]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/i386/x86-tune.def
re PR target/58853 (ICE in expand_set_or_movmem_prologue_epilogue_by_misaligned_moves)
[thirdparty/gcc.git] / gcc / config / i386 / x86-tune.def
1 /* Definitions of x86 tunable features.
2 Copyright (C) 2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License and
17 a copy of the GCC Runtime Library Exception along with this program;
18 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Tuning for a given CPU XXXX consists of:
22 - adding new CPU into:
23 - adding PROCESSOR_XXX to processor_type (in i386.h)
24 - possibly adding XXX into CPU attribute in i386.md
25 - adding XXX to processor_alias_table (in i386.c)
26 - introducing ix86_XXX_cost in i386.c
27 - Stringop generation table can be build based on test_stringop
28 - script (once rest of tuning is complete)
29 - designing a scheduler model in
30 - XXXX.md file
31 - Updating ix86_issue_rate and ix86_adjust_cost in i386.md
32 - possibly updating ia32_multipass_dfa_lookahead, ix86_sched_reorder
33 and ix86_sched_init_global if those tricks are needed.
34 - Tunning the flags bellow. Those are split into sections and each
35 section is very roughly ordered by importance. */
36
37 /*****************************************************************************/
38 /* Scheduling flags. */
39 /*****************************************************************************/
40
41 /* X86_TUNE_SCHEDULE: Enable scheduling. */
42 DEF_TUNE (X86_TUNE_SCHEDULE, "schedule",
43 m_PENT | m_PPRO | m_CORE_ALL | m_ATOM | m_SLM | m_K6_GEODE
44 | m_AMD_MULTIPLE | m_GENERIC)
45
46 /* X86_TUNE_PARTIAL_REG_DEPENDENCY: Enable more register renaming
47 on modern chips. Preffer stores affecting whole integer register
48 over partial stores. For example preffer MOVZBL or MOVQ to load 8bit
49 value over movb. */
50 DEF_TUNE (X86_TUNE_PARTIAL_REG_DEPENDENCY, "partial_reg_dependency",
51 m_P4_NOCONA | m_CORE_ALL | m_ATOM | m_SLM | m_AMD_MULTIPLE
52 | m_GENERIC)
53
54 /* X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY: This knob promotes all store
55 destinations to be 128bit to allow register renaming on 128bit SSE units,
56 but usually results in one extra microop on 64bit SSE units.
57 Experimental results shows that disabling this option on P4 brings over 20%
58 SPECfp regression, while enabling it on K8 brings roughly 2.4% regression
59 that can be partly masked by careful scheduling of moves. */
60 DEF_TUNE (X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY, "sse_partial_reg_dependency",
61 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_ATOM | m_SLM | m_AMDFAM10
62 | m_BDVER | m_GENERIC)
63
64 /* X86_TUNE_SSE_SPLIT_REGS: Set for machines where the type and dependencies
65 are resolved on SSE register parts instead of whole registers, so we may
66 maintain just lower part of scalar values in proper format leaving the
67 upper part undefined. */
68 DEF_TUNE (X86_TUNE_SSE_SPLIT_REGS, "sse_split_regs", m_ATHLON_K8)
69
70 /* X86_TUNE_PARTIAL_FLAG_REG_STALL: this flag disables use of of flags
71 set by instructions affecting just some flags (in particular shifts).
72 This is because Core2 resolves dependencies on whole flags register
73 and such sequences introduce false dependency on previous instruction
74 setting full flags.
75
76 The flags does not affect generation of INC and DEC that is controlled
77 by X86_TUNE_USE_INCDEC.
78
79 This flag may be dropped from generic once core2-corei5 machines are
80 rare enough. */
81 DEF_TUNE (X86_TUNE_PARTIAL_FLAG_REG_STALL, "partial_flag_reg_stall",
82 m_CORE2 | m_GENERIC)
83
84 /* X86_TUNE_MOVX: Enable to zero extend integer registers to avoid
85 partial dependencies. */
86 DEF_TUNE (X86_TUNE_MOVX, "movx",
87 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_ATOM | m_SLM | m_GEODE
88 | m_AMD_MULTIPLE | m_GENERIC)
89
90 /* X86_TUNE_MEMORY_MISMATCH_STALL: Avoid partial stores that are followed by
91 full sized loads. */
92 DEF_TUNE (X86_TUNE_MEMORY_MISMATCH_STALL, "memory_mismatch_stall",
93 m_P4_NOCONA | m_CORE_ALL | m_ATOM | m_SLM | m_AMD_MULTIPLE | m_GENERIC)
94
95 /* X86_TUNE_FUSE_CMP_AND_BRANCH_32: Fuse compare with a subsequent
96 conditional jump instruction for 32 bit TARGET.
97 FIXME: revisit for generic. */
98 DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_32, "fuse_cmp_and_branch_32",
99 m_CORE_ALL | m_BDVER)
100
101 /* X86_TUNE_FUSE_CMP_AND_BRANCH_64: Fuse compare with a subsequent
102 conditional jump instruction for TARGET_64BIT.
103 FIXME: revisit for generic. */
104 DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_64, "fuse_cmp_and_branch_64",
105 m_COREI7 | m_COREI7_AVX | m_HASWELL | m_BDVER)
106
107 /* X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS: Fuse compare with a
108 subsequent conditional jump instruction when the condition jump
109 check sign flag (SF) or overflow flag (OF). */
110 DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS, "fuse_cmp_and_branch_soflags",
111 m_COREI7 | m_COREI7_AVX | m_HASWELL | m_BDVER)
112
113 /* X86_TUNE_FUSE_ALU_AND_BRANCH: Fuse alu with a subsequent conditional
114 jump instruction when the alu instruction produces the CCFLAG consumed by
115 the conditional jump instruction. */
116 DEF_TUNE (X86_TUNE_FUSE_ALU_AND_BRANCH, "fuse_alu_and_branch",
117 m_COREI7_AVX | m_HASWELL)
118
119 /* X86_TUNE_REASSOC_INT_TO_PARALLEL: Try to produce parallel computations
120 during reassociation of integer computation. */
121 DEF_TUNE (X86_TUNE_REASSOC_INT_TO_PARALLEL, "reassoc_int_to_parallel",
122 m_ATOM)
123
124 /* X86_TUNE_REASSOC_FP_TO_PARALLEL: Try to produce parallel computations
125 during reassociation of fp computation. */
126 DEF_TUNE (X86_TUNE_REASSOC_FP_TO_PARALLEL, "reassoc_fp_to_parallel",
127 m_ATOM | m_SLM | m_HASWELL | m_BDVER1 | m_BDVER2 | m_GENERIC)
128
129 /*****************************************************************************/
130 /* Function prologue, epilogue and function calling sequences. */
131 /*****************************************************************************/
132
133 /* X86_TUNE_ACCUMULATE_OUTGOING_ARGS: Allocate stack space for outgoing
134 arguments in prologue/epilogue instead of separately for each call
135 by push/pop instructions.
136 This increase code size by about 5% in 32bit mode, less so in 64bit mode
137 because parameters are passed in registers. It is considerable
138 win for targets without stack engine that prevents multple push operations
139 to happen in parallel.
140
141 FIXME: the flags is incorrectly enabled for amdfam10, Bulldozer,
142 Bobcat and Generic. This is because disabling it causes large
143 regression on mgrid due to IRA limitation leading to unecessary
144 use of the frame pointer in 32bit mode. */
145 DEF_TUNE (X86_TUNE_ACCUMULATE_OUTGOING_ARGS, "accumulate_outgoing_args",
146 m_PPRO | m_P4_NOCONA | m_ATOM | m_SLM | m_AMD_MULTIPLE | m_GENERIC)
147
148 /* X86_TUNE_PROLOGUE_USING_MOVE: Do not use push/pop in prologues that are
149 considered on critical path. */
150 DEF_TUNE (X86_TUNE_PROLOGUE_USING_MOVE, "prologue_using_move",
151 m_PPRO | m_ATHLON_K8)
152
153 /* X86_TUNE_PROLOGUE_USING_MOVE: Do not use push/pop in epilogues that are
154 considered on critical path. */
155 DEF_TUNE (X86_TUNE_EPILOGUE_USING_MOVE, "epilogue_using_move",
156 m_PPRO | m_ATHLON_K8)
157
158 /* X86_TUNE_USE_LEAVE: Use "leave" instruction in epilogues where it fits. */
159 DEF_TUNE (X86_TUNE_USE_LEAVE, "use_leave",
160 m_386 | m_CORE_ALL | m_K6_GEODE | m_AMD_MULTIPLE | m_GENERIC)
161
162 /* X86_TUNE_PUSH_MEMORY: Enable generation of "push mem" instructions.
163 Some chips, like 486 and Pentium works faster with separate load
164 and push instructions. */
165 DEF_TUNE (X86_TUNE_PUSH_MEMORY, "push_memory",
166 m_386 | m_P4_NOCONA | m_CORE_ALL | m_K6_GEODE | m_AMD_MULTIPLE
167 | m_GENERIC)
168
169 /* X86_TUNE_SINGLE_PUSH: Enable if single push insn is preferred
170 over esp subtraction. */
171 DEF_TUNE (X86_TUNE_SINGLE_PUSH, "single_push", m_386 | m_486 | m_PENT
172 | m_K6_GEODE)
173
174 /* X86_TUNE_DOUBLE_PUSH. Enable if double push insn is preferred
175 over esp subtraction. */
176 DEF_TUNE (X86_TUNE_DOUBLE_PUSH, "double_push", m_PENT | m_K6_GEODE)
177
178 /* X86_TUNE_SINGLE_POP: Enable if single pop insn is preferred
179 over esp addition. */
180 DEF_TUNE (X86_TUNE_SINGLE_POP, "single_pop", m_386 | m_486 | m_PENT | m_PPRO)
181
182 /* X86_TUNE_DOUBLE_POP: Enable if double pop insn is preferred
183 over esp addition. */
184 DEF_TUNE (X86_TUNE_DOUBLE_POP, "double_pop", m_PENT)
185
186 /*****************************************************************************/
187 /* Branch predictor tuning */
188 /*****************************************************************************/
189
190 /* X86_TUNE_PAD_SHORT_FUNCTION: Make every function to be at least 4
191 instructions long. */
192 DEF_TUNE (X86_TUNE_PAD_SHORT_FUNCTION, "pad_short_function", m_ATOM)
193
194 /* X86_TUNE_PAD_RETURNS: Place NOP before every RET that is a destination
195 of conditional jump or directly preceded by other jump instruction.
196 This is important for AND K8-AMDFAM10 because the branch prediction
197 architecture expect at most one jump per 2 byte window. Failing to
198 pad returns leads to misaligned return stack. */
199 DEF_TUNE (X86_TUNE_PAD_RETURNS, "pad_returns",
200 m_ATHLON_K8 | m_AMDFAM10 | m_GENERIC)
201
202 /* X86_TUNE_FOUR_JUMP_LIMIT: Some CPU cores are not able to predict more
203 than 4 branch instructions in the 16 byte window. */
204 DEF_TUNE (X86_TUNE_FOUR_JUMP_LIMIT, "four_jump_limit",
205 m_PPRO | m_P4_NOCONA | m_ATOM | m_SLM | m_ATHLON_K8 | m_AMDFAM10)
206
207 /*****************************************************************************/
208 /* Integer instruction selection tuning */
209 /*****************************************************************************/
210
211 /* X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL: Enable software prefetching
212 at -O3. For the moment, the prefetching seems badly tuned for Intel
213 chips. */
214 DEF_TUNE (X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL, "software_prefetching_beneficial",
215 m_K6_GEODE | m_AMD_MULTIPLE)
216
217 /* X86_TUNE_LCP_STALL: Avoid an expensive length-changing prefix stall
218 on 16-bit immediate moves into memory on Core2 and Corei7. */
219 DEF_TUNE (X86_TUNE_LCP_STALL, "lcp_stall", m_CORE_ALL | m_GENERIC)
220
221 /* X86_TUNE_READ_MODIFY: Enable use of read-modify instructions such
222 as "add mem, reg". */
223 DEF_TUNE (X86_TUNE_READ_MODIFY, "read_modify", ~(m_PENT | m_PPRO))
224
225 /* X86_TUNE_USE_INCDEC: Enable use of inc/dec instructions. */
226 DEF_TUNE (X86_TUNE_USE_INCDEC, "use_incdec",
227 ~(m_P4_NOCONA | m_CORE_ALL | m_ATOM | m_SLM | m_GENERIC))
228
229 /* X86_TUNE_INTEGER_DFMODE_MOVES: Enable if integer moves are preferred
230 for DFmode copies */
231 DEF_TUNE (X86_TUNE_INTEGER_DFMODE_MOVES, "integer_dfmode_moves",
232 ~(m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_ATOM | m_SLM
233 | m_GEODE | m_AMD_MULTIPLE | m_GENERIC))
234
235 /* X86_TUNE_OPT_AGU: Optimize for Address Generation Unit. This flag
236 will impact LEA instruction selection. */
237 DEF_TUNE (X86_TUNE_OPT_AGU, "opt_agu", m_ATOM | m_SLM)
238
239 /* X86_TUNE_SLOW_IMUL_IMM32_MEM: Imul of 32-bit constant and memory is
240 vector path on AMD machines.
241 FIXME: Do we need to enable this for core? */
242 DEF_TUNE (X86_TUNE_SLOW_IMUL_IMM32_MEM, "slow_imul_imm32_mem",
243 m_K8 | m_AMDFAM10)
244
245 /* X86_TUNE_SLOW_IMUL_IMM8: Imul of 8-bit constant is vector path on AMD
246 machines.
247 FIXME: Do we need to enable this for core? */
248 DEF_TUNE (X86_TUNE_SLOW_IMUL_IMM8, "slow_imul_imm8",
249 m_K8 | m_AMDFAM10)
250
251 /* X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE: Try to avoid memory operands for
252 a conditional move. */
253 DEF_TUNE (X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE, "avoid_mem_opnd_for_cmove",
254 m_ATOM | m_SLM)
255
256 /* X86_TUNE_SINGLE_STRINGOP: Enable use of single string operations, such
257 as MOVS and STOS (without a REP prefix) to move/set sequences of bytes. */
258 DEF_TUNE (X86_TUNE_SINGLE_STRINGOP, "single_stringop", m_386 | m_P4_NOCONA)
259
260 /* X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES: Enable generation of
261 compact prologues and epilogues by issuing a misaligned moves. This
262 requires target to handle misaligned moves and partial memory stalls
263 reasonably well.
264 FIXME: This may actualy be a win on more targets than listed here. */
265 DEF_TUNE (X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES,
266 "misaligned_move_string_pro_epilogues",
267 m_386 | m_486 | m_CORE_ALL | m_AMD_MULTIPLE | m_GENERIC)
268
269 /* X86_TUNE_USE_SAHF: Controls use of SAHF. */
270 DEF_TUNE (X86_TUNE_USE_SAHF, "use_sahf",
271 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_ATOM | m_SLM | m_K6_GEODE
272 | m_K8 | m_AMDFAM10 | m_BDVER | m_BTVER | m_GENERIC)
273
274 /* X86_TUNE_USE_CLTD: Controls use of CLTD and CTQO instructions. */
275 DEF_TUNE (X86_TUNE_USE_CLTD, "use_cltd", ~(m_PENT | m_ATOM | m_SLM | m_K6))
276
277 /* X86_TUNE_USE_BT: Enable use of BT (bit test) instructions. */
278 DEF_TUNE (X86_TUNE_USE_BT, "use_bt",
279 m_CORE_ALL | m_ATOM | m_SLM | m_AMD_MULTIPLE | m_GENERIC)
280
281 /*****************************************************************************/
282 /* 387 instruction selection tuning */
283 /*****************************************************************************/
284
285 /* X86_TUNE_USE_HIMODE_FIOP: Enables use of x87 instructions with 16bit
286 integer operand.
287 FIXME: Why this is disabled for modern chips? */
288 DEF_TUNE (X86_TUNE_USE_HIMODE_FIOP, "use_himode_fiop",
289 m_386 | m_486 | m_K6_GEODE)
290
291 /* X86_TUNE_USE_SIMODE_FIOP: Enables use of x87 instructions with 32bit
292 integer operand. */
293 DEF_TUNE (X86_TUNE_USE_SIMODE_FIOP, "use_simode_fiop",
294 ~(m_PENT | m_PPRO | m_CORE_ALL | m_ATOM
295 | m_SLM | m_AMD_MULTIPLE | m_GENERIC))
296
297 /* X86_TUNE_USE_FFREEP: Use freep instruction instead of fstp. */
298 DEF_TUNE (X86_TUNE_USE_FFREEP, "use_ffreep", m_AMD_MULTIPLE)
299
300 /* X86_TUNE_EXT_80387_CONSTANTS: Use fancy 80387 constants, such as PI. */
301 DEF_TUNE (X86_TUNE_EXT_80387_CONSTANTS, "ext_80387_constants",
302 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_ATOM | m_SLM | m_K6_GEODE
303 | m_ATHLON_K8 | m_GENERIC)
304
305 /*****************************************************************************/
306 /* SSE instruction selection tuning */
307 /*****************************************************************************/
308
309 /* X86_TUNE_VECTORIZE_DOUBLE: Enable double precision vector
310 instructions. */
311 DEF_TUNE (X86_TUNE_VECTORIZE_DOUBLE, "vectorize_double", ~m_ATOM)
312
313 /* X86_TUNE_GENERAL_REGS_SSE_SPILL: Try to spill general regs to SSE
314 regs instead of memory. */
315 DEF_TUNE (X86_TUNE_GENERAL_REGS_SSE_SPILL, "general_regs_sse_spill",
316 m_CORE_ALL)
317
318 /* X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL: Use movups for misaligned loads instead
319 of a sequence loading registers by parts. */
320 DEF_TUNE (X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL, "sse_unaligned_load_optimal",
321 m_COREI7 | m_COREI7_AVX | m_AMDFAM10 | m_BDVER | m_BTVER | m_SLM | m_GENERIC)
322
323 /* X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL: Use movups for misaligned stores instead
324 of a sequence loading registers by parts. */
325 DEF_TUNE (X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL, "sse_unaligned_store_optimal",
326 m_COREI7 | m_COREI7_AVX | m_BDVER | m_SLM | m_GENERIC)
327
328 /* Use packed single precision instructions where posisble. I.e. movups instead
329 of movupd. */
330 DEF_TUNE (X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL, "sse_packed_single_insn_optimal",
331 m_BDVER)
332
333 /* X86_TUNE_SSE_TYPELESS_STORES: Always movaps/movups for 128bit stores. */
334 DEF_TUNE (X86_TUNE_SSE_TYPELESS_STORES, "sse_typeless_stores",
335 m_AMD_MULTIPLE | m_CORE_ALL | m_GENERIC)
336
337 /* X86_TUNE_SSE_LOAD0_BY_PXOR: Always use pxor to load0 as opposed to
338 xorps/xorpd and other variants. */
339 DEF_TUNE (X86_TUNE_SSE_LOAD0_BY_PXOR, "sse_load0_by_pxor",
340 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BDVER | m_BTVER | m_GENERIC)
341
342 /* X86_TUNE_INTER_UNIT_MOVES_TO_VEC: Enable moves in from integer
343 to SSE registers. If disabled, the moves will be done by storing
344 the value to memory and reloading. */
345 DEF_TUNE (X86_TUNE_INTER_UNIT_MOVES_TO_VEC, "inter_unit_moves_to_vec",
346 ~(m_AMD_MULTIPLE | m_GENERIC))
347
348 /* X86_TUNE_INTER_UNIT_MOVES_TO_VEC: Enable moves in from SSE
349 to integer registers. If disabled, the moves will be done by storing
350 the value to memory and reloading. */
351 DEF_TUNE (X86_TUNE_INTER_UNIT_MOVES_FROM_VEC, "inter_unit_moves_from_vec",
352 ~m_ATHLON_K8)
353
354 /* X86_TUNE_INTER_UNIT_CONVERSIONS: Enable float<->integer conversions
355 to use both SSE and integer registers at a same time.
356 FIXME: revisit importance of this for generic. */
357 DEF_TUNE (X86_TUNE_INTER_UNIT_CONVERSIONS, "inter_unit_conversions",
358 ~(m_AMDFAM10 | m_BDVER))
359
360 /* X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS: Try to split memory operand for
361 fp converts to destination register. */
362 DEF_TUNE (X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS, "split_mem_opnd_for_fp_converts",
363 m_SLM)
364
365 /* X86_TUNE_USE_VECTOR_FP_CONVERTS: Prefer vector packed SSE conversion
366 from FP to FP. This form of instructions avoids partial write to the
367 destination. */
368 DEF_TUNE (X86_TUNE_USE_VECTOR_FP_CONVERTS, "use_vector_fp_converts",
369 m_AMDFAM10)
370
371 /* X86_TUNE_USE_VECTOR_CONVERTS: Prefer vector packed SSE conversion
372 from integer to FP. */
373 DEF_TUNE (X86_TUNE_USE_VECTOR_CONVERTS, "use_vector_converts", m_AMDFAM10)
374
375 /*****************************************************************************/
376 /* AVX instruction selection tuning (some of SSE flags affects AVX, too) */
377 /*****************************************************************************/
378
379 /* X86_TUNE_AVX256_UNALIGNED_LOAD_OPTIMAL: if true, unaligned loads are
380 split. */
381 DEF_TUNE (X86_TUNE_AVX256_UNALIGNED_LOAD_OPTIMAL, "256_unaligned_load_optimal",
382 ~(m_COREI7 | m_GENERIC))
383
384 /* X86_TUNE_AVX256_UNALIGNED_STORE_OPTIMAL: if true, unaligned loads are
385 split. */
386 DEF_TUNE (X86_TUNE_AVX256_UNALIGNED_STORE_OPTIMAL, "256_unaligned_load_optimal",
387 ~(m_COREI7 | m_BDVER | m_GENERIC))
388
389 /* X86_TUNE_AVX128_OPTIMAL: Enable 128-bit AVX instruction generation for
390 the auto-vectorizer. */
391 DEF_TUNE (X86_TUNE_AVX128_OPTIMAL, "avx128_optimal", m_BDVER | m_BTVER2)
392
393 /*****************************************************************************/
394 /* Historical relics: tuning flags that helps a specific old CPU designs */
395 /*****************************************************************************/
396
397 /* X86_TUNE_DOUBLE_WITH_ADD: Use add instead of sal to double value in
398 an integer register. */
399 DEF_TUNE (X86_TUNE_DOUBLE_WITH_ADD, "double_with_add", ~m_386)
400
401 /* X86_TUNE_ALWAYS_FANCY_MATH_387: controls use of fancy 387 operations,
402 such as fsqrt, fprem, fsin, fcos, fsincos etc.
403 Should be enabled for all targets that always has coprocesor. */
404 DEF_TUNE (X86_TUNE_ALWAYS_FANCY_MATH_387, "always_fancy_math_387",
405 ~(m_386 | m_486))
406
407 /* X86_TUNE_UNROLL_STRLEN: Produce (quite lame) unrolled sequence for
408 inline strlen. This affects only -minline-all-stringops mode. By
409 default we always dispatch to a library since our internal strlen
410 is bad. */
411 DEF_TUNE (X86_TUNE_UNROLL_STRLEN, "unroll_strlen", ~m_386)
412
413 /* X86_TUNE_SHIFT1: Enables use of short encoding of "sal reg" instead of
414 longer "sal $1, reg". */
415 DEF_TUNE (X86_TUNE_SHIFT1, "shift1", ~m_486)
416
417 /* X86_TUNE_ZERO_EXTEND_WITH_AND: Use AND instruction instead
418 of mozbl/movwl. */
419 DEF_TUNE (X86_TUNE_ZERO_EXTEND_WITH_AND, "zero_extend_with_and", m_486 | m_PENT)
420
421 /* X86_TUNE_PROMOTE_HIMODE_IMUL: Modern CPUs have same latency for HImode
422 and SImode multiply, but 386 and 486 do HImode multiply faster. */
423 DEF_TUNE (X86_TUNE_PROMOTE_HIMODE_IMUL, "promote_himode_imul",
424 ~(m_386 | m_486))
425
426 /* X86_TUNE_FAST_PREFIX: Enable demoting some 32bit or 64bit arithmetic
427 into 16bit/8bit when resulting sequence is shorter. For example
428 for "and $-65536, reg" to 16bit store of 0. */
429 DEF_TUNE (X86_TUNE_FAST_PREFIX, "fast_prefix", ~(m_386 | m_486 | m_PENT))
430
431 /* X86_TUNE_READ_MODIFY_WRITE: Enable use of read modify write instructions
432 such as "add $1, mem". */
433 DEF_TUNE (X86_TUNE_READ_MODIFY_WRITE, "read_modify_write", ~m_PENT)
434
435 /* X86_TUNE_MOVE_M1_VIA_OR: On pentiums, it is faster to load -1 via OR
436 than a MOV. */
437 DEF_TUNE (X86_TUNE_MOVE_M1_VIA_OR, "move_m1_via_or", m_PENT)
438
439 /* X86_TUNE_NOT_UNPAIRABLE: NOT is not pairable on Pentium, while XOR is,
440 but one byte longer. */
441 DEF_TUNE (X86_TUNE_NOT_UNPAIRABLE, "not_unpairable", m_PENT)
442
443 /* X86_TUNE_PARTIAL_REG_STALL: Pentium pro, unlike later chips, handled
444 use of partial registers by renaming. This improved performance of 16bit
445 code where upper halves of registers are not used. It also leads to
446 an penalty whenever a 16bit store is followed by 32bit use. This flag
447 disables production of such sequences in common cases.
448 See also X86_TUNE_HIMODE_MATH.
449
450 In current implementation the partial register stalls are not eliminated
451 very well - they can be introduced via subregs synthesized by combine
452 and can happen in caller/callee saving sequences. */
453 DEF_TUNE (X86_TUNE_PARTIAL_REG_STALL, "partial_reg_stall", m_PPRO)
454
455 /* X86_TUNE_PROMOTE_QIMODE: When it is cheap, turn 8bit arithmetic to
456 corresponding 32bit arithmetic. */
457 DEF_TUNE (X86_TUNE_PROMOTE_QIMODE, "promote_qimode",
458 ~m_PPRO)
459
460 /* X86_TUNE_PROMOTE_HI_REGS: Same, but for 16bit artihmetic. Again we avoid
461 partial register stalls on PentiumPro targets. */
462 DEF_TUNE (X86_TUNE_PROMOTE_HI_REGS, "promote_hi_regs", m_PPRO)
463
464 /* X86_TUNE_HIMODE_MATH: Enable use of 16bit arithmetic.
465 On PPro this flag is meant to avoid partial register stalls. */
466 DEF_TUNE (X86_TUNE_HIMODE_MATH, "himode_math", ~m_PPRO)
467
468 /* X86_TUNE_SPLIT_LONG_MOVES: Avoid instructions moving immediates
469 directly to memory. */
470 DEF_TUNE (X86_TUNE_SPLIT_LONG_MOVES, "split_long_moves", m_PPRO)
471
472 /* X86_TUNE_USE_XCHGB: Use xchgb %rh,%rl instead of rolw/rorw $8,rx. */
473 DEF_TUNE (X86_TUNE_USE_XCHGB, "use_xchgb", m_PENT4)
474
475 /* X86_TUNE_USE_MOV0: Use "mov $0, reg" instead of "xor reg, reg" to clear
476 integer register. */
477 DEF_TUNE (X86_TUNE_USE_MOV0, "use_mov0", m_K6)
478
479 /* X86_TUNE_NOT_VECTORMODE: On AMD K6, NOT is vector decoded with memory
480 operand that cannot be represented using a modRM byte. The XOR
481 replacement is long decoded, so this split helps here as well. */
482 DEF_TUNE (X86_TUNE_NOT_VECTORMODE, "not_vectormode", m_K6)
483
484 /* X86_TUNE_AVOID_VECTOR_DECODE: Enable splitters that avoid vector decoded
485 forms of instructions on K8 targets. */
486 DEF_TUNE (X86_TUNE_AVOID_VECTOR_DECODE, "avoid_vector_decode",
487 m_K8)
488
489 /*****************************************************************************/
490 /* This never worked well before. */
491 /*****************************************************************************/
492
493 /* X86_TUNE_BRANCH_PREDICTION_HINTS: Branch hints were put in P4 based
494 on simulation result. But after P4 was made, no performance benefit
495 was observed with branch hints. It also increases the code size.
496 As a result, icc never generates branch hints. */
497 DEF_TUNE (X86_TUNE_BRANCH_PREDICTION_HINTS, "branch_prediction_hints", 0)
498
499 /* X86_TUNE_QIMODE_MATH: Enable use of 8bit arithmetic. */
500 DEF_TUNE (X86_TUNE_QIMODE_MATH, "qimode_math", ~0)
501
502 /* X86_TUNE_PROMOTE_QI_REGS: This enables generic code that promotes all 8bit
503 arithmetic to 32bit via PROMOTE_MODE macro. This code generation scheme
504 is usually used for RISC targets. */
505 DEF_TUNE (X86_TUNE_PROMOTE_QI_REGS, "promote_qi_regs", 0)