]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/i386/i386.h
i386-common.c (OPTION_MASK_ISA_RDPID_SET): New.
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
19
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
24
25 /* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
40 /* Redefines for option macros. */
41
42 #define TARGET_64BIT TARGET_ISA_64BIT
43 #define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
44 #define TARGET_MMX TARGET_ISA_MMX
45 #define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
46 #define TARGET_3DNOW TARGET_ISA_3DNOW
47 #define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
48 #define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
49 #define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
50 #define TARGET_SSE TARGET_ISA_SSE
51 #define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
52 #define TARGET_SSE2 TARGET_ISA_SSE2
53 #define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
54 #define TARGET_SSE3 TARGET_ISA_SSE3
55 #define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
56 #define TARGET_SSSE3 TARGET_ISA_SSSE3
57 #define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
58 #define TARGET_SSE4_1 TARGET_ISA_SSE4_1
59 #define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
60 #define TARGET_SSE4_2 TARGET_ISA_SSE4_2
61 #define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
62 #define TARGET_AVX TARGET_ISA_AVX
63 #define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
64 #define TARGET_AVX2 TARGET_ISA_AVX2
65 #define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
66 #define TARGET_AVX512F TARGET_ISA_AVX512F
67 #define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68 #define TARGET_AVX512PF TARGET_ISA_AVX512PF
69 #define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70 #define TARGET_AVX512ER TARGET_ISA_AVX512ER
71 #define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72 #define TARGET_AVX512CD TARGET_ISA_AVX512CD
73 #define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
74 #define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75 #define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
76 #define TARGET_AVX512BW TARGET_ISA_AVX512BW
77 #define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
78 #define TARGET_AVX512VL TARGET_ISA_AVX512VL
79 #define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
80 #define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81 #define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
82 #define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83 #define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
84 #define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85 #define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86 #define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87 #define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
88 #define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
89 #define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
90 #define TARGET_FMA TARGET_ISA_FMA
91 #define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
92 #define TARGET_SSE4A TARGET_ISA_SSE4A
93 #define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
94 #define TARGET_FMA4 TARGET_ISA_FMA4
95 #define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
96 #define TARGET_XOP TARGET_ISA_XOP
97 #define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
98 #define TARGET_LWP TARGET_ISA_LWP
99 #define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
100 #define TARGET_ROUND TARGET_ISA_ROUND
101 #define TARGET_ABM TARGET_ISA_ABM
102 #define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
103 #define TARGET_SGX TARGET_ISA_SGX
104 #define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
105 #define TARGET_RDPID TARGET_ISA_RDPID
106 #define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
107 #define TARGET_BMI TARGET_ISA_BMI
108 #define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
109 #define TARGET_BMI2 TARGET_ISA_BMI2
110 #define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
111 #define TARGET_LZCNT TARGET_ISA_LZCNT
112 #define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
113 #define TARGET_TBM TARGET_ISA_TBM
114 #define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
115 #define TARGET_POPCNT TARGET_ISA_POPCNT
116 #define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
117 #define TARGET_SAHF TARGET_ISA_SAHF
118 #define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
119 #define TARGET_MOVBE TARGET_ISA_MOVBE
120 #define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
121 #define TARGET_CRC32 TARGET_ISA_CRC32
122 #define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
123 #define TARGET_AES TARGET_ISA_AES
124 #define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
125 #define TARGET_SHA TARGET_ISA_SHA
126 #define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
127 #define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
128 #define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
129 #define TARGET_CLZERO TARGET_ISA_CLZERO
130 #define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
131 #define TARGET_XSAVEC TARGET_ISA_XSAVEC
132 #define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
133 #define TARGET_XSAVES TARGET_ISA_XSAVES
134 #define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
135 #define TARGET_PCLMUL TARGET_ISA_PCLMUL
136 #define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
137 #define TARGET_CMPXCHG16B TARGET_ISA_CX16
138 #define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
139 #define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
140 #define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
141 #define TARGET_RDRND TARGET_ISA_RDRND
142 #define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
143 #define TARGET_F16C TARGET_ISA_F16C
144 #define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
145 #define TARGET_RTM TARGET_ISA_RTM
146 #define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
147 #define TARGET_HLE TARGET_ISA_HLE
148 #define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
149 #define TARGET_RDSEED TARGET_ISA_RDSEED
150 #define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
151 #define TARGET_PRFCHW TARGET_ISA_PRFCHW
152 #define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
153 #define TARGET_ADX TARGET_ISA_ADX
154 #define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
155 #define TARGET_FXSR TARGET_ISA_FXSR
156 #define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
157 #define TARGET_XSAVE TARGET_ISA_XSAVE
158 #define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
159 #define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
160 #define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
161 #define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
162 #define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
163 #define TARGET_MPX TARGET_ISA_MPX
164 #define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
165 #define TARGET_CLWB TARGET_ISA_CLWB
166 #define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
167 #define TARGET_MWAITX TARGET_ISA_MWAITX
168 #define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
169 #define TARGET_PKU TARGET_ISA_PKU
170 #define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
171
172 #define TARGET_LP64 TARGET_ABI_64
173 #define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
174 #define TARGET_X32 TARGET_ABI_X32
175 #define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
176 #define TARGET_16BIT TARGET_CODE16
177 #define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
178
179 /* SSE4.1 defines round instructions */
180 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
181 #define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
182
183 #include "config/vxworks-dummy.h"
184
185 #include "config/i386/i386-opts.h"
186
187 #define MAX_STRINGOP_ALGS 4
188
189 /* Specify what algorithm to use for stringops on known size.
190 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
191 known at compile time or estimated via feedback, the SIZE array
192 is walked in order until MAX is greater then the estimate (or -1
193 means infinity). Corresponding ALG is used then.
194 When NOALIGN is true the code guaranting the alignment of the memory
195 block is skipped.
196
197 For example initializer:
198 {{256, loop}, {-1, rep_prefix_4_byte}}
199 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
200 be used otherwise. */
201 struct stringop_algs
202 {
203 const enum stringop_alg unknown_size;
204 const struct stringop_strategy {
205 const int max;
206 const enum stringop_alg alg;
207 int noalign;
208 } size [MAX_STRINGOP_ALGS];
209 };
210
211 /* Define the specific costs for a given cpu */
212
213 struct processor_costs {
214 const int add; /* cost of an add instruction */
215 const int lea; /* cost of a lea instruction */
216 const int shift_var; /* variable shift costs */
217 const int shift_const; /* constant shift costs */
218 const int mult_init[5]; /* cost of starting a multiply
219 in QImode, HImode, SImode, DImode, TImode*/
220 const int mult_bit; /* cost of multiply per each bit set */
221 const int divide[5]; /* cost of a divide/mod
222 in QImode, HImode, SImode, DImode, TImode*/
223 int movsx; /* The cost of movsx operation. */
224 int movzx; /* The cost of movzx operation. */
225 const int large_insn; /* insns larger than this cost more */
226 const int move_ratio; /* The threshold of number of scalar
227 memory-to-memory move insns. */
228 const int movzbl_load; /* cost of loading using movzbl */
229 const int int_load[3]; /* cost of loading integer registers
230 in QImode, HImode and SImode relative
231 to reg-reg move (2). */
232 const int int_store[3]; /* cost of storing integer register
233 in QImode, HImode and SImode */
234 const int fp_move; /* cost of reg,reg fld/fst */
235 const int fp_load[3]; /* cost of loading FP register
236 in SFmode, DFmode and XFmode */
237 const int fp_store[3]; /* cost of storing FP register
238 in SFmode, DFmode and XFmode */
239 const int mmx_move; /* cost of moving MMX register. */
240 const int mmx_load[2]; /* cost of loading MMX register
241 in SImode and DImode */
242 const int mmx_store[2]; /* cost of storing MMX register
243 in SImode and DImode */
244 const int sse_move; /* cost of moving SSE register. */
245 const int sse_load[3]; /* cost of loading SSE register
246 in SImode, DImode and TImode*/
247 const int sse_store[3]; /* cost of storing SSE register
248 in SImode, DImode and TImode*/
249 const int mmxsse_to_integer; /* cost of moving mmxsse register to
250 integer and vice versa. */
251 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
252 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
253 const int prefetch_block; /* bytes moved to cache for prefetch. */
254 const int simultaneous_prefetches; /* number of parallel prefetch
255 operations. */
256 const int branch_cost; /* Default value for BRANCH_COST. */
257 const int fadd; /* cost of FADD and FSUB instructions. */
258 const int fmul; /* cost of FMUL instruction. */
259 const int fdiv; /* cost of FDIV instruction. */
260 const int fabs; /* cost of FABS instruction. */
261 const int fchs; /* cost of FCHS instruction. */
262 const int fsqrt; /* cost of FSQRT instruction. */
263 /* Specify what algorithm
264 to use for stringops on unknown size. */
265 struct stringop_algs *memcpy, *memset;
266 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
267 load and store. */
268 const int scalar_load_cost; /* Cost of scalar load. */
269 const int scalar_store_cost; /* Cost of scalar store. */
270 const int vec_stmt_cost; /* Cost of any vector operation, excluding
271 load, store, vector-to-scalar and
272 scalar-to-vector operation. */
273 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
274 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
275 const int vec_align_load_cost; /* Cost of aligned vector load. */
276 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
277 const int vec_store_cost; /* Cost of vector store. */
278 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
279 cost model. */
280 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
281 vectorizer cost model. */
282 };
283
284 extern const struct processor_costs *ix86_cost;
285 extern const struct processor_costs ix86_size_cost;
286
287 #define ix86_cur_cost() \
288 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
289
290 /* Macros used in the machine description to test the flags. */
291
292 /* configure can arrange to change it. */
293
294 #ifndef TARGET_CPU_DEFAULT
295 #define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
296 #endif
297
298 #ifndef TARGET_FPMATH_DEFAULT
299 #define TARGET_FPMATH_DEFAULT \
300 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
301 #endif
302
303 #ifndef TARGET_FPMATH_DEFAULT_P
304 #define TARGET_FPMATH_DEFAULT_P(x) \
305 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
306 #endif
307
308 /* If the i387 is disabled or -miamcu is used , then do not return
309 values in it. */
310 #define TARGET_FLOAT_RETURNS_IN_80387 \
311 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
312 #define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
313 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
314
315 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
316 compile-time constant. */
317 #ifdef IN_LIBGCC2
318 #undef TARGET_64BIT
319 #ifdef __x86_64__
320 #define TARGET_64BIT 1
321 #else
322 #define TARGET_64BIT 0
323 #endif
324 #else
325 #ifndef TARGET_BI_ARCH
326 #undef TARGET_64BIT
327 #undef TARGET_64BIT_P
328 #if TARGET_64BIT_DEFAULT
329 #define TARGET_64BIT 1
330 #define TARGET_64BIT_P(x) 1
331 #else
332 #define TARGET_64BIT 0
333 #define TARGET_64BIT_P(x) 0
334 #endif
335 #endif
336 #endif
337
338 #define HAS_LONG_COND_BRANCH 1
339 #define HAS_LONG_UNCOND_BRANCH 1
340
341 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
342 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
343 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
344 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
345 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
346 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
347 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
348 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
349 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
350 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
351 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
352 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
353 #define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
354 #define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
355 #define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
356 #define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
357 #define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
358 #define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
359 #define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
360 #define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
361 #define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
362 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
363 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
364 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
365 #define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
366 #define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
367 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
368 #define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
369 #define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
370
371 /* Feature tests against the various tunings. */
372 enum ix86_tune_indices {
373 #undef DEF_TUNE
374 #define DEF_TUNE(tune, name, selector) tune,
375 #include "x86-tune.def"
376 #undef DEF_TUNE
377 X86_TUNE_LAST
378 };
379
380 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
381
382 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
383 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
384 #define TARGET_ZERO_EXTEND_WITH_AND \
385 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
386 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
387 #define TARGET_BRANCH_PREDICTION_HINTS \
388 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
389 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
390 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
391 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
392 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
393 #define TARGET_PARTIAL_FLAG_REG_STALL \
394 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
395 #define TARGET_LCP_STALL \
396 ix86_tune_features[X86_TUNE_LCP_STALL]
397 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
398 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
399 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
400 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
401 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
402 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
403 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
404 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
405 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
406 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
407 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
408 #define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
409 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
410 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
411 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
412 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
413 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
414 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
415 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
416 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
417 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
418 #define TARGET_INTEGER_DFMODE_MOVES \
419 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
420 #define TARGET_PARTIAL_REG_DEPENDENCY \
421 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
422 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
423 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
424 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
425 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
426 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
427 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
428 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
429 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
430 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
431 #define TARGET_SSE_TYPELESS_STORES \
432 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
433 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
434 #define TARGET_MEMORY_MISMATCH_STALL \
435 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
436 #define TARGET_PROLOGUE_USING_MOVE \
437 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
438 #define TARGET_EPILOGUE_USING_MOVE \
439 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
440 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
441 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
442 #define TARGET_INTER_UNIT_MOVES_TO_VEC \
443 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
444 #define TARGET_INTER_UNIT_MOVES_FROM_VEC \
445 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
446 #define TARGET_INTER_UNIT_CONVERSIONS \
447 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
448 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
449 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
450 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
451 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
452 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
453 #define TARGET_PAD_SHORT_FUNCTION \
454 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
455 #define TARGET_EXT_80387_CONSTANTS \
456 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
457 #define TARGET_AVOID_VECTOR_DECODE \
458 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
459 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
460 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
461 #define TARGET_SLOW_IMUL_IMM32_MEM \
462 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
463 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
464 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
465 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
466 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
467 #define TARGET_USE_VECTOR_FP_CONVERTS \
468 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
469 #define TARGET_USE_VECTOR_CONVERTS \
470 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
471 #define TARGET_SLOW_PSHUFB \
472 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
473 #define TARGET_VECTOR_PARALLEL_EXECUTION \
474 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
475 #define TARGET_AVOID_4BYTE_PREFIXES \
476 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
477 #define TARGET_FUSE_CMP_AND_BRANCH_32 \
478 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
479 #define TARGET_FUSE_CMP_AND_BRANCH_64 \
480 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
481 #define TARGET_FUSE_CMP_AND_BRANCH \
482 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
483 : TARGET_FUSE_CMP_AND_BRANCH_32)
484 #define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
485 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
486 #define TARGET_FUSE_ALU_AND_BRANCH \
487 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
488 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
489 #define TARGET_AVOID_LEA_FOR_ADDR \
490 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
491 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
492 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
493 #define TARGET_AVX128_OPTIMAL \
494 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
495 #define TARGET_REASSOC_INT_TO_PARALLEL \
496 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
497 #define TARGET_REASSOC_FP_TO_PARALLEL \
498 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
499 #define TARGET_GENERAL_REGS_SSE_SPILL \
500 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
501 #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
502 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
503 #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
504 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
505 #define TARGET_ADJUST_UNROLL \
506 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
507 #define TARGET_AVOID_FALSE_DEP_FOR_BMI \
508 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
509 #define TARGET_ONE_IF_CONV_INSN \
510 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
511
512 /* Feature tests against the various architecture variations. */
513 enum ix86_arch_indices {
514 X86_ARCH_CMOV,
515 X86_ARCH_CMPXCHG,
516 X86_ARCH_CMPXCHG8B,
517 X86_ARCH_XADD,
518 X86_ARCH_BSWAP,
519
520 X86_ARCH_LAST
521 };
522
523 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
524
525 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
526 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
527 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
528 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
529 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
530
531 /* For sane SSE instruction set generation we need fcomi instruction.
532 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
533 expands to a sequence that includes conditional move. */
534 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
535
536 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
537
538 extern unsigned char x86_prefetch_sse;
539 #define TARGET_PREFETCH_SSE x86_prefetch_sse
540
541 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
542
543 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
544 #define TARGET_MIX_SSE_I387 \
545 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
546
547 #define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
548 #define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
549 #define TARGET_HARD_XF_REGS (TARGET_80387)
550
551 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
552 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
553 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
554 #define TARGET_SUN_TLS 0
555
556 #ifndef TARGET_64BIT_DEFAULT
557 #define TARGET_64BIT_DEFAULT 0
558 #endif
559 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
560 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
561 #endif
562
563 #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
564 #define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
565
566 /* Fence to use after loop using storent. */
567
568 extern tree x86_mfence;
569 #define FENCE_FOLLOWING_MOVNT x86_mfence
570
571 /* Once GDB has been enhanced to deal with functions without frame
572 pointers, we can change this to allow for elimination of
573 the frame pointer in leaf functions. */
574 #define TARGET_DEFAULT 0
575
576 /* Extra bits to force. */
577 #define TARGET_SUBTARGET_DEFAULT 0
578 #define TARGET_SUBTARGET_ISA_DEFAULT 0
579
580 /* Extra bits to force on w/ 32-bit mode. */
581 #define TARGET_SUBTARGET32_DEFAULT 0
582 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
583
584 /* Extra bits to force on w/ 64-bit mode. */
585 #define TARGET_SUBTARGET64_DEFAULT 0
586 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
587
588 /* Replace MACH-O, ifdefs by in-line tests, where possible.
589 (a) Macros defined in config/i386/darwin.h */
590 #define TARGET_MACHO 0
591 #define TARGET_MACHO_BRANCH_ISLANDS 0
592 #define MACHOPIC_ATT_STUB 0
593 /* (b) Macros defined in config/darwin.h */
594 #define MACHO_DYNAMIC_NO_PIC_P 0
595 #define MACHOPIC_INDIRECT 0
596 #define MACHOPIC_PURE 0
597
598 /* For the RDOS */
599 #define TARGET_RDOS 0
600
601 /* For the Windows 64-bit ABI. */
602 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
603
604 /* For the Windows 32-bit ABI. */
605 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
606
607 /* This is re-defined by cygming.h. */
608 #define TARGET_SEH 0
609
610 /* The default abi used by target. */
611 #define DEFAULT_ABI SYSV_ABI
612
613 /* The default TLS segment register used by target. */
614 #define DEFAULT_TLS_SEG_REG \
615 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
616
617 /* Subtargets may reset this to 1 in order to enable 96-bit long double
618 with the rounding mode forced to 53 bits. */
619 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
620
621 /* -march=native handling only makes sense with compiler running on
622 an x86 or x86_64 chip. If changing this condition, also change
623 the condition in driver-i386.c. */
624 #if defined(__i386__) || defined(__x86_64__)
625 /* In driver-i386.c. */
626 extern const char *host_detect_local_cpu (int argc, const char **argv);
627 #define EXTRA_SPEC_FUNCTIONS \
628 { "local_cpu_detect", host_detect_local_cpu },
629 #define HAVE_LOCAL_CPU_DETECT
630 #endif
631
632 #if TARGET_64BIT_DEFAULT
633 #define OPT_ARCH64 "!m32"
634 #define OPT_ARCH32 "m32"
635 #else
636 #define OPT_ARCH64 "m64|mx32"
637 #define OPT_ARCH32 "m64|mx32:;"
638 #endif
639
640 /* Support for configure-time defaults of some command line options.
641 The order here is important so that -march doesn't squash the
642 tune or cpu values. */
643 #define OPTION_DEFAULT_SPECS \
644 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
645 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
646 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
647 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
648 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
649 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
650 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
651 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
652 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
653
654 /* Specs for the compiler proper */
655
656 #ifndef CC1_CPU_SPEC
657 #define CC1_CPU_SPEC_1 ""
658
659 #ifndef HAVE_LOCAL_CPU_DETECT
660 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
661 #else
662 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
663 "%{march=native:%>march=native %:local_cpu_detect(arch) \
664 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
665 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
666 #endif
667 #endif
668 \f
669 /* Target CPU builtins. */
670 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
671
672 /* Target Pragmas. */
673 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
674
675 #ifndef CC1_SPEC
676 #define CC1_SPEC "%(cc1_cpu) "
677 #endif
678
679 /* This macro defines names of additional specifications to put in the
680 specs that can be used in various specifications like CC1_SPEC. Its
681 definition is an initializer with a subgrouping for each command option.
682
683 Each subgrouping contains a string constant, that defines the
684 specification name, and a string constant that used by the GCC driver
685 program.
686
687 Do not define this macro if it does not need to do anything. */
688
689 #ifndef SUBTARGET_EXTRA_SPECS
690 #define SUBTARGET_EXTRA_SPECS
691 #endif
692
693 #define EXTRA_SPECS \
694 { "cc1_cpu", CC1_CPU_SPEC }, \
695 SUBTARGET_EXTRA_SPECS
696 \f
697
698 /* Whether to allow x87 floating-point arithmetic on MODE (one of
699 SFmode, DFmode and XFmode) in the current excess precision
700 configuration. */
701 #define X87_ENABLE_ARITH(MODE) \
702 (flag_unsafe_math_optimizations \
703 || flag_excess_precision == EXCESS_PRECISION_FAST \
704 || (MODE) == XFmode)
705
706 /* Likewise, whether to allow direct conversions from integer mode
707 IMODE (HImode, SImode or DImode) to MODE. */
708 #define X87_ENABLE_FLOAT(MODE, IMODE) \
709 (flag_unsafe_math_optimizations \
710 || flag_excess_precision == EXCESS_PRECISION_FAST \
711 || (MODE) == XFmode \
712 || ((MODE) == DFmode && (IMODE) == SImode) \
713 || (IMODE) == HImode)
714
715 /* target machine storage layout */
716
717 #define SHORT_TYPE_SIZE 16
718 #define INT_TYPE_SIZE 32
719 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
720 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
721 #define LONG_LONG_TYPE_SIZE 64
722 #define FLOAT_TYPE_SIZE 32
723 #define DOUBLE_TYPE_SIZE 64
724 #define LONG_DOUBLE_TYPE_SIZE \
725 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
726
727 #define WIDEST_HARDWARE_FP_SIZE 80
728
729 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
730 #define MAX_BITS_PER_WORD 64
731 #else
732 #define MAX_BITS_PER_WORD 32
733 #endif
734
735 /* Define this if most significant byte of a word is the lowest numbered. */
736 /* That is true on the 80386. */
737
738 #define BITS_BIG_ENDIAN 0
739
740 /* Define this if most significant byte of a word is the lowest numbered. */
741 /* That is not true on the 80386. */
742 #define BYTES_BIG_ENDIAN 0
743
744 /* Define this if most significant word of a multiword number is the lowest
745 numbered. */
746 /* Not true for 80386 */
747 #define WORDS_BIG_ENDIAN 0
748
749 /* Width of a word, in units (bytes). */
750 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
751
752 #ifndef IN_LIBGCC2
753 #define MIN_UNITS_PER_WORD 4
754 #endif
755
756 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
757 #define PARM_BOUNDARY BITS_PER_WORD
758
759 /* Boundary (in *bits*) on which stack pointer should be aligned. */
760 #define STACK_BOUNDARY \
761 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
762
763 /* Stack boundary of the main function guaranteed by OS. */
764 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
765
766 /* Minimum stack boundary. */
767 #define MIN_STACK_BOUNDARY BITS_PER_WORD
768
769 /* Boundary (in *bits*) on which the stack pointer prefers to be
770 aligned; the compiler cannot rely on having this alignment. */
771 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
772
773 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
774 both 32bit and 64bit, to support codes that need 128 bit stack
775 alignment for SSE instructions, but can't realign the stack. */
776 #define PREFERRED_STACK_BOUNDARY_DEFAULT \
777 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
778
779 /* 1 if -mstackrealign should be turned on by default. It will
780 generate an alternate prologue and epilogue that realigns the
781 runtime stack if nessary. This supports mixing codes that keep a
782 4-byte aligned stack, as specified by i386 psABI, with codes that
783 need a 16-byte aligned stack, as required by SSE instructions. */
784 #define STACK_REALIGN_DEFAULT 0
785
786 /* Boundary (in *bits*) on which the incoming stack is aligned. */
787 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
788
789 /* According to Windows x64 software convention, the maximum stack allocatable
790 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
791 instructions allowed to adjust the stack pointer in the epilog, forcing the
792 use of frame pointer for frames larger than 2 GB. This theorical limit
793 is reduced by 256, an over-estimated upper bound for the stack use by the
794 prologue.
795 We define only one threshold for both the prolog and the epilog. When the
796 frame size is larger than this threshold, we allocate the area to save SSE
797 regs, then save them, and then allocate the remaining. There is no SEH
798 unwind info for this later allocation. */
799 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
800
801 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
802 mandatory for the 64-bit ABI, and may or may not be true for other
803 operating systems. */
804 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
805
806 /* Minimum allocation boundary for the code of a function. */
807 #define FUNCTION_BOUNDARY 8
808
809 /* C++ stores the virtual bit in the lowest bit of function pointers. */
810 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
811
812 /* Minimum size in bits of the largest boundary to which any
813 and all fundamental data types supported by the hardware
814 might need to be aligned. No data type wants to be aligned
815 rounder than this.
816
817 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
818 and Pentium Pro XFmode values at 128 bit boundaries.
819
820 When increasing the maximum, also update
821 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
822
823 #define BIGGEST_ALIGNMENT \
824 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
825
826 /* Maximum stack alignment. */
827 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
828
829 /* Alignment value for attribute ((aligned)). It is a constant since
830 it is the part of the ABI. We shouldn't change it with -mavx. */
831 #define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
832
833 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
834 #define ALIGN_MODE_128(MODE) \
835 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
836
837 /* The published ABIs say that doubles should be aligned on word
838 boundaries, so lower the alignment for structure fields unless
839 -malign-double is set. */
840
841 /* ??? Blah -- this macro is used directly by libobjc. Since it
842 supports no vector modes, cut out the complexity and fall back
843 on BIGGEST_FIELD_ALIGNMENT. */
844 #ifdef IN_TARGET_LIBS
845 #ifdef __x86_64__
846 #define BIGGEST_FIELD_ALIGNMENT 128
847 #else
848 #define BIGGEST_FIELD_ALIGNMENT 32
849 #endif
850 #else
851 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
852 x86_field_alignment ((TYPE), (COMPUTED))
853 #endif
854
855 /* If defined, a C expression to compute the alignment given to a
856 constant that is being placed in memory. EXP is the constant
857 and ALIGN is the alignment that the object would ordinarily have.
858 The value of this macro is used instead of that alignment to align
859 the object.
860
861 If this macro is not defined, then ALIGN is used.
862
863 The typical use of this macro is to increase alignment for string
864 constants to be word aligned so that `strcpy' calls that copy
865 constants can be done inline. */
866
867 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
868
869 /* If defined, a C expression to compute the alignment for a static
870 variable. TYPE is the data type, and ALIGN is the alignment that
871 the object would ordinarily have. The value of this macro is used
872 instead of that alignment to align the object.
873
874 If this macro is not defined, then ALIGN is used.
875
876 One use of this macro is to increase alignment of medium-size
877 data to make it all fit in fewer cache lines. Another is to
878 cause character arrays to be word-aligned so that `strcpy' calls
879 that copy constants to character arrays can be done inline. */
880
881 #define DATA_ALIGNMENT(TYPE, ALIGN) \
882 ix86_data_alignment ((TYPE), (ALIGN), true)
883
884 /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
885 some alignment increase, instead of optimization only purposes. E.g.
886 AMD x86-64 psABI says that variables with array type larger than 15 bytes
887 must be aligned to 16 byte boundaries.
888
889 If this macro is not defined, then ALIGN is used. */
890
891 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
892 ix86_data_alignment ((TYPE), (ALIGN), false)
893
894 /* If defined, a C expression to compute the alignment for a local
895 variable. TYPE is the data type, and ALIGN is the alignment that
896 the object would ordinarily have. The value of this macro is used
897 instead of that alignment to align the object.
898
899 If this macro is not defined, then ALIGN is used.
900
901 One use of this macro is to increase alignment of medium-size
902 data to make it all fit in fewer cache lines. */
903
904 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
905 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
906
907 /* If defined, a C expression to compute the alignment for stack slot.
908 TYPE is the data type, MODE is the widest mode available, and ALIGN
909 is the alignment that the slot would ordinarily have. The value of
910 this macro is used instead of that alignment to align the slot.
911
912 If this macro is not defined, then ALIGN is used when TYPE is NULL,
913 Otherwise, LOCAL_ALIGNMENT will be used.
914
915 One use of this macro is to set alignment of stack slot to the
916 maximum alignment of all possible modes which the slot may have. */
917
918 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
919 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
920
921 /* If defined, a C expression to compute the alignment for a local
922 variable DECL.
923
924 If this macro is not defined, then
925 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
926
927 One use of this macro is to increase alignment of medium-size
928 data to make it all fit in fewer cache lines. */
929
930 #define LOCAL_DECL_ALIGNMENT(DECL) \
931 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
932
933 /* If defined, a C expression to compute the minimum required alignment
934 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
935 MODE, assuming normal alignment ALIGN.
936
937 If this macro is not defined, then (ALIGN) will be used. */
938
939 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
940 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
941
942
943 /* Set this nonzero if move instructions will actually fail to work
944 when given unaligned data. */
945 #define STRICT_ALIGNMENT 0
946
947 /* If bit field type is int, don't let it cross an int,
948 and give entire struct the alignment of an int. */
949 /* Required on the 386 since it doesn't have bit-field insns. */
950 #define PCC_BITFIELD_TYPE_MATTERS 1
951 \f
952 /* Standard register usage. */
953
954 /* This processor has special stack-like registers. See reg-stack.c
955 for details. */
956
957 #define STACK_REGS
958
959 #define IS_STACK_MODE(MODE) \
960 (X87_FLOAT_MODE_P (MODE) \
961 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
962 || TARGET_MIX_SSE_I387))
963
964 /* Number of actual hardware registers.
965 The hardware registers are assigned numbers for the compiler
966 from 0 to just below FIRST_PSEUDO_REGISTER.
967 All registers that the compiler knows about must be given numbers,
968 even those that are not normally considered general registers.
969
970 In the 80386 we give the 8 general purpose registers the numbers 0-7.
971 We number the floating point registers 8-15.
972 Note that registers 0-7 can be accessed as a short or int,
973 while only 0-3 may be used with byte `mov' instructions.
974
975 Reg 16 does not correspond to any hardware register, but instead
976 appears in the RTL as an argument pointer prior to reload, and is
977 eliminated during reloading in favor of either the stack or frame
978 pointer. */
979
980 #define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
981
982 /* Number of hardware registers that go into the DWARF-2 unwind info.
983 If not defined, equals FIRST_PSEUDO_REGISTER. */
984
985 #define DWARF_FRAME_REGISTERS 17
986
987 /* 1 for registers that have pervasive standard uses
988 and are not available for the register allocator.
989 On the 80386, the stack pointer is such, as is the arg pointer.
990
991 REX registers are disabled for 32bit targets in
992 TARGET_CONDITIONAL_REGISTER_USAGE. */
993
994 #define FIXED_REGISTERS \
995 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
996 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
997 /*arg,flags,fpsr,fpcr,frame*/ \
998 1, 1, 1, 1, 1, \
999 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1000 0, 0, 0, 0, 0, 0, 0, 0, \
1001 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
1002 0, 0, 0, 0, 0, 0, 0, 0, \
1003 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
1004 0, 0, 0, 0, 0, 0, 0, 0, \
1005 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
1006 0, 0, 0, 0, 0, 0, 0, 0, \
1007 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1008 0, 0, 0, 0, 0, 0, 0, 0, \
1009 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
1010 0, 0, 0, 0, 0, 0, 0, 0, \
1011 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
1012 0, 0, 0, 0, 0, 0, 0, 0, \
1013 /* b0, b1, b2, b3*/ \
1014 0, 0, 0, 0 }
1015
1016 /* 1 for registers not available across function calls.
1017 These must include the FIXED_REGISTERS and also any
1018 registers that can be used without being saved.
1019 The latter must include the registers where values are returned
1020 and the register where structure-value addresses are passed.
1021 Aside from that, you can include as many other registers as you like.
1022
1023 Value is set to 1 if the register is call used unconditionally.
1024 Bit one is set if the register is call used on TARGET_32BIT ABI.
1025 Bit two is set if the register is call used on TARGET_64BIT ABI.
1026 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1027
1028 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1029
1030 #define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1031 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1032
1033 #define CALL_USED_REGISTERS \
1034 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
1035 { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1036 /*arg,flags,fpsr,fpcr,frame*/ \
1037 1, 1, 1, 1, 1, \
1038 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1039 1, 1, 1, 1, 1, 1, 6, 6, \
1040 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
1041 1, 1, 1, 1, 1, 1, 1, 1, \
1042 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
1043 1, 1, 1, 1, 2, 2, 2, 2, \
1044 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
1045 6, 6, 6, 6, 6, 6, 6, 6, \
1046 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1047 6, 6, 6, 6, 6, 6, 6, 6, \
1048 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
1049 6, 6, 6, 6, 6, 6, 6, 6, \
1050 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
1051 1, 1, 1, 1, 1, 1, 1, 1, \
1052 /* b0, b1, b2, b3*/ \
1053 1, 1, 1, 1 }
1054
1055 /* Order in which to allocate registers. Each register must be
1056 listed once, even those in FIXED_REGISTERS. List frame pointer
1057 late and fixed registers last. Note that, in general, we prefer
1058 registers listed in CALL_USED_REGISTERS, keeping the others
1059 available for storage of persistent values.
1060
1061 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
1062 so this is just empty initializer for array. */
1063
1064 #define REG_ALLOC_ORDER \
1065 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1066 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1067 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1068 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
1069 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1070 78, 79, 80 }
1071
1072 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1073 to be rearranged based on a particular function. When using sse math,
1074 we want to allocate SSE before x87 registers and vice versa. */
1075
1076 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
1077
1078
1079 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1080
1081 /* Return number of consecutive hard regs needed starting at reg REGNO
1082 to hold something of mode MODE.
1083 This is ordinarily the length in words of a value of mode MODE
1084 but can be less for certain modes in special long registers.
1085
1086 Actually there are no two word move instructions for consecutive
1087 registers. And only registers 0-3 may have mov byte instructions
1088 applied to them. */
1089
1090 #define HARD_REGNO_NREGS(REGNO, MODE) \
1091 (GENERAL_REGNO_P (REGNO) \
1092 ? ((MODE) == XFmode \
1093 ? (TARGET_64BIT ? 2 : 3) \
1094 : ((MODE) == XCmode \
1095 ? (TARGET_64BIT ? 4 : 6) \
1096 : CEIL (GET_MODE_SIZE (MODE), UNITS_PER_WORD))) \
1097 : (COMPLEX_MODE_P (MODE) ? 2 : \
1098 (((MODE == V64SFmode) || (MODE == V64SImode)) ? 4 : 1)))
1099
1100 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1101 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1102 && GENERAL_REGNO_P (REGNO) \
1103 && ((MODE) == XFmode || (MODE) == XCmode))
1104
1105 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1106
1107 #define VALID_AVX256_REG_MODE(MODE) \
1108 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1109 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1110 || (MODE) == V4DFmode)
1111
1112 #define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1113 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1114
1115 #define VALID_AVX512F_SCALAR_MODE(MODE) \
1116 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1117 || (MODE) == SFmode)
1118
1119 #define VALID_AVX512F_REG_MODE(MODE) \
1120 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
1121 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1122 || (MODE) == V4TImode)
1123
1124 #define VALID_AVX512VL_128_REG_MODE(MODE) \
1125 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
1126 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1127 || (MODE) == TFmode || (MODE) == V1TImode)
1128
1129 #define VALID_SSE2_REG_MODE(MODE) \
1130 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1131 || (MODE) == V2DImode || (MODE) == DFmode)
1132
1133 #define VALID_SSE_REG_MODE(MODE) \
1134 ((MODE) == V1TImode || (MODE) == TImode \
1135 || (MODE) == V4SFmode || (MODE) == V4SImode \
1136 || (MODE) == SFmode || (MODE) == TFmode)
1137
1138 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1139 ((MODE) == V2SFmode || (MODE) == SFmode)
1140
1141 #define VALID_MMX_REG_MODE(MODE) \
1142 ((MODE == V1DImode) || (MODE) == DImode \
1143 || (MODE) == V2SImode || (MODE) == SImode \
1144 || (MODE) == V4HImode || (MODE) == V8QImode)
1145
1146 #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1147
1148 #define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1149
1150 #define VALID_BND_REG_MODE(MODE) \
1151 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1152
1153 #define VALID_DFP_MODE_P(MODE) \
1154 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1155
1156 #define VALID_FP_MODE_P(MODE) \
1157 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1158 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1159
1160 #define VALID_INT_MODE_P(MODE) \
1161 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1162 || (MODE) == DImode \
1163 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1164 || (MODE) == CDImode \
1165 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1166 || (MODE) == TFmode || (MODE) == TCmode)))
1167
1168 /* Return true for modes passed in SSE registers. */
1169 #define SSE_REG_MODE_P(MODE) \
1170 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1171 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1172 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1173 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1174 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1175 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1176 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1177 || (MODE) == V16SFmode)
1178
1179 #define X87_FLOAT_MODE_P(MODE) \
1180 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1181
1182 #define SSE_FLOAT_MODE_P(MODE) \
1183 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1184
1185 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1186 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1187 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1188
1189 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1190
1191 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1192 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1193
1194 /* Value is 1 if it is a good idea to tie two pseudo registers
1195 when one has mode MODE1 and one has mode MODE2.
1196 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1197 for any hard reg, then this must be 0 for correct output. */
1198
1199 #define MODES_TIEABLE_P(MODE1, MODE2) \
1200 ix86_modes_tieable_p ((MODE1), (MODE2))
1201
1202 /* It is possible to write patterns to move flags; but until someone
1203 does it, */
1204 #define AVOID_CCMODE_COPIES
1205
1206 /* Specify the modes required to caller save a given hard regno.
1207 We do this on i386 to prevent flags from being saved at all.
1208
1209 Kill any attempts to combine saving of modes. */
1210
1211 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1212 (CC_REGNO_P (REGNO) ? VOIDmode \
1213 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1214 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1215 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1216 && TARGET_PARTIAL_REG_STALL) \
1217 || MASK_REGNO_P (REGNO)) ? SImode \
1218 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
1219 || MASK_REGNO_P (REGNO)) ? SImode \
1220 : (MODE))
1221
1222 /* The only ABI that saves SSE registers across calls is Win64 (thus no
1223 need to check the current ABI here), and with AVX enabled Win64 only
1224 guarantees that the low 16 bytes are saved. */
1225 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1226 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1227
1228 /* Specify the registers used for certain standard purposes.
1229 The values of these macros are register numbers. */
1230
1231 /* on the 386 the pc register is %eip, and is not usable as a general
1232 register. The ordinary mov instructions won't work */
1233 /* #define PC_REGNUM */
1234
1235 /* Base register for access to arguments of the function. */
1236 #define ARG_POINTER_REGNUM ARGP_REG
1237
1238 /* Register to use for pushing function arguments. */
1239 #define STACK_POINTER_REGNUM SP_REG
1240
1241 /* Base register for access to local variables of the function. */
1242 #define FRAME_POINTER_REGNUM FRAME_REG
1243 #define HARD_FRAME_POINTER_REGNUM BP_REG
1244
1245 #define FIRST_INT_REG AX_REG
1246 #define LAST_INT_REG SP_REG
1247
1248 #define FIRST_QI_REG AX_REG
1249 #define LAST_QI_REG BX_REG
1250
1251 /* First & last stack-like regs */
1252 #define FIRST_STACK_REG ST0_REG
1253 #define LAST_STACK_REG ST7_REG
1254
1255 #define FIRST_SSE_REG XMM0_REG
1256 #define LAST_SSE_REG XMM7_REG
1257
1258 #define FIRST_MMX_REG MM0_REG
1259 #define LAST_MMX_REG MM7_REG
1260
1261 #define FIRST_REX_INT_REG R8_REG
1262 #define LAST_REX_INT_REG R15_REG
1263
1264 #define FIRST_REX_SSE_REG XMM8_REG
1265 #define LAST_REX_SSE_REG XMM15_REG
1266
1267 #define FIRST_EXT_REX_SSE_REG XMM16_REG
1268 #define LAST_EXT_REX_SSE_REG XMM31_REG
1269
1270 #define FIRST_MASK_REG MASK0_REG
1271 #define LAST_MASK_REG MASK7_REG
1272
1273 #define FIRST_BND_REG BND0_REG
1274 #define LAST_BND_REG BND3_REG
1275
1276 /* Override this in other tm.h files to cope with various OS lossage
1277 requiring a frame pointer. */
1278 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1279 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1280 #endif
1281
1282 /* Make sure we can access arbitrary call frames. */
1283 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1284
1285 /* Register to hold the addressing base for position independent
1286 code access to data items. We don't use PIC pointer for 64bit
1287 mode. Define the regnum to dummy value to prevent gcc from
1288 pessimizing code dealing with EBX.
1289
1290 To avoid clobbering a call-saved register unnecessarily, we renumber
1291 the pic register when possible. The change is visible after the
1292 prologue has been emitted. */
1293
1294 #define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
1295
1296 #define PIC_OFFSET_TABLE_REGNUM \
1297 (ix86_use_pseudo_pic_reg () \
1298 ? (pic_offset_table_rtx \
1299 ? INVALID_REGNUM \
1300 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1301 : INVALID_REGNUM)
1302
1303 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1304
1305 /* This is overridden by <cygwin.h>. */
1306 #define MS_AGGREGATE_RETURN 0
1307
1308 #define KEEP_AGGREGATE_RETURN_POINTER 0
1309 \f
1310 /* Define the classes of registers for register constraints in the
1311 machine description. Also define ranges of constants.
1312
1313 One of the classes must always be named ALL_REGS and include all hard regs.
1314 If there is more than one class, another class must be named NO_REGS
1315 and contain no registers.
1316
1317 The name GENERAL_REGS must be the name of a class (or an alias for
1318 another name such as ALL_REGS). This is the class of registers
1319 that is allowed by "g" or "r" in a register constraint.
1320 Also, registers outside this class are allocated only when
1321 instructions express preferences for them.
1322
1323 The classes must be numbered in nondecreasing order; that is,
1324 a larger-numbered class must never be contained completely
1325 in a smaller-numbered class. This is why CLOBBERED_REGS class
1326 is listed early, even though in 64-bit mode it contains more
1327 registers than just %eax, %ecx, %edx.
1328
1329 For any two classes, it is very desirable that there be another
1330 class that represents their union.
1331
1332 It might seem that class BREG is unnecessary, since no useful 386
1333 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1334 and the "b" register constraint is useful in asms for syscalls.
1335
1336 The flags, fpsr and fpcr registers are in no class. */
1337
1338 enum reg_class
1339 {
1340 NO_REGS,
1341 AREG, DREG, CREG, BREG, SIREG, DIREG,
1342 AD_REGS, /* %eax/%edx for DImode */
1343 CLOBBERED_REGS, /* call-clobbered integer registers */
1344 Q_REGS, /* %eax %ebx %ecx %edx */
1345 NON_Q_REGS, /* %esi %edi %ebp %esp */
1346 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
1347 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1348 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1349 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1350 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1351 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1352 FLOAT_REGS,
1353 SSE_FIRST_REG,
1354 NO_REX_SSE_REGS,
1355 SSE_REGS,
1356 EVEX_SSE_REGS,
1357 BND_REGS,
1358 ALL_SSE_REGS,
1359 MMX_REGS,
1360 FP_TOP_SSE_REGS,
1361 FP_SECOND_SSE_REGS,
1362 FLOAT_SSE_REGS,
1363 FLOAT_INT_REGS,
1364 INT_SSE_REGS,
1365 FLOAT_INT_SSE_REGS,
1366 MASK_EVEX_REGS,
1367 MASK_REGS,
1368 MOD4_SSE_REGS,
1369 ALL_REGS, LIM_REG_CLASSES
1370 };
1371
1372 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1373
1374 #define INTEGER_CLASS_P(CLASS) \
1375 reg_class_subset_p ((CLASS), GENERAL_REGS)
1376 #define FLOAT_CLASS_P(CLASS) \
1377 reg_class_subset_p ((CLASS), FLOAT_REGS)
1378 #define SSE_CLASS_P(CLASS) \
1379 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1380 #define MMX_CLASS_P(CLASS) \
1381 ((CLASS) == MMX_REGS)
1382 #define MASK_CLASS_P(CLASS) \
1383 reg_class_subset_p ((CLASS), MASK_REGS)
1384 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1385 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1386 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1387 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1388 #define MAYBE_SSE_CLASS_P(CLASS) \
1389 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1390 #define MAYBE_MMX_CLASS_P(CLASS) \
1391 reg_classes_intersect_p ((CLASS), MMX_REGS)
1392 #define MAYBE_MASK_CLASS_P(CLASS) \
1393 reg_classes_intersect_p ((CLASS), MASK_REGS)
1394
1395 #define Q_CLASS_P(CLASS) \
1396 reg_class_subset_p ((CLASS), Q_REGS)
1397
1398 #define MAYBE_NON_Q_CLASS_P(CLASS) \
1399 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1400
1401 /* Give names of register classes as strings for dump file. */
1402
1403 #define REG_CLASS_NAMES \
1404 { "NO_REGS", \
1405 "AREG", "DREG", "CREG", "BREG", \
1406 "SIREG", "DIREG", \
1407 "AD_REGS", \
1408 "CLOBBERED_REGS", \
1409 "Q_REGS", "NON_Q_REGS", \
1410 "TLS_GOTBASE_REGS", \
1411 "INDEX_REGS", \
1412 "LEGACY_REGS", \
1413 "GENERAL_REGS", \
1414 "FP_TOP_REG", "FP_SECOND_REG", \
1415 "FLOAT_REGS", \
1416 "SSE_FIRST_REG", \
1417 "NO_REX_SSE_REGS", \
1418 "SSE_REGS", \
1419 "EVEX_SSE_REGS", \
1420 "BND_REGS", \
1421 "ALL_SSE_REGS", \
1422 "MMX_REGS", \
1423 "FP_TOP_SSE_REGS", \
1424 "FP_SECOND_SSE_REGS", \
1425 "FLOAT_SSE_REGS", \
1426 "FLOAT_INT_REGS", \
1427 "INT_SSE_REGS", \
1428 "FLOAT_INT_SSE_REGS", \
1429 "MASK_EVEX_REGS", \
1430 "MASK_REGS", \
1431 "MOD4_SSE_REGS", \
1432 "ALL_REGS" }
1433
1434 /* Define which registers fit in which classes. This is an initializer
1435 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1436
1437 Note that CLOBBERED_REGS are calculated by
1438 TARGET_CONDITIONAL_REGISTER_USAGE. */
1439
1440 #define REG_CLASS_CONTENTS \
1441 { { 0x00, 0x0, 0x0 }, \
1442 { 0x01, 0x0, 0x0 }, /* AREG */ \
1443 { 0x02, 0x0, 0x0 }, /* DREG */ \
1444 { 0x04, 0x0, 0x0 }, /* CREG */ \
1445 { 0x08, 0x0, 0x0 }, /* BREG */ \
1446 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1447 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1448 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1449 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1450 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1451 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1452 { 0x7e, 0x1fe0, 0x0 }, /* TLS_GOTBASE_REGS */ \
1453 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1454 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1455 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1456 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1457 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1458 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1459 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1460 { 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
1461 { 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1462 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1463 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1464 { 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1465 { 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1466 { 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1467 { 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1468 { 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1469 { 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1470 { 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1471 { 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1472 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
1473 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
1474 { 0x1fe00000,0xffffe000, 0x1f }, /* MOD4_SSE_REGS */ \
1475 { 0xffffffff,0xffffffff,0x1ffff } \
1476 }
1477
1478 /* The same information, inverted:
1479 Return the class number of the smallest class containing
1480 reg number REGNO. This could be a conditional expression
1481 or could index an array. */
1482
1483 #define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
1484
1485 /* When this hook returns true for MODE, the compiler allows
1486 registers explicitly used in the rtl to be used as spill registers
1487 but prevents the compiler from extending the lifetime of these
1488 registers. */
1489 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1490
1491 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1492 #define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1493
1494 #define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1495 #define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1496
1497 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1498 #define REX_INT_REGNO_P(N) \
1499 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1500
1501 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1502 #define GENERAL_REGNO_P(N) \
1503 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
1504
1505 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1506 #define ANY_QI_REGNO_P(N) \
1507 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1508
1509 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1510 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1511
1512 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1513 #define SSE_REGNO_P(N) \
1514 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1515 || REX_SSE_REGNO_P (N) \
1516 || EXT_REX_SSE_REGNO_P (N))
1517
1518 #define REX_SSE_REGNO_P(N) \
1519 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1520
1521 #define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1522
1523 #define EXT_REX_SSE_REGNO_P(N) \
1524 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1525
1526 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1527 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1528
1529 #define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1530 #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1531
1532 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1533 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1534
1535 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1536 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1537
1538 #define BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
1539 #define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
1540
1541 #define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1542 #define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1543 || (N) == XMM4_REG \
1544 || (N) == XMM8_REG \
1545 || (N) == XMM12_REG \
1546 || (N) == XMM16_REG \
1547 || (N) == XMM20_REG \
1548 || (N) == XMM24_REG \
1549 || (N) == XMM28_REG)
1550
1551 /* First floating point reg */
1552 #define FIRST_FLOAT_REG FIRST_STACK_REG
1553 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1554
1555 #define SSE_REGNO(N) \
1556 ((N) < 8 ? FIRST_SSE_REG + (N) \
1557 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1558 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1559
1560 /* The class value for index registers, and the one for base regs. */
1561
1562 #define INDEX_REG_CLASS INDEX_REGS
1563 #define BASE_REG_CLASS GENERAL_REGS
1564
1565 /* If we are copying between general and FP registers, we need a memory
1566 location. The same is true for SSE and MMX registers. */
1567 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1568 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1569
1570 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1571 There is no need to emit full 64 bit move on 64 bit targets
1572 for integral modes that can be moved using 32 bit move. */
1573 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1574 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1575 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1576 : MODE)
1577
1578 /* Return a class of registers that cannot change FROM mode to TO mode. */
1579
1580 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1581 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1582 \f
1583 /* Stack layout; function entry, exit and calling. */
1584
1585 /* Define this if pushing a word on the stack
1586 makes the stack pointer a smaller address. */
1587 #define STACK_GROWS_DOWNWARD 1
1588
1589 /* Define this to nonzero if the nominal address of the stack frame
1590 is at the high-address end of the local variables;
1591 that is, each additional local variable allocated
1592 goes at a more negative offset in the frame. */
1593 #define FRAME_GROWS_DOWNWARD 1
1594
1595 /* Offset within stack frame to start allocating local variables at.
1596 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1597 first local allocated. Otherwise, it is the offset to the BEGINNING
1598 of the first local allocated. */
1599 #define STARTING_FRAME_OFFSET 0
1600
1601 /* If we generate an insn to push BYTES bytes, this says how many the stack
1602 pointer really advances by. On 386, we have pushw instruction that
1603 decrements by exactly 2 no matter what the position was, there is no pushb.
1604
1605 But as CIE data alignment factor on this arch is -4 for 32bit targets
1606 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1607 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
1608
1609 #define PUSH_ROUNDING(BYTES) ROUND_UP ((BYTES), UNITS_PER_WORD)
1610
1611 /* If defined, the maximum amount of space required for outgoing arguments
1612 will be computed and placed into the variable `crtl->outgoing_args_size'.
1613 No space will be pushed onto the stack for each call; instead, the
1614 function prologue should increase the stack frame size by this amount.
1615
1616 In 32bit mode enabling argument accumulation results in about 5% code size
1617 growth because move instructions are less compact than push. In 64bit
1618 mode the difference is less drastic but visible.
1619
1620 FIXME: Unlike earlier implementations, the size of unwind info seems to
1621 actually grow with accumulation. Is that because accumulated args
1622 unwind info became unnecesarily bloated?
1623
1624 With the 64-bit MS ABI, we can generate correct code with or without
1625 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1626 generated without accumulated args is terrible.
1627
1628 If stack probes are required, the space used for large function
1629 arguments on the stack must also be probed, so enable
1630 -maccumulate-outgoing-args so this happens in the prologue.
1631
1632 We must use argument accumulation in interrupt function if stack
1633 may be realigned to avoid DRAP. */
1634
1635 #define ACCUMULATE_OUTGOING_ARGS \
1636 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1637 && optimize_function_for_speed_p (cfun)) \
1638 || (cfun->machine->func_type != TYPE_NORMAL \
1639 && crtl->stack_realign_needed) \
1640 || TARGET_STACK_PROBE \
1641 || TARGET_64BIT_MS_ABI \
1642 || (TARGET_MACHO && crtl->profile))
1643
1644 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1645 instructions to pass outgoing arguments. */
1646
1647 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1648
1649 /* We want the stack and args grow in opposite directions, even if
1650 PUSH_ARGS is 0. */
1651 #define PUSH_ARGS_REVERSED 1
1652
1653 /* Offset of first parameter from the argument pointer register value. */
1654 #define FIRST_PARM_OFFSET(FNDECL) 0
1655
1656 /* Define this macro if functions should assume that stack space has been
1657 allocated for arguments even when their values are passed in registers.
1658
1659 The value of this macro is the size, in bytes, of the area reserved for
1660 arguments passed in registers for the function represented by FNDECL.
1661
1662 This space can be allocated by the caller, or be a part of the
1663 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1664 which. */
1665 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1666
1667 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1668 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1669
1670 /* Define how to find the value returned by a library function
1671 assuming the value has mode MODE. */
1672
1673 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1674
1675 /* Define the size of the result block used for communication between
1676 untyped_call and untyped_return. The block contains a DImode value
1677 followed by the block used by fnsave and frstor. */
1678
1679 #define APPLY_RESULT_SIZE (8+108)
1680
1681 /* 1 if N is a possible register number for function argument passing. */
1682 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1683
1684 /* Define a data type for recording info about an argument list
1685 during the scan of that argument list. This data type should
1686 hold all necessary information about the function itself
1687 and about the args processed so far, enough to enable macros
1688 such as FUNCTION_ARG to determine where the next arg should go. */
1689
1690 typedef struct ix86_args {
1691 int words; /* # words passed so far */
1692 int nregs; /* # registers available for passing */
1693 int regno; /* next available register number */
1694 int fastcall; /* fastcall or thiscall calling convention
1695 is used */
1696 int sse_words; /* # sse words passed so far */
1697 int sse_nregs; /* # sse registers available for passing */
1698 int warn_avx512f; /* True when we want to warn
1699 about AVX512F ABI. */
1700 int warn_avx; /* True when we want to warn about AVX ABI. */
1701 int warn_sse; /* True when we want to warn about SSE ABI. */
1702 int warn_mmx; /* True when we want to warn about MMX ABI. */
1703 int sse_regno; /* next available sse register number */
1704 int mmx_words; /* # mmx words passed so far */
1705 int mmx_nregs; /* # mmx registers available for passing */
1706 int mmx_regno; /* next available mmx register number */
1707 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1708 int caller; /* true if it is caller. */
1709 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1710 SFmode/DFmode arguments should be passed
1711 in SSE registers. Otherwise 0. */
1712 int bnd_regno; /* next available bnd register number */
1713 int bnds_in_bt; /* number of bounds expected in BT. */
1714 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1715 int stdarg; /* Set to 1 if function is stdarg. */
1716 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1717 MS_ABI for ms abi. */
1718 tree decl; /* Callee decl. */
1719 } CUMULATIVE_ARGS;
1720
1721 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1722 for a call to a function whose data type is FNTYPE.
1723 For a library call, FNTYPE is 0. */
1724
1725 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1726 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1727 (N_NAMED_ARGS) != -1)
1728
1729 /* Output assembler code to FILE to increment profiler label # LABELNO
1730 for profiling a function entry. */
1731
1732 #define FUNCTION_PROFILER(FILE, LABELNO) \
1733 x86_function_profiler ((FILE), (LABELNO))
1734
1735 #define MCOUNT_NAME "_mcount"
1736
1737 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1738
1739 #define PROFILE_COUNT_REGISTER "edx"
1740
1741 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1742 the stack pointer does not matter. The value is tested only in
1743 functions that have frame pointers.
1744 No definition is equivalent to always zero. */
1745 /* Note on the 386 it might be more efficient not to define this since
1746 we have to restore it ourselves from the frame pointer, in order to
1747 use pop */
1748
1749 #define EXIT_IGNORE_STACK 1
1750
1751 /* Define this macro as a C expression that is nonzero for registers
1752 used by the epilogue or the `return' pattern. */
1753
1754 #define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1755
1756 /* Output assembler code for a block containing the constant parts
1757 of a trampoline, leaving space for the variable parts. */
1758
1759 /* On the 386, the trampoline contains two instructions:
1760 mov #STATIC,ecx
1761 jmp FUNCTION
1762 The trampoline is generated entirely at runtime. The operand of JMP
1763 is the address of FUNCTION relative to the instruction following the
1764 JMP (which is 5 bytes long). */
1765
1766 /* Length in units of the trampoline for entering a nested function. */
1767
1768 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1769 \f
1770 /* Definitions for register eliminations.
1771
1772 This is an array of structures. Each structure initializes one pair
1773 of eliminable registers. The "from" register number is given first,
1774 followed by "to". Eliminations of the same "from" register are listed
1775 in order of preference.
1776
1777 There are two registers that can always be eliminated on the i386.
1778 The frame pointer and the arg pointer can be replaced by either the
1779 hard frame pointer or to the stack pointer, depending upon the
1780 circumstances. The hard frame pointer is not used before reload and
1781 so it is not eligible for elimination. */
1782
1783 #define ELIMINABLE_REGS \
1784 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1785 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1786 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1787 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1788
1789 /* Define the offset between two registers, one to be eliminated, and the other
1790 its replacement, at the start of a routine. */
1791
1792 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1793 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1794 \f
1795 /* Addressing modes, and classification of registers for them. */
1796
1797 /* Macros to check register numbers against specific register classes. */
1798
1799 /* These assume that REGNO is a hard or pseudo reg number.
1800 They give nonzero only if REGNO is a hard reg of the suitable class
1801 or a pseudo reg currently allocated to a suitable hard reg.
1802 Since they use reg_renumber, they are safe only once reg_renumber
1803 has been allocated, which happens in reginfo.c during register
1804 allocation. */
1805
1806 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1807 ((REGNO) < STACK_POINTER_REGNUM \
1808 || REX_INT_REGNO_P (REGNO) \
1809 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1810 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1811
1812 #define REGNO_OK_FOR_BASE_P(REGNO) \
1813 (GENERAL_REGNO_P (REGNO) \
1814 || (REGNO) == ARG_POINTER_REGNUM \
1815 || (REGNO) == FRAME_POINTER_REGNUM \
1816 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1817
1818 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1819 and check its validity for a certain class.
1820 We have two alternate definitions for each of them.
1821 The usual definition accepts all pseudo regs; the other rejects
1822 them unless they have been allocated suitable hard regs.
1823 The symbol REG_OK_STRICT causes the latter definition to be used.
1824
1825 Most source files want to accept pseudo regs in the hope that
1826 they will get allocated to the class that the insn wants them to be in.
1827 Source files for reload pass need to be strict.
1828 After reload, it makes no difference, since pseudo regs have
1829 been eliminated by then. */
1830
1831
1832 /* Non strict versions, pseudos are ok. */
1833 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1834 (REGNO (X) < STACK_POINTER_REGNUM \
1835 || REX_INT_REGNO_P (REGNO (X)) \
1836 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1837
1838 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1839 (GENERAL_REGNO_P (REGNO (X)) \
1840 || REGNO (X) == ARG_POINTER_REGNUM \
1841 || REGNO (X) == FRAME_POINTER_REGNUM \
1842 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1843
1844 /* Strict versions, hard registers only */
1845 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1846 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1847
1848 #ifndef REG_OK_STRICT
1849 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1850 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1851
1852 #else
1853 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1854 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1855 #endif
1856
1857 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1858 that is a valid memory address for an instruction.
1859 The MODE argument is the machine mode for the MEM expression
1860 that wants to use this address.
1861
1862 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1863 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1864
1865 See legitimize_pic_address in i386.c for details as to what
1866 constitutes a legitimate address when -fpic is used. */
1867
1868 #define MAX_REGS_PER_ADDRESS 2
1869
1870 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1871
1872 /* If defined, a C expression to determine the base term of address X.
1873 This macro is used in only one place: `find_base_term' in alias.c.
1874
1875 It is always safe for this macro to not be defined. It exists so
1876 that alias analysis can understand machine-dependent addresses.
1877
1878 The typical use of this macro is to handle addresses containing
1879 a label_ref or symbol_ref within an UNSPEC. */
1880
1881 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1882
1883 /* Nonzero if the constant value X is a legitimate general operand
1884 when generating PIC code. It is given that flag_pic is on and
1885 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1886
1887 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1888
1889 #define SYMBOLIC_CONST(X) \
1890 (GET_CODE (X) == SYMBOL_REF \
1891 || GET_CODE (X) == LABEL_REF \
1892 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1893 \f
1894 /* Max number of args passed in registers. If this is more than 3, we will
1895 have problems with ebx (register #4), since it is a caller save register and
1896 is also used as the pic register in ELF. So for now, don't allow more than
1897 3 registers to be passed in registers. */
1898
1899 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1900 #define X86_64_REGPARM_MAX 6
1901 #define X86_64_MS_REGPARM_MAX 4
1902
1903 #define X86_32_REGPARM_MAX 3
1904
1905 #define REGPARM_MAX \
1906 (TARGET_64BIT \
1907 ? (TARGET_64BIT_MS_ABI \
1908 ? X86_64_MS_REGPARM_MAX \
1909 : X86_64_REGPARM_MAX) \
1910 : X86_32_REGPARM_MAX)
1911
1912 #define X86_64_SSE_REGPARM_MAX 8
1913 #define X86_64_MS_SSE_REGPARM_MAX 4
1914
1915 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1916
1917 #define SSE_REGPARM_MAX \
1918 (TARGET_64BIT \
1919 ? (TARGET_64BIT_MS_ABI \
1920 ? X86_64_MS_SSE_REGPARM_MAX \
1921 : X86_64_SSE_REGPARM_MAX) \
1922 : X86_32_SSE_REGPARM_MAX)
1923
1924 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1925 \f
1926 /* Specify the machine mode that this machine uses
1927 for the index in the tablejump instruction. */
1928 #define CASE_VECTOR_MODE \
1929 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1930
1931 /* Define this as 1 if `char' should by default be signed; else as 0. */
1932 #define DEFAULT_SIGNED_CHAR 1
1933
1934 /* Max number of bytes we can move from memory to memory
1935 in one reasonably fast instruction. */
1936 #define MOVE_MAX 16
1937
1938 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1939 move efficiently, as opposed to MOVE_MAX which is the maximum
1940 number of bytes we can move with a single instruction.
1941
1942 ??? We should use TImode in 32-bit mode and use OImode or XImode
1943 if they are available. But since by_pieces_ninsns determines the
1944 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1945 64-bit mode. */
1946 #define MOVE_MAX_PIECES \
1947 ((TARGET_64BIT \
1948 && TARGET_SSE2 \
1949 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1950 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1951 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
1952
1953 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1954 move-instruction pairs, we will do a movmem or libcall instead.
1955 Increasing the value will always make code faster, but eventually
1956 incurs high cost in increased code size.
1957
1958 If you don't define this, a reasonable default is used. */
1959
1960 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1961
1962 /* If a clear memory operation would take CLEAR_RATIO or more simple
1963 move-instruction sequences, we will do a clrmem or libcall instead. */
1964
1965 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1966
1967 /* Define if shifts truncate the shift count which implies one can
1968 omit a sign-extension or zero-extension of a shift count.
1969
1970 On i386, shifts do truncate the count. But bit test instructions
1971 take the modulo of the bit offset operand. */
1972
1973 /* #define SHIFT_COUNT_TRUNCATED */
1974
1975 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1976 is done just by pretending it is already truncated. */
1977 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1978
1979 /* A macro to update M and UNSIGNEDP when an object whose type is
1980 TYPE and which has the specified mode and signedness is to be
1981 stored in a register. This macro is only called when TYPE is a
1982 scalar type.
1983
1984 On i386 it is sometimes useful to promote HImode and QImode
1985 quantities to SImode. The choice depends on target type. */
1986
1987 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1988 do { \
1989 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1990 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1991 (MODE) = SImode; \
1992 } while (0)
1993
1994 /* Specify the machine mode that pointers have.
1995 After generation of rtl, the compiler makes no further distinction
1996 between pointers and any other objects of this machine mode. */
1997 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1998
1999 /* Specify the machine mode that bounds have. */
2000 #define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
2001
2002 /* A C expression whose value is zero if pointers that need to be extended
2003 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
2004 greater then zero if they are zero-extended and less then zero if the
2005 ptr_extend instruction should be used. */
2006
2007 #define POINTERS_EXTEND_UNSIGNED 1
2008
2009 /* A function address in a call instruction
2010 is a byte address (for indexing purposes)
2011 so give the MEM rtx a byte's mode. */
2012 #define FUNCTION_MODE QImode
2013 \f
2014
2015 /* A C expression for the cost of a branch instruction. A value of 1
2016 is the default; other values are interpreted relative to that. */
2017
2018 #define BRANCH_COST(speed_p, predictable_p) \
2019 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
2020
2021 /* An integer expression for the size in bits of the largest integer machine
2022 mode that should actually be used. We allow pairs of registers. */
2023 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
2024
2025 /* Define this macro as a C expression which is nonzero if accessing
2026 less than a word of memory (i.e. a `char' or a `short') is no
2027 faster than accessing a word of memory, i.e., if such access
2028 require more than one instruction or if there is no difference in
2029 cost between byte and (aligned) word loads.
2030
2031 When this macro is not defined, the compiler will access a field by
2032 finding the smallest containing object; when it is defined, a
2033 fullword load will be used if alignment permits. Unless bytes
2034 accesses are faster than word accesses, using word accesses is
2035 preferable since it may eliminate subsequent memory access if
2036 subsequent accesses occur to other fields in the same word of the
2037 structure, but to different bytes. */
2038
2039 #define SLOW_BYTE_ACCESS 0
2040
2041 /* Nonzero if access to memory by shorts is slow and undesirable. */
2042 #define SLOW_SHORT_ACCESS 0
2043
2044 /* Define this macro to be the value 1 if unaligned accesses have a
2045 cost many times greater than aligned accesses, for example if they
2046 are emulated in a trap handler.
2047
2048 When this macro is nonzero, the compiler will act as if
2049 `STRICT_ALIGNMENT' were nonzero when generating code for block
2050 moves. This can cause significantly more instructions to be
2051 produced. Therefore, do not set this macro nonzero if unaligned
2052 accesses only add a cycle or two to the time for a memory access.
2053
2054 If the value of this macro is always zero, it need not be defined. */
2055
2056 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2057
2058 /* Define this macro if it is as good or better to call a constant
2059 function address than to call an address kept in a register.
2060
2061 Desirable on the 386 because a CALL with a constant address is
2062 faster than one with a register address. */
2063
2064 #define NO_FUNCTION_CSE 1
2065 \f
2066 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2067 return the mode to be used for the comparison.
2068
2069 For floating-point equality comparisons, CCFPEQmode should be used.
2070 VOIDmode should be used in all other cases.
2071
2072 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2073 possible, to allow for more combinations. */
2074
2075 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2076
2077 /* Return nonzero if MODE implies a floating point inequality can be
2078 reversed. */
2079
2080 #define REVERSIBLE_CC_MODE(MODE) 1
2081
2082 /* A C expression whose value is reversed condition code of the CODE for
2083 comparison done in CC_MODE mode. */
2084 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
2085
2086 \f
2087 /* Control the assembler format that we output, to the extent
2088 this does not vary between assemblers. */
2089
2090 /* How to refer to registers in assembler output.
2091 This sequence is indexed by compiler's hard-register-number (see above). */
2092
2093 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
2094 For non floating point regs, the following are the HImode names.
2095
2096 For float regs, the stack top is sometimes referred to as "%st(0)"
2097 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2098 "y" code. */
2099
2100 #define HI_REGISTER_NAMES \
2101 {"ax","dx","cx","bx","si","di","bp","sp", \
2102 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2103 "argp", "flags", "fpsr", "fpcr", "frame", \
2104 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2105 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
2106 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2107 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2108 "xmm16", "xmm17", "xmm18", "xmm19", \
2109 "xmm20", "xmm21", "xmm22", "xmm23", \
2110 "xmm24", "xmm25", "xmm26", "xmm27", \
2111 "xmm28", "xmm29", "xmm30", "xmm31", \
2112 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2113 "bnd0", "bnd1", "bnd2", "bnd3" }
2114
2115 #define REGISTER_NAMES HI_REGISTER_NAMES
2116
2117 /* Table of additional register names to use in user input. */
2118
2119 #define ADDITIONAL_REGISTER_NAMES \
2120 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2121 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2122 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2123 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2124 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2125 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2126 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2127 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2128 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2129 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2130 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2131 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2132 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2133 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2134 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2135 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2136 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2137 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2138 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2139 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2140 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2141 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
2142
2143 /* Note we are omitting these since currently I don't know how
2144 to get gcc to use these, since they want the same but different
2145 number as al, and ax.
2146 */
2147
2148 #define QI_REGISTER_NAMES \
2149 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2150
2151 /* These parallel the array above, and can be used to access bits 8:15
2152 of regs 0 through 3. */
2153
2154 #define QI_HIGH_REGISTER_NAMES \
2155 {"ah", "dh", "ch", "bh", }
2156
2157 /* How to renumber registers for dbx and gdb. */
2158
2159 #define DBX_REGISTER_NUMBER(N) \
2160 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2161
2162 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2163 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2164 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2165
2166 extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2167
2168 /* Before the prologue, RA is at 0(%esp). */
2169 #define INCOMING_RETURN_ADDR_RTX \
2170 gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, STACK_POINTER_REGNUM))
2171
2172 /* After the prologue, RA is at -4(AP) in the current frame. */
2173 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2174 ((COUNT) == 0 \
2175 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2176 -UNITS_PER_WORD)) \
2177 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
2178
2179 /* PC is dbx register 8; let's use that column for RA. */
2180 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2181
2182 /* Before the prologue, the top of the frame is at 4(%esp). */
2183 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2184
2185 /* Describe how we implement __builtin_eh_return. */
2186 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2187 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
2188
2189
2190 /* Select a format to encode pointers in exception handling data. CODE
2191 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2192 true if the symbol may be affected by dynamic relocations.
2193
2194 ??? All x86 object file formats are capable of representing this.
2195 After all, the relocation needed is the same as for the call insn.
2196 Whether or not a particular assembler allows us to enter such, I
2197 guess we'll have to see. */
2198 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2199 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2200
2201 /* This is how to output an insn to push a register on the stack.
2202 It need not be very fast code. */
2203
2204 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2205 do { \
2206 if (TARGET_64BIT) \
2207 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2208 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2209 else \
2210 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2211 } while (0)
2212
2213 /* This is how to output an insn to pop a register from the stack.
2214 It need not be very fast code. */
2215
2216 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2217 do { \
2218 if (TARGET_64BIT) \
2219 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2220 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2221 else \
2222 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2223 } while (0)
2224
2225 /* This is how to output an element of a case-vector that is absolute. */
2226
2227 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2228 ix86_output_addr_vec_elt ((FILE), (VALUE))
2229
2230 /* This is how to output an element of a case-vector that is relative. */
2231
2232 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2233 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2234
2235 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
2236
2237 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2238 { \
2239 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2240 (PTR) += TARGET_AVX ? 1 : 2; \
2241 }
2242
2243 /* A C statement or statements which output an assembler instruction
2244 opcode to the stdio stream STREAM. The macro-operand PTR is a
2245 variable of type `char *' which points to the opcode name in
2246 its "internal" form--the form that is written in the machine
2247 description. */
2248
2249 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2250 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2251
2252 /* A C statement to output to the stdio stream FILE an assembler
2253 command to pad the location counter to a multiple of 1<<LOG
2254 bytes if it is within MAX_SKIP bytes. */
2255
2256 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2257 #undef ASM_OUTPUT_MAX_SKIP_PAD
2258 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2259 if ((LOG) != 0) \
2260 { \
2261 if ((MAX_SKIP) == 0) \
2262 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2263 else \
2264 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2265 }
2266 #endif
2267
2268 /* Write the extra assembler code needed to declare a function
2269 properly. */
2270
2271 #undef ASM_OUTPUT_FUNCTION_LABEL
2272 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2273 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
2274
2275 /* Under some conditions we need jump tables in the text section,
2276 because the assembler cannot handle label differences between
2277 sections. This is the case for x86_64 on Mach-O for example. */
2278
2279 #define JUMP_TABLES_IN_TEXT_SECTION \
2280 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2281 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2282
2283 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2284 and switch back. For x86 we do this only to save a few bytes that
2285 would otherwise be unused in the text section. */
2286 #define CRT_MKSTR2(VAL) #VAL
2287 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2288
2289 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2290 asm (SECTION_OP "\n\t" \
2291 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2292 TEXT_SECTION_ASM_OP);
2293
2294 /* Default threshold for putting data in large sections
2295 with x86-64 medium memory model */
2296 #define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2297
2298 /* Adjust the length of the insn with the length of BND prefix. */
2299
2300 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2301 do { \
2302 if (NONDEBUG_INSN_P (INSN) && INSN_CODE (INSN) >= 0 \
2303 && get_attr_maybe_prefix_bnd (INSN)) \
2304 LENGTH += ix86_bnd_prefixed_insn_p (INSN); \
2305 } while (0)
2306 \f
2307 /* Which processor to tune code generation for. These must be in sync
2308 with processor_target_table in i386.c. */
2309
2310 enum processor_type
2311 {
2312 PROCESSOR_GENERIC = 0,
2313 PROCESSOR_I386, /* 80386 */
2314 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2315 PROCESSOR_PENTIUM,
2316 PROCESSOR_LAKEMONT,
2317 PROCESSOR_PENTIUMPRO,
2318 PROCESSOR_PENTIUM4,
2319 PROCESSOR_NOCONA,
2320 PROCESSOR_CORE2,
2321 PROCESSOR_NEHALEM,
2322 PROCESSOR_SANDYBRIDGE,
2323 PROCESSOR_HASWELL,
2324 PROCESSOR_BONNELL,
2325 PROCESSOR_SILVERMONT,
2326 PROCESSOR_KNL,
2327 PROCESSOR_SKYLAKE_AVX512,
2328 PROCESSOR_INTEL,
2329 PROCESSOR_GEODE,
2330 PROCESSOR_K6,
2331 PROCESSOR_ATHLON,
2332 PROCESSOR_K8,
2333 PROCESSOR_AMDFAM10,
2334 PROCESSOR_BDVER1,
2335 PROCESSOR_BDVER2,
2336 PROCESSOR_BDVER3,
2337 PROCESSOR_BDVER4,
2338 PROCESSOR_BTVER1,
2339 PROCESSOR_BTVER2,
2340 PROCESSOR_ZNVER1,
2341 PROCESSOR_max
2342 };
2343
2344 extern enum processor_type ix86_tune;
2345 extern enum processor_type ix86_arch;
2346
2347 /* Size of the RED_ZONE area. */
2348 #define RED_ZONE_SIZE 128
2349 /* Reserved area of the red zone for temporaries. */
2350 #define RED_ZONE_RESERVE 8
2351
2352 extern unsigned int ix86_preferred_stack_boundary;
2353 extern unsigned int ix86_incoming_stack_boundary;
2354
2355 /* Smallest class containing REGNO. */
2356 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2357
2358 enum ix86_fpcmp_strategy {
2359 IX86_FPCMP_SAHF,
2360 IX86_FPCMP_COMI,
2361 IX86_FPCMP_ARITH
2362 };
2363 \f
2364 /* To properly truncate FP values into integers, we need to set i387 control
2365 word. We can't emit proper mode switching code before reload, as spills
2366 generated by reload may truncate values incorrectly, but we still can avoid
2367 redundant computation of new control word by the mode switching pass.
2368 The fldcw instructions are still emitted redundantly, but this is probably
2369 not going to be noticeable problem, as most CPUs do have fast path for
2370 the sequence.
2371
2372 The machinery is to emit simple truncation instructions and split them
2373 before reload to instructions having USEs of two memory locations that
2374 are filled by this code to old and new control word.
2375
2376 Post-reload pass may be later used to eliminate the redundant fildcw if
2377 needed. */
2378
2379 enum ix86_stack_slot
2380 {
2381 SLOT_TEMP = 0,
2382 SLOT_CW_STORED,
2383 SLOT_CW_TRUNC,
2384 SLOT_CW_FLOOR,
2385 SLOT_CW_CEIL,
2386 SLOT_CW_MASK_PM,
2387 SLOT_STV_TEMP,
2388 MAX_386_STACK_LOCALS
2389 };
2390
2391 enum ix86_entity
2392 {
2393 X86_DIRFLAG = 0,
2394 AVX_U128,
2395 I387_TRUNC,
2396 I387_FLOOR,
2397 I387_CEIL,
2398 I387_MASK_PM,
2399 MAX_386_ENTITIES
2400 };
2401
2402 enum x86_dirflag_state
2403 {
2404 X86_DIRFLAG_RESET,
2405 X86_DIRFLAG_ANY
2406 };
2407
2408 enum avx_u128_state
2409 {
2410 AVX_U128_CLEAN,
2411 AVX_U128_DIRTY,
2412 AVX_U128_ANY
2413 };
2414
2415 /* Define this macro if the port needs extra instructions inserted
2416 for mode switching in an optimizing compilation. */
2417
2418 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2419 ix86_optimize_mode_switching[(ENTITY)]
2420
2421 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2422 initializer for an array of integers. Each initializer element N
2423 refers to an entity that needs mode switching, and specifies the
2424 number of different modes that might need to be set for this
2425 entity. The position of the initializer in the initializer -
2426 starting counting at zero - determines the integer that is used to
2427 refer to the mode-switched entity in question. */
2428
2429 #define NUM_MODES_FOR_MODE_SWITCHING \
2430 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
2431 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2432
2433 \f
2434 /* Avoid renaming of stack registers, as doing so in combination with
2435 scheduling just increases amount of live registers at time and in
2436 the turn amount of fxch instructions needed.
2437
2438 ??? Maybe Pentium chips benefits from renaming, someone can try....
2439
2440 Don't rename evex to non-evex sse registers. */
2441
2442 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2443 (!STACK_REGNO_P (SRC) \
2444 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
2445
2446 \f
2447 #define FASTCALL_PREFIX '@'
2448 \f
2449 /* Machine specific frame tracking during prologue/epilogue generation. */
2450
2451 #ifndef USED_FOR_TARGET
2452 struct GTY(()) machine_frame_state
2453 {
2454 /* This pair tracks the currently active CFA as reg+offset. When reg
2455 is drap_reg, we don't bother trying to record here the real CFA when
2456 it might really be a DW_CFA_def_cfa_expression. */
2457 rtx cfa_reg;
2458 HOST_WIDE_INT cfa_offset;
2459
2460 /* The current offset (canonically from the CFA) of ESP and EBP.
2461 When stack frame re-alignment is active, these may not be relative
2462 to the CFA. However, in all cases they are relative to the offsets
2463 of the saved registers stored in ix86_frame. */
2464 HOST_WIDE_INT sp_offset;
2465 HOST_WIDE_INT fp_offset;
2466
2467 /* The size of the red-zone that may be assumed for the purposes of
2468 eliding register restore notes in the epilogue. This may be zero
2469 if no red-zone is in effect, or may be reduced from the real
2470 red-zone value by a maximum runtime stack re-alignment value. */
2471 int red_zone_offset;
2472
2473 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2474 value within the frame. If false then the offset above should be
2475 ignored. Note that DRAP, if valid, *always* points to the CFA and
2476 thus has an offset of zero. */
2477 BOOL_BITFIELD sp_valid : 1;
2478 BOOL_BITFIELD fp_valid : 1;
2479 BOOL_BITFIELD drap_valid : 1;
2480
2481 /* Indicate whether the local stack frame has been re-aligned. When
2482 set, the SP/FP offsets above are relative to the aligned frame
2483 and not the CFA. */
2484 BOOL_BITFIELD realigned : 1;
2485 };
2486
2487 /* Private to winnt.c. */
2488 struct seh_frame_state;
2489
2490 enum function_type
2491 {
2492 TYPE_UNKNOWN = 0,
2493 TYPE_NORMAL,
2494 /* The current function is an interrupt service routine with a
2495 pointer argument as specified by the "interrupt" attribute. */
2496 TYPE_INTERRUPT,
2497 /* The current function is an interrupt service routine with a
2498 pointer argument and an integer argument as specified by the
2499 "interrupt" attribute. */
2500 TYPE_EXCEPTION
2501 };
2502
2503 struct GTY(()) machine_function {
2504 struct stack_local_entry *stack_locals;
2505 const char *some_ld_name;
2506 int varargs_gpr_size;
2507 int varargs_fpr_size;
2508 int optimize_mode_switching[MAX_386_ENTITIES];
2509
2510 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2511 has been computed for. */
2512 int use_fast_prologue_epilogue_nregs;
2513
2514 /* For -fsplit-stack support: A stack local which holds a pointer to
2515 the stack arguments for a function with a variable number of
2516 arguments. This is set at the start of the function and is used
2517 to initialize the overflow_arg_area field of the va_list
2518 structure. */
2519 rtx split_stack_varargs_pointer;
2520
2521 /* This value is used for amd64 targets and specifies the current abi
2522 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2523 ENUM_BITFIELD(calling_abi) call_abi : 8;
2524
2525 /* Nonzero if the function accesses a previous frame. */
2526 BOOL_BITFIELD accesses_prev_frame : 1;
2527
2528 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2529 expander to determine the style used. */
2530 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2531
2532 /* Nonzero if the current function calls pc thunk and
2533 must not use the red zone. */
2534 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2535
2536 /* If true, the current function needs the default PIC register, not
2537 an alternate register (on x86) and must not use the red zone (on
2538 x86_64), even if it's a leaf function. We don't want the
2539 function to be regarded as non-leaf because TLS calls need not
2540 affect register allocation. This flag is set when a TLS call
2541 instruction is expanded within a function, and never reset, even
2542 if all such instructions are optimized away. Use the
2543 ix86_current_function_calls_tls_descriptor macro for a better
2544 approximation. */
2545 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2546
2547 /* If true, the current function has a STATIC_CHAIN is placed on the
2548 stack below the return address. */
2549 BOOL_BITFIELD static_chain_on_stack : 1;
2550
2551 /* If true, it is safe to not save/restore DRAP register. */
2552 BOOL_BITFIELD no_drap_save_restore : 1;
2553
2554 /* Function type. */
2555 ENUM_BITFIELD(function_type) func_type : 2;
2556
2557 /* If true, the current function is a function specified with
2558 the "interrupt" or "no_caller_saved_registers" attribute. */
2559 BOOL_BITFIELD no_caller_saved_registers : 1;
2560
2561 /* If true, there is register available for argument passing. This
2562 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2563 if there is scratch register available for indirect sibcall. In
2564 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2565 pass arguments and can be used for indirect sibcall. */
2566 BOOL_BITFIELD arg_reg_available : 1;
2567
2568 /* During prologue/epilogue generation, the current frame state.
2569 Otherwise, the frame state at the end of the prologue. */
2570 struct machine_frame_state fs;
2571
2572 /* During SEH output, this is non-null. */
2573 struct seh_frame_state * GTY((skip(""))) seh;
2574 };
2575 #endif
2576
2577 #define ix86_stack_locals (cfun->machine->stack_locals)
2578 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2579 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2580 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2581 #define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
2582 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2583 (cfun->machine->tls_descriptor_call_expanded_p)
2584 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2585 calls are optimized away, we try to detect cases in which it was
2586 optimized away. Since such instructions (use (reg REG_SP)), we can
2587 verify whether there's any such instruction live by testing that
2588 REG_SP is live. */
2589 #define ix86_current_function_calls_tls_descriptor \
2590 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2591 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2592
2593 /* Control behavior of x86_file_start. */
2594 #define X86_FILE_START_VERSION_DIRECTIVE false
2595 #define X86_FILE_START_FLTUSED false
2596
2597 /* Flag to mark data that is in the large address area. */
2598 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2599 #define SYMBOL_REF_FAR_ADDR_P(X) \
2600 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2601
2602 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2603 have defined always, to avoid ifdefing. */
2604 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2605 #define SYMBOL_REF_DLLIMPORT_P(X) \
2606 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2607
2608 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2609 #define SYMBOL_REF_DLLEXPORT_P(X) \
2610 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2611
2612 #define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2613 #define SYMBOL_REF_STUBVAR_P(X) \
2614 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2615
2616 extern void debug_ready_dispatch (void);
2617 extern void debug_dispatch_window (int);
2618
2619 /* The value at zero is only defined for the BMI instructions
2620 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2621 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2622 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
2623 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2624 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
2625
2626
2627 /* Flags returned by ix86_get_callcvt (). */
2628 #define IX86_CALLCVT_CDECL 0x1
2629 #define IX86_CALLCVT_STDCALL 0x2
2630 #define IX86_CALLCVT_FASTCALL 0x4
2631 #define IX86_CALLCVT_THISCALL 0x8
2632 #define IX86_CALLCVT_REGPARM 0x10
2633 #define IX86_CALLCVT_SSEREGPARM 0x20
2634
2635 #define IX86_BASE_CALLCVT(FLAGS) \
2636 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2637 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2638
2639 #define RECIP_MASK_NONE 0x00
2640 #define RECIP_MASK_DIV 0x01
2641 #define RECIP_MASK_SQRT 0x02
2642 #define RECIP_MASK_VEC_DIV 0x04
2643 #define RECIP_MASK_VEC_SQRT 0x08
2644 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2645 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2646 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2647
2648 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2649 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2650 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2651 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2652
2653 #define IX86_HLE_ACQUIRE (1 << 16)
2654 #define IX86_HLE_RELEASE (1 << 17)
2655
2656 /* For switching between functions with different target attributes. */
2657 #define SWITCHABLE_TARGET 1
2658
2659 #define TARGET_SUPPORTS_WIDE_INT 1
2660
2661 /*
2662 Local variables:
2663 version-control: t
2664 End:
2665 */