]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/i960/i960.h
Update FSF address.
[thirdparty/gcc.git] / gcc / config / i960 / i960.h
1 /* Definitions of target machine for GNU compiler, for Intel 80960
2 Copyright (C) 1992, 1993, 1995 Free Software Foundation, Inc.
3 Contributed by Steven McGeady, Intel Corp.
4 Additional Work by Glenn Colon-Bonet, Jonathan Shapiro, Andy Wilson
5 Converted to GCC 2.0 by Jim Wilson and Michael Tiemann, Cygnus Support.
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* Note that some other tm.h files may include this one and then override
25 many of the definitions that relate to assembler syntax. */
26
27 /* Names to predefine in the preprocessor for this target machine. */
28 #define CPP_PREDEFINES "-Di960 -Di80960 -DI960 -DI80960 -Acpu(i960) -Amachine(i960)"
29
30 /* Name to predefine in the preprocessor for processor variations. */
31 #define CPP_SPEC "%{mic*:-D__i960\
32 %{mka:-D__i960KA}%{mkb:-D__i960KB}\
33 %{msa:-D__i960SA}%{msb:-D__i960SB}\
34 %{mmc:-D__i960MC}\
35 %{mca:-D__i960CA}%{mcc:-D__i960CC}\
36 %{mcf:-D__i960CF}}\
37 %{mka:-D__i960KA__ -D__i960_KA__}\
38 %{mkb:-D__i960KB__ -D__i960_KB__}\
39 %{msa:-D__i960SA__ -D__i960_SA__}\
40 %{msb:-D__i960SB__ -D__i960_SB__}\
41 %{mmc:-D__i960MC__ -D__i960_MC__}\
42 %{mca:-D__i960CA__ -D__i960_CA__}\
43 %{mcc:-D__i960CC__ -D__i960_CC__}\
44 %{mcf:-D__i960CF__ -D__i960_CF__}\
45 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:\
46 %{!mcc:%{!mcf:-D__i960_KB -D__i960KB__ %{mic*:-D__i960KB}}}}}}}}}"
47
48 /* -mic* options make characters signed by default. */
49 /* Use #if rather than ?: because MIPS C compiler rejects ?: in
50 initializers. */
51 #if DEFAULT_SIGNED_CHAR
52 #define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
53 #else
54 #define SIGNED_CHAR_SPEC "%{!fsigned-char:%{!mic*:-D__CHAR_UNSIGNED__}}"
55 #endif
56
57 /* Specs for the compiler, to handle processor variations.
58 If the user gives an explicit -gstabs or -gcoff option, then do not
59 try to add an implicit one, as this will fail. */
60 #define CC1_SPEC \
61 "%{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-mkb}}}}}}}}\
62 %{!gs*:%{!gc*:%{mbout:%{g*:-gstabs}}\
63 %{mcoff:%{g*:-gcoff}}\
64 %{!mbout:%{!mcoff:%{g*:-gstabs}}}}}"
65
66 /* Specs for the assembler, to handle processor variations.
67 For compatibility with Intel's gnu960 tool chain, pass -A options to
68 the assembler. */
69 #define ASM_SPEC \
70 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
71 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
72 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-AKB}}}}}}}}\
73 %{mlink-relax:-linkrelax}"
74
75 /* Specs for the linker, to handle processor variations.
76 For compatibility with Intel's gnu960 tool chain, pass -F and -A options
77 to the linker. */
78 #define LINK_SPEC \
79 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
80 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
81 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:-AKB}}}}}}}}\
82 %{mbout:-Fbout}%{mcoff:-Fcoff}\
83 %{mlink-relax:-relax}"
84
85 /* Specs for the libraries to link with, to handle processor variations.
86 Compatible with Intel's gnu960 tool chain. */
87 #define LIB_SPEC "%{!nostdlib:-lcg %{p:-lprof}%{pg:-lgprof}\
88 %{mka:-lfpg}%{msa:-lfpg}%{mca:-lfpg}%{mcf:-lfpg} -lgnu}"
89
90 /* Show we can debug even without a frame pointer. */
91 #define CAN_DEBUG_WITHOUT_FP
92
93 /* Do leaf procedure and tail call optimizations for -O2 and higher. */
94 #define OPTIMIZATION_OPTIONS(LEVEL) \
95 { \
96 if ((LEVEL) >= 2) \
97 { \
98 target_flags |= TARGET_FLAG_LEAFPROC; \
99 target_flags |= TARGET_FLAG_TAILCALL; \
100 } \
101 }
102
103 /* Print subsidiary information on the compiler version in use. */
104 #define TARGET_VERSION fprintf (stderr," (intel 80960)");
105
106 /* Generate DBX debugging information. */
107 #define DBX_DEBUGGING_INFO
108
109 /* Generate SDB style debugging information. */
110 #define SDB_DEBUGGING_INFO
111
112 /* Generate DBX_DEBUGGING_INFO by default. */
113 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
114
115 /* Redefine this to print in hex and adjust values like GNU960. The extra
116 bit is used to handle the type long double. Gcc does not support long
117 double in sdb output, but we do support the non-standard format. */
118 #define PUT_SDB_TYPE(A) \
119 fprintf (asm_out_file, "\t.type\t0x%x;", (A & 0xf) + 2 * (A & ~0xf))
120
121 /* Handle pragmas for compatibility with Intel's compilers. */
122 #define HANDLE_PRAGMA(FILE) process_pragma (FILE)
123
124 /* Run-time compilation parameters selecting different hardware subsets. */
125
126 /* 960 architecture with floating-point. */
127 #define TARGET_FLAG_NUMERICS 0x01
128 #define TARGET_NUMERICS (target_flags & TARGET_FLAG_NUMERICS)
129
130 /* 960 architecture with memory management. */
131 /* ??? Not used currently. */
132 #define TARGET_FLAG_PROTECTED 0x02
133 #define TARGET_PROTECTED (target_flags & TARGET_FLAG_PROTECTED)
134
135 /* The following three are mainly used to provide a little sanity checking
136 against the -mARCH flags given. */
137
138 /* Nonzero if we should generate code for the KA and similar processors.
139 No FPU, no microcode instructions. */
140 #define TARGET_FLAG_K_SERIES 0x04
141 #define TARGET_K_SERIES (target_flags & TARGET_FLAG_K_SERIES)
142
143 /* Nonzero if we should generate code for the MC processor.
144 Not really different from KB for our purposes. */
145 #define TARGET_FLAG_MC 0x08
146 #define TARGET_MC (target_flags & TARGET_FLAG_MC)
147
148 /* Nonzero if we should generate code for the CA processor.
149 Enables different optimization strategies. */
150 #define TARGET_FLAG_C_SERIES 0x10
151 #define TARGET_C_SERIES (target_flags & TARGET_FLAG_C_SERIES)
152
153 /* Nonzero if we should generate leaf-procedures when we find them.
154 You may not want to do this because leaf-proc entries are
155 slower when not entered via BAL - this would be true when
156 a linker not supporting the optimization is used. */
157 #define TARGET_FLAG_LEAFPROC 0x20
158 #define TARGET_LEAFPROC (target_flags & TARGET_FLAG_LEAFPROC)
159
160 /* Nonzero if we should perform tail-call optimizations when we find them.
161 You may not want to do this because the detection of cases where
162 this is not valid is not totally complete. */
163 #define TARGET_FLAG_TAILCALL 0x40
164 #define TARGET_TAILCALL (target_flags & TARGET_FLAG_TAILCALL)
165
166 /* Nonzero if use of a complex addressing mode is a win on this implementation.
167 Complex addressing modes are probably not worthwhile on the K-series,
168 but they definitely are on the C-series. */
169 #define TARGET_FLAG_COMPLEX_ADDR 0x80
170 #define TARGET_COMPLEX_ADDR (target_flags & TARGET_FLAG_COMPLEX_ADDR)
171
172 /* Align code to 8 byte boundaries for faster fetching. */
173 #define TARGET_FLAG_CODE_ALIGN 0x100
174 #define TARGET_CODE_ALIGN (target_flags & TARGET_FLAG_CODE_ALIGN)
175
176 /* Append branch prediction suffixes to branch opcodes. */
177 /* ??? Not used currently. */
178 #define TARGET_FLAG_BRANCH_PREDICT 0x200
179 #define TARGET_BRANCH_PREDICT (target_flags & TARGET_FLAG_BRANCH_PREDICT)
180
181 /* Forces prototype and return promotions. */
182 /* ??? This does not work. */
183 #define TARGET_FLAG_CLEAN_LINKAGE 0x400
184 #define TARGET_CLEAN_LINKAGE (target_flags & TARGET_FLAG_CLEAN_LINKAGE)
185
186 /* For compatibility with iC960 v3.0. */
187 #define TARGET_FLAG_IC_COMPAT3_0 0x800
188 #define TARGET_IC_COMPAT3_0 (target_flags & TARGET_FLAG_IC_COMPAT3_0)
189
190 /* For compatibility with iC960 v2.0. */
191 #define TARGET_FLAG_IC_COMPAT2_0 0x1000
192 #define TARGET_IC_COMPAT2_0 (target_flags & TARGET_FLAG_IC_COMPAT2_0)
193
194 /* If no unaligned accesses are to be permitted. */
195 #define TARGET_FLAG_STRICT_ALIGN 0x2000
196 #define TARGET_STRICT_ALIGN (target_flags & TARGET_FLAG_STRICT_ALIGN)
197
198 /* For compatibility with iC960 assembler. */
199 #define TARGET_FLAG_ASM_COMPAT 0x4000
200 #define TARGET_ASM_COMPAT (target_flags & TARGET_FLAG_ASM_COMPAT)
201
202 /* For compatibility with the gcc960 v1.2 compiler. Use the old structure
203 alignment rules. Also, turns on STRICT_ALIGNMENT. */
204 #define TARGET_FLAG_OLD_ALIGN 0x8000
205 #define TARGET_OLD_ALIGN (target_flags & TARGET_FLAG_OLD_ALIGN)
206
207 extern int target_flags;
208
209 /* Macro to define tables used to set the flags.
210 This is a list in braces of pairs in braces,
211 each pair being { "NAME", VALUE }
212 where VALUE is the bits to set or minus the bits to clear.
213 An empty string NAME is used to identify the default VALUE. */
214
215 /* ??? Not all ten of these architecture variations actually exist, but I
216 am not sure which are real and which aren't. */
217
218 #define TARGET_SWITCHES \
219 { {"sa", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
220 {"sb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
221 TARGET_FLAG_COMPLEX_ADDR)},\
222 /* {"sc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
223 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},*/ \
224 {"ka", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR)},\
225 {"kb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
226 TARGET_FLAG_COMPLEX_ADDR)},\
227 /* {"kc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
228 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},*/ \
229 {"mc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
230 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR)},\
231 {"ca", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
232 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR)},\
233 /* {"cb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_C_SERIES|\
234 TARGET_FLAG_BRANCH_PREDICT|TARGET_FLAG_CODE_ALIGN)},\
235 {"cc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED|\
236 TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
237 TARGET_FLAG_CODE_ALIGN)}, */ \
238 {"cf", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
239 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR)},\
240 {"numerics", (TARGET_FLAG_NUMERICS)}, \
241 {"soft-float", -(TARGET_FLAG_NUMERICS)}, \
242 {"leaf-procedures", TARGET_FLAG_LEAFPROC}, \
243 {"no-leaf-procedures",-(TARGET_FLAG_LEAFPROC)}, \
244 {"tail-call",TARGET_FLAG_TAILCALL}, \
245 {"no-tail-call",-(TARGET_FLAG_TAILCALL)}, \
246 {"complex-addr",TARGET_FLAG_COMPLEX_ADDR}, \
247 {"no-complex-addr",-(TARGET_FLAG_COMPLEX_ADDR)}, \
248 {"code-align",TARGET_FLAG_CODE_ALIGN}, \
249 {"no-code-align",-(TARGET_FLAG_CODE_ALIGN)}, \
250 {"clean-linkage", (TARGET_FLAG_CLEAN_LINKAGE)}, \
251 {"no-clean-linkage", -(TARGET_FLAG_CLEAN_LINKAGE)}, \
252 {"ic-compat", TARGET_FLAG_IC_COMPAT2_0}, \
253 {"ic2.0-compat", TARGET_FLAG_IC_COMPAT2_0}, \
254 {"ic3.0-compat", TARGET_FLAG_IC_COMPAT3_0}, \
255 {"asm-compat",TARGET_FLAG_ASM_COMPAT}, \
256 {"intel-asm",TARGET_FLAG_ASM_COMPAT}, \
257 {"strict-align", TARGET_FLAG_STRICT_ALIGN}, \
258 {"no-strict-align", -(TARGET_FLAG_STRICT_ALIGN)}, \
259 {"old-align", (TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN)}, \
260 {"no-old-align", -(TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN)}, \
261 {"link-relax", 0}, \
262 {"no-link-relax", 0}, \
263 { "", TARGET_DEFAULT}}
264
265 /* Override conflicting target switch options.
266 Doesn't actually detect if more than one -mARCH option is given, but
267 does handle the case of two blatantly conflicting -mARCH options. */
268 #define OVERRIDE_OPTIONS \
269 { \
270 if (TARGET_K_SERIES && TARGET_C_SERIES) \
271 { \
272 warning ("conflicting architectures defined - using C series", 0); \
273 target_flags &= ~TARGET_FLAG_K_SERIES; \
274 } \
275 if (TARGET_K_SERIES && TARGET_MC) \
276 { \
277 warning ("conflicting architectures defined - using K series", 0); \
278 target_flags &= ~TARGET_FLAG_MC; \
279 } \
280 if (TARGET_C_SERIES && TARGET_MC) \
281 { \
282 warning ("conflicting architectures defined - using C series", 0);\
283 target_flags &= ~TARGET_FLAG_MC; \
284 } \
285 if (TARGET_IC_COMPAT3_0) \
286 { \
287 flag_short_enums = 1; \
288 flag_signed_char = 1; \
289 target_flags |= TARGET_FLAG_CLEAN_LINKAGE; \
290 if (TARGET_IC_COMPAT2_0) \
291 { \
292 warning ("iC2.0 and iC3.0 are incompatible - using iC3.0", 0); \
293 target_flags &= ~TARGET_FLAG_IC_COMPAT2_0; \
294 } \
295 } \
296 if (TARGET_IC_COMPAT2_0) \
297 { \
298 flag_signed_char = 1; \
299 target_flags |= TARGET_FLAG_CLEAN_LINKAGE; \
300 } \
301 i960_initialize (); \
302 }
303
304 /* Don't enable anything by default. The user is expected to supply a -mARCH
305 option. If none is given, then -mkb is added by CC1_SPEC. */
306 #define TARGET_DEFAULT 0
307 \f
308 /* Target machine storage layout. */
309
310 /* Define for cross-compilation from a host with a different float format
311 or endianess, as well as to support 80 bit long doubles on the i960. */
312 #define REAL_ARITHMETIC
313
314 /* Define this if most significant bit is lowest numbered
315 in instructions that operate on numbered bit-fields. */
316 #define BITS_BIG_ENDIAN 0
317
318 /* Define this if most significant byte of a word is the lowest numbered.
319 The i960 case be either big endian or little endian. We only support
320 little endian, which is the most common. */
321 #define BYTES_BIG_ENDIAN 0
322
323 /* Define this if most significant word of a multiword number is lowest
324 numbered. */
325 #define WORDS_BIG_ENDIAN 0
326
327 /* Number of bits in an addressable storage unit. */
328 #define BITS_PER_UNIT 8
329
330 /* Bitfields cannot cross word boundaries. */
331 #define BITFIELD_NBYTES_LIMITED 1
332
333 /* Width in bits of a "word", which is the contents of a machine register.
334 Note that this is not necessarily the width of data type `int';
335 if using 16-bit ints on a 68000, this would still be 32.
336 But on a machine with 16-bit registers, this would be 16. */
337 #define BITS_PER_WORD 32
338
339 /* Width of a word, in units (bytes). */
340 #define UNITS_PER_WORD 4
341
342 /* Width in bits of a pointer. See also the macro `Pmode' defined below. */
343 #define POINTER_SIZE 32
344
345 /* Width in bits of a long double. Identical to double for now. */
346 #define LONG_DOUBLE_TYPE_SIZE 64
347
348 /* Allocation boundary (in *bits*) for storing pointers in memory. */
349 #define POINTER_BOUNDARY 32
350
351 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
352 #define PARM_BOUNDARY 32
353
354 /* Boundary (in *bits*) on which stack pointer should be aligned. */
355 #define STACK_BOUNDARY 128
356
357 /* Allocation boundary (in *bits*) for the code of a function. */
358 #define FUNCTION_BOUNDARY 128
359
360 /* Alignment of field after `int : 0' in a structure. */
361 #define EMPTY_FIELD_BOUNDARY 32
362
363 /* This makes zero-length anonymous fields lay the next field
364 at a word boundary. It also makes the whole struct have
365 at least word alignment if there are any bitfields at all. */
366 #define PCC_BITFIELD_TYPE_MATTERS 1
367
368 /* Every structure's size must be a multiple of this. */
369 #define STRUCTURE_SIZE_BOUNDARY 8
370
371 /* No data type wants to be aligned rounder than this.
372 Extended precision floats gets 4-word alignment. */
373 #define BIGGEST_ALIGNMENT 128
374
375 /* Define this if move instructions will actually fail to work
376 when given unaligned data.
377 80960 will work even with unaligned data, but it is slow. */
378 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
379
380 /* Specify alignment for string literals (which might be higher than the
381 base type's minimal alignment requirement. This allows strings to be
382 aligned on word boundaries, and optimizes calls to the str* and mem*
383 library functions. */
384 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
385 (TREE_CODE (EXP) == STRING_CST \
386 && i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) > (ALIGN) \
387 ? i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) \
388 : (ALIGN))
389
390 /* Make XFmode floating point quantities be 128 bit aligned. */
391 #define DATA_ALIGNMENT(TYPE, ALIGN) \
392 (TREE_CODE (TYPE) == ARRAY_TYPE \
393 && TYPE_MODE (TREE_TYPE (TYPE)) == XFmode \
394 && (ALIGN) < 128 ? 128 : (ALIGN))
395
396 /* Macros to determine size of aggregates (structures and unions
397 in C). Normally, these may be defined to simply return the maximum
398 alignment and simple rounded-up size, but on some machines (like
399 the i960), the total size of a structure is based on a non-trivial
400 rounding method. */
401
402 #define ROUND_TYPE_ALIGN(TYPE, COMPUTED, SPECIFIED) \
403 ((TREE_CODE (TYPE) == REAL_TYPE && TYPE_MODE (TYPE) == XFmode) \
404 ? 128 /* Put 80 bit floating point elements on 128 bit boundaries. */ \
405 : ((!TARGET_OLD_ALIGN && TREE_CODE (TYPE) == RECORD_TYPE) \
406 ? i960_round_align (MAX ((COMPUTED), (SPECIFIED)), TYPE_SIZE (TYPE)) \
407 : MAX ((COMPUTED), (SPECIFIED))))
408
409 #define ROUND_TYPE_SIZE(TYPE, COMPUTED, SPECIFIED) \
410 ((TREE_CODE (TYPE) == REAL_TYPE && TYPE_MODE (TYPE) == XFmode) \
411 ? build_int_2 (128, 0) : (COMPUTED))
412 \f
413 /* Standard register usage. */
414
415 /* Number of actual hardware registers.
416 The hardware registers are assigned numbers for the compiler
417 from 0 to just below FIRST_PSEUDO_REGISTER.
418 All registers that the compiler knows about must be given numbers,
419 even those that are not normally considered general registers.
420
421 Registers 0-15 are the global registers (g0-g15).
422 Registers 16-31 are the local registers (r0-r15).
423 Register 32-35 are the fp registers (fp0-fp3).
424 Register 36 is the condition code register.
425 Register 37 is unused. */
426
427 #define FIRST_PSEUDO_REGISTER 38
428
429 /* 1 for registers that have pervasive standard uses and are not available
430 for the register allocator. On 80960, this includes the frame pointer
431 (g15), the previous FP (r0), the stack pointer (r1), the return
432 instruction pointer (r2), and the argument pointer (g14). */
433 #define FIXED_REGISTERS \
434 {0, 0, 0, 0, 0, 0, 0, 0, \
435 0, 0, 0, 0, 0, 0, 1, 1, \
436 1, 1, 1, 0, 0, 0, 0, 0, \
437 0, 0, 0, 0, 0, 0, 0, 0, \
438 0, 0, 0, 0, 1, 1}
439
440 /* 1 for registers not available across function calls.
441 These must include the FIXED_REGISTERS and also any
442 registers that can be used without being saved.
443 The latter must include the registers where values are returned
444 and the register where structure-value addresses are passed.
445 Aside from that, you can include as many other registers as you like. */
446
447 /* On the 80960, note that:
448 g0..g3 are used for return values,
449 g0..g7 may always be used for parameters,
450 g8..g11 may be used for parameters, but are preserved if they aren't,
451 g12 is always preserved, but otherwise unused,
452 g13 is the struct return ptr if used, or temp, but may be trashed,
453 g14 is the leaf return ptr or the arg block ptr otherwise zero,
454 must be reset to zero before returning if it was used,
455 g15 is the frame pointer,
456 r0 is the previous FP,
457 r1 is the stack pointer,
458 r2 is the return instruction pointer,
459 r3-r15 are always available,
460 r3 is clobbered by calls in functions that use the arg pointer
461 r4-r11 may be clobbered by the mcount call when profiling
462 r4-r15 if otherwise unused may be used for preserving global registers
463 fp0..fp3 are never available. */
464 #define CALL_USED_REGISTERS \
465 {1, 1, 1, 1, 1, 1, 1, 1, \
466 0, 0, 0, 0, 0, 1, 1, 1, \
467 1, 1, 1, 0, 0, 0, 0, 0, \
468 0, 0, 0, 0, 0, 0, 0, 0, \
469 1, 1, 1, 1, 1, 1}
470
471 /* If no fp unit, make all of the fp registers fixed so that they can't
472 be used. */
473 #define CONDITIONAL_REGISTER_USAGE \
474 if (! TARGET_NUMERICS) { \
475 fixed_regs[32] = fixed_regs[33] = fixed_regs[34] = fixed_regs[35] = 1;\
476 } \
477
478 /* Return number of consecutive hard regs needed starting at reg REGNO
479 to hold something of mode MODE.
480 This is ordinarily the length in words of a value of mode MODE
481 but can be less for certain modes in special long registers.
482
483 On 80960, ordinary registers hold 32 bits worth, but can be ganged
484 together to hold double or extended precision floating point numbers,
485 and the floating point registers hold any size floating point number */
486 #define HARD_REGNO_NREGS(REGNO, MODE) \
487 ((REGNO) < 32 \
488 ? (((MODE) == VOIDmode) \
489 ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
490 : ((REGNO) < FIRST_PSEUDO_REGISTER) ? 1 : 0)
491
492 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
493 On 80960, the cpu registers can hold any mode but the float registers
494 can only hold SFmode, DFmode, or XFmode. */
495 extern unsigned int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
496 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
497 ((hard_regno_mode_ok[REGNO] & (1 << (int) (MODE))) != 0)
498
499 /* Value is 1 if it is a good idea to tie two pseudo registers
500 when one has mode MODE1 and one has mode MODE2.
501 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
502 for any hard reg, then this must be 0 for correct output. */
503
504 #define MODES_TIEABLE_P(MODE1, MODE2) \
505 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
506
507 /* Specify the registers used for certain standard purposes.
508 The values of these macros are register numbers. */
509
510 /* 80960 pc isn't overloaded on a register that the compiler knows about. */
511 /* #define PC_REGNUM */
512
513 /* Register to use for pushing function arguments. */
514 #define STACK_POINTER_REGNUM 17
515
516 /* Actual top-of-stack address is same as
517 the contents of the stack pointer register. */
518 #define STACK_POINTER_OFFSET (-current_function_outgoing_args_size)
519
520 /* Base register for access to local variables of the function. */
521 #define FRAME_POINTER_REGNUM 15
522
523 /* Value should be nonzero if functions must have frame pointers.
524 Zero means the frame pointer need not be set up (and parms
525 may be accessed via the stack pointer) in functions that seem suitable.
526 This is computed in `reload', in reload1.c. */
527 /* ??? It isn't clear to me why this is here. Perhaps because of a bug (since
528 fixed) in the definition of INITIAL_FRAME_POINTER_OFFSET which would have
529 caused this to fail. */
530 #define FRAME_POINTER_REQUIRED (! leaf_function_p ())
531
532 /* C statement to store the difference between the frame pointer
533 and the stack pointer values immediately after the function prologue.
534
535 Since the stack grows upward on the i960, this must be a negative number.
536 This includes the 64 byte hardware register save area and the size of
537 the frame. */
538
539 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
540 do { (VAR) = - (64 + compute_frame_size (get_frame_size ())); } while (0)
541
542 /* Base register for access to arguments of the function. */
543 #define ARG_POINTER_REGNUM 14
544
545 /* Register in which static-chain is passed to a function.
546 On i960, we use r3. */
547 #define STATIC_CHAIN_REGNUM 19
548
549 /* Functions which return large structures get the address
550 to place the wanted value at in g13. */
551
552 #define STRUCT_VALUE_REGNUM 13
553
554 /* The order in which to allocate registers. */
555
556 #define REG_ALLOC_ORDER \
557 { 4, 5, 6, 7, 0, 1, 2, 3, 13, /* g4, g5, g6, g7, g0, g1, g2, g3, g13 */ \
558 20, 21, 22, 23, 24, 25, 26, 27,/* r4, r5, r6, r7, r8, r9, r10, r11 */ \
559 28, 29, 30, 31, 19, 8, 9, 10, /* r12, r13, r14, r15, r3, g8, g9, g10 */ \
560 11, 12, /* g11, g12 */ \
561 32, 33, 34, 35, /* fp0, fp1, fp2, fp3 */ \
562 /* We can't actually allocate these. */ \
563 16, 17, 18, 14, 15, 36, 37} /* r0, r1, r2, g14, g15, cc */
564 \f
565 /* Define the classes of registers for register constraints in the
566 machine description. Also define ranges of constants.
567
568 One of the classes must always be named ALL_REGS and include all hard regs.
569 If there is more than one class, another class must be named NO_REGS
570 and contain no registers.
571
572 The name GENERAL_REGS must be the name of a class (or an alias for
573 another name such as ALL_REGS). This is the class of registers
574 that is allowed by "g" or "r" in a register constraint.
575 Also, registers outside this class are allocated only when
576 instructions express preferences for them.
577
578 The classes must be numbered in nondecreasing order; that is,
579 a larger-numbered class must never be contained completely
580 in a smaller-numbered class.
581
582 For any two classes, it is very desirable that there be another
583 class that represents their union. */
584
585 /* The 80960 has four kinds of registers, global, local, floating point,
586 and condition code. The cc register is never allocated, so no class
587 needs to be defined for it. */
588
589 enum reg_class { NO_REGS, GLOBAL_REGS, LOCAL_REGS, LOCAL_OR_GLOBAL_REGS,
590 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
591
592 /* 'r' includes floating point registers if TARGET_NUMERICS. 'd' never
593 does. */
594 #define GENERAL_REGS ((TARGET_NUMERICS) ? ALL_REGS : LOCAL_OR_GLOBAL_REGS)
595
596 #define N_REG_CLASSES (int) LIM_REG_CLASSES
597
598 /* Give names of register classes as strings for dump file. */
599
600 #define REG_CLASS_NAMES \
601 { "NO_REGS", "GLOBAL_REGS", "LOCAL_REGS", "LOCAL_OR_GLOBAL_REGS", \
602 "FP_REGS", "ALL_REGS" }
603
604 /* Define which registers fit in which classes.
605 This is an initializer for a vector of HARD_REG_SET
606 of length N_REG_CLASSES. */
607
608 #define REG_CLASS_CONTENTS \
609 { {0, 0}, {0x0ffff, 0}, {0xffff0000, 0}, {-1,0}, {0, -1}, {-1,-1}}
610
611 /* The same information, inverted:
612 Return the class number of the smallest class containing
613 reg number REGNO. This could be a conditional expression
614 or could index an array. */
615
616 #define REGNO_REG_CLASS(REGNO) \
617 ((REGNO) < 16 ? GLOBAL_REGS \
618 : (REGNO) < 32 ? LOCAL_REGS \
619 : (REGNO) < 36 ? FP_REGS \
620 : NO_REGS)
621
622 /* The class value for index registers, and the one for base regs.
623 There is currently no difference between base and index registers on the
624 i960, but this distinction may one day be useful. */
625 #define INDEX_REG_CLASS LOCAL_OR_GLOBAL_REGS
626 #define BASE_REG_CLASS LOCAL_OR_GLOBAL_REGS
627
628 /* Get reg_class from a letter such as appears in the machine description.
629 'f' is a floating point register (fp0..fp3)
630 'l' is a local register (r0-r15)
631 'b' is a global register (g0-g15)
632 'd' is any local or global register
633 'r' or 'g' are pre-defined to the class GENERAL_REGS. */
634 /* 'l' and 'b' are probably never used. Note that 'd' and 'r' are *not*
635 the same thing, since 'r' may include the fp registers. */
636 #define REG_CLASS_FROM_LETTER(C) \
637 (((C) == 'f') && (TARGET_NUMERICS) ? FP_REGS : ((C) == 'l' ? LOCAL_REGS : \
638 (C) == 'b' ? GLOBAL_REGS : ((C) == 'd' ? LOCAL_OR_GLOBAL_REGS : NO_REGS)))
639
640 /* The letters I, J, K, L and M in a register constraint string
641 can be used to stand for particular ranges of immediate operands.
642 This macro defines what the ranges are.
643 C is the letter, and VALUE is a constant value.
644 Return 1 if VALUE is in the range specified by C.
645
646 For 80960:
647 'I' is used for literal values 0..31
648 'J' means literal 0
649 'K' means 0..-31. */
650
651 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
652 ((C) == 'I' ? (((unsigned) (VALUE)) <= 31) \
653 : (C) == 'J' ? ((VALUE) == 0) \
654 : (C) == 'K' ? ((VALUE) > -32 && (VALUE) <= 0) \
655 : 0)
656
657 /* Similar, but for floating constants, and defining letters G and H.
658 Here VALUE is the CONST_DOUBLE rtx itself.
659 For the 80960, G is 0.0 and H is 1.0. */
660
661 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
662 ((TARGET_NUMERICS) && \
663 (((C) == 'G' && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
664 || ((C) == 'H' && ((VALUE) == CONST1_RTX (GET_MODE (VALUE))))))
665
666 /* Given an rtx X being reloaded into a reg required to be
667 in class CLASS, return the class of reg to actually use.
668 In general this is just CLASS; but on some machines
669 in some cases it is preferable to use a more restrictive class. */
670
671 /* On 960, can't load constant into floating-point reg except
672 0.0 or 1.0.
673
674 Any hard reg is ok as a src operand of a reload insn. */
675
676 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
677 (GET_CODE (X) == REG && REGNO (X) < FIRST_PSEUDO_REGISTER \
678 ? (CLASS) \
679 : ((CLASS) == FP_REGS && CONSTANT_P (X) \
680 && (X) != CONST0_RTX (DFmode) && (X) != CONST1_RTX (DFmode)\
681 && (X) != CONST0_RTX (SFmode) && (X) != CONST1_RTX (SFmode)\
682 ? NO_REGS \
683 : (CLASS) == ALL_REGS ? LOCAL_OR_GLOBAL_REGS : (CLASS)))
684
685 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
686 secondary_reload_class (CLASS, MODE, IN)
687
688 /* Return the maximum number of consecutive registers
689 needed to represent mode MODE in a register of class CLASS. */
690 /* On 80960, this is the size of MODE in words,
691 except in the FP regs, where a single reg is always enough. */
692 #define CLASS_MAX_NREGS(CLASS, MODE) \
693 ((CLASS) == FP_REGS ? 1 : HARD_REGNO_NREGS (0, (MODE)))
694 \f
695 /* Stack layout; function entry, exit and calling. */
696
697 /* Define this if pushing a word on the stack
698 makes the stack pointer a smaller address. */
699 /* #define STACK_GROWS_DOWNWARD */
700
701 /* Define this if the nominal address of the stack frame
702 is at the high-address end of the local variables;
703 that is, each additional local variable allocated
704 goes at a more negative offset in the frame. */
705 /* #define FRAME_GROWS_DOWNWARD */
706
707 /* Offset within stack frame to start allocating local variables at.
708 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
709 first local allocated. Otherwise, it is the offset to the BEGINNING
710 of the first local allocated.
711
712 The i960 has a 64 byte register save area, plus possibly some extra
713 bytes allocated for varargs functions. */
714 #define STARTING_FRAME_OFFSET 64
715
716 /* If we generate an insn to push BYTES bytes,
717 this says how many the stack pointer really advances by.
718 On 80960, don't define this because there are no push insns. */
719 /* #define PUSH_ROUNDING(BYTES) BYTES */
720
721 /* Offset of first parameter from the argument pointer register value. */
722 #define FIRST_PARM_OFFSET(FNDECL) 0
723
724 /* When a parameter is passed in a register, no stack space is
725 allocated for it. However, when args are passed in the
726 stack, space is allocated for every register parameter. */
727 #define MAYBE_REG_PARM_STACK_SPACE 48
728 #define FINAL_REG_PARM_STACK_SPACE(CONST_SIZE, VAR_SIZE) \
729 i960_final_reg_parm_stack_space (CONST_SIZE, VAR_SIZE);
730 #define REG_PARM_STACK_SPACE(DECL) i960_reg_parm_stack_space (DECL)
731 #define OUTGOING_REG_PARM_STACK_SPACE
732
733 /* Keep the stack pointer constant throughout the function. */
734 #define ACCUMULATE_OUTGOING_ARGS
735
736 /* Value is 1 if returning from a function call automatically
737 pops the arguments described by the number-of-args field in the call.
738 FUNDECL is the declaration node of the function (as a tree),
739 FUNTYPE is the data type of the function (as a tree),
740 or for a library call it is an identifier node for the subroutine name. */
741
742 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
743
744 /* Define how to find the value returned by a library function
745 assuming the value has mode MODE. */
746
747 #define LIBCALL_VALUE(MODE) gen_rtx ((REG), (MODE), 0)
748
749 /* 1 if N is a possible register number for a function value
750 as seen by the caller.
751 On 80960, returns are in g0..g3 */
752
753 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
754
755 /* 1 if N is a possible register number for function argument passing.
756 On 80960, parameters are passed in g0..g11 */
757
758 #define FUNCTION_ARG_REGNO_P(N) ((N) < 12)
759
760 /* Perform any needed actions needed for a function that is receiving a
761 variable number of arguments.
762
763 CUM is as above.
764
765 MODE and TYPE are the mode and type of the current parameter.
766
767 PRETEND_SIZE is a variable that should be set to the amount of stack
768 that must be pushed by the prolog to pretend that our caller pushed
769 it.
770
771 Normally, this macro will push all remaining incoming registers on the
772 stack and set PRETEND_SIZE to the length of the registers pushed. */
773
774 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
775 i960_setup_incoming_varargs(&CUM,MODE,TYPE,&PRETEND_SIZE,NO_RTL)
776 \f
777 /* Define a data type for recording info about an argument list
778 during the scan of that argument list. This data type should
779 hold all necessary information about the function itself
780 and about the args processed so far, enough to enable macros
781 such as FUNCTION_ARG to determine where the next arg should go.
782
783 On 80960, this is two integers, which count the number of register
784 parameters and the number of stack parameters seen so far. */
785
786 struct cum_args { int ca_nregparms; int ca_nstackparms; };
787
788 #define CUMULATIVE_ARGS struct cum_args
789
790 /* Define the number of registers that can hold parameters.
791 This macro is used only in macro definitions below and/or i960.c. */
792 #define NPARM_REGS 12
793
794 /* Define how to round to the next parameter boundary.
795 This macro is used only in macro definitions below and/or i960.c. */
796 #define ROUND_PARM(X, MULTIPLE_OF) \
797 ((((X) + (MULTIPLE_OF) - 1) / (MULTIPLE_OF)) * MULTIPLE_OF)
798
799 /* Initialize a variable CUM of type CUMULATIVE_ARGS
800 for a call to a function whose data type is FNTYPE.
801 For a library call, FNTYPE is 0.
802
803 On 80960, the offset always starts at 0; the first parm reg is g0. */
804
805 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
806 ((CUM).ca_nregparms = 0, (CUM).ca_nstackparms = 0)
807
808 /* Update the data in CUM to advance over an argument
809 of mode MODE and data type TYPE.
810 CUM should be advanced to align with the data type accessed and
811 also the size of that data type in # of regs.
812 (TYPE is null for libcalls where that information may not be available.) */
813
814 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
815 i960_function_arg_advance(&CUM, MODE, TYPE, NAMED)
816
817 /* Indicate the alignment boundary for an argument of the specified mode and
818 type. */
819 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
820 (((TYPE) != 0) \
821 ? ((TYPE_ALIGN (TYPE) <= PARM_BOUNDARY) \
822 ? PARM_BOUNDARY \
823 : TYPE_ALIGN (TYPE)) \
824 : ((GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY) \
825 ? PARM_BOUNDARY \
826 : GET_MODE_ALIGNMENT (MODE)))
827
828 /* Determine where to put an argument to a function.
829 Value is zero to push the argument on the stack,
830 or a hard register in which to store the argument.
831
832 MODE is the argument's machine mode.
833 TYPE is the data type of the argument (as a tree).
834 This is null for libcalls where that information may
835 not be available.
836 CUM is a variable of type CUMULATIVE_ARGS which gives info about
837 the preceding args and about the function being called.
838 NAMED is nonzero if this argument is a named parameter
839 (otherwise it is an extra parameter matching an ellipsis). */
840
841 extern struct rtx_def *i960_function_arg ();
842 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
843 i960_function_arg(&CUM, MODE, TYPE, NAMED)
844
845 /* Define how to find the value returned by a function.
846 VALTYPE is the data type of the value (as a tree).
847 If the precise function being called is known, FUNC is its FUNCTION_DECL;
848 otherwise, FUNC is 0. */
849
850 #define FUNCTION_VALUE(TYPE, FUNC) \
851 gen_rtx (REG, TYPE_MODE (TYPE), 0)
852
853 /* Force aggregates and objects larger than 16 bytes to be returned in memory,
854 since we only have 4 registers available for return values. */
855
856 #define RETURN_IN_MEMORY(TYPE) \
857 (TYPE_MODE (TYPE) == BLKmode || int_size_in_bytes (TYPE) > 16)
858
859 /* Don't default to pcc-struct-return, because we have already specified
860 exactly how to return structures in the RETURN_IN_MEMORY macro. */
861 #define DEFAULT_PCC_STRUCT_RETURN 0
862
863 /* For an arg passed partly in registers and partly in memory,
864 this is the number of registers used.
865 This never happens on 80960. */
866
867 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
868 \f
869 /* Output the label for a function definition.
870 This handles leaf functions and a few other things for the i960. */
871
872 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
873 i960_function_name_declare (FILE, NAME, DECL)
874
875 /* This macro generates the assembly code for function entry.
876 FILE is a stdio stream to output the code to.
877 SIZE is an int: how many units of temporary storage to allocate.
878 Refer to the array `regs_ever_live' to determine which registers
879 to save; `regs_ever_live[I]' is nonzero if register number I
880 is ever used in the function. This macro is responsible for
881 knowing which registers should not be saved even if used. */
882
883 #define FUNCTION_PROLOGUE(FILE, SIZE) i960_function_prologue ((FILE), (SIZE))
884
885 /* Output assembler code to FILE to increment profiler label # LABELNO
886 for profiling a function entry. */
887
888 #define FUNCTION_PROFILER(FILE, LABELNO) \
889 output_function_profiler ((FILE), (LABELNO));
890
891 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
892 the stack pointer does not matter. The value is tested only in
893 functions that have frame pointers.
894 No definition is equivalent to always zero. */
895
896 #define EXIT_IGNORE_STACK 1
897
898 /* This macro generates the assembly code for function exit,
899 on machines that need it. If FUNCTION_EPILOGUE is not defined
900 then individual return instructions are generated for each
901 return statement. Args are same as for FUNCTION_PROLOGUE.
902
903 The function epilogue should not depend on the current stack pointer!
904 It should use the frame pointer only. This is mandatory because
905 of alloca; we also take advantage of it to omit stack adjustments
906 before returning. */
907
908 #define FUNCTION_EPILOGUE(FILE, SIZE) i960_function_epilogue (FILE, SIZE)
909 \f
910 /* Addressing modes, and classification of registers for them. */
911
912 /* #define HAVE_POST_INCREMENT */
913 /* #define HAVE_POST_DECREMENT */
914
915 /* #define HAVE_PRE_DECREMENT */
916 /* #define HAVE_PRE_INCREMENT */
917
918 /* Macros to check register numbers against specific register classes. */
919
920 /* These assume that REGNO is a hard or pseudo reg number.
921 They give nonzero only if REGNO is a hard reg of the suitable class
922 or a pseudo reg currently allocated to a suitable hard reg.
923 Since they use reg_renumber, they are safe only once reg_renumber
924 has been allocated, which happens in local-alloc.c. */
925
926 #define REGNO_OK_FOR_INDEX_P(REGNO) \
927 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
928 #define REGNO_OK_FOR_BASE_P(REGNO) \
929 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
930 #define REGNO_OK_FOR_FP_P(REGNO) \
931 ((REGNO) < 36 || (unsigned) reg_renumber[REGNO] < 36)
932
933 /* Now macros that check whether X is a register and also,
934 strictly, whether it is in a specified class.
935
936 These macros are specific to the 960, and may be used only
937 in code for printing assembler insns and in conditions for
938 define_optimization. */
939
940 /* 1 if X is an fp register. */
941
942 #define FP_REG_P(X) (REGNO (X) >= 32 && REGNO (X) < 36)
943
944 /* Maximum number of registers that can appear in a valid memory address. */
945 #define MAX_REGS_PER_ADDRESS 2
946
947 #define CONSTANT_ADDRESS_P(X) \
948 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
949 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
950 || GET_CODE (X) == HIGH)
951
952 /* LEGITIMATE_CONSTANT_P is nonzero if the constant value X
953 is a legitimate general operand.
954 It is given that X satisfies CONSTANT_P.
955
956 Anything but a CONST_DOUBLE can be made to work, excepting 0.0 and 1.0.
957
958 ??? This probably should be defined to 1. */
959
960 #define LEGITIMATE_CONSTANT_P(X) \
961 ((GET_CODE (X) != CONST_DOUBLE) || fp_literal ((X), GET_MODE (X)))
962
963 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
964 and check its validity for a certain class.
965 We have two alternate definitions for each of them.
966 The usual definition accepts all pseudo regs; the other rejects
967 them unless they have been allocated suitable hard regs.
968 The symbol REG_OK_STRICT causes the latter definition to be used.
969
970 Most source files want to accept pseudo regs in the hope that
971 they will get allocated to the class that the insn wants them to be in.
972 Source files for reload pass need to be strict.
973 After reload, it makes no difference, since pseudo regs have
974 been eliminated by then. */
975
976 #ifndef REG_OK_STRICT
977
978 /* Nonzero if X is a hard reg that can be used as an index
979 or if it is a pseudo reg. */
980 #define REG_OK_FOR_INDEX_P(X) \
981 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
982 /* Nonzero if X is a hard reg that can be used as a base reg
983 or if it is a pseudo reg. */
984 #define REG_OK_FOR_BASE_P(X) \
985 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
986
987 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
988 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
989
990 #else
991
992 /* Nonzero if X is a hard reg that can be used as an index. */
993 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
994 /* Nonzero if X is a hard reg that can be used as a base reg. */
995 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
996
997 #endif
998 \f
999 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1000 that is a valid memory address for an instruction.
1001 The MODE argument is the machine mode for the MEM expression
1002 that wants to use this address.
1003
1004 On 80960, legitimate addresses are:
1005 base ld (g0),r0
1006 disp (12 or 32 bit) ld foo,r0
1007 base + index ld (g0)[g1*1],r0
1008 base + displ ld 0xf00(g0),r0
1009 base + index*scale + displ ld 0xf00(g0)[g1*4],r0
1010 index*scale + base ld (g0)[g1*4],r0
1011 index*scale + displ ld 0xf00[g1*4],r0
1012 index*scale ld [g1*4],r0
1013 index + base + displ ld 0xf00(g0)[g1*1],r0
1014
1015 In each case, scale can be 1, 2, 4, 8, or 16. */
1016
1017 /* Returns 1 if the scale factor of an index term is valid. */
1018 #define SCALE_TERM_P(X) \
1019 (GET_CODE (X) == CONST_INT \
1020 && (INTVAL (X) == 1 || INTVAL (X) == 2 || INTVAL (X) == 4 \
1021 || INTVAL(X) == 8 || INTVAL (X) == 16))
1022
1023
1024 #ifdef REG_OK_STRICT
1025 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1026 { if (legitimate_address_p (MODE, X, 1)) goto ADDR; }
1027 #else
1028 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1029 { if (legitimate_address_p (MODE, X, 0)) goto ADDR; }
1030 #endif
1031 \f
1032 /* Try machine-dependent ways of modifying an illegitimate address
1033 to be legitimate. If we find one, return the new, valid address.
1034 This macro is used in only one place: `memory_address' in explow.c.
1035
1036 OLDX is the address as it was before break_out_memory_refs was called.
1037 In some cases it is useful to look at this to decide what needs to be done.
1038
1039 MODE and WIN are passed so that this macro can use
1040 GO_IF_LEGITIMATE_ADDRESS.
1041
1042 It is always safe for this macro to do nothing. It exists to recognize
1043 opportunities to optimize the output. */
1044
1045 /* On 80960, convert non-canonical addresses to canonical form. */
1046
1047 extern struct rtx_def *legitimize_address ();
1048 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1049 { rtx orig_x = (X); \
1050 (X) = legitimize_address (X, OLDX, MODE); \
1051 if ((X) != orig_x && memory_address_p (MODE, X)) \
1052 goto WIN; }
1053
1054 /* Go to LABEL if ADDR (a legitimate address expression)
1055 has an effect that depends on the machine mode it is used for.
1056 On the 960 this is never true. */
1057
1058 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1059 \f
1060 /* Specify the machine mode that this machine uses
1061 for the index in the tablejump instruction. */
1062 #define CASE_VECTOR_MODE SImode
1063
1064 /* Define this if the tablejump instruction expects the table
1065 to contain offsets from the address of the table.
1066 Do not define this if the table should contain absolute addresses. */
1067 /* #define CASE_VECTOR_PC_RELATIVE */
1068
1069 /* Specify the tree operation to be used to convert reals to integers. */
1070 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1071
1072 /* This is the kind of divide that is easiest to do in the general case. */
1073 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1074
1075 /* Define this as 1 if `char' should by default be signed; else as 0. */
1076 #define DEFAULT_SIGNED_CHAR 0
1077
1078 /* Allow and ignore #sccs directives. */
1079 #define SCCS_DIRECTIVE
1080
1081 /* Max number of bytes we can move from memory to memory
1082 in one reasonably fast instruction. */
1083 #define MOVE_MAX 16
1084
1085 /* Define if operations between registers always perform the operation
1086 on the full register even if a narrower mode is specified. */
1087 #define WORD_REGISTER_OPERATIONS
1088
1089 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1090 will either zero-extend or sign-extend. The value of this macro should
1091 be the code that says which one of the two operations is implicitly
1092 done, NIL if none. */
1093 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1094
1095 /* Nonzero if access to memory by bytes is no faster than for words.
1096 Defining this results in worse code on the i960. */
1097
1098 #define SLOW_BYTE_ACCESS 0
1099
1100 /* We assume that the store-condition-codes instructions store 0 for false
1101 and some other value for true. This is the value stored for true. */
1102
1103 #define STORE_FLAG_VALUE 1
1104
1105 /* Define this to be nonzero if shift instructions ignore all but the low-order
1106 few bits. */
1107 #define SHIFT_COUNT_TRUNCATED 1
1108
1109 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1110 is done just by pretending it is already truncated. */
1111 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1112
1113 /* Specify the machine mode that pointers have.
1114 After generation of rtl, the compiler makes no further distinction
1115 between pointers and any other objects of this machine mode. */
1116 #define Pmode SImode
1117
1118 /* Specify the widest mode that BLKmode objects can be promoted to */
1119 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1120 \f
1121 /* These global variables are used to pass information between
1122 cc setter and cc user at insn emit time. */
1123
1124 extern struct rtx_def *i960_compare_op0, *i960_compare_op1;
1125
1126 /* Define the function that build the compare insn for scc and bcc. */
1127
1128 extern struct rtx_def *gen_compare_reg ();
1129
1130 /* Add any extra modes needed to represent the condition code.
1131
1132 Also, signed and unsigned comparisons are distinguished, as
1133 are operations which are compatible with chkbit insns. */
1134 #define EXTRA_CC_MODES CC_UNSmode, CC_CHKmode
1135
1136 /* Define the names for the modes specified above. */
1137 #define EXTRA_CC_NAMES "CC_UNS", "CC_CHK"
1138
1139 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1140 return the mode to be used for the comparison. For floating-point, CCFPmode
1141 should be used. CC_NOOVmode should be used when the first operand is a
1142 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1143 needed. */
1144 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode (OP, X)
1145
1146 /* A function address in a call instruction is a byte address
1147 (for indexing purposes) so give the MEM rtx a byte's mode. */
1148 #define FUNCTION_MODE SImode
1149
1150 /* Define this if addresses of constant functions
1151 shouldn't be put through pseudo regs where they can be cse'd.
1152 Desirable on machines where ordinary constants are expensive
1153 but a CALL with constant address is cheap. */
1154 #define NO_FUNCTION_CSE
1155
1156 /* Use memcpy, etc. instead of bcopy. */
1157
1158 #ifndef WIND_RIVER
1159 #define TARGET_MEM_FUNCTIONS 1
1160 #endif
1161
1162 /* Compute the cost of computing a constant rtl expression RTX
1163 whose rtx-code is CODE. The body of this macro is a portion
1164 of a switch statement. If the code is computed here,
1165 return it with a return statement. Otherwise, break from the switch. */
1166
1167 /* Constants that can be (non-ldconst) insn operands are cost 0. Constants
1168 that can be non-ldconst operands in rare cases are cost 1. Other constants
1169 have higher costs. */
1170
1171 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
1172 case CONST_INT: \
1173 if ((INTVAL (RTX) >= 0 && INTVAL (RTX) < 32) \
1174 || power2_operand (RTX, VOIDmode)) \
1175 return 0; \
1176 else if (INTVAL (RTX) >= -31 && INTVAL (RTX) < 0) \
1177 return 1; \
1178 case CONST: \
1179 case LABEL_REF: \
1180 case SYMBOL_REF: \
1181 return (TARGET_FLAG_C_SERIES ? 6 : 8); \
1182 case CONST_DOUBLE: \
1183 if ((RTX) == CONST0_RTX (DFmode) || (RTX) == CONST0_RTX (SFmode) \
1184 || (RTX) == CONST1_RTX (DFmode) || (RTX) == CONST1_RTX (SFmode))\
1185 return 1; \
1186 return 12;
1187
1188 /* The i960 offers addressing modes which are "as cheap as a register".
1189 See i960.c (or gcc.texinfo) for details. */
1190
1191 #define ADDRESS_COST(RTX) \
1192 (GET_CODE (RTX) == REG ? 1 : i960_address_cost (RTX))
1193 \f
1194 /* Control the assembler format that we output. */
1195
1196 /* Output at beginning of assembler file. */
1197
1198 #define ASM_FILE_START(file)
1199
1200 /* Output to assembler file text saying following lines
1201 may contain character constants, extra white space, comments, etc. */
1202
1203 #define ASM_APP_ON ""
1204
1205 /* Output to assembler file text saying following lines
1206 no longer contain unusual constructs. */
1207
1208 #define ASM_APP_OFF ""
1209
1210 /* Output before read-only data. */
1211
1212 #define TEXT_SECTION_ASM_OP ".text"
1213
1214 /* Output before writable data. */
1215
1216 #define DATA_SECTION_ASM_OP ".data"
1217
1218 /* How to refer to registers in assembler output.
1219 This sequence is indexed by compiler's hard-register-number (see above). */
1220
1221 #define REGISTER_NAMES { \
1222 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
1223 "g8", "g9", "g10", "g11", "g12", "g13", "g14", "fp", \
1224 "pfp","sp", "rip", "r3", "r4", "r5", "r6", "r7", \
1225 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1226 "fp0","fp1","fp2", "fp3", "cc", "fake" }
1227
1228 /* How to renumber registers for dbx and gdb.
1229 In the 960 encoding, g0..g15 are registers 16..31. */
1230
1231 #define DBX_REGISTER_NUMBER(REGNO) \
1232 (((REGNO) < 16) ? (REGNO) + 16 \
1233 : (((REGNO) > 31) ? (REGNO) : (REGNO) - 16))
1234
1235 /* Don't emit dbx records longer than this. This is an arbitrary value. */
1236 #define DBX_CONTIN_LENGTH 1500
1237
1238 /* This is how to output a note to DBX telling it the line number
1239 to which the following sequence of instructions corresponds. */
1240
1241 #define ASM_OUTPUT_SOURCE_LINE(FILE, LINE) \
1242 { if (write_symbols == SDB_DEBUG) { \
1243 fprintf ((FILE), "\t.ln %d\n", \
1244 (sdb_begin_function_line \
1245 ? (LINE) - sdb_begin_function_line : 1)); \
1246 } else if (write_symbols == DBX_DEBUG) { \
1247 fprintf((FILE),"\t.stabd 68,0,%d\n",(LINE)); \
1248 } }
1249
1250 /* This is how to output the definition of a user-level label named NAME,
1251 such as the label on a static function or variable NAME. */
1252
1253 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1254 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1255
1256 /* This is how to output a command to make the user-level label named NAME
1257 defined for reference from other files. */
1258
1259 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1260 { fputs ("\t.globl ", FILE); \
1261 assemble_name (FILE, NAME); \
1262 fputs ("\n", FILE); }
1263
1264 /* This is how to output a reference to a user-level label named NAME.
1265 `assemble_name' uses this. */
1266
1267 #define ASM_OUTPUT_LABELREF(FILE,NAME) fprintf (FILE, "_%s", NAME)
1268
1269 /* This is how to output an internal numbered label where
1270 PREFIX is the class of label and NUM is the number within the class. */
1271
1272 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1273 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1274
1275 /* This is how to store into the string LABEL
1276 the symbol_ref name of an internal numbered label where
1277 PREFIX is the class of label and NUM is the number within the class.
1278 This is suitable for output with `assemble_name'. */
1279
1280 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1281 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1282
1283 /* This is how to output an assembler line defining a `long double'
1284 constant. */
1285
1286 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) i960_output_long_double(FILE, VALUE)
1287
1288 /* This is how to output an assembler line defining a `double' constant. */
1289
1290 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) i960_output_double(FILE, VALUE)
1291
1292 /* This is how to output an assembler line defining a `float' constant. */
1293
1294 #define ASM_OUTPUT_FLOAT(FILE,VALUE) i960_output_float(FILE, VALUE)
1295
1296 /* This is how to output an assembler line defining an `int' constant. */
1297
1298 #define ASM_OUTPUT_INT(FILE,VALUE) \
1299 ( fprintf (FILE, "\t.word "), \
1300 output_addr_const (FILE, (VALUE)), \
1301 fprintf (FILE, "\n"))
1302
1303 /* Likewise for `char' and `short' constants. */
1304
1305 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1306 ( fprintf (FILE, "\t.short "), \
1307 output_addr_const (FILE, (VALUE)), \
1308 fprintf (FILE, "\n"))
1309
1310 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1311 ( fprintf (FILE, "\t.byte "), \
1312 output_addr_const (FILE, (VALUE)), \
1313 fprintf (FILE, "\n"))
1314
1315 /* This is how to output an assembler line for a numeric constant byte. */
1316
1317 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1318 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1319
1320 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1321 fprintf (FILE, "\tst\t%s,(sp)\n\taddo\t4,sp,sp\n", reg_names[REGNO])
1322
1323 /* This is how to output an insn to pop a register from the stack.
1324 It need not be very fast code. */
1325
1326 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1327 fprintf (FILE, "\tsubo\t4,sp,sp\n\tld\t(sp),%s\n", reg_names[REGNO])
1328
1329 /* This is how to output an element of a case-vector that is absolute. */
1330
1331 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1332 fprintf (FILE, "\t.word L%d\n", VALUE)
1333
1334 /* This is how to output an element of a case-vector that is relative. */
1335
1336 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1337 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1338
1339 /* This is how to output an assembler line that says to advance the
1340 location counter to a multiple of 2**LOG bytes. */
1341
1342 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1343 fprintf (FILE, "\t.align %d\n", (LOG))
1344
1345 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1346 fprintf (FILE, "\t.space %d\n", (SIZE))
1347
1348 /* This says how to output an assembler line
1349 to define a global common symbol. */
1350
1351 /* For common objects, output unpadded size... gld960 & lnk960 both
1352 have code to align each common object at link time. Also, if size
1353 is 0, treat this as a declaration, not a definition - i.e.,
1354 do nothing at all. */
1355
1356 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1357 { if ((SIZE) != 0) \
1358 { \
1359 fputs (".globl ", (FILE)), \
1360 assemble_name ((FILE), (NAME)), \
1361 fputs ("\n.comm ", (FILE)), \
1362 assemble_name ((FILE), (NAME)), \
1363 fprintf ((FILE), ",%d\n", (SIZE)); \
1364 } \
1365 }
1366
1367 /* This says how to output an assembler line to define a local common symbol.
1368 Output unpadded size, with request to linker to align as requested.
1369 0 size should not be possible here. */
1370
1371 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1372 ( fputs (".bss\t", (FILE)), \
1373 assemble_name ((FILE), (NAME)), \
1374 fprintf ((FILE), ",%d,%d\n", (SIZE), \
1375 ((ALIGN) <= 8 ? 0 \
1376 : ((ALIGN) <= 16 ? 1 \
1377 : ((ALIGN) <= 32 ? 2 \
1378 : ((ALIGN <= 64 ? 3 : 4)))))))
1379
1380 /* Output text for an #ident directive. */
1381 #define ASM_OUTPUT_IDENT(FILE, STR) fprintf(FILE, "\t# %s\n", STR);
1382
1383 /* Align code to 8 byte boundary if TARGET_CODE_ALIGN is true. */
1384
1385 #define ASM_OUTPUT_ALIGN_CODE(FILE) \
1386 { if (TARGET_CODE_ALIGN) fputs("\t.align 3\n",FILE); }
1387
1388 /* Store in OUTPUT a string (made with alloca) containing
1389 an assembler-name for a local static variable named NAME.
1390 LABELNO is an integer which is different for each call. */
1391
1392 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1393 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1394 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1395
1396 /* Define the parentheses used to group arithmetic operations
1397 in assembler code. */
1398
1399 #define ASM_OPEN_PAREN "("
1400 #define ASM_CLOSE_PAREN ")"
1401
1402 /* Define results of standard character escape sequences. */
1403 #define TARGET_BELL 007
1404 #define TARGET_BS 010
1405 #define TARGET_TAB 011
1406 #define TARGET_NEWLINE 012
1407 #define TARGET_VT 013
1408 #define TARGET_FF 014
1409 #define TARGET_CR 015
1410 \f
1411 /* Output assembler code to FILE to initialize this source file's
1412 basic block profiling info, if that has not already been done. */
1413
1414 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1415 { fprintf (FILE, "\tld LPBX0,g12\n"); \
1416 fprintf (FILE, "\tcmpobne 0,g12,LPY%d\n",LABELNO);\
1417 fprintf (FILE, "\tlda LPBX0,g12\n"); \
1418 fprintf (FILE, "\tcall ___bb_init_func\n"); \
1419 fprintf (FILE, "LPY%d:\n",LABELNO); }
1420
1421 /* Output assembler code to FILE to increment the entry-count for
1422 the BLOCKNO'th basic block in this source file. */
1423
1424 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1425 { int blockn = (BLOCKNO); \
1426 fprintf (FILE, "\tld LPBX2+%d,g12\n", 4 * blockn); \
1427 fprintf (FILE, "\taddo g12,1,g12\n"); \
1428 fprintf (FILE, "\tst g12,LPBX2+%d\n", 4 * blockn); }
1429 \f
1430 /* Print operand X (an rtx) in assembler syntax to file FILE.
1431 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1432 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1433
1434 #define PRINT_OPERAND(FILE, X, CODE) \
1435 i960_print_operand (FILE, X, CODE);
1436
1437 /* Print a memory address as an operand to reference that memory location. */
1438
1439 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1440 i960_print_operand_addr (FILE, ADDR)
1441 \f
1442 /* Output assembler code for a block containing the constant parts
1443 of a trampoline, leaving space for the variable parts. */
1444
1445 /* On the i960, the trampoline contains three instructions:
1446 ldconst _function, r4
1447 ldconst static addr, r3
1448 jump (r4) */
1449
1450 #define TRAMPOLINE_TEMPLATE(FILE) \
1451 { \
1452 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x8C203000)); \
1453 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1454 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x8C183000)); \
1455 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1456 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x84212000)); \
1457 }
1458
1459 /* Length in units of the trampoline for entering a nested function. */
1460
1461 #define TRAMPOLINE_SIZE 20
1462
1463 /* Emit RTL insns to initialize the variable parts of a trampoline.
1464 FNADDR is an RTX for the address of the function's pure code.
1465 CXT is an RTX for the static chain value for the function. */
1466
1467 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1468 { \
1469 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), \
1470 FNADDR); \
1471 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 12)), \
1472 CXT); \
1473 }
1474
1475 #if 0
1476 /* Promote char and short arguments to ints, when want compatibility with
1477 the iC960 compilers. */
1478
1479 /* ??? In order for this to work, all users would need to be changed
1480 to test the value of the macro at run time. */
1481 #define PROMOTE_PROTOTYPES TARGET_CLEAN_LINKAGE
1482 /* ??? This does not exist. */
1483 #define PROMOTE_RETURN TARGET_CLEAN_LINKAGE
1484 #endif
1485
1486 /* Instruction type definitions. Used to alternate instructions types for
1487 better performance on the C series chips. */
1488
1489 enum insn_types { I_TYPE_REG, I_TYPE_MEM, I_TYPE_CTRL };
1490
1491 /* Holds the insn type of the last insn output to the assembly file. */
1492
1493 extern enum insn_types i960_last_insn_type;
1494
1495 /* Parse opcodes, and set the insn last insn type based on them. */
1496
1497 #define ASM_OUTPUT_OPCODE(FILE, INSN) i960_scan_opcode (INSN)
1498
1499 /* Table listing what rtl codes each predicate in i960.c will accept. */
1500
1501 #define PREDICATE_CODES \
1502 {"fpmove_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
1503 LABEL_REF, SUBREG, REG, MEM}}, \
1504 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
1505 {"fp_arith_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1506 {"signed_arith_operand", {SUBREG, REG, CONST_INT}}, \
1507 {"literal", {CONST_INT}}, \
1508 {"fp_literal_one", {CONST_DOUBLE}}, \
1509 {"fp_literal_double", {CONST_DOUBLE}}, \
1510 {"fp_literal", {CONST_DOUBLE}}, \
1511 {"signed_literal", {CONST_INT}}, \
1512 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1513 {"eq_or_neq", {EQ, NE}}, \
1514 {"arith32_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, CONST_INT, \
1515 CONST_DOUBLE, CONST}}, \
1516 {"power2_operand", {CONST_INT}}, \
1517 {"cmplpower2_operand", {CONST_INT}},
1518
1519 /* Define functions in i960.c and used in insn-output.c. */
1520
1521 extern char *i960_output_ldconst ();
1522 extern char *i960_output_call_insn ();
1523 extern char *i960_output_ret_insn ();
1524
1525 /* Defined in reload.c, and used in insn-recog.c. */
1526
1527 extern int rtx_equal_function_value_matters;