]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/i386/x86-tune.def
x86: Add TARGET_AVX256_[MOVE|STORE]_BY_PIECES
[thirdparty/gcc.git] / gcc / config / i386 / x86-tune.def
1 /* Definitions of x86 tunable features.
2 Copyright (C) 2013-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License and
17 a copy of the GCC Runtime Library Exception along with this program;
18 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Tuning for a given CPU XXXX consists of:
22 - adding new CPU into:
23 - adding PROCESSOR_XXX to processor_type (in i386.h)
24 - possibly adding XXX into CPU attribute in i386.md
25 - adding XXX to processor_alias_table (in i386.c)
26 - introducing ix86_XXX_cost in i386.c
27 - Stringop generation table can be build based on test_stringop
28 - script (once rest of tuning is complete)
29 - designing a scheduler model in
30 - XXXX.md file
31 - Updating ix86_issue_rate and ix86_adjust_cost in i386.md
32 - possibly updating ia32_multipass_dfa_lookahead, ix86_sched_reorder
33 and ix86_sched_init_global if those tricks are needed.
34 - Tunning the flags bellow. Those are split into sections and each
35 section is very roughly ordered by importance. */
36
37 /*****************************************************************************/
38 /* Scheduling flags. */
39 /*****************************************************************************/
40
41 /* X86_TUNE_SCHEDULE: Enable scheduling. */
42 DEF_TUNE (X86_TUNE_SCHEDULE, "schedule",
43 m_PENT | m_LAKEMONT | m_PPRO | m_CORE_ALL | m_BONNELL | m_SILVERMONT
44 | m_INTEL | m_KNL | m_KNM | m_K6_GEODE | m_AMD_MULTIPLE | m_GOLDMONT
45 | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC)
46
47 /* X86_TUNE_PARTIAL_REG_DEPENDENCY: Enable more register renaming
48 on modern chips. Preffer stores affecting whole integer register
49 over partial stores. For example preffer MOVZBL or MOVQ to load 8bit
50 value over movb. */
51 DEF_TUNE (X86_TUNE_PARTIAL_REG_DEPENDENCY, "partial_reg_dependency",
52 m_P4_NOCONA | m_CORE2 | m_NEHALEM | m_SANDYBRIDGE | m_CORE_AVX2
53 | m_BONNELL | m_SILVERMONT | m_GOLDMONT | m_GOLDMONT_PLUS | m_INTEL
54 | m_KNL | m_KNM | m_AMD_MULTIPLE | m_TREMONT
55 | m_GENERIC)
56
57 /* X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY: This knob promotes all store
58 destinations to be 128bit to allow register renaming on 128bit SSE units,
59 but usually results in one extra microop on 64bit SSE units.
60 Experimental results shows that disabling this option on P4 brings over 20%
61 SPECfp regression, while enabling it on K8 brings roughly 2.4% regression
62 that can be partly masked by careful scheduling of moves. */
63 DEF_TUNE (X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY, "sse_partial_reg_dependency",
64 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_AMDFAM10
65 | m_BDVER | m_ZNVER | m_GENERIC)
66
67 /* X86_TUNE_SSE_SPLIT_REGS: Set for machines where the type and dependencies
68 are resolved on SSE register parts instead of whole registers, so we may
69 maintain just lower part of scalar values in proper format leaving the
70 upper part undefined. */
71 DEF_TUNE (X86_TUNE_SSE_SPLIT_REGS, "sse_split_regs", m_ATHLON_K8)
72
73 /* X86_TUNE_PARTIAL_FLAG_REG_STALL: this flag disables use of flags
74 set by instructions affecting just some flags (in particular shifts).
75 This is because Core2 resolves dependencies on whole flags register
76 and such sequences introduce false dependency on previous instruction
77 setting full flags.
78
79 The flags does not affect generation of INC and DEC that is controlled
80 by X86_TUNE_USE_INCDEC. */
81
82 DEF_TUNE (X86_TUNE_PARTIAL_FLAG_REG_STALL, "partial_flag_reg_stall",
83 m_CORE2)
84
85 /* X86_TUNE_MOVX: Enable to zero extend integer registers to avoid
86 partial dependencies. */
87 DEF_TUNE (X86_TUNE_MOVX, "movx",
88 m_PPRO | m_P4_NOCONA | m_CORE2 | m_NEHALEM | m_SANDYBRIDGE
89 | m_BONNELL | m_SILVERMONT | m_GOLDMONT | m_KNL | m_KNM | m_INTEL
90 | m_GOLDMONT_PLUS | m_GEODE | m_AMD_MULTIPLE
91 | m_CORE_AVX2 | m_TREMONT | m_GENERIC)
92
93 /* X86_TUNE_MEMORY_MISMATCH_STALL: Avoid partial stores that are followed by
94 full sized loads. */
95 DEF_TUNE (X86_TUNE_MEMORY_MISMATCH_STALL, "memory_mismatch_stall",
96 m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT | m_INTEL
97 | m_KNL | m_KNM | m_GOLDMONT | m_GOLDMONT_PLUS | m_AMD_MULTIPLE
98 | m_TREMONT | m_GENERIC)
99
100 /* X86_TUNE_FUSE_CMP_AND_BRANCH_32: Fuse compare with a subsequent
101 conditional jump instruction for 32 bit TARGET. */
102 DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_32, "fuse_cmp_and_branch_32",
103 m_CORE_ALL | m_BDVER | m_ZNVER | m_GENERIC)
104
105 /* X86_TUNE_FUSE_CMP_AND_BRANCH_64: Fuse compare with a subsequent
106 conditional jump instruction for TARGET_64BIT. */
107 DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_64, "fuse_cmp_and_branch_64",
108 m_NEHALEM | m_SANDYBRIDGE | m_CORE_AVX2 | m_BDVER
109 | m_ZNVER | m_GENERIC)
110
111 /* X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS: Fuse compare with a
112 subsequent conditional jump instruction when the condition jump
113 check sign flag (SF) or overflow flag (OF). */
114 DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS, "fuse_cmp_and_branch_soflags",
115 m_NEHALEM | m_SANDYBRIDGE | m_CORE_AVX2 | m_BDVER
116 | m_ZNVER | m_GENERIC)
117
118 /* X86_TUNE_FUSE_ALU_AND_BRANCH: Fuse alu with a subsequent conditional
119 jump instruction when the alu instruction produces the CCFLAG consumed by
120 the conditional jump instruction. */
121 DEF_TUNE (X86_TUNE_FUSE_ALU_AND_BRANCH, "fuse_alu_and_branch",
122 m_SANDYBRIDGE | m_CORE_AVX2 | m_GENERIC)
123
124
125 /*****************************************************************************/
126 /* Function prologue, epilogue and function calling sequences. */
127 /*****************************************************************************/
128
129 /* X86_TUNE_ACCUMULATE_OUTGOING_ARGS: Allocate stack space for outgoing
130 arguments in prologue/epilogue instead of separately for each call
131 by push/pop instructions.
132 This increase code size by about 5% in 32bit mode, less so in 64bit mode
133 because parameters are passed in registers. It is considerable
134 win for targets without stack engine that prevents multple push operations
135 to happen in parallel. */
136
137 DEF_TUNE (X86_TUNE_ACCUMULATE_OUTGOING_ARGS, "accumulate_outgoing_args",
138 m_PPRO | m_P4_NOCONA | m_BONNELL | m_SILVERMONT | m_KNL | m_KNM | m_INTEL
139 | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT | m_ATHLON_K8)
140
141 /* X86_TUNE_PROLOGUE_USING_MOVE: Do not use push/pop in prologues that are
142 considered on critical path. */
143 DEF_TUNE (X86_TUNE_PROLOGUE_USING_MOVE, "prologue_using_move",
144 m_PPRO | m_ATHLON_K8)
145
146 /* X86_TUNE_PROLOGUE_USING_MOVE: Do not use push/pop in epilogues that are
147 considered on critical path. */
148 DEF_TUNE (X86_TUNE_EPILOGUE_USING_MOVE, "epilogue_using_move",
149 m_PPRO | m_ATHLON_K8)
150
151 /* X86_TUNE_USE_LEAVE: Use "leave" instruction in epilogues where it fits. */
152 DEF_TUNE (X86_TUNE_USE_LEAVE, "use_leave",
153 m_386 | m_CORE_ALL | m_K6_GEODE | m_AMD_MULTIPLE | m_GENERIC)
154
155 /* X86_TUNE_PUSH_MEMORY: Enable generation of "push mem" instructions.
156 Some chips, like 486 and Pentium works faster with separate load
157 and push instructions. */
158 DEF_TUNE (X86_TUNE_PUSH_MEMORY, "push_memory",
159 m_386 | m_P4_NOCONA | m_CORE_ALL | m_K6_GEODE | m_AMD_MULTIPLE
160 | m_GENERIC)
161
162 /* X86_TUNE_SINGLE_PUSH: Enable if single push insn is preferred
163 over esp subtraction. */
164 DEF_TUNE (X86_TUNE_SINGLE_PUSH, "single_push", m_386 | m_486 | m_PENT
165 | m_LAKEMONT | m_K6_GEODE)
166
167 /* X86_TUNE_DOUBLE_PUSH. Enable if double push insn is preferred
168 over esp subtraction. */
169 DEF_TUNE (X86_TUNE_DOUBLE_PUSH, "double_push", m_PENT | m_LAKEMONT
170 | m_K6_GEODE)
171
172 /* X86_TUNE_SINGLE_POP: Enable if single pop insn is preferred
173 over esp addition. */
174 DEF_TUNE (X86_TUNE_SINGLE_POP, "single_pop", m_386 | m_486 | m_PENT
175 | m_LAKEMONT | m_PPRO)
176
177 /* X86_TUNE_DOUBLE_POP: Enable if double pop insn is preferred
178 over esp addition. */
179 DEF_TUNE (X86_TUNE_DOUBLE_POP, "double_pop", m_PENT | m_LAKEMONT)
180
181 /*****************************************************************************/
182 /* Branch predictor tuning */
183 /*****************************************************************************/
184
185 /* X86_TUNE_PAD_SHORT_FUNCTION: Make every function to be at least 4
186 instructions long. */
187 DEF_TUNE (X86_TUNE_PAD_SHORT_FUNCTION, "pad_short_function", m_BONNELL)
188
189 /* X86_TUNE_PAD_RETURNS: Place NOP before every RET that is a destination
190 of conditional jump or directly preceded by other jump instruction.
191 This is important for AND K8-AMDFAM10 because the branch prediction
192 architecture expect at most one jump per 2 byte window. Failing to
193 pad returns leads to misaligned return stack. */
194 DEF_TUNE (X86_TUNE_PAD_RETURNS, "pad_returns",
195 m_ATHLON_K8 | m_AMDFAM10)
196
197 /* X86_TUNE_FOUR_JUMP_LIMIT: Some CPU cores are not able to predict more
198 than 4 branch instructions in the 16 byte window. */
199 DEF_TUNE (X86_TUNE_FOUR_JUMP_LIMIT, "four_jump_limit",
200 m_PPRO | m_P4_NOCONA | m_BONNELL | m_SILVERMONT | m_KNL | m_KNM
201 | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT | m_INTEL | m_ATHLON_K8
202 | m_AMDFAM10)
203
204 /*****************************************************************************/
205 /* Integer instruction selection tuning */
206 /*****************************************************************************/
207
208 /* X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL: Enable software prefetching
209 at -O3. For the moment, the prefetching seems badly tuned for Intel
210 chips. */
211 DEF_TUNE (X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL, "software_prefetching_beneficial",
212 m_K6_GEODE | m_ATHLON_K8 | m_AMDFAM10 | m_BDVER | m_BTVER)
213
214 /* X86_TUNE_LCP_STALL: Avoid an expensive length-changing prefix stall
215 on 16-bit immediate moves into memory on Core2 and Corei7. */
216 DEF_TUNE (X86_TUNE_LCP_STALL, "lcp_stall", m_CORE_ALL | m_GENERIC)
217
218 /* X86_TUNE_READ_MODIFY: Enable use of read-modify instructions such
219 as "add mem, reg". */
220 DEF_TUNE (X86_TUNE_READ_MODIFY, "read_modify", ~(m_PENT | m_LAKEMONT | m_PPRO))
221
222 /* X86_TUNE_USE_INCDEC: Enable use of inc/dec instructions.
223
224 Core2 and nehalem has stall of 7 cycles for partial flag register stalls.
225 Sandy bridge and Ivy bridge generate extra uop. On Haswell this extra uop
226 is output only when the values needs to be really merged, which is not
227 done by GCC generated code. */
228 DEF_TUNE (X86_TUNE_USE_INCDEC, "use_incdec",
229 ~(m_P4_NOCONA | m_CORE2 | m_NEHALEM | m_SANDYBRIDGE
230 | m_BONNELL | m_SILVERMONT | m_INTEL | m_KNL | m_KNM | m_GOLDMONT
231 | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC))
232
233 /* X86_TUNE_INTEGER_DFMODE_MOVES: Enable if integer moves are preferred
234 for DFmode copies */
235 DEF_TUNE (X86_TUNE_INTEGER_DFMODE_MOVES, "integer_dfmode_moves",
236 ~(m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
237 | m_KNL | m_KNM | m_INTEL | m_GEODE | m_AMD_MULTIPLE | m_GOLDMONT
238 | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC))
239
240 /* X86_TUNE_OPT_AGU: Optimize for Address Generation Unit. This flag
241 will impact LEA instruction selection. */
242 DEF_TUNE (X86_TUNE_OPT_AGU, "opt_agu", m_BONNELL | m_SILVERMONT | m_KNL
243 | m_KNM | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT | m_INTEL)
244
245 /* X86_TUNE_AVOID_LEA_FOR_ADDR: Avoid lea for address computation. */
246 DEF_TUNE (X86_TUNE_AVOID_LEA_FOR_ADDR, "avoid_lea_for_addr",
247 m_BONNELL | m_SILVERMONT | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT
248 | m_KNL | m_KNM)
249
250 /* X86_TUNE_SLOW_IMUL_IMM32_MEM: Imul of 32-bit constant and memory is
251 vector path on AMD machines.
252 FIXME: Do we need to enable this for core? */
253 DEF_TUNE (X86_TUNE_SLOW_IMUL_IMM32_MEM, "slow_imul_imm32_mem",
254 m_K8 | m_AMDFAM10)
255
256 /* X86_TUNE_SLOW_IMUL_IMM8: Imul of 8-bit constant is vector path on AMD
257 machines.
258 FIXME: Do we need to enable this for core? */
259 DEF_TUNE (X86_TUNE_SLOW_IMUL_IMM8, "slow_imul_imm8",
260 m_K8 | m_AMDFAM10)
261
262 /* X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE: Try to avoid memory operands for
263 a conditional move. */
264 DEF_TUNE (X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE, "avoid_mem_opnd_for_cmove",
265 m_BONNELL | m_SILVERMONT | m_GOLDMONT | m_GOLDMONT_PLUS | m_KNL
266 | m_KNM | m_TREMONT | m_INTEL)
267
268 /* X86_TUNE_SINGLE_STRINGOP: Enable use of single string operations, such
269 as MOVS and STOS (without a REP prefix) to move/set sequences of bytes. */
270 DEF_TUNE (X86_TUNE_SINGLE_STRINGOP, "single_stringop", m_386 | m_P4_NOCONA)
271
272 /* X86_TUNE_PREFER_KNOWN_REP_MOVSB_STOSB: Enable use of REP MOVSB/STOSB to
273 move/set sequences of bytes with known size. */
274 DEF_TUNE (X86_TUNE_PREFER_KNOWN_REP_MOVSB_STOSB,
275 "prefer_known_rep_movsb_stosb",
276 m_SKYLAKE | m_ALDERLAKE | m_CORE_AVX512)
277
278 /* X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES: Enable generation of
279 compact prologues and epilogues by issuing a misaligned moves. This
280 requires target to handle misaligned moves and partial memory stalls
281 reasonably well.
282 FIXME: This may actualy be a win on more targets than listed here. */
283 DEF_TUNE (X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES,
284 "misaligned_move_string_pro_epilogues",
285 m_386 | m_486 | m_CORE_ALL | m_AMD_MULTIPLE | m_GENERIC)
286
287 /* X86_TUNE_USE_SAHF: Controls use of SAHF. */
288 DEF_TUNE (X86_TUNE_USE_SAHF, "use_sahf",
289 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
290 | m_KNL | m_KNM | m_INTEL | m_K6_GEODE | m_K8 | m_AMDFAM10 | m_BDVER
291 | m_BTVER | m_ZNVER | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT
292 | m_GENERIC)
293
294 /* X86_TUNE_USE_CLTD: Controls use of CLTD and CTQO instructions. */
295 DEF_TUNE (X86_TUNE_USE_CLTD, "use_cltd",
296 ~(m_PENT | m_LAKEMONT | m_BONNELL | m_SILVERMONT | m_KNL | m_KNM | m_INTEL
297 | m_K6 | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT))
298
299 /* X86_TUNE_USE_BT: Enable use of BT (bit test) instructions. */
300 DEF_TUNE (X86_TUNE_USE_BT, "use_bt",
301 m_CORE_ALL | m_BONNELL | m_SILVERMONT | m_KNL | m_KNM | m_INTEL
302 | m_LAKEMONT | m_AMD_MULTIPLE | m_GOLDMONT | m_GOLDMONT_PLUS
303 | m_TREMONT | m_GENERIC)
304
305 /* X86_TUNE_AVOID_FALSE_DEP_FOR_BMI: Avoid false dependency
306 for bit-manipulation instructions. */
307 DEF_TUNE (X86_TUNE_AVOID_FALSE_DEP_FOR_BMI, "avoid_false_dep_for_bmi",
308 m_SANDYBRIDGE | m_CORE_AVX2 | m_GENERIC)
309
310 /* X86_TUNE_ADJUST_UNROLL: This enables adjusting the unroll factor based
311 on hardware capabilities. Bdver3 hardware has a loop buffer which makes
312 unrolling small loop less important. For, such architectures we adjust
313 the unroll factor so that the unrolled loop fits the loop buffer. */
314 DEF_TUNE (X86_TUNE_ADJUST_UNROLL, "adjust_unroll_factor", m_BDVER3 | m_BDVER4)
315
316 /* X86_TUNE_ONE_IF_CONV_INSNS: Restrict a number of cmov insns in
317 if-converted sequence to one. */
318 DEF_TUNE (X86_TUNE_ONE_IF_CONV_INSN, "one_if_conv_insn",
319 m_SILVERMONT | m_KNL | m_KNM | m_INTEL | m_CORE_ALL | m_GOLDMONT
320 | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC)
321
322 /* X86_TUNE_AVOID_MFENCE: Use lock prefixed instructions instead of mfence. */
323 DEF_TUNE (X86_TUNE_AVOID_MFENCE, "avoid_mfence",
324 m_CORE_ALL | m_BDVER | m_ZNVER | m_GENERIC)
325
326 /* X86_TUNE_EXPAND_ABS: This enables a new abs pattern by
327 generating instructions for abs (x) = (((signed) x >> (W-1) ^ x) -
328 (signed) x >> (W-1)) instead of cmove or SSE max/abs instructions. */
329 DEF_TUNE (X86_TUNE_EXPAND_ABS, "expand_abs",
330 m_CORE_ALL | m_SILVERMONT | m_KNL | m_KNM | m_GOLDMONT
331 | m_GOLDMONT_PLUS | m_TREMONT )
332
333 /*****************************************************************************/
334 /* 387 instruction selection tuning */
335 /*****************************************************************************/
336
337 /* X86_TUNE_USE_HIMODE_FIOP: Enables use of x87 instructions with 16bit
338 integer operand.
339 FIXME: Why this is disabled for modern chips? */
340 DEF_TUNE (X86_TUNE_USE_HIMODE_FIOP, "use_himode_fiop",
341 m_386 | m_486 | m_K6_GEODE)
342
343 /* X86_TUNE_USE_SIMODE_FIOP: Enables use of x87 instructions with 32bit
344 integer operand. */
345 DEF_TUNE (X86_TUNE_USE_SIMODE_FIOP, "use_simode_fiop",
346 ~(m_PENT | m_LAKEMONT | m_PPRO | m_CORE_ALL | m_BONNELL
347 | m_SILVERMONT | m_KNL | m_KNM | m_INTEL | m_AMD_MULTIPLE
348 | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC))
349
350 /* X86_TUNE_USE_FFREEP: Use freep instruction instead of fstp. */
351 DEF_TUNE (X86_TUNE_USE_FFREEP, "use_ffreep", m_AMD_MULTIPLE)
352
353 /* X86_TUNE_EXT_80387_CONSTANTS: Use fancy 80387 constants, such as PI. */
354 DEF_TUNE (X86_TUNE_EXT_80387_CONSTANTS, "ext_80387_constants",
355 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
356 | m_KNL | m_KNM | m_INTEL | m_K6_GEODE | m_ATHLON_K8 | m_GOLDMONT
357 | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC)
358
359 /*****************************************************************************/
360 /* SSE instruction selection tuning */
361 /*****************************************************************************/
362
363 /* X86_TUNE_GENERAL_REGS_SSE_SPILL: Try to spill general regs to SSE
364 regs instead of memory. */
365 DEF_TUNE (X86_TUNE_GENERAL_REGS_SSE_SPILL, "general_regs_sse_spill",
366 m_CORE_ALL)
367
368 /* X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL: Use movups for misaligned loads instead
369 of a sequence loading registers by parts. */
370 DEF_TUNE (X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL, "sse_unaligned_load_optimal",
371 m_NEHALEM | m_SANDYBRIDGE | m_CORE_AVX2 | m_SILVERMONT | m_KNL | m_KNM
372 | m_INTEL | m_GOLDMONT | m_GOLDMONT_PLUS
373 | m_TREMONT | m_AMDFAM10 | m_BDVER | m_BTVER | m_ZNVER | m_GENERIC)
374
375 /* X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL: Use movups for misaligned stores
376 instead of a sequence loading registers by parts. */
377 DEF_TUNE (X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL, "sse_unaligned_store_optimal",
378 m_NEHALEM | m_SANDYBRIDGE | m_CORE_AVX2 | m_SILVERMONT | m_KNL | m_KNM
379 | m_INTEL | m_GOLDMONT | m_GOLDMONT_PLUS
380 | m_TREMONT | m_BDVER | m_ZNVER | m_GENERIC)
381
382 /* X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL: Use packed single
383 precision 128bit instructions instead of double where possible. */
384 DEF_TUNE (X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL, "sse_packed_single_insn_optimal",
385 m_BDVER | m_ZNVER)
386
387 /* X86_TUNE_SSE_TYPELESS_STORES: Always movaps/movups for 128bit stores. */
388 DEF_TUNE (X86_TUNE_SSE_TYPELESS_STORES, "sse_typeless_stores",
389 m_AMD_MULTIPLE | m_CORE_ALL | m_GENERIC)
390
391 /* X86_TUNE_SSE_LOAD0_BY_PXOR: Always use pxor to load0 as opposed to
392 xorps/xorpd and other variants. */
393 DEF_TUNE (X86_TUNE_SSE_LOAD0_BY_PXOR, "sse_load0_by_pxor",
394 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BDVER | m_BTVER | m_ZNVER
395 | m_GENERIC)
396
397 /* X86_TUNE_INTER_UNIT_MOVES_TO_VEC: Enable moves in from integer
398 to SSE registers. If disabled, the moves will be done by storing
399 the value to memory and reloading.
400 Enable this flag for generic - the only relevant architecture preferring
401 no inter-unit moves is Buldozer. While this makes small regression on SPECfp
402 scores (sub 0.3%), disabling inter-unit moves penalizes noticeably hand
403 written vectorized code which use i.e. _mm_set_epi16. */
404 DEF_TUNE (X86_TUNE_INTER_UNIT_MOVES_TO_VEC, "inter_unit_moves_to_vec",
405 ~(m_ATHLON_K8 | m_AMDFAM10 | m_BDVER | m_BTVER))
406
407 /* X86_TUNE_INTER_UNIT_MOVES_TO_VEC: Enable moves in from SSE
408 to integer registers. If disabled, the moves will be done by storing
409 the value to memory and reloading. */
410 DEF_TUNE (X86_TUNE_INTER_UNIT_MOVES_FROM_VEC, "inter_unit_moves_from_vec",
411 ~m_ATHLON_K8)
412
413 /* X86_TUNE_INTER_UNIT_CONVERSIONS: Enable float<->integer conversions
414 to use both SSE and integer registers at a same time. */
415 DEF_TUNE (X86_TUNE_INTER_UNIT_CONVERSIONS, "inter_unit_conversions",
416 ~(m_AMDFAM10 | m_BDVER))
417
418 /* X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS: Try to split memory operand for
419 fp converts to destination register. */
420 DEF_TUNE (X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS, "split_mem_opnd_for_fp_converts",
421 m_SILVERMONT | m_KNL | m_KNM | m_GOLDMONT | m_GOLDMONT_PLUS
422 | m_TREMONT | m_INTEL)
423
424 /* X86_TUNE_USE_VECTOR_FP_CONVERTS: Prefer vector packed SSE conversion
425 from FP to FP. This form of instructions avoids partial write to the
426 destination. */
427 DEF_TUNE (X86_TUNE_USE_VECTOR_FP_CONVERTS, "use_vector_fp_converts",
428 m_AMDFAM10)
429
430 /* X86_TUNE_USE_VECTOR_CONVERTS: Prefer vector packed SSE conversion
431 from integer to FP. */
432 DEF_TUNE (X86_TUNE_USE_VECTOR_CONVERTS, "use_vector_converts", m_AMDFAM10)
433
434 /* X86_TUNE_SLOW_SHUFB: Indicates tunings with slow pshufb instruction. */
435 DEF_TUNE (X86_TUNE_SLOW_PSHUFB, "slow_pshufb",
436 m_BONNELL | m_SILVERMONT | m_KNL | m_KNM | m_GOLDMONT
437 | m_GOLDMONT_PLUS | m_TREMONT | m_INTEL)
438
439 /* X86_TUNE_AVOID_4BYTE_PREFIXES: Avoid instructions requiring 4+ bytes of prefixes. */
440 DEF_TUNE (X86_TUNE_AVOID_4BYTE_PREFIXES, "avoid_4byte_prefixes",
441 m_SILVERMONT | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT | m_INTEL)
442
443 /* X86_TUNE_USE_GATHER: Use gather instructions. */
444 DEF_TUNE (X86_TUNE_USE_GATHER, "use_gather",
445 ~(m_ZNVER1 | m_ZNVER2 | m_GENERIC))
446
447 /* X86_TUNE_AVOID_128FMA_CHAINS: Avoid creating loops with tight 128bit or
448 smaller FMA chain. */
449 DEF_TUNE (X86_TUNE_AVOID_128FMA_CHAINS, "avoid_fma_chains", m_ZNVER)
450
451 /* X86_TUNE_AVOID_256FMA_CHAINS: Avoid creating loops with tight 256bit or
452 smaller FMA chain. */
453 DEF_TUNE (X86_TUNE_AVOID_256FMA_CHAINS, "avoid_fma256_chains", m_ZNVER2 | m_ZNVER3)
454
455 /* X86_TUNE_V2DF_REDUCTION_PREFER_PHADDPD: Prefer haddpd
456 for v2df vector reduction. */
457 DEF_TUNE (X86_TUNE_V2DF_REDUCTION_PREFER_HADDPD,
458 "v2df_reduction_prefer_haddpd", m_NONE)
459
460 /*****************************************************************************/
461 /* AVX instruction selection tuning (some of SSE flags affects AVX, too) */
462 /*****************************************************************************/
463
464 /* X86_TUNE_AVX256_UNALIGNED_LOAD_OPTIMAL: if false, unaligned loads are
465 split. */
466 DEF_TUNE (X86_TUNE_AVX256_UNALIGNED_LOAD_OPTIMAL, "256_unaligned_load_optimal",
467 ~(m_NEHALEM | m_SANDYBRIDGE))
468
469 /* X86_TUNE_AVX256_UNALIGNED_STORE_OPTIMAL: if false, unaligned stores are
470 split. */
471 DEF_TUNE (X86_TUNE_AVX256_UNALIGNED_STORE_OPTIMAL, "256_unaligned_store_optimal",
472 ~(m_NEHALEM | m_SANDYBRIDGE | m_BDVER | m_ZNVER1))
473
474 /* X86_TUNE_AVX256_SPLIT_REGS: if true, AVX256 ops are split into two AVX128 ops. */
475 DEF_TUNE (X86_TUNE_AVX256_SPLIT_REGS, "avx256_split_regs",m_BDVER | m_BTVER2
476 | m_ZNVER1)
477
478 /* X86_TUNE_AVX128_OPTIMAL: Enable 128-bit AVX instruction generation for
479 the auto-vectorizer. */
480 DEF_TUNE (X86_TUNE_AVX128_OPTIMAL, "avx128_optimal", m_BDVER | m_BTVER2
481 | m_ZNVER1)
482
483 /* X86_TUNE_AVX256_OPTIMAL: Use 256-bit AVX instructions instead of 512-bit AVX
484 instructions in the auto-vectorizer. */
485 DEF_TUNE (X86_TUNE_AVX256_OPTIMAL, "avx256_optimal", m_CORE_AVX512)
486
487 /* X86_TUNE_AVX256_MOVE_BY_PIECES: Optimize move_by_pieces with 256-bit
488 AVX instructions. */
489 DEF_TUNE (X86_TUNE_AVX256_MOVE_BY_PIECES, "avx256_move_by_pieces",
490 m_ALDERLAKE | m_CORE_AVX512)
491
492 /* X86_TUNE_AVX256_STORE_BY_PIECES: Optimize store_by_pieces with 256-bit
493 AVX instructions. */
494 DEF_TUNE (X86_TUNE_AVX256_STORE_BY_PIECES, "avx256_store_by_pieces",
495 m_ALDERLAKE | m_CORE_AVX512)
496
497 /*****************************************************************************/
498 /*****************************************************************************/
499 /* Historical relics: tuning flags that helps a specific old CPU designs */
500 /*****************************************************************************/
501
502 /* X86_TUNE_DOUBLE_WITH_ADD: Use add instead of sal to double value in
503 an integer register. */
504 DEF_TUNE (X86_TUNE_DOUBLE_WITH_ADD, "double_with_add", ~m_386)
505
506 /* X86_TUNE_ALWAYS_FANCY_MATH_387: controls use of fancy 387 operations,
507 such as fsqrt, fprem, fsin, fcos, fsincos etc.
508 Should be enabled for all targets that always has coprocesor. */
509 DEF_TUNE (X86_TUNE_ALWAYS_FANCY_MATH_387, "always_fancy_math_387",
510 ~(m_386 | m_486 | m_LAKEMONT))
511
512 /* X86_TUNE_UNROLL_STRLEN: Produce (quite lame) unrolled sequence for
513 inline strlen. This affects only -minline-all-stringops mode. By
514 default we always dispatch to a library since our internal strlen
515 is bad. */
516 DEF_TUNE (X86_TUNE_UNROLL_STRLEN, "unroll_strlen", ~m_386)
517
518 /* X86_TUNE_SHIFT1: Enables use of short encoding of "sal reg" instead of
519 longer "sal $1, reg". */
520 DEF_TUNE (X86_TUNE_SHIFT1, "shift1", ~m_486)
521
522 /* X86_TUNE_ZERO_EXTEND_WITH_AND: Use AND instruction instead
523 of mozbl/movwl. */
524 DEF_TUNE (X86_TUNE_ZERO_EXTEND_WITH_AND, "zero_extend_with_and",
525 m_486 | m_PENT)
526
527 /* X86_TUNE_PROMOTE_HIMODE_IMUL: Modern CPUs have same latency for HImode
528 and SImode multiply, but 386 and 486 do HImode multiply faster. */
529 DEF_TUNE (X86_TUNE_PROMOTE_HIMODE_IMUL, "promote_himode_imul",
530 ~(m_386 | m_486))
531
532 /* X86_TUNE_FAST_PREFIX: Enable demoting some 32bit or 64bit arithmetic
533 into 16bit/8bit when resulting sequence is shorter. For example
534 for "and $-65536, reg" to 16bit store of 0. */
535 DEF_TUNE (X86_TUNE_FAST_PREFIX, "fast_prefix",
536 ~(m_386 | m_486 | m_PENT | m_LAKEMONT))
537
538 /* X86_TUNE_READ_MODIFY_WRITE: Enable use of read modify write instructions
539 such as "add $1, mem". */
540 DEF_TUNE (X86_TUNE_READ_MODIFY_WRITE, "read_modify_write",
541 ~(m_PENT | m_LAKEMONT))
542
543 /* X86_TUNE_MOVE_M1_VIA_OR: On pentiums, it is faster to load -1 via OR
544 than a MOV. */
545 DEF_TUNE (X86_TUNE_MOVE_M1_VIA_OR, "move_m1_via_or", m_PENT | m_LAKEMONT)
546
547 /* X86_TUNE_NOT_UNPAIRABLE: NOT is not pairable on Pentium, while XOR is,
548 but one byte longer. */
549 DEF_TUNE (X86_TUNE_NOT_UNPAIRABLE, "not_unpairable", m_PENT | m_LAKEMONT)
550
551 /* X86_TUNE_PARTIAL_REG_STALL: Pentium pro, unlike later chips, handled
552 use of partial registers by renaming. This improved performance of 16bit
553 code where upper halves of registers are not used. It also leads to
554 an penalty whenever a 16bit store is followed by 32bit use. This flag
555 disables production of such sequences in common cases.
556 See also X86_TUNE_HIMODE_MATH.
557
558 In current implementation the partial register stalls are not eliminated
559 very well - they can be introduced via subregs synthesized by combine
560 and can happen in caller/callee saving sequences. */
561 DEF_TUNE (X86_TUNE_PARTIAL_REG_STALL, "partial_reg_stall", m_PPRO)
562
563 /* X86_TUNE_PROMOTE_QIMODE: When it is cheap, turn 8bit arithmetic to
564 corresponding 32bit arithmetic. */
565 DEF_TUNE (X86_TUNE_PROMOTE_QIMODE, "promote_qimode",
566 ~m_PPRO)
567
568 /* X86_TUNE_PROMOTE_HI_REGS: Same, but for 16bit artihmetic. Again we avoid
569 partial register stalls on PentiumPro targets. */
570 DEF_TUNE (X86_TUNE_PROMOTE_HI_REGS, "promote_hi_regs", m_PPRO)
571
572 /* X86_TUNE_HIMODE_MATH: Enable use of 16bit arithmetic.
573 On PPro this flag is meant to avoid partial register stalls. */
574 DEF_TUNE (X86_TUNE_HIMODE_MATH, "himode_math", ~m_PPRO)
575
576 /* X86_TUNE_SPLIT_LONG_MOVES: Avoid instructions moving immediates
577 directly to memory. */
578 DEF_TUNE (X86_TUNE_SPLIT_LONG_MOVES, "split_long_moves", m_PPRO)
579
580 /* X86_TUNE_USE_XCHGB: Use xchgb %rh,%rl instead of rolw/rorw $8,rx. */
581 DEF_TUNE (X86_TUNE_USE_XCHGB, "use_xchgb", m_PENT4)
582
583 /* X86_TUNE_USE_MOV0: Use "mov $0, reg" instead of "xor reg, reg" to clear
584 integer register. */
585 DEF_TUNE (X86_TUNE_USE_MOV0, "use_mov0", m_K6)
586
587 /* X86_TUNE_NOT_VECTORMODE: On AMD K6, NOT is vector decoded with memory
588 operand that cannot be represented using a modRM byte. The XOR
589 replacement is long decoded, so this split helps here as well. */
590 DEF_TUNE (X86_TUNE_NOT_VECTORMODE, "not_vectormode", m_K6)
591
592 /* X86_TUNE_AVOID_VECTOR_DECODE: Enable splitters that avoid vector decoded
593 forms of instructions on K8 targets. */
594 DEF_TUNE (X86_TUNE_AVOID_VECTOR_DECODE, "avoid_vector_decode",
595 m_K8)
596
597 /*****************************************************************************/
598 /* This never worked well before. */
599 /*****************************************************************************/
600
601 /* X86_TUNE_BRANCH_PREDICTION_HINTS: Branch hints were put in P4 based
602 on simulation result. But after P4 was made, no performance benefit
603 was observed with branch hints. It also increases the code size.
604 As a result, icc never generates branch hints. */
605 DEF_TUNE (X86_TUNE_BRANCH_PREDICTION_HINTS, "branch_prediction_hints", m_NONE)
606
607 /* X86_TUNE_QIMODE_MATH: Enable use of 8bit arithmetic. */
608 DEF_TUNE (X86_TUNE_QIMODE_MATH, "qimode_math", m_ALL)
609
610 /* X86_TUNE_PROMOTE_QI_REGS: This enables generic code that promotes all 8bit
611 arithmetic to 32bit via PROMOTE_MODE macro. This code generation scheme
612 is usually used for RISC targets. */
613 DEF_TUNE (X86_TUNE_PROMOTE_QI_REGS, "promote_qi_regs", m_NONE)
614
615 /* X86_TUNE_EMIT_VZEROUPPER: This enables vzeroupper instruction insertion
616 before a transfer of control flow out of the function. */
617 DEF_TUNE (X86_TUNE_EMIT_VZEROUPPER, "emit_vzeroupper", ~m_KNL)