL, INL, INL, LOP, LOP, SPC } /* SHIFT_ASHIFTRT */
199 },
200 {
201 /* TARGET_H8300S */
202 /* 0 1 2 3 4 5 6 7 */
203 { INL, INL, INL, INL, INL, INL, ROT, ROT }, /* SHIFT_ASHIFT */
204 { INL, INL, INL, INL, INL, INL, ROT, ROT }, /* SHIFT_LSHIFTRT */
205 { INL, INL, INL, INL, INL, INL, INL, SPC } /* SHIFT_ASHIFTRT */
206 }
207 };
208
209 static enum shift_alg shift_alg_hi[3][3][16] = {
210 {
211 /* TARGET_H8300 */
212 /* 0 1 2 3 4 5 6 7 */
213 /* 8 9 10 11 12 13 14 15 */
214 { INL, INL, INL, INL, INL, INL, INL, SPC,
215 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
216 { INL, INL, INL, INL, INL, LOP, LOP, SPC,
217 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
218 { INL, INL, INL, INL, INL, LOP, LOP, SPC,
219 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
220 },
221 {
222 /* TARGET_H8300H */
223 /* 0 1 2 3 4 5 6 7 */
224 /* 8 9 10 11 12 13 14 15 */
225 { INL, INL, INL, INL, INL, INL, INL, SPC,
226 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
227 { INL, INL, INL, INL, INL, INL, INL, SPC,
228 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
229 { INL, INL, INL, INL, INL, INL, INL, SPC,
230 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
231 },
232 {
233 /* TARGET_H8300S */
234 /* 0 1 2 3 4 5 6 7 */
235 /* 8 9 10 11 12 13 14 15 */
236 { INL, INL, INL, INL, INL, INL, INL, INL,
237 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
238 { INL, INL, INL, INL, INL, INL, INL, INL,
239 SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
240 { INL, INL, INL, INL, INL, INL, INL, INL,
241 SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
242 }
243 };
244
245 static enum shift_alg shift_alg_si[3][3][32] = {
246 {
247 /* TARGET_H8300 */
248 /* 0 1 2 3 4 5 6 7 */
249 /* 8 9 10 11 12 13 14 15 */
250 /* 16 17 18 19 20 21 22 23 */
251 /* 24 25 26 27 28 29 30 31 */
252 { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
253 SPC, LOP, LOP, LOP, LOP, LOP, LOP, LOP,
254 SPC, SPC, SPC, SPC, SPC, LOP, LOP, LOP,
255 SPC, SPC, SPC, SPC, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFT */
256 { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
257 SPC, SPC, LOP, LOP, LOP, LOP, LOP, SPC,
258 SPC, SPC, SPC, LOP, LOP, LOP, LOP, LOP,
259 SPC, SPC, SPC, SPC, SPC, LOP, LOP, SPC }, /* SHIFT_LSHIFTRT */
260 { INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
261 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
262 SPC, SPC, LOP, LOP, LOP, LOP, LOP, LOP,
263 SPC, SPC, SPC, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
264 },
265 {
266 /* TARGET_H8300H */
267 /* 0 1 2 3 4 5 6 7 */
268 /* 8 9 10 11 12 13 14 15 */
269 /* 16 17 18 19 20 21 22 23 */
270 /* 24 25 26 27 28 29 30 31 */
271 { INL, INL, INL, INL, INL, LOP, LOP, LOP,
272 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
273 SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
274 SPC, LOP, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
275 { INL, INL, INL, INL, INL, LOP, LOP, LOP,
276 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
277 SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
278 SPC, LOP, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
279 { INL, INL, INL, INL, INL, LOP, LOP, LOP,
280 SPC, LOP, LOP, LOP, LOP, LOP, LOP, LOP,
281 SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
282 SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
283 },
284 {
285 /* TARGET_H8300S */
286 /* 0 1 2 3 4 5 6 7 */
287 /* 8 9 10 11 12 13 14 15 */
288 /* 16 17 18 19 20 21 22 23 */
289 /* 24 25 26 27 28 29 30 31 */
290 { INL, INL, INL, INL, INL, INL, INL, INL,
291 INL, INL, INL, LOP, LOP, LOP, LOP, SPC,
292 SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
293 SPC, SPC, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
294 { INL, INL, INL, INL, INL, INL, INL, INL,
295 INL, INL, INL, LOP, LOP, LOP, LOP, SPC,
296 SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
297 SPC, SPC, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
298 { INL, INL, INL, INL, INL, INL, INL, INL,
299 INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
300 SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
301 SPC, SPC, LOP, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
302 }
303 };
304
305 #undef INL
306 #undef ROT
307 #undef LOP
308 #undef SPC
309
310 enum h8_cpu
311 {
312 H8_300,
313 H8_300H,
314 H8_S
315 };
316
317 /* Initialize various cpu specific globals at start up. */
318
319 static void
320 h8300_option_override (void)
321 {
322 static const char *const h8_push_ops[2] = { "push" , "push.l" };
323 static const char *const h8_pop_ops[2] = { "pop" , "pop.l" };
324 static const char *const h8_mov_ops[2] = { "mov.w", "mov.l" };
325
326 #ifndef OBJECT_FORMAT_ELF
327 if (TARGET_H8300SX)
328 {
329 error ("-msx is not supported in coff");
330 target_flags |= MASK_H8300S;
331 }
332 #endif
333
334 if (TARGET_H8300)
335 {
336 cpu_type = (int) CPU_H8300;
337 h8_reg_names = names_big;
338 }
339 else
340 {
341 /* For this we treat the H8/300H and H8S the same. */
342 cpu_type = (int) CPU_H8300H;
343 h8_reg_names = names_extended;
344 }
345 h8_push_op = h8_push_ops[cpu_type];
346 h8_pop_op = h8_pop_ops[cpu_type];
347 h8_mov_op = h8_mov_ops[cpu_type];
348
349 if (!TARGET_H8300S && TARGET_MAC)
350 {
351 error ("-ms2600 is used without -ms");
352 target_flags |= MASK_H8300S_1;
353 }
354
355 if (TARGET_H8300 && TARGET_NORMAL_MODE)
356 {
357 error ("-mn is used without -mh or -ms or -msx");
358 target_flags ^= MASK_NORMAL_MODE;
359 }
360
361 if (! TARGET_H8300S && TARGET_EXR)
362 {
363 error ("-mexr is used without -ms");
364 target_flags |= MASK_H8300S_1;
365 }
366
367 if (TARGET_H8300 && TARGET_INT32)
368 {
369 error ("-mint32 is not supported for H8300 and H8300L targets");
370 target_flags ^= MASK_INT32;
371 }
372
373 if ((!TARGET_H8300S && TARGET_EXR) && (!TARGET_H8300SX && TARGET_EXR))
374 {
375 error ("-mexr is used without -ms or -msx");
376 target_flags |= MASK_H8300S_1;
377 }
378
379 if ((!TARGET_H8300S && TARGET_NEXR) && (!TARGET_H8300SX && TARGET_NEXR))
380 {
381 warning (OPT_mno_exr, "-mno-exr valid only with -ms or -msx \
382 - Option ignored!");
383 }
384
385 #ifdef H8300_LINUX
386 if ((TARGET_NORMAL_MODE))
387 {
388 error ("-mn is not supported for linux targets");
389 target_flags ^= MASK_NORMAL_MODE;
390 }
391 #endif
392
393 /* Some of the shifts are optimized for speed by default.
394 See http://gcc.gnu.org/ml/gcc-patches/2002-07/msg01858.html
395 If optimizing for size, change shift_alg for those shift to
396 SHIFT_LOOP. */
397 if (optimize_size)
398 {
399 /* H8/300 */
400 shift_alg_hi[H8_300][SHIFT_ASHIFT][5] = SHIFT_LOOP;
401 shift_alg_hi[H8_300][SHIFT_ASHIFT][6] = SHIFT_LOOP;
402 shift_alg_hi[H8_300][SHIFT_ASHIFT][13] = SHIFT_LOOP;
403 shift_alg_hi[H8_300][SHIFT_ASHIFT][14] = SHIFT_LOOP;
404
405 shift_alg_hi[H8_300][SHIFT_LSHIFTRT][13] = SHIFT_LOOP;
406 shift_alg_hi[H8_300][SHIFT_LSHIFTRT][14] = SHIFT_LOOP;
407
408 shift_alg_hi[H8_300][SHIFT_ASHIFTRT][13] = SHIFT_LOOP;
409 shift_alg_hi[H8_300][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
410
411 /* H8/300H */
412 shift_alg_hi[H8_300H][SHIFT_ASHIFT][5] = SHIFT_LOOP;
413 shift_alg_hi[H8_300H][SHIFT_ASHIFT][6] = SHIFT_LOOP;
414
415 shift_alg_hi[H8_300H][SHIFT_LSHIFTRT][5] = SHIFT_LOOP;
416 shift_alg_hi[H8_300H][SHIFT_LSHIFTRT][6] = SHIFT_LOOP;
417
418 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][5] = SHIFT_LOOP;
419 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][6] = SHIFT_LOOP;
420 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][13] = SHIFT_LOOP;
421 shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
422
423 /* H8S */
424 shift_alg_hi[H8_S][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
425 }
426
427 /* Work out a value for MOVE_RATIO. */
428 if (!TARGET_H8300SX)
429 {
430 /* Memory-memory moves are quite expensive without the
431 h8sx instructions. */
432 h8300_move_ratio = 3;
433 }
434 else if (flag_omit_frame_pointer)
435 {
436 /* movmd sequences are fairly cheap when er6 isn't fixed. They can
437 sometimes be as short as two individual memory-to-memory moves,
438 but since they use all the call-saved registers, it seems better
439 to allow up to three moves here. */
440 h8300_move_ratio = 4;
441 }
442 else if (optimize_size)
443 {
444 /* In this case we don't use movmd sequences since they tend
445 to be longer than calls to memcpy(). Memory-to-memory
446 moves are cheaper than for !TARGET_H8300SX, so it makes
447 sense to have a slightly higher threshold. */
448 h8300_move_ratio = 4;
449 }
450 else
451 {
452 /* We use movmd sequences for some moves since it can be quicker
453 than calling memcpy(). The sequences will need to save and
454 restore er6 though, so bump up the cost. */
455 h8300_move_ratio = 6;
456 }
457
458 /* This target defaults to strict volatile bitfields. */
459 if (flag_strict_volatile_bitfields < 0 && abi_version_at_least(2))
460 flag_strict_volatile_bitfields = 1;
461 }
462
463 /* Return the byte register name for a register rtx X. B should be 0
464 if you want a lower byte register. B should be 1 if you want an
465 upper byte register. */
466
467 static const char *
468 byte_reg (rtx x, int b)
469 {
470 static const char *const names_small[] = {
471 "r0l", "r0h", "r1l", "r1h", "r2l", "r2h", "r3l", "r3h",
472 "r4l", "r4h", "r5l", "r5h", "r6l", "r6h", "r7l", "r7h"
473 };
474
475 gcc_assert (REG_P (x));
476
477 return names_small[REGNO (x) * 2 + b];
478 }
479
480 /* REGNO must be saved/restored across calls if this macro is true. */
481
482 #define WORD_REG_USED(regno) \
483 (regno < SP_REG \
484 /* No need to save registers if this function will not return. */ \
485 && ! TREE_THIS_VOLATILE (current_function_decl) \
486 && (h8300_saveall_function_p (current_function_decl) \
487 /* Save any call saved register that was used. */ \
488 || (df_regs_ever_live_p (regno) && !call_used_regs[regno]) \
489 /* Save the frame pointer if it was used. */ \
490 || (regno == HARD_FRAME_POINTER_REGNUM && df_regs_ever_live_p (regno)) \
491 /* Save any register used in an interrupt handler. */ \
492 || (h8300_current_function_interrupt_function_p () \
493 && df_regs_ever_live_p (regno)) \
494 /* Save call clobbered registers in non-leaf interrupt \
495 handlers. */ \
496 || (h8300_current_function_interrupt_function_p () \
497 && call_used_regs[regno] \
498 && !crtl->is_leaf)))
499
500 /* We use this to wrap all emitted insns in the prologue. */
501 static rtx_insn *
502 F (rtx_insn *x, bool set_it)
503 {
504 if (set_it)
505 RTX_FRAME_RELATED_P (x) = 1;
506 return x;
507 }
508
509 /* Mark all the subexpressions of the PARALLEL rtx PAR as
510 frame-related. Return PAR.
511
512 dwarf2out.c:dwarf2out_frame_debug_expr ignores sub-expressions of a
513 PARALLEL rtx other than the first if they do not have the
514 FRAME_RELATED flag set on them. */
515 static rtx
516 Fpa (rtx par)
517 {
518 int len = XVECLEN (par, 0);
519 int i;
520
521 for (i = 0; i < len; i++)
522 RTX_FRAME_RELATED_P (XVECEXP (par, 0, i)) = 1;
523
524 return par;
525 }
526
527 /* Output assembly language to FILE for the operation OP with operand size
528 SIZE to adjust the stack pointer. */
529
530 static void
531 h8300_emit_stack_adjustment (int sign, HOST_WIDE_INT size, bool in_prologue)
532 {
533 /* If the frame size is 0, we don't have anything to do. */
534 if (size == 0)
535 return;
536
537 /* H8/300 cannot add/subtract a large constant with a single
538 instruction. If a temporary register is available, load the
539 constant to it and then do the addition. */
540 if (TARGET_H8300
541 && size > 4
542 && !h8300_current_function_interrupt_function_p ()
543 && !(cfun->static_chain_decl != NULL && sign < 0))
544 {
545 rtx r3 = gen_rtx_REG (Pmode, 3);
546 F (emit_insn (gen_movhi (r3, GEN_INT (sign * size))), in_prologue);
547 F (emit_insn (gen_addhi3 (stack_pointer_rtx,
548 stack_pointer_rtx, r3)), in_prologue);
549 }
550 else
551 {
552 /* The stack adjustment made here is further optimized by the
553 splitter. In case of H8/300, the splitter always splits the
554 addition emitted here to make the adjustment interrupt-safe.
555 FIXME: We don't always tag those, because we don't know what
556 the splitter will do. */
557 if (Pmode == HImode)
558 {
559 rtx_insn *x = emit_insn (gen_addhi3 (stack_pointer_rtx,
560 stack_pointer_rtx,
561 GEN_INT (sign * size)));
562 if (size < 4)
563 F (x, in_prologue);
564 }
565 else
566 F (emit_insn (gen_addsi3 (stack_pointer_rtx,
567 stack_pointer_rtx, GEN_INT (sign * size))), in_prologue);
568 }
569 }
570
571 /* Round up frame size SIZE. */
572
573 static HOST_WIDE_INT
574 round_frame_size (HOST_WIDE_INT size)
575 {
576 return ((size + STACK_BOUNDARY / BITS_PER_UNIT - 1)
577 & -STACK_BOUNDARY / BITS_PER_UNIT);
578 }
579
580 /* Compute which registers to push/pop.
581 Return a bit vector of registers. */
582
583 static unsigned int
584 compute_saved_regs (void)
585 {
586 unsigned int saved_regs = 0;
587 int regno;
588
589 /* Construct a bit vector of registers to be pushed/popped. */
590 for (regno = 0; regno <= HARD_FRAME_POINTER_REGNUM; regno++)
591 {
592 if (WORD_REG_USED (regno))
593 saved_regs |= 1 << regno;
594 }
595
596 /* Don't push/pop the frame pointer as it is treated separately. */
597 if (frame_pointer_needed)
598 saved_regs &= ~(1 << HARD_FRAME_POINTER_REGNUM);
599
600 return saved_regs;
601 }
602
603 /* Emit an insn to push register RN. */
604
605 static rtx
606 push (int rn, bool in_prologue)
607 {
608 rtx reg = gen_rtx_REG (word_mode, rn);
609 rtx x;
610
611 if (TARGET_H8300)
612 x = gen_push_h8300 (reg);
613 else if (!TARGET_NORMAL_MODE)
614 x = gen_push_h8300hs_advanced (reg);
615 else
616 x = gen_push_h8300hs_normal (reg);
617 x = F (emit_insn (x), in_prologue);
618 add_reg_note (x, REG_INC, stack_pointer_rtx);
619 return x;
620 }
621
622 /* Emit an insn to pop register RN. */
623
624 static rtx
625 pop (int rn)
626 {
627 rtx reg = gen_rtx_REG (word_mode, rn);
628 rtx x;
629
630 if (TARGET_H8300)
631 x = gen_pop_h8300 (reg);
632 else if (!TARGET_NORMAL_MODE)
633 x = gen_pop_h8300hs_advanced (reg);
634 else
635 x = gen_pop_h8300hs_normal (reg);
636 x = emit_insn (x);
637 add_reg_note (x, REG_INC, stack_pointer_rtx);
638 return x;
639 }
640
641 /* Emit an instruction to push or pop NREGS consecutive registers
642 starting at register REGNO. POP_P selects a pop rather than a
643 push and RETURN_P is true if the instruction should return.
644
645 It must be possible to do the requested operation in a single
646 instruction. If NREGS == 1 && !RETURN_P, use a normal push
647 or pop insn. Otherwise emit a parallel of the form:
648
649 (parallel
650 [(return) ;; if RETURN_P
651 (save or restore REGNO)
652 (save or restore REGNO + 1)
653 ...
654 (save or restore REGNO + NREGS - 1)
655 (set sp (plus sp (const_int adjust)))] */
656
657 static void
658 h8300_push_pop (int regno, int nregs, bool pop_p, bool return_p)
659 {
660 int i, j;
661 rtvec vec;
662 rtx sp, offset, x;
663
664 /* See whether we can use a simple push or pop. */
665 if (!return_p && nregs == 1)
666 {
667 if (pop_p)
668 pop (regno);
669 else
670 push (regno, false);
671 return;
672 }
673
674 /* We need one element for the return insn, if present, one for each
675 register, and one for stack adjustment. */
676 vec = rtvec_alloc ((return_p ? 1 : 0) + nregs + 1);
677 sp = stack_pointer_rtx;
678 i = 0;
679
680 /* Add the return instruction. */
681 if (return_p)
682 {
683 RTVEC_ELT (vec, i) = ret_rtx;
684 i++;
685 }
686
687 /* Add the register moves. */
688 for (j = 0; j < nregs; j++)
689 {
690 rtx lhs, rhs;
691
692 if (pop_p)
693 {
694 /* Register REGNO + NREGS - 1 is popped first. Before the
695 stack adjustment, its slot is at address @sp. */
696 lhs = gen_rtx_REG (SImode, regno + j);
697 rhs = gen_rtx_MEM (SImode, plus_constant (Pmode, sp,
698 (nregs - j - 1) * 4));
699 }
700 else
701 {
702 /* Register REGNO is pushed first and will be stored at @(-4,sp). */
703 lhs = gen_rtx_MEM (SImode, plus_constant (Pmode, sp, (j + 1) * -4));
704 rhs = gen_rtx_REG (SImode, regno + j);
705 }
706 RTVEC_ELT (vec, i + j) = gen_rtx_SET (lhs, rhs);
707 }
708
709 /* Add the stack adjustment. */
710 offset = GEN_INT ((pop_p ? nregs : -nregs) * 4);
711 RTVEC_ELT (vec, i + j) = gen_rtx_SET (sp, gen_rtx_PLUS (Pmode, sp, offset));
712
713 x = gen_rtx_PARALLEL (VOIDmode, vec);
714 if (!pop_p)
715 x = Fpa (x);
716
717 if (return_p)
718 emit_jump_insn (x);
719 else
720 emit_insn (x);
721 }
722
723 /* Return true if X has the value sp + OFFSET. */
724
725 static int
726 h8300_stack_offset_p (rtx x, int offset)
727 {
728 if (offset == 0)
729 return x == stack_pointer_rtx;
730
731 return (GET_CODE (x) == PLUS
732 && XEXP (x, 0) == stack_pointer_rtx
733 && GET_CODE (XEXP (x, 1)) == CONST_INT
734 && INTVAL (XEXP (x, 1)) == offset);
735 }
736
737 /* A subroutine of h8300_ldm_stm_parallel. X is one pattern in
738 something that may be an ldm or stm instruction. If it fits
739 the required template, return the register it loads or stores,
740 otherwise return -1.
741
742 LOAD_P is true if X should be a load, false if it should be a store.
743 NREGS is the number of registers that the whole instruction is expected
744 to load or store. INDEX is the index of the register that X should
745 load or store, relative to the lowest-numbered register. */
746
747 static int
748 h8300_ldm_stm_regno (rtx x, int load_p, int index, int nregs)
749 {
750 int regindex, memindex, offset;
751
752 if (load_p)
753 regindex = 0, memindex = 1, offset = (nregs - index - 1) * 4;
754 else
755 memindex = 0, regindex = 1, offset = (index + 1) * -4;
756
757 if (GET_CODE (x) == SET
758 && GET_CODE (XEXP (x, regindex)) == REG
759 && GET_CODE (XEXP (x, memindex)) == MEM
760 && h8300_stack_offset_p (XEXP (XEXP (x, memindex), 0), offset))
761 return REGNO (XEXP (x, regindex));
762
763 return -1;
764 }
765
766 /* Return true if the elements of VEC starting at FIRST describe an
767 ldm or stm instruction (LOAD_P says which). */
768
769 int
770 h8300_ldm_stm_parallel (rtvec vec, int load_p, int first)
771 {
772 rtx last;
773 int nregs, i, regno, adjust;
774
775 /* There must be a stack adjustment, a register move, and at least one
776 other operation (a return or another register move). */
777 if (GET_NUM_ELEM (vec) < 3)
778 return false;
779
780 /* Get the range of registers to be pushed or popped. */
781 nregs = GET_NUM_ELEM (vec) - first - 1;
782 regno = h8300_ldm_stm_regno (RTVEC_ELT (vec, first), load_p, 0, nregs);
783
784 /* Check that the call to h8300_ldm_stm_regno succeeded and
785 that we're only dealing with GPRs. */
786 if (regno < 0 || regno + nregs > 8)
787 return false;
788
789 /* 2-register h8s instructions must start with an even-numbered register.
790 3- and 4-register instructions must start with er0 or er4. */
791 if (!TARGET_H8300SX)
792 {
793 if ((regno & 1) != 0)
794 return false;
795 if (nregs > 2 && (regno & 3) != 0)
796 return false;
797 }
798
799 /* Check the other loads or stores. */
800 for (i = 1; i < nregs; i++)
801 if (h8300_ldm_stm_regno (RTVEC_ELT (vec, first + i), load_p, i, nregs)
802 != regno + i)
803 return false;
804
805 /* Check the stack adjustment. */
806 last = RTVEC_ELT (vec, first + nregs);
807 adjust = (load_p ? nregs : -nregs) * 4;
808 return (GET_CODE (last) == SET
809 && SET_DEST (last) == stack_pointer_rtx
810 && h8300_stack_offset_p (SET_SRC (last), adjust));
811 }
812
813 /* This is what the stack looks like after the prolog of
814 a function with a frame has been set up:
815
816 <args>
817 PC
818 FP <- fp
819 <locals>
820 <saved registers> <- sp
821
822 This is what the stack looks like after the prolog of
823 a function which doesn't have a frame:
824
825 <args>
826 PC
827 <locals>
828 <saved registers> <- sp
829 */
830
831 /* Generate RTL code for the function prologue. */
832
833 void
834 h8300_expand_prologue (void)
835 {
836 int regno;
837 int saved_regs;
838 int n_regs;
839
840 /* If the current function has the OS_Task attribute set, then
841 we have a naked prologue. */
842 if (h8300_os_task_function_p (current_function_decl))
843 return;
844
845 if (h8300_monitor_function_p (current_function_decl))
846 /* The monitor function act as normal functions, which means it
847 can accept parameters and return values. In addition to this,
848 interrupts are masked in prologue and return with "rte" in epilogue. */
849 emit_insn (gen_monitor_prologue ());
850
851 if (frame_pointer_needed)
852 {
853 /* Push fp. */
854 push (HARD_FRAME_POINTER_REGNUM, true);
855 F (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx), true);
856 }
857
858 /* Push the rest of the registers in ascending order. */
859 saved_regs = compute_saved_regs ();
860 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno += n_regs)
861 {
862 n_regs = 1;
863 if (saved_regs & (1 << regno))
864 {
865 if (TARGET_H8300S)
866 {
867 /* See how many registers we can push at the same time. */
868 if ((!TARGET_H8300SX || (regno & 3) == 0)
869 && ((saved_regs >> regno) & 0x0f) == 0x0f)
870 n_regs = 4;
871
872 else if ((!TARGET_H8300SX || (regno & 3) == 0)
873 && ((saved_regs >> regno) & 0x07) == 0x07)
874 n_regs = 3;
875
876 else if ((!TARGET_H8300SX || (regno & 1) == 0)
877 && ((saved_regs >> regno) & 0x03) == 0x03)
878 n_regs = 2;
879 }
880
881 h8300_push_pop (regno, n_regs, false, false);
882 }
883 }
884
885 /* Leave room for locals. */
886 h8300_emit_stack_adjustment (-1, round_frame_size (get_frame_size ()), true);
887
888 if (flag_stack_usage_info)
889 current_function_static_stack_size
890 = round_frame_size (get_frame_size ())
891 + (__builtin_popcount (saved_regs) * UNITS_PER_WORD)
892 + (frame_pointer_needed ? UNITS_PER_WORD : 0);
893 }
894
895 /* Return nonzero if we can use "rts" for the function currently being
896 compiled. */
897
898 int
899 h8300_can_use_return_insn_p (void)
900 {
901 return (reload_completed
902 && !frame_pointer_needed
903 && get_frame_size () == 0
904 && compute_saved_regs () == 0);
905 }
906
907 /* Generate RTL code for the function epilogue. */
908
909 void
910 h8300_expand_epilogue (void)
911 {
912 int regno;
913 int saved_regs;
914 int n_regs;
915 HOST_WIDE_INT frame_size;
916 bool returned_p;
917
918 if (h8300_os_task_function_p (current_function_decl))
919 /* OS_Task epilogues are nearly naked -- they just have an
920 rts instruction. */
921 return;
922
923 frame_size = round_frame_size (get_frame_size ());
924 returned_p = false;
925
926 /* Deallocate locals. */
927 h8300_emit_stack_adjustment (1, frame_size, false);
928
929 /* Pop the saved registers in descending order. */
930 saved_regs = compute_saved_regs ();
931 for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno -= n_regs)
932 {
933 n_regs = 1;
934 if (saved_regs & (1 << regno))
935 {
936 if (TARGET_H8300S)
937 {
938 /* See how many registers we can pop at the same time. */
939 if ((TARGET_H8300SX || (regno & 3) == 3)
940 && ((saved_regs << 3 >> regno) & 0x0f) == 0x0f)
941 n_regs = 4;
942
943 else if ((TARGET_H8300SX || (regno & 3) == 2)
944 && ((saved_regs << 2 >> regno) & 0x07) == 0x07)
945 n_regs = 3;
946
947 else if ((TARGET_H8300SX || (regno & 1) == 1)
948 && ((saved_regs << 1 >> regno) & 0x03) == 0x03)
949 n_regs = 2;
950 }
951
952 /* See if this pop would be the last insn before the return.
953 If so, use rte/l or rts/l instead of pop or ldm.l. */
954 if (TARGET_H8300SX
955 && !frame_pointer_needed
956 && frame_size == 0
957 && (saved_regs & ((1 << (regno - n_regs + 1)) - 1)) == 0)
958 returned_p = true;
959
960 h8300_push_pop (regno - n_regs + 1, n_regs, true, returned_p);
961 }
962 }
963
964 /* Pop frame pointer if we had one. */
965 if (frame_pointer_needed)
966 {
967 if (TARGET_H8300SX)
968 returned_p = true;
969 h8300_push_pop (HARD_FRAME_POINTER_REGNUM, 1, true, returned_p);
970 }
971
972 if (!returned_p)
973 emit_jump_insn (ret_rtx);
974 }
975
976 /* Return nonzero if the current function is an interrupt
977 function. */
978
979 int
980 h8300_current_function_interrupt_function_p (void)
981 {
982 return (h8300_interrupt_function_p (current_function_decl));
983 }
984
985 int
986 h8300_current_function_monitor_function_p ()
987 {
988 return (h8300_monitor_function_p (current_function_decl));
989 }
990
991 /* Output assembly code for the start of the file. */
992
993 static void
994 h8300_file_start (void)
995 {
996 default_file_start ();
997
998 if (TARGET_H8300SX)
999 fputs (TARGET_NORMAL_MODE ? "\t.h8300sxn\n" : "\t.h8300sx\n", asm_out_file);
1000 else if (TARGET_H8300S)
1001 fputs (TARGET_NORMAL_MODE ? "\t.h8300sn\n" : "\t.h8300s\n", asm_out_file);
1002 else if (TARGET_H8300H)
1003 fputs (TARGET_NORMAL_MODE ? "\t.h8300hn\n" : "\t.h8300h\n", asm_out_file);
1004 }
1005
1006 /* Output assembly language code for the end of file. */
1007
1008 static void
1009 h8300_file_end (void)
1010 {
1011 fputs ("\t.end\n", asm_out_file);
1012 }
1013 \f
1014 /* Split an add of a small constant into two adds/subs insns.
1015
1016 If USE_INCDEC_P is nonzero, we generate the last insn using inc/dec
1017 instead of adds/subs. */
1018
1019 void
1020 split_adds_subs (machine_mode mode, rtx *operands)
1021 {
1022 HOST_WIDE_INT val = INTVAL (operands[1]);
1023 rtx reg = operands[0];
1024 HOST_WIDE_INT sign = 1;
1025 HOST_WIDE_INT amount;
1026 rtx (*gen_add) (rtx, rtx, rtx);
1027
1028 /* Force VAL to be positive so that we do not have to consider the
1029 sign. */
1030 if (val < 0)
1031 {
1032 val = -val;
1033 sign = -1;
1034 }
1035
1036 switch (mode)
1037 {
1038 case E_HImode:
1039 gen_add = gen_addhi3;
1040 break;
1041
1042 case E_SImode:
1043 gen_add = gen_addsi3;
1044 break;
1045
1046 default:
1047 gcc_unreachable ();
1048 }
1049
1050 /* Try different amounts in descending order. */
1051 for (amount = (TARGET_H8300H || TARGET_H8300S) ? 4 : 2;
1052 amount > 0;
1053 amount /= 2)
1054 {
1055 for (; val >= amount; val -= amount)
1056 emit_insn (gen_add (reg, reg, GEN_INT (sign * amount)));
1057 }
1058
1059 return;
1060 }
1061
1062 /* Handle machine specific pragmas for compatibility with existing
1063 compilers for the H8/300.
1064
1065 pragma saveall generates prologue/epilogue code which saves and
1066 restores all the registers on function entry.
1067
1068 pragma interrupt saves and restores all registers, and exits with
1069 an rte instruction rather than an rts. A pointer to a function
1070 with this attribute may be safely used in an interrupt vector. */
1071
1072 void
1073 h8300_pr_interrupt (struct cpp_reader *pfile ATTRIBUTE_UNUSED)
1074 {
1075 pragma_interrupt = 1;
1076 }
1077
1078 void
1079 h8300_pr_saveall (struct cpp_reader *pfile ATTRIBUTE_UNUSED)
1080 {
1081 pragma_saveall = 1;
1082 }
1083
1084 /* If the next function argument with MODE and TYPE is to be passed in
1085 a register, return a reg RTX for the hard register in which to pass
1086 the argument. CUM represents the state after the last argument.
1087 If the argument is to be pushed, NULL_RTX is returned.
1088
1089 On the H8/300 all normal args are pushed, unless -mquickcall in which
1090 case the first 3 arguments are passed in registers. */
1091
1092 static rtx
1093 h8300_function_arg (cumulative_args_t cum_v, machine_mode mode,
1094 const_tree type, bool named)
1095 {
1096 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1097
1098 static const char *const hand_list[] = {
1099 "__main",
1100 "__cmpsi2",
1101 "__divhi3",
1102 "__modhi3",
1103 "__udivhi3",
1104 "__umodhi3",
1105 "__divsi3",
1106 "__modsi3",
1107 "__udivsi3",
1108 "__umodsi3",
1109 "__mulhi3",
1110 "__mulsi3",
1111 "__reg_memcpy",
1112 "__reg_memset",
1113 "__ucmpsi2",
1114 0,
1115 };
1116
1117 rtx result = NULL_RTX;
1118 const char *fname;
1119 int regpass = 0;
1120
1121 /* Never pass unnamed arguments in registers. */
1122 if (!named)
1123 return NULL_RTX;
1124
1125 /* Pass 3 regs worth of data in regs when user asked on the command line. */
1126 if (TARGET_QUICKCALL)
1127 regpass = 3;
1128
1129 /* If calling hand written assembler, use 4 regs of args. */
1130 if (cum->libcall)
1131 {
1132 const char * const *p;
1133
1134 fname = XSTR (cum->libcall, 0);
1135
1136 /* See if this libcall is one of the hand coded ones. */
1137 for (p = hand_list; *p && strcmp (*p, fname) != 0; p++)
1138 ;
1139
1140 if (*p)
1141 regpass = 4;
1142 }
1143
1144 if (regpass)
1145 {
1146 int size;
1147
1148 if (mode == BLKmode)
1149 size = int_size_in_bytes (type);
1150 else
1151 size = GET_MODE_SIZE (mode);
1152
1153 if (size + cum->nbytes <= regpass * UNITS_PER_WORD
1154 && cum->nbytes / UNITS_PER_WORD <= 3)
1155 result = gen_rtx_REG (mode, cum->nbytes / UNITS_PER_WORD);
1156 }
1157
1158 return result;
1159 }
1160
1161 /* Update the data in CUM to advance over an argument
1162 of mode MODE and data type TYPE.
1163 (TYPE is null for libcalls where that information may not be available.) */
1164
1165 static void
1166 h8300_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
1167 const_tree type, bool named ATTRIBUTE_UNUSED)
1168 {
1169 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1170
1171 cum->nbytes += (mode != BLKmode
1172 ? (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD
1173 : (int_size_in_bytes (type) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD);
1174 }
1175
1176 \f
1177 /* Implements TARGET_REGISTER_MOVE_COST.
1178
1179 Any SI register-to-register move may need to be reloaded,
1180 so inmplement h8300_register_move_cost to return > 2 so that reload never
1181 shortcuts. */
1182
1183 static int
1184 h8300_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
1185 reg_class_t from, reg_class_t to)
1186 {
1187 if (from == MAC_REGS || to == MAC_REG)
1188 return 6;
1189 else
1190 return 3;
1191 }
1192
1193 /* Compute the cost of an and insn. */
1194
1195 static int
1196 h8300_and_costs (rtx x)
1197 {
1198 rtx operands[4];
1199
1200 if (GET_MODE (x) == QImode)
1201 return 1;
1202
1203 if (GET_MODE (x) != HImode
1204 && GET_MODE (x) != SImode)
1205 return 100;
1206
1207 operands[0] = NULL;
1208 operands[1] = XEXP (x, 0);
1209 operands[2] = XEXP (x, 1);
1210 operands[3] = x;
1211 return compute_logical_op_length (GET_MODE (x), operands) / 2;
1212 }
1213
1214 /* Compute the cost of a shift insn. */
1215
1216 static int
1217 h8300_shift_costs (rtx x)
1218 {
1219 rtx operands[4];
1220
1221 if (GET_MODE (x) != QImode
1222 && GET_MODE (x) != HImode
1223 && GET_MODE (x) != SImode)
1224 return 100;
1225
1226 operands[0] = NULL;
1227 operands[1] = NULL;
1228 operands[2] = XEXP (x, 1);
1229 operands[3] = x;
1230 return compute_a_shift_length (NULL, operands) / 2;
1231 }
1232
1233 /* Worker function for TARGET_RTX_COSTS. */
1234
1235 static bool
1236 h8300_rtx_costs (rtx x, machine_mode mode ATTRIBUTE_UNUSED, int outer_code,
1237 int opno ATTRIBUTE_UNUSED, int *total, bool speed)
1238 {
1239 int code = GET_CODE (x);
1240
1241 if (TARGET_H8300SX && outer_code == MEM)
1242 {
1243 /* Estimate the number of execution states needed to calculate
1244 the address. */
1245 if (register_operand (x, VOIDmode)
1246 || GET_CODE (x) == POST_INC
1247 || GET_CODE (x) == POST_DEC
1248 || CONSTANT_P (x))
1249 *total = 0;
1250 else
1251 *total = COSTS_N_INSNS (1);
1252 return true;
1253 }
1254
1255 switch (code)
1256 {
1257 case CONST_INT:
1258 {
1259 HOST_WIDE_INT n = INTVAL (x);
1260
1261 if (TARGET_H8300SX)
1262 {
1263 /* Constant operands need the same number of processor
1264 states as register operands. Although we could try to
1265 use a size-based cost for !speed, the lack of
1266 of a mode makes the results very unpredictable. */
1267 *total = 0;
1268 return true;
1269 }
1270 if (n >= -4 && n <= 4)
1271 {
1272 switch ((int) n)
1273 {
1274 case 0:
1275 *total = 0;
1276 return true;
1277 case 1:
1278 case 2:
1279 case -1:
1280 case -2:
1281 *total = 0 + (outer_code == SET);
1282 return true;
1283 case 4:
1284 case -4:
1285 if (TARGET_H8300H || TARGET_H8300S)
1286 *total = 0 + (outer_code == SET);
1287 else
1288 *total = 1;
1289 return true;
1290 }
1291 }
1292 *total = 1;
1293 return true;
1294 }
1295
1296 case CONST:
1297 case LABEL_REF:
1298 case SYMBOL_REF:
1299 if (TARGET_H8300SX)
1300 {
1301 /* See comment for CONST_INT. */
1302 *total = 0;
1303 return true;
1304 }
1305 *total = 3;
1306 return true;
1307
1308 case CONST_DOUBLE:
1309 *total = 20;
1310 return true;
1311
1312 case COMPARE:
1313 if (XEXP (x, 1) == const0_rtx)
1314 *total = 0;
1315 return false;
1316
1317 case AND:
1318 if (!h8300_dst_operand (XEXP (x, 0), VOIDmode)
1319 || !h8300_src_operand (XEXP (x, 1), VOIDmode))
1320 return false;
1321 *total = COSTS_N_INSNS (h8300_and_costs (x));
1322 return true;
1323
1324 /* We say that MOD and DIV are so expensive because otherwise we'll
1325 generate some really horrible code for division of a power of two. */
1326 case MOD:
1327 case DIV:
1328 case UMOD:
1329 case UDIV:
1330 if (TARGET_H8300SX)
1331 switch (GET_MODE (x))
1332 {
1333 case E_QImode:
1334 case E_HImode:
1335 *total = COSTS_N_INSNS (!speed ? 4 : 10);
1336 return false;
1337
1338 case E_SImode:
1339 *total = COSTS_N_INSNS (!speed ? 4 : 18);
1340 return false;
1341
1342 default:
1343 break;
1344 }
1345 *total = COSTS_N_INSNS (12);
1346 return true;
1347
1348 case MULT:
1349 if (TARGET_H8300SX)
1350 switch (GET_MODE (x))
1351 {
1352 case E_QImode:
1353 case E_HImode:
1354 *total = COSTS_N_INSNS (2);
1355 return false;
1356
1357 case E_SImode:
1358 *total = COSTS_N_INSNS (5);
1359 return false;
1360
1361 default:
1362 break;
1363 }
1364 *total = COSTS_N_INSNS (4);
1365 return true;
1366
1367 case ASHIFT:
1368 case ASHIFTRT:
1369 case LSHIFTRT:
1370 if (h8sx_binary_shift_operator (x, VOIDmode))
1371 {
1372 *total = COSTS_N_INSNS (2);
1373 return false;
1374 }
1375 else if (h8sx_unary_shift_operator (x, VOIDmode))
1376 {
1377 *total = COSTS_N_INSNS (1);
1378 return false;
1379 }
1380 *total = COSTS_N_INSNS (h8300_shift_costs (x));
1381 return true;
1382
1383 case ROTATE:
1384 case ROTATERT:
1385 if (GET_MODE (x) == HImode)
1386 *total = 2;
1387 else
1388 *total = 8;
1389 return true;
1390
1391 default:
1392 *total = COSTS_N_INSNS (1);
1393 return false;
1394 }
1395 }
1396 \f
1397 /* Documentation for the machine specific operand escapes:
1398
1399 'E' like s but negative.
1400 'F' like t but negative.
1401 'G' constant just the negative
1402 'R' print operand as a byte:8 address if appropriate, else fall back to
1403 'X' handling.
1404 'S' print operand as a long word
1405 'T' print operand as a word
1406 'V' find the set bit, and print its number.
1407 'W' find the clear bit, and print its number.
1408 'X' print operand as a byte
1409 'Y' print either l or h depending on whether last 'Z' operand < 8 or >= 8.
1410 If this operand isn't a register, fall back to 'R' handling.
1411 'Z' print int & 7.
1412 'c' print the opcode corresponding to rtl
1413 'e' first word of 32-bit value - if reg, then least reg. if mem
1414 then least. if const then most sig word
1415 'f' second word of 32-bit value - if reg, then biggest reg. if mem
1416 then +2. if const then least sig word
1417 'j' print operand as condition code.
1418 'k' print operand as reverse condition code.
1419 'm' convert an integer operand to a size suffix (.b, .w or .l)
1420 'o' print an integer without a leading '#'
1421 's' print as low byte of 16-bit value
1422 't' print as high byte of 16-bit value
1423 'w' print as low byte of 32-bit value
1424 'x' print as 2nd byte of 32-bit value
1425 'y' print as 3rd byte of 32-bit value
1426 'z' print as msb of 32-bit value
1427 */
1428
1429 /* Return assembly language string which identifies a comparison type. */
1430
1431 static const char *
1432 cond_string (enum rtx_code code)
1433 {
1434 switch (code)
1435 {
1436 case NE:
1437 return "ne";
1438 case EQ:
1439 return "eq";
1440 case GE:
1441 return "ge";
1442 case GT:
1443 return "gt";
1444 case LE:
1445 return "le";
1446 case LT:
1447 return "lt";
1448 case GEU:
1449 return "hs";
1450 case GTU:
1451 return "hi";
1452 case LEU:
1453 return "ls";
1454 case LTU:
1455 return "lo";
1456 default:
1457 gcc_unreachable ();
1458 }
1459 }
1460
1461 /* Print operand X using operand code CODE to assembly language output file
1462 FILE. */
1463
1464 static void
1465 h8300_print_operand (FILE *file, rtx x, int code)
1466 {
1467 /* This is used for communication between codes V,W,Z and Y. */
1468 static int bitint;
1469
1470 switch (code)
1471 {
1472 case 'C':
1473 if (h8300_constant_length (x) == 2)
1474 fprintf (file, ":16");
1475 else
1476 fprintf (file, ":32");
1477 return;
1478 case 'E':
1479 switch (GET_CODE (x))
1480 {
1481 case REG:
1482 fprintf (file, "%sl", names_big[REGNO (x)]);
1483 break;
1484 case CONST_INT:
1485 fprintf (file, "#%ld", (-INTVAL (x)) & 0xff);
1486 break;
1487 default:
1488 gcc_unreachable ();
1489 }
1490 break;
1491 case 'F':
1492 switch (GET_CODE (x))
1493 {
1494 case REG:
1495 fprintf (file, "%sh", names_big[REGNO (x)]);
1496 break;
1497 case CONST_INT:
1498 fprintf (file, "#%ld", ((-INTVAL (x)) & 0xff00) >> 8);
1499 break;
1500 default:
1501 gcc_unreachable ();
1502 }
1503 break;
1504 case 'G':
1505 gcc_assert (GET_CODE (x) == CONST_INT);
1506 fprintf (file, "#%ld", 0xff & (-INTVAL (x)));
1507 break;
1508 case 'S':
1509 if (GET_CODE (x) == REG)
1510 fprintf (file, "%s", names_extended[REGNO (x)]);
1511 else
1512 goto def;
1513 break;
1514 case 'T':
1515 if (GET_CODE (x) == REG)
1516 fprintf (file, "%s", names_big[REGNO (x)]);
1517 else
1518 goto def;
1519 break;
1520 case 'V':
1521 bitint = (INTVAL (x) & 0xffff);
1522 if ((exact_log2 ((bitint >> 8) & 0xff)) == -1)
1523 bitint = exact_log2 (bitint & 0xff);
1524 else
1525 bitint = exact_log2 ((bitint >> 8) & 0xff);
1526 gcc_assert (bitint >= 0);
1527 fprintf (file, "#%d", bitint);
1528 break;
1529 case 'W':
1530 bitint = ((~INTVAL (x)) & 0xffff);
1531 if ((exact_log2 ((bitint >> 8) & 0xff)) == -1 )
1532 bitint = exact_log2 (bitint & 0xff);
1533 else
1534 bitint = (exact_log2 ((bitint >> 8) & 0xff));
1535 gcc_assert (bitint >= 0);
1536 fprintf (file, "#%d", bitint);
1537 break;
1538 case 'R':
1539 case 'X':
1540 if (GET_CODE (x) == REG)
1541 fprintf (file, "%s", byte_reg (x, 0));
1542 else
1543 goto def;
1544 break;
1545 case 'Y':
1546 gcc_assert (bitint >= 0);
1547 if (GET_CODE (x) == REG)
1548 fprintf (file, "%s%c", names_big[REGNO (x)], bitint > 7 ? 'h' : 'l');
1549 else
1550 h8300_print_operand (file, x, 'R');
1551 bitint = -1;
1552 break;
1553 case 'Z':
1554 bitint = INTVAL (x);
1555 fprintf (file, "#%d", bitint & 7);
1556 break;
1557 case 'c':
1558 switch (GET_CODE (x))
1559 {
1560 case IOR:
1561 fprintf (file, "or");
1562 break;
1563 case XOR:
1564 fprintf (file, "xor");
1565 break;
1566 case AND:
1567 fprintf (file, "and");
1568 break;
1569 default:
1570 break;
1571 }
1572 break;
1573 case 'e':
1574 switch (GET_CODE (x))
1575 {
1576 case REG:
1577 if (TARGET_H8300)
1578 fprintf (file, "%s", names_big[REGNO (x)]);
1579 else
1580 fprintf (file, "%s", names_upper_extended[REGNO (x)]);
1581 break;
1582 case MEM:
1583 h8300_print_operand (file, x, 0);
1584 break;
1585 case CONST_INT:
1586 fprintf (file, "#%ld", ((INTVAL (x) >> 16) & 0xffff));
1587 break;
1588 case CONST_DOUBLE:
1589 {
1590 long val;
1591 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), val);
1592 fprintf (file, "#%ld", ((val >> 16) & 0xffff));
1593 break;
1594 }
1595 default:
1596 gcc_unreachable ();
1597 break;
1598 }
1599 break;
1600 case 'f':
1601 switch (GET_CODE (x))
1602 {
1603 case REG:
1604 if (TARGET_H8300)
1605 fprintf (file, "%s", names_big[REGNO (x) + 1]);
1606 else
1607 fprintf (file, "%s", names_big[REGNO (x)]);
1608 break;
1609 case MEM:
1610 x = adjust_address (x, HImode, 2);
1611 h8300_print_operand (file, x, 0);
1612 break;
1613 case CONST_INT:
1614 fprintf (file, "#%ld", INTVAL (x) & 0xffff);
1615 break;
1616 case CONST_DOUBLE:
1617 {
1618 long val;
1619 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), val);
1620 fprintf (file, "#%ld", (val & 0xffff));
1621 break;
1622 }
1623 default:
1624 gcc_unreachable ();
1625 }
1626 break;
1627 case 'j':
1628 fputs (cond_string (GET_CODE (x)), file);
1629 break;
1630 case 'k':
1631 fputs (cond_string (reverse_condition (GET_CODE (x))), file);
1632 break;
1633 case 'm':
1634 gcc_assert (GET_CODE (x) == CONST_INT);
1635 switch (INTVAL (x))
1636 {
1637 case 1:
1638 fputs (".b", file);
1639 break;
1640
1641 case 2:
1642 fputs (".w", file);
1643 break;
1644
1645 case 4:
1646 fputs (".l", file);
1647 break;
1648
1649 default:
1650 gcc_unreachable ();
1651 }
1652 break;
1653 case 'o':
1654 h8300_print_operand_address (file, VOIDmode, x);
1655 break;
1656 case 's':
1657 if (GET_CODE (x) == CONST_INT)
1658 fprintf (file, "#%ld", (INTVAL (x)) & 0xff);
1659 else
1660 fprintf (file, "%s", byte_reg (x, 0));
1661 break;
1662 case 't':
1663 if (GET_CODE (x) == CONST_INT)
1664 fprintf (file, "#%ld", (INTVAL (x) >> 8) & 0xff);
1665 else
1666 fprintf (file, "%s", byte_reg (x, 1));
1667 break;
1668 case 'w':
1669 if (GET_CODE (x) == CONST_INT)
1670 fprintf (file, "#%ld", INTVAL (x) & 0xff);
1671 else
1672 fprintf (file, "%s",
1673 byte_reg (x, TARGET_H8300 ? 2 : 0));
1674 break;
1675 case 'x':
1676 if (GET_CODE (x) == CONST_INT)
1677 fprintf (file, "#%ld", (INTVAL (x) >> 8) & 0xff);
1678 else
1679 fprintf (file, "%s",
1680 byte_reg (x, TARGET_H8300 ? 3 : 1));
1681 break;
1682 case 'y':
1683 if (GET_CODE (x) == CONST_INT)
1684 fprintf (file, "#%ld", (INTVAL (x) >> 16) & 0xff);
1685 else
1686 fprintf (file, "%s", byte_reg (x, 0));
1687 break;
1688 case 'z':
1689 if (GET_CODE (x) == CONST_INT)
1690 fprintf (file, "#%ld", (INTVAL (x) >> 24) & 0xff);
1691 else
1692 fprintf (file, "%s", byte_reg (x, 1));
1693 break;
1694
1695 default:
1696 def:
1697 switch (GET_CODE (x))
1698 {
1699 case REG:
1700 switch (GET_MODE (x))
1701 {
1702 case E_QImode:
1703 #if 0 /* Is it asm ("mov.b %0,r2l", ...) */
1704 fprintf (file, "%s", byte_reg (x, 0));
1705 #else /* ... or is it asm ("mov.b %0l,r2l", ...) */
1706 fprintf (file, "%s", names_big[REGNO (x)]);
1707 #endif
1708 break;
1709 case E_HImode:
1710 fprintf (file, "%s", names_big[REGNO (x)]);
1711 break;
1712 case E_SImode:
1713 case E_SFmode:
1714 fprintf (file, "%s", names_extended[REGNO (x)]);
1715 break;
1716 default:
1717 gcc_unreachable ();
1718 }
1719 break;
1720
1721 case MEM:
1722 {
1723 rtx addr = XEXP (x, 0);
1724
1725 fprintf (file, "@");
1726 output_address (GET_MODE (x), addr);
1727
1728 /* Add a length suffix to constant addresses. Although this
1729 is often unnecessary, it helps to avoid ambiguity in the
1730 syntax of mova. If we wrote an insn like:
1731
1732 mova/w.l @(1,@foo.b),er0
1733
1734 then .b would be considered part of the symbol name.
1735 Adding a length after foo will avoid this. */
1736 if (CONSTANT_P (addr))
1737 switch (code)
1738 {
1739 case 'R':
1740 /* Used for mov.b and bit operations. */
1741 if (h8300_eightbit_constant_address_p (addr))
1742 {
1743 fprintf (file, ":8");
1744 break;
1745 }
1746
1747 /* FALLTHRU */
1748
1749 /* We should not get here if we are processing bit
1750 operations on H8/300 or H8/300H because 'U'
1751 constraint does not allow bit operations on the
1752 tiny area on these machines. */
1753
1754 case 'X':
1755 case 'T':
1756 case 'S':
1757 if (h8300_constant_length (addr) == 2)
1758 fprintf (file, ":16");
1759 else
1760 fprintf (file, ":32");
1761 break;
1762 default:
1763 break;
1764 }
1765 }
1766 break;
1767
1768 case CONST_INT:
1769 case SYMBOL_REF:
1770 case CONST:
1771 case LABEL_REF:
1772 fprintf (file, "#");
1773 h8300_print_operand_address (file, VOIDmode, x);
1774 break;
1775 case CONST_DOUBLE:
1776 {
1777 long val;
1778 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), val);
1779 fprintf (file, "#%ld", val);
1780 break;
1781 }
1782 default:
1783 break;
1784 }
1785 }
1786 }
1787
1788 /* Implements TARGET_PRINT_OPERAND_PUNCT_VALID_P. */
1789
1790 static bool
1791 h8300_print_operand_punct_valid_p (unsigned char code)
1792 {
1793 return (code == '#');
1794 }
1795
1796 /* Output assembly language output for the address ADDR to FILE. */
1797
1798 static void
1799 h8300_print_operand_address (FILE *file, machine_mode mode, rtx addr)
1800 {
1801 rtx index;
1802 int size;
1803
1804 switch (GET_CODE (addr))
1805 {
1806 case REG:
1807 fprintf (file, "%s", h8_reg_names[REGNO (addr)]);
1808 break;
1809
1810 case PRE_DEC:
1811 fprintf (file, "-%s", h8_reg_names[REGNO (XEXP (addr, 0))]);
1812 break;
1813
1814 case POST_INC:
1815 fprintf (file, "%s+", h8_reg_names[REGNO (XEXP (addr, 0))]);
1816 break;
1817
1818 case PRE_INC:
1819 fprintf (file, "+%s", h8_reg_names[REGNO (XEXP (addr, 0))]);
1820 break;
1821
1822 case POST_DEC:
1823 fprintf (file, "%s-", h8_reg_names[REGNO (XEXP (addr, 0))]);
1824 break;
1825
1826 case PLUS:
1827 fprintf (file, "(");
1828
1829 index = h8300_get_index (XEXP (addr, 0), VOIDmode, &size);
1830 if (GET_CODE (index) == REG)
1831 {
1832 /* reg,foo */
1833 h8300_print_operand_address (file, mode, XEXP (addr, 1));
1834 fprintf (file, ",");
1835 switch (size)
1836 {
1837 case 0:
1838 h8300_print_operand_address (file, mode, index);
1839 break;
1840
1841 case 1:
1842 h8300_print_operand (file, index, 'X');
1843 fputs (".b", file);
1844 break;
1845
1846 case 2:
1847 h8300_print_operand (file, index, 'T');
1848 fputs (".w", file);
1849 break;
1850
1851 case 4:
1852 h8300_print_operand (file, index, 'S');
1853 fputs (".l", file);
1854 break;
1855 }
1856 /* h8300_print_operand_address (file, XEXP (addr, 0)); */
1857 }
1858 else
1859 {
1860 /* foo+k */
1861 h8300_print_operand_address (file, mode, XEXP (addr, 0));
1862 fprintf (file, "+");
1863 h8300_print_operand_address (file, mode, XEXP (addr, 1));
1864 }
1865 fprintf (file, ")");
1866 break;
1867
1868 case CONST_INT:
1869 {
1870 /* Since the H8/300 only has 16-bit pointers, negative values are also
1871 those >= 32768. This happens for example with pointer minus a
1872 constant. We don't want to turn (char *p - 2) into
1873 (char *p + 65534) because loop unrolling can build upon this
1874 (IE: char *p + 131068). */
1875 int n = INTVAL (addr);
1876 if (TARGET_H8300)
1877 n = (int) (short) n;
1878 fprintf (file, "%d", n);
1879 break;
1880 }
1881
1882 default:
1883 output_addr_const (file, addr);
1884 break;
1885 }
1886 }
1887 \f
1888 /* Output all insn addresses and their sizes into the assembly language
1889 output file. This is helpful for debugging whether the length attributes
1890 in the md file are correct. This is not meant to be a user selectable
1891 option. */
1892
1893 void
1894 final_prescan_insn (rtx_insn *insn, rtx *operand ATTRIBUTE_UNUSED,
1895 int num_operands ATTRIBUTE_UNUSED)
1896 {
1897 /* This holds the last insn address. */
1898 static int last_insn_address = 0;
1899
1900 const int uid = INSN_UID (insn);
1901
1902 if (TARGET_ADDRESSES)
1903 {
1904 fprintf (asm_out_file, "; 0x%x %d\n", INSN_ADDRESSES (uid),
1905 INSN_ADDRESSES (uid) - last_insn_address);
1906 last_insn_address = INSN_ADDRESSES (uid);
1907 }
1908 }
1909
1910 /* Prepare for an SI sized move. */
1911
1912 int
1913 h8300_expand_movsi (rtx operands[])
1914 {
1915 rtx src = operands[1];
1916 rtx dst = operands[0];
1917 if (!reload_in_progress && !reload_completed)
1918 {
1919 if (!register_operand (dst, GET_MODE (dst)))
1920 {
1921 rtx tmp = gen_reg_rtx (GET_MODE (dst));
1922 emit_move_insn (tmp, src);
1923 operands[1] = tmp;
1924 }
1925 }
1926 return 0;
1927 }
1928
1929 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1930 Frame pointer elimination is automatically handled.
1931
1932 For the h8300, if frame pointer elimination is being done, we would like to
1933 convert ap and rp into sp, not fp.
1934
1935 All other eliminations are valid. */
1936
1937 static bool
1938 h8300_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
1939 {
1940 return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
1941 }
1942
1943 /* Conditionally modify register usage based on target flags. */
1944
1945 static void
1946 h8300_conditional_register_usage (void)
1947 {
1948 if (!TARGET_MAC)
1949 fixed_regs[MAC_REG] = call_used_regs[MAC_REG] = 1;
1950 }
1951
1952 /* Function for INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET).
1953 Define the offset between two registers, one to be eliminated, and
1954 the other its replacement, at the start of a routine. */
1955
1956 int
1957 h8300_initial_elimination_offset (int from, int to)
1958 {
1959 /* The number of bytes that the return address takes on the stack. */
1960 int pc_size = POINTER_SIZE / BITS_PER_UNIT;
1961
1962 /* The number of bytes that the saved frame pointer takes on the stack. */
1963 int fp_size = frame_pointer_needed * UNITS_PER_WORD;
1964
1965 /* The number of bytes that the saved registers, excluding the frame
1966 pointer, take on the stack. */
1967 int saved_regs_size = 0;
1968
1969 /* The number of bytes that the locals takes on the stack. */
1970 int frame_size = round_frame_size (get_frame_size ());
1971
1972 int regno;
1973
1974 for (regno = 0; regno <= HARD_FRAME_POINTER_REGNUM; regno++)
1975 if (WORD_REG_USED (regno))
1976 saved_regs_size += UNITS_PER_WORD;
1977
1978 /* Adjust saved_regs_size because the above loop took the frame
1979 pointer int account. */
1980 saved_regs_size -= fp_size;
1981
1982 switch (to)
1983 {
1984 case HARD_FRAME_POINTER_REGNUM:
1985 switch (from)
1986 {
1987 case ARG_POINTER_REGNUM:
1988 return pc_size + fp_size;
1989 case RETURN_ADDRESS_POINTER_REGNUM:
1990 return fp_size;
1991 case FRAME_POINTER_REGNUM:
1992 return -saved_regs_size;
1993 default:
1994 gcc_unreachable ();
1995 }
1996 break;
1997 case STACK_POINTER_REGNUM:
1998 switch (from)
1999 {
2000 case ARG_POINTER_REGNUM:
2001 return pc_size + saved_regs_size + frame_size;
2002 case RETURN_ADDRESS_POINTER_REGNUM:
2003 return saved_regs_size + frame_size;
2004 case FRAME_POINTER_REGNUM:
2005 return frame_size;
2006 default:
2007 gcc_unreachable ();
2008 }
2009 break;
2010 default:
2011 gcc_unreachable ();
2012 }
2013 gcc_unreachable ();
2014 }
2015
2016 /* Worker function for RETURN_ADDR_RTX. */
2017
2018 rtx
2019 h8300_return_addr_rtx (int count, rtx frame)
2020 {
2021 rtx ret;
2022
2023 if (count == 0)
2024 ret = gen_rtx_MEM (Pmode,
2025 gen_rtx_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM));
2026 else if (flag_omit_frame_pointer)
2027 return (rtx) 0;
2028 else
2029 ret = gen_rtx_MEM (Pmode,
2030 memory_address (Pmode,
2031 plus_constant (Pmode, frame,
2032 UNITS_PER_WORD)));
2033 set_mem_alias_set (ret, get_frame_alias_set ());
2034 return ret;
2035 }
2036
2037 /* Update the condition code from the insn. */
2038
2039 void
2040 notice_update_cc (rtx body, rtx_insn *insn)
2041 {
2042 rtx set;
2043
2044 switch (get_attr_cc (insn))
2045 {
2046 case CC_NONE:
2047 /* Insn does not affect CC at all. */
2048 break;
2049
2050 case CC_NONE_0HIT:
2051 /* Insn does not change CC, but the 0'th operand has been changed. */
2052 if (cc_status.value1 != 0
2053 && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value1))
2054 cc_status.value1 = 0;
2055 if (cc_status.value2 != 0
2056 && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value2))
2057 cc_status.value2 = 0;
2058 break;
2059
2060 case CC_SET_ZN:
2061 /* Insn sets the Z,N flags of CC to recog_data.operand[0].
2062 The V flag is unusable. The C flag may or may not be known but
2063 that's ok because alter_cond will change tests to use EQ/NE. */
2064 CC_STATUS_INIT;
2065 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
2066 set = single_set (insn);
2067 cc_status.value1 = SET_SRC (set);
2068 if (SET_DEST (set) != cc0_rtx)
2069 cc_status.value2 = SET_DEST (set);
2070 break;
2071
2072 case CC_SET_ZNV:
2073 /* Insn sets the Z,N,V flags of CC to recog_data.operand[0].
2074 The C flag may or may not be known but that's ok because
2075 alter_cond will change tests to use EQ/NE. */
2076 CC_STATUS_INIT;
2077 cc_status.flags |= CC_NO_CARRY;
2078 set = single_set (insn);
2079 cc_status.value1 = SET_SRC (set);
2080 if (SET_DEST (set) != cc0_rtx)
2081 {
2082 /* If the destination is STRICT_LOW_PART, strip off
2083 STRICT_LOW_PART. */
2084 if (GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
2085 cc_status.value2 = XEXP (SET_DEST (set), 0);
2086 else
2087 cc_status.value2 = SET_DEST (set);
2088 }
2089 break;
2090
2091 case CC_COMPARE:
2092 /* The insn is a compare instruction. */
2093 CC_STATUS_INIT;
2094 cc_status.value1 = SET_SRC (body);
2095 break;
2096
2097 case CC_CLOBBER:
2098 /* Insn doesn't leave CC in a usable state. */
2099 CC_STATUS_INIT;
2100 break;
2101 }
2102 }
2103 \f
2104 /* Given that X occurs in an address of the form (plus X constant),
2105 return the part of X that is expected to be a register. There are
2106 four kinds of addressing mode to recognize:
2107
2108 @(dd,Rn)
2109 @(dd,RnL.b)
2110 @(dd,Rn.w)
2111 @(dd,ERn.l)
2112
2113 If SIZE is nonnull, and the address is one of the last three forms,
2114 set *SIZE to the index multiplication factor. Set it to 0 for
2115 plain @(dd,Rn) addresses.
2116
2117 MODE is the mode of the value being accessed. It can be VOIDmode
2118 if the address is known to be valid, but its mode is unknown. */
2119
2120 static rtx
2121 h8300_get_index (rtx x, machine_mode mode, int *size)
2122 {
2123 int dummy, factor;
2124
2125 if (size == 0)
2126 size = &dummy;
2127
2128 factor = (mode == VOIDmode ? 0 : GET_MODE_SIZE (mode));
2129 if (TARGET_H8300SX
2130 && factor <= 4
2131 && (mode == VOIDmode
2132 || GET_MODE_CLASS (mode) == MODE_INT
2133 || GET_MODE_CLASS (mode) == MODE_FLOAT))
2134 {
2135 if (factor <= 1 && GET_CODE (x) == ZERO_EXTEND)
2136 {
2137 /* When accessing byte-sized values, the index can be
2138 a zero-extended QImode or HImode register. */
2139 *size = GET_MODE_SIZE (GET_MODE (XEXP (x, 0)));
2140 return XEXP (x, 0);
2141 }
2142 else
2143 {
2144 /* We're looking for addresses of the form:
2145
2146 (mult X I)
2147 or (mult (zero_extend X) I)
2148
2149 where I is the size of the operand being accessed.
2150 The canonical form of the second expression is:
2151
2152 (and (mult (subreg X) I) J)
2153
2154 where J == GET_MODE_MASK (GET_MODE (X)) * I. */
2155 rtx index;
2156
2157 if (GET_CODE (x) == AND
2158 && GET_CODE (XEXP (x, 1)) == CONST_INT
2159 && (factor == 0
2160 || INTVAL (XEXP (x, 1)) == 0xff * factor
2161 || INTVAL (XEXP (x, 1)) == 0xffff * factor))
2162 {
2163 index = XEXP (x, 0);
2164 *size = (INTVAL (XEXP (x, 1)) >= 0xffff ? 2 : 1);
2165 }
2166 else
2167 {
2168 index = x;
2169 *size = 4;
2170 }
2171
2172 if (GET_CODE (index) == MULT
2173 && GET_CODE (XEXP (index, 1)) == CONST_INT
2174 && (factor == 0 || factor == INTVAL (XEXP (index, 1))))
2175 return XEXP (index, 0);
2176 }
2177 }
2178 *size = 0;
2179 return x;
2180 }
2181 \f
2182 /* Worker function for TARGET_MODE_DEPENDENT_ADDRESS_P.
2183
2184 On the H8/300, the predecrement and postincrement address depend thus
2185 (the amount of decrement or increment being the length of the operand). */
2186
2187 static bool
2188 h8300_mode_dependent_address_p (const_rtx addr,
2189 addr_space_t as ATTRIBUTE_UNUSED)
2190 {
2191 if (GET_CODE (addr) == PLUS
2192 && h8300_get_index (XEXP (addr, 0), VOIDmode, 0) != XEXP (addr, 0))
2193 return true;
2194
2195 return false;
2196 }
2197 \f
2198 static const h8300_length_table addb_length_table =
2199 {
2200 /* #xx Rs @aa @Rs @xx */
2201 { 2, 2, 4, 4, 4 }, /* add.b xx,Rd */
2202 { 4, 4, 4, 4, 6 }, /* add.b xx,@aa */
2203 { 4, 4, 4, 4, 6 }, /* add.b xx,@Rd */
2204 { 6, 4, 4, 4, 6 } /* add.b xx,@xx */
2205 };
2206
2207 static const h8300_length_table addw_length_table =
2208 {
2209 /* #xx Rs @aa @Rs @xx */
2210 { 2, 2, 4, 4, 4 }, /* add.w xx,Rd */
2211 { 4, 4, 4, 4, 6 }, /* add.w xx,@aa */
2212 { 4, 4, 4, 4, 6 }, /* add.w xx,@Rd */
2213 { 4, 4, 4, 4, 6 } /* add.w xx,@xx */
2214 };
2215
2216 static const h8300_length_table addl_length_table =
2217 {
2218 /* #xx Rs @aa @Rs @xx */
2219 { 2, 2, 4, 4, 4 }, /* add.l xx,Rd */
2220 { 4, 4, 6, 6, 6 }, /* add.l xx,@aa */
2221 { 4, 4, 6, 6, 6 }, /* add.l xx,@Rd */
2222 { 4, 4, 6, 6, 6 } /* add.l xx,@xx */
2223 };
2224
2225 #define logicb_length_table addb_length_table
2226 #define logicw_length_table addw_length_table
2227
2228 static const h8300_length_table logicl_length_table =
2229 {
2230 /* #xx Rs @aa @Rs @xx */
2231 { 2, 4, 4, 4, 4 }, /* and.l xx,Rd */
2232 { 4, 4, 6, 6, 6 }, /* and.l xx,@aa */
2233 { 4, 4, 6, 6, 6 }, /* and.l xx,@Rd */
2234 { 4, 4, 6, 6, 6 } /* and.l xx,@xx */
2235 };
2236
2237 static const h8300_length_table movb_length_table =
2238 {
2239 /* #xx Rs @aa @Rs @xx */
2240 { 2, 2, 2, 2, 4 }, /* mov.b xx,Rd */
2241 { 4, 2, 4, 4, 4 }, /* mov.b xx,@aa */
2242 { 4, 2, 4, 4, 4 }, /* mov.b xx,@Rd */
2243 { 4, 4, 4, 4, 4 } /* mov.b xx,@xx */
2244 };
2245
2246 #define movw_length_table movb_length_table
2247
2248 static const h8300_length_table movl_length_table =
2249 {
2250 /* #xx Rs @aa @Rs @xx */
2251 { 2, 2, 4, 4, 4 }, /* mov.l xx,Rd */
2252 { 4, 4, 4, 4, 4 }, /* mov.l xx,@aa */
2253 { 4, 4, 4, 4, 4 }, /* mov.l xx,@Rd */
2254 { 4, 4, 4, 4, 4 } /* mov.l xx,@xx */
2255 };
2256
2257 /* Return the size of the given address or displacement constant. */
2258
2259 static unsigned int
2260 h8300_constant_length (rtx constant)
2261 {
2262 /* Check for (@d:16,Reg). */
2263 if (GET_CODE (constant) == CONST_INT
2264 && IN_RANGE (INTVAL (constant), -0x8000, 0x7fff))
2265 return 2;
2266
2267 /* Check for (@d:16,Reg) in cases where the displacement is
2268 an absolute address. */
2269 if (Pmode == HImode || h8300_tiny_constant_address_p (constant))
2270 return 2;
2271
2272 return 4;
2273 }
2274
2275 /* Return the size of a displacement field in address ADDR, which should
2276 have the form (plus X constant). SIZE is the number of bytes being
2277 accessed. */
2278
2279 static unsigned int
2280 h8300_displacement_length (rtx addr, int size)
2281 {
2282 rtx offset;
2283
2284 offset = XEXP (addr, 1);
2285
2286 /* Check for @(d:2,Reg). */
2287 if (register_operand (XEXP (addr, 0), VOIDmode)
2288 && GET_CODE (offset) == CONST_INT
2289 && (INTVAL (offset) == size
2290 || INTVAL (offset) == size * 2
2291 || INTVAL (offset) == size * 3))
2292 return 0;
2293
2294 return h8300_constant_length (offset);
2295 }
2296
2297 /* Store the class of operand OP in *OPCLASS and return the length of any
2298 extra operand fields. SIZE is the number of bytes in OP. OPCLASS
2299 can be null if only the length is needed. */
2300
2301 static unsigned int
2302 h8300_classify_operand (rtx op, int size, enum h8300_operand_class *opclass)
2303 {
2304 enum h8300_operand_class dummy;
2305
2306 if (opclass == 0)
2307 opclass = &dummy;
2308
2309 if (CONSTANT_P (op))
2310 {
2311 *opclass = H8OP_IMMEDIATE;
2312
2313 /* Byte-sized immediates are stored in the opcode fields. */
2314 if (size == 1)
2315 return 0;
2316
2317 /* If this is a 32-bit instruction, see whether the constant
2318 will fit into a 16-bit immediate field. */
2319 if (TARGET_H8300SX
2320 && size == 4
2321 && GET_CODE (op) == CONST_INT
2322 && IN_RANGE (INTVAL (op), 0, 0xffff))
2323 return 2;
2324
2325 return size;
2326 }
2327 else if (GET_CODE (op) == MEM)
2328 {
2329 op = XEXP (op, 0);
2330 if (CONSTANT_P (op))
2331 {
2332 *opclass = H8OP_MEM_ABSOLUTE;
2333 return h8300_constant_length (op);
2334 }
2335 else if (GET_CODE (op) == PLUS && CONSTANT_P (XEXP (op, 1)))
2336 {
2337 *opclass = H8OP_MEM_COMPLEX;
2338 return h8300_displacement_length (op, size);
2339 }
2340 else if (GET_RTX_CLASS (GET_CODE (op)) == RTX_AUTOINC)
2341 {
2342 *opclass = H8OP_MEM_COMPLEX;
2343 return 0;
2344 }
2345 else if (register_operand (op, VOIDmode))
2346 {
2347 *opclass = H8OP_MEM_BASE;
2348 return 0;
2349 }
2350 }
2351 gcc_assert (register_operand (op, VOIDmode));
2352 *opclass = H8OP_REGISTER;
2353 return 0;
2354 }
2355
2356 /* Return the length of the instruction described by TABLE given that
2357 its operands are OP1 and OP2. OP1 must be an h8300_dst_operand
2358 and OP2 must be an h8300_src_operand. */
2359
2360 static unsigned int
2361 h8300_length_from_table (rtx op1, rtx op2, const h8300_length_table *table)
2362 {
2363 enum h8300_operand_class op1_class, op2_class;
2364 unsigned int size, immediate_length;
2365
2366 size = GET_MODE_SIZE (GET_MODE (op1));
2367 immediate_length = (h8300_classify_operand (op1, size, &op1_class)
2368 + h8300_classify_operand (op2, size, &op2_class));
2369 return immediate_length + (*table)[op1_class - 1][op2_class];
2370 }
2371
2372 /* Return the length of a unary instruction such as neg or not given that
2373 its operand is OP. */
2374
2375 unsigned int
2376 h8300_unary_length (rtx op)
2377 {
2378 enum h8300_operand_class opclass;
2379 unsigned int size, operand_length;
2380
2381 size = GET_MODE_SIZE (GET_MODE (op));
2382 operand_length = h8300_classify_operand (op, size, &opclass);
2383 switch (opclass)
2384 {
2385 case H8OP_REGISTER:
2386 return 2;
2387
2388 case H8OP_MEM_BASE:
2389 return (size == 4 ? 6 : 4);
2390
2391 case H8OP_MEM_ABSOLUTE:
2392 return operand_length + (size == 4 ? 6 : 4);
2393
2394 case H8OP_MEM_COMPLEX:
2395 return operand_length + 6;
2396
2397 default:
2398 gcc_unreachable ();
2399 }
2400 }
2401
2402 /* Likewise short immediate instructions such as add.w #xx:3,OP. */
2403
2404 static unsigned int
2405 h8300_short_immediate_length (rtx op)
2406 {
2407 enum h8300_operand_class opclass;
2408 unsigned int size, operand_length;
2409
2410 size = GET_MODE_SIZE (GET_MODE (op));
2411 operand_length = h8300_classify_operand (op, size, &opclass);
2412
2413 switch (opclass)
2414 {
2415 case H8OP_REGISTER:
2416 return 2;
2417
2418 case H8OP_MEM_BASE:
2419 case H8OP_MEM_ABSOLUTE:
2420 case H8OP_MEM_COMPLEX:
2421 return 4 + operand_length;
2422
2423 default:
2424 gcc_unreachable ();
2425 }
2426 }
2427
2428 /* Likewise bitfield load and store instructions. */
2429
2430 static unsigned int
2431 h8300_bitfield_length (rtx op, rtx op2)
2432 {
2433 enum h8300_operand_class opclass;
2434 unsigned int size, operand_length;
2435
2436 if (GET_CODE (op) == REG)
2437 op = op2;
2438 gcc_assert (GET_CODE (op) != REG);
2439
2440 size = GET_MODE_SIZE (GET_MODE (op));
2441 operand_length = h8300_classify_operand (op, size, &opclass);
2442
2443 switch (opclass)
2444 {
2445 case H8OP_MEM_BASE:
2446 case H8OP_MEM_ABSOLUTE:
2447 case H8OP_MEM_COMPLEX:
2448 return 4 + operand_length;
2449
2450 default:
2451 gcc_unreachable ();
2452 }
2453 }
2454
2455 /* Calculate the length of general binary instruction INSN using TABLE. */
2456
2457 static unsigned int
2458 h8300_binary_length (rtx_insn *insn, const h8300_length_table *table)
2459 {
2460 rtx set;
2461
2462 set = single_set (insn);
2463 gcc_assert (set);
2464
2465 if (BINARY_P (SET_SRC (set)))
2466 return h8300_length_from_table (XEXP (SET_SRC (set), 0),
2467 XEXP (SET_SRC (set), 1), table);
2468 else
2469 {
2470 gcc_assert (GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == RTX_TERNARY);
2471 return h8300_length_from_table (XEXP (XEXP (SET_SRC (set), 1), 0),
2472 XEXP (XEXP (SET_SRC (set), 1), 1),
2473 table);
2474 }
2475 }
2476
2477 /* Subroutine of h8300_move_length. Return true if OP is 1- or 2-byte
2478 memory reference and either (1) it has the form @(d:16,Rn) or
2479 (2) its address has the code given by INC_CODE. */
2480
2481 static bool
2482 h8300_short_move_mem_p (rtx op, enum rtx_code inc_code)
2483 {
2484 rtx addr;
2485 unsigned int size;
2486
2487 if (GET_CODE (op) != MEM)
2488 return false;
2489
2490 addr = XEXP (op, 0);
2491 size = GET_MODE_SIZE (GET_MODE (op));
2492 if (size != 1 && size != 2)
2493 return false;
2494
2495 return (GET_CODE (addr) == inc_code
2496 || (GET_CODE (addr) == PLUS
2497 && GET_CODE (XEXP (addr, 0)) == REG
2498 && h8300_displacement_length (addr, size) == 2));
2499 }
2500
2501 /* Calculate the length of move instruction INSN using the given length
2502 table. Although the tables are correct for most cases, there is some
2503 irregularity in the length of mov.b and mov.w. The following forms:
2504
2505 mov @ERs+, Rd
2506 mov @(d:16,ERs), Rd
2507 mov Rs, @-ERd
2508 mov Rs, @(d:16,ERd)
2509
2510 are two bytes shorter than most other "mov Rs, @complex" or
2511 "mov @complex,Rd" combinations. */
2512
2513 static unsigned int
2514 h8300_move_length (rtx *operands, const h8300_length_table *table)
2515 {
2516 unsigned int size;
2517
2518 size = h8300_length_from_table (operands[0], operands[1], table);
2519 if (REG_P (operands[0]) && h8300_short_move_mem_p (operands[1], POST_INC))
2520 size -= 2;
2521 if (REG_P (operands[1]) && h8300_short_move_mem_p (operands[0], PRE_DEC))
2522 size -= 2;
2523 return size;
2524 }
2525
2526 /* Return the length of a mova instruction with the given operands.
2527 DEST is the register destination, SRC is the source address and
2528 OFFSET is the 16-bit or 32-bit displacement. */
2529
2530 static unsigned int
2531 h8300_mova_length (rtx dest, rtx src, rtx offset)
2532 {
2533 unsigned int size;
2534
2535 size = (2
2536 + h8300_constant_length (offset)
2537 + h8300_classify_operand (src, GET_MODE_SIZE (GET_MODE (src)), 0));
2538 if (!REG_P (dest) || !REG_P (src) || REGNO (src) != REGNO (dest))
2539 size += 2;
2540 return size;
2541 }
2542
2543 /* Compute the length of INSN based on its length_table attribute.
2544 OPERANDS is the array of its operands. */
2545
2546 unsigned int
2547 h8300_insn_length_from_table (rtx_insn *insn, rtx * operands)
2548 {
2549 switch (get_attr_length_table (insn))
2550 {
2551 case LENGTH_TABLE_NONE:
2552 gcc_unreachable ();
2553
2554 case LENGTH_TABLE_ADDB:
2555 return h8300_binary_length (insn, &addb_length_table);
2556
2557 case LENGTH_TABLE_ADDW:
2558 return h8300_binary_length (insn, &addw_length_table);
2559
2560 case LENGTH_TABLE_ADDL:
2561 return h8300_binary_length (insn, &addl_length_table);
2562
2563 case LENGTH_TABLE_LOGICB:
2564 return h8300_binary_length (insn, &logicb_length_table);
2565
2566 case LENGTH_TABLE_MOVB:
2567 return h8300_move_length (operands, &movb_length_table);
2568
2569 case LENGTH_TABLE_MOVW:
2570 return h8300_move_length (operands, &movw_length_table);
2571
2572 case LENGTH_TABLE_MOVL:
2573 return h8300_move_length (operands, &movl_length_table);
2574
2575 case LENGTH_TABLE_MOVA:
2576 return h8300_mova_length (operands[0], operands[1], operands[2]);
2577
2578 case LENGTH_TABLE_MOVA_ZERO:
2579 return h8300_mova_length (operands[0], operands[1], const0_rtx);
2580
2581 case LENGTH_TABLE_UNARY:
2582 return h8300_unary_length (operands[0]);
2583
2584 case LENGTH_TABLE_MOV_IMM4:
2585 return 2 + h8300_classify_operand (operands[0], 0, 0);
2586
2587 case LENGTH_TABLE_SHORT_IMMEDIATE:
2588 return h8300_short_immediate_length (operands[0]);
2589
2590 case LENGTH_TABLE_BITFIELD:
2591 return h8300_bitfield_length (operands[0], operands[1]);
2592
2593 case LENGTH_TABLE_BITBRANCH:
2594 return h8300_bitfield_length (operands[1], operands[2]) - 2;
2595
2596 default:
2597 gcc_unreachable ();
2598 }
2599 }
2600
2601 /* Return true if LHS and RHS are memory references that can be mapped
2602 to the same h8sx assembly operand. LHS appears as the destination of
2603 an instruction and RHS appears as a source.
2604
2605 Three cases are allowed:
2606
2607 - RHS is @+Rn or @-Rn, LHS is @Rn
2608 - RHS is @Rn, LHS is @Rn+ or @Rn-
2609 - RHS and LHS have the same address and neither has side effects. */
2610
2611 bool
2612 h8sx_mergeable_memrefs_p (rtx lhs, rtx rhs)
2613 {
2614 if (GET_CODE (rhs) == MEM && GET_CODE (lhs) == MEM)
2615 {
2616 rhs = XEXP (rhs, 0);
2617 lhs = XEXP (lhs, 0);
2618
2619 if (GET_CODE (rhs) == PRE_INC || GET_CODE (rhs) == PRE_DEC)
2620 return rtx_equal_p (XEXP (rhs, 0), lhs);
2621
2622 if (GET_CODE (lhs) == POST_INC || GET_CODE (lhs) == POST_DEC)
2623 return rtx_equal_p (rhs, XEXP (lhs, 0));
2624
2625 if (rtx_equal_p (rhs, lhs))
2626 return true;
2627 }
2628 return false;
2629 }
2630
2631 /* Return true if OPERANDS[1] can be mapped to the same assembly
2632 operand as OPERANDS[0]. */
2633
2634 bool
2635 h8300_operands_match_p (rtx *operands)
2636 {
2637 if (register_operand (operands[0], VOIDmode)
2638 && register_operand (operands[1], VOIDmode))
2639 return true;
2640
2641 if (h8sx_mergeable_memrefs_p (operands[0], operands[1]))
2642 return true;
2643
2644 return false;
2645 }
2646 \f
2647 /* Try using movmd to move LENGTH bytes from memory region SRC to memory
2648 region DEST. The two regions do not overlap and have the common
2649 alignment given by ALIGNMENT. Return true on success.
2650
2651 Using movmd for variable-length moves seems to involve some
2652 complex trade-offs. For instance:
2653
2654 - Preparing for a movmd instruction is similar to preparing
2655 for a memcpy. The main difference is that the arguments
2656 are moved into er4, er5 and er6 rather than er0, er1 and er2.
2657
2658 - Since movmd clobbers the frame pointer, we need to save
2659 and restore it somehow when frame_pointer_needed. This can
2660 sometimes make movmd sequences longer than calls to memcpy().
2661
2662 - The counter register is 16 bits, so the instruction is only
2663 suitable for variable-length moves when sizeof (size_t) == 2.
2664 That's only true in normal mode.
2665
2666 - We will often lack static alignment information. Falling back
2667 on movmd.b would likely be slower than calling memcpy(), at least
2668 for big moves.
2669
2670 This function therefore only uses movmd when the length is a
2671 known constant, and only then if -fomit-frame-pointer is in
2672 effect or if we're not optimizing for size.
2673
2674 At the moment the function uses movmd for all in-range constants,
2675 but it might be better to fall back on memcpy() for large moves
2676 if ALIGNMENT == 1. */
2677
2678 bool
2679 h8sx_emit_movmd (rtx dest, rtx src, rtx length,
2680 HOST_WIDE_INT alignment)
2681 {
2682 if (!flag_omit_frame_pointer && optimize_size)
2683 return false;
2684
2685 if (GET_CODE (length) == CONST_INT)
2686 {
2687 rtx dest_reg, src_reg, first_dest, first_src;
2688 HOST_WIDE_INT n;
2689 int factor;
2690
2691 /* Use movmd.l if the alignment allows it, otherwise fall back
2692 on movmd.b. */
2693 factor = (alignment >= 2 ? 4 : 1);
2694
2695 /* Make sure the length is within range. We can handle counter
2696 values up to 65536, although HImode truncation will make
2697 the count appear negative in rtl dumps. */
2698 n = INTVAL (length);
2699 if (n <= 0 || n / factor > 65536)
2700 return false;
2701
2702 /* Create temporary registers for the source and destination
2703 pointers. Initialize them to the start of each region. */
2704 dest_reg = copy_addr_to_reg (XEXP (dest, 0));
2705 src_reg = copy_addr_to_reg (XEXP (src, 0));
2706
2707 /* Create references to the movmd source and destination blocks. */
2708 first_dest = replace_equiv_address (dest, dest_reg);
2709 first_src = replace_equiv_address (src, src_reg);
2710
2711 set_mem_size (first_dest, n & -factor);
2712 set_mem_size (first_src, n & -factor);
2713
2714 length = copy_to_mode_reg (HImode, gen_int_mode (n / factor, HImode));
2715 emit_insn (gen_movmd (first_dest, first_src, length, GEN_INT (factor)));
2716
2717 if ((n & -factor) != n)
2718 {
2719 /* Move SRC and DEST past the region we just copied.
2720 This is done to update the memory attributes. */
2721 dest = adjust_address (dest, BLKmode, n & -factor);
2722 src = adjust_address (src, BLKmode, n & -factor);
2723
2724 /* Replace the addresses with the source and destination
2725 registers, which movmd has left with the right values. */
2726 dest = replace_equiv_address (dest, dest_reg);
2727 src = replace_equiv_address (src, src_reg);
2728
2729 /* Mop up the left-over bytes. */
2730 if (n & 2)
2731 emit_move_insn (adjust_address (dest, HImode, 0),
2732 adjust_address (src, HImode, 0));
2733 if (n & 1)
2734 emit_move_insn (adjust_address (dest, QImode, n & 2),
2735 adjust_address (src, QImode, n & 2));
2736 }
2737 return true;
2738 }
2739 return false;
2740 }
2741
2742 /* Move ADDR into er6 after pushing its old value onto the stack. */
2743
2744 void
2745 h8300_swap_into_er6 (rtx addr)
2746 {
2747 rtx insn = push (HARD_FRAME_POINTER_REGNUM, false);
2748 if (frame_pointer_needed)
2749 add_reg_note (insn, REG_CFA_DEF_CFA,
2750 plus_constant (Pmode, gen_rtx_MEM (Pmode, stack_pointer_rtx),
2751 2 * UNITS_PER_WORD));
2752 else
2753 add_reg_note (insn, REG_CFA_ADJUST_CFA,
2754 gen_rtx_SET (stack_pointer_rtx,
2755 plus_constant (Pmode, stack_pointer_rtx, 4)));
2756
2757 emit_move_insn (hard_frame_pointer_rtx, addr);
2758 if (REGNO (addr) == SP_REG)
2759 emit_move_insn (hard_frame_pointer_rtx,
2760 plus_constant (Pmode, hard_frame_pointer_rtx,
2761 GET_MODE_SIZE (word_mode)));
2762 }
2763
2764 /* Move the current value of er6 into ADDR and pop its old value
2765 from the stack. */
2766
2767 void
2768 h8300_swap_out_of_er6 (rtx addr)
2769 {
2770 rtx insn;
2771
2772 if (REGNO (addr) != SP_REG)
2773 emit_move_insn (addr, hard_frame_pointer_rtx);
2774
2775 insn = pop (HARD_FRAME_POINTER_REGNUM);
2776 if (frame_pointer_needed)
2777 add_reg_note (insn, REG_CFA_DEF_CFA,
2778 plus_constant (Pmode, hard_frame_pointer_rtx,
2779 2 * UNITS_PER_WORD));
2780 else
2781 add_reg_note (insn, REG_CFA_ADJUST_CFA,
2782 gen_rtx_SET (stack_pointer_rtx,
2783 plus_constant (Pmode, stack_pointer_rtx, -4)));
2784 }
2785 \f
2786 /* Return the length of mov instruction. */
2787
2788 unsigned int
2789 compute_mov_length (rtx *operands)
2790 {
2791 /* If the mov instruction involves a memory operand, we compute the
2792 length, assuming the largest addressing mode is used, and then
2793 adjust later in the function. Otherwise, we compute and return
2794 the exact length in one step. */
2795 machine_mode mode = GET_MODE (operands[0]);
2796 rtx dest = operands[0];
2797 rtx src = operands[1];
2798 rtx addr;
2799
2800 if (GET_CODE (src) == MEM)
2801 addr = XEXP (src, 0);
2802 else if (GET_CODE (dest) == MEM)
2803 addr = XEXP (dest, 0);
2804 else
2805 addr = NULL_RTX;
2806
2807 if (TARGET_H8300)
2808 {
2809 unsigned int base_length;
2810
2811 switch (mode)
2812 {
2813 case E_QImode:
2814 if (addr == NULL_RTX)
2815 return 2;
2816
2817 /* The eightbit addressing is available only in QImode, so
2818 go ahead and take care of it. */
2819 if (h8300_eightbit_constant_address_p (addr))
2820 return 2;
2821
2822 base_length = 4;
2823 break;
2824
2825 case E_HImode:
2826 if (addr == NULL_RTX)
2827 {
2828 if (REG_P (src))
2829 return 2;
2830
2831 if (src == const0_rtx)
2832 return 2;
2833
2834 return 4;
2835 }
2836
2837 base_length = 4;
2838 break;
2839
2840 case E_SImode:
2841 if (addr == NULL_RTX)
2842 {
2843 if (REG_P (src))
2844 return 4;
2845
2846 if (GET_CODE (src) == CONST_INT)
2847 {
2848 if (src == const0_rtx)
2849 return 4;
2850
2851 if ((INTVAL (src) & 0xffff) == 0)
2852 return 6;
2853
2854 if ((INTVAL (src) & 0xffff) == 0)
2855 return 6;
2856
2857 if ((INTVAL (src) & 0xffff)
2858 == ((INTVAL (src) >> 16) & 0xffff))
2859 return 6;
2860 }
2861 return 8;
2862 }
2863
2864 base_length = 8;
2865 break;
2866
2867 case E_SFmode:
2868 if (addr == NULL_RTX)
2869 {
2870 if (REG_P (src))
2871 return 4;
2872
2873 if (satisfies_constraint_G (src))
2874 return 4;
2875
2876 return 8;
2877 }
2878
2879 base_length = 8;
2880 break;
2881
2882 default:
2883 gcc_unreachable ();
2884 }
2885
2886 /* Adjust the length based on the addressing mode used.
2887 Specifically, we subtract the difference between the actual
2888 length and the longest one, which is @(d:16,Rs). For SImode
2889 and SFmode, we double the adjustment because two mov.w are
2890 used to do the job. */
2891
2892 /* @Rs+ and @-Rd are 2 bytes shorter than the longest. */
2893 if (GET_CODE (addr) == PRE_DEC
2894 || GET_CODE (addr) == POST_INC)
2895 {
2896 if (mode == QImode || mode == HImode)
2897 return base_length - 2;
2898 else
2899 /* In SImode and SFmode, we use two mov.w instructions, so
2900 double the adjustment. */
2901 return base_length - 4;
2902 }
2903
2904 /* @Rs and @Rd are 2 bytes shorter than the longest. Note that
2905 in SImode and SFmode, the second mov.w involves an address
2906 with displacement, namely @(2,Rs) or @(2,Rd), so we subtract
2907 only 2 bytes. */
2908 if (GET_CODE (addr) == REG)
2909 return base_length - 2;
2910
2911 return base_length;
2912 }
2913 else
2914 {
2915 unsigned int base_length;
2916
2917 switch (mode)
2918 {
2919 case E_QImode:
2920 if (addr == NULL_RTX)
2921 return 2;
2922
2923 /* The eightbit addressing is available only in QImode, so
2924 go ahead and take care of it. */
2925 if (h8300_eightbit_constant_address_p (addr))
2926 return 2;
2927
2928 base_length = 8;
2929 break;
2930
2931 case E_HImode:
2932 if (addr == NULL_RTX)
2933 {
2934 if (REG_P (src))
2935 return 2;
2936
2937 if (src == const0_rtx)
2938 return 2;
2939
2940 return 4;
2941 }
2942
2943 base_length = 8;
2944 break;
2945
2946 case E_SImode:
2947 if (addr == NULL_RTX)
2948 {
2949 if (REG_P (src))
2950 {
2951 if (REGNO (src) == MAC_REG || REGNO (dest) == MAC_REG)
2952 return 4;
2953 else
2954 return 2;
2955 }
2956
2957 if (GET_CODE (src) == CONST_INT)
2958 {
2959 int val = INTVAL (src);
2960
2961 if (val == 0)
2962 return 2;
2963
2964 if (val == (val & 0x00ff) || val == (val & 0xff00))
2965 return 4;
2966
2967 switch (val & 0xffffffff)
2968 {
2969 case 0xffffffff:
2970 case 0xfffffffe:
2971 case 0xfffffffc:
2972 case 0x0000ffff:
2973 case 0x0000fffe:
2974 case 0xffff0000:
2975 case 0xfffe0000:
2976 case 0x00010000:
2977 case 0x00020000:
2978 return 4;
2979 }
2980 }
2981 return 6;
2982 }
2983
2984 base_length = 10;
2985 break;
2986
2987 case E_SFmode:
2988 if (addr == NULL_RTX)
2989 {
2990 if (REG_P (src))
2991 return 2;
2992
2993 if (satisfies_constraint_G (src))
2994 return 2;
2995
2996 return 6;
2997 }
2998
2999 base_length = 10;
3000 break;
3001
3002 default:
3003 gcc_unreachable ();
3004 }
3005
3006 /* Adjust the length based on the addressing mode used.
3007 Specifically, we subtract the difference between the actual
3008 length and the longest one, which is @(d:24,ERs). */
3009
3010 /* @ERs+ and @-ERd are 6 bytes shorter than the longest. */
3011 if (GET_CODE (addr) == PRE_DEC
3012 || GET_CODE (addr) == POST_INC)
3013 return base_length - 6;
3014
3015 /* @ERs and @ERd are 6 bytes shorter than the longest. */
3016 if (GET_CODE (addr) == REG)
3017 return base_length - 6;
3018
3019 /* @(d:16,ERs) and @(d:16,ERd) are 4 bytes shorter than the
3020 longest. */
3021 if (GET_CODE (addr) == PLUS
3022 && GET_CODE (XEXP (addr, 0)) == REG
3023 && GET_CODE (XEXP (addr, 1)) == CONST_INT
3024 && INTVAL (XEXP (addr, 1)) > -32768
3025 && INTVAL (XEXP (addr, 1)) < 32767)
3026 return base_length - 4;
3027
3028 /* @aa:16 is 4 bytes shorter than the longest. */
3029 if (h8300_tiny_constant_address_p (addr))
3030 return base_length - 4;
3031
3032 /* @aa:24 is 2 bytes shorter than the longest. */
3033 if (CONSTANT_P (addr))
3034 return base_length - 2;
3035
3036 return base_length;
3037 }
3038 }
3039 \f
3040 /* Output an addition insn. */
3041
3042 const char *
3043 output_plussi (rtx *operands)
3044 {
3045 machine_mode mode = GET_MODE (operands[0]);
3046
3047 gcc_assert (mode == SImode);
3048
3049 if (TARGET_H8300)
3050 {
3051 if (GET_CODE (operands[2]) == REG)
3052 return "add.w\t%f2,%f0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
3053
3054 if (GET_CODE (operands[2]) == CONST_INT)
3055 {
3056 HOST_WIDE_INT n = INTVAL (operands[2]);
3057
3058 if ((n & 0xffffff) == 0)
3059 return "add\t%z2,%z0";
3060 if ((n & 0xffff) == 0)
3061 return "add\t%y2,%y0\n\taddx\t%z2,%z0";
3062 if ((n & 0xff) == 0)
3063 return "add\t%x2,%x0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
3064 }
3065
3066 return "add\t%w2,%w0\n\taddx\t%x2,%x0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
3067 }
3068 else
3069 {
3070 if (GET_CODE (operands[2]) == CONST_INT
3071 && register_operand (operands[1], VOIDmode))
3072 {
3073 HOST_WIDE_INT intval = INTVAL (operands[2]);
3074
3075 if (TARGET_H8300SX && (intval >= 1 && intval <= 7))
3076 return "add.l\t%S2,%S0";
3077 if (TARGET_H8300SX && (intval >= -7 && intval <= -1))
3078 return "sub.l\t%G2,%S0";
3079
3080 /* See if we can finish with 2 bytes. */
3081
3082 switch ((unsigned int) intval & 0xffffffff)
3083 {
3084 case 0x00000001:
3085 case 0x00000002:
3086 case 0x00000004:
3087 return "adds\t%2,%S0";
3088
3089 case 0xffffffff:
3090 case 0xfffffffe:
3091 case 0xfffffffc:
3092 return "subs\t%G2,%S0";
3093
3094 case 0x00010000:
3095 case 0x00020000:
3096 operands[2] = GEN_INT (intval >> 16);
3097 return "inc.w\t%2,%e0";
3098
3099 case 0xffff0000:
3100 case 0xfffe0000:
3101 operands[2] = GEN_INT (intval >> 16);
3102 return "dec.w\t%G2,%e0";
3103 }
3104
3105 /* See if we can finish with 4 bytes. */
3106 if ((intval & 0xffff) == 0)
3107 {
3108 operands[2] = GEN_INT (intval >> 16);
3109 return "add.w\t%2,%e0";
3110 }
3111 }
3112
3113 if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0)
3114 {
3115 operands[2] = GEN_INT (-INTVAL (operands[2]));
3116 return "sub.l\t%S2,%S0";
3117 }
3118 return "add.l\t%S2,%S0";
3119 }
3120 }
3121
3122 /* ??? It would be much easier to add the h8sx stuff if a single function
3123 classified the addition as either inc/dec, adds/subs, add.w or add.l. */
3124 /* Compute the length of an addition insn. */
3125
3126 unsigned int
3127 compute_plussi_length (rtx *operands)
3128 {
3129 machine_mode mode = GET_MODE (operands[0]);
3130
3131 gcc_assert (mode == SImode);
3132
3133 if (TARGET_H8300)
3134 {
3135 if (GET_CODE (operands[2]) == REG)
3136 return 6;
3137
3138 if (GET_CODE (operands[2]) == CONST_INT)
3139 {
3140 HOST_WIDE_INT n = INTVAL (operands[2]);
3141
3142 if ((n & 0xffffff) == 0)
3143 return 2;
3144 if ((n & 0xffff) == 0)
3145 return 4;
3146 if ((n & 0xff) == 0)
3147 return 6;
3148 }
3149
3150 return 8;
3151 }
3152 else
3153 {
3154 if (GET_CODE (operands[2]) == CONST_INT
3155 && register_operand (operands[1], VOIDmode))
3156 {
3157 HOST_WIDE_INT intval = INTVAL (operands[2]);
3158
3159 if (TARGET_H8300SX && (intval >= 1 && intval <= 7))
3160 return 2;
3161 if (TARGET_H8300SX && (intval >= -7 && intval <= -1))
3162 return 2;
3163
3164 /* See if we can finish with 2 bytes. */
3165
3166 switch ((unsigned int) intval & 0xffffffff)
3167 {
3168 case 0x00000001:
3169 case 0x00000002:
3170 case 0x00000004:
3171 return 2;
3172
3173 case 0xffffffff:
3174 case 0xfffffffe:
3175 case 0xfffffffc:
3176 return 2;
3177
3178 case 0x00010000:
3179 case 0x00020000:
3180 return 2;
3181
3182 case 0xffff0000:
3183 case 0xfffe0000:
3184 return 2;
3185 }
3186
3187 /* See if we can finish with 4 bytes. */
3188 if ((intval & 0xffff) == 0)
3189 return 4;
3190 }
3191
3192 if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0)
3193 return h8300_length_from_table (operands[0],
3194 GEN_INT (-INTVAL (operands[2])),
3195 &addl_length_table);
3196 else
3197 return h8300_length_from_table (operands[0], operands[2],
3198 &addl_length_table);
3199 return 6;
3200 }
3201 }
3202
3203 /* Compute which flag bits are valid after an addition insn. */
3204
3205 enum attr_cc
3206 compute_plussi_cc (rtx *operands)
3207 {
3208 machine_mode mode = GET_MODE (operands[0]);
3209
3210 gcc_assert (mode == SImode);
3211
3212 if (TARGET_H8300)
3213 {
3214 return CC_CLOBBER;
3215 }
3216 else
3217 {
3218 if (GET_CODE (operands[2]) == CONST_INT
3219 && register_operand (operands[1], VOIDmode))
3220 {
3221 HOST_WIDE_INT intval = INTVAL (operands[2]);
3222
3223 if (TARGET_H8300SX && (intval >= 1 && intval <= 7))
3224 return CC_SET_ZN;
3225 if (TARGET_H8300SX && (intval >= -7 && intval <= -1))
3226 return CC_SET_ZN;
3227
3228 /* See if we can finish with 2 bytes. */
3229
3230 switch ((unsigned int) intval & 0xffffffff)
3231 {
3232 case 0x00000001:
3233 case 0x00000002:
3234 case 0x00000004:
3235 return CC_NONE_0HIT;
3236
3237 case 0xffffffff:
3238 case 0xfffffffe:
3239 case 0xfffffffc:
3240 return CC_NONE_0HIT;
3241
3242 case 0x00010000:
3243 case 0x00020000:
3244 return CC_CLOBBER;
3245
3246 case 0xffff0000:
3247 case 0xfffe0000:
3248 return CC_CLOBBER;
3249 }
3250
3251 /* See if we can finish with 4 bytes. */
3252 if ((intval & 0xffff) == 0)
3253 return CC_CLOBBER;
3254 }
3255
3256 return CC_SET_ZN;
3257 }
3258 }
3259 \f
3260 /* Output a logical insn. */
3261
3262 const char *
3263 output_logical_op (machine_mode mode, rtx *operands)
3264 {
3265 /* Figure out the logical op that we need to perform. */
3266 enum rtx_code code = GET_CODE (operands[3]);
3267 /* Pretend that every byte is affected if both operands are registers. */
3268 const unsigned HOST_WIDE_INT intval =
3269 (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
3270 /* Always use the full instruction if the
3271 first operand is in memory. It is better
3272 to use define_splits to generate the shorter
3273 sequence where valid. */
3274 && register_operand (operands[1], VOIDmode)
3275 ? INTVAL (operands[2]) : 0x55555555);
3276 /* The determinant of the algorithm. If we perform an AND, 0
3277 affects a bit. Otherwise, 1 affects a bit. */
3278 const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
3279 /* Break up DET into pieces. */
3280 const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
3281 const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
3282 const unsigned HOST_WIDE_INT b2 = (det >> 16) & 0xff;
3283 const unsigned HOST_WIDE_INT b3 = (det >> 24) & 0xff;
3284 const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
3285 const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
3286 int lower_half_easy_p = 0;
3287 int upper_half_easy_p = 0;
3288 /* The name of an insn. */
3289 const char *opname;
3290 char insn_buf[100];
3291
3292 switch (code)
3293 {
3294 case AND:
3295 opname = "and";
3296 break;
3297 case IOR:
3298 opname = "or";
3299 break;
3300 case XOR:
3301 opname = "xor";
3302 break;
3303 default:
3304 gcc_unreachable ();
3305 }
3306
3307 switch (mode)
3308 {
3309 case E_HImode:
3310 /* First, see if we can finish with one insn. */
3311 if ((TARGET_H8300H || TARGET_H8300S)
3312 && b0 != 0
3313 && b1 != 0)
3314 {
3315 sprintf (insn_buf, "%s.w\t%%T2,%%T0", opname);
3316 output_asm_insn (insn_buf, operands);
3317 }
3318 else
3319 {
3320 /* Take care of the lower byte. */
3321 if (b0 != 0)
3322 {
3323 sprintf (insn_buf, "%s\t%%s2,%%s0", opname);
3324 output_asm_insn (insn_buf, operands);
3325 }
3326 /* Take care of the upper byte. */
3327 if (b1 != 0)
3328 {
3329 sprintf (insn_buf, "%s\t%%t2,%%t0", opname);
3330 output_asm_insn (insn_buf, operands);
3331 }
3332 }
3333 break;
3334 case E_SImode:
3335 if (TARGET_H8300H || TARGET_H8300S)
3336 {
3337 /* Determine if the lower half can be taken care of in no more
3338 than two bytes. */
3339 lower_half_easy_p = (b0 == 0
3340 || b1 == 0
3341 || (code != IOR && w0 == 0xffff));
3342
3343 /* Determine if the upper half can be taken care of in no more
3344 than two bytes. */
3345 upper_half_easy_p = ((code != IOR && w1 == 0xffff)
3346 || (code == AND && w1 == 0xff00));
3347 }
3348
3349 /* Check if doing everything with one insn is no worse than
3350 using multiple insns. */
3351 if ((TARGET_H8300H || TARGET_H8300S)
3352 && w0 != 0 && w1 != 0
3353 && !(lower_half_easy_p && upper_half_easy_p)
3354 && !(code == IOR && w1 == 0xffff
3355 && (w0 & 0x8000) != 0 && lower_half_easy_p))
3356 {
3357 sprintf (insn_buf, "%s.l\t%%S2,%%S0", opname);
3358 output_asm_insn (insn_buf, operands);
3359 }
3360 else
3361 {
3362 /* Take care of the lower and upper words individually. For
3363 each word, we try different methods in the order of
3364
3365 1) the special insn (in case of AND or XOR),
3366 2) the word-wise insn, and
3367 3) The byte-wise insn. */
3368 if (w0 == 0xffff
3369 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
3370 output_asm_insn ((code == AND)
3371 ? "sub.w\t%f0,%f0" : "not.w\t%f0",
3372 operands);
3373 else if ((TARGET_H8300H || TARGET_H8300S)
3374 && (b0 != 0)
3375 && (b1 != 0))
3376 {
3377 sprintf (insn_buf, "%s.w\t%%f2,%%f0", opname);
3378 output_asm_insn (insn_buf, operands);
3379 }
3380 else
3381 {
3382 if (b0 != 0)
3383 {
3384 sprintf (insn_buf, "%s\t%%w2,%%w0", opname);
3385 output_asm_insn (insn_buf, operands);
3386 }
3387 if (b1 != 0)
3388 {
3389 sprintf (insn_buf, "%s\t%%x2,%%x0", opname);
3390 output_asm_insn (insn_buf, operands);
3391 }
3392 }
3393
3394 if ((w1 == 0xffff)
3395 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
3396 output_asm_insn ((code == AND)
3397 ? "sub.w\t%e0,%e0" : "not.w\t%e0",
3398 operands);
3399 else if ((TARGET_H8300H || TARGET_H8300S)
3400 && code == IOR
3401 && w1 == 0xffff
3402 && (w0 & 0x8000) != 0)
3403 {
3404 output_asm_insn ("exts.l\t%S0", operands);
3405 }
3406 else if ((TARGET_H8300H || TARGET_H8300S)
3407 && code == AND
3408 && w1 == 0xff00)
3409 {
3410 output_asm_insn ("extu.w\t%e0", operands);
3411 }
3412 else if (TARGET_H8300H || TARGET_H8300S)
3413 {
3414 if (w1 != 0)
3415 {
3416 sprintf (insn_buf, "%s.w\t%%e2,%%e0", opname);
3417 output_asm_insn (insn_buf, operands);
3418 }
3419 }
3420 else
3421 {
3422 if (b2 != 0)
3423 {
3424 sprintf (insn_buf, "%s\t%%y2,%%y0", opname);
3425 output_asm_insn (insn_buf, operands);
3426 }
3427 if (b3 != 0)
3428 {
3429 sprintf (insn_buf, "%s\t%%z2,%%z0", opname);
3430 output_asm_insn (insn_buf, operands);
3431 }
3432 }
3433 }
3434 break;
3435 default:
3436 gcc_unreachable ();
3437 }
3438 return "";
3439 }
3440
3441 /* Compute the length of a logical insn. */
3442
3443 unsigned int
3444 compute_logical_op_length (machine_mode mode, rtx *operands)
3445 {
3446 /* Figure out the logical op that we need to perform. */
3447 enum rtx_code code = GET_CODE (operands[3]);
3448 /* Pretend that every byte is affected if both operands are registers. */
3449 const unsigned HOST_WIDE_INT intval =
3450 (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
3451 /* Always use the full instruction if the
3452 first operand is in memory. It is better
3453 to use define_splits to generate the shorter
3454 sequence where valid. */
3455 && register_operand (operands[1], VOIDmode)
3456 ? INTVAL (operands[2]) : 0x55555555);
3457 /* The determinant of the algorithm. If we perform an AND, 0
3458 affects a bit. Otherwise, 1 affects a bit. */
3459 const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
3460 /* Break up DET into pieces. */
3461 const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
3462 const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
3463 const unsigned HOST_WIDE_INT b2 = (det >> 16) & 0xff;
3464 const unsigned HOST_WIDE_INT b3 = (det >> 24) & 0xff;
3465 const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
3466 const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
3467 int lower_half_easy_p = 0;
3468 int upper_half_easy_p = 0;
3469 /* Insn length. */
3470 unsigned int length = 0;
3471
3472 switch (mode)
3473 {
3474 case E_HImode:
3475 /* First, see if we can finish with one insn. */
3476 if ((TARGET_H8300H || TARGET_H8300S)
3477 && b0 != 0
3478 && b1 != 0)
3479 {
3480 length = h8300_length_from_table (operands[1], operands[2],
3481 &logicw_length_table);
3482 }
3483 else
3484 {
3485 /* Take care of the lower byte. */
3486 if (b0 != 0)
3487 length += 2;
3488
3489 /* Take care of the upper byte. */
3490 if (b1 != 0)
3491 length += 2;
3492 }
3493 break;
3494 case E_SImode:
3495 if (TARGET_H8300H || TARGET_H8300S)
3496 {
3497 /* Determine if the lower half can be taken care of in no more
3498 than two bytes. */
3499 lower_half_easy_p = (b0 == 0
3500 || b1 == 0
3501 || (code != IOR && w0 == 0xffff));
3502
3503 /* Determine if the upper half can be taken care of in no more
3504 than two bytes. */
3505 upper_half_easy_p = ((code != IOR && w1 == 0xffff)
3506 || (code == AND && w1 == 0xff00));
3507 }
3508
3509 /* Check if doing everything with one insn is no worse than
3510 using multiple insns. */
3511 if ((TARGET_H8300H || TARGET_H8300S)
3512 && w0 != 0 && w1 != 0
3513 && !(lower_half_easy_p && upper_half_easy_p)
3514 && !(code == IOR && w1 == 0xffff
3515 && (w0 & 0x8000) != 0 && lower_half_easy_p))
3516 {
3517 length = h8300_length_from_table (operands[1], operands[2],
3518 &logicl_length_table);
3519 }
3520 else
3521 {
3522 /* Take care of the lower and upper words individually. For
3523 each word, we try different methods in the order of
3524
3525 1) the special insn (in case of AND or XOR),
3526 2) the word-wise insn, and
3527 3) The byte-wise insn. */
3528 if (w0 == 0xffff
3529 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
3530 {
3531 length += 2;
3532 }
3533 else if ((TARGET_H8300H || TARGET_H8300S)
3534 && (b0 != 0)
3535 && (b1 != 0))
3536 {
3537 length += 4;
3538 }
3539 else
3540 {
3541 if (b0 != 0)
3542 length += 2;
3543
3544 if (b1 != 0)
3545 length += 2;
3546 }
3547
3548 if (w1 == 0xffff
3549 && (TARGET_H8300 ? (code == AND) : (code != IOR)))
3550 {
3551 length += 2;
3552 }
3553 else if ((TARGET_H8300H || TARGET_H8300S)
3554 && code == IOR
3555 && w1 == 0xffff
3556 && (w0 & 0x8000) != 0)
3557 {
3558 length += 2;
3559 }
3560 else if ((TARGET_H8300H || TARGET_H8300S)
3561 && code == AND
3562 && w1 == 0xff00)
3563 {
3564 length += 2;
3565 }
3566 else if (TARGET_H8300H || TARGET_H8300S)
3567 {
3568 if (w1 != 0)
3569 length += 4;
3570 }
3571 else
3572 {
3573 if (b2 != 0)
3574 length += 2;
3575
3576 if (b3 != 0)
3577 length += 2;
3578 }
3579 }
3580 break;
3581 default:
3582 gcc_unreachable ();
3583 }
3584 return length;
3585 }
3586
3587 /* Compute which flag bits are valid after a logical insn. */
3588
3589 enum attr_cc
3590 compute_logical_op_cc (machine_mode mode, rtx *operands)
3591 {
3592 /* Figure out the logical op that we need to perform. */
3593 enum rtx_code code = GET_CODE (operands[3]);
3594 /* Pretend that every byte is affected if both operands are registers. */
3595 const unsigned HOST_WIDE_INT intval =
3596 (unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
3597 /* Always use the full instruction if the
3598 first operand is in memory. It is better
3599 to use define_splits to generate the shorter
3600 sequence where valid. */
3601 && register_operand (operands[1], VOIDmode)
3602 ? INTVAL (operands[2]) : 0x55555555);
3603 /* The determinant of the algorithm. If we perform an AND, 0
3604 affects a bit. Otherwise, 1 affects a bit. */
3605 const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
3606 /* Break up DET into pieces. */
3607 const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
3608 const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
3609 const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
3610 const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
3611 int lower_half_easy_p = 0;
3612 int upper_half_easy_p = 0;
3613 /* Condition code. */
3614 enum attr_cc cc = CC_CLOBBER;
3615
3616 switch (mode)
3617 {
3618 case E_HImode:
3619 /* First, see if we can finish with one insn. */
3620 if ((TARGET_H8300H || TARGET_H8300S)
3621 && b0 != 0
3622 && b1 != 0)
3623 {
3624 cc = CC_SET_ZNV;
3625 }
3626 break;
3627 case E_SImode:
3628 if (TARGET_H8300H || TARGET_H8300S)
3629 {
3630 /* Determine if the lower half can be taken care of in no more
3631 than two bytes. */
3632 lower_half_easy_p = (b0 == 0
3633 || b1 == 0
3634 || (code != IOR && w0 == 0xffff));
3635
3636 /* Determine if the upper half can be taken care of in no more
3637 than two bytes. */
3638 upper_half_easy_p = ((code != IOR && w1 == 0xffff)
3639 || (code == AND && w1 == 0xff00));
3640 }
3641
3642 /* Check if doing everything with one insn is no worse than
3643 using multiple insns. */
3644 if ((TARGET_H8300H || TARGET_H8300S)
3645 && w0 != 0 && w1 != 0
3646 && !(lower_half_easy_p && upper_half_easy_p)
3647 && !(code == IOR && w1 == 0xffff
3648 && (w0 & 0x8000) != 0 && lower_half_easy_p))
3649 {
3650 cc = CC_SET_ZNV;
3651 }
3652 else
3653 {
3654 if ((TARGET_H8300H || TARGET_H8300S)
3655 && code == IOR
3656 && w1 == 0xffff
3657 && (w0 & 0x8000) != 0)
3658 {
3659 cc = CC_SET_ZNV;
3660 }
3661 }
3662 break;
3663 default:
3664 gcc_unreachable ();
3665 }
3666 return cc;
3667 }
3668 \f
3669 /* Expand a conditional branch. */
3670
3671 void
3672 h8300_expand_branch (rtx operands[])
3673 {
3674 enum rtx_code code = GET_CODE (operands[0]);
3675 rtx op0 = operands[1];
3676 rtx op1 = operands[2];
3677 rtx label = operands[3];
3678 rtx tmp;
3679
3680 tmp = gen_rtx_COMPARE (VOIDmode, op0, op1);
3681 emit_insn (gen_rtx_SET (cc0_rtx, tmp));
3682
3683 tmp = gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
3684 tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp,
3685 gen_rtx_LABEL_REF (VOIDmode, label),
3686 pc_rtx);
3687 emit_jump_insn (gen_rtx_SET (pc_rtx, tmp));
3688 }
3689
3690
3691 /* Expand a conditional store. */
3692
3693 void
3694 h8300_expand_store (rtx operands[])
3695 {
3696 rtx dest = operands[0];
3697 enum rtx_code code = GET_CODE (operands[1]);
3698 rtx op0 = operands[2];
3699 rtx op1 = operands[3];
3700 rtx tmp;
3701
3702 tmp = gen_rtx_COMPARE (VOIDmode, op0, op1);
3703 emit_insn (gen_rtx_SET (cc0_rtx, tmp));
3704
3705 tmp = gen_rtx_fmt_ee (code, GET_MODE (dest), cc0_rtx, const0_rtx);
3706 emit_insn (gen_rtx_SET (dest, tmp));
3707 }
3708 \f
3709 /* Shifts.
3710
3711 We devote a fair bit of code to getting efficient shifts since we
3712 can only shift one bit at a time on the H8/300 and H8/300H and only
3713 one or two bits at a time on the H8S.
3714
3715 All shift code falls into one of the following ways of
3716 implementation:
3717
3718 o SHIFT_INLINE: Emit straight line code for the shift; this is used
3719 when a straight line shift is about the same size or smaller than
3720 a loop.
3721
3722 o SHIFT_ROT_AND: Rotate the value the opposite direction, then mask
3723 off the bits we don't need. This is used when only a few of the
3724 bits in the original value will survive in the shifted value.
3725
3726 o SHIFT_SPECIAL: Often it's possible to move a byte or a word to
3727 simulate a shift by 8, 16, or 24 bits. Once moved, a few inline
3728 shifts can be added if the shift count is slightly more than 8 or
3729 16. This case also includes other oddballs that are not worth
3730 explaining here.
3731
3732 o SHIFT_LOOP: Emit a loop using one (or two on H8S) bit shifts.
3733
3734 For each shift count, we try to use code that has no trade-off
3735 between code size and speed whenever possible.
3736
3737 If the trade-off is unavoidable, we try to be reasonable.
3738 Specifically, the fastest version is one instruction longer than
3739 the shortest version, we take the fastest version. We also provide
3740 the use a way to switch back to the shortest version with -Os.
3741
3742 For the details of the shift algorithms for various shift counts,
3743 refer to shift_alg_[qhs]i. */
3744
3745 /* Classify a shift with the given mode and code. OP is the shift amount. */
3746
3747 enum h8sx_shift_type
3748 h8sx_classify_shift (machine_mode mode, enum rtx_code code, rtx op)
3749 {
3750 if (!TARGET_H8300SX)
3751 return H8SX_SHIFT_NONE;
3752
3753 switch (code)
3754 {
3755 case ASHIFT:
3756 case LSHIFTRT:
3757 /* Check for variable shifts (shll Rs,Rd and shlr Rs,Rd). */
3758 if (GET_CODE (op) != CONST_INT)
3759 return H8SX_SHIFT_BINARY;
3760
3761 /* Reject out-of-range shift amounts. */
3762 if (INTVAL (op) <= 0 || INTVAL (op) >= GET_MODE_BITSIZE (mode))
3763 return H8SX_SHIFT_NONE;
3764
3765 /* Power-of-2 shifts are effectively unary operations. */
3766 if (exact_log2 (INTVAL (op)) >= 0)
3767 return H8SX_SHIFT_UNARY;
3768
3769 return H8SX_SHIFT_BINARY;
3770
3771 case ASHIFTRT:
3772 if (op == const1_rtx || op == const2_rtx)
3773 return H8SX_SHIFT_UNARY;
3774 return H8SX_SHIFT_NONE;
3775
3776 case ROTATE:
3777 if (GET_CODE (op) == CONST_INT
3778 && (INTVAL (op) == 1
3779 || INTVAL (op) == 2
3780 || INTVAL (op) == GET_MODE_BITSIZE (mode) - 2
3781 || INTVAL (op) == GET_MODE_BITSIZE (mode) - 1))
3782 return H8SX_SHIFT_UNARY;
3783 return H8SX_SHIFT_NONE;
3784
3785 default:
3786 return H8SX_SHIFT_NONE;
3787 }
3788 }
3789
3790 /* Return the asm template for a single h8sx shift instruction.
3791 OPERANDS[0] and OPERANDS[1] are the destination, OPERANDS[2]
3792 is the source and OPERANDS[3] is the shift. SUFFIX is the
3793 size suffix ('b', 'w' or 'l') and OPTYPE is the h8300_print_operand
3794 prefix for the destination operand. */
3795
3796 const char *
3797 output_h8sx_shift (rtx *operands, int suffix, int optype)
3798 {
3799 static char buffer[16];
3800 const char *stem;
3801
3802 switch (GET_CODE (operands[3]))
3803 {
3804 case ASHIFT:
3805 stem = "shll";
3806 break;
3807
3808 case ASHIFTRT:
3809 stem = "shar";
3810 break;
3811
3812 case LSHIFTRT:
3813 stem = "shlr";
3814 break;
3815
3816 case ROTATE:
3817 stem = "rotl";
3818 if (INTVAL (operands[2]) > 2)
3819 {
3820 /* This is really a right rotate. */
3821 operands[2] = GEN_INT (GET_MODE_BITSIZE (GET_MODE (operands[0]))
3822 - INTVAL (operands[2]));
3823 stem = "rotr";
3824 }
3825 break;
3826
3827 default:
3828 gcc_unreachable ();
3829 }
3830 if (operands[2] == const1_rtx)
3831 sprintf (buffer, "%s.%c\t%%%c0", stem, suffix, optype);
3832 else
3833 sprintf (buffer, "%s.%c\t%%X2,%%%c0", stem, suffix, optype);
3834 return buffer;
3835 }
3836
3837 /* Emit code to do shifts. */
3838
3839 bool
3840 expand_a_shift (machine_mode mode, enum rtx_code code, rtx operands[])
3841 {
3842 switch (h8sx_classify_shift (mode, code, operands[2]))
3843 {
3844 case H8SX_SHIFT_BINARY:
3845 operands[1] = force_reg (mode, operands[1]);
3846 return false;
3847
3848 case H8SX_SHIFT_UNARY:
3849 return false;
3850
3851 case H8SX_SHIFT_NONE:
3852 break;
3853 }
3854
3855 emit_move_insn (copy_rtx (operands[0]), operands[1]);
3856
3857 /* Need a loop to get all the bits we want - we generate the
3858 code at emit time, but need to allocate a scratch reg now. */
3859
3860 emit_insn (gen_rtx_PARALLEL
3861 (VOIDmode,
3862 gen_rtvec (2,
3863 gen_rtx_SET (copy_rtx (operands[0]),
3864 gen_rtx_fmt_ee (code, mode,
3865 copy_rtx (operands[0]), operands[2])),
3866 gen_rtx_CLOBBER (VOIDmode,
3867 gen_rtx_SCRATCH (QImode)))));
3868 return true;
3869 }
3870
3871 /* Symbols of the various modes which can be used as indices. */
3872
3873 enum shift_mode
3874 {
3875 QIshift, HIshift, SIshift
3876 };
3877
3878 /* For single bit shift insns, record assembler and what bits of the
3879 condition code are valid afterwards (represented as various CC_FOO
3880 bits, 0 means CC isn't left in a usable state). */
3881
3882 struct shift_insn
3883 {
3884 const char *const assembler;
3885 const enum attr_cc cc_valid;
3886 };
3887
3888 /* Assembler instruction shift table.
3889
3890 These tables are used to look up the basic shifts.
3891 They are indexed by cpu, shift_type, and mode. */
3892
3893 static const struct shift_insn shift_one[2][3][3] =
3894 {
3895 /* H8/300 */
3896 {
3897 /* SHIFT_ASHIFT */
3898 {
3899 { "shll\t%X0", CC_SET_ZNV },
3900 { "add.w\t%T0,%T0", CC_SET_ZN },
3901 { "add.w\t%f0,%f0\n\taddx\t%y0,%y0\n\taddx\t%z0,%z0", CC_CLOBBER }
3902 },
3903 /* SHIFT_LSHIFTRT */
3904 {
3905 { "shlr\t%X0", CC_SET_ZNV },
3906 { "shlr\t%t0\n\trotxr\t%s0", CC_CLOBBER },
3907 { "shlr\t%z0\n\trotxr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0", CC_CLOBBER }
3908 },
3909 /* SHIFT_ASHIFTRT */
3910 {
3911 { "shar\t%X0", CC_SET_ZNV },
3912 { "shar\t%t0\n\trotxr\t%s0", CC_CLOBBER },
3913 { "shar\t%z0\n\trotxr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0", CC_CLOBBER }
3914 }
3915 },
3916 /* H8/300H */
3917 {
3918 /* SHIFT_ASHIFT */
3919 {
3920 { "shll.b\t%X0", CC_SET_ZNV },
3921 { "shll.w\t%T0", CC_SET_ZNV },
3922 { "shll.l\t%S0", CC_SET_ZNV }
3923 },
3924 /* SHIFT_LSHIFTRT */
3925 {
3926 { "shlr.b\t%X0", CC_SET_ZNV },
3927 { "shlr.w\t%T0", CC_SET_ZNV },
3928 { "shlr.l\t%S0", CC_SET_ZNV }
3929 },
3930 /* SHIFT_ASHIFTRT */
3931 {
3932 { "shar.b\t%X0", CC_SET_ZNV },
3933 { "shar.w\t%T0", CC_SET_ZNV },
3934 { "shar.l\t%S0", CC_SET_ZNV }
3935 }
3936 }
3937 };
3938
3939 static const struct shift_insn shift_two[3][3] =
3940 {
3941 /* SHIFT_ASHIFT */
3942 {
3943 { "shll.b\t#2,%X0", CC_SET_ZNV },
3944 { "shll.w\t#2,%T0", CC_SET_ZNV },
3945 { "shll.l\t#2,%S0", CC_SET_ZNV }
3946 },
3947 /* SHIFT_LSHIFTRT */
3948 {
3949 { "shlr.b\t#2,%X0", CC_SET_ZNV },
3950 { "shlr.w\t#2,%T0", CC_SET_ZNV },
3951 { "shlr.l\t#2,%S0", CC_SET_ZNV }
3952 },
3953 /* SHIFT_ASHIFTRT */
3954 {
3955 { "shar.b\t#2,%X0", CC_SET_ZNV },
3956 { "shar.w\t#2,%T0", CC_SET_ZNV },
3957 { "shar.l\t#2,%S0", CC_SET_ZNV }
3958 }
3959 };
3960
3961 /* Rotates are organized by which shift they'll be used in implementing.
3962 There's no need to record whether the cc is valid afterwards because
3963 it is the AND insn that will decide this. */
3964
3965 static const char *const rotate_one[2][3][3] =
3966 {
3967 /* H8/300 */
3968 {
3969 /* SHIFT_ASHIFT */
3970 {
3971 "rotr\t%X0",
3972 "shlr\t%t0\n\trotxr\t%s0\n\tbst\t#7,%t0",
3973 0
3974 },
3975 /* SHIFT_LSHIFTRT */
3976 {
3977 "rotl\t%X0",
3978 "shll\t%s0\n\trotxl\t%t0\n\tbst\t#0,%s0",
3979 0
3980 },
3981 /* SHIFT_ASHIFTRT */
3982 {
3983 "rotl\t%X0",
3984 "shll\t%s0\n\trotxl\t%t0\n\tbst\t#0,%s0",
3985 0
3986 }
3987 },
3988 /* H8/300H */
3989 {
3990 /* SHIFT_ASHIFT */
3991 {
3992 "rotr.b\t%X0",
3993 "rotr.w\t%T0",
3994 "rotr.l\t%S0"
3995 },
3996 /* SHIFT_LSHIFTRT */
3997 {
3998 "rotl.b\t%X0",
3999 "rotl.w\t%T0",
4000 "rotl.l\t%S0"
4001 },
4002 /* SHIFT_ASHIFTRT */
4003 {
4004 "rotl.b\t%X0",
4005 "rotl.w\t%T0",
4006 "rotl.l\t%S0"
4007 }
4008 }
4009 };
4010
4011 static const char *const rotate_two[3][3] =
4012 {
4013 /* SHIFT_ASHIFT */
4014 {
4015 "rotr.b\t#2,%X0",
4016 "rotr.w\t#2,%T0",
4017 "rotr.l\t#2,%S0"
4018 },
4019 /* SHIFT_LSHIFTRT */
4020 {
4021 "rotl.b\t#2,%X0",
4022 "rotl.w\t#2,%T0",
4023 "rotl.l\t#2,%S0"
4024 },
4025 /* SHIFT_ASHIFTRT */
4026 {
4027 "rotl.b\t#2,%X0",
4028 "rotl.w\t#2,%T0",
4029 "rotl.l\t#2,%S0"
4030 }
4031 };
4032
4033 struct shift_info {
4034 /* Shift algorithm. */
4035 enum shift_alg alg;
4036
4037 /* The number of bits to be shifted by shift1 and shift2. Valid
4038 when ALG is SHIFT_SPECIAL. */
4039 unsigned int remainder;
4040
4041 /* Special insn for a shift. Valid when ALG is SHIFT_SPECIAL. */
4042 const char *special;
4043
4044 /* Insn for a one-bit shift. Valid when ALG is either SHIFT_INLINE
4045 or SHIFT_SPECIAL, and REMAINDER is nonzero. */
4046 const char *shift1;
4047
4048 /* Insn for a two-bit shift. Valid when ALG is either SHIFT_INLINE
4049 or SHIFT_SPECIAL, and REMAINDER is nonzero. */
4050 const char *shift2;
4051
4052 /* CC status for SHIFT_INLINE. */
4053 enum attr_cc cc_inline;
4054
4055 /* CC status for SHIFT_SPECIAL. */
4056 enum attr_cc cc_special;
4057 };
4058
4059 static void get_shift_alg (enum shift_type,
4060 enum shift_mode, unsigned int,
4061 struct shift_info *);
4062
4063 /* Given SHIFT_TYPE, SHIFT_MODE, and shift count COUNT, determine the
4064 best algorithm for doing the shift. The assembler code is stored
4065 in the pointers in INFO. We achieve the maximum efficiency in most
4066 cases when !TARGET_H8300. In case of TARGET_H8300, shifts in
4067 SImode in particular have a lot of room to optimize.
4068
4069 We first determine the strategy of the shift algorithm by a table
4070 lookup. If that tells us to use a hand crafted assembly code, we
4071 go into the big switch statement to find what that is. Otherwise,
4072 we resort to a generic way, such as inlining. In either case, the
4073 result is returned through INFO. */
4074
4075 static void
4076 get_shift_alg (enum shift_type shift_type, enum shift_mode shift_mode,
4077 unsigned int count, struct shift_info *info)
4078 {
4079 enum h8_cpu cpu;
4080
4081 /* Find the target CPU. */
4082 if (TARGET_H8300)
4083 cpu = H8_300;
4084 else if (TARGET_H8300S)
4085 cpu = H8_S;
4086 else
4087 cpu = H8_300H;
4088
4089 /* Find the shift algorithm. */
4090 info->alg = SHIFT_LOOP;
4091 switch (shift_mode)
4092 {
4093 case QIshift:
4094 if (count < GET_MODE_BITSIZE (QImode))
4095 info->alg = shift_alg_qi[cpu][shift_type][count];
4096 break;
4097
4098 case HIshift:
4099 if (count < GET_MODE_BITSIZE (HImode))
4100 info->alg = shift_alg_hi[cpu][shift_type][count];
4101 break;
4102
4103 case SIshift:
4104 if (count < GET_MODE_BITSIZE (SImode))
4105 info->alg = shift_alg_si[cpu][shift_type][count];
4106 break;
4107
4108 default:
4109 gcc_unreachable ();
4110 }
4111
4112 /* Fill in INFO. Return unless we have SHIFT_SPECIAL. */
4113 switch (info->alg)
4114 {
4115 case SHIFT_INLINE:
4116 info->remainder = count;
4117 /* Fall through. */
4118
4119 case SHIFT_LOOP:
4120 /* It is up to the caller to know that looping clobbers cc. */
4121 info->shift1 = shift_one[cpu_type][shift_type][shift_mode].assembler;
4122 info->shift2 = shift_two[shift_type][shift_mode].assembler;
4123 info->cc_inline = shift_one[cpu_type][shift_type][shift_mode].cc_valid;
4124 goto end;
4125
4126 case SHIFT_ROT_AND:
4127 info->shift1 = rotate_one[cpu_type][shift_type][shift_mode];
4128 info->shift2 = rotate_two[shift_type][shift_mode];
4129 info->cc_inline = CC_CLOBBER;
4130 goto end;
4131
4132 case SHIFT_SPECIAL:
4133 /* REMAINDER is 0 for most cases, so initialize it to 0. */
4134 info->remainder = 0;
4135 info->shift1 = shift_one[cpu_type][shift_type][shift_mode].assembler;
4136 info->shift2 = shift_two[shift_type][shift_mode].assembler;
4137 info->cc_inline = shift_one[cpu_type][shift_type][shift_mode].cc_valid;
4138 info->cc_special = CC_CLOBBER;
4139 break;
4140 }
4141
4142 /* Here we only deal with SHIFT_SPECIAL. */
4143 switch (shift_mode)
4144 {
4145 case QIshift:
4146 /* For ASHIFTRT by 7 bits, the sign bit is simply replicated
4147 through the entire value. */
4148 gcc_assert (shift_type == SHIFT_ASHIFTRT && count == 7);
4149 info->special = "shll\t%X0\n\tsubx\t%X0,%X0";
4150 goto end;
4151
4152 case HIshift:
4153 if (count == 7)
4154 {
4155 switch (shift_type)
4156 {
4157 case SHIFT_ASHIFT:
4158 if (TARGET_H8300)
4159 info->special = "shar.b\t%t0\n\tmov.b\t%s0,%t0\n\trotxr.b\t%t0\n\trotr.b\t%s0\n\tand.b\t#0x80,%s0";
4160 else
4161 info->special = "shar.b\t%t0\n\tmov.b\t%s0,%t0\n\trotxr.w\t%T0\n\tand.b\t#0x80,%s0";
4162 goto end;
4163 case SHIFT_LSHIFTRT:
4164 if (TARGET_H8300)
4165 info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.b\t%s0\n\trotl.b\t%t0\n\tand.b\t#0x01,%t0";
4166 else
4167 info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.w\t%T0\n\tand.b\t#0x01,%t0";
4168 goto end;
4169 case SHIFT_ASHIFTRT:
4170 info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.b\t%s0\n\tsubx\t%t0,%t0";
4171 goto end;
4172 }
4173 }
4174 else if ((count >= 8 && count <= 13)
4175 || (TARGET_H8300S && count == 14))
4176 {
4177 info->remainder = count - 8;
4178
4179 switch (shift_type)
4180 {
4181 case SHIFT_ASHIFT:
4182 info->special = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0";
4183 goto end;
4184 case SHIFT_LSHIFTRT:
4185 if (TARGET_H8300)
4186 {
4187 info->special = "mov.b\t%t0,%s0\n\tsub.b\t%t0,%t0";
4188 info->shift1 = "shlr.b\t%s0";
4189 info->cc_inline = CC_SET_ZNV;
4190 }
4191 else
4192 {
4193 info->special = "mov.b\t%t0,%s0\n\textu.w\t%T0";
4194 info->cc_special = CC_SET_ZNV;
4195 }
4196 goto end;
4197 case SHIFT_ASHIFTRT:
4198 if (TARGET_H8300)
4199 {
4200 info->special = "mov.b\t%t0,%s0\n\tbld\t#7,%s0\n\tsubx\t%t0,%t0";
4201 info->shift1 = "shar.b\t%s0";
4202 }
4203 else
4204 {
4205 info->special = "mov.b\t%t0,%s0\n\texts.w\t%T0";
4206 info->cc_special = CC_SET_ZNV;
4207 }
4208 goto end;
4209 }
4210 }
4211 else if (count == 14)
4212 {
4213 switch (shift_type)
4214 {
4215 case SHIFT_ASHIFT:
4216 if (TARGET_H8300)
4217 info->special = "mov.b\t%s0,%t0\n\trotr.b\t%t0\n\trotr.b\t%t0\n\tand.b\t#0xC0,%t0\n\tsub.b\t%s0,%s0";
4218 goto end;
4219 case SHIFT_LSHIFTRT:
4220 if (TARGET_H8300)
4221 info->special = "mov.b\t%t0,%s0\n\trotl.b\t%s0\n\trotl.b\t%s0\n\tand.b\t#3,%s0\n\tsub.b\t%t0,%t0";
4222 goto end;
4223 case SHIFT_ASHIFTRT:
4224 if (TARGET_H8300)
4225 info->special = "mov.b\t%t0,%s0\n\tshll.b\t%s0\n\tsubx.b\t%t0,%t0\n\tshll.b\t%s0\n\tmov.b\t%t0,%s0\n\tbst.b\t#0,%s0";
4226 else if (TARGET_H8300H)
4227 {
4228 info->special = "shll.b\t%t0\n\tsubx.b\t%s0,%s0\n\tshll.b\t%t0\n\trotxl.b\t%s0\n\texts.w\t%T0";
4229 info->cc_special = CC_SET_ZNV;
4230 }
4231 else /* TARGET_H8300S */
4232 gcc_unreachable ();
4233 goto end;
4234 }
4235 }
4236 else if (count == 15)
4237 {
4238 switch (shift_type)
4239 {
4240 case SHIFT_ASHIFT:
4241 info->special = "bld\t#0,%s0\n\txor\t%s0,%s0\n\txor\t%t0,%t0\n\tbst\t#7,%t0";
4242 goto end;
4243 case SHIFT_LSHIFTRT:
4244 info->special = "bld\t#7,%t0\n\txor\t%s0,%s0\n\txor\t%t0,%t0\n\tbst\t#0,%s0";
4245 goto end;
4246 case SHIFT_ASHIFTRT:
4247 info->special = "shll\t%t0\n\tsubx\t%t0,%t0\n\tmov.b\t%t0,%s0";
4248 goto end;
4249 }
4250 }
4251 gcc_unreachable ();
4252
4253 case SIshift:
4254 if (TARGET_H8300 && count >= 8 && count <= 9)
4255 {
4256 info->remainder = count - 8;
4257
4258 switch (shift_type)
4259 {
4260 case SHIFT_ASHIFT:
4261 info->special = "mov.b\t%y0,%z0\n\tmov.b\t%x0,%y0\n\tmov.b\t%w0,%x0\n\tsub.b\t%w0,%w0";
4262 goto end;
4263 case SHIFT_LSHIFTRT:
4264 info->special = "mov.b\t%x0,%w0\n\tmov.b\t%y0,%x0\n\tmov.b\t%z0,%y0\n\tsub.b\t%z0,%z0";
4265 info->shift1 = "shlr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0";
4266 goto end;
4267 case SHIFT_ASHIFTRT:
4268 info->special = "mov.b\t%x0,%w0\n\tmov.b\t%y0,%x0\n\tmov.b\t%z0,%y0\n\tshll\t%z0\n\tsubx\t%z0,%z0";
4269 goto end;
4270 }
4271 }
4272 else if (count == 8 && !TARGET_H8300)
4273 {
4274 switch (shift_type)
4275 {
4276 case SHIFT_ASHIFT:
4277 info->special = "mov.w\t%e0,%f4\n\tmov.b\t%s4,%t4\n\tmov.b\t%t0,%s4\n\tmov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tmov.w\t%f4,%e0";
4278 goto end;
4279 case SHIFT_LSHIFTRT:
4280 info->special = "mov.w\t%e0,%f4\n\tmov.b\t%t0,%s0\n\tmov.b\t%s4,%t0\n\tmov.b\t%t4,%s4\n\textu.w\t%f4\n\tmov.w\t%f4,%e0";
4281 goto end;
4282 case SHIFT_ASHIFTRT:
4283 info->special = "mov.w\t%e0,%f4\n\tmov.b\t%t0,%s0\n\tmov.b\t%s4,%t0\n\tmov.b\t%t4,%s4\n\texts.w\t%f4\n\tmov.w\t%f4,%e0";
4284 goto end;
4285 }
4286 }
4287 else if (count == 15 && TARGET_H8300)
4288 {
4289 switch (shift_type)
4290 {
4291 case SHIFT_ASHIFT:
4292 gcc_unreachable ();
4293 case SHIFT_LSHIFTRT:
4294 info->special = "bld\t#7,%z0\n\tmov.w\t%e0,%f0\n\txor\t%y0,%y0\n\txor\t%z0,%z0\n\trotxl\t%w0\n\trotxl\t%x0\n\trotxl\t%y0";
4295 goto end;
4296 case SHIFT_ASHIFTRT:
4297 info->special = "bld\t#7,%z0\n\tmov.w\t%e0,%f0\n\trotxl\t%w0\n\trotxl\t%x0\n\tsubx\t%y0,%y0\n\tsubx\t%z0,%z0";
4298 goto end;
4299 }
4300 }
4301 else if (count == 15 && !TARGET_H8300)
4302 {
4303 switch (shift_type)
4304 {
4305 case SHIFT_ASHIFT:
4306 info->special = "shlr.w\t%e0\n\tmov.w\t%f0,%e0\n\txor.w\t%f0,%f0\n\trotxr.l\t%S0";
4307 info->cc_special = CC_SET_ZNV;
4308 goto end;
4309 case SHIFT_LSHIFTRT:
4310 info->special = "shll.w\t%f0\n\tmov.w\t%e0,%f0\n\txor.w\t%e0,%e0\n\trotxl.l\t%S0";
4311 info->cc_special = CC_SET_ZNV;
4312 goto end;
4313 case SHIFT_ASHIFTRT:
4314 gcc_unreachable ();
4315 }
4316 }
4317 else if ((TARGET_H8300 && count >= 16 && count <= 20)
4318 || (TARGET_H8300H && count >= 16 && count <= 19)
4319 || (TARGET_H8300S && count >= 16 && count <= 21))
4320 {
4321 info->remainder = count - 16;
4322
4323 switch (shift_type)
4324 {
4325 case SHIFT_ASHIFT:
4326 info->special = "mov.w\t%f0,%e0\n\tsub.w\t%f0,%f0";
4327 if (TARGET_H8300)
4328 info->shift1 = "add.w\t%e0,%e0";
4329 goto end;
4330 case SHIFT_LSHIFTRT:
4331 if (TARGET_H8300)
4332 {
4333 info->special = "mov.w\t%e0,%f0\n\tsub.w\t%e0,%e0";
4334 info->shift1 = "shlr\t%x0\n\trotxr\t%w0";
4335 }
4336 else
4337 {
4338 info->special = "mov.w\t%e0,%f0\n\textu.l\t%S0";
4339 info->cc_special = CC_SET_ZNV;
4340 }
4341 goto end;
4342 case SHIFT_ASHIFTRT:
4343 if (TARGET_H8300)
4344 {
4345 info->special = "mov.w\t%e0,%f0\n\tshll\t%z0\n\tsubx\t%z0,%z0\n\tmov.b\t%z0,%y0";
4346 info->shift1 = "shar\t%x0\n\trotxr\t%w0";
4347 }
4348 else
4349 {
4350 info->special = "mov.w\t%e0,%f0\n\texts.l\t%S0";
4351 info->cc_special = CC_SET_ZNV;
4352 }
4353 goto end;
4354 }
4355 }
4356 else if (TARGET_H8300 && count >= 24 && count <= 28)
4357 {
4358 info->remainder = count - 24;
4359
4360 switch (shift_type)
4361 {
4362 case SHIFT_ASHIFT:
4363 info->special = "mov.b\t%w0,%z0\n\tsub.b\t%y0,%y0\n\tsub.w\t%f0,%f0";
4364 info->shift1 = "shll.b\t%z0";
4365 info->cc_inline = CC_SET_ZNV;
4366 goto end;
4367 case SHIFT_LSHIFTRT:
4368 info->special = "mov.b\t%z0,%w0\n\tsub.b\t%x0,%x0\n\tsub.w\t%e0,%e0";
4369 info->shift1 = "shlr.b\t%w0";
4370 info->cc_inline = CC_SET_ZNV;
4371 goto end;
4372 case SHIFT_ASHIFTRT:
4373 info->special = "mov.b\t%z0,%w0\n\tbld\t#7,%w0\n\tsubx\t%x0,%x0\n\tsubx\t%y0,%y0\n\tsubx\t%z0,%z0";
4374 info->shift1 = "shar.b\t%w0";
4375 info->cc_inline = CC_SET_ZNV;
4376 goto end;
4377 }
4378 }
4379 else if ((TARGET_H8300H && count == 24)
4380 || (TARGET_H8300S && count >= 24 && count <= 25))
4381 {
4382 info->remainder = count - 24;
4383
4384 switch (shift_type)
4385 {
4386 case SHIFT_ASHIFT:
4387 info->special = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tmov.w\t%f0,%e0\n\tsub.w\t%f0,%f0";
4388 goto end;
4389 case SHIFT_LSHIFTRT:
4390 info->special = "mov.w\t%e0,%f0\n\tmov.b\t%t0,%s0\n\textu.w\t%f0\n\textu.l\t%S0";
4391 info->cc_special = CC_SET_ZNV;
4392 goto end;
4393 case SHIFT_ASHIFTRT:
4394 info->special = "mov.w\t%e0,%f0\n\tmov.b\t%t0,%s0\n\texts.w\t%f0\n\texts.l\t%S0";
4395 info->cc_special = CC_SET_ZNV;
4396 goto end;
4397 }
4398 }
4399 else if (!TARGET_H8300 && count == 28)
4400 {
4401 switch (shift_type)
4402 {
4403 case SHIFT_ASHIFT:
4404 if (TARGET_H8300H)
4405 info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
4406 else
4407 info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\trotr.l\t#2,%S0\n\tsub.w\t%f0,%f0";
4408 goto end;
4409 case SHIFT_LSHIFTRT:
4410 if (TARGET_H8300H)
4411 {
4412 info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
4413 info->cc_special = CC_SET_ZNV;
4414 }
4415 else
4416 info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\trotl.l\t#2,%S0\n\textu.l\t%S0";
4417 goto end;
4418 case SHIFT_ASHIFTRT:
4419 gcc_unreachable ();
4420 }
4421 }
4422 else if (!TARGET_H8300 && count == 29)
4423 {
4424 switch (shift_type)
4425 {
4426 case SHIFT_ASHIFT:
4427 if (TARGET_H8300H)
4428 info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
4429 else
4430 info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
4431 goto end;
4432 case SHIFT_LSHIFTRT:
4433 if (TARGET_H8300H)
4434 {
4435 info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
4436 info->cc_special = CC_SET_ZNV;
4437 }
4438 else
4439 {
4440 info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
4441 info->cc_special = CC_SET_ZNV;
4442 }
4443 goto end;
4444 case SHIFT_ASHIFTRT:
4445 gcc_unreachable ();
4446 }
4447 }
4448 else if (!TARGET_H8300 && count == 30)
4449 {
4450 switch (shift_type)
4451 {
4452 case SHIFT_ASHIFT:
4453 if (TARGET_H8300H)
4454 info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
4455 else
4456 info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\tsub.w\t%f0,%f0";
4457 goto end;
4458 case SHIFT_LSHIFTRT:
4459 if (TARGET_H8300H)
4460 info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
4461 else
4462 info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\textu.l\t%S0";
4463 goto end;
4464 case SHIFT_ASHIFTRT:
4465 gcc_unreachable ();
4466 }
4467 }
4468 else if (count == 31)
4469 {
4470 if (TARGET_H8300)
4471 {
4472 switch (shift_type)
4473 {
4474 case SHIFT_ASHIFT:
4475 info->special = "sub.w\t%e0,%e0\n\tshlr\t%w0\n\tmov.w\t%e0,%f0\n\trotxr\t%z0";
4476 goto end;
4477 case SHIFT_LSHIFTRT:
4478 info->special = "sub.w\t%f0,%f0\n\tshll\t%z0\n\tmov.w\t%f0,%e0\n\trotxl\t%w0";
4479 goto end;
4480 case SHIFT_ASHIFTRT:
4481 info->special = "shll\t%z0\n\tsubx\t%w0,%w0\n\tmov.b\t%w0,%x0\n\tmov.w\t%f0,%e0";
4482 goto end;
4483 }
4484 }
4485 else
4486 {
4487 switch (shift_type)
4488 {
4489 case SHIFT_ASHIFT:
4490 info->special = "shlr.l\t%S0\n\txor.l\t%S0,%S0\n\trotxr.l\t%S0";
4491 info->cc_special = CC_SET_ZNV;
4492 goto end;
4493 case SHIFT_LSHIFTRT:
4494 info->special = "shll.l\t%S0\n\txor.l\t%S0,%S0\n\trotxl.l\t%S0";
4495 info->cc_special = CC_SET_ZNV;
4496 goto end;
4497 case SHIFT_ASHIFTRT:
4498 info->special = "shll\t%e0\n\tsubx\t%w0,%w0\n\texts.w\t%T0\n\texts.l\t%S0";
4499 info->cc_special = CC_SET_ZNV;
4500 goto end;
4501 }
4502 }
4503 }
4504 gcc_unreachable ();
4505
4506 default:
4507 gcc_unreachable ();
4508 }
4509
4510 end:
4511 if (!TARGET_H8300S)
4512 info->shift2 = NULL;
4513 }
4514
4515 /* Given COUNT and MODE of a shift, return 1 if a scratch reg may be
4516 needed for some shift with COUNT and MODE. Return 0 otherwise. */
4517
4518 int
4519 h8300_shift_needs_scratch_p (int count, machine_mode mode)
4520 {
4521 enum h8_cpu cpu;
4522 int a, lr, ar;
4523
4524 if (GET_MODE_BITSIZE (mode) <= count)
4525 return 1;
4526
4527 /* Find out the target CPU. */
4528 if (TARGET_H8300)
4529 cpu = H8_300;
4530 else if (TARGET_H8300S)
4531 cpu = H8_S;
4532 else
4533 cpu = H8_300H;
4534
4535 /* Find the shift algorithm. */
4536 switch (mode)
4537 {
4538 case E_QImode:
4539 a = shift_alg_qi[cpu][SHIFT_ASHIFT][count];
4540 lr = shift_alg_qi[cpu][SHIFT_LSHIFTRT][count];
4541 ar = shift_alg_qi[cpu][SHIFT_ASHIFTRT][count];
4542 break;
4543
4544 case E_HImode:
4545 a = shift_alg_hi[cpu][SHIFT_ASHIFT][count];
4546 lr = shift_alg_hi[cpu][SHIFT_LSHIFTRT][count];
4547 ar = shift_alg_hi[cpu][SHIFT_ASHIFTRT][count];
4548 break;
4549
4550 case E_SImode:
4551 a = shift_alg_si[cpu][SHIFT_ASHIFT][count];
4552 lr = shift_alg_si[cpu][SHIFT_LSHIFTRT][count];
4553 ar = shift_alg_si[cpu][SHIFT_ASHIFTRT][count];
4554 break;
4555
4556 default:
4557 gcc_unreachable ();
4558 }
4559
4560 /* On H8/300H, count == 8 uses a scratch register. */
4561 return (a == SHIFT_LOOP || lr == SHIFT_LOOP || ar == SHIFT_LOOP
4562 || (TARGET_H8300H && mode == SImode && count == 8));
4563 }
4564
4565 /* Output the assembler code for doing shifts. */
4566
4567 const char *
4568 output_a_shift (rtx *operands)
4569 {
4570 static int loopend_lab;
4571 rtx shift = operands[3];
4572 machine_mode mode = GET_MODE (shift);
4573 enum rtx_code code = GET_CODE (shift);
4574 enum shift_type shift_type;
4575 enum shift_mode shift_mode;
4576 struct shift_info info;
4577 int n;
4578
4579 loopend_lab++;
4580
4581 switch (mode)
4582 {
4583 case E_QImode:
4584 shift_mode = QIshift;
4585 break;
4586 case E_HImode:
4587 shift_mode = HIshift;
4588 break;
4589 case E_SImode:
4590 shift_mode = SIshift;
4591 break;
4592 default:
4593 gcc_unreachable ();
4594 }
4595
4596 switch (code)
4597 {
4598 case ASHIFTRT:
4599 shift_type = SHIFT_ASHIFTRT;
4600 break;
4601 case LSHIFTRT:
4602 shift_type = SHIFT_LSHIFTRT;
4603 break;
4604 case ASHIFT:
4605 shift_type = SHIFT_ASHIFT;
4606 break;
4607 default:
4608 gcc_unreachable ();
4609 }
4610
4611 /* This case must be taken care of by one of the two splitters
4612 that convert a variable shift into a loop. */
4613 gcc_assert (GET_CODE (operands[2]) == CONST_INT);
4614
4615 n = INTVAL (operands[2]);
4616
4617 /* If the count is negative, make it 0. */
4618 if (n < 0)
4619 n = 0;
4620 /* If the count is too big, truncate it.
4621 ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
4622 do the intuitive thing. */
4623 else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
4624 n = GET_MODE_BITSIZE (mode);
4625
4626 get_shift_alg (shift_type, shift_mode, n, &info);
4627
4628 switch (info.alg)
4629 {
4630 case SHIFT_SPECIAL:
4631 output_asm_insn (info.special, operands);
4632 /* Fall through. */
4633
4634 case SHIFT_INLINE:
4635 n = info.remainder;
4636
4637 /* Emit two bit shifts first. */
4638 if (info.shift2 != NULL)
4639 {
4640 for (; n > 1; n -= 2)
4641 output_asm_insn (info.shift2, operands);
4642 }
4643
4644 /* Now emit one bit shifts for any residual. */
4645 for (; n > 0; n--)
4646 output_asm_insn (info.shift1, operands);
4647 return "";
4648
4649 case SHIFT_ROT_AND:
4650 {
4651 int m = GET_MODE_BITSIZE (mode) - n;
4652 const int mask = (shift_type == SHIFT_ASHIFT
4653 ? ((1 << m) - 1) << n
4654 : (1 << m) - 1);
4655 char insn_buf[200];
4656
4657 /* Not all possibilities of rotate are supported. They shouldn't
4658 be generated, but let's watch for 'em. */
4659 gcc_assert (info.shift1);
4660
4661 /* Emit two bit rotates first. */
4662 if (info.shift2 != NULL)
4663 {
4664 for (; m > 1; m -= 2)
4665 output_asm_insn (info.shift2, operands);
4666 }
4667
4668 /* Now single bit rotates for any residual. */
4669 for (; m > 0; m--)
4670 output_asm_insn (info.shift1, operands);
4671
4672 /* Now mask off the high bits. */
4673 switch (mode)
4674 {
4675 case E_QImode:
4676 sprintf (insn_buf, "and\t#%d,%%X0", mask);
4677 break;
4678
4679 case E_HImode:
4680 gcc_assert (TARGET_H8300H || TARGET_H8300S);
4681 sprintf (insn_buf, "and.w\t#%d,%%T0", mask);
4682 break;
4683
4684 default:
4685 gcc_unreachable ();
4686 }
4687
4688 output_asm_insn (insn_buf, operands);
4689 return "";
4690 }
4691
4692 case SHIFT_LOOP:
4693 /* A loop to shift by a "large" constant value.
4694 If we have shift-by-2 insns, use them. */
4695 if (info.shift2 != NULL)
4696 {
4697 fprintf (asm_out_file, "\tmov.b #%d,%sl\n", n / 2,
4698 names_big[REGNO (operands[4])]);
4699 fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
4700 output_asm_insn (info.shift2, operands);
4701 output_asm_insn ("add #0xff,%X4", operands);
4702 fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
4703 if (n % 2)
4704 output_asm_insn (info.shift1, operands);
4705 }
4706 else
4707 {
4708 fprintf (asm_out_file, "\tmov.b #%d,%sl\n", n,
4709 names_big[REGNO (operands[4])]);
4710 fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
4711 output_asm_insn (info.shift1, operands);
4712 output_asm_insn ("add #0xff,%X4", operands);
4713 fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
4714 }
4715 return "";
4716
4717 default:
4718 gcc_unreachable ();
4719 }
4720 }
4721
4722 /* Count the number of assembly instructions in a string TEMPL. */
4723
4724 static unsigned int
4725 h8300_asm_insn_count (const char *templ)
4726 {
4727 unsigned int count = 1;
4728
4729 for (; *templ; templ++)
4730 if (*templ == '\n')
4731 count++;
4732
4733 return count;
4734 }
4735
4736 /* Compute the length of a shift insn. */
4737
4738 unsigned int
4739 compute_a_shift_length (rtx insn ATTRIBUTE_UNUSED, rtx *operands)
4740 {
4741 rtx shift = operands[3];
4742 machine_mode mode = GET_MODE (shift);
4743 enum rtx_code code = GET_CODE (shift);
4744 enum shift_type shift_type;
4745 enum shift_mode shift_mode;
4746 struct shift_info info;
4747 unsigned int wlength = 0;
4748
4749 switch (mode)
4750 {
4751 case E_QImode:
4752 shift_mode = QIshift;
4753 break;
4754 case E_HImode:
4755 shift_mode = HIshift;
4756 break;
4757 case E_SImode:
4758 shift_mode = SIshift;
4759 break;
4760 default:
4761 gcc_unreachable ();
4762 }
4763
4764 switch (code)
4765 {
4766 case ASHIFTRT:
4767 shift_type = SHIFT_ASHIFTRT;
4768 break;
4769 case LSHIFTRT:
4770 shift_type = SHIFT_LSHIFTRT;
4771 break;
4772 case ASHIFT:
4773 shift_type = SHIFT_ASHIFT;
4774 break;
4775 default:
4776 gcc_unreachable ();
4777 }
4778
4779 if (GET_CODE (operands[2]) != CONST_INT)
4780 {
4781 /* Get the assembler code to do one shift. */
4782 get_shift_alg (shift_type, shift_mode, 1, &info);
4783
4784 return (4 + h8300_asm_insn_count (info.shift1)) * 2;
4785 }
4786 else
4787 {
4788 int n = INTVAL (operands[2]);
4789
4790 /* If the count is negative, make it 0. */
4791 if (n < 0)
4792 n = 0;
4793 /* If the count is too big, truncate it.
4794 ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
4795 do the intuitive thing. */
4796 else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
4797 n = GET_MODE_BITSIZE (mode);
4798
4799 get_shift_alg (shift_type, shift_mode, n, &info);
4800
4801 switch (info.alg)
4802 {
4803 case SHIFT_SPECIAL:
4804 wlength += h8300_asm_insn_count (info.special);
4805
4806 /* Every assembly instruction used in SHIFT_SPECIAL case
4807 takes 2 bytes except xor.l, which takes 4 bytes, so if we
4808 see xor.l, we just pretend that xor.l counts as two insns
4809 so that the insn length will be computed correctly. */
4810 if (strstr (info.special, "xor.l") != NULL)
4811 wlength++;
4812
4813 /* Fall through. */
4814
4815 case SHIFT_INLINE:
4816 n = info.remainder;
4817
4818 if (info.shift2 != NULL)
4819 {
4820 wlength += h8300_asm_insn_count (info.shift2) * (n / 2);
4821 n = n % 2;
4822 }
4823
4824 wlength += h8300_asm_insn_count (info.shift1) * n;
4825
4826 return 2 * wlength;
4827
4828 case SHIFT_ROT_AND:
4829 {
4830 int m = GET_MODE_BITSIZE (mode) - n;
4831
4832 /* Not all possibilities of rotate are supported. They shouldn't
4833 be generated, but let's watch for 'em. */
4834 gcc_assert (info.shift1);
4835
4836 if (info.shift2 != NULL)
4837 {
4838 wlength += h8300_asm_insn_count (info.shift2) * (m / 2);
4839 m = m % 2;
4840 }
4841
4842 wlength += h8300_asm_insn_count (info.shift1) * m;
4843
4844 /* Now mask off the high bits. */
4845 switch (mode)
4846 {
4847 case E_QImode:
4848 wlength += 1;
4849 break;
4850 case E_HImode:
4851 wlength += 2;
4852 break;
4853 case E_SImode:
4854 gcc_assert (!TARGET_H8300);
4855 wlength += 3;
4856 break;
4857 default:
4858 gcc_unreachable ();
4859 }
4860 return 2 * wlength;
4861 }
4862
4863 case SHIFT_LOOP:
4864 /* A loop to shift by a "large" constant value.
4865 If we have shift-by-2 insns, use them. */
4866 if (info.shift2 != NULL)
4867 {
4868 wlength += 3 + h8300_asm_insn_count (info.shift2);
4869 if (n % 2)
4870 wlength += h8300_asm_insn_count (info.shift1);
4871 }
4872 else
4873 {
4874 wlength += 3 + h8300_asm_insn_count (info.shift1);
4875 }
4876 return 2 * wlength;
4877
4878 default:
4879 gcc_unreachable ();
4880 }
4881 }
4882 }
4883
4884 /* Compute which flag bits are valid after a shift insn. */
4885
4886 enum attr_cc
4887 compute_a_shift_cc (rtx insn ATTRIBUTE_UNUSED, rtx *operands)
4888 {
4889 rtx shift = operands[3];
4890 machine_mode mode = GET_MODE (shift);
4891 enum rtx_code code = GET_CODE (shift);
4892 enum shift_type shift_type;
4893 enum shift_mode shift_mode;
4894 struct shift_info info;
4895 int n;
4896
4897 switch (mode)
4898 {
4899 case E_QImode:
4900 shift_mode = QIshift;
4901 break;
4902 case E_HImode:
4903 shift_mode = HIshift;
4904 break;
4905 case E_SImode:
4906 shift_mode = SIshift;
4907 break;
4908 default:
4909 gcc_unreachable ();
4910 }
4911
4912 switch (code)
4913 {
4914 case ASHIFTRT:
4915 shift_type = SHIFT_ASHIFTRT;
4916 break;
4917 case LSHIFTRT:
4918 shift_type = SHIFT_LSHIFTRT;
4919 break;
4920 case ASHIFT:
4921 shift_type = SHIFT_ASHIFT;
4922 break;
4923 default:
4924 gcc_unreachable ();
4925 }
4926
4927 /* This case must be taken care of by one of the two splitters
4928 that convert a variable shift into a loop. */
4929 gcc_assert (GET_CODE (operands[2]) == CONST_INT);
4930
4931 n = INTVAL (operands[2]);
4932
4933 /* If the count is negative, make it 0. */
4934 if (n < 0)
4935 n = 0;
4936 /* If the count is too big, truncate it.
4937 ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
4938 do the intuitive thing. */
4939 else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
4940 n = GET_MODE_BITSIZE (mode);
4941
4942 get_shift_alg (shift_type, shift_mode, n, &info);
4943
4944 switch (info.alg)
4945 {
4946 case SHIFT_SPECIAL:
4947 if (info.remainder == 0)
4948 return info.cc_special;
4949
4950 /* Fall through. */
4951
4952 case SHIFT_INLINE:
4953 return info.cc_inline;
4954
4955 case SHIFT_ROT_AND:
4956 /* This case always ends with an and instruction. */
4957 return CC_SET_ZNV;
4958
4959 case SHIFT_LOOP:
4960 /* A loop to shift by a "large" constant value.
4961 If we have shift-by-2 insns, use them. */
4962 if (info.shift2 != NULL)
4963 {
4964 if (n % 2)
4965 return info.cc_inline;
4966 }
4967 return CC_CLOBBER;
4968
4969 default:
4970 gcc_unreachable ();
4971 }
4972 }
4973 \f
4974 /* A rotation by a non-constant will cause a loop to be generated, in
4975 which a rotation by one bit is used. A rotation by a constant,
4976 including the one in the loop, will be taken care of by
4977 output_a_rotate () at the insn emit time. */
4978
4979 int
4980 expand_a_rotate (rtx operands[])
4981 {
4982 rtx dst = operands[0];
4983 rtx src = operands[1];
4984 rtx rotate_amount = operands[2];
4985 machine_mode mode = GET_MODE (dst);
4986
4987 if (h8sx_classify_shift (mode, ROTATE, rotate_amount) == H8SX_SHIFT_UNARY)
4988 return false;
4989
4990 /* We rotate in place. */
4991 emit_move_insn (dst, src);
4992
4993 if (GET_CODE (rotate_amount) != CONST_INT)
4994 {
4995 rtx counter = gen_reg_rtx (QImode);
4996 rtx_code_label *start_label = gen_label_rtx ();
4997 rtx_code_label *end_label = gen_label_rtx ();
4998
4999 /* If the rotate amount is less than or equal to 0,
5000 we go out of the loop. */
5001 emit_cmp_and_jump_insns (rotate_amount, const0_rtx, LE, NULL_RTX,
5002 QImode, 0, end_label);
5003
5004 /* Initialize the loop counter. */
5005 emit_move_insn (counter, rotate_amount);
5006
5007 emit_label (start_label);
5008
5009 /* Rotate by one bit. */
5010 switch (mode)
5011 {
5012 case E_QImode:
5013 emit_insn (gen_rotlqi3_1 (dst, dst, const1_rtx));
5014 break;
5015 case E_HImode:
5016 emit_insn (gen_rotlhi3_1 (dst, dst, const1_rtx));
5017 break;
5018 case E_SImode:
5019 emit_insn (gen_rotlsi3_1 (dst, dst, const1_rtx));
5020 break;
5021 default:
5022 gcc_unreachable ();
5023 }
5024
5025 /* Decrement the counter by 1. */
5026 emit_insn (gen_addqi3 (counter, counter, constm1_rtx));
5027
5028 /* If the loop counter is nonzero, we go back to the beginning
5029 of the loop. */
5030 emit_cmp_and_jump_insns (counter, const0_rtx, NE, NULL_RTX, QImode, 1,
5031 start_label);
5032
5033 emit_label (end_label);
5034 }
5035 else
5036 {
5037 /* Rotate by AMOUNT bits. */
5038 switch (mode)
5039 {
5040 case E_QImode:
5041 emit_insn (gen_rotlqi3_1 (dst, dst, rotate_amount));
5042 break;
5043 case E_HImode:
5044 emit_insn (gen_rotlhi3_1 (dst, dst, rotate_amount));
5045 break;
5046 case E_SImode:
5047 emit_insn (gen_rotlsi3_1 (dst, dst, rotate_amount));
5048 break;
5049 default:
5050 gcc_unreachable ();
5051 }
5052 }
5053
5054 return 1;
5055 }
5056
5057 /* Output a rotate insn. */
5058
5059 const char *
5060 output_a_rotate (enum rtx_code code, rtx *operands)
5061 {
5062 rtx dst = operands[0];
5063 rtx rotate_amount = operands[2];
5064 enum shift_mode rotate_mode;
5065 enum shift_type rotate_type;
5066 const char *insn_buf;
5067 int bits;
5068 int amount;
5069 machine_mode mode = GET_MODE (dst);
5070
5071 gcc_assert (GET_CODE (rotate_amount) == CONST_INT);
5072
5073 switch (mode)
5074 {
5075 case E_QImode:
5076 rotate_mode = QIshift;
5077 break;
5078 case E_HImode:
5079 rotate_mode = HIshift;
5080 break;
5081 case E_SImode:
5082 rotate_mode = SIshift;
5083 break;
5084 default:
5085 gcc_unreachable ();
5086 }
5087
5088 switch (code)
5089 {
5090 case ROTATERT:
5091 rotate_type = SHIFT_ASHIFT;
5092 break;
5093 case ROTATE:
5094 rotate_type = SHIFT_LSHIFTRT;
5095 break;
5096 default:
5097 gcc_unreachable ();
5098 }
5099
5100 amount = INTVAL (rotate_amount);
5101
5102 /* Clean up AMOUNT. */
5103 if (amount < 0)
5104 amount = 0;
5105 if ((unsigned int) amount > GET_MODE_BITSIZE (mode))
5106 amount = GET_MODE_BITSIZE (mode);
5107
5108 /* Determine the faster direction. After this phase, amount will be
5109 at most a half of GET_MODE_BITSIZE (mode). */
5110 if ((unsigned int) amount > GET_MODE_BITSIZE (mode) / (unsigned) 2)
5111 {
5112 /* Flip the direction. */
5113 amount = GET_MODE_BITSIZE (mode) - amount;
5114 rotate_type =
5115 (rotate_type == SHIFT_ASHIFT) ? SHIFT_LSHIFTRT : SHIFT_ASHIFT;
5116 }
5117
5118 /* See if a byte swap (in HImode) or a word swap (in SImode) can
5119 boost up the rotation. */
5120 if ((mode == HImode && TARGET_H8300 && amount >= 5)
5121 || (mode == HImode && TARGET_H8300H && amount >= 6)
5122 || (mode == HImode && TARGET_H8300S && amount == 8)
5123 || (mode == SImode && TARGET_H8300H && amount >= 10)
5124 || (mode == SImode && TARGET_H8300S && amount >= 13))
5125 {
5126 switch (mode)
5127 {
5128 case E_HImode:
5129 /* This code works on any family. */
5130 insn_buf = "xor.b\t%s0,%t0\n\txor.b\t%t0,%s0\n\txor.b\t%s0,%t0";
5131 output_asm_insn (insn_buf, operands);
5132 break;
5133
5134 case E_SImode:
5135 /* This code works on the H8/300H and H8S. */
5136 insn_buf = "xor.w\t%e0,%f0\n\txor.w\t%f0,%e0\n\txor.w\t%e0,%f0";
5137 output_asm_insn (insn_buf, operands);
5138 break;
5139
5140 default:
5141 gcc_unreachable ();
5142 }
5143
5144 /* Adjust AMOUNT and flip the direction. */
5145 amount = GET_MODE_BITSIZE (mode) / 2 - amount;
5146 rotate_type =
5147 (rotate_type == SHIFT_ASHIFT) ? SHIFT_LSHIFTRT : SHIFT_ASHIFT;
5148 }
5149
5150 /* Output rotate insns. */
5151 for (bits = TARGET_H8300S ? 2 : 1; bits > 0; bits /= 2)
5152 {
5153 if (bits == 2)
5154 insn_buf = rotate_two[rotate_type][rotate_mode];
5155 else
5156 insn_buf = rotate_one[cpu_type][rotate_type][rotate_mode];
5157
5158 for (; amount >= bits; amount -= bits)
5159 output_asm_insn (insn_buf, operands);
5160 }
5161
5162 return "";
5163 }
5164
5165 /* Compute the length of a rotate insn. */
5166
5167 unsigned int
5168 compute_a_rotate_length (rtx *operands)
5169 {
5170 rtx src = operands[1];
5171 rtx amount_rtx = operands[2];
5172 machine_mode mode = GET_MODE (src);
5173 int amount;
5174 unsigned int length = 0;
5175
5176 gcc_assert (GET_CODE (amount_rtx) == CONST_INT);
5177
5178 amount = INTVAL (amount_rtx);
5179
5180 /* Clean up AMOUNT. */
5181 if (amount < 0)
5182 amount = 0;
5183 if ((unsigned int) amount > GET_MODE_BITSIZE (mode))
5184 amount = GET_MODE_BITSIZE (mode);
5185
5186 /* Determine the faster direction. After this phase, amount
5187 will be at most a half of GET_MODE_BITSIZE (mode). */
5188 if ((unsigned int) amount > GET_MODE_BITSIZE (mode) / (unsigned) 2)
5189 /* Flip the direction. */
5190 amount = GET_MODE_BITSIZE (mode) - amount;
5191
5192 /* See if a byte swap (in HImode) or a word swap (in SImode) can
5193 boost up the rotation. */
5194 if ((mode == HImode && TARGET_H8300 && amount >= 5)
5195 || (mode == HImode && TARGET_H8300H && amount >= 6)
5196 || (mode == HImode && TARGET_H8300S && amount == 8)
5197 || (mode == SImode && TARGET_H8300H && amount >= 10)
5198 || (mode == SImode && TARGET_H8300S && amount >= 13))
5199 {
5200 /* Adjust AMOUNT and flip the direction. */
5201 amount = GET_MODE_BITSIZE (mode) / 2 - amount;
5202 length += 6;
5203 }
5204
5205 /* We use 2-bit rotations on the H8S. */
5206 if (TARGET_H8300S)
5207 amount = amount / 2 + amount % 2;
5208
5209 /* The H8/300 uses three insns to rotate one bit, taking 6
5210 length. */
5211 length += amount * ((TARGET_H8300 && mode == HImode) ? 6 : 2);
5212
5213 return length;
5214 }
5215 \f
5216 /* Fix the operands of a gen_xxx so that it could become a bit
5217 operating insn. */
5218
5219 int
5220 fix_bit_operand (rtx *operands, enum rtx_code code)
5221 {
5222 /* The bit_operand predicate accepts any memory during RTL generation, but
5223 only 'U' memory afterwards, so if this is a MEM operand, we must force
5224 it to be valid for 'U' by reloading the address. */
5225
5226 if (code == AND
5227 ? single_zero_operand (operands[2], QImode)
5228 : single_one_operand (operands[2], QImode))
5229 {
5230 /* OK to have a memory dest. */
5231 if (GET_CODE (operands[0]) == MEM
5232 && !satisfies_constraint_U (operands[0]))
5233 {
5234 rtx mem = gen_rtx_MEM (GET_MODE (operands[0]),
5235 copy_to_mode_reg (Pmode,
5236 XEXP (operands[0], 0)));
5237 MEM_COPY_ATTRIBUTES (mem, operands[0]);
5238 operands[0] = mem;
5239 }
5240
5241 if (GET_CODE (operands[1]) == MEM
5242 && !satisfies_constraint_U (operands[1]))
5243 {
5244 rtx mem = gen_rtx_MEM (GET_MODE (operands[1]),
5245 copy_to_mode_reg (Pmode,
5246 XEXP (operands[1], 0)));
5247 MEM_COPY_ATTRIBUTES (mem, operands[0]);
5248 operands[1] = mem;
5249 }
5250 return 0;
5251 }
5252
5253 /* Dest and src op must be register. */
5254
5255 operands[1] = force_reg (QImode, operands[1]);
5256 {
5257 rtx res = gen_reg_rtx (QImode);
5258 switch (code)
5259 {
5260 case AND:
5261 emit_insn (gen_andqi3_1 (res, operands[1], operands[2]));
5262 break;
5263 case IOR:
5264 emit_insn (gen_iorqi3_1 (res, operands[1], operands[2]));
5265 break;
5266 case XOR:
5267 emit_insn (gen_xorqi3_1 (res, operands[1], operands[2]));
5268 break;
5269 default:
5270 gcc_unreachable ();
5271 }
5272 emit_insn (gen_movqi (operands[0], res));
5273 }
5274 return 1;
5275 }
5276
5277 /* Return nonzero if FUNC is an interrupt function as specified
5278 by the "interrupt" attribute. */
5279
5280 static int
5281 h8300_interrupt_function_p (tree func)
5282 {
5283 tree a;
5284
5285 if (TREE_CODE (func) != FUNCTION_DECL)
5286 return 0;
5287
5288 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
5289 return a != NULL_TREE;
5290 }
5291
5292 /* Return nonzero if FUNC is a saveall function as specified by the
5293 "saveall" attribute. */
5294
5295 static int
5296 h8300_saveall_function_p (tree func)
5297 {
5298 tree a;
5299
5300 if (TREE_CODE (func) != FUNCTION_DECL)
5301 return 0;
5302
5303 a = lookup_attribute ("saveall", DECL_ATTRIBUTES (func));
5304 return a != NULL_TREE;
5305 }
5306
5307 /* Return nonzero if FUNC is an OS_Task function as specified
5308 by the "OS_Task" attribute. */
5309
5310 static int
5311 h8300_os_task_function_p (tree func)
5312 {
5313 tree a;
5314
5315 if (TREE_CODE (func) != FUNCTION_DECL)
5316 return 0;
5317
5318 a = lookup_attribute ("OS_Task", DECL_ATTRIBUTES (func));
5319 return a != NULL_TREE;
5320 }
5321
5322 /* Return nonzero if FUNC is a monitor function as specified
5323 by the "monitor" attribute. */
5324
5325 static int
5326 h8300_monitor_function_p (tree func)
5327 {
5328 tree a;
5329
5330 if (TREE_CODE (func) != FUNCTION_DECL)
5331 return 0;
5332
5333 a = lookup_attribute ("monitor", DECL_ATTRIBUTES (func));
5334 return a != NULL_TREE;
5335 }
5336
5337 /* Return nonzero if FUNC is a function that should be called
5338 through the function vector. */
5339
5340 int
5341 h8300_funcvec_function_p (tree func)
5342 {
5343 tree a;
5344
5345 if (TREE_CODE (func) != FUNCTION_DECL)
5346 return 0;
5347
5348 a = lookup_attribute ("function_vector", DECL_ATTRIBUTES (func));
5349 return a != NULL_TREE;
5350 }
5351
5352 /* Return nonzero if DECL is a variable that's in the eight bit
5353 data area. */
5354
5355 int
5356 h8300_eightbit_data_p (tree decl)
5357 {
5358 tree a;
5359
5360 if (TREE_CODE (decl) != VAR_DECL)
5361 return 0;
5362
5363 a = lookup_attribute ("eightbit_data", DECL_ATTRIBUTES (decl));
5364 return a != NULL_TREE;
5365 }
5366
5367 /* Return nonzero if DECL is a variable that's in the tiny
5368 data area. */
5369
5370 int
5371 h8300_tiny_data_p (tree decl)
5372 {
5373 tree a;
5374
5375 if (TREE_CODE (decl) != VAR_DECL)
5376 return 0;
5377
5378 a = lookup_attribute ("tiny_data", DECL_ATTRIBUTES (decl));
5379 return a != NULL_TREE;
5380 }
5381
5382 /* Generate an 'interrupt_handler' attribute for decls. We convert
5383 all the pragmas to corresponding attributes. */
5384
5385 static void
5386 h8300_insert_attributes (tree node, tree *attributes)
5387 {
5388 if (TREE_CODE (node) == FUNCTION_DECL)
5389 {
5390 if (pragma_interrupt)
5391 {
5392 pragma_interrupt = 0;
5393
5394 /* Add an 'interrupt_handler' attribute. */
5395 *attributes = tree_cons (get_identifier ("interrupt_handler"),
5396 NULL, *attributes);
5397 }
5398
5399 if (pragma_saveall)
5400 {
5401 pragma_saveall = 0;
5402
5403 /* Add an 'saveall' attribute. */
5404 *attributes = tree_cons (get_identifier ("saveall"),
5405 NULL, *attributes);
5406 }
5407 }
5408 }
5409
5410 /* Supported attributes:
5411
5412 interrupt_handler: output a prologue and epilogue suitable for an
5413 interrupt handler.
5414
5415 saveall: output a prologue and epilogue that saves and restores
5416 all registers except the stack pointer.
5417
5418 function_vector: This function should be called through the
5419 function vector.
5420
5421 eightbit_data: This variable lives in the 8-bit data area and can
5422 be referenced with 8-bit absolute memory addresses.
5423
5424 tiny_data: This variable lives in the tiny data area and can be
5425 referenced with 16-bit absolute memory references. */
5426
5427 static const struct attribute_spec h8300_attribute_table[] =
5428 {
5429 /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
5430 affects_type_identity, handler, exclude } */
5431 { "interrupt_handler", 0, 0, true, false, false, false,
5432 h8300_handle_fndecl_attribute, NULL },
5433 { "saveall", 0, 0, true, false, false, false,
5434 h8300_handle_fndecl_attribute, NULL },
5435 { "OS_Task", 0, 0, true, false, false, false,
5436 h8300_handle_fndecl_attribute, NULL },
5437 { "monitor", 0, 0, true, false, false, false,
5438 h8300_handle_fndecl_attribute, NULL },
5439 { "function_vector", 0, 0, true, false, false, false,
5440 h8300_handle_fndecl_attribute, NULL },
5441 { "eightbit_data", 0, 0, true, false, false, false,
5442 h8300_handle_eightbit_data_attribute, NULL },
5443 { "tiny_data", 0, 0, true, false, false, false,
5444 h8300_handle_tiny_data_attribute, NULL },
5445 { NULL, 0, 0, false, false, false, false, NULL, NULL }
5446 };
5447
5448
5449 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
5450 struct attribute_spec.handler. */
5451 static tree
5452 h8300_handle_fndecl_attribute (tree *node, tree name,
5453 tree args ATTRIBUTE_UNUSED,
5454 int flags ATTRIBUTE_UNUSED,
5455 bool *no_add_attrs)
5456 {
5457 if (TREE_CODE (*node) != FUNCTION_DECL)
5458 {
5459 warning (OPT_Wattributes, "%qE attribute only applies to functions",
5460 name);
5461 *no_add_attrs = true;
5462 }
5463
5464 return NULL_TREE;
5465 }
5466
5467 /* Handle an "eightbit_data" attribute; arguments as in
5468 struct attribute_spec.handler. */
5469 static tree
5470 h8300_handle_eightbit_data_attribute (tree *node, tree name,
5471 tree args ATTRIBUTE_UNUSED,
5472 int flags ATTRIBUTE_UNUSED,
5473 bool *no_add_attrs)
5474 {
5475 tree decl = *node;
5476
5477 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
5478 {
5479 set_decl_section_name (decl, ".eight");
5480 }
5481 else
5482 {
5483 warning (OPT_Wattributes, "%qE attribute ignored",
5484 name);
5485 *no_add_attrs = true;
5486 }
5487
5488 return NULL_TREE;
5489 }
5490
5491 /* Handle an "tiny_data" attribute; arguments as in
5492 struct attribute_spec.handler. */
5493 static tree
5494 h8300_handle_tiny_data_attribute (tree *node, tree name,
5495 tree args ATTRIBUTE_UNUSED,
5496 int flags ATTRIBUTE_UNUSED,
5497 bool *no_add_attrs)
5498 {
5499 tree decl = *node;
5500
5501 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
5502 {
5503 set_decl_section_name (decl, ".tiny");
5504 }
5505 else
5506 {
5507 warning (OPT_Wattributes, "%qE attribute ignored",
5508 name);
5509 *no_add_attrs = true;
5510 }
5511
5512 return NULL_TREE;
5513 }
5514
5515 /* Mark function vectors, and various small data objects. */
5516
5517 static void
5518 h8300_encode_section_info (tree decl, rtx rtl, int first)
5519 {
5520 int extra_flags = 0;
5521
5522 default_encode_section_info (decl, rtl, first);
5523
5524 if (TREE_CODE (decl) == FUNCTION_DECL
5525 && h8300_funcvec_function_p (decl))
5526 extra_flags = SYMBOL_FLAG_FUNCVEC_FUNCTION;
5527 else if (TREE_CODE (decl) == VAR_DECL
5528 && (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
5529 {
5530 if (h8300_eightbit_data_p (decl))
5531 extra_flags = SYMBOL_FLAG_EIGHTBIT_DATA;
5532 else if (first && h8300_tiny_data_p (decl))
5533 extra_flags = SYMBOL_FLAG_TINY_DATA;
5534 }
5535
5536 if (extra_flags)
5537 SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= extra_flags;
5538 }
5539
5540 /* Output a single-bit extraction. */
5541
5542 const char *
5543 output_simode_bld (int bild, rtx operands[])
5544 {
5545 if (TARGET_H8300)
5546 {
5547 /* Clear the destination register. */
5548 output_asm_insn ("sub.w\t%e0,%e0\n\tsub.w\t%f0,%f0", operands);
5549
5550 /* Now output the bit load or bit inverse load, and store it in
5551 the destination. */
5552 if (bild)
5553 output_asm_insn ("bild\t%Z2,%Y1", operands);
5554 else
5555 output_asm_insn ("bld\t%Z2,%Y1", operands);
5556
5557 output_asm_insn ("bst\t#0,%w0", operands);
5558 }
5559 else
5560 {
5561 /* Determine if we can clear the destination first. */
5562 int clear_first = (REG_P (operands[0]) && REG_P (operands[1])
5563 && REGNO (operands[0]) != REGNO (operands[1]));
5564
5565 if (clear_first)
5566 output_asm_insn ("sub.l\t%S0,%S0", operands);
5567
5568 /* Output the bit load or bit inverse load. */
5569 if (bild)
5570 output_asm_insn ("bild\t%Z2,%Y1", operands);
5571 else
5572 output_asm_insn ("bld\t%Z2,%Y1", operands);
5573
5574 if (!clear_first)
5575 output_asm_insn ("xor.l\t%S0,%S0", operands);
5576
5577 /* Perform the bit store. */
5578 output_asm_insn ("rotxl.l\t%S0", operands);
5579 }
5580
5581 /* All done. */
5582 return "";
5583 }
5584
5585 /* Delayed-branch scheduling is more effective if we have some idea
5586 how long each instruction will be. Use a shorten_branches pass
5587 to get an initial estimate. */
5588
5589 static void
5590 h8300_reorg (void)
5591 {
5592 if (flag_delayed_branch)
5593 shorten_branches (get_insns ());
5594 }
5595
5596 #ifndef OBJECT_FORMAT_ELF
5597 static void
5598 h8300_asm_named_section (const char *name, unsigned int flags ATTRIBUTE_UNUSED,
5599 tree decl)
5600 {
5601 /* ??? Perhaps we should be using default_coff_asm_named_section. */
5602 fprintf (asm_out_file, "\t.section %s\n", name);
5603 }
5604 #endif /* ! OBJECT_FORMAT_ELF */
5605
5606 /* Nonzero if X is a constant address suitable as an 8-bit absolute,
5607 which is a special case of the 'R' operand. */
5608
5609 int
5610 h8300_eightbit_constant_address_p (rtx x)
5611 {
5612 /* The ranges of the 8-bit area. */
5613 const unsigned HOST_WIDE_INT n1 = trunc_int_for_mode (0xff00, HImode);
5614 const unsigned HOST_WIDE_INT n2 = trunc_int_for_mode (0xffff, HImode);
5615 const unsigned HOST_WIDE_INT h1 = trunc_int_for_mode (0x00ffff00, SImode);
5616 const unsigned HOST_WIDE_INT h2 = trunc_int_for_mode (0x00ffffff, SImode);
5617 const unsigned HOST_WIDE_INT s1 = trunc_int_for_mode (0xffffff00, SImode);
5618 const unsigned HOST_WIDE_INT s2 = trunc_int_for_mode (0xffffffff, SImode);
5619
5620 unsigned HOST_WIDE_INT addr;
5621
5622 /* We accept symbols declared with eightbit_data. */
5623 if (GET_CODE (x) == SYMBOL_REF)
5624 return (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_EIGHTBIT_DATA) != 0;
5625
5626 if (GET_CODE (x) == CONST
5627 && GET_CODE (XEXP (x, 0)) == PLUS
5628 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
5629 && (SYMBOL_REF_FLAGS (XEXP (XEXP (x, 0), 0)) & SYMBOL_FLAG_EIGHTBIT_DATA) != 0)
5630 return 1;
5631
5632 if (GET_CODE (x) != CONST_INT)
5633 return 0;
5634
5635 addr = INTVAL (x);
5636
5637 return (0
5638 || ((TARGET_H8300 || TARGET_NORMAL_MODE) && IN_RANGE (addr, n1, n2))
5639 || (TARGET_H8300H && IN_RANGE (addr, h1, h2))
5640 || (TARGET_H8300S && IN_RANGE (addr, s1, s2)));
5641 }
5642
5643 /* Nonzero if X is a constant address suitable as an 16-bit absolute
5644 on H8/300H and H8S. */
5645
5646 int
5647 h8300_tiny_constant_address_p (rtx x)
5648 {
5649 /* The ranges of the 16-bit area. */
5650 const unsigned HOST_WIDE_INT h1 = trunc_int_for_mode (0x00000000, SImode);
5651 const unsigned HOST_WIDE_INT h2 = trunc_int_for_mode (0x00007fff, SImode);
5652 const unsigned HOST_WIDE_INT h3 = trunc_int_for_mode (0x00ff8000, SImode);
5653 const unsigned HOST_WIDE_INT h4 = trunc_int_for_mode (0x00ffffff, SImode);
5654 const unsigned HOST_WIDE_INT s1 = trunc_int_for_mode (0x00000000, SImode);
5655 const unsigned HOST_WIDE_INT s2 = trunc_int_for_mode (0x00007fff, SImode);
5656 const unsigned HOST_WIDE_INT s3 = trunc_int_for_mode (0xffff8000, SImode);
5657 const unsigned HOST_WIDE_INT s4 = trunc_int_for_mode (0xffffffff, SImode);
5658
5659 unsigned HOST_WIDE_INT addr;
5660
5661 switch (GET_CODE (x))
5662 {
5663 case SYMBOL_REF:
5664 /* In the normal mode, any symbol fits in the 16-bit absolute
5665 address range. We also accept symbols declared with
5666 tiny_data. */
5667 return (TARGET_NORMAL_MODE
5668 || (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_TINY_DATA) != 0);
5669
5670 case CONST_INT:
5671 addr = INTVAL (x);
5672 return (TARGET_NORMAL_MODE
5673 || (TARGET_H8300H
5674 && (IN_RANGE (addr, h1, h2) || IN_RANGE (addr, h3, h4)))
5675 || (TARGET_H8300S
5676 && (IN_RANGE (addr, s1, s2) || IN_RANGE (addr, s3, s4))));
5677
5678 case CONST:
5679 return TARGET_NORMAL_MODE;
5680
5681 default:
5682 return 0;
5683 }
5684
5685 }
5686
5687 /* Return nonzero if ADDR1 and ADDR2 point to consecutive memory
5688 locations that can be accessed as a 16-bit word. */
5689
5690 int
5691 byte_accesses_mergeable_p (rtx addr1, rtx addr2)
5692 {
5693 HOST_WIDE_INT offset1, offset2;
5694 rtx reg1, reg2;
5695
5696 if (REG_P (addr1))
5697 {
5698 reg1 = addr1;
5699 offset1 = 0;
5700 }
5701 else if (GET_CODE (addr1) == PLUS
5702 && REG_P (XEXP (addr1, 0))
5703 && GET_CODE (XEXP (addr1, 1)) == CONST_INT)
5704 {
5705 reg1 = XEXP (addr1, 0);
5706 offset1 = INTVAL (XEXP (addr1, 1));
5707 }
5708 else
5709 return 0;
5710
5711 if (REG_P (addr2))
5712 {
5713 reg2 = addr2;
5714 offset2 = 0;
5715 }
5716 else if (GET_CODE (addr2) == PLUS
5717 && REG_P (XEXP (addr2, 0))
5718 && GET_CODE (XEXP (addr2, 1)) == CONST_INT)
5719 {
5720 reg2 = XEXP (addr2, 0);
5721 offset2 = INTVAL (XEXP (addr2, 1));
5722 }
5723 else
5724 return 0;
5725
5726 if (((reg1 == stack_pointer_rtx && reg2 == stack_pointer_rtx)
5727 || (reg1 == frame_pointer_rtx && reg2 == frame_pointer_rtx))
5728 && offset1 % 2 == 0
5729 && offset1 + 1 == offset2)
5730 return 1;
5731
5732 return 0;
5733 }
5734
5735 /* Return nonzero if we have the same comparison insn as I3 two insns
5736 before I3. I3 is assumed to be a comparison insn. */
5737
5738 int
5739 same_cmp_preceding_p (rtx_insn *i3)
5740 {
5741 rtx_insn *i1, *i2;
5742
5743 /* Make sure we have a sequence of three insns. */
5744 i2 = prev_nonnote_insn (i3);
5745 if (i2 == NULL)
5746 return 0;
5747 i1 = prev_nonnote_insn (i2);
5748 if (i1 == NULL)
5749 return 0;
5750
5751 return (INSN_P (i1) && rtx_equal_p (PATTERN (i1), PATTERN (i3))
5752 && any_condjump_p (i2) && onlyjump_p (i2));
5753 }
5754
5755 /* Return nonzero if we have the same comparison insn as I1 two insns
5756 after I1. I1 is assumed to be a comparison insn. */
5757
5758 int
5759 same_cmp_following_p (rtx_insn *i1)
5760 {
5761 rtx_insn *i2, *i3;
5762
5763 /* Make sure we have a sequence of three insns. */
5764 i2 = next_nonnote_insn (i1);
5765 if (i2 == NULL)
5766 return 0;
5767 i3 = next_nonnote_insn (i2);
5768 if (i3 == NULL)
5769 return 0;
5770
5771 return (INSN_P (i3) && rtx_equal_p (PATTERN (i1), PATTERN (i3))
5772 && any_condjump_p (i2) && onlyjump_p (i2));
5773 }
5774
5775 /* Return nonzero if OPERANDS are valid for stm (or ldm) that pushes
5776 (or pops) N registers. OPERANDS are assumed to be an array of
5777 registers. */
5778
5779 int
5780 h8300_regs_ok_for_stm (int n, rtx operands[])
5781 {
5782 switch (n)
5783 {
5784 case 2:
5785 return ((REGNO (operands[0]) == 0 && REGNO (operands[1]) == 1)
5786 || (REGNO (operands[0]) == 2 && REGNO (operands[1]) == 3)
5787 || (REGNO (operands[0]) == 4 && REGNO (operands[1]) == 5));
5788 case 3:
5789 return ((REGNO (operands[0]) == 0
5790 && REGNO (operands[1]) == 1
5791 && REGNO (operands[2]) == 2)
5792 || (REGNO (operands[0]) == 4
5793 && REGNO (operands[1]) == 5
5794 && REGNO (operands[2]) == 6));
5795
5796 case 4:
5797 return (REGNO (operands[0]) == 0
5798 && REGNO (operands[1]) == 1
5799 && REGNO (operands[2]) == 2
5800 && REGNO (operands[3]) == 3);
5801 default:
5802 gcc_unreachable ();
5803 }
5804 }
5805
5806 /* Return nonzero if register OLD_REG can be renamed to register NEW_REG. */
5807
5808 int
5809 h8300_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
5810 unsigned int new_reg)
5811 {
5812 /* Interrupt functions can only use registers that have already been
5813 saved by the prologue, even if they would normally be
5814 call-clobbered. */
5815
5816 if (h8300_current_function_interrupt_function_p ()
5817 && !df_regs_ever_live_p (new_reg))
5818 return 0;
5819
5820 return 1;
5821 }
5822
5823 /* Returns true if register REGNO is safe to be allocated as a scratch
5824 register in the current function. */
5825
5826 static bool
5827 h8300_hard_regno_scratch_ok (unsigned int regno)
5828 {
5829 if (h8300_current_function_interrupt_function_p ()
5830 && ! WORD_REG_USED (regno))
5831 return false;
5832
5833 return true;
5834 }
5835
5836
5837 /* Return nonzero if X is a REG or SUBREG suitable as a base register. */
5838
5839 static int
5840 h8300_rtx_ok_for_base_p (rtx x, int strict)
5841 {
5842 /* Strip off SUBREG if any. */
5843 if (GET_CODE (x) == SUBREG)
5844 x = SUBREG_REG (x);
5845
5846 return (REG_P (x)
5847 && (strict
5848 ? REG_OK_FOR_BASE_STRICT_P (x)
5849 : REG_OK_FOR_BASE_NONSTRICT_P (x)));
5850 }
5851
5852 /* Return nozero if X is a legitimate address. On the H8/300, a
5853 legitimate address has the form REG, REG+CONSTANT_ADDRESS or
5854 CONSTANT_ADDRESS. */
5855
5856 static bool
5857 h8300_legitimate_address_p (machine_mode mode, rtx x, bool strict)
5858 {
5859 /* The register indirect addresses like @er0 is always valid. */
5860 if (h8300_rtx_ok_for_base_p (x, strict))
5861 return 1;
5862
5863 if (CONSTANT_ADDRESS_P (x))
5864 return 1;
5865
5866 if (TARGET_H8300SX
5867 && ( GET_CODE (x) == PRE_INC
5868 || GET_CODE (x) == PRE_DEC
5869 || GET_CODE (x) == POST_INC
5870 || GET_CODE (x) == POST_DEC)
5871 && h8300_rtx_ok_for_base_p (XEXP (x, 0), strict))
5872 return 1;
5873
5874 if (GET_CODE (x) == PLUS
5875 && CONSTANT_ADDRESS_P (XEXP (x, 1))
5876 && h8300_rtx_ok_for_base_p (h8300_get_index (XEXP (x, 0),
5877 mode, 0), strict))
5878 return 1;
5879
5880 return 0;
5881 }
5882
5883 /* Implement TARGET_HARD_REGNO_MODE_OK. */
5884
5885 static bool
5886 h8300_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
5887 {
5888 if (TARGET_H8300)
5889 /* If an even reg, then anything goes. Otherwise the mode must be
5890 QI or HI. */
5891 return ((regno & 1) == 0) || (mode == HImode) || (mode == QImode);
5892 else
5893 /* MAC register can only be of SImode. Otherwise, anything
5894 goes. */
5895 return regno == MAC_REG ? mode == SImode : 1;
5896 }
5897
5898 /* Implement TARGET_MODES_TIEABLE_P. */
5899
5900 static bool
5901 h8300_modes_tieable_p (machine_mode mode1, machine_mode mode2)
5902 {
5903 return (mode1 == mode2
5904 || ((mode1 == QImode
5905 || mode1 == HImode
5906 || ((TARGET_H8300H || TARGET_H8300S) && mode1 == SImode))
5907 && (mode2 == QImode
5908 || mode2 == HImode
5909 || ((TARGET_H8300H || TARGET_H8300S) && mode2 == SImode))));
5910 }
5911
5912 /* Helper function for the move patterns. Make sure a move is legitimate. */
5913
5914 bool
5915 h8300_move_ok (rtx dest, rtx src)
5916 {
5917 rtx addr, other;
5918
5919 /* Validate that at least one operand is a register. */
5920 if (MEM_P (dest))
5921 {
5922 if (MEM_P (src) || CONSTANT_P (src))
5923 return false;
5924 addr = XEXP (dest, 0);
5925 other = src;
5926 }
5927 else if (MEM_P (src))
5928 {
5929 addr = XEXP (src, 0);
5930 other = dest;
5931 }
5932 else
5933 return true;
5934
5935 /* Validate that auto-inc doesn't affect OTHER. */
5936 if (GET_RTX_CLASS (GET_CODE (addr)) != RTX_AUTOINC)
5937 return true;
5938 addr = XEXP (addr, 0);
5939
5940 if (addr == stack_pointer_rtx)
5941 return register_no_sp_elim_operand (other, VOIDmode);
5942 else
5943 return !reg_overlap_mentioned_p(other, addr);
5944 }
5945 \f
5946 /* Perform target dependent optabs initialization. */
5947 static void
5948 h8300_init_libfuncs (void)
5949 {
5950 set_optab_libfunc (smul_optab, HImode, "__mulhi3");
5951 set_optab_libfunc (sdiv_optab, HImode, "__divhi3");
5952 set_optab_libfunc (udiv_optab, HImode, "__udivhi3");
5953 set_optab_libfunc (smod_optab, HImode, "__modhi3");
5954 set_optab_libfunc (umod_optab, HImode, "__umodhi3");
5955 }
5956 \f
5957 /* Worker function for TARGET_FUNCTION_VALUE.
5958
5959 On the H8 the return value is in R0/R1. */
5960
5961 static rtx
5962 h8300_function_value (const_tree ret_type,
5963 const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
5964 bool outgoing ATTRIBUTE_UNUSED)
5965 {
5966 return gen_rtx_REG (TYPE_MODE (ret_type), R0_REG);
5967 }
5968
5969 /* Worker function for TARGET_LIBCALL_VALUE.
5970
5971 On the H8 the return value is in R0/R1. */
5972
5973 static rtx
5974 h8300_libcall_value (machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
5975 {
5976 return gen_rtx_REG (mode, R0_REG);
5977 }
5978
5979 /* Worker function for TARGET_FUNCTION_VALUE_REGNO_P.
5980
5981 On the H8, R0 is the only register thus used. */
5982
5983 static bool
5984 h8300_function_value_regno_p (const unsigned int regno)
5985 {
5986 return (regno == R0_REG);
5987 }
5988
5989 /* Worker function for TARGET_RETURN_IN_MEMORY. */
5990
5991 static bool
5992 h8300_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
5993 {
5994 return (TYPE_MODE (type) == BLKmode
5995 || GET_MODE_SIZE (TYPE_MODE (type)) > (TARGET_H8300 ? 4 : 8));
5996 }
5997 \f
5998 /* We emit the entire trampoline here. Depending on the pointer size,
5999 we use a different trampoline.
6000
6001 Pmode == HImode
6002 vvvv context
6003 1 0000 7903xxxx mov.w #0x1234,r3
6004 2 0004 5A00xxxx jmp @0x1234
6005 ^^^^ function
6006
6007 Pmode == SImode
6008 vvvvvvvv context
6009 2 0000 7A03xxxxxxxx mov.l #0x12345678,er3
6010 3 0006 5Axxxxxx jmp @0x123456
6011 ^^^^^^ function
6012 */
6013
6014 static void
6015 h8300_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt)
6016 {
6017 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
6018 rtx mem;
6019
6020 if (Pmode == HImode)
6021 {
6022 mem = adjust_address (m_tramp, HImode, 0);
6023 emit_move_insn (mem, GEN_INT (0x7903));
6024 mem = adjust_address (m_tramp, Pmode, 2);
6025 emit_move_insn (mem, cxt);
6026 mem = adjust_address (m_tramp, HImode, 4);
6027 emit_move_insn (mem, GEN_INT (0x5a00));
6028 mem = adjust_address (m_tramp, Pmode, 6);
6029 emit_move_insn (mem, fnaddr);
6030 }
6031 else
6032 {
6033 rtx tem;
6034
6035 mem = adjust_address (m_tramp, HImode, 0);
6036 emit_move_insn (mem, GEN_INT (0x7a03));
6037 mem = adjust_address (m_tramp, Pmode, 2);
6038 emit_move_insn (mem, cxt);
6039
6040 tem = copy_to_reg (fnaddr);
6041 emit_insn (gen_andsi3 (tem, tem, GEN_INT (0x00ffffff)));
6042 emit_insn (gen_iorsi3 (tem, tem, GEN_INT (0x5a000000)));
6043 mem = adjust_address (m_tramp, SImode, 6);
6044 emit_move_insn (mem, tem);
6045 }
6046 }
6047
6048 /* Implement PUSH_ROUNDING.
6049
6050 On the H8/300, @-sp really pushes a byte if you ask it to - but that's
6051 dangerous, so we claim that it always pushes a word, then we catch
6052 the mov.b rx,@-sp and turn it into a mov.w rx,@-sp on output.
6053
6054 On the H8/300H, we simplify TARGET_QUICKCALL by setting this to 4
6055 and doing a similar thing. */
6056
6057 poly_int64
6058 h8300_push_rounding (poly_int64 bytes)
6059 {
6060 return ((bytes + PARM_BOUNDARY / 8 - 1) & (-PARM_BOUNDARY / 8));
6061 }
6062 \f
6063 /* Initialize the GCC target structure. */
6064 #undef TARGET_ATTRIBUTE_TABLE
6065 #define TARGET_ATTRIBUTE_TABLE h8300_attribute_table
6066
6067 #undef TARGET_ASM_ALIGNED_HI_OP
6068 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
6069
6070 #undef TARGET_ASM_FILE_START
6071 #define TARGET_ASM_FILE_START h8300_file_start
6072 #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
6073 #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
6074
6075 #undef TARGET_ASM_FILE_END
6076 #define TARGET_ASM_FILE_END h8300_file_end
6077
6078 #undef TARGET_PRINT_OPERAND
6079 #define TARGET_PRINT_OPERAND h8300_print_operand
6080 #undef TARGET_PRINT_OPERAND_ADDRESS
6081 #define TARGET_PRINT_OPERAND_ADDRESS h8300_print_operand_address
6082 #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
6083 #define TARGET_PRINT_OPERAND_PUNCT_VALID_P h8300_print_operand_punct_valid_p
6084
6085 #undef TARGET_ENCODE_SECTION_INFO
6086 #define TARGET_ENCODE_SECTION_INFO h8300_encode_section_info
6087
6088 #undef TARGET_INSERT_ATTRIBUTES
6089 #define TARGET_INSERT_ATTRIBUTES h8300_insert_attributes
6090
6091 #undef TARGET_REGISTER_MOVE_COST
6092 #define TARGET_REGISTER_MOVE_COST h8300_register_move_cost
6093
6094 #undef TARGET_RTX_COSTS
6095 #define TARGET_RTX_COSTS h8300_rtx_costs
6096
6097 #undef TARGET_INIT_LIBFUNCS
6098 #define TARGET_INIT_LIBFUNCS h8300_init_libfuncs
6099
6100 #undef TARGET_FUNCTION_VALUE
6101 #define TARGET_FUNCTION_VALUE h8300_function_value
6102
6103 #undef TARGET_LIBCALL_VALUE
6104 #define TARGET_LIBCALL_VALUE h8300_libcall_value
6105
6106 #undef TARGET_FUNCTION_VALUE_REGNO_P
6107 #define TARGET_FUNCTION_VALUE_REGNO_P h8300_function_value_regno_p
6108
6109 #undef TARGET_RETURN_IN_MEMORY
6110 #define TARGET_RETURN_IN_MEMORY h8300_return_in_memory
6111
6112 #undef TARGET_FUNCTION_ARG
6113 #define TARGET_FUNCTION_ARG h8300_function_arg
6114
6115 #undef TARGET_FUNCTION_ARG_ADVANCE
6116 #define TARGET_FUNCTION_ARG_ADVANCE h8300_function_arg_advance
6117
6118 #undef TARGET_MACHINE_DEPENDENT_REORG
6119 #define TARGET_MACHINE_DEPENDENT_REORG h8300_reorg
6120
6121 #undef TARGET_HARD_REGNO_SCRATCH_OK
6122 #define TARGET_HARD_REGNO_SCRATCH_OK h8300_hard_regno_scratch_ok
6123
6124 #undef TARGET_HARD_REGNO_MODE_OK
6125 #define TARGET_HARD_REGNO_MODE_OK h8300_hard_regno_mode_ok
6126
6127 #undef TARGET_MODES_TIEABLE_P
6128 #define TARGET_MODES_TIEABLE_P h8300_modes_tieable_p
6129
6130 #undef TARGET_LRA_P
6131 #define TARGET_LRA_P hook_bool_void_false
6132
6133 #undef TARGET_LEGITIMATE_ADDRESS_P
6134 #define TARGET_LEGITIMATE_ADDRESS_P h8300_legitimate_address_p
6135
6136 #undef TARGET_CAN_ELIMINATE
6137 #define TARGET_CAN_ELIMINATE h8300_can_eliminate
6138
6139 #undef TARGET_CONDITIONAL_REGISTER_USAGE
6140 #define TARGET_CONDITIONAL_REGISTER_USAGE h8300_conditional_register_usage
6141
6142 #undef TARGET_TRAMPOLINE_INIT
6143 #define TARGET_TRAMPOLINE_INIT h8300_trampoline_init
6144
6145 #undef TARGET_OPTION_OVERRIDE
6146 #define TARGET_OPTION_OVERRIDE h8300_option_override
6147
6148 #undef TARGET_MODE_DEPENDENT_ADDRESS_P
6149 #define TARGET_MODE_DEPENDENT_ADDRESS_P h8300_mode_dependent_address_p
6150
6151 struct gcc_target targetm = TARGET_INITIALIZER;