]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/i386/x86-tune.def
Update copyright years.
[thirdparty/gcc.git] / gcc / config / i386 / x86-tune.def
1 /* Definitions of x86 tunable features.
2 Copyright (C) 2013-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License and
17 a copy of the GCC Runtime Library Exception along with this program;
18 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Tuning for a given CPU XXXX consists of:
22 - adding new CPU into:
23 - adding PROCESSOR_XXX to processor_type (in i386.h)
24 - possibly adding XXX into CPU attribute in i386.md
25 - adding XXX to processor_alias_table (in i386.c)
26 - introducing ix86_XXX_cost in i386.c
27 - Stringop generation table can be build based on test_stringop
28 - script (once rest of tuning is complete)
29 - designing a scheduler model in
30 - XXXX.md file
31 - Updating ix86_issue_rate and ix86_adjust_cost in i386.md
32 - possibly updating ia32_multipass_dfa_lookahead, ix86_sched_reorder
33 and ix86_sched_init_global if those tricks are needed.
34 - Tunning the flags bellow. Those are split into sections and each
35 section is very roughly ordered by importance. */
36
37 /*****************************************************************************/
38 /* Scheduling flags. */
39 /*****************************************************************************/
40
41 /* X86_TUNE_SCHEDULE: Enable scheduling. */
42 DEF_TUNE (X86_TUNE_SCHEDULE, "schedule",
43 m_PENT | m_LAKEMONT | m_PPRO | m_CORE_ALL | m_BONNELL | m_SILVERMONT
44 | m_INTEL | m_KNL | m_KNM | m_K6_GEODE | m_AMD_MULTIPLE | m_GOLDMONT
45 | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC)
46
47 /* X86_TUNE_PARTIAL_REG_DEPENDENCY: Enable more register renaming
48 on modern chips. Preffer stores affecting whole integer register
49 over partial stores. For example preffer MOVZBL or MOVQ to load 8bit
50 value over movb. */
51 DEF_TUNE (X86_TUNE_PARTIAL_REG_DEPENDENCY, "partial_reg_dependency",
52 m_P4_NOCONA | m_CORE2 | m_NEHALEM | m_SANDYBRIDGE | m_CORE_AVX2
53 | m_BONNELL | m_SILVERMONT | m_GOLDMONT | m_GOLDMONT_PLUS | m_INTEL
54 | m_KNL | m_KNM | m_AMD_MULTIPLE | m_TREMONT
55 | m_GENERIC)
56
57 /* X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY: This knob promotes all store
58 destinations to be 128bit to allow register renaming on 128bit SSE units,
59 but usually results in one extra microop on 64bit SSE units.
60 Experimental results shows that disabling this option on P4 brings over 20%
61 SPECfp regression, while enabling it on K8 brings roughly 2.4% regression
62 that can be partly masked by careful scheduling of moves. */
63 DEF_TUNE (X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY, "sse_partial_reg_dependency",
64 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_AMDFAM10
65 | m_BDVER | m_ZNVER | m_GENERIC)
66
67 /* X86_TUNE_SSE_SPLIT_REGS: Set for machines where the type and dependencies
68 are resolved on SSE register parts instead of whole registers, so we may
69 maintain just lower part of scalar values in proper format leaving the
70 upper part undefined. */
71 DEF_TUNE (X86_TUNE_SSE_SPLIT_REGS, "sse_split_regs", m_ATHLON_K8)
72
73 /* X86_TUNE_PARTIAL_FLAG_REG_STALL: this flag disables use of of flags
74 set by instructions affecting just some flags (in particular shifts).
75 This is because Core2 resolves dependencies on whole flags register
76 and such sequences introduce false dependency on previous instruction
77 setting full flags.
78
79 The flags does not affect generation of INC and DEC that is controlled
80 by X86_TUNE_USE_INCDEC. */
81
82 DEF_TUNE (X86_TUNE_PARTIAL_FLAG_REG_STALL, "partial_flag_reg_stall",
83 m_CORE2)
84
85 /* X86_TUNE_MOVX: Enable to zero extend integer registers to avoid
86 partial dependencies. */
87 DEF_TUNE (X86_TUNE_MOVX, "movx",
88 m_PPRO | m_P4_NOCONA | m_CORE2 | m_NEHALEM | m_SANDYBRIDGE
89 | m_BONNELL | m_SILVERMONT | m_GOLDMONT | m_KNL | m_KNM | m_INTEL
90 | m_GOLDMONT_PLUS | m_GEODE | m_AMD_MULTIPLE
91 | m_CORE_AVX2 | m_TREMONT | m_GENERIC)
92
93 /* X86_TUNE_MEMORY_MISMATCH_STALL: Avoid partial stores that are followed by
94 full sized loads. */
95 DEF_TUNE (X86_TUNE_MEMORY_MISMATCH_STALL, "memory_mismatch_stall",
96 m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT | m_INTEL
97 | m_KNL | m_KNM | m_GOLDMONT | m_GOLDMONT_PLUS | m_AMD_MULTIPLE
98 | m_TREMONT | m_GENERIC)
99
100 /* X86_TUNE_FUSE_CMP_AND_BRANCH_32: Fuse compare with a subsequent
101 conditional jump instruction for 32 bit TARGET. */
102 DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_32, "fuse_cmp_and_branch_32",
103 m_CORE_ALL | m_BDVER | m_ZNVER | m_GENERIC)
104
105 /* X86_TUNE_FUSE_CMP_AND_BRANCH_64: Fuse compare with a subsequent
106 conditional jump instruction for TARGET_64BIT. */
107 DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_64, "fuse_cmp_and_branch_64",
108 m_NEHALEM | m_SANDYBRIDGE | m_CORE_AVX2 | m_BDVER
109 | m_ZNVER | m_GENERIC)
110
111 /* X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS: Fuse compare with a
112 subsequent conditional jump instruction when the condition jump
113 check sign flag (SF) or overflow flag (OF). */
114 DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS, "fuse_cmp_and_branch_soflags",
115 m_NEHALEM | m_SANDYBRIDGE | m_CORE_AVX2 | m_BDVER
116 | m_ZNVER | m_GENERIC)
117
118 /* X86_TUNE_FUSE_ALU_AND_BRANCH: Fuse alu with a subsequent conditional
119 jump instruction when the alu instruction produces the CCFLAG consumed by
120 the conditional jump instruction. */
121 DEF_TUNE (X86_TUNE_FUSE_ALU_AND_BRANCH, "fuse_alu_and_branch",
122 m_SANDYBRIDGE | m_CORE_AVX2 | m_GENERIC)
123
124
125 /*****************************************************************************/
126 /* Function prologue, epilogue and function calling sequences. */
127 /*****************************************************************************/
128
129 /* X86_TUNE_ACCUMULATE_OUTGOING_ARGS: Allocate stack space for outgoing
130 arguments in prologue/epilogue instead of separately for each call
131 by push/pop instructions.
132 This increase code size by about 5% in 32bit mode, less so in 64bit mode
133 because parameters are passed in registers. It is considerable
134 win for targets without stack engine that prevents multple push operations
135 to happen in parallel. */
136
137 DEF_TUNE (X86_TUNE_ACCUMULATE_OUTGOING_ARGS, "accumulate_outgoing_args",
138 m_PPRO | m_P4_NOCONA | m_BONNELL | m_SILVERMONT | m_KNL | m_KNM | m_INTEL
139 | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT | m_ATHLON_K8)
140
141 /* X86_TUNE_PROLOGUE_USING_MOVE: Do not use push/pop in prologues that are
142 considered on critical path. */
143 DEF_TUNE (X86_TUNE_PROLOGUE_USING_MOVE, "prologue_using_move",
144 m_PPRO | m_ATHLON_K8)
145
146 /* X86_TUNE_PROLOGUE_USING_MOVE: Do not use push/pop in epilogues that are
147 considered on critical path. */
148 DEF_TUNE (X86_TUNE_EPILOGUE_USING_MOVE, "epilogue_using_move",
149 m_PPRO | m_ATHLON_K8)
150
151 /* X86_TUNE_USE_LEAVE: Use "leave" instruction in epilogues where it fits. */
152 DEF_TUNE (X86_TUNE_USE_LEAVE, "use_leave",
153 m_386 | m_CORE_ALL | m_K6_GEODE | m_AMD_MULTIPLE | m_GENERIC)
154
155 /* X86_TUNE_PUSH_MEMORY: Enable generation of "push mem" instructions.
156 Some chips, like 486 and Pentium works faster with separate load
157 and push instructions. */
158 DEF_TUNE (X86_TUNE_PUSH_MEMORY, "push_memory",
159 m_386 | m_P4_NOCONA | m_CORE_ALL | m_K6_GEODE | m_AMD_MULTIPLE
160 | m_GENERIC)
161
162 /* X86_TUNE_SINGLE_PUSH: Enable if single push insn is preferred
163 over esp subtraction. */
164 DEF_TUNE (X86_TUNE_SINGLE_PUSH, "single_push", m_386 | m_486 | m_PENT
165 | m_LAKEMONT | m_K6_GEODE)
166
167 /* X86_TUNE_DOUBLE_PUSH. Enable if double push insn is preferred
168 over esp subtraction. */
169 DEF_TUNE (X86_TUNE_DOUBLE_PUSH, "double_push", m_PENT | m_LAKEMONT
170 | m_K6_GEODE)
171
172 /* X86_TUNE_SINGLE_POP: Enable if single pop insn is preferred
173 over esp addition. */
174 DEF_TUNE (X86_TUNE_SINGLE_POP, "single_pop", m_386 | m_486 | m_PENT
175 | m_LAKEMONT | m_PPRO)
176
177 /* X86_TUNE_DOUBLE_POP: Enable if double pop insn is preferred
178 over esp addition. */
179 DEF_TUNE (X86_TUNE_DOUBLE_POP, "double_pop", m_PENT | m_LAKEMONT)
180
181 /*****************************************************************************/
182 /* Branch predictor tuning */
183 /*****************************************************************************/
184
185 /* X86_TUNE_PAD_SHORT_FUNCTION: Make every function to be at least 4
186 instructions long. */
187 DEF_TUNE (X86_TUNE_PAD_SHORT_FUNCTION, "pad_short_function", m_BONNELL)
188
189 /* X86_TUNE_PAD_RETURNS: Place NOP before every RET that is a destination
190 of conditional jump or directly preceded by other jump instruction.
191 This is important for AND K8-AMDFAM10 because the branch prediction
192 architecture expect at most one jump per 2 byte window. Failing to
193 pad returns leads to misaligned return stack. */
194 DEF_TUNE (X86_TUNE_PAD_RETURNS, "pad_returns",
195 m_ATHLON_K8 | m_AMDFAM10)
196
197 /* X86_TUNE_FOUR_JUMP_LIMIT: Some CPU cores are not able to predict more
198 than 4 branch instructions in the 16 byte window. */
199 DEF_TUNE (X86_TUNE_FOUR_JUMP_LIMIT, "four_jump_limit",
200 m_PPRO | m_P4_NOCONA | m_BONNELL | m_SILVERMONT | m_KNL | m_KNM
201 | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT | m_INTEL | m_ATHLON_K8
202 | m_AMDFAM10)
203
204 /*****************************************************************************/
205 /* Integer instruction selection tuning */
206 /*****************************************************************************/
207
208 /* X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL: Enable software prefetching
209 at -O3. For the moment, the prefetching seems badly tuned for Intel
210 chips. */
211 DEF_TUNE (X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL, "software_prefetching_beneficial",
212 m_K6_GEODE | m_ATHLON_K8 | m_AMDFAM10 | m_BDVER | m_BTVER)
213
214 /* X86_TUNE_LCP_STALL: Avoid an expensive length-changing prefix stall
215 on 16-bit immediate moves into memory on Core2 and Corei7. */
216 DEF_TUNE (X86_TUNE_LCP_STALL, "lcp_stall", m_CORE_ALL | m_GENERIC)
217
218 /* X86_TUNE_READ_MODIFY: Enable use of read-modify instructions such
219 as "add mem, reg". */
220 DEF_TUNE (X86_TUNE_READ_MODIFY, "read_modify", ~(m_PENT | m_LAKEMONT | m_PPRO))
221
222 /* X86_TUNE_USE_INCDEC: Enable use of inc/dec instructions.
223
224 Core2 and nehalem has stall of 7 cycles for partial flag register stalls.
225 Sandy bridge and Ivy bridge generate extra uop. On Haswell this extra uop
226 is output only when the values needs to be really merged, which is not
227 done by GCC generated code. */
228 DEF_TUNE (X86_TUNE_USE_INCDEC, "use_incdec",
229 ~(m_P4_NOCONA | m_CORE2 | m_NEHALEM | m_SANDYBRIDGE
230 | m_BONNELL | m_SILVERMONT | m_INTEL | m_KNL | m_KNM | m_GOLDMONT
231 | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC))
232
233 /* X86_TUNE_INTEGER_DFMODE_MOVES: Enable if integer moves are preferred
234 for DFmode copies */
235 DEF_TUNE (X86_TUNE_INTEGER_DFMODE_MOVES, "integer_dfmode_moves",
236 ~(m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
237 | m_KNL | m_KNM | m_INTEL | m_GEODE | m_AMD_MULTIPLE | m_GOLDMONT
238 | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC))
239
240 /* X86_TUNE_OPT_AGU: Optimize for Address Generation Unit. This flag
241 will impact LEA instruction selection. */
242 DEF_TUNE (X86_TUNE_OPT_AGU, "opt_agu", m_BONNELL | m_SILVERMONT | m_KNL
243 | m_KNM | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT | m_INTEL)
244
245 /* X86_TUNE_AVOID_LEA_FOR_ADDR: Avoid lea for address computation. */
246 DEF_TUNE (X86_TUNE_AVOID_LEA_FOR_ADDR, "avoid_lea_for_addr",
247 m_BONNELL | m_SILVERMONT | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT
248 | m_KNL | m_KNM)
249
250 /* X86_TUNE_SLOW_IMUL_IMM32_MEM: Imul of 32-bit constant and memory is
251 vector path on AMD machines.
252 FIXME: Do we need to enable this for core? */
253 DEF_TUNE (X86_TUNE_SLOW_IMUL_IMM32_MEM, "slow_imul_imm32_mem",
254 m_K8 | m_AMDFAM10)
255
256 /* X86_TUNE_SLOW_IMUL_IMM8: Imul of 8-bit constant is vector path on AMD
257 machines.
258 FIXME: Do we need to enable this for core? */
259 DEF_TUNE (X86_TUNE_SLOW_IMUL_IMM8, "slow_imul_imm8",
260 m_K8 | m_AMDFAM10)
261
262 /* X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE: Try to avoid memory operands for
263 a conditional move. */
264 DEF_TUNE (X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE, "avoid_mem_opnd_for_cmove",
265 m_BONNELL | m_SILVERMONT | m_GOLDMONT | m_GOLDMONT_PLUS | m_KNL
266 | m_KNM | m_TREMONT | m_INTEL)
267
268 /* X86_TUNE_SINGLE_STRINGOP: Enable use of single string operations, such
269 as MOVS and STOS (without a REP prefix) to move/set sequences of bytes. */
270 DEF_TUNE (X86_TUNE_SINGLE_STRINGOP, "single_stringop", m_386 | m_P4_NOCONA)
271
272 /* X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES: Enable generation of
273 compact prologues and epilogues by issuing a misaligned moves. This
274 requires target to handle misaligned moves and partial memory stalls
275 reasonably well.
276 FIXME: This may actualy be a win on more targets than listed here. */
277 DEF_TUNE (X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES,
278 "misaligned_move_string_pro_epilogues",
279 m_386 | m_486 | m_CORE_ALL | m_AMD_MULTIPLE | m_GENERIC)
280
281 /* X86_TUNE_USE_SAHF: Controls use of SAHF. */
282 DEF_TUNE (X86_TUNE_USE_SAHF, "use_sahf",
283 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
284 | m_KNL | m_KNM | m_INTEL | m_K6_GEODE | m_K8 | m_AMDFAM10 | m_BDVER
285 | m_BTVER | m_ZNVER | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT
286 | m_GENERIC)
287
288 /* X86_TUNE_USE_CLTD: Controls use of CLTD and CTQO instructions. */
289 DEF_TUNE (X86_TUNE_USE_CLTD, "use_cltd",
290 ~(m_PENT | m_LAKEMONT | m_BONNELL | m_SILVERMONT | m_KNL | m_KNM | m_INTEL
291 | m_K6 | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT))
292
293 /* X86_TUNE_USE_BT: Enable use of BT (bit test) instructions. */
294 DEF_TUNE (X86_TUNE_USE_BT, "use_bt",
295 m_CORE_ALL | m_BONNELL | m_SILVERMONT | m_KNL | m_KNM | m_INTEL
296 | m_LAKEMONT | m_AMD_MULTIPLE | m_GOLDMONT | m_GOLDMONT_PLUS
297 | m_TREMONT | m_GENERIC)
298
299 /* X86_TUNE_AVOID_FALSE_DEP_FOR_BMI: Avoid false dependency
300 for bit-manipulation instructions. */
301 DEF_TUNE (X86_TUNE_AVOID_FALSE_DEP_FOR_BMI, "avoid_false_dep_for_bmi",
302 m_SANDYBRIDGE | m_CORE_AVX2 | m_GENERIC)
303
304 /* X86_TUNE_ADJUST_UNROLL: This enables adjusting the unroll factor based
305 on hardware capabilities. Bdver3 hardware has a loop buffer which makes
306 unrolling small loop less important. For, such architectures we adjust
307 the unroll factor so that the unrolled loop fits the loop buffer. */
308 DEF_TUNE (X86_TUNE_ADJUST_UNROLL, "adjust_unroll_factor", m_BDVER3 | m_BDVER4)
309
310 /* X86_TUNE_ONE_IF_CONV_INSNS: Restrict a number of cmov insns in
311 if-converted sequence to one. */
312 DEF_TUNE (X86_TUNE_ONE_IF_CONV_INSN, "one_if_conv_insn",
313 m_SILVERMONT | m_KNL | m_KNM | m_INTEL | m_CORE_ALL | m_GOLDMONT
314 | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC)
315
316 /*****************************************************************************/
317 /* 387 instruction selection tuning */
318 /*****************************************************************************/
319
320 /* X86_TUNE_USE_HIMODE_FIOP: Enables use of x87 instructions with 16bit
321 integer operand.
322 FIXME: Why this is disabled for modern chips? */
323 DEF_TUNE (X86_TUNE_USE_HIMODE_FIOP, "use_himode_fiop",
324 m_386 | m_486 | m_K6_GEODE)
325
326 /* X86_TUNE_USE_SIMODE_FIOP: Enables use of x87 instructions with 32bit
327 integer operand. */
328 DEF_TUNE (X86_TUNE_USE_SIMODE_FIOP, "use_simode_fiop",
329 ~(m_PENT | m_LAKEMONT | m_PPRO | m_CORE_ALL | m_BONNELL
330 | m_SILVERMONT | m_KNL | m_KNM | m_INTEL | m_AMD_MULTIPLE
331 | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC))
332
333 /* X86_TUNE_USE_FFREEP: Use freep instruction instead of fstp. */
334 DEF_TUNE (X86_TUNE_USE_FFREEP, "use_ffreep", m_AMD_MULTIPLE)
335
336 /* X86_TUNE_EXT_80387_CONSTANTS: Use fancy 80387 constants, such as PI. */
337 DEF_TUNE (X86_TUNE_EXT_80387_CONSTANTS, "ext_80387_constants",
338 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
339 | m_KNL | m_KNM | m_INTEL | m_K6_GEODE | m_ATHLON_K8 | m_GOLDMONT
340 | m_GOLDMONT_PLUS | m_TREMONT | m_GENERIC)
341
342 /*****************************************************************************/
343 /* SSE instruction selection tuning */
344 /*****************************************************************************/
345
346 /* X86_TUNE_GENERAL_REGS_SSE_SPILL: Try to spill general regs to SSE
347 regs instead of memory. */
348 DEF_TUNE (X86_TUNE_GENERAL_REGS_SSE_SPILL, "general_regs_sse_spill",
349 m_CORE_ALL)
350
351 /* X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL: Use movups for misaligned loads instead
352 of a sequence loading registers by parts. */
353 DEF_TUNE (X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL, "sse_unaligned_load_optimal",
354 m_NEHALEM | m_SANDYBRIDGE | m_CORE_AVX2 | m_SILVERMONT | m_KNL | m_KNM
355 | m_INTEL | m_GOLDMONT | m_GOLDMONT_PLUS
356 | m_TREMONT | m_AMDFAM10 | m_BDVER | m_BTVER | m_ZNVER | m_GENERIC)
357
358 /* X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL: Use movups for misaligned stores instead
359 of a sequence loading registers by parts. */
360 DEF_TUNE (X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL, "sse_unaligned_store_optimal",
361 m_NEHALEM | m_SANDYBRIDGE | m_CORE_AVX2 | m_SILVERMONT | m_KNL | m_KNM
362 | m_INTEL | m_GOLDMONT | m_GOLDMONT_PLUS
363 | m_TREMONT | m_BDVER | m_ZNVER | m_GENERIC)
364
365 /* Use packed single precision instructions where posisble. I.e. movups instead
366 of movupd. */
367 DEF_TUNE (X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL, "sse_packed_single_insn_optimal",
368 m_BDVER | m_ZNVER)
369
370 /* X86_TUNE_SSE_TYPELESS_STORES: Always movaps/movups for 128bit stores. */
371 DEF_TUNE (X86_TUNE_SSE_TYPELESS_STORES, "sse_typeless_stores",
372 m_AMD_MULTIPLE | m_CORE_ALL | m_GENERIC)
373
374 /* X86_TUNE_SSE_LOAD0_BY_PXOR: Always use pxor to load0 as opposed to
375 xorps/xorpd and other variants. */
376 DEF_TUNE (X86_TUNE_SSE_LOAD0_BY_PXOR, "sse_load0_by_pxor",
377 m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BDVER | m_BTVER | m_ZNVER
378 | m_GENERIC)
379
380 /* X86_TUNE_INTER_UNIT_MOVES_TO_VEC: Enable moves in from integer
381 to SSE registers. If disabled, the moves will be done by storing
382 the value to memory and reloading.
383 Enable this flag for generic - the only relevant architecture preferring
384 no inter-unit moves is Buldozer. While this makes small regression on SPECfp
385 scores (sub 0.3%), disabling inter-unit moves penalizes noticeably hand
386 written vectorized code which use i.e. _mm_set_epi16. */
387 DEF_TUNE (X86_TUNE_INTER_UNIT_MOVES_TO_VEC, "inter_unit_moves_to_vec",
388 ~(m_ATHLON_K8 | m_AMDFAM10 | m_BDVER | m_BTVER))
389
390 /* X86_TUNE_INTER_UNIT_MOVES_TO_VEC: Enable moves in from SSE
391 to integer registers. If disabled, the moves will be done by storing
392 the value to memory and reloading. */
393 DEF_TUNE (X86_TUNE_INTER_UNIT_MOVES_FROM_VEC, "inter_unit_moves_from_vec",
394 ~m_ATHLON_K8)
395
396 /* X86_TUNE_INTER_UNIT_CONVERSIONS: Enable float<->integer conversions
397 to use both SSE and integer registers at a same time. */
398 DEF_TUNE (X86_TUNE_INTER_UNIT_CONVERSIONS, "inter_unit_conversions",
399 ~(m_AMDFAM10 | m_BDVER))
400
401 /* X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS: Try to split memory operand for
402 fp converts to destination register. */
403 DEF_TUNE (X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS, "split_mem_opnd_for_fp_converts",
404 m_SILVERMONT | m_KNL | m_KNM | m_GOLDMONT | m_GOLDMONT_PLUS
405 | m_TREMONT | m_INTEL)
406
407 /* X86_TUNE_USE_VECTOR_FP_CONVERTS: Prefer vector packed SSE conversion
408 from FP to FP. This form of instructions avoids partial write to the
409 destination. */
410 DEF_TUNE (X86_TUNE_USE_VECTOR_FP_CONVERTS, "use_vector_fp_converts",
411 m_AMDFAM10)
412
413 /* X86_TUNE_USE_VECTOR_CONVERTS: Prefer vector packed SSE conversion
414 from integer to FP. */
415 DEF_TUNE (X86_TUNE_USE_VECTOR_CONVERTS, "use_vector_converts", m_AMDFAM10)
416
417 /* X86_TUNE_SLOW_SHUFB: Indicates tunings with slow pshufb instruction. */
418 DEF_TUNE (X86_TUNE_SLOW_PSHUFB, "slow_pshufb",
419 m_BONNELL | m_SILVERMONT | m_KNL | m_KNM | m_GOLDMONT
420 | m_GOLDMONT_PLUS | m_TREMONT | m_INTEL)
421
422 /* X86_TUNE_AVOID_4BYTE_PREFIXES: Avoid instructions requiring 4+ bytes of prefixes. */
423 DEF_TUNE (X86_TUNE_AVOID_4BYTE_PREFIXES, "avoid_4byte_prefixes",
424 m_SILVERMONT | m_GOLDMONT | m_GOLDMONT_PLUS | m_TREMONT | m_INTEL)
425
426 /* X86_TUNE_USE_GATHER: Use gather instructions. */
427 DEF_TUNE (X86_TUNE_USE_GATHER, "use_gather",
428 ~(m_ZNVER | m_GENERIC))
429
430 /* X86_TUNE_AVOID_128FMA_CHAINS: Avoid creating loops with tight 128bit or
431 smaller FMA chain. */
432 DEF_TUNE (X86_TUNE_AVOID_128FMA_CHAINS, "avoid_fma_chains", m_ZNVER)
433
434 /*****************************************************************************/
435 /* AVX instruction selection tuning (some of SSE flags affects AVX, too) */
436 /*****************************************************************************/
437
438 /* X86_TUNE_AVX256_UNALIGNED_LOAD_OPTIMAL: if false, unaligned loads are
439 split. */
440 DEF_TUNE (X86_TUNE_AVX256_UNALIGNED_LOAD_OPTIMAL, "256_unaligned_load_optimal",
441 ~(m_NEHALEM | m_SANDYBRIDGE | m_GENERIC))
442
443 /* X86_TUNE_AVX256_UNALIGNED_STORE_OPTIMAL: if false, unaligned stores are
444 split. */
445 DEF_TUNE (X86_TUNE_AVX256_UNALIGNED_STORE_OPTIMAL, "256_unaligned_store_optimal",
446 ~(m_NEHALEM | m_SANDYBRIDGE | m_BDVER | m_ZNVER1 | m_GENERIC))
447
448 /* X86_TUNE_AVX128_OPTIMAL: Enable 128-bit AVX instruction generation for
449 the auto-vectorizer. */
450 DEF_TUNE (X86_TUNE_AVX128_OPTIMAL, "avx128_optimal", m_BDVER | m_BTVER2
451 | m_ZNVER1)
452
453 /* X86_TUNE_AVX256_OPTIMAL: Use 256-bit AVX instructions instead of 512-bit AVX
454 instructions in the auto-vectorizer. */
455 DEF_TUNE (X86_TUNE_AVX256_OPTIMAL, "avx256_optimal", m_CORE_AVX512)
456
457 /*****************************************************************************/
458 /* Historical relics: tuning flags that helps a specific old CPU designs */
459 /*****************************************************************************/
460
461 /* X86_TUNE_DOUBLE_WITH_ADD: Use add instead of sal to double value in
462 an integer register. */
463 DEF_TUNE (X86_TUNE_DOUBLE_WITH_ADD, "double_with_add", ~m_386)
464
465 /* X86_TUNE_ALWAYS_FANCY_MATH_387: controls use of fancy 387 operations,
466 such as fsqrt, fprem, fsin, fcos, fsincos etc.
467 Should be enabled for all targets that always has coprocesor. */
468 DEF_TUNE (X86_TUNE_ALWAYS_FANCY_MATH_387, "always_fancy_math_387",
469 ~(m_386 | m_486 | m_LAKEMONT))
470
471 /* X86_TUNE_UNROLL_STRLEN: Produce (quite lame) unrolled sequence for
472 inline strlen. This affects only -minline-all-stringops mode. By
473 default we always dispatch to a library since our internal strlen
474 is bad. */
475 DEF_TUNE (X86_TUNE_UNROLL_STRLEN, "unroll_strlen", ~m_386)
476
477 /* X86_TUNE_SHIFT1: Enables use of short encoding of "sal reg" instead of
478 longer "sal $1, reg". */
479 DEF_TUNE (X86_TUNE_SHIFT1, "shift1", ~m_486)
480
481 /* X86_TUNE_ZERO_EXTEND_WITH_AND: Use AND instruction instead
482 of mozbl/movwl. */
483 DEF_TUNE (X86_TUNE_ZERO_EXTEND_WITH_AND, "zero_extend_with_and",
484 m_486 | m_PENT)
485
486 /* X86_TUNE_PROMOTE_HIMODE_IMUL: Modern CPUs have same latency for HImode
487 and SImode multiply, but 386 and 486 do HImode multiply faster. */
488 DEF_TUNE (X86_TUNE_PROMOTE_HIMODE_IMUL, "promote_himode_imul",
489 ~(m_386 | m_486))
490
491 /* X86_TUNE_FAST_PREFIX: Enable demoting some 32bit or 64bit arithmetic
492 into 16bit/8bit when resulting sequence is shorter. For example
493 for "and $-65536, reg" to 16bit store of 0. */
494 DEF_TUNE (X86_TUNE_FAST_PREFIX, "fast_prefix",
495 ~(m_386 | m_486 | m_PENT | m_LAKEMONT))
496
497 /* X86_TUNE_READ_MODIFY_WRITE: Enable use of read modify write instructions
498 such as "add $1, mem". */
499 DEF_TUNE (X86_TUNE_READ_MODIFY_WRITE, "read_modify_write",
500 ~(m_PENT | m_LAKEMONT))
501
502 /* X86_TUNE_MOVE_M1_VIA_OR: On pentiums, it is faster to load -1 via OR
503 than a MOV. */
504 DEF_TUNE (X86_TUNE_MOVE_M1_VIA_OR, "move_m1_via_or", m_PENT | m_LAKEMONT)
505
506 /* X86_TUNE_NOT_UNPAIRABLE: NOT is not pairable on Pentium, while XOR is,
507 but one byte longer. */
508 DEF_TUNE (X86_TUNE_NOT_UNPAIRABLE, "not_unpairable", m_PENT | m_LAKEMONT)
509
510 /* X86_TUNE_PARTIAL_REG_STALL: Pentium pro, unlike later chips, handled
511 use of partial registers by renaming. This improved performance of 16bit
512 code where upper halves of registers are not used. It also leads to
513 an penalty whenever a 16bit store is followed by 32bit use. This flag
514 disables production of such sequences in common cases.
515 See also X86_TUNE_HIMODE_MATH.
516
517 In current implementation the partial register stalls are not eliminated
518 very well - they can be introduced via subregs synthesized by combine
519 and can happen in caller/callee saving sequences. */
520 DEF_TUNE (X86_TUNE_PARTIAL_REG_STALL, "partial_reg_stall", m_PPRO)
521
522 /* X86_TUNE_PROMOTE_QIMODE: When it is cheap, turn 8bit arithmetic to
523 corresponding 32bit arithmetic. */
524 DEF_TUNE (X86_TUNE_PROMOTE_QIMODE, "promote_qimode",
525 ~m_PPRO)
526
527 /* X86_TUNE_PROMOTE_HI_REGS: Same, but for 16bit artihmetic. Again we avoid
528 partial register stalls on PentiumPro targets. */
529 DEF_TUNE (X86_TUNE_PROMOTE_HI_REGS, "promote_hi_regs", m_PPRO)
530
531 /* X86_TUNE_HIMODE_MATH: Enable use of 16bit arithmetic.
532 On PPro this flag is meant to avoid partial register stalls. */
533 DEF_TUNE (X86_TUNE_HIMODE_MATH, "himode_math", ~m_PPRO)
534
535 /* X86_TUNE_SPLIT_LONG_MOVES: Avoid instructions moving immediates
536 directly to memory. */
537 DEF_TUNE (X86_TUNE_SPLIT_LONG_MOVES, "split_long_moves", m_PPRO)
538
539 /* X86_TUNE_USE_XCHGB: Use xchgb %rh,%rl instead of rolw/rorw $8,rx. */
540 DEF_TUNE (X86_TUNE_USE_XCHGB, "use_xchgb", m_PENT4)
541
542 /* X86_TUNE_USE_MOV0: Use "mov $0, reg" instead of "xor reg, reg" to clear
543 integer register. */
544 DEF_TUNE (X86_TUNE_USE_MOV0, "use_mov0", m_K6)
545
546 /* X86_TUNE_NOT_VECTORMODE: On AMD K6, NOT is vector decoded with memory
547 operand that cannot be represented using a modRM byte. The XOR
548 replacement is long decoded, so this split helps here as well. */
549 DEF_TUNE (X86_TUNE_NOT_VECTORMODE, "not_vectormode", m_K6)
550
551 /* X86_TUNE_AVOID_VECTOR_DECODE: Enable splitters that avoid vector decoded
552 forms of instructions on K8 targets. */
553 DEF_TUNE (X86_TUNE_AVOID_VECTOR_DECODE, "avoid_vector_decode",
554 m_K8)
555
556 /*****************************************************************************/
557 /* This never worked well before. */
558 /*****************************************************************************/
559
560 /* X86_TUNE_BRANCH_PREDICTION_HINTS: Branch hints were put in P4 based
561 on simulation result. But after P4 was made, no performance benefit
562 was observed with branch hints. It also increases the code size.
563 As a result, icc never generates branch hints. */
564 DEF_TUNE (X86_TUNE_BRANCH_PREDICTION_HINTS, "branch_prediction_hints", 0U)
565
566 /* X86_TUNE_QIMODE_MATH: Enable use of 8bit arithmetic. */
567 DEF_TUNE (X86_TUNE_QIMODE_MATH, "qimode_math", ~0U)
568
569 /* X86_TUNE_PROMOTE_QI_REGS: This enables generic code that promotes all 8bit
570 arithmetic to 32bit via PROMOTE_MODE macro. This code generation scheme
571 is usually used for RISC targets. */
572 DEF_TUNE (X86_TUNE_PROMOTE_QI_REGS, "promote_qi_regs", 0U)
573
574 /* X86_TUNE_EMIT_VZEROUPPER: This enables vzeroupper instruction insertion
575 before a transfer of control flow out of the function. */
576 DEF_TUNE (X86_TUNE_EMIT_VZEROUPPER, "emit_vzeroupper", ~m_KNL)