]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/i386/x86-tune.def
Fix TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL handling.
[thirdparty/gcc.git] / gcc / config / i386 / x86-tune.def
1 /* Definitions of x86 tunable features.
2 Copyright (C) 2013-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License and
17 a copy of the GCC Runtime Library Exception along with this program;
18 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Tuning for a given CPU XXXX consists of:
22 - adding new CPU into:
23 - adding PROCESSOR_XXX to processor_type (in i386.h)
24 - possibly adding XXX into CPU attribute in i386.md
25 - adding XXX to processor_alias_table (in i386.c)
26 - introducing ix86_XXX_cost in i386.c
27 - Stringop generation table can be build based on test_stringop
28 - script (once rest of tuning is complete)
29 - designing a scheduler model in
30 - XXXX.md file
31 - Updating ix86_issue_rate and ix86_adjust_cost in i386.md
32 - possibly updating ia32_multipass_dfa_lookahead, ix86_sched_reorder
33 and ix86_sched_init_global if those tricks are needed.
34 - Tunning the flags bellow. Those are split into sections and each
35 section is very roughly ordered by importance. */
36
37 /*****************************************************************************/
38 /* Scheduling flags. */
39 /*****************************************************************************/
40
41 /* X86_TUNE_SCHEDULE: Enable scheduling. */
42 DEF_TUNE (X86_TUNE_SCHEDULE, "schedule",
43 m_PENT | m_LAKEMONT | m_PPRO | m_CORE_ALL | m_BONNELL | m_SILVERMONT
44 | m_INTEL | m_KNL | m_KNM | m_K6_GEODE | m_AMD_MULTIPLE | m_GOLDMONT
45 | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC)
46
47 /* X86_TUNE_PARTIAL_REG_DEPENDENCY: Enable more register renaming
48 on modern chips. Preffer stores affecting whole integer register
49 over partial stores. For example preffer MOVZBL or MOVQ to load 8bit
50 value over movb. */
51 DEF_TUNE (X86_TUNE_PARTIAL_REG_DEPENDENCY, "partial_reg_dependency",
52 m_P4_NOCONA | m_CORE2 | m_NEHALEM | m_SANDYBRIDGE | m_CORE_AVX2
53 | m_BONNELL | m_SILVERMONT | m_GOLDMONT | m_GOLDMONT_PLUS | m_INTEL
54 | m_KNL | m_KNM | m_AMD_MULTIPLE | m_TREMONT
55 | m_GENERIC)
56
57 /* X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY: This knob promotes all store
58 destinations to be 128bit to allow register renaming on 128bit SSE units,
59 but usually results in one extra microop on 64bit SSE units.
60 Experimental results shows that disabling this option on P4 brings over 20%
61 SPECfp regression, while enabling it on K8 brings roughly 2.4% regression
62 that can be partly masked by careful scheduling of moves. */
63 DEF_TUNE (X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY, "sse_partial_reg_dependency",
64 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_AMDFAM10
65 | m_BDVER | m_ZNVER | m_GENERIC)
66
67 /* X86_TUNE_SSE_SPLIT_REGS: Set for machines where the type and dependencies
68 are resolved on SSE register parts instead of whole registers, so we may
69 maintain just lower part of scalar values in proper format leaving the
70 upper part undefined. */
71 DEF_TUNE (X86_TUNE_SSE_SPLIT_REGS, "sse_split_regs", m_ATHLON_K8)
72
73 /* X86_TUNE_PARTIAL_FLAG_REG_STALL: this flag disables use of of flags
74 set by instructions affecting just some flags (in particular shifts).
75 This is because Core2 resolves dependencies on whole flags register
76 and such sequences introduce false dependency on previous instruction
77 setting full flags.
78
79 The flags does not affect generation of INC and DEC that is controlled
80 by X86_TUNE_USE_INCDEC. */
81
82 DEF_TUNE (X86_TUNE_PARTIAL_FLAG_REG_STALL, "partial_flag_reg_stall",
83 m_CORE2)
84
85 /* X86_TUNE_MOVX: Enable to zero extend integer registers to avoid
86 partial dependencies. */
87 DEF_TUNE (X86_TUNE_MOVX, "movx",
88 m_PPRO | m_P4_NOCONA | m_CORE2 | m_NEHALEM | m_SANDYBRIDGE
89 | m_BONNELL | m_SILVERMONT | m_GOLDMONT | m_KNL | m_KNM | m_INTEL
90 | m_GOLDMONT_PLUS | m_GEODE | m_AMD_MULTIPLE
91 | m_CORE_AVX2 | m_TREMONT | m_GENERIC)
92
93 /* X86_TUNE_MEMORY_MISMATCH_STALL: Avoid partial stores that are followed by
94 full sized loads. */
95 DEF_TUNE (X86_TUNE_MEMORY_MISMATCH_STALL, "memory_mismatch_stall",
96 m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT | m_INTEL
97 | m_KNL | m_KNM | m_GOLDMONT | m_GOLDMONT_PLUS | m_AMD_MULTIPLE
98 | m_TREMONT | m_GENERIC)
99
100 /* X86_TUNE_FUSE_CMP_AND_BRANCH_32: Fuse compare with a subsequent
101 conditional jump instruction for 32 bit TARGET. */
102 DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_32, "fuse_cmp_and_branch_32",
103 m_CORE_ALL | m_BDVER | m_ZNVER | m_GENERIC)
104
105 /* X86_TUNE_FUSE_CMP_AND_BRANCH_64: Fuse compare with a subsequent
106 conditional jump instruction for TARGET_64BIT. */
107 DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_64, "fuse_cmp_and_branch_64",
108 m_NEHALEM | m_SANDYBRIDGE | m_CORE_AVX2 | m_BDVER
109 | m_ZNVER | m_GENERIC)
110
111 /* X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS: Fuse compare with a
112 subsequent conditional jump instruction when the condition jump
113 check sign flag (SF) or overflow flag (OF). */
114 DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS, "fuse_cmp_and_branch_soflags",
115 m_NEHALEM | m_SANDYBRIDGE | m_CORE_AVX2 | m_BDVER
116 | m_ZNVER | m_GENERIC)
117
118 /* X86_TUNE_FUSE_ALU_AND_BRANCH: Fuse alu with a subsequent conditional
119 jump instruction when the alu instruction produces the CCFLAG consumed by
120 the conditional jump instruction. */
121 DEF_TUNE (X86_TUNE_FUSE_ALU_AND_BRANCH, "fuse_alu_and_branch",
122 m_SANDYBRIDGE | m_CORE_AVX2 | m_GENERIC)
123
124
125 /*****************************************************************************/
126 /* Function prologue, epilogue and function calling sequences. */
127 /*****************************************************************************/
128
129 /* X86_TUNE_ACCUMULATE_OUTGOING_ARGS: Allocate stack space for outgoing
130 arguments in prologue/epilogue instead of separately for each call
131 by push/pop instructions.
132 This increase code size by about 5% in 32bit mode, less so in 64bit mode
133 because parameters are passed in registers. It is considerable
134 win for targets without stack engine that prevents multple push operations
135 to happen in parallel. */
136
137 DEF_TUNE (X86_TUNE_ACCUMULATE_OUTGOING_ARGS, "accumulate_outgoing_args",
138 m_PPRO | m_P4_NOCONA | m_BONNELL | m_SILVERMONT | m_KNL | m_KNM | m_INTEL
139 | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT | m_ATHLON_K8)
140
141 /* X86_TUNE_PROLOGUE_USING_MOVE: Do not use push/pop in prologues that are
142 considered on critical path. */
143 DEF_TUNE (X86_TUNE_PROLOGUE_USING_MOVE, "prologue_using_move",
144 m_PPRO | m_ATHLON_K8)
145
146 /* X86_TUNE_PROLOGUE_USING_MOVE: Do not use push/pop in epilogues that are
147 considered on critical path. */
148 DEF_TUNE (X86_TUNE_EPILOGUE_USING_MOVE, "epilogue_using_move",
149 m_PPRO | m_ATHLON_K8)
150
151 /* X86_TUNE_USE_LEAVE: Use "leave" instruction in epilogues where it fits. */
152 DEF_TUNE (X86_TUNE_USE_LEAVE, "use_leave",
153 m_386 | m_CORE_ALL | m_K6_GEODE | m_AMD_MULTIPLE | m_GENERIC)
154
155 /* X86_TUNE_PUSH_MEMORY: Enable generation of "push mem" instructions.
156 Some chips, like 486 and Pentium works faster with separate load
157 and push instructions. */
158 DEF_TUNE (X86_TUNE_PUSH_MEMORY, "push_memory",
159 m_386 | m_P4_NOCONA | m_CORE_ALL | m_K6_GEODE | m_AMD_MULTIPLE
160 | m_GENERIC)
161
162 /* X86_TUNE_SINGLE_PUSH: Enable if single push insn is preferred
163 over esp subtraction. */
164 DEF_TUNE (X86_TUNE_SINGLE_PUSH, "single_push", m_386 | m_486 | m_PENT
165 | m_LAKEMONT | m_K6_GEODE)
166
167 /* X86_TUNE_DOUBLE_PUSH. Enable if double push insn is preferred
168 over esp subtraction. */
169 DEF_TUNE (X86_TUNE_DOUBLE_PUSH, "double_push", m_PENT | m_LAKEMONT
170 | m_K6_GEODE)
171
172 /* X86_TUNE_SINGLE_POP: Enable if single pop insn is preferred
173 over esp addition. */
174 DEF_TUNE (X86_TUNE_SINGLE_POP, "single_pop", m_386 | m_486 | m_PENT
175 | m_LAKEMONT | m_PPRO)
176
177 /* X86_TUNE_DOUBLE_POP: Enable if double pop insn is preferred
178 over esp addition. */
179 DEF_TUNE (X86_TUNE_DOUBLE_POP, "double_pop", m_PENT | m_LAKEMONT)
180
181 /*****************************************************************************/
182 /* Branch predictor tuning */
183 /*****************************************************************************/
184
185 /* X86_TUNE_PAD_SHORT_FUNCTION: Make every function to be at least 4
186 instructions long. */
187 DEF_TUNE (X86_TUNE_PAD_SHORT_FUNCTION, "pad_short_function", m_BONNELL)
188
189 /* X86_TUNE_PAD_RETURNS: Place NOP before every RET that is a destination
190 of conditional jump or directly preceded by other jump instruction.
191 This is important for AND K8-AMDFAM10 because the branch prediction
192 architecture expect at most one jump per 2 byte window. Failing to
193 pad returns leads to misaligned return stack. */
194 DEF_TUNE (X86_TUNE_PAD_RETURNS, "pad_returns",
195 m_ATHLON_K8 | m_AMDFAM10)
196
197 /* X86_TUNE_FOUR_JUMP_LIMIT: Some CPU cores are not able to predict more
198 than 4 branch instructions in the 16 byte window. */
199 DEF_TUNE (X86_TUNE_FOUR_JUMP_LIMIT, "four_jump_limit",
200 m_PPRO | m_P4_NOCONA | m_BONNELL | m_SILVERMONT | m_KNL | m_KNM
201 | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT | m_INTEL | m_ATHLON_K8
202 | m_AMDFAM10)
203
204 /*****************************************************************************/
205 /* Integer instruction selection tuning */
206 /*****************************************************************************/
207
208 /* X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL: Enable software prefetching
209 at -O3. For the moment, the prefetching seems badly tuned for Intel
210 chips. */
211 DEF_TUNE (X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL, "software_prefetching_beneficial",
212 m_K6_GEODE | m_ATHLON_K8 | m_AMDFAM10 | m_BDVER | m_BTVER)
213
214 /* X86_TUNE_LCP_STALL: Avoid an expensive length-changing prefix stall
215 on 16-bit immediate moves into memory on Core2 and Corei7. */
216 DEF_TUNE (X86_TUNE_LCP_STALL, "lcp_stall", m_CORE_ALL | m_GENERIC)
217
218 /* X86_TUNE_READ_MODIFY: Enable use of read-modify instructions such
219 as "add mem, reg". */
220 DEF_TUNE (X86_TUNE_READ_MODIFY, "read_modify", ~(m_PENT | m_LAKEMONT | m_PPRO))
221
222 /* X86_TUNE_USE_INCDEC: Enable use of inc/dec instructions.
223
224 Core2 and nehalem has stall of 7 cycles for partial flag register stalls.
225 Sandy bridge and Ivy bridge generate extra uop. On Haswell this extra uop
226 is output only when the values needs to be really merged, which is not
227 done by GCC generated code. */
228 DEF_TUNE (X86_TUNE_USE_INCDEC, "use_incdec",
229 ~(m_P4_NOCONA | m_CORE2 | m_NEHALEM | m_SANDYBRIDGE
230 | m_BONNELL | m_SILVERMONT | m_INTEL | m_KNL | m_KNM | m_GOLDMONT
231 | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC))
232
233 /* X86_TUNE_INTEGER_DFMODE_MOVES: Enable if integer moves are preferred
234 for DFmode copies */
235 DEF_TUNE (X86_TUNE_INTEGER_DFMODE_MOVES, "integer_dfmode_moves",
236 ~(m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
237 | m_KNL | m_KNM | m_INTEL | m_GEODE | m_AMD_MULTIPLE | m_GOLDMONT
238 | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC))
239
240 /* X86_TUNE_OPT_AGU: Optimize for Address Generation Unit. This flag
241 will impact LEA instruction selection. */
242 DEF_TUNE (X86_TUNE_OPT_AGU, "opt_agu", m_BONNELL | m_SILVERMONT | m_KNL
243 | m_KNM | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT | m_INTEL)
244
245 /* X86_TUNE_AVOID_LEA_FOR_ADDR: Avoid lea for address computation. */
246 DEF_TUNE (X86_TUNE_AVOID_LEA_FOR_ADDR, "avoid_lea_for_addr",
247 m_BONNELL | m_SILVERMONT | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT
248 | m_KNL | m_KNM)
249
250 /* X86_TUNE_SLOW_IMUL_IMM32_MEM: Imul of 32-bit constant and memory is
251 vector path on AMD machines.
252 FIXME: Do we need to enable this for core? */
253 DEF_TUNE (X86_TUNE_SLOW_IMUL_IMM32_MEM, "slow_imul_imm32_mem",
254 m_K8 | m_AMDFAM10)
255
256 /* X86_TUNE_SLOW_IMUL_IMM8: Imul of 8-bit constant is vector path on AMD
257 machines.
258 FIXME: Do we need to enable this for core? */
259 DEF_TUNE (X86_TUNE_SLOW_IMUL_IMM8, "slow_imul_imm8",
260 m_K8 | m_AMDFAM10)
261
262 /* X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE: Try to avoid memory operands for
263 a conditional move. */
264 DEF_TUNE (X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE, "avoid_mem_opnd_for_cmove",
265 m_BONNELL | m_SILVERMONT | m_GOLDMONT | m_GOLDMONT_PLUS | m_KNL
266 | m_KNM | m_TREMONT | m_INTEL)
267
268 /* X86_TUNE_SINGLE_STRINGOP: Enable use of single string operations, such
269 as MOVS and STOS (without a REP prefix) to move/set sequences of bytes. */
270 DEF_TUNE (X86_TUNE_SINGLE_STRINGOP, "single_stringop", m_386 | m_P4_NOCONA)
271
272 /* X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES: Enable generation of
273 compact prologues and epilogues by issuing a misaligned moves. This
274 requires target to handle misaligned moves and partial memory stalls
275 reasonably well.
276 FIXME: This may actualy be a win on more targets than listed here. */
277 DEF_TUNE (X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES,
278 "misaligned_move_string_pro_epilogues",
279 m_386 | m_486 | m_CORE_ALL | m_AMD_MULTIPLE | m_GENERIC)
280
281 /* X86_TUNE_USE_SAHF: Controls use of SAHF. */
282 DEF_TUNE (X86_TUNE_USE_SAHF, "use_sahf",
283 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
284 | m_KNL | m_KNM | m_INTEL | m_K6_GEODE | m_K8 | m_AMDFAM10 | m_BDVER
285 | m_BTVER | m_ZNVER | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT
286 | m_GENERIC)
287
288 /* X86_TUNE_USE_CLTD: Controls use of CLTD and CTQO instructions. */
289 DEF_TUNE (X86_TUNE_USE_CLTD, "use_cltd",
290 ~(m_PENT | m_LAKEMONT | m_BONNELL | m_SILVERMONT | m_KNL | m_KNM | m_INTEL
291 | m_K6 | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT))
292
293 /* X86_TUNE_USE_BT: Enable use of BT (bit test) instructions. */
294 DEF_TUNE (X86_TUNE_USE_BT, "use_bt",
295 m_CORE_ALL | m_BONNELL | m_SILVERMONT | m_KNL | m_KNM | m_INTEL
296 | m_LAKEMONT | m_AMD_MULTIPLE | m_GOLDMONT | m_GOLDMONT_PLUS
297 | m_TREMONT | m_GENERIC)
298
299 /* X86_TUNE_AVOID_FALSE_DEP_FOR_BMI: Avoid false dependency
300 for bit-manipulation instructions. */
301 DEF_TUNE (X86_TUNE_AVOID_FALSE_DEP_FOR_BMI, "avoid_false_dep_for_bmi",
302 m_SANDYBRIDGE | m_CORE_AVX2 | m_GENERIC)
303
304 /* X86_TUNE_ADJUST_UNROLL: This enables adjusting the unroll factor based
305 on hardware capabilities. Bdver3 hardware has a loop buffer which makes
306 unrolling small loop less important. For, such architectures we adjust
307 the unroll factor so that the unrolled loop fits the loop buffer. */
308 DEF_TUNE (X86_TUNE_ADJUST_UNROLL, "adjust_unroll_factor", m_BDVER3 | m_BDVER4)
309
310 /* X86_TUNE_ONE_IF_CONV_INSNS: Restrict a number of cmov insns in
311 if-converted sequence to one. */
312 DEF_TUNE (X86_TUNE_ONE_IF_CONV_INSN, "one_if_conv_insn",
313 m_SILVERMONT | m_KNL | m_KNM | m_INTEL | m_CORE_ALL | m_GOLDMONT
314 | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC)
315
316 /* X86_TUNE_USE_XCHG_FOR_ATOMIC_STORE: Use xchg instead of mov+mfence. */
317 DEF_TUNE (X86_TUNE_USE_XCHG_FOR_ATOMIC_STORE, "use_xchg_for_atomic_store",
318 m_CORE_ALL | m_BDVER | m_ZNVER | m_GENERIC)
319
320 /* X86_TUNE_EXPAND_ABS: This enables a new abs pattern by
321 generating instructions for abs (x) = (((signed) x >> (W-1) ^ x) -
322 (signed) x >> (W-1)) instead of cmove or SSE max/abs instructions. */
323 DEF_TUNE (X86_TUNE_EXPAND_ABS, "expand_abs",
324 m_CORE_ALL | m_SILVERMONT | m_KNL | m_KNM | m_GOLDMONT
325 | m_GOLDMONT_PLUS | m_TREMONT )
326
327 /*****************************************************************************/
328 /* 387 instruction selection tuning */
329 /*****************************************************************************/
330
331 /* X86_TUNE_USE_HIMODE_FIOP: Enables use of x87 instructions with 16bit
332 integer operand.
333 FIXME: Why this is disabled for modern chips? */
334 DEF_TUNE (X86_TUNE_USE_HIMODE_FIOP, "use_himode_fiop",
335 m_386 | m_486 | m_K6_GEODE)
336
337 /* X86_TUNE_USE_SIMODE_FIOP: Enables use of x87 instructions with 32bit
338 integer operand. */
339 DEF_TUNE (X86_TUNE_USE_SIMODE_FIOP, "use_simode_fiop",
340 ~(m_PENT | m_LAKEMONT | m_PPRO | m_CORE_ALL | m_BONNELL
341 | m_SILVERMONT | m_KNL | m_KNM | m_INTEL | m_AMD_MULTIPLE
342 | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC))
343
344 /* X86_TUNE_USE_FFREEP: Use freep instruction instead of fstp. */
345 DEF_TUNE (X86_TUNE_USE_FFREEP, "use_ffreep", m_AMD_MULTIPLE)
346
347 /* X86_TUNE_EXT_80387_CONSTANTS: Use fancy 80387 constants, such as PI. */
348 DEF_TUNE (X86_TUNE_EXT_80387_CONSTANTS, "ext_80387_constants",
349 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
350 | m_KNL | m_KNM | m_INTEL | m_K6_GEODE | m_ATHLON_K8 | m_GOLDMONT
351 | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC)
352
353 /*****************************************************************************/
354 /* SSE instruction selection tuning */
355 /*****************************************************************************/
356
357 /* X86_TUNE_GENERAL_REGS_SSE_SPILL: Try to spill general regs to SSE
358 regs instead of memory. */
359 DEF_TUNE (X86_TUNE_GENERAL_REGS_SSE_SPILL, "general_regs_sse_spill",
360 m_CORE_ALL)
361
362 /* X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL: Use movups for misaligned loads instead
363 of a sequence loading registers by parts. */
364 DEF_TUNE (X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL, "sse_unaligned_load_optimal",
365 m_NEHALEM | m_SANDYBRIDGE | m_CORE_AVX2 | m_SILVERMONT | m_KNL | m_KNM
366 | m_INTEL | m_GOLDMONT | m_GOLDMONT_PLUS
367 | m_TREMONT | m_AMDFAM10 | m_BDVER | m_BTVER | m_ZNVER | m_GENERIC)
368
369 /* X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL: Use movups for misaligned stores
370 instead of a sequence loading registers by parts. */
371 DEF_TUNE (X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL, "sse_unaligned_store_optimal",
372 m_NEHALEM | m_SANDYBRIDGE | m_CORE_AVX2 | m_SILVERMONT | m_KNL | m_KNM
373 | m_INTEL | m_GOLDMONT | m_GOLDMONT_PLUS
374 | m_TREMONT | m_BDVER | m_ZNVER | m_GENERIC)
375
376 /* X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL: Use packed single
377 precision 128bit instructions instead of double where possible. */
378 DEF_TUNE (X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL, "sse_packed_single_insn_optimal",
379 m_BDVER | m_ZNVER)
380
381 /* X86_TUNE_SSE_TYPELESS_STORES: Always movaps/movups for 128bit stores. */
382 DEF_TUNE (X86_TUNE_SSE_TYPELESS_STORES, "sse_typeless_stores",
383 m_AMD_MULTIPLE | m_CORE_ALL | m_GENERIC)
384
385 /* X86_TUNE_SSE_LOAD0_BY_PXOR: Always use pxor to load0 as opposed to
386 xorps/xorpd and other variants. */
387 DEF_TUNE (X86_TUNE_SSE_LOAD0_BY_PXOR, "sse_load0_by_pxor",
388 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BDVER | m_BTVER | m_ZNVER
389 | m_GENERIC)
390
391 /* X86_TUNE_INTER_UNIT_MOVES_TO_VEC: Enable moves in from integer
392 to SSE registers. If disabled, the moves will be done by storing
393 the value to memory and reloading.
394 Enable this flag for generic - the only relevant architecture preferring
395 no inter-unit moves is Buldozer. While this makes small regression on SPECfp
396 scores (sub 0.3%), disabling inter-unit moves penalizes noticeably hand
397 written vectorized code which use i.e. _mm_set_epi16. */
398 DEF_TUNE (X86_TUNE_INTER_UNIT_MOVES_TO_VEC, "inter_unit_moves_to_vec",
399 ~(m_ATHLON_K8 | m_AMDFAM10 | m_BDVER | m_BTVER))
400
401 /* X86_TUNE_INTER_UNIT_MOVES_TO_VEC: Enable moves in from SSE
402 to integer registers. If disabled, the moves will be done by storing
403 the value to memory and reloading. */
404 DEF_TUNE (X86_TUNE_INTER_UNIT_MOVES_FROM_VEC, "inter_unit_moves_from_vec",
405 ~m_ATHLON_K8)
406
407 /* X86_TUNE_INTER_UNIT_CONVERSIONS: Enable float<->integer conversions
408 to use both SSE and integer registers at a same time. */
409 DEF_TUNE (X86_TUNE_INTER_UNIT_CONVERSIONS, "inter_unit_conversions",
410 ~(m_AMDFAM10 | m_BDVER))
411
412 /* X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS: Try to split memory operand for
413 fp converts to destination register. */
414 DEF_TUNE (X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS, "split_mem_opnd_for_fp_converts",
415 m_SILVERMONT | m_KNL | m_KNM | m_GOLDMONT | m_GOLDMONT_PLUS
416 | m_TREMONT | m_INTEL)
417
418 /* X86_TUNE_USE_VECTOR_FP_CONVERTS: Prefer vector packed SSE conversion
419 from FP to FP. This form of instructions avoids partial write to the
420 destination. */
421 DEF_TUNE (X86_TUNE_USE_VECTOR_FP_CONVERTS, "use_vector_fp_converts",
422 m_AMDFAM10)
423
424 /* X86_TUNE_USE_VECTOR_CONVERTS: Prefer vector packed SSE conversion
425 from integer to FP. */
426 DEF_TUNE (X86_TUNE_USE_VECTOR_CONVERTS, "use_vector_converts", m_AMDFAM10)
427
428 /* X86_TUNE_SLOW_SHUFB: Indicates tunings with slow pshufb instruction. */
429 DEF_TUNE (X86_TUNE_SLOW_PSHUFB, "slow_pshufb",
430 m_BONNELL | m_SILVERMONT | m_KNL | m_KNM | m_GOLDMONT
431 | m_GOLDMONT_PLUS | m_TREMONT | m_INTEL)
432
433 /* X86_TUNE_AVOID_4BYTE_PREFIXES: Avoid instructions requiring 4+ bytes of prefixes. */
434 DEF_TUNE (X86_TUNE_AVOID_4BYTE_PREFIXES, "avoid_4byte_prefixes",
435 m_SILVERMONT | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT | m_INTEL)
436
437 /* X86_TUNE_USE_GATHER: Use gather instructions. */
438 DEF_TUNE (X86_TUNE_USE_GATHER, "use_gather",
439 ~(m_ZNVER | m_GENERIC))
440
441 /* X86_TUNE_AVOID_128FMA_CHAINS: Avoid creating loops with tight 128bit or
442 smaller FMA chain. */
443 DEF_TUNE (X86_TUNE_AVOID_128FMA_CHAINS, "avoid_fma_chains", m_ZNVER)
444
445 /* X86_TUNE_AVOID_256FMA_CHAINS: Avoid creating loops with tight 256bit or
446 smaller FMA chain. */
447 DEF_TUNE (X86_TUNE_AVOID_256FMA_CHAINS, "avoid_fma256_chains", m_ZNVER2)
448
449 /*****************************************************************************/
450 /* AVX instruction selection tuning (some of SSE flags affects AVX, too) */
451 /*****************************************************************************/
452
453 /* X86_TUNE_AVX256_UNALIGNED_LOAD_OPTIMAL: if false, unaligned loads are
454 split. */
455 DEF_TUNE (X86_TUNE_AVX256_UNALIGNED_LOAD_OPTIMAL, "256_unaligned_load_optimal",
456 ~(m_NEHALEM | m_SANDYBRIDGE | m_GENERIC))
457
458 /* X86_TUNE_AVX256_UNALIGNED_STORE_OPTIMAL: if false, unaligned stores are
459 split. */
460 DEF_TUNE (X86_TUNE_AVX256_UNALIGNED_STORE_OPTIMAL, "256_unaligned_store_optimal",
461 ~(m_NEHALEM | m_SANDYBRIDGE | m_BDVER | m_ZNVER1 | m_GENERIC))
462
463 /* X86_TUNE_AVX256_SPLIT_REGS: if true, AVX256 ops are split into two AVX128 ops. */
464 DEF_TUNE (X86_TUNE_AVX256_SPLIT_REGS, "avx256_split_regs",m_BDVER | m_BTVER2
465 | m_ZNVER1)
466
467 /* X86_TUNE_AVX128_OPTIMAL: Enable 128-bit AVX instruction generation for
468 the auto-vectorizer. */
469 DEF_TUNE (X86_TUNE_AVX128_OPTIMAL, "avx128_optimal", m_BDVER | m_BTVER2
470 | m_ZNVER1)
471
472 /* X86_TUNE_AVX256_OPTIMAL: Use 256-bit AVX instructions instead of 512-bit AVX
473 instructions in the auto-vectorizer. */
474 DEF_TUNE (X86_TUNE_AVX256_OPTIMAL, "avx256_optimal", m_CORE_AVX512)
475
476 /*****************************************************************************/
477 /* Historical relics: tuning flags that helps a specific old CPU designs */
478 /*****************************************************************************/
479
480 /* X86_TUNE_DOUBLE_WITH_ADD: Use add instead of sal to double value in
481 an integer register. */
482 DEF_TUNE (X86_TUNE_DOUBLE_WITH_ADD, "double_with_add", ~m_386)
483
484 /* X86_TUNE_ALWAYS_FANCY_MATH_387: controls use of fancy 387 operations,
485 such as fsqrt, fprem, fsin, fcos, fsincos etc.
486 Should be enabled for all targets that always has coprocesor. */
487 DEF_TUNE (X86_TUNE_ALWAYS_FANCY_MATH_387, "always_fancy_math_387",
488 ~(m_386 | m_486 | m_LAKEMONT))
489
490 /* X86_TUNE_UNROLL_STRLEN: Produce (quite lame) unrolled sequence for
491 inline strlen. This affects only -minline-all-stringops mode. By
492 default we always dispatch to a library since our internal strlen
493 is bad. */
494 DEF_TUNE (X86_TUNE_UNROLL_STRLEN, "unroll_strlen", ~m_386)
495
496 /* X86_TUNE_SHIFT1: Enables use of short encoding of "sal reg" instead of
497 longer "sal $1, reg". */
498 DEF_TUNE (X86_TUNE_SHIFT1, "shift1", ~m_486)
499
500 /* X86_TUNE_ZERO_EXTEND_WITH_AND: Use AND instruction instead
501 of mozbl/movwl. */
502 DEF_TUNE (X86_TUNE_ZERO_EXTEND_WITH_AND, "zero_extend_with_and",
503 m_486 | m_PENT)
504
505 /* X86_TUNE_PROMOTE_HIMODE_IMUL: Modern CPUs have same latency for HImode
506 and SImode multiply, but 386 and 486 do HImode multiply faster. */
507 DEF_TUNE (X86_TUNE_PROMOTE_HIMODE_IMUL, "promote_himode_imul",
508 ~(m_386 | m_486))
509
510 /* X86_TUNE_FAST_PREFIX: Enable demoting some 32bit or 64bit arithmetic
511 into 16bit/8bit when resulting sequence is shorter. For example
512 for "and $-65536, reg" to 16bit store of 0. */
513 DEF_TUNE (X86_TUNE_FAST_PREFIX, "fast_prefix",
514 ~(m_386 | m_486 | m_PENT | m_LAKEMONT))
515
516 /* X86_TUNE_READ_MODIFY_WRITE: Enable use of read modify write instructions
517 such as "add $1, mem". */
518 DEF_TUNE (X86_TUNE_READ_MODIFY_WRITE, "read_modify_write",
519 ~(m_PENT | m_LAKEMONT))
520
521 /* X86_TUNE_MOVE_M1_VIA_OR: On pentiums, it is faster to load -1 via OR
522 than a MOV. */
523 DEF_TUNE (X86_TUNE_MOVE_M1_VIA_OR, "move_m1_via_or", m_PENT | m_LAKEMONT)
524
525 /* X86_TUNE_NOT_UNPAIRABLE: NOT is not pairable on Pentium, while XOR is,
526 but one byte longer. */
527 DEF_TUNE (X86_TUNE_NOT_UNPAIRABLE, "not_unpairable", m_PENT | m_LAKEMONT)
528
529 /* X86_TUNE_PARTIAL_REG_STALL: Pentium pro, unlike later chips, handled
530 use of partial registers by renaming. This improved performance of 16bit
531 code where upper halves of registers are not used. It also leads to
532 an penalty whenever a 16bit store is followed by 32bit use. This flag
533 disables production of such sequences in common cases.
534 See also X86_TUNE_HIMODE_MATH.
535
536 In current implementation the partial register stalls are not eliminated
537 very well - they can be introduced via subregs synthesized by combine
538 and can happen in caller/callee saving sequences. */
539 DEF_TUNE (X86_TUNE_PARTIAL_REG_STALL, "partial_reg_stall", m_PPRO)
540
541 /* X86_TUNE_PROMOTE_QIMODE: When it is cheap, turn 8bit arithmetic to
542 corresponding 32bit arithmetic. */
543 DEF_TUNE (X86_TUNE_PROMOTE_QIMODE, "promote_qimode",
544 ~m_PPRO)
545
546 /* X86_TUNE_PROMOTE_HI_REGS: Same, but for 16bit artihmetic. Again we avoid
547 partial register stalls on PentiumPro targets. */
548 DEF_TUNE (X86_TUNE_PROMOTE_HI_REGS, "promote_hi_regs", m_PPRO)
549
550 /* X86_TUNE_HIMODE_MATH: Enable use of 16bit arithmetic.
551 On PPro this flag is meant to avoid partial register stalls. */
552 DEF_TUNE (X86_TUNE_HIMODE_MATH, "himode_math", ~m_PPRO)
553
554 /* X86_TUNE_SPLIT_LONG_MOVES: Avoid instructions moving immediates
555 directly to memory. */
556 DEF_TUNE (X86_TUNE_SPLIT_LONG_MOVES, "split_long_moves", m_PPRO)
557
558 /* X86_TUNE_USE_XCHGB: Use xchgb %rh,%rl instead of rolw/rorw $8,rx. */
559 DEF_TUNE (X86_TUNE_USE_XCHGB, "use_xchgb", m_PENT4)
560
561 /* X86_TUNE_USE_MOV0: Use "mov $0, reg" instead of "xor reg, reg" to clear
562 integer register. */
563 DEF_TUNE (X86_TUNE_USE_MOV0, "use_mov0", m_K6)
564
565 /* X86_TUNE_NOT_VECTORMODE: On AMD K6, NOT is vector decoded with memory
566 operand that cannot be represented using a modRM byte. The XOR
567 replacement is long decoded, so this split helps here as well. */
568 DEF_TUNE (X86_TUNE_NOT_VECTORMODE, "not_vectormode", m_K6)
569
570 /* X86_TUNE_AVOID_VECTOR_DECODE: Enable splitters that avoid vector decoded
571 forms of instructions on K8 targets. */
572 DEF_TUNE (X86_TUNE_AVOID_VECTOR_DECODE, "avoid_vector_decode",
573 m_K8)
574
575 /*****************************************************************************/
576 /* This never worked well before. */
577 /*****************************************************************************/
578
579 /* X86_TUNE_BRANCH_PREDICTION_HINTS: Branch hints were put in P4 based
580 on simulation result. But after P4 was made, no performance benefit
581 was observed with branch hints. It also increases the code size.
582 As a result, icc never generates branch hints. */
583 DEF_TUNE (X86_TUNE_BRANCH_PREDICTION_HINTS, "branch_prediction_hints", 0U)
584
585 /* X86_TUNE_QIMODE_MATH: Enable use of 8bit arithmetic. */
586 DEF_TUNE (X86_TUNE_QIMODE_MATH, "qimode_math", ~0U)
587
588 /* X86_TUNE_PROMOTE_QI_REGS: This enables generic code that promotes all 8bit
589 arithmetic to 32bit via PROMOTE_MODE macro. This code generation scheme
590 is usually used for RISC targets. */
591 DEF_TUNE (X86_TUNE_PROMOTE_QI_REGS, "promote_qi_regs", 0U)
592
593 /* X86_TUNE_EMIT_VZEROUPPER: This enables vzeroupper instruction insertion
594 before a transfer of control flow out of the function. */
595 DEF_TUNE (X86_TUNE_EMIT_VZEROUPPER, "emit_vzeroupper", ~m_KNL)