]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/i386/i386.h
Turn CONSTANT_ALIGNMENT into a hook
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
19
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
24
25 /* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
40 /* Redefines for option macros. */
41
42 #define TARGET_64BIT TARGET_ISA_64BIT
43 #define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
44 #define TARGET_MMX TARGET_ISA_MMX
45 #define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
46 #define TARGET_3DNOW TARGET_ISA_3DNOW
47 #define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
48 #define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
49 #define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
50 #define TARGET_SSE TARGET_ISA_SSE
51 #define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
52 #define TARGET_SSE2 TARGET_ISA_SSE2
53 #define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
54 #define TARGET_SSE3 TARGET_ISA_SSE3
55 #define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
56 #define TARGET_SSSE3 TARGET_ISA_SSSE3
57 #define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
58 #define TARGET_SSE4_1 TARGET_ISA_SSE4_1
59 #define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
60 #define TARGET_SSE4_2 TARGET_ISA_SSE4_2
61 #define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
62 #define TARGET_AVX TARGET_ISA_AVX
63 #define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
64 #define TARGET_AVX2 TARGET_ISA_AVX2
65 #define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
66 #define TARGET_AVX512F TARGET_ISA_AVX512F
67 #define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68 #define TARGET_AVX512PF TARGET_ISA_AVX512PF
69 #define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70 #define TARGET_AVX512ER TARGET_ISA_AVX512ER
71 #define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72 #define TARGET_AVX512CD TARGET_ISA_AVX512CD
73 #define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
74 #define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75 #define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
76 #define TARGET_AVX512BW TARGET_ISA_AVX512BW
77 #define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
78 #define TARGET_AVX512VL TARGET_ISA_AVX512VL
79 #define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
80 #define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81 #define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
82 #define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83 #define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
84 #define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85 #define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86 #define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87 #define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
88 #define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
89 #define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
90 #define TARGET_FMA TARGET_ISA_FMA
91 #define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
92 #define TARGET_SSE4A TARGET_ISA_SSE4A
93 #define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
94 #define TARGET_FMA4 TARGET_ISA_FMA4
95 #define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
96 #define TARGET_XOP TARGET_ISA_XOP
97 #define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
98 #define TARGET_LWP TARGET_ISA_LWP
99 #define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
100 #define TARGET_ABM TARGET_ISA_ABM
101 #define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
102 #define TARGET_SGX TARGET_ISA_SGX
103 #define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
104 #define TARGET_RDPID TARGET_ISA_RDPID
105 #define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
106 #define TARGET_BMI TARGET_ISA_BMI
107 #define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
108 #define TARGET_BMI2 TARGET_ISA_BMI2
109 #define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
110 #define TARGET_LZCNT TARGET_ISA_LZCNT
111 #define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
112 #define TARGET_TBM TARGET_ISA_TBM
113 #define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
114 #define TARGET_POPCNT TARGET_ISA_POPCNT
115 #define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
116 #define TARGET_SAHF TARGET_ISA_SAHF
117 #define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
118 #define TARGET_MOVBE TARGET_ISA_MOVBE
119 #define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
120 #define TARGET_CRC32 TARGET_ISA_CRC32
121 #define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
122 #define TARGET_AES TARGET_ISA_AES
123 #define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
124 #define TARGET_SHA TARGET_ISA_SHA
125 #define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
126 #define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
127 #define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
128 #define TARGET_CLZERO TARGET_ISA_CLZERO
129 #define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
130 #define TARGET_XSAVEC TARGET_ISA_XSAVEC
131 #define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
132 #define TARGET_XSAVES TARGET_ISA_XSAVES
133 #define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
134 #define TARGET_PCLMUL TARGET_ISA_PCLMUL
135 #define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
136 #define TARGET_CMPXCHG16B TARGET_ISA_CX16
137 #define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
138 #define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
139 #define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
140 #define TARGET_RDRND TARGET_ISA_RDRND
141 #define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
142 #define TARGET_F16C TARGET_ISA_F16C
143 #define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
144 #define TARGET_RTM TARGET_ISA_RTM
145 #define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
146 #define TARGET_HLE TARGET_ISA_HLE
147 #define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
148 #define TARGET_RDSEED TARGET_ISA_RDSEED
149 #define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
150 #define TARGET_PRFCHW TARGET_ISA_PRFCHW
151 #define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
152 #define TARGET_ADX TARGET_ISA_ADX
153 #define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
154 #define TARGET_FXSR TARGET_ISA_FXSR
155 #define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
156 #define TARGET_XSAVE TARGET_ISA_XSAVE
157 #define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
158 #define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
159 #define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
160 #define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
161 #define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
162 #define TARGET_MPX TARGET_ISA_MPX
163 #define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
164 #define TARGET_CLWB TARGET_ISA_CLWB
165 #define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
166 #define TARGET_MWAITX TARGET_ISA_MWAITX
167 #define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
168 #define TARGET_PKU TARGET_ISA_PKU
169 #define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
170
171 #define TARGET_LP64 TARGET_ABI_64
172 #define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
173 #define TARGET_X32 TARGET_ABI_X32
174 #define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
175 #define TARGET_16BIT TARGET_CODE16
176 #define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
177
178 #include "config/vxworks-dummy.h"
179
180 #include "config/i386/i386-opts.h"
181
182 #define MAX_STRINGOP_ALGS 4
183
184 /* Specify what algorithm to use for stringops on known size.
185 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
186 known at compile time or estimated via feedback, the SIZE array
187 is walked in order until MAX is greater then the estimate (or -1
188 means infinity). Corresponding ALG is used then.
189 When NOALIGN is true the code guaranting the alignment of the memory
190 block is skipped.
191
192 For example initializer:
193 {{256, loop}, {-1, rep_prefix_4_byte}}
194 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
195 be used otherwise. */
196 struct stringop_algs
197 {
198 const enum stringop_alg unknown_size;
199 const struct stringop_strategy {
200 const int max;
201 const enum stringop_alg alg;
202 int noalign;
203 } size [MAX_STRINGOP_ALGS];
204 };
205
206 /* Define the specific costs for a given cpu */
207
208 struct processor_costs {
209 const int add; /* cost of an add instruction */
210 const int lea; /* cost of a lea instruction */
211 const int shift_var; /* variable shift costs */
212 const int shift_const; /* constant shift costs */
213 const int mult_init[5]; /* cost of starting a multiply
214 in QImode, HImode, SImode, DImode, TImode*/
215 const int mult_bit; /* cost of multiply per each bit set */
216 const int divide[5]; /* cost of a divide/mod
217 in QImode, HImode, SImode, DImode, TImode*/
218 int movsx; /* The cost of movsx operation. */
219 int movzx; /* The cost of movzx operation. */
220 const int large_insn; /* insns larger than this cost more */
221 const int move_ratio; /* The threshold of number of scalar
222 memory-to-memory move insns. */
223 const int movzbl_load; /* cost of loading using movzbl */
224 const int int_load[3]; /* cost of loading integer registers
225 in QImode, HImode and SImode relative
226 to reg-reg move (2). */
227 const int int_store[3]; /* cost of storing integer register
228 in QImode, HImode and SImode */
229 const int fp_move; /* cost of reg,reg fld/fst */
230 const int fp_load[3]; /* cost of loading FP register
231 in SFmode, DFmode and XFmode */
232 const int fp_store[3]; /* cost of storing FP register
233 in SFmode, DFmode and XFmode */
234 const int mmx_move; /* cost of moving MMX register. */
235 const int mmx_load[2]; /* cost of loading MMX register
236 in SImode and DImode */
237 const int mmx_store[2]; /* cost of storing MMX register
238 in SImode and DImode */
239 const int sse_move; /* cost of moving SSE register. */
240 const int sse_load[3]; /* cost of loading SSE register
241 in SImode, DImode and TImode*/
242 const int sse_store[3]; /* cost of storing SSE register
243 in SImode, DImode and TImode*/
244 const int mmxsse_to_integer; /* cost of moving mmxsse register to
245 integer and vice versa. */
246 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
247 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
248 const int prefetch_block; /* bytes moved to cache for prefetch. */
249 const int simultaneous_prefetches; /* number of parallel prefetch
250 operations. */
251 const int branch_cost; /* Default value for BRANCH_COST. */
252 const int fadd; /* cost of FADD and FSUB instructions. */
253 const int fmul; /* cost of FMUL instruction. */
254 const int fdiv; /* cost of FDIV instruction. */
255 const int fabs; /* cost of FABS instruction. */
256 const int fchs; /* cost of FCHS instruction. */
257 const int fsqrt; /* cost of FSQRT instruction. */
258 /* Specify what algorithm
259 to use for stringops on unknown size. */
260 struct stringop_algs *memcpy, *memset;
261 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
262 load and store. */
263 const int scalar_load_cost; /* Cost of scalar load. */
264 const int scalar_store_cost; /* Cost of scalar store. */
265 const int vec_stmt_cost; /* Cost of any vector operation, excluding
266 load, store, vector-to-scalar and
267 scalar-to-vector operation. */
268 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
269 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
270 const int vec_align_load_cost; /* Cost of aligned vector load. */
271 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
272 const int vec_store_cost; /* Cost of vector store. */
273 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
274 cost model. */
275 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
276 vectorizer cost model. */
277 };
278
279 extern const struct processor_costs *ix86_cost;
280 extern const struct processor_costs ix86_size_cost;
281
282 #define ix86_cur_cost() \
283 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
284
285 /* Macros used in the machine description to test the flags. */
286
287 /* configure can arrange to change it. */
288
289 #ifndef TARGET_CPU_DEFAULT
290 #define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
291 #endif
292
293 #ifndef TARGET_FPMATH_DEFAULT
294 #define TARGET_FPMATH_DEFAULT \
295 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
296 #endif
297
298 #ifndef TARGET_FPMATH_DEFAULT_P
299 #define TARGET_FPMATH_DEFAULT_P(x) \
300 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
301 #endif
302
303 /* If the i387 is disabled or -miamcu is used , then do not return
304 values in it. */
305 #define TARGET_FLOAT_RETURNS_IN_80387 \
306 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
307 #define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
308 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
309
310 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
311 compile-time constant. */
312 #ifdef IN_LIBGCC2
313 #undef TARGET_64BIT
314 #ifdef __x86_64__
315 #define TARGET_64BIT 1
316 #else
317 #define TARGET_64BIT 0
318 #endif
319 #else
320 #ifndef TARGET_BI_ARCH
321 #undef TARGET_64BIT
322 #undef TARGET_64BIT_P
323 #if TARGET_64BIT_DEFAULT
324 #define TARGET_64BIT 1
325 #define TARGET_64BIT_P(x) 1
326 #else
327 #define TARGET_64BIT 0
328 #define TARGET_64BIT_P(x) 0
329 #endif
330 #endif
331 #endif
332
333 #define HAS_LONG_COND_BRANCH 1
334 #define HAS_LONG_UNCOND_BRANCH 1
335
336 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
337 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
338 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
339 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
340 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
341 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
342 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
343 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
344 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
345 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
346 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
347 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
348 #define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
349 #define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
350 #define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
351 #define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
352 #define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
353 #define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
354 #define TARGET_KNM (ix86_tune == PROCESSOR_KNM)
355 #define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
356 #define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
357 #define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
358 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
359 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
360 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
361 #define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
362 #define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
363 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
364 #define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
365 #define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
366
367 /* Feature tests against the various tunings. */
368 enum ix86_tune_indices {
369 #undef DEF_TUNE
370 #define DEF_TUNE(tune, name, selector) tune,
371 #include "x86-tune.def"
372 #undef DEF_TUNE
373 X86_TUNE_LAST
374 };
375
376 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
377
378 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
379 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
380 #define TARGET_ZERO_EXTEND_WITH_AND \
381 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
382 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
383 #define TARGET_BRANCH_PREDICTION_HINTS \
384 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
385 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
386 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
387 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
388 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
389 #define TARGET_PARTIAL_FLAG_REG_STALL \
390 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
391 #define TARGET_LCP_STALL \
392 ix86_tune_features[X86_TUNE_LCP_STALL]
393 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
394 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
395 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
396 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
397 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
398 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
399 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
400 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
401 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
402 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
403 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
404 #define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
405 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
406 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
407 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
408 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
409 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
410 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
411 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
412 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
413 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
414 #define TARGET_INTEGER_DFMODE_MOVES \
415 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
416 #define TARGET_PARTIAL_REG_DEPENDENCY \
417 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
418 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
419 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
420 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
421 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
422 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
423 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
424 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
425 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
426 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
427 #define TARGET_SSE_TYPELESS_STORES \
428 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
429 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
430 #define TARGET_MEMORY_MISMATCH_STALL \
431 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
432 #define TARGET_PROLOGUE_USING_MOVE \
433 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
434 #define TARGET_EPILOGUE_USING_MOVE \
435 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
436 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
437 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
438 #define TARGET_INTER_UNIT_MOVES_TO_VEC \
439 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
440 #define TARGET_INTER_UNIT_MOVES_FROM_VEC \
441 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
442 #define TARGET_INTER_UNIT_CONVERSIONS \
443 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
444 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
445 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
446 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
447 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
448 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
449 #define TARGET_PAD_SHORT_FUNCTION \
450 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
451 #define TARGET_EXT_80387_CONSTANTS \
452 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
453 #define TARGET_AVOID_VECTOR_DECODE \
454 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
455 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
456 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
457 #define TARGET_SLOW_IMUL_IMM32_MEM \
458 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
459 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
460 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
461 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
462 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
463 #define TARGET_USE_VECTOR_FP_CONVERTS \
464 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
465 #define TARGET_USE_VECTOR_CONVERTS \
466 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
467 #define TARGET_SLOW_PSHUFB \
468 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
469 #define TARGET_VECTOR_PARALLEL_EXECUTION \
470 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
471 #define TARGET_AVOID_4BYTE_PREFIXES \
472 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
473 #define TARGET_FUSE_CMP_AND_BRANCH_32 \
474 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
475 #define TARGET_FUSE_CMP_AND_BRANCH_64 \
476 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
477 #define TARGET_FUSE_CMP_AND_BRANCH \
478 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
479 : TARGET_FUSE_CMP_AND_BRANCH_32)
480 #define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
481 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
482 #define TARGET_FUSE_ALU_AND_BRANCH \
483 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
484 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
485 #define TARGET_AVOID_LEA_FOR_ADDR \
486 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
487 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
488 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
489 #define TARGET_AVX128_OPTIMAL \
490 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
491 #define TARGET_REASSOC_INT_TO_PARALLEL \
492 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
493 #define TARGET_REASSOC_FP_TO_PARALLEL \
494 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
495 #define TARGET_GENERAL_REGS_SSE_SPILL \
496 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
497 #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
498 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
499 #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
500 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
501 #define TARGET_ADJUST_UNROLL \
502 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
503 #define TARGET_AVOID_FALSE_DEP_FOR_BMI \
504 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
505 #define TARGET_ONE_IF_CONV_INSN \
506 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
507
508 /* Feature tests against the various architecture variations. */
509 enum ix86_arch_indices {
510 X86_ARCH_CMOV,
511 X86_ARCH_CMPXCHG,
512 X86_ARCH_CMPXCHG8B,
513 X86_ARCH_XADD,
514 X86_ARCH_BSWAP,
515
516 X86_ARCH_LAST
517 };
518
519 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
520
521 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
522 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
523 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
524 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
525 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
526
527 /* For sane SSE instruction set generation we need fcomi instruction.
528 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
529 expands to a sequence that includes conditional move. */
530 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
531
532 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
533
534 extern unsigned char x86_prefetch_sse;
535 #define TARGET_PREFETCH_SSE x86_prefetch_sse
536
537 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
538
539 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
540 #define TARGET_MIX_SSE_I387 \
541 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
542
543 #define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
544 #define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
545 #define TARGET_HARD_XF_REGS (TARGET_80387)
546
547 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
548 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
549 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
550 #define TARGET_SUN_TLS 0
551
552 #ifndef TARGET_64BIT_DEFAULT
553 #define TARGET_64BIT_DEFAULT 0
554 #endif
555 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
556 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
557 #endif
558
559 #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
560 #define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
561
562 /* Fence to use after loop using storent. */
563
564 extern tree x86_mfence;
565 #define FENCE_FOLLOWING_MOVNT x86_mfence
566
567 /* Once GDB has been enhanced to deal with functions without frame
568 pointers, we can change this to allow for elimination of
569 the frame pointer in leaf functions. */
570 #define TARGET_DEFAULT 0
571
572 /* Extra bits to force. */
573 #define TARGET_SUBTARGET_DEFAULT 0
574 #define TARGET_SUBTARGET_ISA_DEFAULT 0
575
576 /* Extra bits to force on w/ 32-bit mode. */
577 #define TARGET_SUBTARGET32_DEFAULT 0
578 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
579
580 /* Extra bits to force on w/ 64-bit mode. */
581 #define TARGET_SUBTARGET64_DEFAULT 0
582 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
583
584 /* Replace MACH-O, ifdefs by in-line tests, where possible.
585 (a) Macros defined in config/i386/darwin.h */
586 #define TARGET_MACHO 0
587 #define TARGET_MACHO_BRANCH_ISLANDS 0
588 #define MACHOPIC_ATT_STUB 0
589 /* (b) Macros defined in config/darwin.h */
590 #define MACHO_DYNAMIC_NO_PIC_P 0
591 #define MACHOPIC_INDIRECT 0
592 #define MACHOPIC_PURE 0
593
594 /* For the RDOS */
595 #define TARGET_RDOS 0
596
597 /* For the Windows 64-bit ABI. */
598 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
599
600 /* For the Windows 32-bit ABI. */
601 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
602
603 /* This is re-defined by cygming.h. */
604 #define TARGET_SEH 0
605
606 /* The default abi used by target. */
607 #define DEFAULT_ABI SYSV_ABI
608
609 /* The default TLS segment register used by target. */
610 #define DEFAULT_TLS_SEG_REG \
611 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
612
613 /* Subtargets may reset this to 1 in order to enable 96-bit long double
614 with the rounding mode forced to 53 bits. */
615 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
616
617 /* -march=native handling only makes sense with compiler running on
618 an x86 or x86_64 chip. If changing this condition, also change
619 the condition in driver-i386.c. */
620 #if defined(__i386__) || defined(__x86_64__)
621 /* In driver-i386.c. */
622 extern const char *host_detect_local_cpu (int argc, const char **argv);
623 #define EXTRA_SPEC_FUNCTIONS \
624 { "local_cpu_detect", host_detect_local_cpu },
625 #define HAVE_LOCAL_CPU_DETECT
626 #endif
627
628 #if TARGET_64BIT_DEFAULT
629 #define OPT_ARCH64 "!m32"
630 #define OPT_ARCH32 "m32"
631 #else
632 #define OPT_ARCH64 "m64|mx32"
633 #define OPT_ARCH32 "m64|mx32:;"
634 #endif
635
636 /* Support for configure-time defaults of some command line options.
637 The order here is important so that -march doesn't squash the
638 tune or cpu values. */
639 #define OPTION_DEFAULT_SPECS \
640 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
641 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
642 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
643 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
644 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
645 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
646 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
647 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
648 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
649
650 /* Specs for the compiler proper */
651
652 #ifndef CC1_CPU_SPEC
653 #define CC1_CPU_SPEC_1 ""
654
655 #ifndef HAVE_LOCAL_CPU_DETECT
656 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
657 #else
658 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
659 "%{march=native:%>march=native %:local_cpu_detect(arch) \
660 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
661 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
662 #endif
663 #endif
664 \f
665 /* Target CPU builtins. */
666 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
667
668 /* Target Pragmas. */
669 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
670
671 #ifndef CC1_SPEC
672 #define CC1_SPEC "%(cc1_cpu) "
673 #endif
674
675 /* This macro defines names of additional specifications to put in the
676 specs that can be used in various specifications like CC1_SPEC. Its
677 definition is an initializer with a subgrouping for each command option.
678
679 Each subgrouping contains a string constant, that defines the
680 specification name, and a string constant that used by the GCC driver
681 program.
682
683 Do not define this macro if it does not need to do anything. */
684
685 #ifndef SUBTARGET_EXTRA_SPECS
686 #define SUBTARGET_EXTRA_SPECS
687 #endif
688
689 #define EXTRA_SPECS \
690 { "cc1_cpu", CC1_CPU_SPEC }, \
691 SUBTARGET_EXTRA_SPECS
692 \f
693
694 /* Whether to allow x87 floating-point arithmetic on MODE (one of
695 SFmode, DFmode and XFmode) in the current excess precision
696 configuration. */
697 #define X87_ENABLE_ARITH(MODE) \
698 (flag_unsafe_math_optimizations \
699 || flag_excess_precision == EXCESS_PRECISION_FAST \
700 || (MODE) == XFmode)
701
702 /* Likewise, whether to allow direct conversions from integer mode
703 IMODE (HImode, SImode or DImode) to MODE. */
704 #define X87_ENABLE_FLOAT(MODE, IMODE) \
705 (flag_unsafe_math_optimizations \
706 || flag_excess_precision == EXCESS_PRECISION_FAST \
707 || (MODE) == XFmode \
708 || ((MODE) == DFmode && (IMODE) == SImode) \
709 || (IMODE) == HImode)
710
711 /* target machine storage layout */
712
713 #define SHORT_TYPE_SIZE 16
714 #define INT_TYPE_SIZE 32
715 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
716 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
717 #define LONG_LONG_TYPE_SIZE 64
718 #define FLOAT_TYPE_SIZE 32
719 #define DOUBLE_TYPE_SIZE 64
720 #define LONG_DOUBLE_TYPE_SIZE \
721 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
722
723 #define WIDEST_HARDWARE_FP_SIZE 80
724
725 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
726 #define MAX_BITS_PER_WORD 64
727 #else
728 #define MAX_BITS_PER_WORD 32
729 #endif
730
731 /* Define this if most significant byte of a word is the lowest numbered. */
732 /* That is true on the 80386. */
733
734 #define BITS_BIG_ENDIAN 0
735
736 /* Define this if most significant byte of a word is the lowest numbered. */
737 /* That is not true on the 80386. */
738 #define BYTES_BIG_ENDIAN 0
739
740 /* Define this if most significant word of a multiword number is the lowest
741 numbered. */
742 /* Not true for 80386 */
743 #define WORDS_BIG_ENDIAN 0
744
745 /* Width of a word, in units (bytes). */
746 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
747
748 #ifndef IN_LIBGCC2
749 #define MIN_UNITS_PER_WORD 4
750 #endif
751
752 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
753 #define PARM_BOUNDARY BITS_PER_WORD
754
755 /* Boundary (in *bits*) on which stack pointer should be aligned. */
756 #define STACK_BOUNDARY \
757 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
758
759 /* Stack boundary of the main function guaranteed by OS. */
760 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
761
762 /* Minimum stack boundary. */
763 #define MIN_STACK_BOUNDARY BITS_PER_WORD
764
765 /* Boundary (in *bits*) on which the stack pointer prefers to be
766 aligned; the compiler cannot rely on having this alignment. */
767 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
768
769 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
770 both 32bit and 64bit, to support codes that need 128 bit stack
771 alignment for SSE instructions, but can't realign the stack. */
772 #define PREFERRED_STACK_BOUNDARY_DEFAULT \
773 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
774
775 /* 1 if -mstackrealign should be turned on by default. It will
776 generate an alternate prologue and epilogue that realigns the
777 runtime stack if nessary. This supports mixing codes that keep a
778 4-byte aligned stack, as specified by i386 psABI, with codes that
779 need a 16-byte aligned stack, as required by SSE instructions. */
780 #define STACK_REALIGN_DEFAULT 0
781
782 /* Boundary (in *bits*) on which the incoming stack is aligned. */
783 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
784
785 /* According to Windows x64 software convention, the maximum stack allocatable
786 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
787 instructions allowed to adjust the stack pointer in the epilog, forcing the
788 use of frame pointer for frames larger than 2 GB. This theorical limit
789 is reduced by 256, an over-estimated upper bound for the stack use by the
790 prologue.
791 We define only one threshold for both the prolog and the epilog. When the
792 frame size is larger than this threshold, we allocate the area to save SSE
793 regs, then save them, and then allocate the remaining. There is no SEH
794 unwind info for this later allocation. */
795 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
796
797 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
798 mandatory for the 64-bit ABI, and may or may not be true for other
799 operating systems. */
800 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
801
802 /* Minimum allocation boundary for the code of a function. */
803 #define FUNCTION_BOUNDARY 8
804
805 /* C++ stores the virtual bit in the lowest bit of function pointers. */
806 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
807
808 /* Minimum size in bits of the largest boundary to which any
809 and all fundamental data types supported by the hardware
810 might need to be aligned. No data type wants to be aligned
811 rounder than this.
812
813 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
814 and Pentium Pro XFmode values at 128 bit boundaries.
815
816 When increasing the maximum, also update
817 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
818
819 #define BIGGEST_ALIGNMENT \
820 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
821
822 /* Maximum stack alignment. */
823 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
824
825 /* Alignment value for attribute ((aligned)). It is a constant since
826 it is the part of the ABI. We shouldn't change it with -mavx. */
827 #define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
828
829 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
830 #define ALIGN_MODE_128(MODE) \
831 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
832
833 /* The published ABIs say that doubles should be aligned on word
834 boundaries, so lower the alignment for structure fields unless
835 -malign-double is set. */
836
837 /* ??? Blah -- this macro is used directly by libobjc. Since it
838 supports no vector modes, cut out the complexity and fall back
839 on BIGGEST_FIELD_ALIGNMENT. */
840 #ifdef IN_TARGET_LIBS
841 #ifdef __x86_64__
842 #define BIGGEST_FIELD_ALIGNMENT 128
843 #else
844 #define BIGGEST_FIELD_ALIGNMENT 32
845 #endif
846 #else
847 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
848 x86_field_alignment ((TYPE), (COMPUTED))
849 #endif
850
851 /* If defined, a C expression to compute the alignment for a static
852 variable. TYPE is the data type, and ALIGN is the alignment that
853 the object would ordinarily have. The value of this macro is used
854 instead of that alignment to align the object.
855
856 If this macro is not defined, then ALIGN is used.
857
858 One use of this macro is to increase alignment of medium-size
859 data to make it all fit in fewer cache lines. Another is to
860 cause character arrays to be word-aligned so that `strcpy' calls
861 that copy constants to character arrays can be done inline. */
862
863 #define DATA_ALIGNMENT(TYPE, ALIGN) \
864 ix86_data_alignment ((TYPE), (ALIGN), true)
865
866 /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
867 some alignment increase, instead of optimization only purposes. E.g.
868 AMD x86-64 psABI says that variables with array type larger than 15 bytes
869 must be aligned to 16 byte boundaries.
870
871 If this macro is not defined, then ALIGN is used. */
872
873 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
874 ix86_data_alignment ((TYPE), (ALIGN), false)
875
876 /* If defined, a C expression to compute the alignment for a local
877 variable. TYPE is the data type, and ALIGN is the alignment that
878 the object would ordinarily have. The value of this macro is used
879 instead of that alignment to align the object.
880
881 If this macro is not defined, then ALIGN is used.
882
883 One use of this macro is to increase alignment of medium-size
884 data to make it all fit in fewer cache lines. */
885
886 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
887 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
888
889 /* If defined, a C expression to compute the alignment for stack slot.
890 TYPE is the data type, MODE is the widest mode available, and ALIGN
891 is the alignment that the slot would ordinarily have. The value of
892 this macro is used instead of that alignment to align the slot.
893
894 If this macro is not defined, then ALIGN is used when TYPE is NULL,
895 Otherwise, LOCAL_ALIGNMENT will be used.
896
897 One use of this macro is to set alignment of stack slot to the
898 maximum alignment of all possible modes which the slot may have. */
899
900 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
901 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
902
903 /* If defined, a C expression to compute the alignment for a local
904 variable DECL.
905
906 If this macro is not defined, then
907 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
908
909 One use of this macro is to increase alignment of medium-size
910 data to make it all fit in fewer cache lines. */
911
912 #define LOCAL_DECL_ALIGNMENT(DECL) \
913 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
914
915 /* If defined, a C expression to compute the minimum required alignment
916 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
917 MODE, assuming normal alignment ALIGN.
918
919 If this macro is not defined, then (ALIGN) will be used. */
920
921 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
922 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
923
924
925 /* Set this nonzero if move instructions will actually fail to work
926 when given unaligned data. */
927 #define STRICT_ALIGNMENT 0
928
929 /* If bit field type is int, don't let it cross an int,
930 and give entire struct the alignment of an int. */
931 /* Required on the 386 since it doesn't have bit-field insns. */
932 #define PCC_BITFIELD_TYPE_MATTERS 1
933 \f
934 /* Standard register usage. */
935
936 /* This processor has special stack-like registers. See reg-stack.c
937 for details. */
938
939 #define STACK_REGS
940
941 #define IS_STACK_MODE(MODE) \
942 (X87_FLOAT_MODE_P (MODE) \
943 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
944 || TARGET_MIX_SSE_I387))
945
946 /* Number of actual hardware registers.
947 The hardware registers are assigned numbers for the compiler
948 from 0 to just below FIRST_PSEUDO_REGISTER.
949 All registers that the compiler knows about must be given numbers,
950 even those that are not normally considered general registers.
951
952 In the 80386 we give the 8 general purpose registers the numbers 0-7.
953 We number the floating point registers 8-15.
954 Note that registers 0-7 can be accessed as a short or int,
955 while only 0-3 may be used with byte `mov' instructions.
956
957 Reg 16 does not correspond to any hardware register, but instead
958 appears in the RTL as an argument pointer prior to reload, and is
959 eliminated during reloading in favor of either the stack or frame
960 pointer. */
961
962 #define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
963
964 /* Number of hardware registers that go into the DWARF-2 unwind info.
965 If not defined, equals FIRST_PSEUDO_REGISTER. */
966
967 #define DWARF_FRAME_REGISTERS 17
968
969 /* 1 for registers that have pervasive standard uses
970 and are not available for the register allocator.
971 On the 80386, the stack pointer is such, as is the arg pointer.
972
973 REX registers are disabled for 32bit targets in
974 TARGET_CONDITIONAL_REGISTER_USAGE. */
975
976 #define FIXED_REGISTERS \
977 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
978 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
979 /*arg,flags,fpsr,fpcr,frame*/ \
980 1, 1, 1, 1, 1, \
981 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
982 0, 0, 0, 0, 0, 0, 0, 0, \
983 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
984 0, 0, 0, 0, 0, 0, 0, 0, \
985 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
986 0, 0, 0, 0, 0, 0, 0, 0, \
987 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
988 0, 0, 0, 0, 0, 0, 0, 0, \
989 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
990 0, 0, 0, 0, 0, 0, 0, 0, \
991 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
992 0, 0, 0, 0, 0, 0, 0, 0, \
993 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
994 0, 0, 0, 0, 0, 0, 0, 0, \
995 /* b0, b1, b2, b3*/ \
996 0, 0, 0, 0 }
997
998 /* 1 for registers not available across function calls.
999 These must include the FIXED_REGISTERS and also any
1000 registers that can be used without being saved.
1001 The latter must include the registers where values are returned
1002 and the register where structure-value addresses are passed.
1003 Aside from that, you can include as many other registers as you like.
1004
1005 Value is set to 1 if the register is call used unconditionally.
1006 Bit one is set if the register is call used on TARGET_32BIT ABI.
1007 Bit two is set if the register is call used on TARGET_64BIT ABI.
1008 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1009
1010 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1011
1012 #define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1013 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1014
1015 #define CALL_USED_REGISTERS \
1016 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
1017 { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1018 /*arg,flags,fpsr,fpcr,frame*/ \
1019 1, 1, 1, 1, 1, \
1020 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1021 1, 1, 1, 1, 1, 1, 6, 6, \
1022 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
1023 1, 1, 1, 1, 1, 1, 1, 1, \
1024 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
1025 1, 1, 1, 1, 2, 2, 2, 2, \
1026 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
1027 6, 6, 6, 6, 6, 6, 6, 6, \
1028 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1029 6, 6, 6, 6, 6, 6, 6, 6, \
1030 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
1031 6, 6, 6, 6, 6, 6, 6, 6, \
1032 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
1033 1, 1, 1, 1, 1, 1, 1, 1, \
1034 /* b0, b1, b2, b3*/ \
1035 1, 1, 1, 1 }
1036
1037 /* Order in which to allocate registers. Each register must be
1038 listed once, even those in FIXED_REGISTERS. List frame pointer
1039 late and fixed registers last. Note that, in general, we prefer
1040 registers listed in CALL_USED_REGISTERS, keeping the others
1041 available for storage of persistent values.
1042
1043 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
1044 so this is just empty initializer for array. */
1045
1046 #define REG_ALLOC_ORDER \
1047 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1048 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1049 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1050 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
1051 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1052 78, 79, 80 }
1053
1054 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1055 to be rearranged based on a particular function. When using sse math,
1056 we want to allocate SSE before x87 registers and vice versa. */
1057
1058 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
1059
1060
1061 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1062
1063 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1064 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1065 && GENERAL_REGNO_P (REGNO) \
1066 && ((MODE) == XFmode || (MODE) == XCmode))
1067
1068 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1069
1070 #define VALID_AVX256_REG_MODE(MODE) \
1071 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1072 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1073 || (MODE) == V4DFmode)
1074
1075 #define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1076 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1077
1078 #define VALID_AVX512F_SCALAR_MODE(MODE) \
1079 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1080 || (MODE) == SFmode)
1081
1082 #define VALID_AVX512F_REG_MODE(MODE) \
1083 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
1084 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1085 || (MODE) == V4TImode)
1086
1087 #define VALID_AVX512VL_128_REG_MODE(MODE) \
1088 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
1089 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1090 || (MODE) == TFmode || (MODE) == V1TImode)
1091
1092 #define VALID_SSE2_REG_MODE(MODE) \
1093 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1094 || (MODE) == V2DImode || (MODE) == DFmode)
1095
1096 #define VALID_SSE_REG_MODE(MODE) \
1097 ((MODE) == V1TImode || (MODE) == TImode \
1098 || (MODE) == V4SFmode || (MODE) == V4SImode \
1099 || (MODE) == SFmode || (MODE) == TFmode)
1100
1101 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1102 ((MODE) == V2SFmode || (MODE) == SFmode)
1103
1104 #define VALID_MMX_REG_MODE(MODE) \
1105 ((MODE == V1DImode) || (MODE) == DImode \
1106 || (MODE) == V2SImode || (MODE) == SImode \
1107 || (MODE) == V4HImode || (MODE) == V8QImode)
1108
1109 #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1110
1111 #define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1112
1113 #define VALID_BND_REG_MODE(MODE) \
1114 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1115
1116 #define VALID_DFP_MODE_P(MODE) \
1117 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1118
1119 #define VALID_FP_MODE_P(MODE) \
1120 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1121 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1122
1123 #define VALID_INT_MODE_P(MODE) \
1124 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1125 || (MODE) == DImode \
1126 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1127 || (MODE) == CDImode \
1128 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1129 || (MODE) == TFmode || (MODE) == TCmode)))
1130
1131 /* Return true for modes passed in SSE registers. */
1132 #define SSE_REG_MODE_P(MODE) \
1133 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1134 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1135 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1136 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1137 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1138 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1139 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1140 || (MODE) == V16SFmode)
1141
1142 #define X87_FLOAT_MODE_P(MODE) \
1143 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1144
1145 #define SSE_FLOAT_MODE_P(MODE) \
1146 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1147
1148 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1149 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1150 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1151
1152 /* It is possible to write patterns to move flags; but until someone
1153 does it, */
1154 #define AVOID_CCMODE_COPIES
1155
1156 /* Specify the modes required to caller save a given hard regno.
1157 We do this on i386 to prevent flags from being saved at all.
1158
1159 Kill any attempts to combine saving of modes. */
1160
1161 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1162 (CC_REGNO_P (REGNO) ? VOIDmode \
1163 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1164 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1165 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1166 && TARGET_PARTIAL_REG_STALL) \
1167 || MASK_REGNO_P (REGNO)) ? SImode \
1168 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
1169 || MASK_REGNO_P (REGNO)) ? SImode \
1170 : (MODE))
1171
1172 /* Specify the registers used for certain standard purposes.
1173 The values of these macros are register numbers. */
1174
1175 /* on the 386 the pc register is %eip, and is not usable as a general
1176 register. The ordinary mov instructions won't work */
1177 /* #define PC_REGNUM */
1178
1179 /* Base register for access to arguments of the function. */
1180 #define ARG_POINTER_REGNUM ARGP_REG
1181
1182 /* Register to use for pushing function arguments. */
1183 #define STACK_POINTER_REGNUM SP_REG
1184
1185 /* Base register for access to local variables of the function. */
1186 #define FRAME_POINTER_REGNUM FRAME_REG
1187 #define HARD_FRAME_POINTER_REGNUM BP_REG
1188
1189 #define FIRST_INT_REG AX_REG
1190 #define LAST_INT_REG SP_REG
1191
1192 #define FIRST_QI_REG AX_REG
1193 #define LAST_QI_REG BX_REG
1194
1195 /* First & last stack-like regs */
1196 #define FIRST_STACK_REG ST0_REG
1197 #define LAST_STACK_REG ST7_REG
1198
1199 #define FIRST_SSE_REG XMM0_REG
1200 #define LAST_SSE_REG XMM7_REG
1201
1202 #define FIRST_MMX_REG MM0_REG
1203 #define LAST_MMX_REG MM7_REG
1204
1205 #define FIRST_REX_INT_REG R8_REG
1206 #define LAST_REX_INT_REG R15_REG
1207
1208 #define FIRST_REX_SSE_REG XMM8_REG
1209 #define LAST_REX_SSE_REG XMM15_REG
1210
1211 #define FIRST_EXT_REX_SSE_REG XMM16_REG
1212 #define LAST_EXT_REX_SSE_REG XMM31_REG
1213
1214 #define FIRST_MASK_REG MASK0_REG
1215 #define LAST_MASK_REG MASK7_REG
1216
1217 #define FIRST_BND_REG BND0_REG
1218 #define LAST_BND_REG BND3_REG
1219
1220 /* Override this in other tm.h files to cope with various OS lossage
1221 requiring a frame pointer. */
1222 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1223 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1224 #endif
1225
1226 /* Make sure we can access arbitrary call frames. */
1227 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1228
1229 /* Register to hold the addressing base for position independent
1230 code access to data items. We don't use PIC pointer for 64bit
1231 mode. Define the regnum to dummy value to prevent gcc from
1232 pessimizing code dealing with EBX.
1233
1234 To avoid clobbering a call-saved register unnecessarily, we renumber
1235 the pic register when possible. The change is visible after the
1236 prologue has been emitted. */
1237
1238 #define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
1239
1240 #define PIC_OFFSET_TABLE_REGNUM \
1241 (ix86_use_pseudo_pic_reg () \
1242 ? (pic_offset_table_rtx \
1243 ? INVALID_REGNUM \
1244 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1245 : INVALID_REGNUM)
1246
1247 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1248
1249 /* This is overridden by <cygwin.h>. */
1250 #define MS_AGGREGATE_RETURN 0
1251
1252 #define KEEP_AGGREGATE_RETURN_POINTER 0
1253 \f
1254 /* Define the classes of registers for register constraints in the
1255 machine description. Also define ranges of constants.
1256
1257 One of the classes must always be named ALL_REGS and include all hard regs.
1258 If there is more than one class, another class must be named NO_REGS
1259 and contain no registers.
1260
1261 The name GENERAL_REGS must be the name of a class (or an alias for
1262 another name such as ALL_REGS). This is the class of registers
1263 that is allowed by "g" or "r" in a register constraint.
1264 Also, registers outside this class are allocated only when
1265 instructions express preferences for them.
1266
1267 The classes must be numbered in nondecreasing order; that is,
1268 a larger-numbered class must never be contained completely
1269 in a smaller-numbered class. This is why CLOBBERED_REGS class
1270 is listed early, even though in 64-bit mode it contains more
1271 registers than just %eax, %ecx, %edx.
1272
1273 For any two classes, it is very desirable that there be another
1274 class that represents their union.
1275
1276 It might seem that class BREG is unnecessary, since no useful 386
1277 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1278 and the "b" register constraint is useful in asms for syscalls.
1279
1280 The flags, fpsr and fpcr registers are in no class. */
1281
1282 enum reg_class
1283 {
1284 NO_REGS,
1285 AREG, DREG, CREG, BREG, SIREG, DIREG,
1286 AD_REGS, /* %eax/%edx for DImode */
1287 CLOBBERED_REGS, /* call-clobbered integer registers */
1288 Q_REGS, /* %eax %ebx %ecx %edx */
1289 NON_Q_REGS, /* %esi %edi %ebp %esp */
1290 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
1291 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1292 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1293 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1294 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1295 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1296 FLOAT_REGS,
1297 SSE_FIRST_REG,
1298 NO_REX_SSE_REGS,
1299 SSE_REGS,
1300 EVEX_SSE_REGS,
1301 BND_REGS,
1302 ALL_SSE_REGS,
1303 MMX_REGS,
1304 FP_TOP_SSE_REGS,
1305 FP_SECOND_SSE_REGS,
1306 FLOAT_SSE_REGS,
1307 FLOAT_INT_REGS,
1308 INT_SSE_REGS,
1309 FLOAT_INT_SSE_REGS,
1310 MASK_EVEX_REGS,
1311 MASK_REGS,
1312 MOD4_SSE_REGS,
1313 ALL_REGS, LIM_REG_CLASSES
1314 };
1315
1316 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1317
1318 #define INTEGER_CLASS_P(CLASS) \
1319 reg_class_subset_p ((CLASS), GENERAL_REGS)
1320 #define FLOAT_CLASS_P(CLASS) \
1321 reg_class_subset_p ((CLASS), FLOAT_REGS)
1322 #define SSE_CLASS_P(CLASS) \
1323 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1324 #define MMX_CLASS_P(CLASS) \
1325 ((CLASS) == MMX_REGS)
1326 #define MASK_CLASS_P(CLASS) \
1327 reg_class_subset_p ((CLASS), MASK_REGS)
1328 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1329 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1330 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1331 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1332 #define MAYBE_SSE_CLASS_P(CLASS) \
1333 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1334 #define MAYBE_MMX_CLASS_P(CLASS) \
1335 reg_classes_intersect_p ((CLASS), MMX_REGS)
1336 #define MAYBE_MASK_CLASS_P(CLASS) \
1337 reg_classes_intersect_p ((CLASS), MASK_REGS)
1338
1339 #define Q_CLASS_P(CLASS) \
1340 reg_class_subset_p ((CLASS), Q_REGS)
1341
1342 #define MAYBE_NON_Q_CLASS_P(CLASS) \
1343 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1344
1345 /* Give names of register classes as strings for dump file. */
1346
1347 #define REG_CLASS_NAMES \
1348 { "NO_REGS", \
1349 "AREG", "DREG", "CREG", "BREG", \
1350 "SIREG", "DIREG", \
1351 "AD_REGS", \
1352 "CLOBBERED_REGS", \
1353 "Q_REGS", "NON_Q_REGS", \
1354 "TLS_GOTBASE_REGS", \
1355 "INDEX_REGS", \
1356 "LEGACY_REGS", \
1357 "GENERAL_REGS", \
1358 "FP_TOP_REG", "FP_SECOND_REG", \
1359 "FLOAT_REGS", \
1360 "SSE_FIRST_REG", \
1361 "NO_REX_SSE_REGS", \
1362 "SSE_REGS", \
1363 "EVEX_SSE_REGS", \
1364 "BND_REGS", \
1365 "ALL_SSE_REGS", \
1366 "MMX_REGS", \
1367 "FP_TOP_SSE_REGS", \
1368 "FP_SECOND_SSE_REGS", \
1369 "FLOAT_SSE_REGS", \
1370 "FLOAT_INT_REGS", \
1371 "INT_SSE_REGS", \
1372 "FLOAT_INT_SSE_REGS", \
1373 "MASK_EVEX_REGS", \
1374 "MASK_REGS", \
1375 "MOD4_SSE_REGS", \
1376 "ALL_REGS" }
1377
1378 /* Define which registers fit in which classes. This is an initializer
1379 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1380
1381 Note that CLOBBERED_REGS are calculated by
1382 TARGET_CONDITIONAL_REGISTER_USAGE. */
1383
1384 #define REG_CLASS_CONTENTS \
1385 { { 0x00, 0x0, 0x0 }, \
1386 { 0x01, 0x0, 0x0 }, /* AREG */ \
1387 { 0x02, 0x0, 0x0 }, /* DREG */ \
1388 { 0x04, 0x0, 0x0 }, /* CREG */ \
1389 { 0x08, 0x0, 0x0 }, /* BREG */ \
1390 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1391 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1392 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1393 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1394 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1395 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1396 { 0x7e, 0x1fe0, 0x0 }, /* TLS_GOTBASE_REGS */ \
1397 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1398 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1399 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1400 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1401 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1402 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1403 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1404 { 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
1405 { 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1406 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1407 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1408 { 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1409 { 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1410 { 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1411 { 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1412 { 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1413 { 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1414 { 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1415 { 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1416 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
1417 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
1418 { 0x1fe00000,0xffffe000, 0x1f }, /* MOD4_SSE_REGS */ \
1419 { 0xffffffff,0xffffffff,0x1ffff } \
1420 }
1421
1422 /* The same information, inverted:
1423 Return the class number of the smallest class containing
1424 reg number REGNO. This could be a conditional expression
1425 or could index an array. */
1426
1427 #define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
1428
1429 /* When this hook returns true for MODE, the compiler allows
1430 registers explicitly used in the rtl to be used as spill registers
1431 but prevents the compiler from extending the lifetime of these
1432 registers. */
1433 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1434
1435 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1436 #define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1437
1438 #define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1439 #define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1440
1441 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1442 #define REX_INT_REGNO_P(N) \
1443 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1444
1445 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1446 #define GENERAL_REGNO_P(N) \
1447 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
1448
1449 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1450 #define ANY_QI_REGNO_P(N) \
1451 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1452
1453 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1454 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1455
1456 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1457 #define SSE_REGNO_P(N) \
1458 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1459 || REX_SSE_REGNO_P (N) \
1460 || EXT_REX_SSE_REGNO_P (N))
1461
1462 #define REX_SSE_REGNO_P(N) \
1463 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1464
1465 #define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1466
1467 #define EXT_REX_SSE_REGNO_P(N) \
1468 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1469
1470 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1471 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1472
1473 #define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1474 #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1475
1476 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1477 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1478
1479 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1480 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1481
1482 #define BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
1483 #define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
1484
1485 #define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1486 #define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1487 || (N) == XMM4_REG \
1488 || (N) == XMM8_REG \
1489 || (N) == XMM12_REG \
1490 || (N) == XMM16_REG \
1491 || (N) == XMM20_REG \
1492 || (N) == XMM24_REG \
1493 || (N) == XMM28_REG)
1494
1495 /* First floating point reg */
1496 #define FIRST_FLOAT_REG FIRST_STACK_REG
1497 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1498
1499 #define SSE_REGNO(N) \
1500 ((N) < 8 ? FIRST_SSE_REG + (N) \
1501 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1502 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1503
1504 /* The class value for index registers, and the one for base regs. */
1505
1506 #define INDEX_REG_CLASS INDEX_REGS
1507 #define BASE_REG_CLASS GENERAL_REGS
1508 \f
1509 /* Stack layout; function entry, exit and calling. */
1510
1511 /* Define this if pushing a word on the stack
1512 makes the stack pointer a smaller address. */
1513 #define STACK_GROWS_DOWNWARD 1
1514
1515 /* Define this to nonzero if the nominal address of the stack frame
1516 is at the high-address end of the local variables;
1517 that is, each additional local variable allocated
1518 goes at a more negative offset in the frame. */
1519 #define FRAME_GROWS_DOWNWARD 1
1520
1521 /* Offset within stack frame to start allocating local variables at.
1522 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1523 first local allocated. Otherwise, it is the offset to the BEGINNING
1524 of the first local allocated. */
1525 #define STARTING_FRAME_OFFSET 0
1526
1527 /* If we generate an insn to push BYTES bytes, this says how many the stack
1528 pointer really advances by. On 386, we have pushw instruction that
1529 decrements by exactly 2 no matter what the position was, there is no pushb.
1530
1531 But as CIE data alignment factor on this arch is -4 for 32bit targets
1532 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1533 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
1534
1535 #define PUSH_ROUNDING(BYTES) ROUND_UP ((BYTES), UNITS_PER_WORD)
1536
1537 /* If defined, the maximum amount of space required for outgoing arguments
1538 will be computed and placed into the variable `crtl->outgoing_args_size'.
1539 No space will be pushed onto the stack for each call; instead, the
1540 function prologue should increase the stack frame size by this amount.
1541
1542 In 32bit mode enabling argument accumulation results in about 5% code size
1543 growth because move instructions are less compact than push. In 64bit
1544 mode the difference is less drastic but visible.
1545
1546 FIXME: Unlike earlier implementations, the size of unwind info seems to
1547 actually grow with accumulation. Is that because accumulated args
1548 unwind info became unnecesarily bloated?
1549
1550 With the 64-bit MS ABI, we can generate correct code with or without
1551 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1552 generated without accumulated args is terrible.
1553
1554 If stack probes are required, the space used for large function
1555 arguments on the stack must also be probed, so enable
1556 -maccumulate-outgoing-args so this happens in the prologue.
1557
1558 We must use argument accumulation in interrupt function if stack
1559 may be realigned to avoid DRAP. */
1560
1561 #define ACCUMULATE_OUTGOING_ARGS \
1562 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1563 && optimize_function_for_speed_p (cfun)) \
1564 || (cfun->machine->func_type != TYPE_NORMAL \
1565 && crtl->stack_realign_needed) \
1566 || TARGET_STACK_PROBE \
1567 || TARGET_64BIT_MS_ABI \
1568 || (TARGET_MACHO && crtl->profile))
1569
1570 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1571 instructions to pass outgoing arguments. */
1572
1573 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1574
1575 /* We want the stack and args grow in opposite directions, even if
1576 PUSH_ARGS is 0. */
1577 #define PUSH_ARGS_REVERSED 1
1578
1579 /* Offset of first parameter from the argument pointer register value. */
1580 #define FIRST_PARM_OFFSET(FNDECL) 0
1581
1582 /* Define this macro if functions should assume that stack space has been
1583 allocated for arguments even when their values are passed in registers.
1584
1585 The value of this macro is the size, in bytes, of the area reserved for
1586 arguments passed in registers for the function represented by FNDECL.
1587
1588 This space can be allocated by the caller, or be a part of the
1589 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1590 which. */
1591 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1592
1593 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1594 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1595
1596 /* Define how to find the value returned by a library function
1597 assuming the value has mode MODE. */
1598
1599 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1600
1601 /* Define the size of the result block used for communication between
1602 untyped_call and untyped_return. The block contains a DImode value
1603 followed by the block used by fnsave and frstor. */
1604
1605 #define APPLY_RESULT_SIZE (8+108)
1606
1607 /* 1 if N is a possible register number for function argument passing. */
1608 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1609
1610 /* Define a data type for recording info about an argument list
1611 during the scan of that argument list. This data type should
1612 hold all necessary information about the function itself
1613 and about the args processed so far, enough to enable macros
1614 such as FUNCTION_ARG to determine where the next arg should go. */
1615
1616 typedef struct ix86_args {
1617 int words; /* # words passed so far */
1618 int nregs; /* # registers available for passing */
1619 int regno; /* next available register number */
1620 int fastcall; /* fastcall or thiscall calling convention
1621 is used */
1622 int sse_words; /* # sse words passed so far */
1623 int sse_nregs; /* # sse registers available for passing */
1624 int warn_avx512f; /* True when we want to warn
1625 about AVX512F ABI. */
1626 int warn_avx; /* True when we want to warn about AVX ABI. */
1627 int warn_sse; /* True when we want to warn about SSE ABI. */
1628 int warn_mmx; /* True when we want to warn about MMX ABI. */
1629 int sse_regno; /* next available sse register number */
1630 int mmx_words; /* # mmx words passed so far */
1631 int mmx_nregs; /* # mmx registers available for passing */
1632 int mmx_regno; /* next available mmx register number */
1633 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1634 int caller; /* true if it is caller. */
1635 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1636 SFmode/DFmode arguments should be passed
1637 in SSE registers. Otherwise 0. */
1638 int bnd_regno; /* next available bnd register number */
1639 int bnds_in_bt; /* number of bounds expected in BT. */
1640 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1641 int stdarg; /* Set to 1 if function is stdarg. */
1642 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1643 MS_ABI for ms abi. */
1644 tree decl; /* Callee decl. */
1645 } CUMULATIVE_ARGS;
1646
1647 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1648 for a call to a function whose data type is FNTYPE.
1649 For a library call, FNTYPE is 0. */
1650
1651 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1652 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1653 (N_NAMED_ARGS) != -1)
1654
1655 /* Output assembler code to FILE to increment profiler label # LABELNO
1656 for profiling a function entry. */
1657
1658 #define FUNCTION_PROFILER(FILE, LABELNO) \
1659 x86_function_profiler ((FILE), (LABELNO))
1660
1661 #define MCOUNT_NAME "_mcount"
1662
1663 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1664
1665 #define PROFILE_COUNT_REGISTER "edx"
1666
1667 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1668 the stack pointer does not matter. The value is tested only in
1669 functions that have frame pointers.
1670 No definition is equivalent to always zero. */
1671 /* Note on the 386 it might be more efficient not to define this since
1672 we have to restore it ourselves from the frame pointer, in order to
1673 use pop */
1674
1675 #define EXIT_IGNORE_STACK 1
1676
1677 /* Define this macro as a C expression that is nonzero for registers
1678 used by the epilogue or the `return' pattern. */
1679
1680 #define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1681
1682 /* Output assembler code for a block containing the constant parts
1683 of a trampoline, leaving space for the variable parts. */
1684
1685 /* On the 386, the trampoline contains two instructions:
1686 mov #STATIC,ecx
1687 jmp FUNCTION
1688 The trampoline is generated entirely at runtime. The operand of JMP
1689 is the address of FUNCTION relative to the instruction following the
1690 JMP (which is 5 bytes long). */
1691
1692 /* Length in units of the trampoline for entering a nested function. */
1693
1694 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1695 \f
1696 /* Definitions for register eliminations.
1697
1698 This is an array of structures. Each structure initializes one pair
1699 of eliminable registers. The "from" register number is given first,
1700 followed by "to". Eliminations of the same "from" register are listed
1701 in order of preference.
1702
1703 There are two registers that can always be eliminated on the i386.
1704 The frame pointer and the arg pointer can be replaced by either the
1705 hard frame pointer or to the stack pointer, depending upon the
1706 circumstances. The hard frame pointer is not used before reload and
1707 so it is not eligible for elimination. */
1708
1709 #define ELIMINABLE_REGS \
1710 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1711 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1712 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1713 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1714
1715 /* Define the offset between two registers, one to be eliminated, and the other
1716 its replacement, at the start of a routine. */
1717
1718 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1719 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1720 \f
1721 /* Addressing modes, and classification of registers for them. */
1722
1723 /* Macros to check register numbers against specific register classes. */
1724
1725 /* These assume that REGNO is a hard or pseudo reg number.
1726 They give nonzero only if REGNO is a hard reg of the suitable class
1727 or a pseudo reg currently allocated to a suitable hard reg.
1728 Since they use reg_renumber, they are safe only once reg_renumber
1729 has been allocated, which happens in reginfo.c during register
1730 allocation. */
1731
1732 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1733 ((REGNO) < STACK_POINTER_REGNUM \
1734 || REX_INT_REGNO_P (REGNO) \
1735 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1736 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1737
1738 #define REGNO_OK_FOR_BASE_P(REGNO) \
1739 (GENERAL_REGNO_P (REGNO) \
1740 || (REGNO) == ARG_POINTER_REGNUM \
1741 || (REGNO) == FRAME_POINTER_REGNUM \
1742 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1743
1744 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1745 and check its validity for a certain class.
1746 We have two alternate definitions for each of them.
1747 The usual definition accepts all pseudo regs; the other rejects
1748 them unless they have been allocated suitable hard regs.
1749 The symbol REG_OK_STRICT causes the latter definition to be used.
1750
1751 Most source files want to accept pseudo regs in the hope that
1752 they will get allocated to the class that the insn wants them to be in.
1753 Source files for reload pass need to be strict.
1754 After reload, it makes no difference, since pseudo regs have
1755 been eliminated by then. */
1756
1757
1758 /* Non strict versions, pseudos are ok. */
1759 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1760 (REGNO (X) < STACK_POINTER_REGNUM \
1761 || REX_INT_REGNO_P (REGNO (X)) \
1762 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1763
1764 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1765 (GENERAL_REGNO_P (REGNO (X)) \
1766 || REGNO (X) == ARG_POINTER_REGNUM \
1767 || REGNO (X) == FRAME_POINTER_REGNUM \
1768 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1769
1770 /* Strict versions, hard registers only */
1771 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1772 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1773
1774 #ifndef REG_OK_STRICT
1775 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1776 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1777
1778 #else
1779 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1780 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1781 #endif
1782
1783 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1784 that is a valid memory address for an instruction.
1785 The MODE argument is the machine mode for the MEM expression
1786 that wants to use this address.
1787
1788 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1789 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1790
1791 See legitimize_pic_address in i386.c for details as to what
1792 constitutes a legitimate address when -fpic is used. */
1793
1794 #define MAX_REGS_PER_ADDRESS 2
1795
1796 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1797
1798 /* If defined, a C expression to determine the base term of address X.
1799 This macro is used in only one place: `find_base_term' in alias.c.
1800
1801 It is always safe for this macro to not be defined. It exists so
1802 that alias analysis can understand machine-dependent addresses.
1803
1804 The typical use of this macro is to handle addresses containing
1805 a label_ref or symbol_ref within an UNSPEC. */
1806
1807 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1808
1809 /* Nonzero if the constant value X is a legitimate general operand
1810 when generating PIC code. It is given that flag_pic is on and
1811 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1812
1813 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1814
1815 #define SYMBOLIC_CONST(X) \
1816 (GET_CODE (X) == SYMBOL_REF \
1817 || GET_CODE (X) == LABEL_REF \
1818 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1819 \f
1820 /* Max number of args passed in registers. If this is more than 3, we will
1821 have problems with ebx (register #4), since it is a caller save register and
1822 is also used as the pic register in ELF. So for now, don't allow more than
1823 3 registers to be passed in registers. */
1824
1825 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1826 #define X86_64_REGPARM_MAX 6
1827 #define X86_64_MS_REGPARM_MAX 4
1828
1829 #define X86_32_REGPARM_MAX 3
1830
1831 #define REGPARM_MAX \
1832 (TARGET_64BIT \
1833 ? (TARGET_64BIT_MS_ABI \
1834 ? X86_64_MS_REGPARM_MAX \
1835 : X86_64_REGPARM_MAX) \
1836 : X86_32_REGPARM_MAX)
1837
1838 #define X86_64_SSE_REGPARM_MAX 8
1839 #define X86_64_MS_SSE_REGPARM_MAX 4
1840
1841 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1842
1843 #define SSE_REGPARM_MAX \
1844 (TARGET_64BIT \
1845 ? (TARGET_64BIT_MS_ABI \
1846 ? X86_64_MS_SSE_REGPARM_MAX \
1847 : X86_64_SSE_REGPARM_MAX) \
1848 : X86_32_SSE_REGPARM_MAX)
1849
1850 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1851 \f
1852 /* Specify the machine mode that this machine uses
1853 for the index in the tablejump instruction. */
1854 #define CASE_VECTOR_MODE \
1855 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1856
1857 /* Define this as 1 if `char' should by default be signed; else as 0. */
1858 #define DEFAULT_SIGNED_CHAR 1
1859
1860 /* Max number of bytes we can move from memory to memory
1861 in one reasonably fast instruction. */
1862 #define MOVE_MAX 16
1863
1864 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1865 move efficiently, as opposed to MOVE_MAX which is the maximum
1866 number of bytes we can move with a single instruction.
1867
1868 ??? We should use TImode in 32-bit mode and use OImode or XImode
1869 if they are available. But since by_pieces_ninsns determines the
1870 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1871 64-bit mode. */
1872 #define MOVE_MAX_PIECES \
1873 ((TARGET_64BIT \
1874 && TARGET_SSE2 \
1875 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1876 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1877 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
1878
1879 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1880 move-instruction pairs, we will do a movmem or libcall instead.
1881 Increasing the value will always make code faster, but eventually
1882 incurs high cost in increased code size.
1883
1884 If you don't define this, a reasonable default is used. */
1885
1886 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1887
1888 /* If a clear memory operation would take CLEAR_RATIO or more simple
1889 move-instruction sequences, we will do a clrmem or libcall instead. */
1890
1891 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1892
1893 /* Define if shifts truncate the shift count which implies one can
1894 omit a sign-extension or zero-extension of a shift count.
1895
1896 On i386, shifts do truncate the count. But bit test instructions
1897 take the modulo of the bit offset operand. */
1898
1899 /* #define SHIFT_COUNT_TRUNCATED */
1900
1901 /* A macro to update M and UNSIGNEDP when an object whose type is
1902 TYPE and which has the specified mode and signedness is to be
1903 stored in a register. This macro is only called when TYPE is a
1904 scalar type.
1905
1906 On i386 it is sometimes useful to promote HImode and QImode
1907 quantities to SImode. The choice depends on target type. */
1908
1909 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1910 do { \
1911 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1912 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1913 (MODE) = SImode; \
1914 } while (0)
1915
1916 /* Specify the machine mode that pointers have.
1917 After generation of rtl, the compiler makes no further distinction
1918 between pointers and any other objects of this machine mode. */
1919 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1920
1921 /* Specify the machine mode that bounds have. */
1922 #define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1923
1924 /* A C expression whose value is zero if pointers that need to be extended
1925 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1926 greater then zero if they are zero-extended and less then zero if the
1927 ptr_extend instruction should be used. */
1928
1929 #define POINTERS_EXTEND_UNSIGNED 1
1930
1931 /* A function address in a call instruction
1932 is a byte address (for indexing purposes)
1933 so give the MEM rtx a byte's mode. */
1934 #define FUNCTION_MODE QImode
1935 \f
1936
1937 /* A C expression for the cost of a branch instruction. A value of 1
1938 is the default; other values are interpreted relative to that. */
1939
1940 #define BRANCH_COST(speed_p, predictable_p) \
1941 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1942
1943 /* An integer expression for the size in bits of the largest integer machine
1944 mode that should actually be used. We allow pairs of registers. */
1945 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1946
1947 /* Define this macro as a C expression which is nonzero if accessing
1948 less than a word of memory (i.e. a `char' or a `short') is no
1949 faster than accessing a word of memory, i.e., if such access
1950 require more than one instruction or if there is no difference in
1951 cost between byte and (aligned) word loads.
1952
1953 When this macro is not defined, the compiler will access a field by
1954 finding the smallest containing object; when it is defined, a
1955 fullword load will be used if alignment permits. Unless bytes
1956 accesses are faster than word accesses, using word accesses is
1957 preferable since it may eliminate subsequent memory access if
1958 subsequent accesses occur to other fields in the same word of the
1959 structure, but to different bytes. */
1960
1961 #define SLOW_BYTE_ACCESS 0
1962
1963 /* Nonzero if access to memory by shorts is slow and undesirable. */
1964 #define SLOW_SHORT_ACCESS 0
1965
1966 /* Define this macro if it is as good or better to call a constant
1967 function address than to call an address kept in a register.
1968
1969 Desirable on the 386 because a CALL with a constant address is
1970 faster than one with a register address. */
1971
1972 #define NO_FUNCTION_CSE 1
1973 \f
1974 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1975 return the mode to be used for the comparison.
1976
1977 For floating-point equality comparisons, CCFPEQmode should be used.
1978 VOIDmode should be used in all other cases.
1979
1980 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1981 possible, to allow for more combinations. */
1982
1983 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1984
1985 /* Return nonzero if MODE implies a floating point inequality can be
1986 reversed. */
1987
1988 #define REVERSIBLE_CC_MODE(MODE) 1
1989
1990 /* A C expression whose value is reversed condition code of the CODE for
1991 comparison done in CC_MODE mode. */
1992 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1993
1994 \f
1995 /* Control the assembler format that we output, to the extent
1996 this does not vary between assemblers. */
1997
1998 /* How to refer to registers in assembler output.
1999 This sequence is indexed by compiler's hard-register-number (see above). */
2000
2001 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
2002 For non floating point regs, the following are the HImode names.
2003
2004 For float regs, the stack top is sometimes referred to as "%st(0)"
2005 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2006 "y" code. */
2007
2008 #define HI_REGISTER_NAMES \
2009 {"ax","dx","cx","bx","si","di","bp","sp", \
2010 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2011 "argp", "flags", "fpsr", "fpcr", "frame", \
2012 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2013 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
2014 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2015 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2016 "xmm16", "xmm17", "xmm18", "xmm19", \
2017 "xmm20", "xmm21", "xmm22", "xmm23", \
2018 "xmm24", "xmm25", "xmm26", "xmm27", \
2019 "xmm28", "xmm29", "xmm30", "xmm31", \
2020 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2021 "bnd0", "bnd1", "bnd2", "bnd3" }
2022
2023 #define REGISTER_NAMES HI_REGISTER_NAMES
2024
2025 /* Table of additional register names to use in user input. */
2026
2027 #define ADDITIONAL_REGISTER_NAMES \
2028 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2029 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2030 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2031 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2032 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2033 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2034 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2035 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2036 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2037 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2038 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2039 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2040 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2041 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2042 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2043 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2044 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2045 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2046 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2047 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2048 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2049 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
2050
2051 /* Note we are omitting these since currently I don't know how
2052 to get gcc to use these, since they want the same but different
2053 number as al, and ax.
2054 */
2055
2056 #define QI_REGISTER_NAMES \
2057 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2058
2059 /* These parallel the array above, and can be used to access bits 8:15
2060 of regs 0 through 3. */
2061
2062 #define QI_HIGH_REGISTER_NAMES \
2063 {"ah", "dh", "ch", "bh", }
2064
2065 /* How to renumber registers for dbx and gdb. */
2066
2067 #define DBX_REGISTER_NUMBER(N) \
2068 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2069
2070 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2071 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2072 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2073
2074 /* Before the prologue, RA is at 0(%esp). */
2075 #define INCOMING_RETURN_ADDR_RTX \
2076 gen_rtx_MEM (Pmode, stack_pointer_rtx)
2077
2078 /* After the prologue, RA is at -4(AP) in the current frame. */
2079 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2080 ((COUNT) == 0 \
2081 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2082 -UNITS_PER_WORD)) \
2083 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
2084
2085 /* PC is dbx register 8; let's use that column for RA. */
2086 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2087
2088 /* Before the prologue, there are return address and error code for
2089 exception handler on the top of the frame. */
2090 #define INCOMING_FRAME_SP_OFFSET \
2091 (cfun->machine->func_type == TYPE_EXCEPTION \
2092 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
2093
2094 /* Describe how we implement __builtin_eh_return. */
2095 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2096 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
2097
2098
2099 /* Select a format to encode pointers in exception handling data. CODE
2100 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2101 true if the symbol may be affected by dynamic relocations.
2102
2103 ??? All x86 object file formats are capable of representing this.
2104 After all, the relocation needed is the same as for the call insn.
2105 Whether or not a particular assembler allows us to enter such, I
2106 guess we'll have to see. */
2107 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2108 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2109
2110 /* These are a couple of extensions to the formats accepted
2111 by asm_fprintf:
2112 %z prints out opcode suffix for word-mode instruction
2113 %r prints out word-mode name for reg_names[arg] */
2114 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2115 case 'z': \
2116 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2117 break; \
2118 \
2119 case 'r': \
2120 { \
2121 unsigned int regno = va_arg ((ARGS), int); \
2122 if (LEGACY_INT_REGNO_P (regno)) \
2123 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2124 fputs (reg_names[regno], (FILE)); \
2125 break; \
2126 }
2127
2128 /* This is how to output an insn to push a register on the stack. */
2129
2130 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2131 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2132
2133 /* This is how to output an insn to pop a register from the stack. */
2134
2135 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2136 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
2137
2138 /* This is how to output an element of a case-vector that is absolute. */
2139
2140 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2141 ix86_output_addr_vec_elt ((FILE), (VALUE))
2142
2143 /* This is how to output an element of a case-vector that is relative. */
2144
2145 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2146 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2147
2148 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
2149
2150 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2151 { \
2152 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2153 (PTR) += TARGET_AVX ? 1 : 2; \
2154 }
2155
2156 /* A C statement or statements which output an assembler instruction
2157 opcode to the stdio stream STREAM. The macro-operand PTR is a
2158 variable of type `char *' which points to the opcode name in
2159 its "internal" form--the form that is written in the machine
2160 description. */
2161
2162 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2163 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2164
2165 /* A C statement to output to the stdio stream FILE an assembler
2166 command to pad the location counter to a multiple of 1<<LOG
2167 bytes if it is within MAX_SKIP bytes. */
2168
2169 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2170 #undef ASM_OUTPUT_MAX_SKIP_PAD
2171 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2172 if ((LOG) != 0) \
2173 { \
2174 if ((MAX_SKIP) == 0) \
2175 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2176 else \
2177 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2178 }
2179 #endif
2180
2181 /* Write the extra assembler code needed to declare a function
2182 properly. */
2183
2184 #undef ASM_OUTPUT_FUNCTION_LABEL
2185 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2186 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
2187
2188 /* Under some conditions we need jump tables in the text section,
2189 because the assembler cannot handle label differences between
2190 sections. This is the case for x86_64 on Mach-O for example. */
2191
2192 #define JUMP_TABLES_IN_TEXT_SECTION \
2193 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2194 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2195
2196 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2197 and switch back. For x86 we do this only to save a few bytes that
2198 would otherwise be unused in the text section. */
2199 #define CRT_MKSTR2(VAL) #VAL
2200 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2201
2202 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2203 asm (SECTION_OP "\n\t" \
2204 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2205 TEXT_SECTION_ASM_OP);
2206
2207 /* Default threshold for putting data in large sections
2208 with x86-64 medium memory model */
2209 #define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2210
2211 /* Adjust the length of the insn with the length of BND prefix. */
2212
2213 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2214 do { \
2215 if (NONDEBUG_INSN_P (INSN) && INSN_CODE (INSN) >= 0 \
2216 && get_attr_maybe_prefix_bnd (INSN)) \
2217 LENGTH += ix86_bnd_prefixed_insn_p (INSN); \
2218 } while (0)
2219 \f
2220 /* Which processor to tune code generation for. These must be in sync
2221 with processor_target_table in i386.c. */
2222
2223 enum processor_type
2224 {
2225 PROCESSOR_GENERIC = 0,
2226 PROCESSOR_I386, /* 80386 */
2227 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2228 PROCESSOR_PENTIUM,
2229 PROCESSOR_LAKEMONT,
2230 PROCESSOR_PENTIUMPRO,
2231 PROCESSOR_PENTIUM4,
2232 PROCESSOR_NOCONA,
2233 PROCESSOR_CORE2,
2234 PROCESSOR_NEHALEM,
2235 PROCESSOR_SANDYBRIDGE,
2236 PROCESSOR_HASWELL,
2237 PROCESSOR_BONNELL,
2238 PROCESSOR_SILVERMONT,
2239 PROCESSOR_KNL,
2240 PROCESSOR_KNM,
2241 PROCESSOR_SKYLAKE_AVX512,
2242 PROCESSOR_INTEL,
2243 PROCESSOR_GEODE,
2244 PROCESSOR_K6,
2245 PROCESSOR_ATHLON,
2246 PROCESSOR_K8,
2247 PROCESSOR_AMDFAM10,
2248 PROCESSOR_BDVER1,
2249 PROCESSOR_BDVER2,
2250 PROCESSOR_BDVER3,
2251 PROCESSOR_BDVER4,
2252 PROCESSOR_BTVER1,
2253 PROCESSOR_BTVER2,
2254 PROCESSOR_ZNVER1,
2255 PROCESSOR_max
2256 };
2257
2258 extern enum processor_type ix86_tune;
2259 extern enum processor_type ix86_arch;
2260
2261 /* Size of the RED_ZONE area. */
2262 #define RED_ZONE_SIZE 128
2263 /* Reserved area of the red zone for temporaries. */
2264 #define RED_ZONE_RESERVE 8
2265
2266 extern unsigned int ix86_preferred_stack_boundary;
2267 extern unsigned int ix86_incoming_stack_boundary;
2268
2269 /* Smallest class containing REGNO. */
2270 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2271
2272 enum ix86_fpcmp_strategy {
2273 IX86_FPCMP_SAHF,
2274 IX86_FPCMP_COMI,
2275 IX86_FPCMP_ARITH
2276 };
2277 \f
2278 /* To properly truncate FP values into integers, we need to set i387 control
2279 word. We can't emit proper mode switching code before reload, as spills
2280 generated by reload may truncate values incorrectly, but we still can avoid
2281 redundant computation of new control word by the mode switching pass.
2282 The fldcw instructions are still emitted redundantly, but this is probably
2283 not going to be noticeable problem, as most CPUs do have fast path for
2284 the sequence.
2285
2286 The machinery is to emit simple truncation instructions and split them
2287 before reload to instructions having USEs of two memory locations that
2288 are filled by this code to old and new control word.
2289
2290 Post-reload pass may be later used to eliminate the redundant fildcw if
2291 needed. */
2292
2293 enum ix86_stack_slot
2294 {
2295 SLOT_TEMP = 0,
2296 SLOT_CW_STORED,
2297 SLOT_CW_TRUNC,
2298 SLOT_CW_FLOOR,
2299 SLOT_CW_CEIL,
2300 SLOT_CW_MASK_PM,
2301 SLOT_STV_TEMP,
2302 MAX_386_STACK_LOCALS
2303 };
2304
2305 enum ix86_entity
2306 {
2307 X86_DIRFLAG = 0,
2308 AVX_U128,
2309 I387_TRUNC,
2310 I387_FLOOR,
2311 I387_CEIL,
2312 I387_MASK_PM,
2313 MAX_386_ENTITIES
2314 };
2315
2316 enum x86_dirflag_state
2317 {
2318 X86_DIRFLAG_RESET,
2319 X86_DIRFLAG_ANY
2320 };
2321
2322 enum avx_u128_state
2323 {
2324 AVX_U128_CLEAN,
2325 AVX_U128_DIRTY,
2326 AVX_U128_ANY
2327 };
2328
2329 /* Define this macro if the port needs extra instructions inserted
2330 for mode switching in an optimizing compilation. */
2331
2332 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2333 ix86_optimize_mode_switching[(ENTITY)]
2334
2335 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2336 initializer for an array of integers. Each initializer element N
2337 refers to an entity that needs mode switching, and specifies the
2338 number of different modes that might need to be set for this
2339 entity. The position of the initializer in the initializer -
2340 starting counting at zero - determines the integer that is used to
2341 refer to the mode-switched entity in question. */
2342
2343 #define NUM_MODES_FOR_MODE_SWITCHING \
2344 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
2345 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2346
2347 \f
2348 /* Avoid renaming of stack registers, as doing so in combination with
2349 scheduling just increases amount of live registers at time and in
2350 the turn amount of fxch instructions needed.
2351
2352 ??? Maybe Pentium chips benefits from renaming, someone can try....
2353
2354 Don't rename evex to non-evex sse registers. */
2355
2356 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2357 (!STACK_REGNO_P (SRC) \
2358 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
2359
2360 \f
2361 #define FASTCALL_PREFIX '@'
2362 \f
2363 #ifndef USED_FOR_TARGET
2364 /* Structure describing stack frame layout.
2365 Stack grows downward:
2366
2367 [arguments]
2368 <- ARG_POINTER
2369 saved pc
2370
2371 saved static chain if ix86_static_chain_on_stack
2372
2373 saved frame pointer if frame_pointer_needed
2374 <- HARD_FRAME_POINTER
2375 [saved regs]
2376 <- reg_save_offset
2377 [padding0]
2378 <- stack_realign_offset
2379 [saved SSE regs]
2380 OR
2381 [stub-saved registers for ms x64 --> sysv clobbers
2382 <- Start of out-of-line, stub-saved/restored regs
2383 (see libgcc/config/i386/(sav|res)ms64*.S)
2384 [XMM6-15]
2385 [RSI]
2386 [RDI]
2387 [?RBX] only if RBX is clobbered
2388 [?RBP] only if RBP and RBX are clobbered
2389 [?R12] only if R12 and all previous regs are clobbered
2390 [?R13] only if R13 and all previous regs are clobbered
2391 [?R14] only if R14 and all previous regs are clobbered
2392 [?R15] only if R15 and all previous regs are clobbered
2393 <- end of stub-saved/restored regs
2394 [padding1]
2395 ]
2396 <- sse_reg_save_offset
2397 [padding2]
2398 | <- FRAME_POINTER
2399 [va_arg registers] |
2400 |
2401 [frame] |
2402 |
2403 [padding2] | = to_allocate
2404 <- STACK_POINTER
2405 */
2406 struct GTY(()) ix86_frame
2407 {
2408 int nsseregs;
2409 int nregs;
2410 int va_arg_size;
2411 int red_zone_size;
2412 int outgoing_arguments_size;
2413
2414 /* The offsets relative to ARG_POINTER. */
2415 HOST_WIDE_INT frame_pointer_offset;
2416 HOST_WIDE_INT hard_frame_pointer_offset;
2417 HOST_WIDE_INT stack_pointer_offset;
2418 HOST_WIDE_INT hfp_save_offset;
2419 HOST_WIDE_INT reg_save_offset;
2420 HOST_WIDE_INT stack_realign_allocate;
2421 HOST_WIDE_INT stack_realign_offset;
2422 HOST_WIDE_INT sse_reg_save_offset;
2423
2424 /* When save_regs_using_mov is set, emit prologue using
2425 move instead of push instructions. */
2426 bool save_regs_using_mov;
2427 };
2428
2429 /* Machine specific frame tracking during prologue/epilogue generation. All
2430 values are positive, but since the x86 stack grows downward, are subtratced
2431 from the CFA to produce a valid address. */
2432
2433 struct GTY(()) machine_frame_state
2434 {
2435 /* This pair tracks the currently active CFA as reg+offset. When reg
2436 is drap_reg, we don't bother trying to record here the real CFA when
2437 it might really be a DW_CFA_def_cfa_expression. */
2438 rtx cfa_reg;
2439 HOST_WIDE_INT cfa_offset;
2440
2441 /* The current offset (canonically from the CFA) of ESP and EBP.
2442 When stack frame re-alignment is active, these may not be relative
2443 to the CFA. However, in all cases they are relative to the offsets
2444 of the saved registers stored in ix86_frame. */
2445 HOST_WIDE_INT sp_offset;
2446 HOST_WIDE_INT fp_offset;
2447
2448 /* The size of the red-zone that may be assumed for the purposes of
2449 eliding register restore notes in the epilogue. This may be zero
2450 if no red-zone is in effect, or may be reduced from the real
2451 red-zone value by a maximum runtime stack re-alignment value. */
2452 int red_zone_offset;
2453
2454 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2455 value within the frame. If false then the offset above should be
2456 ignored. Note that DRAP, if valid, *always* points to the CFA and
2457 thus has an offset of zero. */
2458 BOOL_BITFIELD sp_valid : 1;
2459 BOOL_BITFIELD fp_valid : 1;
2460 BOOL_BITFIELD drap_valid : 1;
2461
2462 /* Indicate whether the local stack frame has been re-aligned. When
2463 set, the SP/FP offsets above are relative to the aligned frame
2464 and not the CFA. */
2465 BOOL_BITFIELD realigned : 1;
2466
2467 /* Indicates whether the stack pointer has been re-aligned. When set,
2468 SP/FP continue to be relative to the CFA, but the stack pointer
2469 should only be used for offsets > sp_realigned_offset, while
2470 the frame pointer should be used for offsets <= sp_realigned_fp_last.
2471 The flags realigned and sp_realigned are mutually exclusive. */
2472 BOOL_BITFIELD sp_realigned : 1;
2473
2474 /* If sp_realigned is set, this is the last valid offset from the CFA
2475 that can be used for access with the frame pointer. */
2476 HOST_WIDE_INT sp_realigned_fp_last;
2477
2478 /* If sp_realigned is set, this is the offset from the CFA that the stack
2479 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2480 Access via the stack pointer is only valid for offsets that are greater than
2481 this value. */
2482 HOST_WIDE_INT sp_realigned_offset;
2483 };
2484
2485 /* Private to winnt.c. */
2486 struct seh_frame_state;
2487
2488 enum function_type
2489 {
2490 TYPE_UNKNOWN = 0,
2491 TYPE_NORMAL,
2492 /* The current function is an interrupt service routine with a
2493 pointer argument as specified by the "interrupt" attribute. */
2494 TYPE_INTERRUPT,
2495 /* The current function is an interrupt service routine with a
2496 pointer argument and an integer argument as specified by the
2497 "interrupt" attribute. */
2498 TYPE_EXCEPTION
2499 };
2500
2501 struct GTY(()) machine_function {
2502 struct stack_local_entry *stack_locals;
2503 int varargs_gpr_size;
2504 int varargs_fpr_size;
2505 int optimize_mode_switching[MAX_386_ENTITIES];
2506
2507 /* Cached initial frame layout for the current function. */
2508 struct ix86_frame frame;
2509
2510 /* For -fsplit-stack support: A stack local which holds a pointer to
2511 the stack arguments for a function with a variable number of
2512 arguments. This is set at the start of the function and is used
2513 to initialize the overflow_arg_area field of the va_list
2514 structure. */
2515 rtx split_stack_varargs_pointer;
2516
2517 /* This value is used for amd64 targets and specifies the current abi
2518 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2519 ENUM_BITFIELD(calling_abi) call_abi : 8;
2520
2521 /* Nonzero if the function accesses a previous frame. */
2522 BOOL_BITFIELD accesses_prev_frame : 1;
2523
2524 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2525 expander to determine the style used. */
2526 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2527
2528 /* Nonzero if the current function calls pc thunk and
2529 must not use the red zone. */
2530 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2531
2532 /* If true, the current function needs the default PIC register, not
2533 an alternate register (on x86) and must not use the red zone (on
2534 x86_64), even if it's a leaf function. We don't want the
2535 function to be regarded as non-leaf because TLS calls need not
2536 affect register allocation. This flag is set when a TLS call
2537 instruction is expanded within a function, and never reset, even
2538 if all such instructions are optimized away. Use the
2539 ix86_current_function_calls_tls_descriptor macro for a better
2540 approximation. */
2541 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2542
2543 /* If true, the current function has a STATIC_CHAIN is placed on the
2544 stack below the return address. */
2545 BOOL_BITFIELD static_chain_on_stack : 1;
2546
2547 /* If true, it is safe to not save/restore DRAP register. */
2548 BOOL_BITFIELD no_drap_save_restore : 1;
2549
2550 /* Function type. */
2551 ENUM_BITFIELD(function_type) func_type : 2;
2552
2553 /* If true, the current function is a function specified with
2554 the "interrupt" or "no_caller_saved_registers" attribute. */
2555 BOOL_BITFIELD no_caller_saved_registers : 1;
2556
2557 /* If true, there is register available for argument passing. This
2558 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2559 if there is scratch register available for indirect sibcall. In
2560 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2561 pass arguments and can be used for indirect sibcall. */
2562 BOOL_BITFIELD arg_reg_available : 1;
2563
2564 /* If true, we're out-of-lining reg save/restore for regs clobbered
2565 by 64-bit ms_abi functions calling a sysv_abi function. */
2566 BOOL_BITFIELD call_ms2sysv : 1;
2567
2568 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
2569 needs padding prior to out-of-line stub save/restore area. */
2570 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2571
2572 /* This is the number of extra registers saved by stub (valid range is
2573 0-6). Each additional register is only saved/restored by the stubs
2574 if all successive ones are. (Will always be zero when using a hard
2575 frame pointer.) */
2576 unsigned int call_ms2sysv_extra_regs:3;
2577
2578 /* Nonzero if the function places outgoing arguments on stack. */
2579 BOOL_BITFIELD outgoing_args_on_stack : 1;
2580
2581 /* During prologue/epilogue generation, the current frame state.
2582 Otherwise, the frame state at the end of the prologue. */
2583 struct machine_frame_state fs;
2584
2585 /* During SEH output, this is non-null. */
2586 struct seh_frame_state * GTY((skip(""))) seh;
2587 };
2588 #endif
2589
2590 #define ix86_stack_locals (cfun->machine->stack_locals)
2591 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2592 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2593 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2594 #define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
2595 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2596 (cfun->machine->tls_descriptor_call_expanded_p)
2597 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2598 calls are optimized away, we try to detect cases in which it was
2599 optimized away. Since such instructions (use (reg REG_SP)), we can
2600 verify whether there's any such instruction live by testing that
2601 REG_SP is live. */
2602 #define ix86_current_function_calls_tls_descriptor \
2603 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2604 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2605
2606 /* Control behavior of x86_file_start. */
2607 #define X86_FILE_START_VERSION_DIRECTIVE false
2608 #define X86_FILE_START_FLTUSED false
2609
2610 /* Flag to mark data that is in the large address area. */
2611 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2612 #define SYMBOL_REF_FAR_ADDR_P(X) \
2613 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2614
2615 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2616 have defined always, to avoid ifdefing. */
2617 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2618 #define SYMBOL_REF_DLLIMPORT_P(X) \
2619 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2620
2621 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2622 #define SYMBOL_REF_DLLEXPORT_P(X) \
2623 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2624
2625 #define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2626 #define SYMBOL_REF_STUBVAR_P(X) \
2627 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2628
2629 extern void debug_ready_dispatch (void);
2630 extern void debug_dispatch_window (int);
2631
2632 /* The value at zero is only defined for the BMI instructions
2633 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2634 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2635 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
2636 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2637 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
2638
2639
2640 /* Flags returned by ix86_get_callcvt (). */
2641 #define IX86_CALLCVT_CDECL 0x1
2642 #define IX86_CALLCVT_STDCALL 0x2
2643 #define IX86_CALLCVT_FASTCALL 0x4
2644 #define IX86_CALLCVT_THISCALL 0x8
2645 #define IX86_CALLCVT_REGPARM 0x10
2646 #define IX86_CALLCVT_SSEREGPARM 0x20
2647
2648 #define IX86_BASE_CALLCVT(FLAGS) \
2649 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2650 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2651
2652 #define RECIP_MASK_NONE 0x00
2653 #define RECIP_MASK_DIV 0x01
2654 #define RECIP_MASK_SQRT 0x02
2655 #define RECIP_MASK_VEC_DIV 0x04
2656 #define RECIP_MASK_VEC_SQRT 0x08
2657 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2658 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2659 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2660
2661 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2662 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2663 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2664 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2665
2666 #define IX86_HLE_ACQUIRE (1 << 16)
2667 #define IX86_HLE_RELEASE (1 << 17)
2668
2669 /* For switching between functions with different target attributes. */
2670 #define SWITCHABLE_TARGET 1
2671
2672 #define TARGET_SUPPORTS_WIDE_INT 1
2673
2674 /*
2675 Local variables:
2676 version-control: t
2677 End:
2678 */