]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/iq2000/iq2000.h
Update Copyright years for files modified in 2011 and/or 2012.
[thirdparty/gcc.git] / gcc / config / iq2000 / iq2000.h
1 /* Definitions of target machine for GNU compiler.
2 Vitesse IQ2000 processors
3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published
10 by the Free Software Foundation; either version 3, or (at your
11 option) any later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Driver configuration. */
23
24 /* A generic LIB_SPEC with -leval and --*group tacked on. */
25 #undef LIB_SPEC
26 #define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -leval -lgcc --end-group}}"
27
28 #undef STARTFILE_SPEC
29 #undef ENDFILE_SPEC
30
31 #undef LINK_SPEC
32 #define LINK_SPEC "%{h*} %{v:-V} \
33 %{static:-Bstatic} %{shared:-shared} %{symbolic:-Bsymbolic}"
34
35 \f
36 /* Run-time target specifications. */
37
38 #define TARGET_CPU_CPP_BUILTINS() \
39 do \
40 { \
41 builtin_define ("__iq2000__"); \
42 builtin_assert ("cpu=iq2000"); \
43 builtin_assert ("machine=iq2000"); \
44 } \
45 while (0)
46
47 /* Macros used in the machine description to test the flags. */
48
49 #define TARGET_STATS 0
50
51 #define TARGET_DEBUG_MODE 0
52 #define TARGET_DEBUG_A_MODE 0
53 #define TARGET_DEBUG_B_MODE 0
54 #define TARGET_DEBUG_C_MODE 0
55 #define TARGET_DEBUG_D_MODE 0
56
57 #ifndef IQ2000_ISA_DEFAULT
58 #define IQ2000_ISA_DEFAULT 1
59 #endif
60 \f
61 /* Storage Layout. */
62
63 #define BITS_BIG_ENDIAN 0
64 #define BYTES_BIG_ENDIAN 1
65 #define WORDS_BIG_ENDIAN 1
66 #define BITS_PER_WORD 32
67 #define MAX_BITS_PER_WORD 64
68 #define UNITS_PER_WORD 4
69 #define MIN_UNITS_PER_WORD 4
70 #define POINTER_SIZE 32
71
72 /* Define this macro if it is advisable to hold scalars in registers
73 in a wider mode than that declared by the program. In such cases,
74 the value is constrained to be within the bounds of the declared
75 type, but kept valid in the wider mode. The signedness of the
76 extension may differ from that of the type.
77
78 We promote any value smaller than SImode up to SImode. */
79
80 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
81 if (GET_MODE_CLASS (MODE) == MODE_INT \
82 && GET_MODE_SIZE (MODE) < 4) \
83 (MODE) = SImode;
84
85 #define PARM_BOUNDARY 32
86
87 #define STACK_BOUNDARY 64
88
89 #define FUNCTION_BOUNDARY 32
90
91 #define BIGGEST_ALIGNMENT 64
92
93 #undef DATA_ALIGNMENT
94 #define DATA_ALIGNMENT(TYPE, ALIGN) \
95 ((((ALIGN) < BITS_PER_WORD) \
96 && (TREE_CODE (TYPE) == ARRAY_TYPE \
97 || TREE_CODE (TYPE) == UNION_TYPE \
98 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
99
100 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
101 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
102 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
103
104 #define EMPTY_FIELD_BOUNDARY 32
105
106 #define STRUCTURE_SIZE_BOUNDARY 8
107
108 #define STRICT_ALIGNMENT 1
109
110 #define PCC_BITFIELD_TYPE_MATTERS 1
111
112 \f
113 /* Layout of Source Language Data Types. */
114
115 #define INT_TYPE_SIZE 32
116 #define SHORT_TYPE_SIZE 16
117 #define LONG_TYPE_SIZE 32
118 #define LONG_LONG_TYPE_SIZE 64
119 #define CHAR_TYPE_SIZE BITS_PER_UNIT
120 #define FLOAT_TYPE_SIZE 32
121 #define DOUBLE_TYPE_SIZE 64
122 #define LONG_DOUBLE_TYPE_SIZE 64
123 #define DEFAULT_SIGNED_CHAR 1
124
125 #undef SIZE_TYPE
126 #define SIZE_TYPE "unsigned int"
127
128 #undef PTRDIFF_TYPE
129 #define PTRDIFF_TYPE "int"
130
131 #undef WCHAR_TYPE
132 #define WCHAR_TYPE "long int"
133
134 #undef WCHAR_TYPE_SIZE
135 #define WCHAR_TYPE_SIZE BITS_PER_WORD
136
137 \f
138 /* Register Basics. */
139
140 /* On the IQ2000, we have 32 integer registers. */
141 #define FIRST_PSEUDO_REGISTER 33
142
143 #define FIXED_REGISTERS \
144 { \
145 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
146 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1 \
147 }
148
149 #define CALL_USED_REGISTERS \
150 { \
151 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
152 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1 \
153 }
154
155 \f
156 /* Order of allocation of registers. */
157
158 #define REG_ALLOC_ORDER \
159 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
160 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 \
161 }
162
163 \f
164 /* How Values Fit in Registers. */
165
166 #define HARD_REGNO_NREGS(REGNO, MODE) \
167 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
168
169 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
170 ((REGNO_REG_CLASS (REGNO) == GR_REGS) \
171 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
172 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
173
174 #define MODES_TIEABLE_P(MODE1, MODE2) \
175 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
176 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
177 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
178 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
179
180 #define AVOID_CCMODE_COPIES
181
182 \f
183 /* Register Classes. */
184
185 enum reg_class
186 {
187 NO_REGS, /* No registers in set. */
188 GR_REGS, /* Integer registers. */
189 ALL_REGS, /* All registers. */
190 LIM_REG_CLASSES /* Max value + 1. */
191 };
192
193 #define GENERAL_REGS GR_REGS
194
195 #define N_REG_CLASSES (int) LIM_REG_CLASSES
196
197 #define REG_CLASS_NAMES \
198 { \
199 "NO_REGS", \
200 "GR_REGS", \
201 "ALL_REGS" \
202 }
203
204 #define REG_CLASS_CONTENTS \
205 { \
206 { 0x00000000, 0x00000000 }, /* No registers, */ \
207 { 0xffffffff, 0x00000000 }, /* Integer registers. */ \
208 { 0xffffffff, 0x00000001 } /* All registers. */ \
209 }
210
211 #define REGNO_REG_CLASS(REGNO) \
212 ((REGNO) <= GP_REG_LAST + 1 ? GR_REGS : NO_REGS)
213
214 #define BASE_REG_CLASS (GR_REGS)
215
216 #define INDEX_REG_CLASS NO_REGS
217
218 #define REGNO_OK_FOR_INDEX_P(regno) 0
219
220 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
221 ((CLASS) != ALL_REGS \
222 ? (CLASS) \
223 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
224 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
225 ? (GR_REGS) \
226 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
227 || GET_MODE (X) == VOIDmode) \
228 ? (GR_REGS) \
229 : (CLASS))))
230
231 \f
232 /* Basic Stack Layout. */
233
234 #define STACK_GROWS_DOWNWARD
235
236 #define FRAME_GROWS_DOWNWARD 0
237
238 #define STARTING_FRAME_OFFSET \
239 (crtl->outgoing_args_size)
240
241 /* Use the default value zero. */
242 /* #define STACK_POINTER_OFFSET 0 */
243
244 #define FIRST_PARM_OFFSET(FNDECL) 0
245
246 /* The return address for the current frame is in r31 if this is a leaf
247 function. Otherwise, it is on the stack. It is at a variable offset
248 from sp/fp/ap, so we define a fake hard register rap which is a
249 pointer to the return address on the stack. This always gets eliminated
250 during reload to be either the frame pointer or the stack pointer plus
251 an offset. */
252
253 #define RETURN_ADDR_RTX(count, frame) \
254 (((count) == 0) \
255 ? (leaf_function_p () \
256 ? gen_rtx_REG (Pmode, GP_REG_FIRST + 31) \
257 : gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, \
258 RETURN_ADDRESS_POINTER_REGNUM))) \
259 : (rtx) 0)
260
261 /* Before the prologue, RA lives in r31. */
262 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
263
264 \f
265 /* Register That Address the Stack Frame. */
266
267 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
268 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 1)
269 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 27)
270 #define ARG_POINTER_REGNUM GP_REG_FIRST
271 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
272 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
273
274 \f
275 /* Eliminating the Frame Pointer and the Arg Pointer. */
276
277 #define ELIMINABLE_REGS \
278 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
279 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
280 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
281 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
282 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 31}, \
283 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
284 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
285
286 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
287 (OFFSET) = iq2000_initial_elimination_offset ((FROM), (TO))
288 \f
289 /* Passing Function Arguments on the Stack. */
290
291 /* #define PUSH_ROUNDING(BYTES) 0 */
292
293 #define ACCUMULATE_OUTGOING_ARGS 1
294
295 #define REG_PARM_STACK_SPACE(FNDECL) 0
296
297 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
298
299 \f
300 /* Function Arguments in Registers. */
301
302 #define MAX_ARGS_IN_REGISTERS 8
303
304 typedef struct iq2000_args
305 {
306 int gp_reg_found; /* Whether a gp register was found yet. */
307 unsigned int arg_number; /* Argument number. */
308 unsigned int arg_words; /* # total words the arguments take. */
309 unsigned int fp_arg_words; /* # words for FP args (IQ2000_EABI only). */
310 int last_arg_fp; /* Nonzero if last arg was FP (EABI only). */
311 int fp_code; /* Mode of FP arguments. */
312 unsigned int num_adjusts; /* Number of adjustments made. */
313 /* Adjustments made to args pass in regs. */
314 rtx adjust[MAX_ARGS_IN_REGISTERS * 2];
315 } CUMULATIVE_ARGS;
316
317 /* Initialize a variable CUM of type CUMULATIVE_ARGS
318 for a call to a function whose data type is FNTYPE.
319 For a library call, FNTYPE is 0. */
320 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
321 init_cumulative_args (& CUM, FNTYPE, LIBNAME) \
322
323 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
324 (! BYTES_BIG_ENDIAN \
325 ? upward \
326 : (((MODE) == BLKmode \
327 ? ((TYPE) && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
328 && int_size_in_bytes (TYPE) < (PARM_BOUNDARY / BITS_PER_UNIT))\
329 : (GET_MODE_BITSIZE (MODE) < PARM_BOUNDARY \
330 && (GET_MODE_CLASS (MODE) == MODE_INT))) \
331 ? downward : upward))
332
333 #define FUNCTION_ARG_REGNO_P(N) \
334 (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST))
335
336 \f
337 /* On the IQ2000, R2 and R3 are the only register thus used. */
338
339 #define FUNCTION_VALUE_REGNO_P(N) iq2000_function_value_regno_p (N)
340
341 \f
342 /* How Large Values are Returned. */
343
344 #define DEFAULT_PCC_STRUCT_RETURN 0
345 \f
346 /* Function Entry and Exit. */
347
348 #define EXIT_IGNORE_STACK 1
349
350 \f
351 /* Generating Code for Profiling. */
352
353 #define FUNCTION_PROFILER(FILE, LABELNO) \
354 { \
355 fprintf (FILE, "\t.set\tnoreorder\n"); \
356 fprintf (FILE, "\t.set\tnoat\n"); \
357 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
358 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
359 fprintf (FILE, "\tjal\t_mcount\n"); \
360 fprintf (FILE, \
361 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
362 "subu", \
363 reg_names[STACK_POINTER_REGNUM], \
364 reg_names[STACK_POINTER_REGNUM], \
365 Pmode == DImode ? 16 : 8); \
366 fprintf (FILE, "\t.set\treorder\n"); \
367 fprintf (FILE, "\t.set\tat\n"); \
368 }
369
370 \f
371 /* Trampolines for Nested Functions. */
372
373 #define TRAMPOLINE_CODE_SIZE (8*4)
374 #define TRAMPOLINE_SIZE (TRAMPOLINE_CODE_SIZE + 2*GET_MODE_SIZE (Pmode))
375 #define TRAMPOLINE_ALIGNMENT GET_MODE_ALIGNMENT (Pmode)
376
377 \f
378 /* Addressing Modes. */
379
380 #define CONSTANT_ADDRESS_P(X) \
381 ( (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
382 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
383 || (GET_CODE (X) == CONST)))
384
385 #define MAX_REGS_PER_ADDRESS 1
386
387 #define REG_OK_FOR_INDEX_P(X) 0
388
389 \f
390 /* Describing Relative Costs of Operations. */
391
392 #define REGISTER_MOVE_COST(MODE, FROM, TO) 2
393
394 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
395 (TO_P ? 2 : 16)
396
397 #define BRANCH_COST(speed_p, predictable_p) 2
398
399 #define SLOW_BYTE_ACCESS 1
400
401 #define NO_FUNCTION_CSE 1
402
403 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
404 if (REG_NOTE_KIND (LINK) != 0) \
405 (COST) = 0; /* Anti or output dependence. */
406
407 \f
408 /* Dividing the output into sections. */
409
410 #define TEXT_SECTION_ASM_OP "\t.text" /* Instructions. */
411
412 #define DATA_SECTION_ASM_OP "\t.data" /* Large data. */
413
414 \f
415 /* The Overall Framework of an Assembler File. */
416
417 #define ASM_COMMENT_START " #"
418
419 #define ASM_APP_ON "#APP\n"
420
421 #define ASM_APP_OFF "#NO_APP\n"
422
423 \f
424 /* Output and Generation of Labels. */
425
426 #undef ASM_GENERATE_INTERNAL_LABEL
427 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
428 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long) (NUM))
429
430 #define GLOBAL_ASM_OP "\t.globl\t"
431
432 \f
433 /* Output of Assembler Instructions. */
434
435 #define REGISTER_NAMES \
436 { \
437 "%0", "%1", "%2", "%3", "%4", "%5", "%6", "%7", \
438 "%8", "%9", "%10", "%11", "%12", "%13", "%14", "%15", \
439 "%16", "%17", "%18", "%19", "%20", "%21", "%22", "%23", \
440 "%24", "%25", "%26", "%27", "%28", "%29", "%30", "%31", "%rap" \
441 }
442
443 #define ADDITIONAL_REGISTER_NAMES \
444 { \
445 { "%0", 0 + GP_REG_FIRST }, \
446 { "%1", 1 + GP_REG_FIRST }, \
447 { "%2", 2 + GP_REG_FIRST }, \
448 { "%3", 3 + GP_REG_FIRST }, \
449 { "%4", 4 + GP_REG_FIRST }, \
450 { "%5", 5 + GP_REG_FIRST }, \
451 { "%6", 6 + GP_REG_FIRST }, \
452 { "%7", 7 + GP_REG_FIRST }, \
453 { "%8", 8 + GP_REG_FIRST }, \
454 { "%9", 9 + GP_REG_FIRST }, \
455 { "%10", 10 + GP_REG_FIRST }, \
456 { "%11", 11 + GP_REG_FIRST }, \
457 { "%12", 12 + GP_REG_FIRST }, \
458 { "%13", 13 + GP_REG_FIRST }, \
459 { "%14", 14 + GP_REG_FIRST }, \
460 { "%15", 15 + GP_REG_FIRST }, \
461 { "%16", 16 + GP_REG_FIRST }, \
462 { "%17", 17 + GP_REG_FIRST }, \
463 { "%18", 18 + GP_REG_FIRST }, \
464 { "%19", 19 + GP_REG_FIRST }, \
465 { "%20", 20 + GP_REG_FIRST }, \
466 { "%21", 21 + GP_REG_FIRST }, \
467 { "%22", 22 + GP_REG_FIRST }, \
468 { "%23", 23 + GP_REG_FIRST }, \
469 { "%24", 24 + GP_REG_FIRST }, \
470 { "%25", 25 + GP_REG_FIRST }, \
471 { "%26", 26 + GP_REG_FIRST }, \
472 { "%27", 27 + GP_REG_FIRST }, \
473 { "%28", 28 + GP_REG_FIRST }, \
474 { "%29", 29 + GP_REG_FIRST }, \
475 { "%30", 27 + GP_REG_FIRST }, \
476 { "%31", 31 + GP_REG_FIRST }, \
477 { "%rap", 32 + GP_REG_FIRST }, \
478 }
479
480 /* Check if the current insn needs a nop in front of it
481 because of load delays, and also update the delay slot statistics. */
482
483 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
484 final_prescan_insn (INSN, OPVEC, NOPERANDS)
485
486 #define DBR_OUTPUT_SEQEND(STREAM) \
487 do \
488 { \
489 fputs ("\n", STREAM); \
490 } \
491 while (0)
492
493 #define LOCAL_LABEL_PREFIX "$"
494
495 #define USER_LABEL_PREFIX ""
496
497 \f
498 /* Output of dispatch tables. */
499
500 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
501 do \
502 { \
503 fprintf (STREAM, "\t%s\t%sL%d\n", \
504 Pmode == DImode ? ".dword" : ".word", \
505 LOCAL_LABEL_PREFIX, VALUE); \
506 } \
507 while (0)
508
509 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
510 fprintf (STREAM, "\t%s\t%sL%d\n", \
511 Pmode == DImode ? ".dword" : ".word", \
512 LOCAL_LABEL_PREFIX, \
513 VALUE)
514
515 \f
516 /* Assembler Commands for Alignment. */
517
518 #undef ASM_OUTPUT_SKIP
519 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
520 fprintf (STREAM, "\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n", \
521 (unsigned HOST_WIDE_INT)(SIZE))
522
523 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
524 if ((LOG) != 0) \
525 fprintf (STREAM, "\t.balign %d\n", 1<<(LOG))
526
527 \f
528 /* Macros Affecting all Debug Formats. */
529
530 #define DEBUGGER_AUTO_OFFSET(X) \
531 iq2000_debugger_offset (X, (HOST_WIDE_INT) 0)
532
533 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
534 iq2000_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
535
536 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
537
538 #define DWARF2_DEBUGGING_INFO 1
539
540 \f
541 /* Miscellaneous Parameters. */
542
543 #define CASE_VECTOR_MODE SImode
544
545 #define WORD_REGISTER_OPERATIONS
546
547 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
548
549 #define MOVE_MAX 4
550
551 #define MAX_MOVE_MAX 8
552
553 #define SHIFT_COUNT_TRUNCATED 1
554
555 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
556
557 #define STORE_FLAG_VALUE 1
558
559 #define Pmode SImode
560
561 #define FUNCTION_MODE SImode
562
563 /* IQ2000 external variables defined in iq2000.c. */
564
565 /* Comparison type. */
566 enum cmp_type
567 {
568 CMP_SI, /* Compare four byte integers. */
569 CMP_DI, /* Compare eight byte integers. */
570 CMP_SF, /* Compare single precision floats. */
571 CMP_DF, /* Compare double precision floats. */
572 CMP_MAX /* Max comparison type. */
573 };
574
575 /* Types of delay slot. */
576 enum delay_type
577 {
578 DELAY_NONE, /* No delay slot. */
579 DELAY_LOAD, /* Load from memory delay. */
580 DELAY_FCMP /* Delay after doing c.<xx>.{d,s}. */
581 };
582
583 /* Recast the cpu class to be the cpu attribute. */
584 #define iq2000_cpu_attr ((enum attr_cpu) iq2000_tune)
585
586 #define BITMASK_UPPER16 ((unsigned long) 0xffff << 16) /* 0xffff0000 */
587 #define BITMASK_LOWER16 ((unsigned long) 0xffff) /* 0x0000ffff */
588
589 \f
590 #define GENERATE_BRANCHLIKELY (ISA_HAS_BRANCHLIKELY)
591
592 /* Macros to decide whether certain features are available or not,
593 depending on the instruction set architecture level. */
594
595 #define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
596
597 /* ISA has branch likely instructions. */
598 #define ISA_HAS_BRANCHLIKELY (iq2000_isa == 1)
599
600 \f
601 #undef ASM_SPEC
602
603 \f
604 /* The mapping from gcc register number to DWARF 2 CFA column number. */
605 #define DWARF_FRAME_REGNUM(REG) (REG)
606
607 /* The DWARF 2 CFA column which tracks the return address. */
608 #define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
609
610 /* Describe how we implement __builtin_eh_return. */
611 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
612
613 /* The EH_RETURN_STACKADJ_RTX macro returns RTL which describes the
614 location used to store the amount to adjust the stack. This is
615 usually a register that is available from end of the function's body
616 to the end of the epilogue. Thus, this cannot be a register used as a
617 temporary by the epilogue.
618
619 This must be an integer register. */
620 #define EH_RETURN_STACKADJ_REGNO 3
621 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
622
623 /* The EH_RETURN_HANDLER_RTX macro returns RTL which describes the
624 location used to store the address the processor should jump to
625 catch exception. This is usually a registers that is available from
626 end of the function's body to the end of the epilogue. Thus, this
627 cannot be a register used as a temporary by the epilogue.
628
629 This must be an address register. */
630 #define EH_RETURN_HANDLER_REGNO 26
631 #define EH_RETURN_HANDLER_RTX \
632 gen_rtx_REG (Pmode, EH_RETURN_HANDLER_REGNO)
633
634 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
635 #define DWARF_CIE_DATA_ALIGNMENT 4
636
637 /* For IQ2000, width of a floating point register. */
638 #define UNITS_PER_FPREG 4
639
640 /* Force right-alignment for small varargs in 32 bit little_endian mode */
641
642 #define PAD_VARARGS_DOWN !BYTES_BIG_ENDIAN
643
644 /* Internal macros to classify a register number as to whether it's a
645 general purpose register, a floating point register, a
646 multiply/divide register, or a status register. */
647
648 #define GP_REG_FIRST 0
649 #define GP_REG_LAST 31
650 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
651
652 #define RAP_REG_NUM 32
653 #define AT_REGNUM (GP_REG_FIRST + 1)
654
655 #define GP_REG_P(REGNO) \
656 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
657
658 /* IQ2000 registers used in prologue/epilogue code when the stack frame
659 is larger than 32K bytes. These registers must come from the
660 scratch register set, and not used for passing and returning
661 arguments and any other information used in the calling sequence. */
662
663 #define IQ2000_TEMP1_REGNUM (GP_REG_FIRST + 12)
664 #define IQ2000_TEMP2_REGNUM (GP_REG_FIRST + 13)
665
666 /* This macro is used later on in the file. */
667 #define GR_REG_CLASS_P(CLASS) \
668 ((CLASS) == GR_REGS)
669
670 #define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
671 #define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
672
673 /* Certain machines have the property that some registers cannot be
674 copied to some other registers without using memory. Define this
675 macro on those machines to be a C expression that is nonzero if
676 objects of mode MODE in registers of CLASS1 can only be copied to
677 registers of class CLASS2 by storing a register of CLASS1 into
678 memory and loading that memory location into a register of CLASS2.
679
680 Do not define this macro if its value would always be zero. */
681
682 /* Return the maximum number of consecutive registers
683 needed to represent mode MODE in a register of class CLASS. */
684
685 #define CLASS_UNITS(mode, size) \
686 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
687
688 /* If defined, gives a class of registers that cannot be used as the
689 operand of a SUBREG that changes the mode of the object illegally. */
690
691 #define CLASS_CANNOT_CHANGE_MODE 0
692
693 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
694
695 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
696 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
697
698 /* Make sure 4 words are always allocated on the stack. */
699
700 #ifndef STACK_ARGS_ADJUST
701 #define STACK_ARGS_ADJUST(SIZE) \
702 { \
703 if (SIZE.constant < 4 * UNITS_PER_WORD) \
704 SIZE.constant = 4 * UNITS_PER_WORD; \
705 }
706 #endif
707
708 \f
709 /* Symbolic macros for the registers used to return integer and floating
710 point values. */
711
712 #define GP_RETURN (GP_REG_FIRST + 2)
713
714 /* Symbolic macros for the first/last argument registers. */
715
716 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
717 #define GP_ARG_LAST (GP_REG_FIRST + 11)
718
719 #define MAX_ARGS_IN_REGISTERS 8
720
721 \f
722 /* Tell prologue and epilogue if register REGNO should be saved / restored. */
723
724 #define MUST_SAVE_REGISTER(regno) \
725 ((df_regs_ever_live_p (regno) && !call_used_regs[regno]) \
726 || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) \
727 || (regno == (GP_REG_FIRST + 31) && df_regs_ever_live_p (GP_REG_FIRST + 31)))
728
729 /* ALIGN FRAMES on double word boundaries */
730 #ifndef IQ2000_STACK_ALIGN
731 #define IQ2000_STACK_ALIGN(LOC) (((LOC) + 7) & ~7)
732 #endif
733
734 \f
735 /* These assume that REGNO is a hard or pseudo reg number.
736 They give nonzero only if REGNO is a hard reg of the suitable class
737 or a pseudo reg currently allocated to a suitable hard reg.
738 These definitions are NOT overridden anywhere. */
739
740 #define BASE_REG_P(regno, mode) \
741 (GP_REG_P (regno))
742
743 #define GP_REG_OR_PSEUDO_STRICT_P(regno, mode) \
744 BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno], \
745 (mode))
746
747 #define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
748 (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
749
750 #define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
751 GP_REG_OR_PSEUDO_STRICT_P ((int) (regno), (mode))
752
753 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
754 and check its validity for a certain class.
755 We have two alternate definitions for each of them.
756 The usual definition accepts all pseudo regs; the other rejects them all.
757 The symbol REG_OK_STRICT causes the latter definition to be used.
758
759 Most source files want to accept pseudo regs in the hope that
760 they will get allocated to the class that the insn wants them to be in.
761 Some source files that are used after register allocation
762 need to be strict. */
763
764 #ifndef REG_OK_STRICT
765 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
766 iq2000_reg_mode_ok_for_base_p (X, MODE, 0)
767 #else
768 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
769 iq2000_reg_mode_ok_for_base_p (X, MODE, 1)
770 #endif
771
772 #if 1
773 #define GO_PRINTF(x) fprintf (stderr, (x))
774 #define GO_PRINTF2(x,y) fprintf (stderr, (x), (y))
775 #define GO_DEBUG_RTX(x) debug_rtx (x)
776
777 #else
778 #define GO_PRINTF(x)
779 #define GO_PRINTF2(x,y)
780 #define GO_DEBUG_RTX(x)
781 #endif
782
783 /* If defined, modifies the length assigned to instruction INSN as a
784 function of the context in which it is used. LENGTH is an lvalue
785 that contains the initially computed length of the insn and should
786 be updated with the correct length of the insn. */
787 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
788 ((LENGTH) = iq2000_adjust_insn_length ((INSN), (LENGTH)))
789
790 \f
791
792
793 /* How to tell the debugger about changes of source files. */
794
795 #ifndef SET_FILE_NUMBER
796 #define SET_FILE_NUMBER() ++ num_source_filenames
797 #endif
798
799 /* This is how to output a note the debugger telling it the line number
800 to which the following sequence of instructions corresponds. */
801
802 #ifndef LABEL_AFTER_LOC
803 #define LABEL_AFTER_LOC(STREAM)
804 #endif
805
806 \f
807 /* Default to -G 8 */
808 #ifndef IQ2000_DEFAULT_GVALUE
809 #define IQ2000_DEFAULT_GVALUE 8
810 #endif
811
812 #define SDATA_SECTION_ASM_OP "\t.sdata" /* Small data. */
813
814 \f
815 /* Which instruction set architecture to use. */
816 extern int iq2000_isa;
817
818 enum iq2000_builtins
819 {
820 IQ2000_BUILTIN_ADO16,
821 IQ2000_BUILTIN_CFC0,
822 IQ2000_BUILTIN_CFC1,
823 IQ2000_BUILTIN_CFC2,
824 IQ2000_BUILTIN_CFC3,
825 IQ2000_BUILTIN_CHKHDR,
826 IQ2000_BUILTIN_CTC0,
827 IQ2000_BUILTIN_CTC1,
828 IQ2000_BUILTIN_CTC2,
829 IQ2000_BUILTIN_CTC3,
830 IQ2000_BUILTIN_LU,
831 IQ2000_BUILTIN_LUC32L,
832 IQ2000_BUILTIN_LUC64,
833 IQ2000_BUILTIN_LUC64L,
834 IQ2000_BUILTIN_LUK,
835 IQ2000_BUILTIN_LULCK,
836 IQ2000_BUILTIN_LUM32,
837 IQ2000_BUILTIN_LUM32L,
838 IQ2000_BUILTIN_LUM64,
839 IQ2000_BUILTIN_LUM64L,
840 IQ2000_BUILTIN_LUR,
841 IQ2000_BUILTIN_LURL,
842 IQ2000_BUILTIN_MFC0,
843 IQ2000_BUILTIN_MFC1,
844 IQ2000_BUILTIN_MFC2,
845 IQ2000_BUILTIN_MFC3,
846 IQ2000_BUILTIN_MRGB,
847 IQ2000_BUILTIN_MTC0,
848 IQ2000_BUILTIN_MTC1,
849 IQ2000_BUILTIN_MTC2,
850 IQ2000_BUILTIN_MTC3,
851 IQ2000_BUILTIN_PKRL,
852 IQ2000_BUILTIN_RAM,
853 IQ2000_BUILTIN_RB,
854 IQ2000_BUILTIN_RX,
855 IQ2000_BUILTIN_SRRD,
856 IQ2000_BUILTIN_SRRDL,
857 IQ2000_BUILTIN_SRULC,
858 IQ2000_BUILTIN_SRULCK,
859 IQ2000_BUILTIN_SRWR,
860 IQ2000_BUILTIN_SRWRU,
861 IQ2000_BUILTIN_TRAPQF,
862 IQ2000_BUILTIN_TRAPQFL,
863 IQ2000_BUILTIN_TRAPQN,
864 IQ2000_BUILTIN_TRAPQNE,
865 IQ2000_BUILTIN_TRAPRE,
866 IQ2000_BUILTIN_TRAPREL,
867 IQ2000_BUILTIN_WB,
868 IQ2000_BUILTIN_WBR,
869 IQ2000_BUILTIN_WBU,
870 IQ2000_BUILTIN_WX,
871 IQ2000_BUILTIN_SYSCALL
872 };