]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/i960/i960.h
* alpha.h, arc.h, arm/aout.h, avr.h, cris.h, d30v.h, dsp16xx.h,
[thirdparty/gcc.git] / gcc / config / i960 / i960.h
1 /* Definitions of target machine for GNU compiler, for Intel 80960
2 Copyright (C) 1992, 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Steven McGeady, Intel Corp.
5 Additional Work by Glenn Colon-Bonet, Jonathan Shapiro, Andy Wilson
6 Converted to GCC 2.0 by Jim Wilson and Michael Tiemann, Cygnus Support.
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* Note that some other tm.h files may include this one and then override
26 many of the definitions that relate to assembler syntax. */
27
28 #define MULTILIB_DEFAULTS { "mnumerics" }
29
30 /* Names to predefine in the preprocessor for this target machine. */
31 #define CPP_PREDEFINES "-Di960 -Di80960 -DI960 -DI80960 -Acpu=i960 -Amachine=i960"
32
33 /* Name to predefine in the preprocessor for processor variations.
34 -mic* options make characters signed by default. */
35 #define CPP_SPEC "%{mic*:-D__i960 -fsigned-char\
36 %{mka:-D__i960KA}%{mkb:-D__i960KB}\
37 %{mja:-D__i960JA}%{mjd:-D__i960JD}%{mjf:-D__i960JF}\
38 %{mrp:-D__i960RP}\
39 %{msa:-D__i960SA}%{msb:-D__i960SB}\
40 %{mmc:-D__i960MC}\
41 %{mca:-D__i960CA}%{mcc:-D__i960CC}\
42 %{mcf:-D__i960CF}}\
43 %{msoft-float:-D_SOFT_FLOAT}\
44 %{mka:-D__i960KA__ -D__i960_KA__}\
45 %{mkb:-D__i960KB__ -D__i960_KB__}\
46 %{msa:-D__i960SA__ -D__i960_SA__}\
47 %{msb:-D__i960SB__ -D__i960_SB__}\
48 %{mmc:-D__i960MC__ -D__i960_MC__}\
49 %{mca:-D__i960CA__ -D__i960_CA__}\
50 %{mcc:-D__i960CC__ -D__i960_CC__}\
51 %{mcf:-D__i960CF__ -D__i960_CF__}\
52 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:\
53 %{!mcc:%{!mcf:-D__i960_KB -D__i960KB__ %{mic*:-D__i960KB}}}}}}}}}\
54 %{mlong-double-64:-D__LONG_DOUBLE_64__}"
55
56 /* Specs for the compiler, to handle processor variations.
57 If the user gives an explicit -gstabs or -gcoff option, then do not
58 try to add an implicit one, as this will fail.
59 -mic* options make characters signed by default. */
60 #define CC1_SPEC \
61 "%{mic*:-fsigned-char}\
62 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:%{!mja:%{!mjd:%{!mjf:%{!mrp:-mka}}}}}}}}}}}}\
63 %{!gs*:%{!gc*:%{mbout:%{g*:-gstabs}}\
64 %{mcoff:%{g*:-gcoff}}\
65 %{!mbout:%{!mcoff:%{g*:-gstabs}}}}}"
66
67 /* Specs for the assembler, to handle processor variations.
68 For compatibility with Intel's gnu960 tool chain, pass -A options to
69 the assembler. */
70 #define ASM_SPEC \
71 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
72 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
73 %{mja:-AJX}%{mjd:-AJX}%{mjf:-AJX}%{mrp:-AJX}\
74 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:%{!mja:%{!mjd:%{!mjf:%{!mrp:-AKB}}}}}}}}}}}}\
75 %{mlink-relax:-linkrelax}"
76
77 /* Specs for the linker, to handle processor variations.
78 For compatibility with Intel's gnu960 tool chain, pass -F and -A options
79 to the linker. */
80 #define LINK_SPEC \
81 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
82 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
83 %{mja:-AJX}%{mjd:-AJX}%{mjf:-AJX}%{mrp:-AJX}\
84 %{mbout:-Fbout}%{mcoff:-Fcoff}\
85 %{mlink-relax:-relax}"
86
87 /* Specs for the libraries to link with, to handle processor variations.
88 Compatible with Intel's gnu960 tool chain. */
89 #define LIB_SPEC "%{!nostdlib:-lcg %{p:-lprof}%{pg:-lgprof}\
90 %{mka:-lfpg}%{msa:-lfpg}%{mca:-lfpg}%{mcf:-lfpg} -lgnu}"
91
92 /* Defining the macro shows we can debug even without a frame pointer.
93 Actually, we can debug without FP. But defining the macro results in
94 that -O means FP elimination. Addressing through sp requires
95 negative offset and more one word addressing in the most cases
96 (offsets except for 0-4095 require one more word). Therefore we've
97 not defined the macro. */
98 /*#define CAN_DEBUG_WITHOUT_FP*/
99
100 /* Do leaf procedure and tail call optimizations for -O2 and higher. */
101 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
102 { \
103 if ((LEVEL) >= 2) \
104 { \
105 target_flags |= TARGET_FLAG_LEAFPROC; \
106 target_flags |= TARGET_FLAG_TAILCALL; \
107 } \
108 }
109
110 /* Print subsidiary information on the compiler version in use. */
111 #define TARGET_VERSION fprintf (stderr," (intel 80960)");
112
113 /* Generate DBX debugging information. */
114 #define DBX_DEBUGGING_INFO
115
116 /* Generate SDB style debugging information. */
117 #define SDB_DEBUGGING_INFO
118 #define EXTENDED_SDB_BASIC_TYPES
119
120 /* Generate DBX_DEBUGGING_INFO by default. */
121 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
122
123 /* Redefine this to print in hex. No value adjustment is necessary
124 anymore. */
125 #define PUT_SDB_TYPE(A) \
126 fprintf (asm_out_file, "\t.type\t0x%x;", A)
127
128 /* Handle pragmas for compatibility with Intel's compilers. */
129
130 extern int i960_maxbitalignment;
131 extern int i960_last_maxbitalignment;
132
133 #define REGISTER_TARGET_PRAGMAS(PFILE) do { \
134 cpp_register_pragma (PFILE, 0, "align", i960_pr_align); \
135 cpp_register_pragma (PFILE, 0, "noalign", i960_pr_noalign); \
136 } while (0)
137
138 /* Run-time compilation parameters selecting different hardware subsets. */
139
140 /* 960 architecture with floating-point. */
141 #define TARGET_FLAG_NUMERICS 0x01
142 #define TARGET_NUMERICS (target_flags & TARGET_FLAG_NUMERICS)
143
144 /* 960 architecture with memory management. */
145 /* ??? Not used currently. */
146 #define TARGET_FLAG_PROTECTED 0x02
147 #define TARGET_PROTECTED (target_flags & TARGET_FLAG_PROTECTED)
148
149 /* The following three are mainly used to provide a little sanity checking
150 against the -mARCH flags given. The Jx series, for the purposes of
151 gcc, is a Kx with a data cache. */
152
153 /* Nonzero if we should generate code for the KA and similar processors.
154 No FPU, no microcode instructions. */
155 #define TARGET_FLAG_K_SERIES 0x04
156 #define TARGET_K_SERIES (target_flags & TARGET_FLAG_K_SERIES)
157
158 /* Nonzero if we should generate code for the MC processor.
159 Not really different from KB for our purposes. */
160 #define TARGET_FLAG_MC 0x08
161 #define TARGET_MC (target_flags & TARGET_FLAG_MC)
162
163 /* Nonzero if we should generate code for the CA processor.
164 Enables different optimization strategies. */
165 #define TARGET_FLAG_C_SERIES 0x10
166 #define TARGET_C_SERIES (target_flags & TARGET_FLAG_C_SERIES)
167
168 /* Nonzero if we should generate leaf-procedures when we find them.
169 You may not want to do this because leaf-proc entries are
170 slower when not entered via BAL - this would be true when
171 a linker not supporting the optimization is used. */
172 #define TARGET_FLAG_LEAFPROC 0x20
173 #define TARGET_LEAFPROC (target_flags & TARGET_FLAG_LEAFPROC)
174
175 /* Nonzero if we should perform tail-call optimizations when we find them.
176 You may not want to do this because the detection of cases where
177 this is not valid is not totally complete. */
178 #define TARGET_FLAG_TAILCALL 0x40
179 #define TARGET_TAILCALL (target_flags & TARGET_FLAG_TAILCALL)
180
181 /* Nonzero if use of a complex addressing mode is a win on this implementation.
182 Complex addressing modes are probably not worthwhile on the K-series,
183 but they definitely are on the C-series. */
184 #define TARGET_FLAG_COMPLEX_ADDR 0x80
185 #define TARGET_COMPLEX_ADDR (target_flags & TARGET_FLAG_COMPLEX_ADDR)
186
187 /* Align code to 8 byte boundaries for faster fetching. */
188 #define TARGET_FLAG_CODE_ALIGN 0x100
189 #define TARGET_CODE_ALIGN (target_flags & TARGET_FLAG_CODE_ALIGN)
190
191 /* Append branch prediction suffixes to branch opcodes. */
192 /* ??? Not used currently. */
193 #define TARGET_FLAG_BRANCH_PREDICT 0x200
194 #define TARGET_BRANCH_PREDICT (target_flags & TARGET_FLAG_BRANCH_PREDICT)
195
196 /* Forces prototype and return promotions. */
197 /* ??? This does not work. */
198 #define TARGET_FLAG_CLEAN_LINKAGE 0x400
199 #define TARGET_CLEAN_LINKAGE (target_flags & TARGET_FLAG_CLEAN_LINKAGE)
200
201 /* For compatibility with iC960 v3.0. */
202 #define TARGET_FLAG_IC_COMPAT3_0 0x800
203 #define TARGET_IC_COMPAT3_0 (target_flags & TARGET_FLAG_IC_COMPAT3_0)
204
205 /* For compatibility with iC960 v2.0. */
206 #define TARGET_FLAG_IC_COMPAT2_0 0x1000
207 #define TARGET_IC_COMPAT2_0 (target_flags & TARGET_FLAG_IC_COMPAT2_0)
208
209 /* If no unaligned accesses are to be permitted. */
210 #define TARGET_FLAG_STRICT_ALIGN 0x2000
211 #define TARGET_STRICT_ALIGN (target_flags & TARGET_FLAG_STRICT_ALIGN)
212
213 /* For compatibility with iC960 assembler. */
214 #define TARGET_FLAG_ASM_COMPAT 0x4000
215 #define TARGET_ASM_COMPAT (target_flags & TARGET_FLAG_ASM_COMPAT)
216
217 /* For compatibility with the gcc960 v1.2 compiler. Use the old structure
218 alignment rules. Also, turns on STRICT_ALIGNMENT. */
219 #define TARGET_FLAG_OLD_ALIGN 0x8000
220 #define TARGET_OLD_ALIGN (target_flags & TARGET_FLAG_OLD_ALIGN)
221
222 /* Nonzero if long doubles are to be 64 bits. Useful for soft-float targets
223 if 80 bit long double support is missing. */
224 #define TARGET_FLAG_LONG_DOUBLE_64 0x10000
225 #define TARGET_LONG_DOUBLE_64 (target_flags & TARGET_FLAG_LONG_DOUBLE_64)
226
227 extern int target_flags;
228
229 /* Macro to define tables used to set the flags.
230 This is a list in braces of pairs in braces,
231 each pair being { "NAME", VALUE }
232 where VALUE is the bits to set or minus the bits to clear.
233 An empty string NAME is used to identify the default VALUE. */
234
235 /* ??? Not all ten of these architecture variations actually exist, but I
236 am not sure which are real and which aren't. */
237
238 #define TARGET_SWITCHES \
239 { {"sa", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
240 N_("Generate SA code")}, \
241 {"sb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
242 TARGET_FLAG_COMPLEX_ADDR), \
243 N_("Generate SB code")}, \
244 /* {"sc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
245 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
246 N_("Generate SC code")}, */ \
247 {"ka", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
248 N_("Generate KA code")}, \
249 {"kb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
250 TARGET_FLAG_COMPLEX_ADDR), \
251 N_("Generate KB code")}, \
252 /* {"kc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
253 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
254 N_("Generate KC code")}, */ \
255 {"ja", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
256 N_("Generate JA code")}, \
257 {"jd", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
258 N_("Generate JD code")}, \
259 {"jf", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
260 TARGET_FLAG_COMPLEX_ADDR), \
261 N_("Generate JF code")}, \
262 {"rp", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
263 N_("generate RP code")}, \
264 {"mc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
265 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
266 N_("Generate MC code")}, \
267 {"ca", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT| \
268 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR),\
269 N_("Generate CA code")}, \
270 /* {"cb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_C_SERIES| \
271 TARGET_FLAG_BRANCH_PREDICT|TARGET_FLAG_CODE_ALIGN),\
272 N_("Generate CB code")}, \
273 {"cc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
274 TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
275 TARGET_FLAG_CODE_ALIGN), \
276 N_("Generate CC code")}, */ \
277 {"cf", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT| \
278 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR),\
279 N_("Generate CF code")}, \
280 {"numerics", (TARGET_FLAG_NUMERICS), \
281 N_("Use hardware floating point instructions")}, \
282 {"soft-float", -(TARGET_FLAG_NUMERICS), \
283 N_("Use software floating point")}, \
284 {"leaf-procedures", TARGET_FLAG_LEAFPROC, \
285 N_("Use alternate leaf function entries")}, \
286 {"no-leaf-procedures", -(TARGET_FLAG_LEAFPROC), \
287 N_("Do not use alternate leaf function entries")}, \
288 {"tail-call", TARGET_FLAG_TAILCALL, \
289 N_("Perform tail call optimization")}, \
290 {"no-tail-call", -(TARGET_FLAG_TAILCALL), \
291 N_("Do not perform tail call optimization")}, \
292 {"complex-addr", TARGET_FLAG_COMPLEX_ADDR, \
293 N_("Use complex addressing modes")}, \
294 {"no-complex-addr", -(TARGET_FLAG_COMPLEX_ADDR), \
295 N_("Do not use complex addressing modes")}, \
296 {"code-align", TARGET_FLAG_CODE_ALIGN, \
297 N_("Align code to 8 byte boundary")}, \
298 {"no-code-align", -(TARGET_FLAG_CODE_ALIGN), \
299 N_("Do not align code to 8 byte boundary")}, \
300 /* {"clean-linkage", (TARGET_FLAG_CLEAN_LINKAGE), \
301 N_("Force use of prototypes")}, \
302 {"no-clean-linkage", -(TARGET_FLAG_CLEAN_LINKAGE), \
303 N_("Do not force use of prototypes")}, */ \
304 {"ic-compat", TARGET_FLAG_IC_COMPAT2_0, \
305 N_("Enable compatibility with iC960 v2.0")}, \
306 {"ic2.0-compat", TARGET_FLAG_IC_COMPAT2_0, \
307 N_("Enable compatibility with iC960 v2.0")}, \
308 {"ic3.0-compat", TARGET_FLAG_IC_COMPAT3_0, \
309 N_("Enable compatibility with iC960 v3.0")}, \
310 {"asm-compat", TARGET_FLAG_ASM_COMPAT, \
311 N_("Enable compatibility with ic960 assembler")}, \
312 {"intel-asm", TARGET_FLAG_ASM_COMPAT, \
313 N_("Enable compatibility with ic960 assembler")}, \
314 {"strict-align", TARGET_FLAG_STRICT_ALIGN, \
315 N_("Do not permit unaligned accesses")}, \
316 {"no-strict-align", -(TARGET_FLAG_STRICT_ALIGN), \
317 N_("Permit unaligned accesses")}, \
318 {"old-align", (TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN), \
319 N_("Layout types like Intel's v1.3 gcc")}, \
320 {"no-old-align", -(TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN), \
321 N_("Do not layout types like Intel's v1.3 gcc")}, \
322 {"long-double-64", TARGET_FLAG_LONG_DOUBLE_64, \
323 N_("Use 64 bit long doubles")}, \
324 {"link-relax", 0, \
325 N_("Enable linker relaxation")}, \
326 {"no-link-relax", 0, \
327 N_("Do not enable linker relaxation")}, \
328 SUBTARGET_SWITCHES \
329 { "", TARGET_DEFAULT, \
330 NULL}}
331
332 /* This are meant to be redefined in the host dependent files */
333 #define SUBTARGET_SWITCHES
334
335 /* Override conflicting target switch options.
336 Doesn't actually detect if more than one -mARCH option is given, but
337 does handle the case of two blatantly conflicting -mARCH options. */
338 #define OVERRIDE_OPTIONS \
339 { \
340 if (TARGET_K_SERIES && TARGET_C_SERIES) \
341 { \
342 warning ("conflicting architectures defined - using C series"); \
343 target_flags &= ~TARGET_FLAG_K_SERIES; \
344 } \
345 if (TARGET_K_SERIES && TARGET_MC) \
346 { \
347 warning ("conflicting architectures defined - using K series"); \
348 target_flags &= ~TARGET_FLAG_MC; \
349 } \
350 if (TARGET_C_SERIES && TARGET_MC) \
351 { \
352 warning ("conflicting architectures defined - using C series");\
353 target_flags &= ~TARGET_FLAG_MC; \
354 } \
355 if (TARGET_IC_COMPAT3_0) \
356 { \
357 flag_short_enums = 1; \
358 flag_signed_char = 1; \
359 target_flags |= TARGET_FLAG_CLEAN_LINKAGE; \
360 if (TARGET_IC_COMPAT2_0) \
361 { \
362 warning ("iC2.0 and iC3.0 are incompatible - using iC3.0"); \
363 target_flags &= ~TARGET_FLAG_IC_COMPAT2_0; \
364 } \
365 } \
366 if (TARGET_IC_COMPAT2_0) \
367 { \
368 flag_signed_char = 1; \
369 target_flags |= TARGET_FLAG_CLEAN_LINKAGE; \
370 } \
371 /* ??? See the LONG_DOUBLE_TYPE_SIZE definition below. */ \
372 if (TARGET_LONG_DOUBLE_64) \
373 warning ("the -mlong-double-64 option does not work yet");\
374 i960_initialize (); \
375 }
376
377 /* Don't enable anything by default. The user is expected to supply a -mARCH
378 option. If none is given, then -mka is added by CC1_SPEC. */
379 #define TARGET_DEFAULT 0
380 \f
381 /* Target machine storage layout. */
382
383 /* Define this if most significant bit is lowest numbered
384 in instructions that operate on numbered bit-fields. */
385 #define BITS_BIG_ENDIAN 0
386
387 /* Define this if most significant byte of a word is the lowest numbered.
388 The i960 case be either big endian or little endian. We only support
389 little endian, which is the most common. */
390 #define BYTES_BIG_ENDIAN 0
391
392 /* Define this if most significant word of a multiword number is lowest
393 numbered. */
394 #define WORDS_BIG_ENDIAN 0
395
396 /* Bitfields cannot cross word boundaries. */
397 #define BITFIELD_NBYTES_LIMITED 1
398
399 /* Width of a word, in units (bytes). */
400 #define UNITS_PER_WORD 4
401
402 /* Width in bits of a long double. Define to 96, and let
403 ROUND_TYPE_ALIGN adjust the alignment for speed. */
404 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 96)
405
406 /* ??? This must be a constant, because real.c and real.h test it with #if. */
407 #undef LONG_DOUBLE_TYPE_SIZE
408 #define LONG_DOUBLE_TYPE_SIZE 96
409
410 /* Define this to set long double type size to use in libgcc2.c, which can
411 not depend on target_flags. */
412 #if defined(__LONG_DOUBLE_64__)
413 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
414 #else
415 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
416 #endif
417
418 /* Allocation boundary (in *bits*) for storing pointers in memory. */
419 #define POINTER_BOUNDARY 32
420
421 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
422 #define PARM_BOUNDARY 32
423
424 /* Boundary (in *bits*) on which stack pointer should be aligned. */
425 #define STACK_BOUNDARY 128
426
427 /* Allocation boundary (in *bits*) for the code of a function. */
428 #define FUNCTION_BOUNDARY 128
429
430 /* Alignment of field after `int : 0' in a structure. */
431 #define EMPTY_FIELD_BOUNDARY 32
432
433 /* This makes zero-length anonymous fields lay the next field
434 at a word boundary. It also makes the whole struct have
435 at least word alignment if there are any bitfields at all. */
436 #define PCC_BITFIELD_TYPE_MATTERS 1
437
438 /* Every structure's size must be a multiple of this. */
439 #define STRUCTURE_SIZE_BOUNDARY 8
440
441 /* No data type wants to be aligned rounder than this.
442 Extended precision floats gets 4-word alignment. */
443 #define BIGGEST_ALIGNMENT 128
444
445 /* Define this if move instructions will actually fail to work
446 when given unaligned data.
447 80960 will work even with unaligned data, but it is slow. */
448 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
449
450 /* Specify alignment for string literals (which might be higher than the
451 base type's minimal alignment requirement. This allows strings to be
452 aligned on word boundaries, and optimizes calls to the str* and mem*
453 library functions. */
454 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
455 (TREE_CODE (EXP) == STRING_CST \
456 && i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) > (ALIGN) \
457 ? i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) \
458 : (ALIGN))
459
460 /* Make XFmode floating point quantities be 128 bit aligned. */
461 #define DATA_ALIGNMENT(TYPE, ALIGN) \
462 (TREE_CODE (TYPE) == ARRAY_TYPE \
463 && TYPE_MODE (TREE_TYPE (TYPE)) == XFmode \
464 && (ALIGN) < 128 ? 128 : (ALIGN))
465
466 /* Macros to determine size of aggregates (structures and unions
467 in C). Normally, these may be defined to simply return the maximum
468 alignment and simple rounded-up size, but on some machines (like
469 the i960), the total size of a structure is based on a non-trivial
470 rounding method. */
471
472 #define ROUND_TYPE_ALIGN(TYPE, COMPUTED, SPECIFIED) \
473 ((TREE_CODE (TYPE) == REAL_TYPE && TYPE_MODE (TYPE) == XFmode) \
474 ? 128 /* Put 80 bit floating point elements on 128 bit boundaries. */ \
475 : ((!TARGET_OLD_ALIGN && !TYPE_PACKED (TYPE) \
476 && TREE_CODE (TYPE) == RECORD_TYPE) \
477 ? i960_round_align (MAX ((COMPUTED), (SPECIFIED)), TYPE_SIZE (TYPE)) \
478 : MAX ((COMPUTED), (SPECIFIED))))
479
480 #define ROUND_TYPE_SIZE(TYPE, COMPUTED, SPECIFIED) \
481 ((TREE_CODE (TYPE) == REAL_TYPE && TYPE_MODE (TYPE) == XFmode) \
482 ? bitsize_int (128) : round_up (COMPUTED, SPECIFIED))
483 #define ROUND_TYPE_SIZE_UNIT(TYPE, COMPUTED, SPECIFIED) \
484 ((TREE_CODE (TYPE) == REAL_TYPE && TYPE_MODE (TYPE) == XFmode) \
485 ? size_int (16) : round_up (COMPUTED, SPECIFIED))
486
487 \f
488 /* Standard register usage. */
489
490 /* Number of actual hardware registers.
491 The hardware registers are assigned numbers for the compiler
492 from 0 to just below FIRST_PSEUDO_REGISTER.
493 All registers that the compiler knows about must be given numbers,
494 even those that are not normally considered general registers.
495
496 Registers 0-15 are the global registers (g0-g15).
497 Registers 16-31 are the local registers (r0-r15).
498 Register 32-35 are the fp registers (fp0-fp3).
499 Register 36 is the condition code register.
500 Register 37 is unused. */
501
502 #define FIRST_PSEUDO_REGISTER 38
503
504 /* 1 for registers that have pervasive standard uses and are not available
505 for the register allocator. On 80960, this includes the frame pointer
506 (g15), the previous FP (r0), the stack pointer (r1), the return
507 instruction pointer (r2), and the argument pointer (g14). */
508 #define FIXED_REGISTERS \
509 {0, 0, 0, 0, 0, 0, 0, 0, \
510 0, 0, 0, 0, 0, 0, 1, 1, \
511 1, 1, 1, 0, 0, 0, 0, 0, \
512 0, 0, 0, 0, 0, 0, 0, 0, \
513 0, 0, 0, 0, 1, 1}
514
515 /* 1 for registers not available across function calls.
516 These must include the FIXED_REGISTERS and also any
517 registers that can be used without being saved.
518 The latter must include the registers where values are returned
519 and the register where structure-value addresses are passed.
520 Aside from that, you can include as many other registers as you like. */
521
522 /* On the 80960, note that:
523 g0..g3 are used for return values,
524 g0..g7 may always be used for parameters,
525 g8..g11 may be used for parameters, but are preserved if they aren't,
526 g12 is the static chain if needed, otherwise is preserved
527 g13 is the struct return ptr if used, or temp, but may be trashed,
528 g14 is the leaf return ptr or the arg block ptr otherwise zero,
529 must be reset to zero before returning if it was used,
530 g15 is the frame pointer,
531 r0 is the previous FP,
532 r1 is the stack pointer,
533 r2 is the return instruction pointer,
534 r3-r15 are always available,
535 r3 is clobbered by calls in functions that use the arg pointer
536 r4-r11 may be clobbered by the mcount call when profiling
537 r4-r15 if otherwise unused may be used for preserving global registers
538 fp0..fp3 are never available. */
539 #define CALL_USED_REGISTERS \
540 {1, 1, 1, 1, 1, 1, 1, 1, \
541 0, 0, 0, 0, 0, 1, 1, 1, \
542 1, 1, 1, 0, 0, 0, 0, 0, \
543 0, 0, 0, 0, 0, 0, 0, 0, \
544 1, 1, 1, 1, 1, 1}
545
546 /* If no fp unit, make all of the fp registers fixed so that they can't
547 be used. */
548 #define CONDITIONAL_REGISTER_USAGE \
549 if (! TARGET_NUMERICS) { \
550 fixed_regs[32] = fixed_regs[33] = fixed_regs[34] = fixed_regs[35] = 1;\
551 } \
552
553 /* Return number of consecutive hard regs needed starting at reg REGNO
554 to hold something of mode MODE.
555 This is ordinarily the length in words of a value of mode MODE
556 but can be less for certain modes in special long registers.
557
558 On 80960, ordinary registers hold 32 bits worth, but can be ganged
559 together to hold double or extended precision floating point numbers,
560 and the floating point registers hold any size floating point number */
561 #define HARD_REGNO_NREGS(REGNO, MODE) \
562 ((REGNO) < 32 \
563 ? (((MODE) == VOIDmode) \
564 ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
565 : ((REGNO) < FIRST_PSEUDO_REGISTER) ? 1 : 0)
566
567 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
568 On 80960, the cpu registers can hold any mode but the float registers
569 can only hold SFmode, DFmode, or XFmode. */
570 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok ((REGNO), (MODE))
571
572 /* Value is 1 if it is a good idea to tie two pseudo registers
573 when one has mode MODE1 and one has mode MODE2.
574 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
575 for any hard reg, then this must be 0 for correct output. */
576
577 #define MODES_TIEABLE_P(MODE1, MODE2) \
578 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
579
580 /* Specify the registers used for certain standard purposes.
581 The values of these macros are register numbers. */
582
583 /* 80960 pc isn't overloaded on a register that the compiler knows about. */
584 /* #define PC_REGNUM */
585
586 /* Register to use for pushing function arguments. */
587 #define STACK_POINTER_REGNUM 17
588
589 /* Actual top-of-stack address is same as
590 the contents of the stack pointer register. */
591 #define STACK_POINTER_OFFSET (-current_function_outgoing_args_size)
592
593 /* Base register for access to local variables of the function. */
594 #define FRAME_POINTER_REGNUM 15
595
596 /* Value should be nonzero if functions must have frame pointers.
597 Zero means the frame pointer need not be set up (and parms
598 may be accessed via the stack pointer) in functions that seem suitable.
599 This is computed in `reload', in reload1.c. */
600 /* ??? It isn't clear to me why this is here. Perhaps because of a bug (since
601 fixed) in the definition of INITIAL_FRAME_POINTER_OFFSET which would have
602 caused this to fail. */
603 /* ??? Must check current_function_has_nonlocal_goto, otherwise frame pointer
604 elimination messes up nonlocal goto sequences. I think this works for other
605 targets because they use indirect jumps for the return which disables fp
606 elimination. */
607 #define FRAME_POINTER_REQUIRED \
608 (! leaf_function_p () || current_function_has_nonlocal_goto)
609
610 /* Definitions for register eliminations.
611
612 This is an array of structures. Each structure initializes one pair
613 of eliminable registers. The "from" register number is given first,
614 followed by "to". Eliminations of the same "from" register are listed
615 in order of preference.. */
616
617 #define ELIMINABLE_REGS {{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
618
619 /* Given FROM and TO register numbers, say whether this elimination is allowed.
620 Frame pointer elimination is automatically handled. */
621 #define CAN_ELIMINATE(FROM, TO) 1
622
623 /* Define the offset between two registers, one to be eliminated, and
624 the other its replacement, at the start of a routine.
625
626 Since the stack grows upward on the i960, this must be a negative number.
627 This includes the 64 byte hardware register save area and the size of
628 the frame. */
629
630 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
631 do { (OFFSET) = - (64 + compute_frame_size (get_frame_size ())); } while (0)
632
633 /* Base register for access to arguments of the function. */
634 #define ARG_POINTER_REGNUM 14
635
636 /* Register in which static-chain is passed to a function.
637 On i960, we use g12. We can't use any local register, because we need
638 a register that can be set before a call or before a jump. */
639 #define STATIC_CHAIN_REGNUM 12
640
641 /* Functions which return large structures get the address
642 to place the wanted value at in g13. */
643
644 #define STRUCT_VALUE_REGNUM 13
645
646 /* The order in which to allocate registers. */
647
648 #define REG_ALLOC_ORDER \
649 { 4, 5, 6, 7, 0, 1, 2, 3, 13, /* g4, g5, g6, g7, g0, g1, g2, g3, g13 */ \
650 20, 21, 22, 23, 24, 25, 26, 27,/* r4, r5, r6, r7, r8, r9, r10, r11 */ \
651 28, 29, 30, 31, 19, 8, 9, 10, /* r12, r13, r14, r15, r3, g8, g9, g10 */ \
652 11, 12, /* g11, g12 */ \
653 32, 33, 34, 35, /* fp0, fp1, fp2, fp3 */ \
654 /* We can't actually allocate these. */ \
655 16, 17, 18, 14, 15, 36, 37} /* r0, r1, r2, g14, g15, cc */
656 \f
657 /* Define the classes of registers for register constraints in the
658 machine description. Also define ranges of constants.
659
660 One of the classes must always be named ALL_REGS and include all hard regs.
661 If there is more than one class, another class must be named NO_REGS
662 and contain no registers.
663
664 The name GENERAL_REGS must be the name of a class (or an alias for
665 another name such as ALL_REGS). This is the class of registers
666 that is allowed by "g" or "r" in a register constraint.
667 Also, registers outside this class are allocated only when
668 instructions express preferences for them.
669
670 The classes must be numbered in nondecreasing order; that is,
671 a larger-numbered class must never be contained completely
672 in a smaller-numbered class.
673
674 For any two classes, it is very desirable that there be another
675 class that represents their union. */
676
677 /* The 80960 has four kinds of registers, global, local, floating point,
678 and condition code. The cc register is never allocated, so no class
679 needs to be defined for it. */
680
681 enum reg_class { NO_REGS, GLOBAL_REGS, LOCAL_REGS, LOCAL_OR_GLOBAL_REGS,
682 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
683
684 /* 'r' includes floating point registers if TARGET_NUMERICS. 'd' never
685 does. */
686 #define GENERAL_REGS ((TARGET_NUMERICS) ? ALL_REGS : LOCAL_OR_GLOBAL_REGS)
687
688 #define N_REG_CLASSES (int) LIM_REG_CLASSES
689
690 /* Give names of register classes as strings for dump file. */
691
692 #define REG_CLASS_NAMES \
693 { "NO_REGS", "GLOBAL_REGS", "LOCAL_REGS", "LOCAL_OR_GLOBAL_REGS", \
694 "FP_REGS", "ALL_REGS" }
695
696 /* Define which registers fit in which classes.
697 This is an initializer for a vector of HARD_REG_SET
698 of length N_REG_CLASSES. */
699
700 #define REG_CLASS_CONTENTS \
701 { {0, 0}, {0x0ffff, 0}, {0xffff0000, 0}, {-1,0}, {0, -1}, {-1,-1}}
702
703 /* The same information, inverted:
704 Return the class number of the smallest class containing
705 reg number REGNO. This could be a conditional expression
706 or could index an array. */
707
708 #define REGNO_REG_CLASS(REGNO) \
709 ((REGNO) < 16 ? GLOBAL_REGS \
710 : (REGNO) < 32 ? LOCAL_REGS \
711 : (REGNO) < 36 ? FP_REGS \
712 : NO_REGS)
713
714 /* The class value for index registers, and the one for base regs.
715 There is currently no difference between base and index registers on the
716 i960, but this distinction may one day be useful. */
717 #define INDEX_REG_CLASS LOCAL_OR_GLOBAL_REGS
718 #define BASE_REG_CLASS LOCAL_OR_GLOBAL_REGS
719
720 /* Get reg_class from a letter such as appears in the machine description.
721 'f' is a floating point register (fp0..fp3)
722 'l' is a local register (r0-r15)
723 'b' is a global register (g0-g15)
724 'd' is any local or global register
725 'r' or 'g' are pre-defined to the class GENERAL_REGS. */
726 /* 'l' and 'b' are probably never used. Note that 'd' and 'r' are *not*
727 the same thing, since 'r' may include the fp registers. */
728 #define REG_CLASS_FROM_LETTER(C) \
729 (((C) == 'f') && (TARGET_NUMERICS) ? FP_REGS : ((C) == 'l' ? LOCAL_REGS : \
730 (C) == 'b' ? GLOBAL_REGS : ((C) == 'd' ? LOCAL_OR_GLOBAL_REGS : NO_REGS)))
731
732 /* The letters I, J, K, L and M in a register constraint string
733 can be used to stand for particular ranges of immediate operands.
734 This macro defines what the ranges are.
735 C is the letter, and VALUE is a constant value.
736 Return 1 if VALUE is in the range specified by C.
737
738 For 80960:
739 'I' is used for literal values 0..31
740 'J' means literal 0
741 'K' means 0..-31. */
742
743 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
744 ((C) == 'I' ? (((unsigned) (VALUE)) <= 31) \
745 : (C) == 'J' ? ((VALUE) == 0) \
746 : (C) == 'K' ? ((VALUE) >= -31 && (VALUE) <= 0) \
747 : (C) == 'M' ? ((VALUE) >= -32 && (VALUE) <= 0) \
748 : 0)
749
750 /* Similar, but for floating constants, and defining letters G and H.
751 Here VALUE is the CONST_DOUBLE rtx itself.
752 For the 80960, G is 0.0 and H is 1.0. */
753
754 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
755 ((TARGET_NUMERICS) && \
756 (((C) == 'G' && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
757 || ((C) == 'H' && ((VALUE) == CONST1_RTX (GET_MODE (VALUE))))))
758
759 /* Given an rtx X being reloaded into a reg required to be
760 in class CLASS, return the class of reg to actually use.
761 In general this is just CLASS; but on some machines
762 in some cases it is preferable to use a more restrictive class. */
763
764 /* On 960, can't load constant into floating-point reg except
765 0.0 or 1.0.
766
767 Any hard reg is ok as a src operand of a reload insn. */
768
769 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
770 (GET_CODE (X) == REG && REGNO (X) < FIRST_PSEUDO_REGISTER \
771 ? (CLASS) \
772 : ((CLASS) == FP_REGS && CONSTANT_P (X) \
773 && (X) != CONST0_RTX (DFmode) && (X) != CONST1_RTX (DFmode)\
774 && (X) != CONST0_RTX (SFmode) && (X) != CONST1_RTX (SFmode)\
775 ? NO_REGS \
776 : (CLASS) == ALL_REGS ? LOCAL_OR_GLOBAL_REGS : (CLASS)))
777
778 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
779 secondary_reload_class (CLASS, MODE, IN)
780
781 /* Return the maximum number of consecutive registers
782 needed to represent mode MODE in a register of class CLASS. */
783 /* On 80960, this is the size of MODE in words,
784 except in the FP regs, where a single reg is always enough. */
785 #define CLASS_MAX_NREGS(CLASS, MODE) \
786 ((CLASS) == FP_REGS ? 1 : HARD_REGNO_NREGS (0, (MODE)))
787 \f
788 /* Stack layout; function entry, exit and calling. */
789
790 /* Define this if pushing a word on the stack
791 makes the stack pointer a smaller address. */
792 /* #define STACK_GROWS_DOWNWARD */
793
794 /* Define this if the nominal address of the stack frame
795 is at the high-address end of the local variables;
796 that is, each additional local variable allocated
797 goes at a more negative offset in the frame. */
798 /* #define FRAME_GROWS_DOWNWARD */
799
800 /* Offset within stack frame to start allocating local variables at.
801 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
802 first local allocated. Otherwise, it is the offset to the BEGINNING
803 of the first local allocated.
804
805 The i960 has a 64 byte register save area, plus possibly some extra
806 bytes allocated for varargs functions. */
807 #define STARTING_FRAME_OFFSET 64
808
809 /* If we generate an insn to push BYTES bytes,
810 this says how many the stack pointer really advances by.
811 On 80960, don't define this because there are no push insns. */
812 /* #define PUSH_ROUNDING(BYTES) BYTES */
813
814 /* Offset of first parameter from the argument pointer register value. */
815 #define FIRST_PARM_OFFSET(FNDECL) 0
816
817 /* When a parameter is passed in a register, no stack space is
818 allocated for it. However, when args are passed in the
819 stack, space is allocated for every register parameter. */
820 #define MAYBE_REG_PARM_STACK_SPACE 48
821 #define FINAL_REG_PARM_STACK_SPACE(CONST_SIZE, VAR_SIZE) \
822 i960_final_reg_parm_stack_space (CONST_SIZE, VAR_SIZE);
823 #define REG_PARM_STACK_SPACE(DECL) i960_reg_parm_stack_space (DECL)
824 #define OUTGOING_REG_PARM_STACK_SPACE
825
826 /* Keep the stack pointer constant throughout the function. */
827 #define ACCUMULATE_OUTGOING_ARGS 1
828
829 /* Value is 1 if returning from a function call automatically
830 pops the arguments described by the number-of-args field in the call.
831 FUNDECL is the declaration node of the function (as a tree),
832 FUNTYPE is the data type of the function (as a tree),
833 or for a library call it is an identifier node for the subroutine name. */
834
835 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
836
837 /* Define how to find the value returned by a library function
838 assuming the value has mode MODE. */
839
840 #define LIBCALL_VALUE(MODE) gen_rtx_REG ((MODE), 0)
841
842 /* 1 if N is a possible register number for a function value
843 as seen by the caller.
844 On 80960, returns are in g0..g3 */
845
846 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
847
848 /* 1 if N is a possible register number for function argument passing.
849 On 80960, parameters are passed in g0..g11 */
850
851 #define FUNCTION_ARG_REGNO_P(N) ((N) < 12)
852
853 /* Perform any needed actions needed for a function that is receiving a
854 variable number of arguments.
855
856 CUM is as above.
857
858 MODE and TYPE are the mode and type of the current parameter.
859
860 PRETEND_SIZE is a variable that should be set to the amount of stack
861 that must be pushed by the prolog to pretend that our caller pushed
862 it.
863
864 Normally, this macro will push all remaining incoming registers on the
865 stack and set PRETEND_SIZE to the length of the registers pushed. */
866
867 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
868 i960_setup_incoming_varargs(&CUM,MODE,TYPE,&PRETEND_SIZE,NO_RTL)
869
870 /* Define the `__builtin_va_list' type for the ABI. */
871 #define BUILD_VA_LIST_TYPE(VALIST) \
872 (VALIST) = i960_build_va_list ()
873
874 /* Implement `va_start' for varargs and stdarg. */
875 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
876 i960_va_start (valist, nextarg)
877
878 /* Implement `va_arg'. */
879 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
880 i960_va_arg (valist, type)
881 \f
882 /* Define a data type for recording info about an argument list
883 during the scan of that argument list. This data type should
884 hold all necessary information about the function itself
885 and about the args processed so far, enough to enable macros
886 such as FUNCTION_ARG to determine where the next arg should go.
887
888 On 80960, this is two integers, which count the number of register
889 parameters and the number of stack parameters seen so far. */
890
891 struct cum_args { int ca_nregparms; int ca_nstackparms; };
892
893 #define CUMULATIVE_ARGS struct cum_args
894
895 /* Define the number of registers that can hold parameters.
896 This macro is used only in macro definitions below and/or i960.c. */
897 #define NPARM_REGS 12
898
899 /* Define how to round to the next parameter boundary.
900 This macro is used only in macro definitions below and/or i960.c. */
901 #define ROUND_PARM(X, MULTIPLE_OF) \
902 ((((X) + (MULTIPLE_OF) - 1) / (MULTIPLE_OF)) * MULTIPLE_OF)
903
904 /* Initialize a variable CUM of type CUMULATIVE_ARGS
905 for a call to a function whose data type is FNTYPE.
906 For a library call, FNTYPE is 0.
907
908 On 80960, the offset always starts at 0; the first parm reg is g0. */
909
910 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
911 ((CUM).ca_nregparms = 0, (CUM).ca_nstackparms = 0)
912
913 /* Update the data in CUM to advance over an argument
914 of mode MODE and data type TYPE.
915 CUM should be advanced to align with the data type accessed and
916 also the size of that data type in # of regs.
917 (TYPE is null for libcalls where that information may not be available.) */
918
919 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
920 i960_function_arg_advance(&CUM, MODE, TYPE, NAMED)
921
922 /* Indicate the alignment boundary for an argument of the specified mode and
923 type. */
924 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
925 (((TYPE) != 0) \
926 ? ((TYPE_ALIGN (TYPE) <= PARM_BOUNDARY) \
927 ? PARM_BOUNDARY \
928 : TYPE_ALIGN (TYPE)) \
929 : ((GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY) \
930 ? PARM_BOUNDARY \
931 : GET_MODE_ALIGNMENT (MODE)))
932
933 /* Determine where to put an argument to a function.
934 Value is zero to push the argument on the stack,
935 or a hard register in which to store the argument.
936
937 MODE is the argument's machine mode.
938 TYPE is the data type of the argument (as a tree).
939 This is null for libcalls where that information may
940 not be available.
941 CUM is a variable of type CUMULATIVE_ARGS which gives info about
942 the preceding args and about the function being called.
943 NAMED is nonzero if this argument is a named parameter
944 (otherwise it is an extra parameter matching an ellipsis). */
945
946 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
947 i960_function_arg(&CUM, MODE, TYPE, NAMED)
948
949 /* Define how to find the value returned by a function.
950 VALTYPE is the data type of the value (as a tree).
951 If the precise function being called is known, FUNC is its FUNCTION_DECL;
952 otherwise, FUNC is 0. */
953
954 #define FUNCTION_VALUE(TYPE, FUNC) \
955 gen_rtx_REG (TYPE_MODE (TYPE), 0)
956
957 /* Force aggregates and objects larger than 16 bytes to be returned in memory,
958 since we only have 4 registers available for return values. */
959
960 #define RETURN_IN_MEMORY(TYPE) \
961 (TYPE_MODE (TYPE) == BLKmode || int_size_in_bytes (TYPE) > 16)
962
963 /* Don't default to pcc-struct-return, because we have already specified
964 exactly how to return structures in the RETURN_IN_MEMORY macro. */
965 #define DEFAULT_PCC_STRUCT_RETURN 0
966
967 /* For an arg passed partly in registers and partly in memory,
968 this is the number of registers used.
969 This never happens on 80960. */
970
971 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
972 \f
973 /* Output the label for a function definition.
974 This handles leaf functions and a few other things for the i960. */
975
976 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
977 i960_function_name_declare (FILE, NAME, DECL)
978
979 /* Output assembler code to FILE to increment profiler label # LABELNO
980 for profiling a function entry. */
981
982 #define FUNCTION_PROFILER(FILE, LABELNO) \
983 output_function_profiler ((FILE), (LABELNO));
984
985 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
986 the stack pointer does not matter. The value is tested only in
987 functions that have frame pointers.
988 No definition is equivalent to always zero. */
989
990 #define EXIT_IGNORE_STACK 1
991 \f
992 /* Addressing modes, and classification of registers for them. */
993
994 /* #define HAVE_POST_INCREMENT 0 */
995 /* #define HAVE_POST_DECREMENT 0 */
996
997 /* #define HAVE_PRE_DECREMENT 0 */
998 /* #define HAVE_PRE_INCREMENT 0 */
999
1000 /* Macros to check register numbers against specific register classes. */
1001
1002 /* These assume that REGNO is a hard or pseudo reg number.
1003 They give nonzero only if REGNO is a hard reg of the suitable class
1004 or a pseudo reg currently allocated to a suitable hard reg.
1005 Since they use reg_renumber, they are safe only once reg_renumber
1006 has been allocated, which happens in local-alloc.c. */
1007
1008 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1009 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
1010 #define REGNO_OK_FOR_BASE_P(REGNO) \
1011 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
1012 #define REGNO_OK_FOR_FP_P(REGNO) \
1013 ((REGNO) < 36 || (unsigned) reg_renumber[REGNO] < 36)
1014
1015 /* Now macros that check whether X is a register and also,
1016 strictly, whether it is in a specified class.
1017
1018 These macros are specific to the 960, and may be used only
1019 in code for printing assembler insns and in conditions for
1020 define_optimization. */
1021
1022 /* 1 if X is an fp register. */
1023
1024 #define FP_REG_P(X) (REGNO (X) >= 32 && REGNO (X) < 36)
1025
1026 /* Maximum number of registers that can appear in a valid memory address. */
1027 #define MAX_REGS_PER_ADDRESS 2
1028
1029 #define CONSTANT_ADDRESS_P(X) \
1030 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1031 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1032 || GET_CODE (X) == HIGH)
1033
1034 /* LEGITIMATE_CONSTANT_P is nonzero if the constant value X
1035 is a legitimate general operand.
1036 It is given that X satisfies CONSTANT_P.
1037
1038 Anything but a CONST_DOUBLE can be made to work, excepting 0.0 and 1.0.
1039
1040 ??? This probably should be defined to 1. */
1041
1042 #define LEGITIMATE_CONSTANT_P(X) \
1043 ((GET_CODE (X) != CONST_DOUBLE) || fp_literal ((X), GET_MODE (X)))
1044
1045 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1046 and check its validity for a certain class.
1047 We have two alternate definitions for each of them.
1048 The usual definition accepts all pseudo regs; the other rejects
1049 them unless they have been allocated suitable hard regs.
1050 The symbol REG_OK_STRICT causes the latter definition to be used.
1051
1052 Most source files want to accept pseudo regs in the hope that
1053 they will get allocated to the class that the insn wants them to be in.
1054 Source files for reload pass need to be strict.
1055 After reload, it makes no difference, since pseudo regs have
1056 been eliminated by then. */
1057
1058 #ifndef REG_OK_STRICT
1059
1060 /* Nonzero if X is a hard reg that can be used as an index
1061 or if it is a pseudo reg. */
1062 #define REG_OK_FOR_INDEX_P(X) \
1063 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1064 /* Nonzero if X is a hard reg that can be used as a base reg
1065 or if it is a pseudo reg. */
1066 #define REG_OK_FOR_BASE_P(X) \
1067 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1068
1069 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1070 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1071
1072 #else
1073
1074 /* Nonzero if X is a hard reg that can be used as an index. */
1075 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1076 /* Nonzero if X is a hard reg that can be used as a base reg. */
1077 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1078
1079 #endif
1080 \f
1081 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1082 that is a valid memory address for an instruction.
1083 The MODE argument is the machine mode for the MEM expression
1084 that wants to use this address.
1085
1086 On 80960, legitimate addresses are:
1087 base ld (g0),r0
1088 disp (12 or 32 bit) ld foo,r0
1089 base + index ld (g0)[g1*1],r0
1090 base + displ ld 0xf00(g0),r0
1091 base + index*scale + displ ld 0xf00(g0)[g1*4],r0
1092 index*scale + base ld (g0)[g1*4],r0
1093 index*scale + displ ld 0xf00[g1*4],r0
1094 index*scale ld [g1*4],r0
1095 index + base + displ ld 0xf00(g0)[g1*1],r0
1096
1097 In each case, scale can be 1, 2, 4, 8, or 16. */
1098
1099 /* Returns 1 if the scale factor of an index term is valid. */
1100 #define SCALE_TERM_P(X) \
1101 (GET_CODE (X) == CONST_INT \
1102 && (INTVAL (X) == 1 || INTVAL (X) == 2 || INTVAL (X) == 4 \
1103 || INTVAL(X) == 8 || INTVAL (X) == 16))
1104
1105
1106 #ifdef REG_OK_STRICT
1107 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1108 { if (legitimate_address_p (MODE, X, 1)) goto ADDR; }
1109 #else
1110 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1111 { if (legitimate_address_p (MODE, X, 0)) goto ADDR; }
1112 #endif
1113 \f
1114 /* Try machine-dependent ways of modifying an illegitimate address
1115 to be legitimate. If we find one, return the new, valid address.
1116 This macro is used in only one place: `memory_address' in explow.c.
1117
1118 OLDX is the address as it was before break_out_memory_refs was called.
1119 In some cases it is useful to look at this to decide what needs to be done.
1120
1121 MODE and WIN are passed so that this macro can use
1122 GO_IF_LEGITIMATE_ADDRESS.
1123
1124 It is always safe for this macro to do nothing. It exists to recognize
1125 opportunities to optimize the output. */
1126
1127 /* On 80960, convert non-canonical addresses to canonical form. */
1128
1129 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1130 { rtx orig_x = (X); \
1131 (X) = legitimize_address (X, OLDX, MODE); \
1132 if ((X) != orig_x && memory_address_p (MODE, X)) \
1133 goto WIN; }
1134
1135 /* Go to LABEL if ADDR (a legitimate address expression)
1136 has an effect that depends on the machine mode it is used for.
1137 On the 960 this is never true. */
1138
1139 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1140 \f
1141 /* Specify the machine mode that this machine uses
1142 for the index in the tablejump instruction. */
1143 #define CASE_VECTOR_MODE SImode
1144
1145 /* Define as C expression which evaluates to nonzero if the tablejump
1146 instruction expects the table to contain offsets from the address of the
1147 table.
1148 Do not define this if the table should contain absolute addresses. */
1149 /* #define CASE_VECTOR_PC_RELATIVE 1 */
1150
1151 /* Define this as 1 if `char' should by default be signed; else as 0. */
1152 #define DEFAULT_SIGNED_CHAR 0
1153
1154 /* Max number of bytes we can move from memory to memory
1155 in one reasonably fast instruction. */
1156 #define MOVE_MAX 16
1157
1158 /* Define if operations between registers always perform the operation
1159 on the full register even if a narrower mode is specified. */
1160 #define WORD_REGISTER_OPERATIONS
1161
1162 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1163 will either zero-extend or sign-extend. The value of this macro should
1164 be the code that says which one of the two operations is implicitly
1165 done, NIL if none. */
1166 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1167
1168 /* Nonzero if access to memory by bytes is no faster than for words.
1169 Value changed to 1 after reports of poor bitfield code with g++.
1170 Indications are that code is usually as good, sometimes better. */
1171
1172 #define SLOW_BYTE_ACCESS 1
1173
1174 /* We assume that the store-condition-codes instructions store 0 for false
1175 and some other value for true. This is the value stored for true. */
1176
1177 #define STORE_FLAG_VALUE 1
1178
1179 /* Define this to be nonzero if shift instructions ignore all but the low-order
1180 few bits. */
1181 #define SHIFT_COUNT_TRUNCATED 0
1182
1183 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1184 is done just by pretending it is already truncated. */
1185 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1186
1187 /* Specify the machine mode that pointers have.
1188 After generation of rtl, the compiler makes no further distinction
1189 between pointers and any other objects of this machine mode. */
1190 #define Pmode SImode
1191
1192 /* Specify the widest mode that BLKmode objects can be promoted to */
1193 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1194 \f
1195 /* These global variables are used to pass information between
1196 cc setter and cc user at insn emit time. */
1197
1198 extern struct rtx_def *i960_compare_op0, *i960_compare_op1;
1199
1200 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1201 return the mode to be used for the comparison. For floating-point, CCFPmode
1202 should be used. CC_NOOVmode should be used when the first operand is a
1203 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1204 needed. */
1205 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode (OP, X)
1206
1207 /* A function address in a call instruction is a byte address
1208 (for indexing purposes) so give the MEM rtx a byte's mode. */
1209 #define FUNCTION_MODE SImode
1210
1211 /* Define this if addresses of constant functions
1212 shouldn't be put through pseudo regs where they can be cse'd.
1213 Desirable on machines where ordinary constants are expensive
1214 but a CALL with constant address is cheap. */
1215 #define NO_FUNCTION_CSE
1216
1217 /* Use memcpy, etc. instead of bcopy. */
1218
1219 #ifndef WIND_RIVER
1220 #define TARGET_MEM_FUNCTIONS 1
1221 #endif
1222
1223 /* Compute the cost of computing a constant rtl expression RTX
1224 whose rtx-code is CODE. The body of this macro is a portion
1225 of a switch statement. If the code is computed here,
1226 return it with a return statement. Otherwise, break from the switch. */
1227
1228 /* Constants that can be (non-ldconst) insn operands are cost 0. Constants
1229 that can be non-ldconst operands in rare cases are cost 1. Other constants
1230 have higher costs. */
1231
1232 /* Must check for OUTER_CODE of SET for power2_operand, because
1233 reload_cse_move2add calls us with OUTER_CODE of PLUS to decide when
1234 to replace set with add. */
1235
1236 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
1237 case CONST_INT: \
1238 if ((INTVAL (RTX) >= 0 && INTVAL (RTX) < 32) \
1239 || (OUTER_CODE == SET && power2_operand (RTX, VOIDmode))) \
1240 return 0; \
1241 else if (INTVAL (RTX) >= -31 && INTVAL (RTX) < 0) \
1242 return 1; \
1243 case CONST: \
1244 case LABEL_REF: \
1245 case SYMBOL_REF: \
1246 return (TARGET_C_SERIES ? 6 : 8); \
1247 case CONST_DOUBLE: \
1248 if ((RTX) == CONST0_RTX (DFmode) || (RTX) == CONST0_RTX (SFmode) \
1249 || (RTX) == CONST1_RTX (DFmode) || (RTX) == CONST1_RTX (SFmode))\
1250 return 1; \
1251 return 12;
1252
1253 /* The i960 offers addressing modes which are "as cheap as a register".
1254 See i960.c (or gcc.texinfo) for details. */
1255
1256 #define ADDRESS_COST(RTX) \
1257 (GET_CODE (RTX) == REG ? 1 : i960_address_cost (RTX))
1258 \f
1259 /* Control the assembler format that we output. */
1260
1261 /* Output at beginning of assembler file. */
1262
1263 #define ASM_FILE_START(file)
1264
1265 /* Output to assembler file text saying following lines
1266 may contain character constants, extra white space, comments, etc. */
1267
1268 #define ASM_APP_ON ""
1269
1270 /* Output to assembler file text saying following lines
1271 no longer contain unusual constructs. */
1272
1273 #define ASM_APP_OFF ""
1274
1275 /* Output before read-only data. */
1276
1277 #define TEXT_SECTION_ASM_OP "\t.text"
1278
1279 /* Output before writable data. */
1280
1281 #define DATA_SECTION_ASM_OP "\t.data"
1282
1283 /* How to refer to registers in assembler output.
1284 This sequence is indexed by compiler's hard-register-number (see above). */
1285
1286 #define REGISTER_NAMES { \
1287 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
1288 "g8", "g9", "g10", "g11", "g12", "g13", "g14", "fp", \
1289 "pfp","sp", "rip", "r3", "r4", "r5", "r6", "r7", \
1290 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1291 "fp0","fp1","fp2", "fp3", "cc", "fake" }
1292
1293 /* How to renumber registers for dbx and gdb.
1294 In the 960 encoding, g0..g15 are registers 16..31. */
1295
1296 #define DBX_REGISTER_NUMBER(REGNO) \
1297 (((REGNO) < 16) ? (REGNO) + 16 \
1298 : (((REGNO) > 31) ? (REGNO) : (REGNO) - 16))
1299
1300 /* Don't emit dbx records longer than this. This is an arbitrary value. */
1301 #define DBX_CONTIN_LENGTH 1500
1302
1303 /* This is how to output a note to DBX telling it the line number
1304 to which the following sequence of instructions corresponds. */
1305
1306 #define ASM_OUTPUT_SOURCE_LINE(FILE, LINE) \
1307 { if (write_symbols == SDB_DEBUG) { \
1308 fprintf ((FILE), "\t.ln %d\n", \
1309 (sdb_begin_function_line \
1310 ? (LINE) - sdb_begin_function_line : 1)); \
1311 } else if (write_symbols == DBX_DEBUG) { \
1312 fprintf((FILE),"\t.stabd 68,0,%d\n",(LINE)); \
1313 } }
1314
1315 /* Globalizing directive for a label. */
1316 #define GLOBAL_ASM_OP "\t.globl "
1317
1318 /* The prefix to add to user-visible assembler symbols. */
1319
1320 #define USER_LABEL_PREFIX "_"
1321
1322 /* This is how to output an internal numbered label where
1323 PREFIX is the class of label and NUM is the number within the class. */
1324
1325 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1326 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1327
1328 /* This is how to store into the string LABEL
1329 the symbol_ref name of an internal numbered label where
1330 PREFIX is the class of label and NUM is the number within the class.
1331 This is suitable for output with `assemble_name'. */
1332
1333 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1334 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1335
1336 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1337 fprintf (FILE, "\tst\t%s,(sp)\n\taddo\t4,sp,sp\n", reg_names[REGNO])
1338
1339 /* This is how to output an insn to pop a register from the stack.
1340 It need not be very fast code. */
1341
1342 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1343 fprintf (FILE, "\tsubo\t4,sp,sp\n\tld\t(sp),%s\n", reg_names[REGNO])
1344
1345 /* This is how to output an element of a case-vector that is absolute. */
1346
1347 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1348 fprintf (FILE, "\t.word L%d\n", VALUE)
1349
1350 /* This is how to output an element of a case-vector that is relative. */
1351
1352 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1353 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1354
1355 /* This is how to output an assembler line that says to advance the
1356 location counter to a multiple of 2**LOG bytes. */
1357
1358 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1359 fprintf (FILE, "\t.align %d\n", (LOG))
1360
1361 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1362 fprintf (FILE, "\t.space %d\n", (SIZE))
1363
1364 /* This says how to output an assembler line
1365 to define a global common symbol. */
1366
1367 /* For common objects, output unpadded size... gld960 & lnk960 both
1368 have code to align each common object at link time. Also, if size
1369 is 0, treat this as a declaration, not a definition - i.e.,
1370 do nothing at all. */
1371
1372 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1373 { if ((SIZE) != 0) \
1374 { \
1375 fputs (".globl ", (FILE)), \
1376 assemble_name ((FILE), (NAME)), \
1377 fputs ("\n.comm ", (FILE)), \
1378 assemble_name ((FILE), (NAME)), \
1379 fprintf ((FILE), ",%d\n", (SIZE)); \
1380 } \
1381 }
1382
1383 /* This says how to output an assembler line to define a local common symbol.
1384 Output unpadded size, with request to linker to align as requested.
1385 0 size should not be possible here. */
1386
1387 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1388 ( fputs (".bss\t", (FILE)), \
1389 assemble_name ((FILE), (NAME)), \
1390 fprintf ((FILE), ",%d,%d\n", (SIZE), \
1391 (floor_log2 ((ALIGN) / BITS_PER_UNIT))))
1392
1393 /* A C statement (sans semicolon) to output to the stdio stream
1394 FILE the assembler definition of uninitialized global DECL named
1395 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1396 Try to use asm_output_aligned_bss to implement this macro. */
1397
1398 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1399 do { \
1400 fputs (".globl ", (FILE)); \
1401 assemble_name ((FILE), (NAME)); \
1402 fputs ("\n", (FILE)); \
1403 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
1404 } while (0)
1405
1406 /* Output text for an #ident directive. */
1407 #define ASM_OUTPUT_IDENT(FILE, STR) fprintf(FILE, "\t# %s\n", STR);
1408
1409 /* Align code to 8 byte boundary if TARGET_CODE_ALIGN is true. */
1410
1411 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_CODE_ALIGN ? 3 : 0)
1412
1413 /* Store in OUTPUT a string (made with alloca) containing
1414 an assembler-name for a local static variable named NAME.
1415 LABELNO is an integer which is different for each call. */
1416
1417 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1418 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1419 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1420 \f
1421 /* Print operand X (an rtx) in assembler syntax to file FILE.
1422 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1423 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1424
1425 #define PRINT_OPERAND(FILE, X, CODE) \
1426 i960_print_operand (FILE, X, CODE);
1427
1428 /* Print a memory address as an operand to reference that memory location. */
1429
1430 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1431 i960_print_operand_addr (FILE, ADDR)
1432
1433 /* Determine which codes are valid without a following integer. These must
1434 not be alphabetic (the characters are chosen so that
1435 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
1436 using ASCII). */
1437
1438 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '+')
1439 \f
1440 /* Output assembler code for a block containing the constant parts
1441 of a trampoline, leaving space for the variable parts. */
1442
1443 /* On the i960, the trampoline contains three instructions:
1444 ldconst _function, r4
1445 ldconst static addr, g12
1446 jump (r4) */
1447
1448 #define TRAMPOLINE_TEMPLATE(FILE) \
1449 { \
1450 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x8C203000)); \
1451 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x00000000)); \
1452 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x8CE03000)); \
1453 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x00000000)); \
1454 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x84212000)); \
1455 }
1456
1457 /* Length in units of the trampoline for entering a nested function. */
1458
1459 #define TRAMPOLINE_SIZE 20
1460
1461 /* Emit RTL insns to initialize the variable parts of a trampoline.
1462 FNADDR is an RTX for the address of the function's pure code.
1463 CXT is an RTX for the static chain value for the function. */
1464
1465 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1466 { \
1467 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), FNADDR); \
1468 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 12)), CXT); \
1469 }
1470
1471 /* Generate RTL to flush the register windows so as to make arbitrary frames
1472 available. */
1473 #define SETUP_FRAME_ADDRESSES() \
1474 emit_insn (gen_flush_register_windows ())
1475
1476 #define BUILTIN_SETJMP_FRAME_VALUE hard_frame_pointer_rtx
1477
1478 #if 0
1479 /* Promote char and short arguments to ints, when want compatibility with
1480 the iC960 compilers. */
1481
1482 /* ??? In order for this to work, all users would need to be changed
1483 to test the value of the macro at run time. */
1484 #define PROMOTE_PROTOTYPES TARGET_CLEAN_LINKAGE
1485 /* ??? This does not exist. */
1486 #define PROMOTE_RETURN TARGET_CLEAN_LINKAGE
1487 #endif
1488
1489 /* Instruction type definitions. Used to alternate instructions types for
1490 better performance on the C series chips. */
1491
1492 enum insn_types { I_TYPE_REG, I_TYPE_MEM, I_TYPE_CTRL };
1493
1494 /* Holds the insn type of the last insn output to the assembly file. */
1495
1496 extern enum insn_types i960_last_insn_type;
1497
1498 /* Parse opcodes, and set the insn last insn type based on them. */
1499
1500 #define ASM_OUTPUT_OPCODE(FILE, INSN) i960_scan_opcode (INSN)
1501
1502 /* Table listing what rtl codes each predicate in i960.c will accept. */
1503
1504 #define PREDICATE_CODES \
1505 {"fpmove_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
1506 LABEL_REF, SUBREG, REG, MEM}}, \
1507 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
1508 {"logic_operand", {SUBREG, REG, CONST_INT}}, \
1509 {"fp_arith_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1510 {"signed_arith_operand", {SUBREG, REG, CONST_INT}}, \
1511 {"literal", {CONST_INT}}, \
1512 {"fp_literal_one", {CONST_DOUBLE}}, \
1513 {"fp_literal_double", {CONST_DOUBLE}}, \
1514 {"fp_literal", {CONST_DOUBLE}}, \
1515 {"signed_literal", {CONST_INT}}, \
1516 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1517 {"eq_or_neq", {EQ, NE}}, \
1518 {"arith32_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, CONST_INT, \
1519 CONST_DOUBLE, CONST}}, \
1520 {"power2_operand", {CONST_INT}}, \
1521 {"cmplpower2_operand", {CONST_INT}},
1522
1523 /* Defined in reload.c, and used in insn-recog.c. */
1524
1525 extern int rtx_equal_function_value_matters;
1526
1527 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
1528 Used for C++ multiple inheritance. */
1529 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1530 do { \
1531 int d = (DELTA); \
1532 if (d < 0 && d > -32) \
1533 fprintf (FILE, "\tsubo %d,g0,g0\n", -d); \
1534 else if (d > 0 && d < 32) \
1535 fprintf (FILE, "\taddo %d,g0,g0\n", d); \
1536 else \
1537 { \
1538 fprintf (FILE, "\tldconst %d,r5\n", d); \
1539 fprintf (FILE, "\taddo r5,g0,g0\n"); \
1540 } \
1541 fprintf (FILE, "\tbx "); \
1542 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
1543 fprintf (FILE, "\n"); \
1544 } while (0);