]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/iq2000/iq2000.h
Turn HARD_REGNO_MODE_OK into a target hook
[thirdparty/gcc.git] / gcc / config / iq2000 / iq2000.h
1 /* Definitions of target machine for GNU compiler.
2 Vitesse IQ2000 processors
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Driver configuration. */
22
23 /* A generic LIB_SPEC with -leval and --*group tacked on. */
24 #undef LIB_SPEC
25 #define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -leval -lgcc --end-group}}"
26
27 #undef STARTFILE_SPEC
28 #undef ENDFILE_SPEC
29
30 #undef LINK_SPEC
31 #define LINK_SPEC "%{h*} %{v:-V} \
32 %{static:-Bstatic} %{shared:-shared} %{symbolic:-Bsymbolic}"
33
34 \f
35 /* Run-time target specifications. */
36
37 #define TARGET_CPU_CPP_BUILTINS() \
38 do \
39 { \
40 builtin_define ("__iq2000__"); \
41 builtin_assert ("cpu=iq2000"); \
42 builtin_assert ("machine=iq2000"); \
43 } \
44 while (0)
45
46 /* Macros used in the machine description to test the flags. */
47
48 #define TARGET_STATS 0
49
50 #define TARGET_DEBUG_MODE 0
51 #define TARGET_DEBUG_A_MODE 0
52 #define TARGET_DEBUG_B_MODE 0
53 #define TARGET_DEBUG_C_MODE 0
54 #define TARGET_DEBUG_D_MODE 0
55
56 #ifndef IQ2000_ISA_DEFAULT
57 #define IQ2000_ISA_DEFAULT 1
58 #endif
59 \f
60 /* Storage Layout. */
61
62 #define BITS_BIG_ENDIAN 0
63 #define BYTES_BIG_ENDIAN 1
64 #define WORDS_BIG_ENDIAN 1
65 #define BITS_PER_WORD 32
66 #define MAX_BITS_PER_WORD 64
67 #define UNITS_PER_WORD 4
68 #define MIN_UNITS_PER_WORD 4
69 #define POINTER_SIZE 32
70
71 /* Define this macro if it is advisable to hold scalars in registers
72 in a wider mode than that declared by the program. In such cases,
73 the value is constrained to be within the bounds of the declared
74 type, but kept valid in the wider mode. The signedness of the
75 extension may differ from that of the type.
76
77 We promote any value smaller than SImode up to SImode. */
78
79 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
80 if (GET_MODE_CLASS (MODE) == MODE_INT \
81 && GET_MODE_SIZE (MODE) < 4) \
82 (MODE) = SImode;
83
84 #define PARM_BOUNDARY 32
85
86 #define STACK_BOUNDARY 64
87
88 #define FUNCTION_BOUNDARY 32
89
90 #define BIGGEST_ALIGNMENT 64
91
92 #undef DATA_ALIGNMENT
93 #define DATA_ALIGNMENT(TYPE, ALIGN) \
94 ((((ALIGN) < BITS_PER_WORD) \
95 && (TREE_CODE (TYPE) == ARRAY_TYPE \
96 || TREE_CODE (TYPE) == UNION_TYPE \
97 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
98
99 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
100 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
101 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
102
103 #define EMPTY_FIELD_BOUNDARY 32
104
105 #define STRUCTURE_SIZE_BOUNDARY 8
106
107 #define STRICT_ALIGNMENT 1
108
109 #define PCC_BITFIELD_TYPE_MATTERS 1
110
111 \f
112 /* Layout of Source Language Data Types. */
113
114 #define INT_TYPE_SIZE 32
115 #define SHORT_TYPE_SIZE 16
116 #define LONG_TYPE_SIZE 32
117 #define LONG_LONG_TYPE_SIZE 64
118 #define CHAR_TYPE_SIZE BITS_PER_UNIT
119 #define FLOAT_TYPE_SIZE 32
120 #define DOUBLE_TYPE_SIZE 64
121 #define LONG_DOUBLE_TYPE_SIZE 64
122 #define DEFAULT_SIGNED_CHAR 1
123
124 #undef SIZE_TYPE
125 #define SIZE_TYPE "unsigned int"
126
127 #undef PTRDIFF_TYPE
128 #define PTRDIFF_TYPE "int"
129
130 #undef WCHAR_TYPE
131 #define WCHAR_TYPE "long int"
132
133 #undef WCHAR_TYPE_SIZE
134 #define WCHAR_TYPE_SIZE BITS_PER_WORD
135
136 \f
137 /* Register Basics. */
138
139 /* On the IQ2000, we have 32 integer registers. */
140 #define FIRST_PSEUDO_REGISTER 33
141
142 #define FIXED_REGISTERS \
143 { \
144 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
145 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1 \
146 }
147
148 #define CALL_USED_REGISTERS \
149 { \
150 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
151 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1 \
152 }
153
154 \f
155 /* Order of allocation of registers. */
156
157 #define REG_ALLOC_ORDER \
158 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
159 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 \
160 }
161
162 \f
163 /* How Values Fit in Registers. */
164
165 #define HARD_REGNO_NREGS(REGNO, MODE) \
166 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
167
168 #define MODES_TIEABLE_P(MODE1, MODE2) \
169 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
170 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
171 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
172 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
173
174 #define AVOID_CCMODE_COPIES
175
176 \f
177 /* Register Classes. */
178
179 enum reg_class
180 {
181 NO_REGS, /* No registers in set. */
182 GR_REGS, /* Integer registers. */
183 ALL_REGS, /* All registers. */
184 LIM_REG_CLASSES /* Max value + 1. */
185 };
186
187 #define GENERAL_REGS GR_REGS
188
189 #define N_REG_CLASSES (int) LIM_REG_CLASSES
190
191 #define REG_CLASS_NAMES \
192 { \
193 "NO_REGS", \
194 "GR_REGS", \
195 "ALL_REGS" \
196 }
197
198 #define REG_CLASS_CONTENTS \
199 { \
200 { 0x00000000, 0x00000000 }, /* No registers, */ \
201 { 0xffffffff, 0x00000000 }, /* Integer registers. */ \
202 { 0xffffffff, 0x00000001 } /* All registers. */ \
203 }
204
205 #define REGNO_REG_CLASS(REGNO) \
206 ((REGNO) <= GP_REG_LAST + 1 ? GR_REGS : NO_REGS)
207
208 #define BASE_REG_CLASS (GR_REGS)
209
210 #define INDEX_REG_CLASS NO_REGS
211
212 #define REGNO_OK_FOR_INDEX_P(regno) 0
213
214 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
215 ((CLASS) != ALL_REGS \
216 ? (CLASS) \
217 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
218 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
219 ? (GR_REGS) \
220 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
221 || GET_MODE (X) == VOIDmode) \
222 ? (GR_REGS) \
223 : (CLASS))))
224
225 \f
226 /* Basic Stack Layout. */
227
228 #define STACK_GROWS_DOWNWARD 1
229
230 #define FRAME_GROWS_DOWNWARD 0
231
232 #define STARTING_FRAME_OFFSET \
233 (crtl->outgoing_args_size)
234
235 /* Use the default value zero. */
236 /* #define STACK_POINTER_OFFSET 0 */
237
238 #define FIRST_PARM_OFFSET(FNDECL) 0
239
240 /* The return address for the current frame is in r31 if this is a leaf
241 function. Otherwise, it is on the stack. It is at a variable offset
242 from sp/fp/ap, so we define a fake hard register rap which is a
243 pointer to the return address on the stack. This always gets eliminated
244 during reload to be either the frame pointer or the stack pointer plus
245 an offset. */
246
247 #define RETURN_ADDR_RTX(count, frame) \
248 (((count) == 0) \
249 ? (leaf_function_p () \
250 ? gen_rtx_REG (Pmode, GP_REG_FIRST + 31) \
251 : gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, \
252 RETURN_ADDRESS_POINTER_REGNUM))) \
253 : (rtx) 0)
254
255 /* Before the prologue, RA lives in r31. */
256 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 31)
257
258 \f
259 /* Register That Address the Stack Frame. */
260
261 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
262 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 1)
263 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 27)
264 #define ARG_POINTER_REGNUM GP_REG_FIRST
265 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
266 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
267
268 \f
269 /* Eliminating the Frame Pointer and the Arg Pointer. */
270
271 #define ELIMINABLE_REGS \
272 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
273 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
274 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
275 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
276 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 31}, \
277 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
278 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
279
280 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
281 (OFFSET) = iq2000_initial_elimination_offset ((FROM), (TO))
282 \f
283 /* Passing Function Arguments on the Stack. */
284
285 /* #define PUSH_ROUNDING(BYTES) 0 */
286
287 #define ACCUMULATE_OUTGOING_ARGS 1
288
289 #define REG_PARM_STACK_SPACE(FNDECL) 0
290
291 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
292
293 \f
294 /* Function Arguments in Registers. */
295
296 #define MAX_ARGS_IN_REGISTERS 8
297
298 typedef struct iq2000_args
299 {
300 int gp_reg_found; /* Whether a gp register was found yet. */
301 unsigned int arg_number; /* Argument number. */
302 unsigned int arg_words; /* # total words the arguments take. */
303 unsigned int fp_arg_words; /* # words for FP args (IQ2000_EABI only). */
304 int last_arg_fp; /* Nonzero if last arg was FP (EABI only). */
305 int fp_code; /* Mode of FP arguments. */
306 unsigned int num_adjusts; /* Number of adjustments made. */
307 /* Adjustments made to args pass in regs. */
308 rtx adjust[MAX_ARGS_IN_REGISTERS * 2];
309 } CUMULATIVE_ARGS;
310
311 /* Initialize a variable CUM of type CUMULATIVE_ARGS
312 for a call to a function whose data type is FNTYPE.
313 For a library call, FNTYPE is 0. */
314 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
315 init_cumulative_args (& CUM, FNTYPE, LIBNAME) \
316
317 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
318 (! BYTES_BIG_ENDIAN \
319 ? upward \
320 : (((MODE) == BLKmode \
321 ? ((TYPE) && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
322 && int_size_in_bytes (TYPE) < (PARM_BOUNDARY / BITS_PER_UNIT))\
323 : (GET_MODE_BITSIZE (MODE) < PARM_BOUNDARY \
324 && (GET_MODE_CLASS (MODE) == MODE_INT))) \
325 ? downward : upward))
326
327 #define FUNCTION_ARG_REGNO_P(N) \
328 (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST))
329
330 \f
331 /* On the IQ2000, R2 and R3 are the only register thus used. */
332
333 #define FUNCTION_VALUE_REGNO_P(N) iq2000_function_value_regno_p (N)
334
335 \f
336 /* How Large Values are Returned. */
337
338 #define DEFAULT_PCC_STRUCT_RETURN 0
339 \f
340 /* Function Entry and Exit. */
341
342 #define EXIT_IGNORE_STACK 1
343
344 \f
345 /* Generating Code for Profiling. */
346
347 #define FUNCTION_PROFILER(FILE, LABELNO) \
348 { \
349 fprintf (FILE, "\t.set\tnoreorder\n"); \
350 fprintf (FILE, "\t.set\tnoat\n"); \
351 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
352 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
353 fprintf (FILE, "\tjal\t_mcount\n"); \
354 fprintf (FILE, \
355 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
356 "subu", \
357 reg_names[STACK_POINTER_REGNUM], \
358 reg_names[STACK_POINTER_REGNUM], \
359 Pmode == DImode ? 16 : 8); \
360 fprintf (FILE, "\t.set\treorder\n"); \
361 fprintf (FILE, "\t.set\tat\n"); \
362 }
363
364 \f
365 /* Trampolines for Nested Functions. */
366
367 #define TRAMPOLINE_CODE_SIZE (8*4)
368 #define TRAMPOLINE_SIZE (TRAMPOLINE_CODE_SIZE + 2*GET_MODE_SIZE (Pmode))
369 #define TRAMPOLINE_ALIGNMENT GET_MODE_ALIGNMENT (Pmode)
370
371 \f
372 /* Addressing Modes. */
373
374 #define CONSTANT_ADDRESS_P(X) \
375 ( (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
376 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
377 || (GET_CODE (X) == CONST)))
378
379 #define MAX_REGS_PER_ADDRESS 1
380
381 #define REG_OK_FOR_INDEX_P(X) 0
382
383 \f
384 /* Describing Relative Costs of Operations. */
385
386 #define REGISTER_MOVE_COST(MODE, FROM, TO) 2
387
388 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
389 (TO_P ? 2 : 16)
390
391 #define BRANCH_COST(speed_p, predictable_p) 2
392
393 #define SLOW_BYTE_ACCESS 1
394
395 #define NO_FUNCTION_CSE 1
396
397 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
398 if (REG_NOTE_KIND (LINK) != 0) \
399 (COST) = 0; /* Anti or output dependence. */
400
401 \f
402 /* Dividing the output into sections. */
403
404 #define TEXT_SECTION_ASM_OP "\t.text" /* Instructions. */
405
406 #define DATA_SECTION_ASM_OP "\t.data" /* Large data. */
407
408 \f
409 /* The Overall Framework of an Assembler File. */
410
411 #define ASM_COMMENT_START " #"
412
413 #define ASM_APP_ON "#APP\n"
414
415 #define ASM_APP_OFF "#NO_APP\n"
416
417 \f
418 /* Output and Generation of Labels. */
419
420 #undef ASM_GENERATE_INTERNAL_LABEL
421 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
422 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long) (NUM))
423
424 #define GLOBAL_ASM_OP "\t.globl\t"
425
426 \f
427 /* Output of Assembler Instructions. */
428
429 #define REGISTER_NAMES \
430 { \
431 "%0", "%1", "%2", "%3", "%4", "%5", "%6", "%7", \
432 "%8", "%9", "%10", "%11", "%12", "%13", "%14", "%15", \
433 "%16", "%17", "%18", "%19", "%20", "%21", "%22", "%23", \
434 "%24", "%25", "%26", "%27", "%28", "%29", "%30", "%31", "%rap" \
435 }
436
437 #define ADDITIONAL_REGISTER_NAMES \
438 { \
439 { "%0", 0 + GP_REG_FIRST }, \
440 { "%1", 1 + GP_REG_FIRST }, \
441 { "%2", 2 + GP_REG_FIRST }, \
442 { "%3", 3 + GP_REG_FIRST }, \
443 { "%4", 4 + GP_REG_FIRST }, \
444 { "%5", 5 + GP_REG_FIRST }, \
445 { "%6", 6 + GP_REG_FIRST }, \
446 { "%7", 7 + GP_REG_FIRST }, \
447 { "%8", 8 + GP_REG_FIRST }, \
448 { "%9", 9 + GP_REG_FIRST }, \
449 { "%10", 10 + GP_REG_FIRST }, \
450 { "%11", 11 + GP_REG_FIRST }, \
451 { "%12", 12 + GP_REG_FIRST }, \
452 { "%13", 13 + GP_REG_FIRST }, \
453 { "%14", 14 + GP_REG_FIRST }, \
454 { "%15", 15 + GP_REG_FIRST }, \
455 { "%16", 16 + GP_REG_FIRST }, \
456 { "%17", 17 + GP_REG_FIRST }, \
457 { "%18", 18 + GP_REG_FIRST }, \
458 { "%19", 19 + GP_REG_FIRST }, \
459 { "%20", 20 + GP_REG_FIRST }, \
460 { "%21", 21 + GP_REG_FIRST }, \
461 { "%22", 22 + GP_REG_FIRST }, \
462 { "%23", 23 + GP_REG_FIRST }, \
463 { "%24", 24 + GP_REG_FIRST }, \
464 { "%25", 25 + GP_REG_FIRST }, \
465 { "%26", 26 + GP_REG_FIRST }, \
466 { "%27", 27 + GP_REG_FIRST }, \
467 { "%28", 28 + GP_REG_FIRST }, \
468 { "%29", 29 + GP_REG_FIRST }, \
469 { "%30", 27 + GP_REG_FIRST }, \
470 { "%31", 31 + GP_REG_FIRST }, \
471 { "%rap", 32 + GP_REG_FIRST }, \
472 }
473
474 /* Check if the current insn needs a nop in front of it
475 because of load delays, and also update the delay slot statistics. */
476
477 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
478 final_prescan_insn (INSN, OPVEC, NOPERANDS)
479
480 #define DBR_OUTPUT_SEQEND(STREAM) \
481 do \
482 { \
483 fputs ("\n", STREAM); \
484 } \
485 while (0)
486
487 #define LOCAL_LABEL_PREFIX "$"
488
489 #define USER_LABEL_PREFIX ""
490
491 \f
492 /* Output of dispatch tables. */
493
494 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
495 do \
496 { \
497 fprintf (STREAM, "\t%s\t%sL%d\n", \
498 Pmode == DImode ? ".dword" : ".word", \
499 LOCAL_LABEL_PREFIX, VALUE); \
500 } \
501 while (0)
502
503 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
504 fprintf (STREAM, "\t%s\t%sL%d\n", \
505 Pmode == DImode ? ".dword" : ".word", \
506 LOCAL_LABEL_PREFIX, \
507 VALUE)
508
509 \f
510 /* Assembler Commands for Alignment. */
511
512 #undef ASM_OUTPUT_SKIP
513 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
514 fprintf (STREAM, "\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n", \
515 (unsigned HOST_WIDE_INT)(SIZE))
516
517 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
518 if ((LOG) != 0) \
519 fprintf (STREAM, "\t.balign %d\n", 1<<(LOG))
520
521 \f
522 /* Macros Affecting all Debug Formats. */
523
524 #define DEBUGGER_AUTO_OFFSET(X) \
525 iq2000_debugger_offset (X, (HOST_WIDE_INT) 0)
526
527 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
528 iq2000_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
529
530 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
531
532 #define DWARF2_DEBUGGING_INFO 1
533
534 \f
535 /* Miscellaneous Parameters. */
536
537 #define CASE_VECTOR_MODE SImode
538
539 #define WORD_REGISTER_OPERATIONS 1
540
541 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
542
543 #define MOVE_MAX 4
544
545 #define MAX_MOVE_MAX 8
546
547 #define SHIFT_COUNT_TRUNCATED 1
548
549 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
550
551 #define STORE_FLAG_VALUE 1
552
553 #define Pmode SImode
554
555 #define FUNCTION_MODE SImode
556
557 /* IQ2000 external variables defined in iq2000.c. */
558
559 /* Comparison type. */
560 enum cmp_type
561 {
562 CMP_SI, /* Compare four byte integers. */
563 CMP_DI, /* Compare eight byte integers. */
564 CMP_SF, /* Compare single precision floats. */
565 CMP_DF, /* Compare double precision floats. */
566 CMP_MAX /* Max comparison type. */
567 };
568
569 /* Types of delay slot. */
570 enum delay_type
571 {
572 DELAY_NONE, /* No delay slot. */
573 DELAY_LOAD, /* Load from memory delay. */
574 DELAY_FCMP /* Delay after doing c.<xx>.{d,s}. */
575 };
576
577 /* Recast the cpu class to be the cpu attribute. */
578 #define iq2000_cpu_attr ((enum attr_cpu) iq2000_tune)
579
580 #define BITMASK_UPPER16 ((unsigned long) 0xffff << 16) /* 0xffff0000 */
581 #define BITMASK_LOWER16 ((unsigned long) 0xffff) /* 0x0000ffff */
582
583 \f
584 #define GENERATE_BRANCHLIKELY (ISA_HAS_BRANCHLIKELY)
585
586 /* Macros to decide whether certain features are available or not,
587 depending on the instruction set architecture level. */
588
589 #define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
590
591 /* ISA has branch likely instructions. */
592 #define ISA_HAS_BRANCHLIKELY (iq2000_isa == 1)
593
594 \f
595 #undef ASM_SPEC
596
597 \f
598 /* The mapping from gcc register number to DWARF 2 CFA column number. */
599 #define DWARF_FRAME_REGNUM(REG) (REG)
600
601 /* The DWARF 2 CFA column which tracks the return address. */
602 #define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
603
604 /* Describe how we implement __builtin_eh_return. */
605 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
606
607 /* The EH_RETURN_STACKADJ_RTX macro returns RTL which describes the
608 location used to store the amount to adjust the stack. This is
609 usually a register that is available from end of the function's body
610 to the end of the epilogue. Thus, this cannot be a register used as a
611 temporary by the epilogue.
612
613 This must be an integer register. */
614 #define EH_RETURN_STACKADJ_REGNO 3
615 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
616
617 /* The EH_RETURN_HANDLER_RTX macro returns RTL which describes the
618 location used to store the address the processor should jump to
619 catch exception. This is usually a registers that is available from
620 end of the function's body to the end of the epilogue. Thus, this
621 cannot be a register used as a temporary by the epilogue.
622
623 This must be an address register. */
624 #define EH_RETURN_HANDLER_REGNO 26
625 #define EH_RETURN_HANDLER_RTX \
626 gen_rtx_REG (Pmode, EH_RETURN_HANDLER_REGNO)
627
628 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
629 #define DWARF_CIE_DATA_ALIGNMENT 4
630
631 /* For IQ2000, width of a floating point register. */
632 #define UNITS_PER_FPREG 4
633
634 /* Force right-alignment for small varargs in 32 bit little_endian mode */
635
636 #define PAD_VARARGS_DOWN !BYTES_BIG_ENDIAN
637
638 /* Internal macros to classify a register number as to whether it's a
639 general purpose register, a floating point register, a
640 multiply/divide register, or a status register. */
641
642 #define GP_REG_FIRST 0
643 #define GP_REG_LAST 31
644 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
645
646 #define RAP_REG_NUM 32
647 #define AT_REGNUM (GP_REG_FIRST + 1)
648
649 #define GP_REG_P(REGNO) \
650 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
651
652 /* IQ2000 registers used in prologue/epilogue code when the stack frame
653 is larger than 32K bytes. These registers must come from the
654 scratch register set, and not used for passing and returning
655 arguments and any other information used in the calling sequence. */
656
657 #define IQ2000_TEMP1_REGNUM (GP_REG_FIRST + 12)
658 #define IQ2000_TEMP2_REGNUM (GP_REG_FIRST + 13)
659
660 /* This macro is used later on in the file. */
661 #define GR_REG_CLASS_P(CLASS) \
662 ((CLASS) == GR_REGS)
663
664 #define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
665 #define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
666
667 /* Certain machines have the property that some registers cannot be
668 copied to some other registers without using memory. Define this
669 macro on those machines to be a C expression that is nonzero if
670 objects of mode MODE in registers of CLASS1 can only be copied to
671 registers of class CLASS2 by storing a register of CLASS1 into
672 memory and loading that memory location into a register of CLASS2.
673
674 Do not define this macro if its value would always be zero. */
675
676 /* Return the maximum number of consecutive registers
677 needed to represent mode MODE in a register of class CLASS. */
678
679 #define CLASS_UNITS(mode, size) \
680 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
681
682 /* If defined, gives a class of registers that cannot be used as the
683 operand of a SUBREG that changes the mode of the object illegally. */
684
685 #define CLASS_CANNOT_CHANGE_MODE 0
686
687 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
688
689 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
690 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
691
692 /* Make sure 4 words are always allocated on the stack. */
693
694 #ifndef STACK_ARGS_ADJUST
695 #define STACK_ARGS_ADJUST(SIZE) \
696 { \
697 if (SIZE.constant < 4 * UNITS_PER_WORD) \
698 SIZE.constant = 4 * UNITS_PER_WORD; \
699 }
700 #endif
701
702 \f
703 /* Symbolic macros for the registers used to return integer and floating
704 point values. */
705
706 #define GP_RETURN (GP_REG_FIRST + 2)
707
708 /* Symbolic macros for the first/last argument registers. */
709
710 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
711 #define GP_ARG_LAST (GP_REG_FIRST + 11)
712
713 #define MAX_ARGS_IN_REGISTERS 8
714
715 \f
716 /* Tell prologue and epilogue if register REGNO should be saved / restored. */
717
718 #define MUST_SAVE_REGISTER(regno) \
719 ((df_regs_ever_live_p (regno) && !call_used_regs[regno]) \
720 || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) \
721 || (regno == (GP_REG_FIRST + 31) && df_regs_ever_live_p (GP_REG_FIRST + 31)))
722
723 /* ALIGN FRAMES on double word boundaries */
724 #ifndef IQ2000_STACK_ALIGN
725 #define IQ2000_STACK_ALIGN(LOC) (((LOC) + 7) & ~7)
726 #endif
727
728 \f
729 /* These assume that REGNO is a hard or pseudo reg number.
730 They give nonzero only if REGNO is a hard reg of the suitable class
731 or a pseudo reg currently allocated to a suitable hard reg.
732 These definitions are NOT overridden anywhere. */
733
734 #define BASE_REG_P(regno, mode) \
735 (GP_REG_P (regno))
736
737 #define GP_REG_OR_PSEUDO_STRICT_P(regno, mode) \
738 BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno], \
739 (mode))
740
741 #define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
742 (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
743
744 #define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
745 GP_REG_OR_PSEUDO_STRICT_P ((int) (regno), (mode))
746
747 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
748 and check its validity for a certain class.
749 We have two alternate definitions for each of them.
750 The usual definition accepts all pseudo regs; the other rejects them all.
751 The symbol REG_OK_STRICT causes the latter definition to be used.
752
753 Most source files want to accept pseudo regs in the hope that
754 they will get allocated to the class that the insn wants them to be in.
755 Some source files that are used after register allocation
756 need to be strict. */
757
758 #ifndef REG_OK_STRICT
759 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
760 iq2000_reg_mode_ok_for_base_p (X, MODE, 0)
761 #else
762 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
763 iq2000_reg_mode_ok_for_base_p (X, MODE, 1)
764 #endif
765
766 #if 1
767 #define GO_PRINTF(x) fprintf (stderr, (x))
768 #define GO_PRINTF2(x,y) fprintf (stderr, (x), (y))
769 #define GO_DEBUG_RTX(x) debug_rtx (x)
770
771 #else
772 #define GO_PRINTF(x)
773 #define GO_PRINTF2(x,y)
774 #define GO_DEBUG_RTX(x)
775 #endif
776
777 /* If defined, modifies the length assigned to instruction INSN as a
778 function of the context in which it is used. LENGTH is an lvalue
779 that contains the initially computed length of the insn and should
780 be updated with the correct length of the insn. */
781 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
782 ((LENGTH) = iq2000_adjust_insn_length ((INSN), (LENGTH)))
783
784 \f
785
786
787 /* How to tell the debugger about changes of source files. */
788
789 #ifndef SET_FILE_NUMBER
790 #define SET_FILE_NUMBER() ++ num_source_filenames
791 #endif
792
793 /* This is how to output a note the debugger telling it the line number
794 to which the following sequence of instructions corresponds. */
795
796 #ifndef LABEL_AFTER_LOC
797 #define LABEL_AFTER_LOC(STREAM)
798 #endif
799
800 \f
801 /* Default to -G 8 */
802 #ifndef IQ2000_DEFAULT_GVALUE
803 #define IQ2000_DEFAULT_GVALUE 8
804 #endif
805
806 #define SDATA_SECTION_ASM_OP "\t.sdata" /* Small data. */
807
808 \f
809 /* Which instruction set architecture to use. */
810 extern int iq2000_isa;
811
812 enum iq2000_builtins
813 {
814 IQ2000_BUILTIN_ADO16,
815 IQ2000_BUILTIN_CFC0,
816 IQ2000_BUILTIN_CFC1,
817 IQ2000_BUILTIN_CFC2,
818 IQ2000_BUILTIN_CFC3,
819 IQ2000_BUILTIN_CHKHDR,
820 IQ2000_BUILTIN_CTC0,
821 IQ2000_BUILTIN_CTC1,
822 IQ2000_BUILTIN_CTC2,
823 IQ2000_BUILTIN_CTC3,
824 IQ2000_BUILTIN_LU,
825 IQ2000_BUILTIN_LUC32L,
826 IQ2000_BUILTIN_LUC64,
827 IQ2000_BUILTIN_LUC64L,
828 IQ2000_BUILTIN_LUK,
829 IQ2000_BUILTIN_LULCK,
830 IQ2000_BUILTIN_LUM32,
831 IQ2000_BUILTIN_LUM32L,
832 IQ2000_BUILTIN_LUM64,
833 IQ2000_BUILTIN_LUM64L,
834 IQ2000_BUILTIN_LUR,
835 IQ2000_BUILTIN_LURL,
836 IQ2000_BUILTIN_MFC0,
837 IQ2000_BUILTIN_MFC1,
838 IQ2000_BUILTIN_MFC2,
839 IQ2000_BUILTIN_MFC3,
840 IQ2000_BUILTIN_MRGB,
841 IQ2000_BUILTIN_MTC0,
842 IQ2000_BUILTIN_MTC1,
843 IQ2000_BUILTIN_MTC2,
844 IQ2000_BUILTIN_MTC3,
845 IQ2000_BUILTIN_PKRL,
846 IQ2000_BUILTIN_RAM,
847 IQ2000_BUILTIN_RB,
848 IQ2000_BUILTIN_RX,
849 IQ2000_BUILTIN_SRRD,
850 IQ2000_BUILTIN_SRRDL,
851 IQ2000_BUILTIN_SRULC,
852 IQ2000_BUILTIN_SRULCK,
853 IQ2000_BUILTIN_SRWR,
854 IQ2000_BUILTIN_SRWRU,
855 IQ2000_BUILTIN_TRAPQF,
856 IQ2000_BUILTIN_TRAPQFL,
857 IQ2000_BUILTIN_TRAPQN,
858 IQ2000_BUILTIN_TRAPQNE,
859 IQ2000_BUILTIN_TRAPRE,
860 IQ2000_BUILTIN_TRAPREL,
861 IQ2000_BUILTIN_WB,
862 IQ2000_BUILTIN_WBR,
863 IQ2000_BUILTIN_WBU,
864 IQ2000_BUILTIN_WX,
865 IQ2000_BUILTIN_SYSCALL
866 };