]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/ia64/ia64.h
configure.in (HAVE_AS_TLS): Add ia64 test.
[thirdparty/gcc.git] / gcc / config / ia64 / ia64.h
1 /* Definitions of target machine GNU compiler. IA-64 version.
2 Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3 Contributed by James E. Wilson <wilson@cygnus.com> and
4 David Mosberger <davidm@hpl.hp.com>.
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* ??? Look at ABI group documents for list of preprocessor macros and
24 other features required for ABI compliance. */
25
26 /* ??? Functions containing a non-local goto target save many registers. Why?
27 See for instance execute/920428-2.c. */
28
29 /* ??? Add support for short data/bss sections. */
30
31 \f
32 /* Run-time target specifications */
33
34 #define EXTRA_SPECS \
35 { "cpp_cpu", CPP_CPU_SPEC }, \
36 { "asm_extra", ASM_EXTRA_SPEC },
37
38 #define CPP_CPU_SPEC " \
39 -Acpu=ia64 -Amachine=ia64 -D__ia64 -D__ia64__ %{!milp32:-D_LP64 -D__LP64__} \
40 -D__ELF__"
41
42 #define CC1_SPEC "%(cc1_cpu) "
43
44 #define ASM_EXTRA_SPEC ""
45
46
47 /* This declaration should be present. */
48 extern int target_flags;
49
50 /* This series of macros is to allow compiler command arguments to enable or
51 disable the use of optional features of the target machine. */
52
53 #define MASK_BIG_ENDIAN 0x00000001 /* Generate big endian code. */
54
55 #define MASK_GNU_AS 0x00000002 /* Generate code for GNU as. */
56
57 #define MASK_GNU_LD 0x00000004 /* Generate code for GNU ld. */
58
59 #define MASK_NO_PIC 0x00000008 /* Generate code without GP reg. */
60
61 #define MASK_VOL_ASM_STOP 0x00000010 /* Emit stop bits for vol ext asm. */
62
63 #define MASK_ILP32 0x00000020 /* Generate ILP32 code. */
64
65 #define MASK_B_STEP 0x00000040 /* Emit code for Itanium B step. */
66
67 #define MASK_REG_NAMES 0x00000080 /* Use in/loc/out register names. */
68
69 #define MASK_NO_SDATA 0x00000100 /* Disable sdata/scommon/sbss. */
70
71 #define MASK_CONST_GP 0x00000200 /* treat gp as program-wide constant */
72
73 #define MASK_AUTO_PIC 0x00000400 /* generate automatically PIC */
74
75 #define MASK_INLINE_DIV_LAT 0x00000800 /* inline div, min latency. */
76
77 #define MASK_INLINE_DIV_THR 0x00001000 /* inline div, max throughput. */
78
79 #define MASK_DWARF2_ASM 0x40000000 /* test dwarf2 line info via gas. */
80
81 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
82
83 #define TARGET_GNU_AS (target_flags & MASK_GNU_AS)
84
85 #define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
86
87 #define TARGET_NO_PIC (target_flags & MASK_NO_PIC)
88
89 #define TARGET_VOL_ASM_STOP (target_flags & MASK_VOL_ASM_STOP)
90
91 #define TARGET_ILP32 (target_flags & MASK_ILP32)
92
93 #define TARGET_B_STEP (target_flags & MASK_B_STEP)
94
95 #define TARGET_REG_NAMES (target_flags & MASK_REG_NAMES)
96
97 #define TARGET_NO_SDATA (target_flags & MASK_NO_SDATA)
98
99 #define TARGET_CONST_GP (target_flags & MASK_CONST_GP)
100
101 #define TARGET_AUTO_PIC (target_flags & MASK_AUTO_PIC)
102
103 #define TARGET_INLINE_DIV_LAT (target_flags & MASK_INLINE_DIV_LAT)
104
105 #define TARGET_INLINE_DIV_THR (target_flags & MASK_INLINE_DIV_THR)
106
107 #define TARGET_INLINE_DIV \
108 (target_flags & (MASK_INLINE_DIV_LAT | MASK_INLINE_DIV_THR))
109
110 #define TARGET_DWARF2_ASM (target_flags & MASK_DWARF2_ASM)
111
112 extern int ia64_tls_size;
113 #define TARGET_TLS14 (ia64_tls_size == 14)
114 #define TARGET_TLS22 (ia64_tls_size == 22)
115 #define TARGET_TLS64 (ia64_tls_size == 64)
116
117 /* This macro defines names of command options to set and clear bits in
118 `target_flags'. Its definition is an initializer with a subgrouping for
119 each command option. */
120
121 #define TARGET_SWITCHES \
122 { \
123 { "big-endian", MASK_BIG_ENDIAN, \
124 N_("Generate big endian code") }, \
125 { "little-endian", -MASK_BIG_ENDIAN, \
126 N_("Generate little endian code") }, \
127 { "gnu-as", MASK_GNU_AS, \
128 N_("Generate code for GNU as") }, \
129 { "no-gnu-as", -MASK_GNU_AS, \
130 N_("Generate code for Intel as") }, \
131 { "gnu-ld", MASK_GNU_LD, \
132 N_("Generate code for GNU ld") }, \
133 { "no-gnu-ld", -MASK_GNU_LD, \
134 N_("Generate code for Intel ld") }, \
135 { "no-pic", MASK_NO_PIC, \
136 N_("Generate code without GP reg") }, \
137 { "volatile-asm-stop", MASK_VOL_ASM_STOP, \
138 N_("Emit stop bits before and after volatile extended asms") }, \
139 { "no-volatile-asm-stop", -MASK_VOL_ASM_STOP, \
140 N_("Don't emit stop bits before and after volatile extended asms") }, \
141 { "b-step", MASK_B_STEP, \
142 N_("Emit code for Itanium (TM) processor B step")}, \
143 { "register-names", MASK_REG_NAMES, \
144 N_("Use in/loc/out register names")}, \
145 { "no-sdata", MASK_NO_SDATA, \
146 N_("Disable use of sdata/scommon/sbss")}, \
147 { "sdata", -MASK_NO_SDATA, \
148 N_("Enable use of sdata/scommon/sbss")}, \
149 { "constant-gp", MASK_CONST_GP, \
150 N_("gp is constant (but save/restore gp on indirect calls)") }, \
151 { "auto-pic", MASK_AUTO_PIC, \
152 N_("Generate self-relocatable code") }, \
153 { "inline-divide-min-latency", MASK_INLINE_DIV_LAT, \
154 N_("Generate inline division, optimize for latency") }, \
155 { "inline-divide-max-throughput", MASK_INLINE_DIV_THR, \
156 N_("Generate inline division, optimize for throughput") }, \
157 { "dwarf2-asm", MASK_DWARF2_ASM, \
158 N_("Enable Dwarf 2 line debug info via GNU as")}, \
159 { "no-dwarf2-asm", -MASK_DWARF2_ASM, \
160 N_("Disable Dwarf 2 line debug info via GNU as")}, \
161 SUBTARGET_SWITCHES \
162 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, \
163 NULL } \
164 }
165
166 /* Default target_flags if no switches are specified */
167
168 #ifndef TARGET_DEFAULT
169 #define TARGET_DEFAULT MASK_DWARF2_ASM
170 #endif
171
172 #ifndef TARGET_CPU_DEFAULT
173 #define TARGET_CPU_DEFAULT 0
174 #endif
175
176 #ifndef SUBTARGET_SWITCHES
177 #define SUBTARGET_SWITCHES
178 #endif
179
180 /* This macro is similar to `TARGET_SWITCHES' but defines names of command
181 options that have values. Its definition is an initializer with a
182 subgrouping for each command option. */
183
184 extern const char *ia64_fixed_range_string;
185 extern const char *ia64_tls_size_string;
186 #define TARGET_OPTIONS \
187 { \
188 { "fixed-range=", &ia64_fixed_range_string, \
189 N_("Specify range of registers to make fixed")}, \
190 { "tls-size=", &ia64_tls_size_string, \
191 N_("Specify bit size of immediate TLS offsets")}, \
192 }
193
194 /* Sometimes certain combinations of command options do not make sense on a
195 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
196 take account of this. This macro, if defined, is executed once just after
197 all the command options have been parsed. */
198
199 #define OVERRIDE_OPTIONS ia64_override_options ()
200
201 /* Some machines may desire to change what optimizations are performed for
202 various optimization levels. This macro, if defined, is executed once just
203 after the optimization level is determined and before the remainder of the
204 command options have been parsed. Values set in this macro are used as the
205 default values for the other command line options. */
206
207 /* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
208 \f
209 /* Driver configuration */
210
211 /* A C string constant that tells the GNU CC driver program options to pass to
212 CPP. It can also specify how to translate options you give to GNU CC into
213 options for GNU CC to pass to the CPP. */
214
215 /* ??? __LONG_MAX__ depends on LP64/ILP32 switch. */
216 /* ??? An alternative is to modify glimits.h to check for __LP64__ instead
217 of checked for CPU specific defines. We could also get rid of all LONG_MAX
218 defines in other tm.h files. */
219 #define CPP_SPEC \
220 "%{mcpu=itanium:-D__itanium__} %{mbig-endian:-D__BIG_ENDIAN__} \
221 %(cpp_cpu) \
222 -D__LONG_MAX__=9223372036854775807L"
223
224 /* A C string constant that tells the GNU CC driver program options to pass to
225 `cc1'. It can also specify how to translate options you give to GNU CC into
226 options for GNU CC to pass to the `cc1'. */
227
228 #undef CC1_SPEC
229 #define CC1_SPEC "%{G*}"
230
231 /* A C string constant that tells the GNU CC driver program options to pass to
232 `cc1plus'. It can also specify how to translate options you give to GNU CC
233 into options for GNU CC to pass to the `cc1plus'. */
234
235 /* #define CC1PLUS_SPEC "" */
236 \f
237 /* Storage Layout */
238
239 /* Define this macro to have the value 1 if the most significant bit in a byte
240 has the lowest number; otherwise define it to have the value zero. */
241
242 #define BITS_BIG_ENDIAN 0
243
244 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
245
246 /* Define this macro to have the value 1 if, in a multiword object, the most
247 significant word has the lowest number. */
248
249 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
250
251 #if defined(__BIG_ENDIAN__)
252 #define LIBGCC2_WORDS_BIG_ENDIAN 1
253 #else
254 #define LIBGCC2_WORDS_BIG_ENDIAN 0
255 #endif
256
257 #define UNITS_PER_WORD 8
258
259 #define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
260
261 /* A C expression whose value is zero if pointers that need to be extended
262 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
263 they are zero-extended and negative one if there is an ptr_extend operation.
264
265 You need not define this macro if the `POINTER_SIZE' is equal to the width
266 of `Pmode'. */
267 /* Need this for 32 bit pointers, see hpux.h for setting it. */
268 /* #define POINTERS_EXTEND_UNSIGNED */
269
270 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
271 which has the specified mode and signedness is to be stored in a register.
272 This macro is only called when TYPE is a scalar type. */
273 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
274 do \
275 { \
276 if (GET_MODE_CLASS (MODE) == MODE_INT \
277 && GET_MODE_SIZE (MODE) < 4) \
278 (MODE) = SImode; \
279 } \
280 while (0)
281
282 /* ??? ABI doesn't allow us to define this. */
283 /* #define PROMOTE_FUNCTION_ARGS */
284
285 /* ??? ABI doesn't allow us to define this. */
286 /* #define PROMOTE_FUNCTION_RETURN */
287
288 #define PARM_BOUNDARY 64
289
290 /* Define this macro if you wish to preserve a certain alignment for the stack
291 pointer. The definition is a C expression for the desired alignment
292 (measured in bits). */
293
294 #define STACK_BOUNDARY 128
295
296 /* Align frames on double word boundaries */
297 #ifndef IA64_STACK_ALIGN
298 #define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
299 #endif
300
301 #define FUNCTION_BOUNDARY 128
302
303 /* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
304 128 bit integers all require 128 bit alignment. */
305 #define BIGGEST_ALIGNMENT 128
306
307 /* If defined, a C expression to compute the alignment for a static variable.
308 TYPE is the data type, and ALIGN is the alignment that the object
309 would ordinarily have. The value of this macro is used instead of that
310 alignment to align the object. */
311
312 #define DATA_ALIGNMENT(TYPE, ALIGN) \
313 (TREE_CODE (TYPE) == ARRAY_TYPE \
314 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
315 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
316
317 /* If defined, a C expression to compute the alignment given to a constant that
318 is being placed in memory. CONSTANT is the constant and ALIGN is the
319 alignment that the object would ordinarily have. The value of this macro is
320 used instead of that alignment to align the object. */
321
322 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
323 (TREE_CODE (EXP) == STRING_CST \
324 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
325
326 #define STRICT_ALIGNMENT 1
327
328 /* Define this if you wish to imitate the way many other C compilers handle
329 alignment of bitfields and the structures that contain them.
330 The behavior is that the type written for a bitfield (`int', `short', or
331 other integer type) imposes an alignment for the entire structure, as if the
332 structure really did contain an ordinary field of that type. In addition,
333 the bitfield is placed within the structure so that it would fit within such
334 a field, not crossing a boundary for it. */
335 #define PCC_BITFIELD_TYPE_MATTERS 1
336
337 /* An integer expression for the size in bits of the largest integer machine
338 mode that should actually be used. */
339
340 /* Allow pairs of registers to be used, which is the intent of the default. */
341 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
342
343 /* A code distinguishing the floating point format of the target machine. */
344 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
345
346 /* By default, the C++ compiler will use function addresses in the
347 vtable entries. Setting this non-zero tells the compiler to use
348 function descriptors instead. The value of this macro says how
349 many words wide the descriptor is (normally 2). It is assumed
350 that the address of a function descriptor may be treated as a
351 pointer to a function. */
352 #define TARGET_VTABLE_USES_DESCRIPTORS 2
353 \f
354 /* Layout of Source Language Data Types */
355
356 #define INT_TYPE_SIZE 32
357
358 #define SHORT_TYPE_SIZE 16
359
360 #define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
361
362 #define MAX_LONG_TYPE_SIZE 64
363
364 #define LONG_LONG_TYPE_SIZE 64
365
366 #define FLOAT_TYPE_SIZE 32
367
368 #define DOUBLE_TYPE_SIZE 64
369
370 #define LONG_DOUBLE_TYPE_SIZE 128
371
372 /* Tell real.c that this is the 80-bit Intel extended float format
373 packaged in a 128-bit entity. */
374
375 #define INTEL_EXTENDED_IEEE_FORMAT 1
376
377 #define DEFAULT_SIGNED_CHAR 1
378
379 /* A C expression for a string describing the name of the data type to use for
380 size values. The typedef name `size_t' is defined using the contents of the
381 string. */
382 /* ??? Needs to be defined for P64 code. */
383 /* #define SIZE_TYPE */
384
385 /* A C expression for a string describing the name of the data type to use for
386 the result of subtracting two pointers. The typedef name `ptrdiff_t' is
387 defined using the contents of the string. See `SIZE_TYPE' above for more
388 information. */
389 /* ??? Needs to be defined for P64 code. */
390 /* #define PTRDIFF_TYPE */
391
392 /* A C expression for a string describing the name of the data type to use for
393 wide characters. The typedef name `wchar_t' is defined using the contents
394 of the string. See `SIZE_TYPE' above for more information. */
395 /* #define WCHAR_TYPE */
396
397 /* A C expression for the size in bits of the data type for wide characters.
398 This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
399 /* #define WCHAR_TYPE_SIZE */
400
401 \f
402 /* Register Basics */
403
404 /* Number of hardware registers known to the compiler.
405 We have 128 general registers, 128 floating point registers,
406 64 predicate registers, 8 branch registers, one frame pointer,
407 and several "application" registers. */
408
409 #define FIRST_PSEUDO_REGISTER 335
410
411 /* Ranges for the various kinds of registers. */
412 #define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
413 #define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
414 #define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
415 #define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
416 #define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
417 #define GENERAL_REGNO_P(REGNO) \
418 (GR_REGNO_P (REGNO) \
419 || (REGNO) == FRAME_POINTER_REGNUM \
420 || (REGNO) == RETURN_ADDRESS_POINTER_REGNUM)
421
422 #define GR_REG(REGNO) ((REGNO) + 0)
423 #define FR_REG(REGNO) ((REGNO) + 128)
424 #define PR_REG(REGNO) ((REGNO) + 256)
425 #define BR_REG(REGNO) ((REGNO) + 320)
426 #define OUT_REG(REGNO) ((REGNO) + 120)
427 #define IN_REG(REGNO) ((REGNO) + 112)
428 #define LOC_REG(REGNO) ((REGNO) + 32)
429
430 #define AR_CCV_REGNUM 330
431 #define AR_UNAT_REGNUM 331
432 #define AR_PFS_REGNUM 332
433 #define AR_LC_REGNUM 333
434 #define AR_EC_REGNUM 334
435
436 #define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
437 #define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
438 #define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
439
440 #define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
441 || (REGNO) == AR_UNAT_REGNUM)
442 #define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
443 && (REGNO) < FIRST_PSEUDO_REGISTER)
444 #define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
445 && (REGNO) < FIRST_PSEUDO_REGISTER)
446
447
448 /* ??? Don't really need two sets of macros. I like this one better because
449 it is less typing. */
450 #define R_GR(REGNO) GR_REG (REGNO)
451 #define R_FR(REGNO) FR_REG (REGNO)
452 #define R_PR(REGNO) PR_REG (REGNO)
453 #define R_BR(REGNO) BR_REG (REGNO)
454
455 /* An initializer that says which registers are used for fixed purposes all
456 throughout the compiled code and are therefore not available for general
457 allocation.
458
459 r0: constant 0
460 r1: global pointer (gp)
461 r12: stack pointer (sp)
462 r13: thread pointer (tp)
463 f0: constant 0.0
464 f1: constant 1.0
465 p0: constant true
466 fp: eliminable frame pointer */
467
468 /* The last 16 stacked regs are reserved for the 8 input and 8 output
469 registers. */
470
471 #define FIXED_REGISTERS \
472 { /* General registers. */ \
473 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
474 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
475 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
476 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
477 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
478 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
479 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
480 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
481 /* Floating-point registers. */ \
482 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
483 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
484 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
485 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
486 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
487 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
488 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
489 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
490 /* Predicate registers. */ \
491 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
492 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
493 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
494 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
495 /* Branch registers. */ \
496 0, 0, 0, 0, 0, 0, 0, 0, \
497 /*FP RA CCV UNAT PFS LC EC */ \
498 1, 1, 1, 1, 1, 0, 1 \
499 }
500
501 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
502 (in general) by function calls as well as for fixed registers. This
503 macro therefore identifies the registers that are not available for
504 general allocation of values that must live across function calls. */
505
506 #define CALL_USED_REGISTERS \
507 { /* General registers. */ \
508 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
509 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
510 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
511 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
512 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
513 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
514 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
515 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
516 /* Floating-point registers. */ \
517 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
518 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
519 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
520 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
521 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
522 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
523 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
524 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
525 /* Predicate registers. */ \
526 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
527 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
528 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
529 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
530 /* Branch registers. */ \
531 1, 0, 0, 0, 0, 0, 1, 1, \
532 /*FP RA CCV UNAT PFS LC EC */ \
533 1, 1, 1, 1, 1, 0, 1 \
534 }
535
536 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
537 problem which makes CALL_USED_REGISTERS *always* include
538 all the FIXED_REGISTERS. Until this problem has been
539 resolved this macro can be used to overcome this situation.
540 In particular, block_propagate() requires this list
541 be acurate, or we can remove registers which should be live.
542 This macro is used in regs_invalidated_by_call. */
543
544 #define CALL_REALLY_USED_REGISTERS \
545 { /* General registers. */ \
546 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, \
547 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
548 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
549 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
550 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
551 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
552 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
553 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
554 /* Floating-point registers. */ \
555 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
556 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
557 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
558 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
559 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
560 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
561 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
562 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
563 /* Predicate registers. */ \
564 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
565 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
566 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
567 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
568 /* Branch registers. */ \
569 1, 0, 0, 0, 0, 0, 1, 1, \
570 /*FP RA CCV UNAT PFS LC EC */ \
571 0, 0, 1, 0, 1, 0, 0 \
572 }
573
574
575 /* Define this macro if the target machine has register windows. This C
576 expression returns the register number as seen by the called function
577 corresponding to the register number OUT as seen by the calling function.
578 Return OUT if register number OUT is not an outbound register. */
579
580 #define INCOMING_REGNO(OUT) \
581 ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
582
583 /* Define this macro if the target machine has register windows. This C
584 expression returns the register number as seen by the calling function
585 corresponding to the register number IN as seen by the called function.
586 Return IN if register number IN is not an inbound register. */
587
588 #define OUTGOING_REGNO(IN) \
589 ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
590
591 /* Define this macro if the target machine has register windows. This
592 C expression returns true if the register is call-saved but is in the
593 register window. */
594
595 #define LOCAL_REGNO(REGNO) \
596 (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
597
598 /* Add any extra modes needed to represent the condition code.
599
600 CCImode is used to mark a single predicate register instead
601 of a register pair. This is currently only used in reg_raw_mode
602 so that flow doesn't do something stupid. */
603
604 #define EXTRA_CC_MODES CC(CCImode, "CCI")
605
606 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
607 return the mode to be used for the comparison. Must be defined if
608 EXTRA_CC_MODES is defined. */
609
610 #define SELECT_CC_MODE(OP,X,Y) CCmode
611 \f
612 /* Order of allocation of registers */
613
614 /* If defined, an initializer for a vector of integers, containing the numbers
615 of hard registers in the order in which GNU CC should prefer to use them
616 (from most preferred to least).
617
618 If this macro is not defined, registers are used lowest numbered first (all
619 else being equal).
620
621 One use of this macro is on machines where the highest numbered registers
622 must always be saved and the save-multiple-registers instruction supports
623 only sequences of consecutive registers. On such machines, define
624 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
625 allocatable register first. */
626
627 /* ??? Should the GR return value registers come before or after the rest
628 of the caller-save GRs? */
629
630 #define REG_ALLOC_ORDER \
631 { \
632 /* Caller-saved general registers. */ \
633 R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
634 R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
635 R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
636 R_GR (30), R_GR (31), \
637 /* Output registers. */ \
638 R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
639 R_GR (126), R_GR (127), \
640 /* Caller-saved general registers, also used for return values. */ \
641 R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
642 /* addl caller-saved general registers. */ \
643 R_GR (2), R_GR (3), \
644 /* Caller-saved FP registers. */ \
645 R_FR (6), R_FR (7), \
646 /* Caller-saved FP registers, used for parameters and return values. */ \
647 R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
648 R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
649 /* Rotating caller-saved FP registers. */ \
650 R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
651 R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
652 R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
653 R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
654 R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
655 R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
656 R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
657 R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
658 R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
659 R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
660 R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
661 R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
662 R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
663 R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
664 R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
665 R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
666 R_FR (126), R_FR (127), \
667 /* Caller-saved predicate registers. */ \
668 R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
669 R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
670 /* Rotating caller-saved predicate registers. */ \
671 R_PR (16), R_PR (17), \
672 R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
673 R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
674 R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
675 R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
676 R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
677 R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
678 R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
679 R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
680 /* Caller-saved branch registers. */ \
681 R_BR (6), R_BR (7), \
682 \
683 /* Stacked callee-saved general registers. */ \
684 R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
685 R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
686 R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
687 R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
688 R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
689 R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
690 R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
691 R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
692 R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
693 R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
694 R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
695 R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
696 R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
697 R_GR (108), \
698 /* Input registers. */ \
699 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
700 R_GR (118), R_GR (119), \
701 /* Callee-saved general registers. */ \
702 R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
703 /* Callee-saved FP registers. */ \
704 R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
705 R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
706 R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
707 R_FR (30), R_FR (31), \
708 /* Callee-saved predicate registers. */ \
709 R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
710 /* Callee-saved branch registers. */ \
711 R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
712 \
713 /* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
714 R_GR (109), R_GR (110), R_GR (111), \
715 \
716 /* Special general registers. */ \
717 R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
718 /* Special FP registers. */ \
719 R_FR (0), R_FR (1), \
720 /* Special predicate registers. */ \
721 R_PR (0), \
722 /* Special branch registers. */ \
723 R_BR (0), \
724 /* Other fixed registers. */ \
725 FRAME_POINTER_REGNUM, RETURN_ADDRESS_POINTER_REGNUM, \
726 AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
727 AR_EC_REGNUM \
728 }
729 \f
730 /* How Values Fit in Registers */
731
732 /* A C expression for the number of consecutive hard registers, starting at
733 register number REGNO, required to hold a value of mode MODE. */
734
735 /* ??? We say that BImode PR values require two registers. This allows us to
736 easily store the normal and inverted values. We use CCImode to indicate
737 a single predicate register. */
738
739 #define HARD_REGNO_NREGS(REGNO, MODE) \
740 ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64 \
741 : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2 \
742 : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1 \
743 : FR_REGNO_P (REGNO) && (MODE) == TFmode && INTEL_EXTENDED_IEEE_FORMAT ? 1 \
744 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
745
746 /* A C expression that is nonzero if it is permissible to store a value of mode
747 MODE in hard register number REGNO (or in several registers starting with
748 that one). */
749
750 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
751 (FR_REGNO_P (REGNO) ? \
752 GET_MODE_CLASS (MODE) != MODE_CC && \
753 (MODE) != TImode && \
754 (MODE) != BImode && \
755 ((MODE) != TFmode || INTEL_EXTENDED_IEEE_FORMAT) \
756 : PR_REGNO_P (REGNO) ? \
757 (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC \
758 : GR_REGNO_P (REGNO) ? (MODE) != CCImode && (MODE) != TFmode \
759 : AR_REGNO_P (REGNO) ? (MODE) == DImode \
760 : BR_REGNO_P (REGNO) ? (MODE) == DImode \
761 : 0)
762
763 /* A C expression that is nonzero if it is desirable to choose register
764 allocation so as to avoid move instructions between a value of mode MODE1
765 and a value of mode MODE2.
766
767 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
768 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
769 zero. */
770 /* Don't tie integer and FP modes, as that causes us to get integer registers
771 allocated for FP instructions. TFmode only supported in FP registers so
772 we can't tie it with any other modes. */
773 #define MODES_TIEABLE_P(MODE1, MODE2) \
774 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
775 && (((MODE1) == TFmode) == ((MODE2) == TFmode)) \
776 && (((MODE1) == BImode) == ((MODE2) == BImode)))
777 \f
778 /* Handling Leaf Functions */
779
780 /* A C initializer for a vector, indexed by hard register number, which
781 contains 1 for a register that is allowable in a candidate for leaf function
782 treatment. */
783 /* ??? This might be useful. */
784 /* #define LEAF_REGISTERS */
785
786 /* A C expression whose value is the register number to which REGNO should be
787 renumbered, when a function is treated as a leaf function. */
788 /* ??? This might be useful. */
789 /* #define LEAF_REG_REMAP(REGNO) */
790
791 \f
792 /* Register Classes */
793
794 /* An enumeral type that must be defined with all the register class names as
795 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
796 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
797 which is not a register class but rather tells how many classes there
798 are. */
799 /* ??? When compiling without optimization, it is possible for the only use of
800 a pseudo to be a parameter load from the stack with a REG_EQUIV note.
801 Regclass handles this case specially and does not assign any costs to the
802 pseudo. The pseudo then ends up using the last class before ALL_REGS.
803 Thus we must not let either PR_REGS or BR_REGS be the last class. The
804 testcase for this is gcc.c-torture/execute/va-arg-7.c. */
805 enum reg_class
806 {
807 NO_REGS,
808 PR_REGS,
809 BR_REGS,
810 AR_M_REGS,
811 AR_I_REGS,
812 ADDL_REGS,
813 GR_REGS,
814 FR_REGS,
815 GR_AND_BR_REGS,
816 GR_AND_FR_REGS,
817 ALL_REGS,
818 LIM_REG_CLASSES
819 };
820
821 #define GENERAL_REGS GR_REGS
822
823 /* The number of distinct register classes. */
824 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
825
826 /* An initializer containing the names of the register classes as C string
827 constants. These names are used in writing some of the debugging dumps. */
828 #define REG_CLASS_NAMES \
829 { "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
830 "ADDL_REGS", "GR_REGS", "FR_REGS", \
831 "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
832
833 /* An initializer containing the contents of the register classes, as integers
834 which are bit masks. The Nth integer specifies the contents of class N.
835 The way the integer MASK is interpreted is that register R is in the class
836 if `MASK & (1 << R)' is 1. */
837 #define REG_CLASS_CONTENTS \
838 { \
839 /* NO_REGS. */ \
840 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
841 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
842 0x00000000, 0x00000000, 0x0000 }, \
843 /* PR_REGS. */ \
844 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
845 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
846 0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
847 /* BR_REGS. */ \
848 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
849 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
850 0x00000000, 0x00000000, 0x00FF }, \
851 /* AR_M_REGS. */ \
852 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
853 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
854 0x00000000, 0x00000000, 0x0C00 }, \
855 /* AR_I_REGS. */ \
856 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
857 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
858 0x00000000, 0x00000000, 0x7000 }, \
859 /* ADDL_REGS. */ \
860 { 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
861 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
862 0x00000000, 0x00000000, 0x0000 }, \
863 /* GR_REGS. */ \
864 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
865 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
866 0x00000000, 0x00000000, 0x0300 }, \
867 /* FR_REGS. */ \
868 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
869 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
870 0x00000000, 0x00000000, 0x0000 }, \
871 /* GR_AND_BR_REGS. */ \
872 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
873 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
874 0x00000000, 0x00000000, 0x03FF }, \
875 /* GR_AND_FR_REGS. */ \
876 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
877 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
878 0x00000000, 0x00000000, 0x0300 }, \
879 /* ALL_REGS. */ \
880 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
881 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
882 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFF }, \
883 }
884
885 /* A C expression whose value is a register class containing hard register
886 REGNO. In general there is more than one such class; choose a class which
887 is "minimal", meaning that no smaller class also contains the register. */
888 /* The NO_REGS case is primarily for the benefit of rws_access_reg, which
889 may call here with private (invalid) register numbers, such as
890 REG_VOLATILE. */
891 #define REGNO_REG_CLASS(REGNO) \
892 (ADDL_REGNO_P (REGNO) ? ADDL_REGS \
893 : GENERAL_REGNO_P (REGNO) ? GR_REGS \
894 : FR_REGNO_P (REGNO) ? FR_REGS \
895 : PR_REGNO_P (REGNO) ? PR_REGS \
896 : BR_REGNO_P (REGNO) ? BR_REGS \
897 : AR_M_REGNO_P (REGNO) ? AR_M_REGS \
898 : AR_I_REGNO_P (REGNO) ? AR_I_REGS \
899 : NO_REGS)
900
901 /* A macro whose definition is the name of the class to which a valid base
902 register must belong. A base register is one used in an address which is
903 the register value plus a displacement. */
904 #define BASE_REG_CLASS GENERAL_REGS
905
906 /* A macro whose definition is the name of the class to which a valid index
907 register must belong. An index register is one used in an address where its
908 value is either multiplied by a scale factor or added to another register
909 (as well as added to a displacement). This is needed for POST_MODIFY. */
910 #define INDEX_REG_CLASS GENERAL_REGS
911
912 /* A C expression which defines the machine-dependent operand constraint
913 letters for register classes. If CHAR is such a letter, the value should be
914 the register class corresponding to it. Otherwise, the value should be
915 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
916 will not be passed to this macro; you do not need to handle it. */
917
918 #define REG_CLASS_FROM_LETTER(CHAR) \
919 ((CHAR) == 'f' ? FR_REGS \
920 : (CHAR) == 'a' ? ADDL_REGS \
921 : (CHAR) == 'b' ? BR_REGS \
922 : (CHAR) == 'c' ? PR_REGS \
923 : (CHAR) == 'd' ? AR_M_REGS \
924 : (CHAR) == 'e' ? AR_I_REGS \
925 : NO_REGS)
926
927 /* A C expression which is nonzero if register number NUM is suitable for use
928 as a base register in operand addresses. It may be either a suitable hard
929 register or a pseudo register that has been allocated such a hard reg. */
930 #define REGNO_OK_FOR_BASE_P(REGNO) \
931 (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
932
933 /* A C expression which is nonzero if register number NUM is suitable for use
934 as an index register in operand addresses. It may be either a suitable hard
935 register or a pseudo register that has been allocated such a hard reg.
936 This is needed for POST_MODIFY. */
937 #define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
938
939 /* A C expression that places additional restrictions on the register class to
940 use when it is necessary to copy value X into a register in class CLASS.
941 The value is a register class; perhaps CLASS, or perhaps another, smaller
942 class. */
943
944 /* Don't allow volatile mem reloads into floating point registers. This
945 is defined to force reload to choose the r/m case instead of the f/f case
946 when reloading (set (reg fX) (mem/v)).
947
948 Do not reload expressions into AR regs. */
949
950 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
951 (CLASS == FR_REGS && GET_CODE (X) == MEM && MEM_VOLATILE_P (X) ? NO_REGS \
952 : CLASS == FR_REGS && GET_CODE (X) == CONST_DOUBLE ? NO_REGS \
953 : GET_RTX_CLASS (GET_CODE (X)) != 'o' \
954 && (CLASS == AR_M_REGS || CLASS == AR_I_REGS) ? NO_REGS \
955 : CLASS)
956
957 /* You should define this macro to indicate to the reload phase that it may
958 need to allocate at least one register for a reload in addition to the
959 register to contain the data. Specifically, if copying X to a register
960 CLASS in MODE requires an intermediate register, you should define this
961 to return the largest register class all of whose registers can be used
962 as intermediate registers or scratch registers. */
963
964 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
965 ia64_secondary_reload_class (CLASS, MODE, X)
966
967 /* Certain machines have the property that some registers cannot be copied to
968 some other registers without using memory. Define this macro on those
969 machines to be a C expression that is non-zero if objects of mode M in
970 registers of CLASS1 can only be copied to registers of class CLASS2 by
971 storing a register of CLASS1 into memory and loading that memory location
972 into a register of CLASS2. */
973
974 #if 0
975 /* ??? May need this, but since we've disallowed TFmode in GR_REGS,
976 I'm not quite sure how it could be invoked. The normal problems
977 with unions should be solved with the addressof fiddling done by
978 movtf and friends. */
979 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
980 ((MODE) == TFmode && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS) \
981 || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
982 #endif
983
984 /* A C expression for the maximum number of consecutive registers of
985 class CLASS needed to hold a value of mode MODE.
986 This is closely related to the macro `HARD_REGNO_NREGS'. */
987
988 #define CLASS_MAX_NREGS(CLASS, MODE) \
989 ((MODE) == BImode && (CLASS) == PR_REGS ? 2 \
990 : ((CLASS) == FR_REGS && (MODE) == TFmode) ? 1 \
991 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
992
993 /* If defined, gives a class of registers that cannot be used as the
994 operand of a SUBREG that changes the mode of the object illegally. */
995
996 #define CLASS_CANNOT_CHANGE_MODE FR_REGS
997
998 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE.
999 In FP regs, we can't change FP values to integer values and vice
1000 versa, but we can change e.g. DImode to SImode. */
1001
1002 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1003 (GET_MODE_CLASS (FROM) != GET_MODE_CLASS (TO))
1004
1005 /* A C expression that defines the machine-dependent operand constraint
1006 letters (`I', `J', `K', .. 'P') that specify particular ranges of
1007 integer values. */
1008
1009 /* 14 bit signed immediate for arithmetic instructions. */
1010 #define CONST_OK_FOR_I(VALUE) \
1011 ((unsigned HOST_WIDE_INT)(VALUE) + 0x2000 < 0x4000)
1012 /* 22 bit signed immediate for arith instructions with r0/r1/r2/r3 source. */
1013 #define CONST_OK_FOR_J(VALUE) \
1014 ((unsigned HOST_WIDE_INT)(VALUE) + 0x200000 < 0x400000)
1015 /* 8 bit signed immediate for logical instructions. */
1016 #define CONST_OK_FOR_K(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x80 < 0x100)
1017 /* 8 bit adjusted signed immediate for compare pseudo-ops. */
1018 #define CONST_OK_FOR_L(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x7F < 0x100)
1019 /* 6 bit unsigned immediate for shift counts. */
1020 #define CONST_OK_FOR_M(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) < 0x40)
1021 /* 9 bit signed immediate for load/store post-increments. */
1022 #define CONST_OK_FOR_N(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x100 < 0x200)
1023 /* 0 for r0. Used by Linux kernel, do not change. */
1024 #define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1025 /* 0 or -1 for dep instruction. */
1026 #define CONST_OK_FOR_P(VALUE) ((VALUE) == 0 || (VALUE) == -1)
1027
1028 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1029 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1030 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1031 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1032 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1033 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1034 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1035 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1036 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1037 : 0)
1038
1039 /* A C expression that defines the machine-dependent operand constraint letters
1040 (`G', `H') that specify particular ranges of `const_double' values. */
1041
1042 /* 0.0 and 1.0 for fr0 and fr1. */
1043 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
1044 ((VALUE) == CONST0_RTX (GET_MODE (VALUE)) \
1045 || (VALUE) == CONST1_RTX (GET_MODE (VALUE)))
1046
1047 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1048 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) : 0)
1049
1050 /* A C expression that defines the optional machine-dependent constraint
1051 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1052 types of operands, usually memory references, for the target machine. */
1053
1054 /* Non-volatile memory for FP_REG loads/stores. */
1055 #define CONSTRAINT_OK_FOR_Q(VALUE) \
1056 (memory_operand((VALUE), VOIDmode) && ! MEM_VOLATILE_P (VALUE))
1057 /* 1..4 for shladd arguments. */
1058 #define CONSTRAINT_OK_FOR_R(VALUE) \
1059 (GET_CODE (VALUE) == CONST_INT && INTVAL (VALUE) >= 1 && INTVAL (VALUE) <= 4)
1060 /* Non-post-inc memory for asms and other unsavory creatures. */
1061 #define CONSTRAINT_OK_FOR_S(VALUE) \
1062 (GET_CODE (VALUE) == MEM \
1063 && GET_RTX_CLASS (GET_CODE (XEXP ((VALUE), 0))) != 'a' \
1064 && (reload_in_progress || memory_operand ((VALUE), VOIDmode)))
1065
1066 #define EXTRA_CONSTRAINT(VALUE, C) \
1067 ((C) == 'Q' ? CONSTRAINT_OK_FOR_Q (VALUE) \
1068 : (C) == 'R' ? CONSTRAINT_OK_FOR_R (VALUE) \
1069 : (C) == 'S' ? CONSTRAINT_OK_FOR_S (VALUE) \
1070 : 0)
1071 \f
1072 /* Basic Stack Layout */
1073
1074 /* Define this macro if pushing a word onto the stack moves the stack pointer
1075 to a smaller address. */
1076 #define STACK_GROWS_DOWNWARD 1
1077
1078 /* Define this macro if the addresses of local variable slots are at negative
1079 offsets from the frame pointer. */
1080 /* #define FRAME_GROWS_DOWNWARD */
1081
1082 /* Offset from the frame pointer to the first local variable slot to
1083 be allocated. */
1084 #define STARTING_FRAME_OFFSET 0
1085
1086 /* Offset from the stack pointer register to the first location at which
1087 outgoing arguments are placed. If not specified, the default value of zero
1088 is used. This is the proper value for most machines. */
1089 /* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
1090 #define STACK_POINTER_OFFSET 16
1091
1092 /* Offset from the argument pointer register to the first argument's address.
1093 On some machines it may depend on the data type of the function. */
1094 #define FIRST_PARM_OFFSET(FUNDECL) 0
1095
1096 /* A C expression whose value is RTL representing the value of the return
1097 address for the frame COUNT steps up from the current frame, after the
1098 prologue. */
1099
1100 /* ??? Frames other than zero would likely require interpreting the frame
1101 unwind info, so we don't try to support them. We would also need to define
1102 DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
1103
1104 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1105 ((COUNT) == 0 ? return_address_pointer_rtx : const0_rtx)
1106
1107 /* A C expression whose value is RTL representing the location of the incoming
1108 return address at the beginning of any function, before the prologue. This
1109 RTL is either a `REG', indicating that the return value is saved in `REG',
1110 or a `MEM' representing a location in the stack. This enables DWARF2
1111 unwind info for C++ EH. */
1112 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
1113
1114 /* ??? This is not defined because of three problems.
1115 1) dwarf2out.c assumes that DWARF_FRAME_RETURN_COLUMN fits in one byte.
1116 The default value is FIRST_PSEUDO_REGISTER which doesn't. This can be
1117 worked around by setting PC_REGNUM to FR_REG (0) which is an otherwise
1118 unused register number.
1119 2) dwarf2out_frame_debug core dumps while processing prologue insns. We
1120 need to refine which insns have RTX_FRAME_RELATED_P set and which don't.
1121 3) It isn't possible to turn off EH frame info by defining DWARF2_UNIND_INFO
1122 to zero, despite what the documentation implies, because it is tested in
1123 a few places with #ifdef instead of #if. */
1124 #undef INCOMING_RETURN_ADDR_RTX
1125
1126 /* A C expression whose value is an integer giving the offset, in bytes, from
1127 the value of the stack pointer register to the top of the stack frame at the
1128 beginning of any function, before the prologue. The top of the frame is
1129 defined to be the value of the stack pointer in the previous frame, just
1130 before the call instruction. */
1131 #define INCOMING_FRAME_SP_OFFSET 0
1132
1133 \f
1134 /* Register That Address the Stack Frame. */
1135
1136 /* The register number of the stack pointer register, which must also be a
1137 fixed register according to `FIXED_REGISTERS'. On most machines, the
1138 hardware determines which register this is. */
1139
1140 #define STACK_POINTER_REGNUM 12
1141
1142 /* The register number of the frame pointer register, which is used to access
1143 automatic variables in the stack frame. On some machines, the hardware
1144 determines which register this is. On other machines, you can choose any
1145 register you wish for this purpose. */
1146
1147 #define FRAME_POINTER_REGNUM 328
1148
1149 /* Base register for access to local variables of the function. */
1150 #define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
1151
1152 /* The register number of the arg pointer register, which is used to access the
1153 function's argument list. */
1154 /* r0 won't otherwise be used, so put the always eliminated argument pointer
1155 in it. */
1156 #define ARG_POINTER_REGNUM R_GR(0)
1157
1158 /* Due to the way varargs and argument spilling happens, the argument
1159 pointer is not 16-byte aligned like the stack pointer. */
1160 #define INIT_EXPANDERS \
1161 do { \
1162 if (cfun && cfun->emit->regno_pointer_align) \
1163 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64; \
1164 } while (0)
1165
1166 /* The register number for the return address register. For IA-64, this
1167 is not actually a pointer as the name suggests, but that's a name that
1168 gen_rtx_REG already takes care to keep unique. We modify
1169 return_address_pointer_rtx in ia64_expand_prologue to reference the
1170 final output regnum. */
1171 #define RETURN_ADDRESS_POINTER_REGNUM 329
1172
1173 /* Register numbers used for passing a function's static chain pointer. */
1174 /* ??? The ABI sez the static chain should be passed as a normal parameter. */
1175 #define STATIC_CHAIN_REGNUM 15
1176 \f
1177 /* Eliminating the Frame Pointer and the Arg Pointer */
1178
1179 /* A C expression which is nonzero if a function must have and use a frame
1180 pointer. This expression is evaluated in the reload pass. If its value is
1181 nonzero the function will have a frame pointer. */
1182 #define FRAME_POINTER_REQUIRED 0
1183
1184 /* Show we can debug even without a frame pointer. */
1185 #define CAN_DEBUG_WITHOUT_FP
1186
1187 /* If defined, this macro specifies a table of register pairs used to eliminate
1188 unneeded registers that point into the stack frame. */
1189
1190 #define ELIMINABLE_REGS \
1191 { \
1192 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1193 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1194 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1195 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1196 {RETURN_ADDRESS_POINTER_REGNUM, BR_REG (0)}, \
1197 }
1198
1199 /* A C expression that returns non-zero if the compiler is allowed to try to
1200 replace register number FROM with register number TO. The frame pointer
1201 is automatically handled. */
1202
1203 #define CAN_ELIMINATE(FROM, TO) \
1204 (TO == BR_REG (0) ? current_function_is_leaf : 1)
1205
1206 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1207 specifies the initial difference between the specified pair of
1208 registers. This macro must be defined if `ELIMINABLE_REGS' is
1209 defined. */
1210 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1211 ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
1212 \f
1213 /* Passing Function Arguments on the Stack */
1214
1215 /* Define this macro if an argument declared in a prototype as an integral type
1216 smaller than `int' should actually be passed as an `int'. In addition to
1217 avoiding errors in certain cases of mismatch, it also makes for better code
1218 on certain machines. */
1219 /* ??? Investigate. */
1220 /* #define PROMOTE_PROTOTYPES */
1221
1222 /* If defined, the maximum amount of space required for outgoing arguments will
1223 be computed and placed into the variable
1224 `current_function_outgoing_args_size'. */
1225
1226 #define ACCUMULATE_OUTGOING_ARGS 1
1227
1228 /* A C expression that should indicate the number of bytes of its own arguments
1229 that a function pops on returning, or 0 if the function pops no arguments
1230 and the caller must therefore pop them all after the function returns. */
1231
1232 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1233
1234 \f
1235 /* Function Arguments in Registers */
1236
1237 #define MAX_ARGUMENT_SLOTS 8
1238 #define MAX_INT_RETURN_SLOTS 4
1239 #define GR_ARG_FIRST IN_REG (0)
1240 #define GR_RET_FIRST GR_REG (8)
1241 #define GR_RET_LAST GR_REG (11)
1242 #define FR_ARG_FIRST FR_REG (8)
1243 #define FR_RET_FIRST FR_REG (8)
1244 #define FR_RET_LAST FR_REG (15)
1245 #define AR_ARG_FIRST OUT_REG (0)
1246
1247 /* A C expression that controls whether a function argument is passed in a
1248 register, and which register. */
1249
1250 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1251 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1252
1253 /* Define this macro if the target machine has "register windows", so that the
1254 register in which a function sees an arguments is not necessarily the same
1255 as the one in which the caller passed the argument. */
1256
1257 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1258 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1259
1260 /* A C expression for the number of words, at the beginning of an argument,
1261 must be put in registers. The value must be zero for arguments that are
1262 passed entirely in registers or that are entirely pushed on the stack. */
1263
1264 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1265 ia64_function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1266
1267 /* A C expression that indicates when an argument must be passed by reference.
1268 If nonzero for an argument, a copy of that argument is made in memory and a
1269 pointer to the argument is passed instead of the argument itself. The
1270 pointer is passed in whatever way is appropriate for passing a pointer to
1271 that type. */
1272
1273 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1274 ia64_function_arg_pass_by_reference (&CUM, MODE, TYPE, NAMED)
1275
1276 /* A C type for declaring a variable that is used as the first argument of
1277 `FUNCTION_ARG' and other related values. For some target machines, the type
1278 `int' suffices and can hold the number of bytes of argument so far. */
1279
1280 typedef struct ia64_args
1281 {
1282 int words; /* # words of arguments so far */
1283 int int_regs; /* # GR registers used so far */
1284 int fp_regs; /* # FR registers used so far */
1285 int prototype; /* whether function prototyped */
1286 } CUMULATIVE_ARGS;
1287
1288 /* A C statement (sans semicolon) for initializing the variable CUM for the
1289 state at the beginning of the argument list. */
1290
1291 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1292 do { \
1293 (CUM).words = 0; \
1294 (CUM).int_regs = 0; \
1295 (CUM).fp_regs = 0; \
1296 (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1297 } while (0)
1298
1299 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1300 arguments for the function being compiled. If this macro is undefined,
1301 `INIT_CUMULATIVE_ARGS' is used instead. */
1302
1303 /* We set prototype to true so that we never try to return a PARALLEL from
1304 function_arg. */
1305 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1306 do { \
1307 (CUM).words = 0; \
1308 (CUM).int_regs = 0; \
1309 (CUM).fp_regs = 0; \
1310 (CUM).prototype = 1; \
1311 } while (0)
1312
1313 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1314 advance past an argument in the argument list. The values MODE, TYPE and
1315 NAMED describe that argument. Once this is done, the variable CUM is
1316 suitable for analyzing the *following* argument with `FUNCTION_ARG'. */
1317
1318 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1319 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1320
1321 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1322 argument with the specified mode and type. */
1323
1324 /* Arguments with alignment larger than 8 bytes start at the next even
1325 boundary. See ia64_function_arg. */
1326
1327 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1328 (((TYPE) ? (TYPE_ALIGN (TYPE) > 8 * BITS_PER_UNIT) \
1329 : (((((MODE) == BLKmode \
1330 ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1331 + UNITS_PER_WORD - 1) / UNITS_PER_WORD) > 1)) \
1332 ? 128 : PARM_BOUNDARY)
1333
1334 /* A C expression that is nonzero if REGNO is the number of a hard register in
1335 which function arguments are sometimes passed. This does *not* include
1336 implicit arguments such as the static chain and the structure-value address.
1337 On many machines, no registers can be used for this purpose since all
1338 function arguments are pushed on the stack. */
1339 #define FUNCTION_ARG_REGNO_P(REGNO) \
1340 (((REGNO) >= GR_ARG_FIRST && (REGNO) < (GR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1341 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1342 \f
1343 /* Implement `va_start' for varargs and stdarg. */
1344 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1345 ia64_va_start (stdarg, valist, nextarg)
1346
1347 /* Implement `va_arg'. */
1348 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1349 ia64_va_arg (valist, type)
1350 \f
1351 /* How Scalar Function Values are Returned */
1352
1353 /* A C expression to create an RTX representing the place where a function
1354 returns a value of data type VALTYPE. */
1355
1356 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1357 ia64_function_value (VALTYPE, FUNC)
1358
1359 /* A C expression to create an RTX representing the place where a library
1360 function returns a value of mode MODE. */
1361
1362 #define LIBCALL_VALUE(MODE) \
1363 gen_rtx_REG (MODE, \
1364 (((GET_MODE_CLASS (MODE) == MODE_FLOAT \
1365 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) && \
1366 ((MODE) != TFmode || INTEL_EXTENDED_IEEE_FORMAT)) \
1367 ? FR_RET_FIRST : GR_RET_FIRST))
1368
1369 /* A C expression that is nonzero if REGNO is the number of a hard register in
1370 which the values of called function may come back. */
1371
1372 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1373 (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST) \
1374 || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1375
1376 \f
1377 /* How Large Values are Returned */
1378
1379 /* A nonzero value says to return the function value in memory, just as large
1380 structures are always returned. */
1381
1382 #define RETURN_IN_MEMORY(TYPE) \
1383 ia64_return_in_memory (TYPE)
1384
1385 /* If you define this macro to be 0, then the conventions used for structure
1386 and union return values are decided by the `RETURN_IN_MEMORY' macro. */
1387
1388 #define DEFAULT_PCC_STRUCT_RETURN 0
1389
1390 /* If the structure value address is passed in a register, then
1391 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1392
1393 #define STRUCT_VALUE_REGNUM GR_REG (8)
1394
1395 \f
1396 /* Caller-Saves Register Allocation */
1397
1398 /* A C expression to determine whether it is worthwhile to consider placing a
1399 pseudo-register in a call-clobbered hard register and saving and restoring
1400 it around each function call. The expression should be 1 when this is worth
1401 doing, and 0 otherwise.
1402
1403 If you don't define this macro, a default is used which is good on most
1404 machines: `4 * CALLS < REFS'. */
1405 /* ??? Investigate. */
1406 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1407
1408 \f
1409 /* Function Entry and Exit */
1410
1411 /* Define this macro as a C expression that is nonzero if the return
1412 instruction or the function epilogue ignores the value of the stack pointer;
1413 in other words, if it is safe to delete an instruction to adjust the stack
1414 pointer before a return from the function. */
1415
1416 #define EXIT_IGNORE_STACK 1
1417
1418 /* Define this macro as a C expression that is nonzero for registers
1419 used by the epilogue or the `return' pattern. */
1420
1421 #define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1422
1423 /* Nonzero for registers used by the exception handling mechanism. */
1424
1425 #define EH_USES(REGNO) ia64_eh_uses (REGNO)
1426
1427 /* Output at beginning of assembler file. */
1428
1429 #define ASM_FILE_START(FILE) \
1430 emit_safe_across_calls (FILE)
1431
1432 /* A C compound statement that outputs the assembler code for a thunk function,
1433 used to implement C++ virtual function calls with multiple inheritance. */
1434
1435 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1436 do { \
1437 if (CONST_OK_FOR_I (DELTA)) \
1438 { \
1439 fprintf (FILE, "\tadds r32 = "); \
1440 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, (DELTA)); \
1441 fprintf (FILE, ", r32\n"); \
1442 } \
1443 else \
1444 { \
1445 if (CONST_OK_FOR_J (DELTA)) \
1446 { \
1447 fprintf (FILE, "\taddl r2 = "); \
1448 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, (DELTA)); \
1449 fprintf (FILE, ", r0\n"); \
1450 } \
1451 else \
1452 { \
1453 fprintf (FILE, "\tmovl r2 = "); \
1454 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, (DELTA)); \
1455 fprintf (FILE, "\n"); \
1456 } \
1457 fprintf (FILE, "\t;;\n"); \
1458 fprintf (FILE, "\tadd r32 = r2, r32\n"); \
1459 } \
1460 fprintf (FILE, "\tbr "); \
1461 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
1462 fprintf (FILE, "\n"); \
1463 } while (0)
1464
1465 /* Output part N of a function descriptor for DECL. For ia64, both
1466 words are emitted with a single relocation, so ignore N > 0. */
1467 #define ASM_OUTPUT_FDESC(FILE, DECL, PART) \
1468 do { \
1469 if ((PART) == 0) \
1470 { \
1471 fputs ("\tdata16.ua @iplt(", FILE); \
1472 assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0)); \
1473 fputs (")\n", FILE); \
1474 } \
1475 } while (0)
1476 \f
1477 /* Generating Code for Profiling. */
1478
1479 /* A C statement or compound statement to output to FILE some assembler code to
1480 call the profiling subroutine `mcount'. */
1481
1482 #undef FUNCTION_PROFILER
1483 #define FUNCTION_PROFILER(FILE, LABELNO) \
1484 do { \
1485 char buf[20]; \
1486 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", LABELNO); \
1487 fputs ("\talloc out0 = ar.pfs, 8, 0, 4, 0\n", FILE); \
1488 if (TARGET_AUTO_PIC) \
1489 fputs ("\tmovl out3 = @gprel(", FILE); \
1490 else \
1491 fputs ("\taddl out3 = @ltoff(", FILE); \
1492 assemble_name (FILE, buf); \
1493 if (TARGET_AUTO_PIC) \
1494 fputs (");;\n", FILE); \
1495 else \
1496 fputs ("), r1;;\n", FILE); \
1497 fputs ("\tmov out1 = r1\n", FILE); \
1498 fputs ("\tmov out2 = b0\n", FILE); \
1499 fputs ("\tbr.call.sptk.many b0 = _mcount;;\n", FILE); \
1500 } while (0)
1501 \f
1502 /* Implementing the Varargs Macros. */
1503
1504 /* Define this macro to store the anonymous register arguments into the stack
1505 so that all the arguments appear to have been passed consecutively on the
1506 stack. */
1507
1508 #define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME) \
1509 ia64_setup_incoming_varargs (ARGS_SO_FAR, MODE, TYPE, & PRETEND_ARGS_SIZE, SECOND_TIME)
1510
1511 /* Define this macro if the location where a function argument is passed
1512 depends on whether or not it is a named argument. */
1513
1514 #define STRICT_ARGUMENT_NAMING 1
1515
1516 \f
1517 /* Trampolines for Nested Functions. */
1518
1519 /* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1520 the function containing a non-local goto target. */
1521
1522 #define STACK_SAVEAREA_MODE(LEVEL) \
1523 ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1524
1525 /* Output assembler code for a block containing the constant parts of
1526 a trampoline, leaving space for the variable parts.
1527
1528 The trampoline should set the static chain pointer to value placed
1529 into the trampoline and should branch to the specified routine.
1530 To make the normal indirect-subroutine calling convention work,
1531 the trampoline must look like a function descriptor; the first
1532 word being the target address and the second being the target's
1533 global pointer.
1534
1535 We abuse the concept of a global pointer by arranging for it
1536 to point to the data we need to load. The complete trampoline
1537 has the following form:
1538
1539 +-------------------+ \
1540 TRAMP: | __ia64_trampoline | |
1541 +-------------------+ > fake function descriptor
1542 | TRAMP+16 | |
1543 +-------------------+ /
1544 | target descriptor |
1545 +-------------------+
1546 | static link |
1547 +-------------------+
1548 */
1549
1550 /* A C expression for the size in bytes of the trampoline, as an integer. */
1551
1552 #define TRAMPOLINE_SIZE 32
1553
1554 /* Alignment required for trampolines, in bits. */
1555
1556 #define TRAMPOLINE_ALIGNMENT 64
1557
1558 /* A C statement to initialize the variable parts of a trampoline. */
1559
1560 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
1561 ia64_initialize_trampoline((ADDR), (FNADDR), (STATIC_CHAIN))
1562 \f
1563 /* Implicit Calls to Library Routines */
1564
1565 /* Define this macro if GNU CC should generate calls to the System V (and ANSI
1566 C) library functions `memcpy' and `memset' rather than the BSD functions
1567 `bcopy' and `bzero'. */
1568
1569 #define TARGET_MEM_FUNCTIONS
1570
1571 \f
1572 /* Addressing Modes */
1573
1574 /* Define this macro if the machine supports post-increment addressing. */
1575
1576 #define HAVE_POST_INCREMENT 1
1577 #define HAVE_POST_DECREMENT 1
1578 #define HAVE_POST_MODIFY_DISP 1
1579 #define HAVE_POST_MODIFY_REG 1
1580
1581 /* A C expression that is 1 if the RTX X is a constant which is a valid
1582 address. */
1583
1584 #define CONSTANT_ADDRESS_P(X) 0
1585
1586 /* The max number of registers that can appear in a valid memory address. */
1587
1588 #define MAX_REGS_PER_ADDRESS 2
1589
1590 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
1591 RTX) is a legitimate memory address on the target machine for a memory
1592 operand of mode MODE. */
1593
1594 #define LEGITIMATE_ADDRESS_REG(X) \
1595 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1596 || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG \
1597 && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1598
1599 #define LEGITIMATE_ADDRESS_DISP(R, X) \
1600 (GET_CODE (X) == PLUS \
1601 && rtx_equal_p (R, XEXP (X, 0)) \
1602 && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1)) \
1603 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
1604 && INTVAL (XEXP (X, 1)) >= -256 \
1605 && INTVAL (XEXP (X, 1)) < 256)))
1606
1607 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1608 do { \
1609 if (LEGITIMATE_ADDRESS_REG (X)) \
1610 goto LABEL; \
1611 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
1612 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1613 && XEXP (X, 0) != arg_pointer_rtx) \
1614 goto LABEL; \
1615 else if (GET_CODE (X) == POST_MODIFY \
1616 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1617 && XEXP (X, 0) != arg_pointer_rtx \
1618 && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1))) \
1619 goto LABEL; \
1620 } while (0)
1621
1622 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1623 use as a base register. */
1624
1625 #ifdef REG_OK_STRICT
1626 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1627 #else
1628 #define REG_OK_FOR_BASE_P(X) \
1629 (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1630 #endif
1631
1632 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1633 use as an index register. This is needed for POST_MODIFY. */
1634
1635 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1636
1637 /* A C compound statement that attempts to replace X with a valid memory
1638 address for an operand of mode MODE.
1639
1640 This must be present, but there is nothing useful to be done here. */
1641
1642 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
1643
1644 /* A C statement or compound statement with a conditional `goto LABEL;'
1645 executed if memory address X (an RTX) can have different meanings depending
1646 on the machine mode of the memory reference it is used for or if the address
1647 is valid for some modes but not others. */
1648
1649 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1650 if (GET_CODE (ADDR) == POST_DEC || GET_CODE (ADDR) == POST_INC) \
1651 goto LABEL;
1652
1653 /* A C expression that is nonzero if X is a legitimate constant for an
1654 immediate operand on the target machine. */
1655
1656 #define LEGITIMATE_CONSTANT_P(X) \
1657 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1658 || GET_MODE (X) == DImode || CONST_DOUBLE_OK_FOR_G (X)) \
1659
1660 \f
1661 /* Condition Code Status */
1662
1663 /* One some machines not all possible comparisons are defined, but you can
1664 convert an invalid comparison into a valid one. */
1665 /* ??? Investigate. See the alpha definition. */
1666 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1667
1668 \f
1669 /* Describing Relative Costs of Operations */
1670
1671 /* A part of a C `switch' statement that describes the relative costs of
1672 constant RTL expressions. */
1673
1674 /* ??? This is incomplete. */
1675
1676 #define CONST_COSTS(X, CODE, OUTER_CODE) \
1677 case CONST_INT: \
1678 if ((X) == const0_rtx) \
1679 return 0; \
1680 switch (OUTER_CODE) \
1681 { \
1682 case SET: \
1683 return CONST_OK_FOR_J (INTVAL (X)) ? 0 : COSTS_N_INSNS (1); \
1684 case PLUS: \
1685 if (CONST_OK_FOR_I (INTVAL (X))) \
1686 return 0; \
1687 if (CONST_OK_FOR_J (INTVAL (X))) \
1688 return 1; \
1689 return COSTS_N_INSNS (1); \
1690 default: \
1691 if (CONST_OK_FOR_K (INTVAL (X)) || CONST_OK_FOR_L (INTVAL (X))) \
1692 return 0; \
1693 return COSTS_N_INSNS (1); \
1694 } \
1695 case CONST_DOUBLE: \
1696 return COSTS_N_INSNS (1); \
1697 case CONST: \
1698 case SYMBOL_REF: \
1699 case LABEL_REF: \
1700 return COSTS_N_INSNS (3);
1701
1702 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions. */
1703
1704 #define RTX_COSTS(X, CODE, OUTER_CODE) \
1705 case MULT: \
1706 /* For multiplies wider than HImode, we have to go to the FPU, \
1707 which normally involves copies. Plus there's the latency \
1708 of the multiply itself, and the latency of the instructions to \
1709 transfer integer regs to FP regs. */ \
1710 if (GET_MODE_SIZE (GET_MODE (X)) > 2) \
1711 return COSTS_N_INSNS (10); \
1712 return COSTS_N_INSNS (2); \
1713 case PLUS: \
1714 case MINUS: \
1715 case ASHIFT: \
1716 case ASHIFTRT: \
1717 case LSHIFTRT: \
1718 return COSTS_N_INSNS (1); \
1719 case DIV: \
1720 case UDIV: \
1721 case MOD: \
1722 case UMOD: \
1723 /* We make divide expensive, so that divide-by-constant will be \
1724 optimized to a multiply. */ \
1725 return COSTS_N_INSNS (60);
1726
1727 /* An expression giving the cost of an addressing mode that contains ADDRESS.
1728 If not defined, the cost is computed from the ADDRESS expression and the
1729 `CONST_COSTS' values. */
1730
1731 #define ADDRESS_COST(ADDRESS) 0
1732
1733 /* A C expression for the cost of moving data from a register in class FROM to
1734 one in class TO, using MODE. */
1735
1736 #define REGISTER_MOVE_COST ia64_register_move_cost
1737
1738 /* A C expression for the cost of moving data of mode M between a
1739 register and memory. */
1740 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1741 ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS \
1742 || (CLASS) == GR_AND_FR_REGS ? 4 : 10)
1743
1744 /* A C expression for the cost of a branch instruction. A value of 1 is the
1745 default; other values are interpreted relative to that. Used by the
1746 if-conversion code as max instruction count. */
1747 /* ??? This requires investigation. The primary effect might be how
1748 many additional insn groups we run into, vs how good the dynamic
1749 branch predictor is. */
1750
1751 #define BRANCH_COST 6
1752
1753 /* Define this macro as a C expression which is nonzero if accessing less than
1754 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1755 word of memory. */
1756
1757 #define SLOW_BYTE_ACCESS 1
1758
1759 /* Define this macro if it is as good or better to call a constant function
1760 address than to call an address kept in a register.
1761
1762 Indirect function calls are more expensive that direct function calls, so
1763 don't cse function addresses. */
1764
1765 #define NO_FUNCTION_CSE
1766
1767 \f
1768 /* Dividing the output into sections. */
1769
1770 /* A C expression whose value is a string containing the assembler operation
1771 that should precede instructions and read-only data. */
1772
1773 #define TEXT_SECTION_ASM_OP "\t.text"
1774
1775 /* A C expression whose value is a string containing the assembler operation to
1776 identify the following data as writable initialized data. */
1777
1778 #define DATA_SECTION_ASM_OP "\t.data"
1779
1780 /* If defined, a C expression whose value is a string containing the assembler
1781 operation to identify the following data as uninitialized global data. */
1782
1783 #define BSS_SECTION_ASM_OP "\t.bss"
1784
1785 #define ENCODE_SECTION_INFO_CHAR '@'
1786
1787 #define IA64_DEFAULT_GVALUE 8
1788 \f
1789 /* Position Independent Code. */
1790
1791 /* The register number of the register used to address a table of static data
1792 addresses in memory. */
1793
1794 /* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1795 gen_rtx_REG (DImode, 1). */
1796
1797 /* ??? Should we set flag_pic? Probably need to define
1798 LEGITIMIZE_PIC_OPERAND_P to make that work. */
1799
1800 #define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1801
1802 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1803 clobbered by calls. */
1804
1805 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1806
1807 \f
1808 /* The Overall Framework of an Assembler File. */
1809
1810 /* A C string constant describing how to begin a comment in the target
1811 assembler language. The compiler assumes that the comment will end at the
1812 end of the line. */
1813
1814 #define ASM_COMMENT_START "//"
1815
1816 /* A C string constant for text to be output before each `asm' statement or
1817 group of consecutive ones. */
1818
1819 /* ??? This won't work with the Intel assembler, because it does not accept
1820 # as a comment start character. However, //APP does not work in gas, so we
1821 can't use that either. Same problem for ASM_APP_OFF below. */
1822
1823 #define ASM_APP_ON "#APP\n"
1824
1825 /* A C string constant for text to be output after each `asm' statement or
1826 group of consecutive ones. */
1827
1828 #define ASM_APP_OFF "#NO_APP\n"
1829
1830 \f
1831 /* Output of Data. */
1832
1833 /* This is how to output an assembler line defining a `char' constant
1834 to an xdata segment. */
1835
1836 #define ASM_OUTPUT_XDATA_CHAR(FILE, SECTION, VALUE) \
1837 do { \
1838 fprintf (FILE, "\t.xdata1\t\"%s\", ", SECTION); \
1839 output_addr_const (FILE, (VALUE)); \
1840 fprintf (FILE, "\n"); \
1841 } while (0)
1842
1843 /* This is how to output an assembler line defining a `short' constant
1844 to an xdata segment. */
1845
1846 #define ASM_OUTPUT_XDATA_SHORT(FILE, SECTION, VALUE) \
1847 do { \
1848 fprintf (FILE, "\t.xdata2\t\"%s\", ", SECTION); \
1849 output_addr_const (FILE, (VALUE)); \
1850 fprintf (FILE, "\n"); \
1851 } while (0)
1852
1853 /* This is how to output an assembler line defining an `int' constant
1854 to an xdata segment. We also handle symbol output here. */
1855
1856 /* ??? For ILP32, also need to handle function addresses here. */
1857
1858 #define ASM_OUTPUT_XDATA_INT(FILE, SECTION, VALUE) \
1859 do { \
1860 fprintf (FILE, "\t.xdata4\t\"%s\", ", SECTION); \
1861 output_addr_const (FILE, (VALUE)); \
1862 fprintf (FILE, "\n"); \
1863 } while (0)
1864
1865 /* This is how to output an assembler line defining a `long' constant
1866 to an xdata segment. We also handle symbol output here. */
1867
1868 #define ASM_OUTPUT_XDATA_DOUBLE_INT(FILE, SECTION, VALUE) \
1869 do { \
1870 int need_closing_paren = 0; \
1871 fprintf (FILE, "\t.xdata8\t\"%s\", ", SECTION); \
1872 if (!(TARGET_NO_PIC || TARGET_AUTO_PIC) \
1873 && GET_CODE (VALUE) == SYMBOL_REF) \
1874 { \
1875 fprintf (FILE, SYMBOL_REF_FLAG (VALUE) ? "@fptr(" : "@segrel("); \
1876 need_closing_paren = 1; \
1877 } \
1878 output_addr_const (FILE, VALUE); \
1879 if (need_closing_paren) \
1880 fprintf (FILE, ")"); \
1881 fprintf (FILE, "\n"); \
1882 } while (0)
1883
1884
1885 \f
1886 /* Output of Uninitialized Variables. */
1887
1888 /* This is all handled by svr4.h. */
1889
1890 \f
1891 /* Output and Generation of Labels. */
1892
1893 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1894 assembler definition of a label named NAME. */
1895
1896 /* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1897 why ia64_asm_output_label exists. */
1898
1899 extern int ia64_asm_output_label;
1900 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
1901 do { \
1902 ia64_asm_output_label = 1; \
1903 assemble_name (STREAM, NAME); \
1904 fputs (":\n", STREAM); \
1905 ia64_asm_output_label = 0; \
1906 } while (0)
1907
1908 /* A C statement (sans semicolon) to output to the stdio stream STREAM some
1909 commands that will make the label NAME global; that is, available for
1910 reference from other files. */
1911
1912 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
1913 do { \
1914 fputs ("\t.global ", STREAM); \
1915 assemble_name (STREAM, NAME); \
1916 fputs ("\n", STREAM); \
1917 } while (0)
1918
1919 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1920 necessary for declaring the name of an external symbol named NAME which is
1921 referenced in this compilation but not defined. */
1922
1923 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1924 ia64_asm_output_external (FILE, DECL, NAME)
1925
1926 /* A C statement to store into the string STRING a label whose name is made
1927 from the string PREFIX and the number NUM. */
1928
1929 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1930 do { \
1931 sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
1932 } while (0)
1933
1934 /* A C expression to assign to OUTVAR (which is a variable of type `char *') a
1935 newly allocated string made from the string NAME and the number NUMBER, with
1936 some suitable punctuation added. */
1937
1938 /* ??? Not sure if using a ? in the name for Intel as is safe. */
1939
1940 #define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \
1941 do { \
1942 (OUTVAR) = (char *) alloca (strlen (NAME) + 12); \
1943 sprintf (OUTVAR, "%s%c%ld", (NAME), (TARGET_GNU_AS ? '.' : '?'), \
1944 (long)(NUMBER)); \
1945 } while (0)
1946
1947 /* A C statement to output to the stdio stream STREAM assembler code which
1948 defines (equates) the symbol NAME to have the value VALUE. */
1949
1950 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1951 do { \
1952 assemble_name (STREAM, NAME); \
1953 fputs (" = ", STREAM); \
1954 assemble_name (STREAM, VALUE); \
1955 fputc ('\n', STREAM); \
1956 } while (0)
1957
1958 \f
1959 /* Macros Controlling Initialization Routines. */
1960
1961 /* This is handled by svr4.h and sysv4.h. */
1962
1963 \f
1964 /* Output of Assembler Instructions. */
1965
1966 /* A C initializer containing the assembler's names for the machine registers,
1967 each one as a C string constant. */
1968
1969 #define REGISTER_NAMES \
1970 { \
1971 /* General registers. */ \
1972 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1973 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
1974 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
1975 "r30", "r31", \
1976 /* Local registers. */ \
1977 "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
1978 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
1979 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
1980 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
1981 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
1982 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
1983 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
1984 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
1985 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
1986 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
1987 /* Input registers. */ \
1988 "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
1989 /* Output registers. */ \
1990 "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
1991 /* Floating-point registers. */ \
1992 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
1993 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
1994 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
1995 "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
1996 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
1997 "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
1998 "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
1999 "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
2000 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
2001 "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
2002 "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
2003 "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
2004 "f120","f121","f122","f123","f124","f125","f126","f127", \
2005 /* Predicate registers. */ \
2006 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
2007 "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
2008 "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
2009 "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
2010 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
2011 "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
2012 "p60", "p61", "p62", "p63", \
2013 /* Branch registers. */ \
2014 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
2015 /* Frame pointer. Return address. */ \
2016 "sfp", "retaddr", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
2017 }
2018
2019 /* If defined, a C initializer for an array of structures containing a name and
2020 a register number. This macro defines additional names for hard registers,
2021 thus allowing the `asm' option in declarations to refer to registers using
2022 alternate names. */
2023
2024 #define ADDITIONAL_REGISTER_NAMES \
2025 { \
2026 { "gp", R_GR (1) }, \
2027 { "sp", R_GR (12) }, \
2028 { "in0", IN_REG (0) }, \
2029 { "in1", IN_REG (1) }, \
2030 { "in2", IN_REG (2) }, \
2031 { "in3", IN_REG (3) }, \
2032 { "in4", IN_REG (4) }, \
2033 { "in5", IN_REG (5) }, \
2034 { "in6", IN_REG (6) }, \
2035 { "in7", IN_REG (7) }, \
2036 { "out0", OUT_REG (0) }, \
2037 { "out1", OUT_REG (1) }, \
2038 { "out2", OUT_REG (2) }, \
2039 { "out3", OUT_REG (3) }, \
2040 { "out4", OUT_REG (4) }, \
2041 { "out5", OUT_REG (5) }, \
2042 { "out6", OUT_REG (6) }, \
2043 { "out7", OUT_REG (7) }, \
2044 { "loc0", LOC_REG (0) }, \
2045 { "loc1", LOC_REG (1) }, \
2046 { "loc2", LOC_REG (2) }, \
2047 { "loc3", LOC_REG (3) }, \
2048 { "loc4", LOC_REG (4) }, \
2049 { "loc5", LOC_REG (5) }, \
2050 { "loc6", LOC_REG (6) }, \
2051 { "loc7", LOC_REG (7) }, \
2052 { "loc8", LOC_REG (8) }, \
2053 { "loc9", LOC_REG (9) }, \
2054 { "loc10", LOC_REG (10) }, \
2055 { "loc11", LOC_REG (11) }, \
2056 { "loc12", LOC_REG (12) }, \
2057 { "loc13", LOC_REG (13) }, \
2058 { "loc14", LOC_REG (14) }, \
2059 { "loc15", LOC_REG (15) }, \
2060 { "loc16", LOC_REG (16) }, \
2061 { "loc17", LOC_REG (17) }, \
2062 { "loc18", LOC_REG (18) }, \
2063 { "loc19", LOC_REG (19) }, \
2064 { "loc20", LOC_REG (20) }, \
2065 { "loc21", LOC_REG (21) }, \
2066 { "loc22", LOC_REG (22) }, \
2067 { "loc23", LOC_REG (23) }, \
2068 { "loc24", LOC_REG (24) }, \
2069 { "loc25", LOC_REG (25) }, \
2070 { "loc26", LOC_REG (26) }, \
2071 { "loc27", LOC_REG (27) }, \
2072 { "loc28", LOC_REG (28) }, \
2073 { "loc29", LOC_REG (29) }, \
2074 { "loc30", LOC_REG (30) }, \
2075 { "loc31", LOC_REG (31) }, \
2076 { "loc32", LOC_REG (32) }, \
2077 { "loc33", LOC_REG (33) }, \
2078 { "loc34", LOC_REG (34) }, \
2079 { "loc35", LOC_REG (35) }, \
2080 { "loc36", LOC_REG (36) }, \
2081 { "loc37", LOC_REG (37) }, \
2082 { "loc38", LOC_REG (38) }, \
2083 { "loc39", LOC_REG (39) }, \
2084 { "loc40", LOC_REG (40) }, \
2085 { "loc41", LOC_REG (41) }, \
2086 { "loc42", LOC_REG (42) }, \
2087 { "loc43", LOC_REG (43) }, \
2088 { "loc44", LOC_REG (44) }, \
2089 { "loc45", LOC_REG (45) }, \
2090 { "loc46", LOC_REG (46) }, \
2091 { "loc47", LOC_REG (47) }, \
2092 { "loc48", LOC_REG (48) }, \
2093 { "loc49", LOC_REG (49) }, \
2094 { "loc50", LOC_REG (50) }, \
2095 { "loc51", LOC_REG (51) }, \
2096 { "loc52", LOC_REG (52) }, \
2097 { "loc53", LOC_REG (53) }, \
2098 { "loc54", LOC_REG (54) }, \
2099 { "loc55", LOC_REG (55) }, \
2100 { "loc56", LOC_REG (56) }, \
2101 { "loc57", LOC_REG (57) }, \
2102 { "loc58", LOC_REG (58) }, \
2103 { "loc59", LOC_REG (59) }, \
2104 { "loc60", LOC_REG (60) }, \
2105 { "loc61", LOC_REG (61) }, \
2106 { "loc62", LOC_REG (62) }, \
2107 { "loc63", LOC_REG (63) }, \
2108 { "loc64", LOC_REG (64) }, \
2109 { "loc65", LOC_REG (65) }, \
2110 { "loc66", LOC_REG (66) }, \
2111 { "loc67", LOC_REG (67) }, \
2112 { "loc68", LOC_REG (68) }, \
2113 { "loc69", LOC_REG (69) }, \
2114 { "loc70", LOC_REG (70) }, \
2115 { "loc71", LOC_REG (71) }, \
2116 { "loc72", LOC_REG (72) }, \
2117 { "loc73", LOC_REG (73) }, \
2118 { "loc74", LOC_REG (74) }, \
2119 { "loc75", LOC_REG (75) }, \
2120 { "loc76", LOC_REG (76) }, \
2121 { "loc77", LOC_REG (77) }, \
2122 { "loc78", LOC_REG (78) }, \
2123 { "loc79", LOC_REG (79) }, \
2124 }
2125
2126 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2127 for an instruction operand X. X is an RTL expression. */
2128
2129 #define PRINT_OPERAND(STREAM, X, CODE) \
2130 ia64_print_operand (STREAM, X, CODE)
2131
2132 /* A C expression which evaluates to true if CODE is a valid punctuation
2133 character for use in the `PRINT_OPERAND' macro. */
2134
2135 /* ??? Keep this around for now, as we might need it later. */
2136
2137 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2138 ((CODE) == '+' || (CODE) == ',')
2139
2140 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2141 for an instruction operand that is a memory reference whose address is X. X
2142 is an RTL expression. */
2143
2144 #define PRINT_OPERAND_ADDRESS(STREAM, X) \
2145 ia64_print_operand_address (STREAM, X)
2146
2147 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2148 `%I' options of `asm_fprintf' (see `final.c'). */
2149
2150 #define REGISTER_PREFIX ""
2151 #define LOCAL_LABEL_PREFIX "."
2152 #define USER_LABEL_PREFIX ""
2153 #define IMMEDIATE_PREFIX ""
2154
2155 \f
2156 /* Output of dispatch tables. */
2157
2158 /* This macro should be provided on machines where the addresses in a dispatch
2159 table are relative to the table's own address. */
2160
2161 /* ??? Depends on the pointer size. */
2162
2163 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2164 fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE)
2165
2166 /* This is how to output an element of a case-vector that is absolute.
2167 (Ia64 does not use such vectors, but we must define this macro anyway.) */
2168
2169 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) abort ()
2170
2171 /* Jump tables only need 8 byte alignment. */
2172
2173 #define ADDR_VEC_ALIGN(ADDR_VEC) 3
2174
2175 \f
2176 /* Assembler Commands for Exception Regions. */
2177
2178 /* Select a format to encode pointers in exception handling data. CODE
2179 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2180 true if the symbol may be affected by dynamic relocations. */
2181 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2182 (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel) \
2183 | ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_udata8)
2184
2185 /* Handle special EH pointer encodings. Absolute, pc-relative, and
2186 indirect are handled automatically. */
2187 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
2188 do { \
2189 const char *reltag = NULL; \
2190 if (((ENCODING) & 0xF0) == DW_EH_PE_textrel) \
2191 reltag = "@segrel("; \
2192 else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel) \
2193 reltag = "@gprel("; \
2194 if (reltag) \
2195 { \
2196 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2197 fputs (reltag, FILE); \
2198 assemble_name (FILE, XSTR (ADDR, 0)); \
2199 fputc (')', FILE); \
2200 goto DONE; \
2201 } \
2202 } while (0)
2203
2204 \f
2205 /* Assembler Commands for Alignment. */
2206
2207 /* ??? Investigate. */
2208
2209 /* The alignment (log base 2) to put in front of LABEL, which follows
2210 a BARRIER. */
2211
2212 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
2213
2214 /* The desired alignment for the location counter at the beginning
2215 of a loop. */
2216
2217 /* #define LOOP_ALIGN(LABEL) */
2218
2219 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
2220 section because it fails put zeros in the bytes that are skipped. */
2221
2222 #define ASM_NO_SKIP_IN_TEXT 1
2223
2224 /* A C statement to output to the stdio stream STREAM an assembler command to
2225 advance the location counter to a multiple of 2 to the POWER bytes. */
2226
2227 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2228 fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
2229
2230 \f
2231 /* Macros Affecting all Debug Formats. */
2232
2233 /* This is handled in svr4.h and sysv4.h. */
2234
2235 \f
2236 /* Specific Options for DBX Output. */
2237
2238 /* This is handled by dbxelf.h which is included by svr4.h. */
2239
2240 \f
2241 /* Open ended Hooks for DBX Output. */
2242
2243 /* Likewise. */
2244
2245 \f
2246 /* File names in DBX format. */
2247
2248 /* Likewise. */
2249
2250 \f
2251 /* Macros for SDB and Dwarf Output. */
2252
2253 /* Define this macro if GNU CC should produce dwarf version 2 format debugging
2254 output in response to the `-g' option. */
2255
2256 #define DWARF2_DEBUGGING_INFO
2257
2258 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
2259
2260 /* Use tags for debug info labels, so that they don't break instruction
2261 bundles. This also avoids getting spurious DV warnings from the
2262 assembler. This is similar to ASM_OUTPUT_INTERNAL_LABEL, except that we
2263 add brackets around the label. */
2264
2265 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2266 fprintf (FILE, "[.%s%d:]\n", PREFIX, NUM)
2267
2268 /* Use section-relative relocations for debugging offsets. Unlike other
2269 targets that fake this by putting the section VMA at 0, IA-64 has
2270 proper relocations for them. */
2271 #define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL) \
2272 do { \
2273 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2274 fputs ("@secrel(", FILE); \
2275 assemble_name (FILE, LABEL); \
2276 fputc (')', FILE); \
2277 } while (0)
2278
2279 /* Emit a PC-relative relocation. */
2280 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
2281 do { \
2282 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2283 fputs ("@pcrel(", FILE); \
2284 assemble_name (FILE, LABEL); \
2285 fputc (')', FILE); \
2286 } while (0)
2287 \f
2288 /* Register Renaming Parameters. */
2289
2290 /* A C expression that is nonzero if hard register number REGNO2 can be
2291 considered for use as a rename register for REGNO1 */
2292
2293 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
2294 ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
2295
2296 \f
2297 /* Miscellaneous Parameters. */
2298
2299 /* Define this if you have defined special-purpose predicates in the file
2300 `MACHINE.c'. For each predicate, list all rtl codes that can be in
2301 expressions matched by the predicate. */
2302
2303 #define PREDICATE_CODES \
2304 { "call_operand", {SUBREG, REG, SYMBOL_REF}}, \
2305 { "got_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2306 { "sdata_symbolic_operand", {SYMBOL_REF, CONST}}, \
2307 { "symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2308 { "function_operand", {SYMBOL_REF}}, \
2309 { "setjmp_operand", {SYMBOL_REF}}, \
2310 { "destination_operand", {SUBREG, REG, MEM}}, \
2311 { "not_postinc_memory_operand", {MEM}}, \
2312 { "move_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2313 CONSTANT_P_RTX, SYMBOL_REF, CONST, LABEL_REF}}, \
2314 { "gr_register_operand", {SUBREG, REG}}, \
2315 { "fr_register_operand", {SUBREG, REG}}, \
2316 { "grfr_register_operand", {SUBREG, REG}}, \
2317 { "gr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2318 { "fr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2319 { "grfr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2320 { "gr_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
2321 { "gr_reg_or_5bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2322 { "gr_reg_or_6bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2323 { "gr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2324 { "grfr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2325 { "gr_reg_or_8bit_adjusted_operand", {SUBREG, REG, CONST_INT, \
2326 CONSTANT_P_RTX}}, \
2327 { "gr_reg_or_8bit_and_adjusted_operand", {SUBREG, REG, CONST_INT, \
2328 CONSTANT_P_RTX}}, \
2329 { "gr_reg_or_14bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2330 { "gr_reg_or_22bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2331 { "shift_count_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2332 { "shift_32bit_count_operand", {SUBREG, REG, CONST_INT, \
2333 CONSTANT_P_RTX}}, \
2334 { "shladd_operand", {CONST_INT}}, \
2335 { "fetchadd_operand", {CONST_INT}}, \
2336 { "fr_reg_or_fp01_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2337 { "normal_comparison_operator", {EQ, NE, GT, LE, GTU, LEU}}, \
2338 { "adjusted_comparison_operator", {LT, GE, LTU, GEU}}, \
2339 { "signed_inequality_operator", {GE, GT, LE, LT}}, \
2340 { "predicate_operator", {NE, EQ}}, \
2341 { "condop_operator", {PLUS, MINUS, IOR, XOR, AND}}, \
2342 { "ar_lc_reg_operand", {REG}}, \
2343 { "ar_ccv_reg_operand", {REG}}, \
2344 { "ar_pfs_reg_operand", {REG}}, \
2345 { "general_tfmode_operand", {SUBREG, REG, CONST_DOUBLE, MEM}}, \
2346 { "destination_tfmode_operand", {SUBREG, REG, MEM}}, \
2347 { "tfreg_or_fp01_operand", {REG, CONST_DOUBLE}}, \
2348 { "basereg_operand", {SUBREG, REG}},
2349
2350 /* An alias for a machine mode name. This is the machine mode that elements of
2351 a jump-table should have. */
2352
2353 #define CASE_VECTOR_MODE Pmode
2354
2355 /* Define as C expression which evaluates to nonzero if the tablejump
2356 instruction expects the table to contain offsets from the address of the
2357 table. */
2358
2359 #define CASE_VECTOR_PC_RELATIVE 1
2360
2361 /* Define this macro if operations between registers with integral mode smaller
2362 than a word are always performed on the entire register. */
2363
2364 #define WORD_REGISTER_OPERATIONS
2365
2366 /* Define this macro to be a C expression indicating when insns that read
2367 memory in MODE, an integral mode narrower than a word, set the bits outside
2368 of MODE to be either the sign-extension or the zero-extension of the data
2369 read. */
2370
2371 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2372
2373 /* The maximum number of bytes that a single instruction can move quickly from
2374 memory to memory. */
2375 #define MOVE_MAX 8
2376
2377 /* A C expression which is nonzero if on this machine it is safe to "convert"
2378 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2379 than INPREC) by merely operating on it as if it had only OUTPREC bits. */
2380
2381 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2382
2383 /* A C expression describing the value returned by a comparison operator with
2384 an integral mode and stored by a store-flag instruction (`sCOND') when the
2385 condition is true. */
2386
2387 /* ??? Investigate using -1 instead of 1. */
2388
2389 #define STORE_FLAG_VALUE 1
2390
2391 /* An alias for the machine mode for pointers. */
2392
2393 /* ??? This would change if we had ILP32 support. */
2394
2395 #define Pmode DImode
2396
2397 /* An alias for the machine mode used for memory references to functions being
2398 called, in `call' RTL expressions. */
2399
2400 #define FUNCTION_MODE Pmode
2401
2402 /* Define this macro to handle System V style pragmas: #pragma pack and
2403 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
2404 defined. */
2405
2406 /* If this architecture supports prefetch, define this to be the number of
2407 prefetch commands that can be executed in parallel.
2408
2409 ??? This number is bogus and needs to be replaced before the value is
2410 actually used in optimizations. */
2411
2412 #define SIMULTANEOUS_PREFETCHES 6
2413
2414 /* If this architecture supports prefetch, define this to be the size of
2415 the cache line that is prefetched. */
2416
2417 #define PREFETCH_BLOCK 32
2418
2419 #define HANDLE_SYSV_PRAGMA
2420
2421 /* In rare cases, correct code generation requires extra machine dependent
2422 processing between the second jump optimization pass and delayed branch
2423 scheduling. On those machines, define this macro as a C statement to act on
2424 the code starting at INSN. */
2425
2426 #define MACHINE_DEPENDENT_REORG(INSN) ia64_reorg (INSN)
2427
2428 /* A C expression for the maximum number of instructions to execute via
2429 conditional execution instructions instead of a branch. A value of
2430 BRANCH_COST+1 is the default if the machine does not use
2431 cc0, and 1 if it does use cc0. */
2432 /* ??? Investigate. */
2433 #define MAX_CONDITIONAL_EXECUTE 12
2434
2435 extern int ia64_final_schedule;
2436
2437 #define IA64_UNWIND_INFO 1
2438 #define IA64_UNWIND_EMIT(f,i) process_for_unwind_directive (f,i)
2439
2440 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
2441
2442 /* This function contains machine specific function data. */
2443 struct machine_function
2444 {
2445 /* The new stack pointer when unwinding from EH. */
2446 struct rtx_def* ia64_eh_epilogue_sp;
2447
2448 /* The new bsp value when unwinding from EH. */
2449 struct rtx_def* ia64_eh_epilogue_bsp;
2450
2451 /* The GP value save register. */
2452 struct rtx_def* ia64_gp_save;
2453
2454 /* The number of varargs registers to save. */
2455 int n_varargs;
2456 };
2457
2458
2459 enum ia64_builtins
2460 {
2461 IA64_BUILTIN_SYNCHRONIZE,
2462
2463 IA64_BUILTIN_FETCH_AND_ADD_SI,
2464 IA64_BUILTIN_FETCH_AND_SUB_SI,
2465 IA64_BUILTIN_FETCH_AND_OR_SI,
2466 IA64_BUILTIN_FETCH_AND_AND_SI,
2467 IA64_BUILTIN_FETCH_AND_XOR_SI,
2468 IA64_BUILTIN_FETCH_AND_NAND_SI,
2469
2470 IA64_BUILTIN_ADD_AND_FETCH_SI,
2471 IA64_BUILTIN_SUB_AND_FETCH_SI,
2472 IA64_BUILTIN_OR_AND_FETCH_SI,
2473 IA64_BUILTIN_AND_AND_FETCH_SI,
2474 IA64_BUILTIN_XOR_AND_FETCH_SI,
2475 IA64_BUILTIN_NAND_AND_FETCH_SI,
2476
2477 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI,
2478 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI,
2479
2480 IA64_BUILTIN_SYNCHRONIZE_SI,
2481
2482 IA64_BUILTIN_LOCK_TEST_AND_SET_SI,
2483
2484 IA64_BUILTIN_LOCK_RELEASE_SI,
2485
2486 IA64_BUILTIN_FETCH_AND_ADD_DI,
2487 IA64_BUILTIN_FETCH_AND_SUB_DI,
2488 IA64_BUILTIN_FETCH_AND_OR_DI,
2489 IA64_BUILTIN_FETCH_AND_AND_DI,
2490 IA64_BUILTIN_FETCH_AND_XOR_DI,
2491 IA64_BUILTIN_FETCH_AND_NAND_DI,
2492
2493 IA64_BUILTIN_ADD_AND_FETCH_DI,
2494 IA64_BUILTIN_SUB_AND_FETCH_DI,
2495 IA64_BUILTIN_OR_AND_FETCH_DI,
2496 IA64_BUILTIN_AND_AND_FETCH_DI,
2497 IA64_BUILTIN_XOR_AND_FETCH_DI,
2498 IA64_BUILTIN_NAND_AND_FETCH_DI,
2499
2500 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI,
2501 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI,
2502
2503 IA64_BUILTIN_SYNCHRONIZE_DI,
2504
2505 IA64_BUILTIN_LOCK_TEST_AND_SET_DI,
2506
2507 IA64_BUILTIN_LOCK_RELEASE_DI,
2508
2509 IA64_BUILTIN_BSP,
2510 IA64_BUILTIN_FLUSHRS
2511 };
2512
2513 /* Codes for expand_compare_and_swap and expand_swap_and_compare. */
2514 enum fetchop_code {
2515 IA64_ADD_OP, IA64_SUB_OP, IA64_OR_OP, IA64_AND_OP, IA64_XOR_OP, IA64_NAND_OP
2516 };
2517
2518 #define DONT_USE_BUILTIN_SETJMP
2519
2520 /* Output any profiling code before the prologue. */
2521
2522 #undef PROFILE_BEFORE_PROLOGUE
2523 #define PROFILE_BEFORE_PROLOGUE 1
2524
2525 /* End of ia64.h */