]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/m32r/m32r.c
function.h (incomming_args): Break out of struct function.
[thirdparty/gcc.git] / gcc / config / m32r / m32r.c
1 /* Subroutines used for code generation on the Renesas M32R cpu.
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2007 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "hard-reg-set.h"
29 #include "real.h"
30 #include "insn-config.h"
31 #include "conditions.h"
32 #include "output.h"
33 #include "insn-attr.h"
34 #include "flags.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "recog.h"
38 #include "toplev.h"
39 #include "ggc.h"
40 #include "integrate.h"
41 #include "tm_p.h"
42 #include "target.h"
43 #include "target-def.h"
44 #include "tm-constrs.h"
45
46 /* Save the operands last given to a compare for use when we
47 generate a scc or bcc insn. */
48 rtx m32r_compare_op0, m32r_compare_op1;
49
50 /* Array of valid operand punctuation characters. */
51 char m32r_punct_chars[256];
52
53 /* Selected code model. */
54 enum m32r_model m32r_model = M32R_MODEL_DEFAULT;
55
56 /* Selected SDA support. */
57 enum m32r_sdata m32r_sdata = M32R_SDATA_DEFAULT;
58
59 /* Machine-specific symbol_ref flags. */
60 #define SYMBOL_FLAG_MODEL_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT
61 #define SYMBOL_REF_MODEL(X) \
62 ((enum m32r_model) ((SYMBOL_REF_FLAGS (X) >> SYMBOL_FLAG_MODEL_SHIFT) & 3))
63
64 /* For string literals, etc. */
65 #define LIT_NAME_P(NAME) ((NAME)[0] == '*' && (NAME)[1] == '.')
66
67 /* Forward declaration. */
68 static bool m32r_handle_option (size_t, const char *, int);
69 static void init_reg_tables (void);
70 static void block_move_call (rtx, rtx, rtx);
71 static int m32r_is_insn (rtx);
72 const struct attribute_spec m32r_attribute_table[];
73 static tree m32r_handle_model_attribute (tree *, tree, tree, int, bool *);
74 static void m32r_output_function_prologue (FILE *, HOST_WIDE_INT);
75 static void m32r_output_function_epilogue (FILE *, HOST_WIDE_INT);
76
77 static void m32r_file_start (void);
78
79 static int m32r_adjust_priority (rtx, int);
80 static int m32r_issue_rate (void);
81
82 static void m32r_encode_section_info (tree, rtx, int);
83 static bool m32r_in_small_data_p (const_tree);
84 static bool m32r_return_in_memory (const_tree, const_tree);
85 static void m32r_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
86 tree, int *, int);
87 static void init_idents (void);
88 static bool m32r_rtx_costs (rtx, int, int, int *);
89 static bool m32r_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
90 const_tree, bool);
91 static int m32r_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
92 tree, bool);
93 \f
94 /* Initialize the GCC target structure. */
95 #undef TARGET_ATTRIBUTE_TABLE
96 #define TARGET_ATTRIBUTE_TABLE m32r_attribute_table
97
98 #undef TARGET_ASM_ALIGNED_HI_OP
99 #define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
100 #undef TARGET_ASM_ALIGNED_SI_OP
101 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
102
103 #undef TARGET_ASM_FUNCTION_PROLOGUE
104 #define TARGET_ASM_FUNCTION_PROLOGUE m32r_output_function_prologue
105 #undef TARGET_ASM_FUNCTION_EPILOGUE
106 #define TARGET_ASM_FUNCTION_EPILOGUE m32r_output_function_epilogue
107
108 #undef TARGET_ASM_FILE_START
109 #define TARGET_ASM_FILE_START m32r_file_start
110
111 #undef TARGET_SCHED_ADJUST_PRIORITY
112 #define TARGET_SCHED_ADJUST_PRIORITY m32r_adjust_priority
113 #undef TARGET_SCHED_ISSUE_RATE
114 #define TARGET_SCHED_ISSUE_RATE m32r_issue_rate
115
116 #undef TARGET_DEFAULT_TARGET_FLAGS
117 #define TARGET_DEFAULT_TARGET_FLAGS TARGET_CPU_DEFAULT
118 #undef TARGET_HANDLE_OPTION
119 #define TARGET_HANDLE_OPTION m32r_handle_option
120
121 #undef TARGET_ENCODE_SECTION_INFO
122 #define TARGET_ENCODE_SECTION_INFO m32r_encode_section_info
123 #undef TARGET_IN_SMALL_DATA_P
124 #define TARGET_IN_SMALL_DATA_P m32r_in_small_data_p
125
126 #undef TARGET_RTX_COSTS
127 #define TARGET_RTX_COSTS m32r_rtx_costs
128 #undef TARGET_ADDRESS_COST
129 #define TARGET_ADDRESS_COST hook_int_rtx_0
130
131 #undef TARGET_PROMOTE_PROTOTYPES
132 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
133 #undef TARGET_RETURN_IN_MEMORY
134 #define TARGET_RETURN_IN_MEMORY m32r_return_in_memory
135 #undef TARGET_SETUP_INCOMING_VARARGS
136 #define TARGET_SETUP_INCOMING_VARARGS m32r_setup_incoming_varargs
137 #undef TARGET_MUST_PASS_IN_STACK
138 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
139 #undef TARGET_PASS_BY_REFERENCE
140 #define TARGET_PASS_BY_REFERENCE m32r_pass_by_reference
141 #undef TARGET_ARG_PARTIAL_BYTES
142 #define TARGET_ARG_PARTIAL_BYTES m32r_arg_partial_bytes
143
144 struct gcc_target targetm = TARGET_INITIALIZER;
145 \f
146 /* Implement TARGET_HANDLE_OPTION. */
147
148 static bool
149 m32r_handle_option (size_t code, const char *arg, int value)
150 {
151 switch (code)
152 {
153 case OPT_m32r:
154 target_flags &= ~(MASK_M32R2 | MASK_M32RX);
155 return true;
156
157 case OPT_mmodel_:
158 if (strcmp (arg, "small") == 0)
159 m32r_model = M32R_MODEL_SMALL;
160 else if (strcmp (arg, "medium") == 0)
161 m32r_model = M32R_MODEL_MEDIUM;
162 else if (strcmp (arg, "large") == 0)
163 m32r_model = M32R_MODEL_LARGE;
164 else
165 return false;
166 return true;
167
168 case OPT_msdata_:
169 if (strcmp (arg, "none") == 0)
170 m32r_sdata = M32R_SDATA_NONE;
171 else if (strcmp (arg, "sdata") == 0)
172 m32r_sdata = M32R_SDATA_SDATA;
173 else if (strcmp (arg, "use") == 0)
174 m32r_sdata = M32R_SDATA_USE;
175 else
176 return false;
177 return true;
178
179 case OPT_mno_flush_func:
180 m32r_cache_flush_func = NULL;
181 return true;
182
183 case OPT_mflush_trap_:
184 return value <= 15;
185
186 case OPT_mno_flush_trap:
187 m32r_cache_flush_trap = -1;
188 return true;
189
190 default:
191 return true;
192 }
193 }
194
195 /* Called by OVERRIDE_OPTIONS to initialize various things. */
196
197 void
198 m32r_init (void)
199 {
200 init_reg_tables ();
201
202 /* Initialize array for PRINT_OPERAND_PUNCT_VALID_P. */
203 memset (m32r_punct_chars, 0, sizeof (m32r_punct_chars));
204 m32r_punct_chars['#'] = 1;
205 m32r_punct_chars['@'] = 1; /* ??? no longer used */
206
207 /* Provide default value if not specified. */
208 if (!g_switch_set)
209 g_switch_value = SDATA_DEFAULT_SIZE;
210 }
211
212 /* Vectors to keep interesting information about registers where it can easily
213 be got. We use to use the actual mode value as the bit number, but there
214 is (or may be) more than 32 modes now. Instead we use two tables: one
215 indexed by hard register number, and one indexed by mode. */
216
217 /* The purpose of m32r_mode_class is to shrink the range of modes so that
218 they all fit (as bit numbers) in a 32-bit word (again). Each real mode is
219 mapped into one m32r_mode_class mode. */
220
221 enum m32r_mode_class
222 {
223 C_MODE,
224 S_MODE, D_MODE, T_MODE, O_MODE,
225 SF_MODE, DF_MODE, TF_MODE, OF_MODE, A_MODE
226 };
227
228 /* Modes for condition codes. */
229 #define C_MODES (1 << (int) C_MODE)
230
231 /* Modes for single-word and smaller quantities. */
232 #define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))
233
234 /* Modes for double-word and smaller quantities. */
235 #define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE))
236
237 /* Modes for quad-word and smaller quantities. */
238 #define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))
239
240 /* Modes for accumulators. */
241 #define A_MODES (1 << (int) A_MODE)
242
243 /* Value is 1 if register/mode pair is acceptable on arc. */
244
245 const unsigned int m32r_hard_regno_mode_ok[FIRST_PSEUDO_REGISTER] =
246 {
247 T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES,
248 T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, S_MODES, S_MODES, S_MODES,
249 S_MODES, C_MODES, A_MODES, A_MODES
250 };
251
252 unsigned int m32r_mode_class [NUM_MACHINE_MODES];
253
254 enum reg_class m32r_regno_reg_class[FIRST_PSEUDO_REGISTER];
255
256 static void
257 init_reg_tables (void)
258 {
259 int i;
260
261 for (i = 0; i < NUM_MACHINE_MODES; i++)
262 {
263 switch (GET_MODE_CLASS (i))
264 {
265 case MODE_INT:
266 case MODE_PARTIAL_INT:
267 case MODE_COMPLEX_INT:
268 if (GET_MODE_SIZE (i) <= 4)
269 m32r_mode_class[i] = 1 << (int) S_MODE;
270 else if (GET_MODE_SIZE (i) == 8)
271 m32r_mode_class[i] = 1 << (int) D_MODE;
272 else if (GET_MODE_SIZE (i) == 16)
273 m32r_mode_class[i] = 1 << (int) T_MODE;
274 else if (GET_MODE_SIZE (i) == 32)
275 m32r_mode_class[i] = 1 << (int) O_MODE;
276 else
277 m32r_mode_class[i] = 0;
278 break;
279 case MODE_FLOAT:
280 case MODE_COMPLEX_FLOAT:
281 if (GET_MODE_SIZE (i) <= 4)
282 m32r_mode_class[i] = 1 << (int) SF_MODE;
283 else if (GET_MODE_SIZE (i) == 8)
284 m32r_mode_class[i] = 1 << (int) DF_MODE;
285 else if (GET_MODE_SIZE (i) == 16)
286 m32r_mode_class[i] = 1 << (int) TF_MODE;
287 else if (GET_MODE_SIZE (i) == 32)
288 m32r_mode_class[i] = 1 << (int) OF_MODE;
289 else
290 m32r_mode_class[i] = 0;
291 break;
292 case MODE_CC:
293 m32r_mode_class[i] = 1 << (int) C_MODE;
294 break;
295 default:
296 m32r_mode_class[i] = 0;
297 break;
298 }
299 }
300
301 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
302 {
303 if (GPR_P (i))
304 m32r_regno_reg_class[i] = GENERAL_REGS;
305 else if (i == ARG_POINTER_REGNUM)
306 m32r_regno_reg_class[i] = GENERAL_REGS;
307 else
308 m32r_regno_reg_class[i] = NO_REGS;
309 }
310 }
311 \f
312 /* M32R specific attribute support.
313
314 interrupt - for interrupt functions
315
316 model - select code model used to access object
317
318 small: addresses use 24 bits, use bl to make calls
319 medium: addresses use 32 bits, use bl to make calls
320 large: addresses use 32 bits, use seth/add3/jl to make calls
321
322 Grep for MODEL in m32r.h for more info. */
323
324 static tree small_ident1;
325 static tree small_ident2;
326 static tree medium_ident1;
327 static tree medium_ident2;
328 static tree large_ident1;
329 static tree large_ident2;
330
331 static void
332 init_idents (void)
333 {
334 if (small_ident1 == 0)
335 {
336 small_ident1 = get_identifier ("small");
337 small_ident2 = get_identifier ("__small__");
338 medium_ident1 = get_identifier ("medium");
339 medium_ident2 = get_identifier ("__medium__");
340 large_ident1 = get_identifier ("large");
341 large_ident2 = get_identifier ("__large__");
342 }
343 }
344
345 const struct attribute_spec m32r_attribute_table[] =
346 {
347 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
348 { "interrupt", 0, 0, true, false, false, NULL },
349 { "model", 1, 1, true, false, false, m32r_handle_model_attribute },
350 { NULL, 0, 0, false, false, false, NULL }
351 };
352
353
354 /* Handle an "model" attribute; arguments as in
355 struct attribute_spec.handler. */
356 static tree
357 m32r_handle_model_attribute (tree *node ATTRIBUTE_UNUSED, tree name,
358 tree args, int flags ATTRIBUTE_UNUSED,
359 bool *no_add_attrs)
360 {
361 tree arg;
362
363 init_idents ();
364 arg = TREE_VALUE (args);
365
366 if (arg != small_ident1
367 && arg != small_ident2
368 && arg != medium_ident1
369 && arg != medium_ident2
370 && arg != large_ident1
371 && arg != large_ident2)
372 {
373 warning (OPT_Wattributes, "invalid argument of %qs attribute",
374 IDENTIFIER_POINTER (name));
375 *no_add_attrs = true;
376 }
377
378 return NULL_TREE;
379 }
380 \f
381 /* Encode section information of DECL, which is either a VAR_DECL,
382 FUNCTION_DECL, STRING_CST, CONSTRUCTOR, or ???.
383
384 For the M32R we want to record:
385
386 - whether the object lives in .sdata/.sbss.
387 - what code model should be used to access the object
388 */
389
390 static void
391 m32r_encode_section_info (tree decl, rtx rtl, int first)
392 {
393 int extra_flags = 0;
394 tree model_attr;
395 enum m32r_model model;
396
397 default_encode_section_info (decl, rtl, first);
398
399 if (!DECL_P (decl))
400 return;
401
402 model_attr = lookup_attribute ("model", DECL_ATTRIBUTES (decl));
403 if (model_attr)
404 {
405 tree id;
406
407 init_idents ();
408
409 id = TREE_VALUE (TREE_VALUE (model_attr));
410
411 if (id == small_ident1 || id == small_ident2)
412 model = M32R_MODEL_SMALL;
413 else if (id == medium_ident1 || id == medium_ident2)
414 model = M32R_MODEL_MEDIUM;
415 else if (id == large_ident1 || id == large_ident2)
416 model = M32R_MODEL_LARGE;
417 else
418 gcc_unreachable (); /* shouldn't happen */
419 }
420 else
421 {
422 if (TARGET_MODEL_SMALL)
423 model = M32R_MODEL_SMALL;
424 else if (TARGET_MODEL_MEDIUM)
425 model = M32R_MODEL_MEDIUM;
426 else if (TARGET_MODEL_LARGE)
427 model = M32R_MODEL_LARGE;
428 else
429 gcc_unreachable (); /* shouldn't happen */
430 }
431 extra_flags |= model << SYMBOL_FLAG_MODEL_SHIFT;
432
433 if (extra_flags)
434 SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= extra_flags;
435 }
436
437 /* Only mark the object as being small data area addressable if
438 it hasn't been explicitly marked with a code model.
439
440 The user can explicitly put an object in the small data area with the
441 section attribute. If the object is in sdata/sbss and marked with a
442 code model do both [put the object in .sdata and mark it as being
443 addressed with a specific code model - don't mark it as being addressed
444 with an SDA reloc though]. This is ok and might be useful at times. If
445 the object doesn't fit the linker will give an error. */
446
447 static bool
448 m32r_in_small_data_p (const_tree decl)
449 {
450 const_tree section;
451
452 if (TREE_CODE (decl) != VAR_DECL)
453 return false;
454
455 if (lookup_attribute ("model", DECL_ATTRIBUTES (decl)))
456 return false;
457
458 section = DECL_SECTION_NAME (decl);
459 if (section)
460 {
461 const char *const name = TREE_STRING_POINTER (section);
462 if (strcmp (name, ".sdata") == 0 || strcmp (name, ".sbss") == 0)
463 return true;
464 }
465 else
466 {
467 if (! TREE_READONLY (decl) && ! TARGET_SDATA_NONE)
468 {
469 int size = int_size_in_bytes (TREE_TYPE (decl));
470
471 if (size > 0 && (unsigned HOST_WIDE_INT) size <= g_switch_value)
472 return true;
473 }
474 }
475
476 return false;
477 }
478
479 /* Do anything needed before RTL is emitted for each function. */
480
481 void
482 m32r_init_expanders (void)
483 {
484 /* ??? At one point there was code here. The function is left in
485 to make it easy to experiment. */
486 }
487 \f
488 int
489 call_operand (rtx op, enum machine_mode mode)
490 {
491 if (GET_CODE (op) != MEM)
492 return 0;
493 op = XEXP (op, 0);
494 return call_address_operand (op, mode);
495 }
496
497 /* Return 1 if OP is a reference to an object in .sdata/.sbss. */
498
499 int
500 small_data_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
501 {
502 if (! TARGET_SDATA_USE)
503 return 0;
504
505 if (GET_CODE (op) == SYMBOL_REF)
506 return SYMBOL_REF_SMALL_P (op);
507
508 if (GET_CODE (op) == CONST
509 && GET_CODE (XEXP (op, 0)) == PLUS
510 && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
511 && satisfies_constraint_J (XEXP (XEXP (op, 0), 1)))
512 return SYMBOL_REF_SMALL_P (XEXP (XEXP (op, 0), 0));
513
514 return 0;
515 }
516
517 /* Return 1 if OP is a symbol that can use 24-bit addressing. */
518
519 int
520 addr24_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
521 {
522 rtx sym;
523
524 if (flag_pic)
525 return 0;
526
527 if (GET_CODE (op) == LABEL_REF)
528 return TARGET_ADDR24;
529
530 if (GET_CODE (op) == SYMBOL_REF)
531 sym = op;
532 else if (GET_CODE (op) == CONST
533 && GET_CODE (XEXP (op, 0)) == PLUS
534 && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
535 && satisfies_constraint_M (XEXP (XEXP (op, 0), 1)))
536 sym = XEXP (XEXP (op, 0), 0);
537 else
538 return 0;
539
540 if (SYMBOL_REF_MODEL (sym) == M32R_MODEL_SMALL)
541 return 1;
542
543 if (TARGET_ADDR24
544 && (CONSTANT_POOL_ADDRESS_P (sym)
545 || LIT_NAME_P (XSTR (sym, 0))))
546 return 1;
547
548 return 0;
549 }
550
551 /* Return 1 if OP is a symbol that needs 32-bit addressing. */
552
553 int
554 addr32_operand (rtx op, enum machine_mode mode)
555 {
556 rtx sym;
557
558 if (GET_CODE (op) == LABEL_REF)
559 return TARGET_ADDR32;
560
561 if (GET_CODE (op) == SYMBOL_REF)
562 sym = op;
563 else if (GET_CODE (op) == CONST
564 && GET_CODE (XEXP (op, 0)) == PLUS
565 && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
566 && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
567 && ! flag_pic)
568 sym = XEXP (XEXP (op, 0), 0);
569 else
570 return 0;
571
572 return (! addr24_operand (sym, mode)
573 && ! small_data_operand (sym, mode));
574 }
575
576 /* Return 1 if OP is a function that can be called with the `bl' insn. */
577
578 int
579 call26_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
580 {
581 if (flag_pic)
582 return 1;
583
584 if (GET_CODE (op) == SYMBOL_REF)
585 return SYMBOL_REF_MODEL (op) != M32R_MODEL_LARGE;
586
587 return TARGET_CALL26;
588 }
589
590 /* Return 1 if OP is a DImode const we want to handle inline.
591 This must match the code in the movdi pattern.
592 It is used by the 'G' CONST_DOUBLE_OK_FOR_LETTER. */
593
594 int
595 easy_di_const (rtx op)
596 {
597 rtx high_rtx, low_rtx;
598 HOST_WIDE_INT high, low;
599
600 split_double (op, &high_rtx, &low_rtx);
601 high = INTVAL (high_rtx);
602 low = INTVAL (low_rtx);
603 /* Pick constants loadable with 2 16-bit `ldi' insns. */
604 if (high >= -128 && high <= 127
605 && low >= -128 && low <= 127)
606 return 1;
607 return 0;
608 }
609
610 /* Return 1 if OP is a DFmode const we want to handle inline.
611 This must match the code in the movdf pattern.
612 It is used by the 'H' CONST_DOUBLE_OK_FOR_LETTER. */
613
614 int
615 easy_df_const (rtx op)
616 {
617 REAL_VALUE_TYPE r;
618 long l[2];
619
620 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
621 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
622 if (l[0] == 0 && l[1] == 0)
623 return 1;
624 if ((l[0] & 0xffff) == 0 && l[1] == 0)
625 return 1;
626 return 0;
627 }
628
629 /* Return 1 if OP is (mem (reg ...)).
630 This is used in insn length calcs. */
631
632 int
633 memreg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
634 {
635 return GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == REG;
636 }
637
638 /* Return nonzero if TYPE must be passed by indirect reference. */
639
640 static bool
641 m32r_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
642 enum machine_mode mode, const_tree type,
643 bool named ATTRIBUTE_UNUSED)
644 {
645 int size;
646
647 if (type)
648 size = int_size_in_bytes (type);
649 else
650 size = GET_MODE_SIZE (mode);
651
652 return (size < 0 || size > 8);
653 }
654 \f
655 /* Comparisons. */
656
657 /* X and Y are two things to compare using CODE. Emit the compare insn and
658 return the rtx for compare [arg0 of the if_then_else].
659 If need_compare is true then the comparison insn must be generated, rather
660 than being subsumed into the following branch instruction. */
661
662 rtx
663 gen_compare (enum rtx_code code, rtx x, rtx y, int need_compare)
664 {
665 enum rtx_code compare_code;
666 enum rtx_code branch_code;
667 rtx cc_reg = gen_rtx_REG (CCmode, CARRY_REGNUM);
668 int must_swap = 0;
669
670 switch (code)
671 {
672 case EQ: compare_code = EQ; branch_code = NE; break;
673 case NE: compare_code = EQ; branch_code = EQ; break;
674 case LT: compare_code = LT; branch_code = NE; break;
675 case LE: compare_code = LT; branch_code = EQ; must_swap = 1; break;
676 case GT: compare_code = LT; branch_code = NE; must_swap = 1; break;
677 case GE: compare_code = LT; branch_code = EQ; break;
678 case LTU: compare_code = LTU; branch_code = NE; break;
679 case LEU: compare_code = LTU; branch_code = EQ; must_swap = 1; break;
680 case GTU: compare_code = LTU; branch_code = NE; must_swap = 1; break;
681 case GEU: compare_code = LTU; branch_code = EQ; break;
682
683 default:
684 gcc_unreachable ();
685 }
686
687 if (need_compare)
688 {
689 switch (compare_code)
690 {
691 case EQ:
692 if (satisfies_constraint_P (y) /* Reg equal to small const. */
693 && y != const0_rtx)
694 {
695 rtx tmp = gen_reg_rtx (SImode);
696
697 emit_insn (gen_addsi3 (tmp, x, GEN_INT (-INTVAL (y))));
698 x = tmp;
699 y = const0_rtx;
700 }
701 else if (CONSTANT_P (y)) /* Reg equal to const. */
702 {
703 rtx tmp = force_reg (GET_MODE (x), y);
704 y = tmp;
705 }
706
707 if (register_operand (y, SImode) /* Reg equal to reg. */
708 || y == const0_rtx) /* Reg equal to zero. */
709 {
710 emit_insn (gen_cmp_eqsi_insn (x, y));
711
712 return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx);
713 }
714 break;
715
716 case LT:
717 if (register_operand (y, SImode)
718 || satisfies_constraint_P (y))
719 {
720 rtx tmp = gen_reg_rtx (SImode); /* Reg compared to reg. */
721
722 switch (code)
723 {
724 case LT:
725 emit_insn (gen_cmp_ltsi_insn (x, y));
726 code = EQ;
727 break;
728 case LE:
729 if (y == const0_rtx)
730 tmp = const1_rtx;
731 else
732 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
733 emit_insn (gen_cmp_ltsi_insn (x, tmp));
734 code = EQ;
735 break;
736 case GT:
737 if (GET_CODE (y) == CONST_INT)
738 tmp = gen_rtx_PLUS (SImode, y, const1_rtx);
739 else
740 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
741 emit_insn (gen_cmp_ltsi_insn (x, tmp));
742 code = NE;
743 break;
744 case GE:
745 emit_insn (gen_cmp_ltsi_insn (x, y));
746 code = NE;
747 break;
748 default:
749 gcc_unreachable ();
750 }
751
752 return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx);
753 }
754 break;
755
756 case LTU:
757 if (register_operand (y, SImode)
758 || satisfies_constraint_P (y))
759 {
760 rtx tmp = gen_reg_rtx (SImode); /* Reg (unsigned) compared to reg. */
761
762 switch (code)
763 {
764 case LTU:
765 emit_insn (gen_cmp_ltusi_insn (x, y));
766 code = EQ;
767 break;
768 case LEU:
769 if (y == const0_rtx)
770 tmp = const1_rtx;
771 else
772 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
773 emit_insn (gen_cmp_ltusi_insn (x, tmp));
774 code = EQ;
775 break;
776 case GTU:
777 if (GET_CODE (y) == CONST_INT)
778 tmp = gen_rtx_PLUS (SImode, y, const1_rtx);
779 else
780 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
781 emit_insn (gen_cmp_ltusi_insn (x, tmp));
782 code = NE;
783 break;
784 case GEU:
785 emit_insn (gen_cmp_ltusi_insn (x, y));
786 code = NE;
787 break;
788 default:
789 gcc_unreachable ();
790 }
791
792 return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx);
793 }
794 break;
795
796 default:
797 gcc_unreachable ();
798 }
799 }
800 else
801 {
802 /* Reg/reg equal comparison. */
803 if (compare_code == EQ
804 && register_operand (y, SImode))
805 return gen_rtx_fmt_ee (code, CCmode, x, y);
806
807 /* Reg/zero signed comparison. */
808 if ((compare_code == EQ || compare_code == LT)
809 && y == const0_rtx)
810 return gen_rtx_fmt_ee (code, CCmode, x, y);
811
812 /* Reg/smallconst equal comparison. */
813 if (compare_code == EQ
814 && satisfies_constraint_P (y))
815 {
816 rtx tmp = gen_reg_rtx (SImode);
817
818 emit_insn (gen_addsi3 (tmp, x, GEN_INT (-INTVAL (y))));
819 return gen_rtx_fmt_ee (code, CCmode, tmp, const0_rtx);
820 }
821
822 /* Reg/const equal comparison. */
823 if (compare_code == EQ
824 && CONSTANT_P (y))
825 {
826 rtx tmp = force_reg (GET_MODE (x), y);
827
828 return gen_rtx_fmt_ee (code, CCmode, x, tmp);
829 }
830 }
831
832 if (CONSTANT_P (y))
833 {
834 if (must_swap)
835 y = force_reg (GET_MODE (x), y);
836 else
837 {
838 int ok_const = reg_or_int16_operand (y, GET_MODE (y));
839
840 if (! ok_const)
841 y = force_reg (GET_MODE (x), y);
842 }
843 }
844
845 switch (compare_code)
846 {
847 case EQ :
848 emit_insn (gen_cmp_eqsi_insn (must_swap ? y : x, must_swap ? x : y));
849 break;
850 case LT :
851 emit_insn (gen_cmp_ltsi_insn (must_swap ? y : x, must_swap ? x : y));
852 break;
853 case LTU :
854 emit_insn (gen_cmp_ltusi_insn (must_swap ? y : x, must_swap ? x : y));
855 break;
856
857 default:
858 gcc_unreachable ();
859 }
860
861 return gen_rtx_fmt_ee (branch_code, VOIDmode, cc_reg, CONST0_RTX (CCmode));
862 }
863 \f
864 /* Split a 2 word move (DI or DF) into component parts. */
865
866 rtx
867 gen_split_move_double (rtx operands[])
868 {
869 enum machine_mode mode = GET_MODE (operands[0]);
870 rtx dest = operands[0];
871 rtx src = operands[1];
872 rtx val;
873
874 /* We might have (SUBREG (MEM)) here, so just get rid of the
875 subregs to make this code simpler. It is safe to call
876 alter_subreg any time after reload. */
877 if (GET_CODE (dest) == SUBREG)
878 alter_subreg (&dest);
879 if (GET_CODE (src) == SUBREG)
880 alter_subreg (&src);
881
882 start_sequence ();
883 if (GET_CODE (dest) == REG)
884 {
885 int dregno = REGNO (dest);
886
887 /* Reg = reg. */
888 if (GET_CODE (src) == REG)
889 {
890 int sregno = REGNO (src);
891
892 int reverse = (dregno == sregno + 1);
893
894 /* We normally copy the low-numbered register first. However, if
895 the first register operand 0 is the same as the second register of
896 operand 1, we must copy in the opposite order. */
897 emit_insn (gen_rtx_SET (VOIDmode,
898 operand_subword (dest, reverse, TRUE, mode),
899 operand_subword (src, reverse, TRUE, mode)));
900
901 emit_insn (gen_rtx_SET (VOIDmode,
902 operand_subword (dest, !reverse, TRUE, mode),
903 operand_subword (src, !reverse, TRUE, mode)));
904 }
905
906 /* Reg = constant. */
907 else if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE)
908 {
909 rtx words[2];
910 split_double (src, &words[0], &words[1]);
911 emit_insn (gen_rtx_SET (VOIDmode,
912 operand_subword (dest, 0, TRUE, mode),
913 words[0]));
914
915 emit_insn (gen_rtx_SET (VOIDmode,
916 operand_subword (dest, 1, TRUE, mode),
917 words[1]));
918 }
919
920 /* Reg = mem. */
921 else if (GET_CODE (src) == MEM)
922 {
923 /* If the high-address word is used in the address, we must load it
924 last. Otherwise, load it first. */
925 int reverse
926 = (refers_to_regno_p (dregno, dregno + 1, XEXP (src, 0), 0) != 0);
927
928 /* We used to optimize loads from single registers as
929
930 ld r1,r3+; ld r2,r3
931
932 if r3 were not used subsequently. However, the REG_NOTES aren't
933 propagated correctly by the reload phase, and it can cause bad
934 code to be generated. We could still try:
935
936 ld r1,r3+; ld r2,r3; addi r3,-4
937
938 which saves 2 bytes and doesn't force longword alignment. */
939 emit_insn (gen_rtx_SET (VOIDmode,
940 operand_subword (dest, reverse, TRUE, mode),
941 adjust_address (src, SImode,
942 reverse * UNITS_PER_WORD)));
943
944 emit_insn (gen_rtx_SET (VOIDmode,
945 operand_subword (dest, !reverse, TRUE, mode),
946 adjust_address (src, SImode,
947 !reverse * UNITS_PER_WORD)));
948 }
949 else
950 gcc_unreachable ();
951 }
952
953 /* Mem = reg. */
954 /* We used to optimize loads from single registers as
955
956 st r1,r3; st r2,+r3
957
958 if r3 were not used subsequently. However, the REG_NOTES aren't
959 propagated correctly by the reload phase, and it can cause bad
960 code to be generated. We could still try:
961
962 st r1,r3; st r2,+r3; addi r3,-4
963
964 which saves 2 bytes and doesn't force longword alignment. */
965 else if (GET_CODE (dest) == MEM && GET_CODE (src) == REG)
966 {
967 emit_insn (gen_rtx_SET (VOIDmode,
968 adjust_address (dest, SImode, 0),
969 operand_subword (src, 0, TRUE, mode)));
970
971 emit_insn (gen_rtx_SET (VOIDmode,
972 adjust_address (dest, SImode, UNITS_PER_WORD),
973 operand_subword (src, 1, TRUE, mode)));
974 }
975
976 else
977 gcc_unreachable ();
978
979 val = get_insns ();
980 end_sequence ();
981 return val;
982 }
983
984 \f
985 static int
986 m32r_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
987 tree type, bool named ATTRIBUTE_UNUSED)
988 {
989 int words;
990 unsigned int size =
991 (((mode == BLKmode && type)
992 ? (unsigned int) int_size_in_bytes (type)
993 : GET_MODE_SIZE (mode)) + UNITS_PER_WORD - 1)
994 / UNITS_PER_WORD;
995
996 if (*cum >= M32R_MAX_PARM_REGS)
997 words = 0;
998 else if (*cum + size > M32R_MAX_PARM_REGS)
999 words = (*cum + size) - M32R_MAX_PARM_REGS;
1000 else
1001 words = 0;
1002
1003 return words * UNITS_PER_WORD;
1004 }
1005
1006 /* Worker function for TARGET_RETURN_IN_MEMORY. */
1007
1008 static bool
1009 m32r_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
1010 {
1011 return m32r_pass_by_reference (NULL, TYPE_MODE (type), type, false);
1012 }
1013
1014 /* Do any needed setup for a variadic function. For the M32R, we must
1015 create a register parameter block, and then copy any anonymous arguments
1016 in registers to memory.
1017
1018 CUM has not been updated for the last named argument which has type TYPE
1019 and mode MODE, and we rely on this fact. */
1020
1021 static void
1022 m32r_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
1023 tree type, int *pretend_size, int no_rtl)
1024 {
1025 int first_anon_arg;
1026
1027 if (no_rtl)
1028 return;
1029
1030 /* All BLKmode values are passed by reference. */
1031 gcc_assert (mode != BLKmode);
1032
1033 first_anon_arg = (ROUND_ADVANCE_CUM (*cum, mode, type)
1034 + ROUND_ADVANCE_ARG (mode, type));
1035
1036 if (first_anon_arg < M32R_MAX_PARM_REGS)
1037 {
1038 /* Note that first_reg_offset < M32R_MAX_PARM_REGS. */
1039 int first_reg_offset = first_anon_arg;
1040 /* Size in words to "pretend" allocate. */
1041 int size = M32R_MAX_PARM_REGS - first_reg_offset;
1042 rtx regblock;
1043
1044 regblock = gen_frame_mem (BLKmode,
1045 plus_constant (arg_pointer_rtx,
1046 FIRST_PARM_OFFSET (0)));
1047 set_mem_alias_set (regblock, get_varargs_alias_set ());
1048 move_block_from_reg (first_reg_offset, regblock, size);
1049
1050 *pretend_size = (size * UNITS_PER_WORD);
1051 }
1052 }
1053
1054 \f
1055 /* Return true if INSN is real instruction bearing insn. */
1056
1057 static int
1058 m32r_is_insn (rtx insn)
1059 {
1060 return (INSN_P (insn)
1061 && GET_CODE (PATTERN (insn)) != USE
1062 && GET_CODE (PATTERN (insn)) != CLOBBER
1063 && GET_CODE (PATTERN (insn)) != ADDR_VEC);
1064 }
1065
1066 /* Increase the priority of long instructions so that the
1067 short instructions are scheduled ahead of the long ones. */
1068
1069 static int
1070 m32r_adjust_priority (rtx insn, int priority)
1071 {
1072 if (m32r_is_insn (insn)
1073 && get_attr_insn_size (insn) != INSN_SIZE_SHORT)
1074 priority <<= 3;
1075
1076 return priority;
1077 }
1078
1079 \f
1080 /* Indicate how many instructions can be issued at the same time.
1081 This is sort of a lie. The m32r can issue only 1 long insn at
1082 once, but it can issue 2 short insns. The default therefore is
1083 set at 2, but this can be overridden by the command line option
1084 -missue-rate=1. */
1085
1086 static int
1087 m32r_issue_rate (void)
1088 {
1089 return ((TARGET_LOW_ISSUE_RATE) ? 1 : 2);
1090 }
1091 \f
1092 /* Cost functions. */
1093
1094 static bool
1095 m32r_rtx_costs (rtx x, int code, int outer_code ATTRIBUTE_UNUSED, int *total)
1096 {
1097 switch (code)
1098 {
1099 /* Small integers are as cheap as registers. 4 byte values can be
1100 fetched as immediate constants - let's give that the cost of an
1101 extra insn. */
1102 case CONST_INT:
1103 if (INT16_P (INTVAL (x)))
1104 {
1105 *total = 0;
1106 return true;
1107 }
1108 /* FALLTHRU */
1109
1110 case CONST:
1111 case LABEL_REF:
1112 case SYMBOL_REF:
1113 *total = COSTS_N_INSNS (1);
1114 return true;
1115
1116 case CONST_DOUBLE:
1117 {
1118 rtx high, low;
1119
1120 split_double (x, &high, &low);
1121 *total = COSTS_N_INSNS (!INT16_P (INTVAL (high))
1122 + !INT16_P (INTVAL (low)));
1123 return true;
1124 }
1125
1126 case MULT:
1127 *total = COSTS_N_INSNS (3);
1128 return true;
1129
1130 case DIV:
1131 case UDIV:
1132 case MOD:
1133 case UMOD:
1134 *total = COSTS_N_INSNS (10);
1135 return true;
1136
1137 default:
1138 return false;
1139 }
1140 }
1141 \f
1142 /* Type of function DECL.
1143
1144 The result is cached. To reset the cache at the end of a function,
1145 call with DECL = NULL_TREE. */
1146
1147 enum m32r_function_type
1148 m32r_compute_function_type (tree decl)
1149 {
1150 /* Cached value. */
1151 static enum m32r_function_type fn_type = M32R_FUNCTION_UNKNOWN;
1152 /* Last function we were called for. */
1153 static tree last_fn = NULL_TREE;
1154
1155 /* Resetting the cached value? */
1156 if (decl == NULL_TREE)
1157 {
1158 fn_type = M32R_FUNCTION_UNKNOWN;
1159 last_fn = NULL_TREE;
1160 return fn_type;
1161 }
1162
1163 if (decl == last_fn && fn_type != M32R_FUNCTION_UNKNOWN)
1164 return fn_type;
1165
1166 /* Compute function type. */
1167 fn_type = (lookup_attribute ("interrupt", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE
1168 ? M32R_FUNCTION_INTERRUPT
1169 : M32R_FUNCTION_NORMAL);
1170
1171 last_fn = decl;
1172 return fn_type;
1173 }
1174 \f/* Function prologue/epilogue handlers. */
1175
1176 /* M32R stack frames look like:
1177
1178 Before call After call
1179 +-----------------------+ +-----------------------+
1180 | | | |
1181 high | local variables, | | local variables, |
1182 mem | reg save area, etc. | | reg save area, etc. |
1183 | | | |
1184 +-----------------------+ +-----------------------+
1185 | | | |
1186 | arguments on stack. | | arguments on stack. |
1187 | | | |
1188 SP+0->+-----------------------+ +-----------------------+
1189 | reg parm save area, |
1190 | only created for |
1191 | variable argument |
1192 | functions |
1193 +-----------------------+
1194 | previous frame ptr |
1195 +-----------------------+
1196 | |
1197 | register save area |
1198 | |
1199 +-----------------------+
1200 | return address |
1201 +-----------------------+
1202 | |
1203 | local variables |
1204 | |
1205 +-----------------------+
1206 | |
1207 | alloca allocations |
1208 | |
1209 +-----------------------+
1210 | |
1211 low | arguments on stack |
1212 memory | |
1213 SP+0->+-----------------------+
1214
1215 Notes:
1216 1) The "reg parm save area" does not exist for non variable argument fns.
1217 2) The "reg parm save area" can be eliminated completely if we saved regs
1218 containing anonymous args separately but that complicates things too
1219 much (so it's not done).
1220 3) The return address is saved after the register save area so as to have as
1221 many insns as possible between the restoration of `lr' and the `jmp lr'. */
1222
1223 /* Structure to be filled in by m32r_compute_frame_size with register
1224 save masks, and offsets for the current function. */
1225 struct m32r_frame_info
1226 {
1227 unsigned int total_size; /* # bytes that the entire frame takes up. */
1228 unsigned int extra_size; /* # bytes of extra stuff. */
1229 unsigned int pretend_size; /* # bytes we push and pretend caller did. */
1230 unsigned int args_size; /* # bytes that outgoing arguments take up. */
1231 unsigned int reg_size; /* # bytes needed to store regs. */
1232 unsigned int var_size; /* # bytes that variables take up. */
1233 unsigned int gmask; /* Mask of saved gp registers. */
1234 unsigned int save_fp; /* Nonzero if fp must be saved. */
1235 unsigned int save_lr; /* Nonzero if lr (return addr) must be saved. */
1236 int initialized; /* Nonzero if frame size already calculated. */
1237 };
1238
1239 /* Current frame information calculated by m32r_compute_frame_size. */
1240 static struct m32r_frame_info current_frame_info;
1241
1242 /* Zero structure to initialize current_frame_info. */
1243 static struct m32r_frame_info zero_frame_info;
1244
1245 #define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM))
1246 #define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM))
1247
1248 /* Tell prologue and epilogue if register REGNO should be saved / restored.
1249 The return address and frame pointer are treated separately.
1250 Don't consider them here. */
1251 #define MUST_SAVE_REGISTER(regno, interrupt_p) \
1252 ((regno) != RETURN_ADDR_REGNUM && (regno) != FRAME_POINTER_REGNUM \
1253 && (df_regs_ever_live_p (regno) && (!call_really_used_regs[regno] || interrupt_p)))
1254
1255 #define MUST_SAVE_FRAME_POINTER (df_regs_ever_live_p (FRAME_POINTER_REGNUM))
1256 #define MUST_SAVE_RETURN_ADDR (df_regs_ever_live_p (RETURN_ADDR_REGNUM) || current_function_profile)
1257
1258 #define SHORT_INSN_SIZE 2 /* Size of small instructions. */
1259 #define LONG_INSN_SIZE 4 /* Size of long instructions. */
1260
1261 /* Return the bytes needed to compute the frame pointer from the current
1262 stack pointer.
1263
1264 SIZE is the size needed for local variables. */
1265
1266 unsigned int
1267 m32r_compute_frame_size (int size) /* # of var. bytes allocated. */
1268 {
1269 unsigned int regno;
1270 unsigned int total_size, var_size, args_size, pretend_size, extra_size;
1271 unsigned int reg_size, frame_size;
1272 unsigned int gmask;
1273 enum m32r_function_type fn_type;
1274 int interrupt_p;
1275 int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
1276 | current_function_profile);
1277
1278 var_size = M32R_STACK_ALIGN (size);
1279 args_size = M32R_STACK_ALIGN (crtl->outgoing_args_size);
1280 pretend_size = crtl->args.pretend_args_size;
1281 extra_size = FIRST_PARM_OFFSET (0);
1282 total_size = extra_size + pretend_size + args_size + var_size;
1283 reg_size = 0;
1284 gmask = 0;
1285
1286 /* See if this is an interrupt handler. Call used registers must be saved
1287 for them too. */
1288 fn_type = m32r_compute_function_type (current_function_decl);
1289 interrupt_p = M32R_INTERRUPT_P (fn_type);
1290
1291 /* Calculate space needed for registers. */
1292 for (regno = 0; regno < M32R_MAX_INT_REGS; regno++)
1293 {
1294 if (MUST_SAVE_REGISTER (regno, interrupt_p)
1295 || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
1296 {
1297 reg_size += UNITS_PER_WORD;
1298 gmask |= 1 << regno;
1299 }
1300 }
1301
1302 current_frame_info.save_fp = MUST_SAVE_FRAME_POINTER;
1303 current_frame_info.save_lr = MUST_SAVE_RETURN_ADDR || pic_reg_used;
1304
1305 reg_size += ((current_frame_info.save_fp + current_frame_info.save_lr)
1306 * UNITS_PER_WORD);
1307 total_size += reg_size;
1308
1309 /* ??? Not sure this is necessary, and I don't think the epilogue
1310 handler will do the right thing if this changes total_size. */
1311 total_size = M32R_STACK_ALIGN (total_size);
1312
1313 frame_size = total_size - (pretend_size + reg_size);
1314
1315 /* Save computed information. */
1316 current_frame_info.total_size = total_size;
1317 current_frame_info.extra_size = extra_size;
1318 current_frame_info.pretend_size = pretend_size;
1319 current_frame_info.var_size = var_size;
1320 current_frame_info.args_size = args_size;
1321 current_frame_info.reg_size = reg_size;
1322 current_frame_info.gmask = gmask;
1323 current_frame_info.initialized = reload_completed;
1324
1325 /* Ok, we're done. */
1326 return total_size;
1327 }
1328 \f
1329 /* The table we use to reference PIC data. */
1330 static rtx global_offset_table;
1331
1332 static void
1333 m32r_reload_lr (rtx sp, int size)
1334 {
1335 rtx lr = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
1336
1337 if (size == 0)
1338 emit_insn (gen_movsi (lr, gen_frame_mem (Pmode, sp)));
1339 else if (size < 32768)
1340 emit_insn (gen_movsi (lr, gen_frame_mem (Pmode,
1341 gen_rtx_PLUS (Pmode, sp,
1342 GEN_INT (size)))));
1343 else
1344 {
1345 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1346
1347 emit_insn (gen_movsi (tmp, GEN_INT (size)));
1348 emit_insn (gen_addsi3 (tmp, tmp, sp));
1349 emit_insn (gen_movsi (lr, gen_frame_mem (Pmode, tmp)));
1350 }
1351
1352 emit_insn (gen_rtx_USE (VOIDmode, lr));
1353 }
1354
1355 void
1356 m32r_load_pic_register (void)
1357 {
1358 global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
1359 emit_insn (gen_get_pc (pic_offset_table_rtx, global_offset_table,
1360 GEN_INT (TARGET_MODEL_SMALL)));
1361
1362 /* Need to emit this whether or not we obey regdecls,
1363 since setjmp/longjmp can cause life info to screw up. */
1364 emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx));
1365 }
1366
1367 /* Expand the m32r prologue as a series of insns. */
1368
1369 void
1370 m32r_expand_prologue (void)
1371 {
1372 int regno;
1373 int frame_size;
1374 unsigned int gmask;
1375 int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
1376 | current_function_profile);
1377
1378 if (! current_frame_info.initialized)
1379 m32r_compute_frame_size (get_frame_size ());
1380
1381 gmask = current_frame_info.gmask;
1382
1383 /* These cases shouldn't happen. Catch them now. */
1384 gcc_assert (current_frame_info.total_size || !gmask);
1385
1386 /* Allocate space for register arguments if this is a variadic function. */
1387 if (current_frame_info.pretend_size != 0)
1388 {
1389 /* Use a HOST_WIDE_INT temporary, since negating an unsigned int gives
1390 the wrong result on a 64-bit host. */
1391 HOST_WIDE_INT pretend_size = current_frame_info.pretend_size;
1392 emit_insn (gen_addsi3 (stack_pointer_rtx,
1393 stack_pointer_rtx,
1394 GEN_INT (-pretend_size)));
1395 }
1396
1397 /* Save any registers we need to and set up fp. */
1398 if (current_frame_info.save_fp)
1399 emit_insn (gen_movsi_push (stack_pointer_rtx, frame_pointer_rtx));
1400
1401 gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK);
1402
1403 /* Save any needed call-saved regs (and call-used if this is an
1404 interrupt handler). */
1405 for (regno = 0; regno <= M32R_MAX_INT_REGS; ++regno)
1406 {
1407 if ((gmask & (1 << regno)) != 0)
1408 emit_insn (gen_movsi_push (stack_pointer_rtx,
1409 gen_rtx_REG (Pmode, regno)));
1410 }
1411
1412 if (current_frame_info.save_lr)
1413 emit_insn (gen_movsi_push (stack_pointer_rtx,
1414 gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)));
1415
1416 /* Allocate the stack frame. */
1417 frame_size = (current_frame_info.total_size
1418 - (current_frame_info.pretend_size
1419 + current_frame_info.reg_size));
1420
1421 if (frame_size == 0)
1422 ; /* Nothing to do. */
1423 else if (frame_size <= 32768)
1424 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1425 GEN_INT (-frame_size)));
1426 else
1427 {
1428 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1429
1430 emit_insn (gen_movsi (tmp, GEN_INT (frame_size)));
1431 emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
1432 }
1433
1434 if (frame_pointer_needed)
1435 emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx));
1436
1437 if (current_function_profile)
1438 /* Push lr for mcount (form_pc, x). */
1439 emit_insn (gen_movsi_push (stack_pointer_rtx,
1440 gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)));
1441
1442 if (pic_reg_used)
1443 {
1444 m32r_load_pic_register ();
1445 m32r_reload_lr (stack_pointer_rtx,
1446 (current_function_profile ? 0 : frame_size));
1447 }
1448
1449 if (current_function_profile && !pic_reg_used)
1450 emit_insn (gen_blockage ());
1451 }
1452
1453 \f
1454 /* Set up the stack and frame pointer (if desired) for the function.
1455 Note, if this is changed, you need to mirror the changes in
1456 m32r_compute_frame_size which calculates the prolog size. */
1457
1458 static void
1459 m32r_output_function_prologue (FILE * file, HOST_WIDE_INT size)
1460 {
1461 enum m32r_function_type fn_type = m32r_compute_function_type (current_function_decl);
1462
1463 /* If this is an interrupt handler, mark it as such. */
1464 if (M32R_INTERRUPT_P (fn_type))
1465 fprintf (file, "\t%s interrupt handler\n", ASM_COMMENT_START);
1466
1467 if (! current_frame_info.initialized)
1468 m32r_compute_frame_size (size);
1469
1470 /* This is only for the human reader. */
1471 fprintf (file,
1472 "\t%s PROLOGUE, vars= %d, regs= %d, args= %d, extra= %d\n",
1473 ASM_COMMENT_START,
1474 current_frame_info.var_size,
1475 current_frame_info.reg_size / 4,
1476 current_frame_info.args_size,
1477 current_frame_info.extra_size);
1478 }
1479 \f
1480 /* Output RTL to pop register REGNO from the stack. */
1481
1482 static void
1483 pop (int regno)
1484 {
1485 rtx x;
1486
1487 x = emit_insn (gen_movsi_pop (gen_rtx_REG (Pmode, regno),
1488 stack_pointer_rtx));
1489 REG_NOTES (x)
1490 = gen_rtx_EXPR_LIST (REG_INC, stack_pointer_rtx, 0);
1491 }
1492
1493 /* Expand the m32r epilogue as a series of insns. */
1494
1495 void
1496 m32r_expand_epilogue (void)
1497 {
1498 int regno;
1499 int noepilogue = FALSE;
1500 int total_size;
1501
1502 gcc_assert (current_frame_info.initialized);
1503 total_size = current_frame_info.total_size;
1504
1505 if (total_size == 0)
1506 {
1507 rtx insn = get_last_insn ();
1508
1509 /* If the last insn was a BARRIER, we don't have to write any code
1510 because a jump (aka return) was put there. */
1511 if (insn && GET_CODE (insn) == NOTE)
1512 insn = prev_nonnote_insn (insn);
1513 if (insn && GET_CODE (insn) == BARRIER)
1514 noepilogue = TRUE;
1515 }
1516
1517 if (!noepilogue)
1518 {
1519 unsigned int var_size = current_frame_info.var_size;
1520 unsigned int args_size = current_frame_info.args_size;
1521 unsigned int gmask = current_frame_info.gmask;
1522 int can_trust_sp_p = !current_function_calls_alloca;
1523
1524 if (flag_exceptions)
1525 emit_insn (gen_blockage ());
1526
1527 /* The first thing to do is point the sp at the bottom of the register
1528 save area. */
1529 if (can_trust_sp_p)
1530 {
1531 unsigned int reg_offset = var_size + args_size;
1532
1533 if (reg_offset == 0)
1534 ; /* Nothing to do. */
1535 else if (reg_offset < 32768)
1536 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1537 GEN_INT (reg_offset)));
1538 else
1539 {
1540 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1541
1542 emit_insn (gen_movsi (tmp, GEN_INT (reg_offset)));
1543 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1544 tmp));
1545 }
1546 }
1547 else if (frame_pointer_needed)
1548 {
1549 unsigned int reg_offset = var_size + args_size;
1550
1551 if (reg_offset == 0)
1552 emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx));
1553 else if (reg_offset < 32768)
1554 emit_insn (gen_addsi3 (stack_pointer_rtx, frame_pointer_rtx,
1555 GEN_INT (reg_offset)));
1556 else
1557 {
1558 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1559
1560 emit_insn (gen_movsi (tmp, GEN_INT (reg_offset)));
1561 emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx));
1562 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1563 tmp));
1564 }
1565 }
1566 else
1567 gcc_unreachable ();
1568
1569 if (current_frame_info.save_lr)
1570 pop (RETURN_ADDR_REGNUM);
1571
1572 /* Restore any saved registers, in reverse order of course. */
1573 gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK);
1574 for (regno = M32R_MAX_INT_REGS - 1; regno >= 0; --regno)
1575 {
1576 if ((gmask & (1L << regno)) != 0)
1577 pop (regno);
1578 }
1579
1580 if (current_frame_info.save_fp)
1581 pop (FRAME_POINTER_REGNUM);
1582
1583 /* Remove varargs area if present. */
1584 if (current_frame_info.pretend_size != 0)
1585 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1586 GEN_INT (current_frame_info.pretend_size)));
1587
1588 emit_insn (gen_blockage ());
1589 }
1590 }
1591
1592 /* Do any necessary cleanup after a function to restore stack, frame,
1593 and regs. */
1594
1595 static void
1596 m32r_output_function_epilogue (FILE * file ATTRIBUTE_UNUSED,
1597 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
1598 {
1599 /* Reset state info for each function. */
1600 current_frame_info = zero_frame_info;
1601 m32r_compute_function_type (NULL_TREE);
1602 }
1603 \f
1604 /* Return nonzero if this function is known to have a null or 1 instruction
1605 epilogue. */
1606
1607 int
1608 direct_return (void)
1609 {
1610 if (!reload_completed)
1611 return FALSE;
1612
1613 if (M32R_INTERRUPT_P (m32r_compute_function_type (current_function_decl)))
1614 return FALSE;
1615
1616 if (! current_frame_info.initialized)
1617 m32r_compute_frame_size (get_frame_size ());
1618
1619 return current_frame_info.total_size == 0;
1620 }
1621
1622 \f
1623 /* PIC. */
1624
1625 int
1626 m32r_legitimate_pic_operand_p (rtx x)
1627 {
1628 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
1629 return 0;
1630
1631 if (GET_CODE (x) == CONST
1632 && GET_CODE (XEXP (x, 0)) == PLUS
1633 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1634 || GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)
1635 && (GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
1636 return 0;
1637
1638 return 1;
1639 }
1640
1641 rtx
1642 m32r_legitimize_pic_address (rtx orig, rtx reg)
1643 {
1644 #ifdef DEBUG_PIC
1645 printf("m32r_legitimize_pic_address()\n");
1646 #endif
1647
1648 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
1649 {
1650 rtx pic_ref, address;
1651 rtx insn;
1652 int subregs = 0;
1653
1654 if (reg == 0)
1655 {
1656 gcc_assert (!reload_in_progress && !reload_completed);
1657 reg = gen_reg_rtx (Pmode);
1658
1659 subregs = 1;
1660 }
1661
1662 if (subregs)
1663 address = gen_reg_rtx (Pmode);
1664 else
1665 address = reg;
1666
1667 current_function_uses_pic_offset_table = 1;
1668
1669 if (GET_CODE (orig) == LABEL_REF
1670 || (GET_CODE (orig) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (orig)))
1671 {
1672 emit_insn (gen_gotoff_load_addr (reg, orig));
1673 emit_insn (gen_addsi3 (reg, reg, pic_offset_table_rtx));
1674 return reg;
1675 }
1676
1677 emit_insn (gen_pic_load_addr (address, orig));
1678
1679 emit_insn (gen_addsi3 (address, address, pic_offset_table_rtx));
1680 pic_ref = gen_const_mem (Pmode, address);
1681 insn = emit_move_insn (reg, pic_ref);
1682 #if 0
1683 /* Put a REG_EQUAL note on this insn, so that it can be optimized
1684 by loop. */
1685 set_unique_reg_note (insn, REG_EQUAL, orig);
1686 #endif
1687 return reg;
1688 }
1689 else if (GET_CODE (orig) == CONST)
1690 {
1691 rtx base, offset;
1692
1693 if (GET_CODE (XEXP (orig, 0)) == PLUS
1694 && XEXP (XEXP (orig, 0), 1) == pic_offset_table_rtx)
1695 return orig;
1696
1697 if (reg == 0)
1698 {
1699 gcc_assert (!reload_in_progress && !reload_completed);
1700 reg = gen_reg_rtx (Pmode);
1701 }
1702
1703 if (GET_CODE (XEXP (orig, 0)) == PLUS)
1704 {
1705 base = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 0), reg);
1706 if (base == reg)
1707 offset = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), NULL_RTX);
1708 else
1709 offset = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), reg);
1710 }
1711 else
1712 return orig;
1713
1714 if (GET_CODE (offset) == CONST_INT)
1715 {
1716 if (INT16_P (INTVAL (offset)))
1717 return plus_constant (base, INTVAL (offset));
1718 else
1719 {
1720 gcc_assert (! reload_in_progress && ! reload_completed);
1721 offset = force_reg (Pmode, offset);
1722 }
1723 }
1724
1725 return gen_rtx_PLUS (Pmode, base, offset);
1726 }
1727
1728 return orig;
1729 }
1730 \f
1731 /* Nested function support. */
1732
1733 /* Emit RTL insns to initialize the variable parts of a trampoline.
1734 FNADDR is an RTX for the address of the function's pure code.
1735 CXT is an RTX for the static chain value for the function. */
1736
1737 void
1738 m32r_initialize_trampoline (rtx tramp ATTRIBUTE_UNUSED,
1739 rtx fnaddr ATTRIBUTE_UNUSED,
1740 rtx cxt ATTRIBUTE_UNUSED)
1741 {
1742 }
1743 \f
1744 static void
1745 m32r_file_start (void)
1746 {
1747 default_file_start ();
1748
1749 if (flag_verbose_asm)
1750 fprintf (asm_out_file,
1751 "%s M32R/D special options: -G " HOST_WIDE_INT_PRINT_UNSIGNED "\n",
1752 ASM_COMMENT_START, g_switch_value);
1753
1754 if (TARGET_LITTLE_ENDIAN)
1755 fprintf (asm_out_file, "\t.little\n");
1756 }
1757 \f
1758 /* Print operand X (an rtx) in assembler syntax to file FILE.
1759 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1760 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1761
1762 void
1763 m32r_print_operand (FILE * file, rtx x, int code)
1764 {
1765 rtx addr;
1766
1767 switch (code)
1768 {
1769 /* The 's' and 'p' codes are used by output_block_move() to
1770 indicate post-increment 's'tores and 'p're-increment loads. */
1771 case 's':
1772 if (GET_CODE (x) == REG)
1773 fprintf (file, "@+%s", reg_names [REGNO (x)]);
1774 else
1775 output_operand_lossage ("invalid operand to %%s code");
1776 return;
1777
1778 case 'p':
1779 if (GET_CODE (x) == REG)
1780 fprintf (file, "@%s+", reg_names [REGNO (x)]);
1781 else
1782 output_operand_lossage ("invalid operand to %%p code");
1783 return;
1784
1785 case 'R' :
1786 /* Write second word of DImode or DFmode reference,
1787 register or memory. */
1788 if (GET_CODE (x) == REG)
1789 fputs (reg_names[REGNO (x)+1], file);
1790 else if (GET_CODE (x) == MEM)
1791 {
1792 fprintf (file, "@(");
1793 /* Handle possible auto-increment. Since it is pre-increment and
1794 we have already done it, we can just use an offset of four. */
1795 /* ??? This is taken from rs6000.c I think. I don't think it is
1796 currently necessary, but keep it around. */
1797 if (GET_CODE (XEXP (x, 0)) == PRE_INC
1798 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
1799 output_address (plus_constant (XEXP (XEXP (x, 0), 0), 4));
1800 else
1801 output_address (plus_constant (XEXP (x, 0), 4));
1802 fputc (')', file);
1803 }
1804 else
1805 output_operand_lossage ("invalid operand to %%R code");
1806 return;
1807
1808 case 'H' : /* High word. */
1809 case 'L' : /* Low word. */
1810 if (GET_CODE (x) == REG)
1811 {
1812 /* L = least significant word, H = most significant word. */
1813 if ((WORDS_BIG_ENDIAN != 0) ^ (code == 'L'))
1814 fputs (reg_names[REGNO (x)], file);
1815 else
1816 fputs (reg_names[REGNO (x)+1], file);
1817 }
1818 else if (GET_CODE (x) == CONST_INT
1819 || GET_CODE (x) == CONST_DOUBLE)
1820 {
1821 rtx first, second;
1822
1823 split_double (x, &first, &second);
1824 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
1825 code == 'L' ? INTVAL (first) : INTVAL (second));
1826 }
1827 else
1828 output_operand_lossage ("invalid operand to %%H/%%L code");
1829 return;
1830
1831 case 'A' :
1832 {
1833 char str[30];
1834
1835 if (GET_CODE (x) != CONST_DOUBLE
1836 || GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT)
1837 fatal_insn ("bad insn for 'A'", x);
1838
1839 real_to_decimal (str, CONST_DOUBLE_REAL_VALUE (x), sizeof (str), 0, 1);
1840 fprintf (file, "%s", str);
1841 return;
1842 }
1843
1844 case 'B' : /* Bottom half. */
1845 case 'T' : /* Top half. */
1846 /* Output the argument to a `seth' insn (sets the Top half-word).
1847 For constants output arguments to a seth/or3 pair to set Top and
1848 Bottom halves. For symbols output arguments to a seth/add3 pair to
1849 set Top and Bottom halves. The difference exists because for
1850 constants seth/or3 is more readable but for symbols we need to use
1851 the same scheme as `ld' and `st' insns (16-bit addend is signed). */
1852 switch (GET_CODE (x))
1853 {
1854 case CONST_INT :
1855 case CONST_DOUBLE :
1856 {
1857 rtx first, second;
1858
1859 split_double (x, &first, &second);
1860 x = WORDS_BIG_ENDIAN ? second : first;
1861 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
1862 (code == 'B'
1863 ? INTVAL (x) & 0xffff
1864 : (INTVAL (x) >> 16) & 0xffff));
1865 }
1866 return;
1867 case CONST :
1868 case SYMBOL_REF :
1869 if (code == 'B'
1870 && small_data_operand (x, VOIDmode))
1871 {
1872 fputs ("sda(", file);
1873 output_addr_const (file, x);
1874 fputc (')', file);
1875 return;
1876 }
1877 /* fall through */
1878 case LABEL_REF :
1879 fputs (code == 'T' ? "shigh(" : "low(", file);
1880 output_addr_const (file, x);
1881 fputc (')', file);
1882 return;
1883 default :
1884 output_operand_lossage ("invalid operand to %%T/%%B code");
1885 return;
1886 }
1887 break;
1888
1889 case 'U' :
1890 /* ??? wip */
1891 /* Output a load/store with update indicator if appropriate. */
1892 if (GET_CODE (x) == MEM)
1893 {
1894 if (GET_CODE (XEXP (x, 0)) == PRE_INC
1895 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
1896 fputs (".a", file);
1897 }
1898 else
1899 output_operand_lossage ("invalid operand to %%U code");
1900 return;
1901
1902 case 'N' :
1903 /* Print a constant value negated. */
1904 if (GET_CODE (x) == CONST_INT)
1905 output_addr_const (file, GEN_INT (- INTVAL (x)));
1906 else
1907 output_operand_lossage ("invalid operand to %%N code");
1908 return;
1909
1910 case 'X' :
1911 /* Print a const_int in hex. Used in comments. */
1912 if (GET_CODE (x) == CONST_INT)
1913 fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
1914 return;
1915
1916 case '#' :
1917 fputs (IMMEDIATE_PREFIX, file);
1918 return;
1919
1920 case 0 :
1921 /* Do nothing special. */
1922 break;
1923
1924 default :
1925 /* Unknown flag. */
1926 output_operand_lossage ("invalid operand output code");
1927 }
1928
1929 switch (GET_CODE (x))
1930 {
1931 case REG :
1932 fputs (reg_names[REGNO (x)], file);
1933 break;
1934
1935 case MEM :
1936 addr = XEXP (x, 0);
1937 if (GET_CODE (addr) == PRE_INC)
1938 {
1939 if (GET_CODE (XEXP (addr, 0)) != REG)
1940 fatal_insn ("pre-increment address is not a register", x);
1941
1942 fprintf (file, "@+%s", reg_names[REGNO (XEXP (addr, 0))]);
1943 }
1944 else if (GET_CODE (addr) == PRE_DEC)
1945 {
1946 if (GET_CODE (XEXP (addr, 0)) != REG)
1947 fatal_insn ("pre-decrement address is not a register", x);
1948
1949 fprintf (file, "@-%s", reg_names[REGNO (XEXP (addr, 0))]);
1950 }
1951 else if (GET_CODE (addr) == POST_INC)
1952 {
1953 if (GET_CODE (XEXP (addr, 0)) != REG)
1954 fatal_insn ("post-increment address is not a register", x);
1955
1956 fprintf (file, "@%s+", reg_names[REGNO (XEXP (addr, 0))]);
1957 }
1958 else
1959 {
1960 fputs ("@(", file);
1961 output_address (XEXP (x, 0));
1962 fputc (')', file);
1963 }
1964 break;
1965
1966 case CONST_DOUBLE :
1967 /* We handle SFmode constants here as output_addr_const doesn't. */
1968 if (GET_MODE (x) == SFmode)
1969 {
1970 REAL_VALUE_TYPE d;
1971 long l;
1972
1973 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
1974 REAL_VALUE_TO_TARGET_SINGLE (d, l);
1975 fprintf (file, "0x%08lx", l);
1976 break;
1977 }
1978
1979 /* Fall through. Let output_addr_const deal with it. */
1980
1981 default :
1982 output_addr_const (file, x);
1983 break;
1984 }
1985 }
1986
1987 /* Print a memory address as an operand to reference that memory location. */
1988
1989 void
1990 m32r_print_operand_address (FILE * file, rtx addr)
1991 {
1992 rtx base;
1993 rtx index = 0;
1994 int offset = 0;
1995
1996 switch (GET_CODE (addr))
1997 {
1998 case REG :
1999 fputs (reg_names[REGNO (addr)], file);
2000 break;
2001
2002 case PLUS :
2003 if (GET_CODE (XEXP (addr, 0)) == CONST_INT)
2004 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);
2005 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
2006 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);
2007 else
2008 base = XEXP (addr, 0), index = XEXP (addr, 1);
2009 if (GET_CODE (base) == REG)
2010 {
2011 /* Print the offset first (if present) to conform to the manual. */
2012 if (index == 0)
2013 {
2014 if (offset != 0)
2015 fprintf (file, "%d,", offset);
2016 fputs (reg_names[REGNO (base)], file);
2017 }
2018 /* The chip doesn't support this, but left in for generality. */
2019 else if (GET_CODE (index) == REG)
2020 fprintf (file, "%s,%s",
2021 reg_names[REGNO (base)], reg_names[REGNO (index)]);
2022 /* Not sure this can happen, but leave in for now. */
2023 else if (GET_CODE (index) == SYMBOL_REF)
2024 {
2025 output_addr_const (file, index);
2026 fputc (',', file);
2027 fputs (reg_names[REGNO (base)], file);
2028 }
2029 else
2030 fatal_insn ("bad address", addr);
2031 }
2032 else if (GET_CODE (base) == LO_SUM)
2033 {
2034 gcc_assert (!index && GET_CODE (XEXP (base, 0)) == REG);
2035 if (small_data_operand (XEXP (base, 1), VOIDmode))
2036 fputs ("sda(", file);
2037 else
2038 fputs ("low(", file);
2039 output_addr_const (file, plus_constant (XEXP (base, 1), offset));
2040 fputs ("),", file);
2041 fputs (reg_names[REGNO (XEXP (base, 0))], file);
2042 }
2043 else
2044 fatal_insn ("bad address", addr);
2045 break;
2046
2047 case LO_SUM :
2048 if (GET_CODE (XEXP (addr, 0)) != REG)
2049 fatal_insn ("lo_sum not of register", addr);
2050 if (small_data_operand (XEXP (addr, 1), VOIDmode))
2051 fputs ("sda(", file);
2052 else
2053 fputs ("low(", file);
2054 output_addr_const (file, XEXP (addr, 1));
2055 fputs ("),", file);
2056 fputs (reg_names[REGNO (XEXP (addr, 0))], file);
2057 break;
2058
2059 case PRE_INC : /* Assume SImode. */
2060 fprintf (file, "+%s", reg_names[REGNO (XEXP (addr, 0))]);
2061 break;
2062
2063 case PRE_DEC : /* Assume SImode. */
2064 fprintf (file, "-%s", reg_names[REGNO (XEXP (addr, 0))]);
2065 break;
2066
2067 case POST_INC : /* Assume SImode. */
2068 fprintf (file, "%s+", reg_names[REGNO (XEXP (addr, 0))]);
2069 break;
2070
2071 default :
2072 output_addr_const (file, addr);
2073 break;
2074 }
2075 }
2076
2077 /* Return true if the operands are the constants 0 and 1. */
2078
2079 int
2080 zero_and_one (rtx operand1, rtx operand2)
2081 {
2082 return
2083 GET_CODE (operand1) == CONST_INT
2084 && GET_CODE (operand2) == CONST_INT
2085 && ( ((INTVAL (operand1) == 0) && (INTVAL (operand2) == 1))
2086 ||((INTVAL (operand1) == 1) && (INTVAL (operand2) == 0)));
2087 }
2088
2089 /* Generate the correct assembler code to handle the conditional loading of a
2090 value into a register. It is known that the operands satisfy the
2091 conditional_move_operand() function above. The destination is operand[0].
2092 The condition is operand [1]. The 'true' value is operand [2] and the
2093 'false' value is operand [3]. */
2094
2095 char *
2096 emit_cond_move (rtx * operands, rtx insn ATTRIBUTE_UNUSED)
2097 {
2098 static char buffer [100];
2099 const char * dest = reg_names [REGNO (operands [0])];
2100
2101 buffer [0] = 0;
2102
2103 /* Destination must be a register. */
2104 gcc_assert (GET_CODE (operands [0]) == REG);
2105 gcc_assert (conditional_move_operand (operands [2], SImode));
2106 gcc_assert (conditional_move_operand (operands [3], SImode));
2107
2108 /* Check to see if the test is reversed. */
2109 if (GET_CODE (operands [1]) == NE)
2110 {
2111 rtx tmp = operands [2];
2112 operands [2] = operands [3];
2113 operands [3] = tmp;
2114 }
2115
2116 sprintf (buffer, "mvfc %s, cbr", dest);
2117
2118 /* If the true value was '0' then we need to invert the results of the move. */
2119 if (INTVAL (operands [2]) == 0)
2120 sprintf (buffer + strlen (buffer), "\n\txor3 %s, %s, #1",
2121 dest, dest);
2122
2123 return buffer;
2124 }
2125
2126 /* Returns true if the registers contained in the two
2127 rtl expressions are different. */
2128
2129 int
2130 m32r_not_same_reg (rtx a, rtx b)
2131 {
2132 int reg_a = -1;
2133 int reg_b = -2;
2134
2135 while (GET_CODE (a) == SUBREG)
2136 a = SUBREG_REG (a);
2137
2138 if (GET_CODE (a) == REG)
2139 reg_a = REGNO (a);
2140
2141 while (GET_CODE (b) == SUBREG)
2142 b = SUBREG_REG (b);
2143
2144 if (GET_CODE (b) == REG)
2145 reg_b = REGNO (b);
2146
2147 return reg_a != reg_b;
2148 }
2149
2150 \f
2151 rtx
2152 m32r_function_symbol (const char *name)
2153 {
2154 int extra_flags = 0;
2155 enum m32r_model model;
2156 rtx sym = gen_rtx_SYMBOL_REF (Pmode, name);
2157
2158 if (TARGET_MODEL_SMALL)
2159 model = M32R_MODEL_SMALL;
2160 else if (TARGET_MODEL_MEDIUM)
2161 model = M32R_MODEL_MEDIUM;
2162 else if (TARGET_MODEL_LARGE)
2163 model = M32R_MODEL_LARGE;
2164 else
2165 gcc_unreachable (); /* Shouldn't happen. */
2166 extra_flags |= model << SYMBOL_FLAG_MODEL_SHIFT;
2167
2168 if (extra_flags)
2169 SYMBOL_REF_FLAGS (sym) |= extra_flags;
2170
2171 return sym;
2172 }
2173
2174 /* Use a library function to move some bytes. */
2175
2176 static void
2177 block_move_call (rtx dest_reg, rtx src_reg, rtx bytes_rtx)
2178 {
2179 /* We want to pass the size as Pmode, which will normally be SImode
2180 but will be DImode if we are using 64-bit longs and pointers. */
2181 if (GET_MODE (bytes_rtx) != VOIDmode
2182 && GET_MODE (bytes_rtx) != Pmode)
2183 bytes_rtx = convert_to_mode (Pmode, bytes_rtx, 1);
2184
2185 emit_library_call (m32r_function_symbol ("memcpy"), 0,
2186 VOIDmode, 3, dest_reg, Pmode, src_reg, Pmode,
2187 convert_to_mode (TYPE_MODE (sizetype), bytes_rtx,
2188 TYPE_UNSIGNED (sizetype)),
2189 TYPE_MODE (sizetype));
2190 }
2191
2192 /* Expand string/block move operations.
2193
2194 operands[0] is the pointer to the destination.
2195 operands[1] is the pointer to the source.
2196 operands[2] is the number of bytes to move.
2197 operands[3] is the alignment.
2198
2199 Returns 1 upon success, 0 otherwise. */
2200
2201 int
2202 m32r_expand_block_move (rtx operands[])
2203 {
2204 rtx orig_dst = operands[0];
2205 rtx orig_src = operands[1];
2206 rtx bytes_rtx = operands[2];
2207 rtx align_rtx = operands[3];
2208 int constp = GET_CODE (bytes_rtx) == CONST_INT;
2209 HOST_WIDE_INT bytes = constp ? INTVAL (bytes_rtx) : 0;
2210 int align = INTVAL (align_rtx);
2211 int leftover;
2212 rtx src_reg;
2213 rtx dst_reg;
2214
2215 if (constp && bytes <= 0)
2216 return 1;
2217
2218 /* Move the address into scratch registers. */
2219 dst_reg = copy_addr_to_reg (XEXP (orig_dst, 0));
2220 src_reg = copy_addr_to_reg (XEXP (orig_src, 0));
2221
2222 if (align > UNITS_PER_WORD)
2223 align = UNITS_PER_WORD;
2224
2225 /* If we prefer size over speed, always use a function call.
2226 If we do not know the size, use a function call.
2227 If the blocks are not word aligned, use a function call. */
2228 if (optimize_size || ! constp || align != UNITS_PER_WORD)
2229 {
2230 block_move_call (dst_reg, src_reg, bytes_rtx);
2231 return 0;
2232 }
2233
2234 leftover = bytes % MAX_MOVE_BYTES;
2235 bytes -= leftover;
2236
2237 /* If necessary, generate a loop to handle the bulk of the copy. */
2238 if (bytes)
2239 {
2240 rtx label = NULL_RTX;
2241 rtx final_src = NULL_RTX;
2242 rtx at_a_time = GEN_INT (MAX_MOVE_BYTES);
2243 rtx rounded_total = GEN_INT (bytes);
2244 rtx new_dst_reg = gen_reg_rtx (SImode);
2245 rtx new_src_reg = gen_reg_rtx (SImode);
2246
2247 /* If we are going to have to perform this loop more than
2248 once, then generate a label and compute the address the
2249 source register will contain upon completion of the final
2250 iteration. */
2251 if (bytes > MAX_MOVE_BYTES)
2252 {
2253 final_src = gen_reg_rtx (Pmode);
2254
2255 if (INT16_P(bytes))
2256 emit_insn (gen_addsi3 (final_src, src_reg, rounded_total));
2257 else
2258 {
2259 emit_insn (gen_movsi (final_src, rounded_total));
2260 emit_insn (gen_addsi3 (final_src, final_src, src_reg));
2261 }
2262
2263 label = gen_label_rtx ();
2264 emit_label (label);
2265 }
2266
2267 /* It is known that output_block_move() will update src_reg to point
2268 to the word after the end of the source block, and dst_reg to point
2269 to the last word of the destination block, provided that the block
2270 is MAX_MOVE_BYTES long. */
2271 emit_insn (gen_movmemsi_internal (dst_reg, src_reg, at_a_time,
2272 new_dst_reg, new_src_reg));
2273 emit_move_insn (dst_reg, new_dst_reg);
2274 emit_move_insn (src_reg, new_src_reg);
2275 emit_insn (gen_addsi3 (dst_reg, dst_reg, GEN_INT (4)));
2276
2277 if (bytes > MAX_MOVE_BYTES)
2278 {
2279 emit_insn (gen_cmpsi (src_reg, final_src));
2280 emit_jump_insn (gen_bne (label));
2281 }
2282 }
2283
2284 if (leftover)
2285 emit_insn (gen_movmemsi_internal (dst_reg, src_reg, GEN_INT (leftover),
2286 gen_reg_rtx (SImode),
2287 gen_reg_rtx (SImode)));
2288 return 1;
2289 }
2290
2291 \f
2292 /* Emit load/stores for a small constant word aligned block_move.
2293
2294 operands[0] is the memory address of the destination.
2295 operands[1] is the memory address of the source.
2296 operands[2] is the number of bytes to move.
2297 operands[3] is a temp register.
2298 operands[4] is a temp register. */
2299
2300 void
2301 m32r_output_block_move (rtx insn ATTRIBUTE_UNUSED, rtx operands[])
2302 {
2303 HOST_WIDE_INT bytes = INTVAL (operands[2]);
2304 int first_time;
2305 int got_extra = 0;
2306
2307 gcc_assert (bytes >= 1 && bytes <= MAX_MOVE_BYTES);
2308
2309 /* We do not have a post-increment store available, so the first set of
2310 stores are done without any increment, then the remaining ones can use
2311 the pre-increment addressing mode.
2312
2313 Note: expand_block_move() also relies upon this behavior when building
2314 loops to copy large blocks. */
2315 first_time = 1;
2316
2317 while (bytes > 0)
2318 {
2319 if (bytes >= 8)
2320 {
2321 if (first_time)
2322 {
2323 output_asm_insn ("ld\t%5, %p1", operands);
2324 output_asm_insn ("ld\t%6, %p1", operands);
2325 output_asm_insn ("st\t%5, @%0", operands);
2326 output_asm_insn ("st\t%6, %s0", operands);
2327 }
2328 else
2329 {
2330 output_asm_insn ("ld\t%5, %p1", operands);
2331 output_asm_insn ("ld\t%6, %p1", operands);
2332 output_asm_insn ("st\t%5, %s0", operands);
2333 output_asm_insn ("st\t%6, %s0", operands);
2334 }
2335
2336 bytes -= 8;
2337 }
2338 else if (bytes >= 4)
2339 {
2340 if (bytes > 4)
2341 got_extra = 1;
2342
2343 output_asm_insn ("ld\t%5, %p1", operands);
2344
2345 if (got_extra)
2346 output_asm_insn ("ld\t%6, %p1", operands);
2347
2348 if (first_time)
2349 output_asm_insn ("st\t%5, @%0", operands);
2350 else
2351 output_asm_insn ("st\t%5, %s0", operands);
2352
2353 bytes -= 4;
2354 }
2355 else
2356 {
2357 /* Get the entire next word, even though we do not want all of it.
2358 The saves us from doing several smaller loads, and we assume that
2359 we cannot cause a page fault when at least part of the word is in
2360 valid memory [since we don't get called if things aren't properly
2361 aligned]. */
2362 int dst_offset = first_time ? 0 : 4;
2363 /* The amount of increment we have to make to the
2364 destination pointer. */
2365 int dst_inc_amount = dst_offset + bytes - 4;
2366 /* The same for the source pointer. */
2367 int src_inc_amount = bytes;
2368 int last_shift;
2369 rtx my_operands[3];
2370
2371 /* If got_extra is true then we have already loaded
2372 the next word as part of loading and storing the previous word. */
2373 if (! got_extra)
2374 output_asm_insn ("ld\t%6, @%1", operands);
2375
2376 if (bytes >= 2)
2377 {
2378 bytes -= 2;
2379
2380 output_asm_insn ("sra3\t%5, %6, #16", operands);
2381 my_operands[0] = operands[5];
2382 my_operands[1] = GEN_INT (dst_offset);
2383 my_operands[2] = operands[0];
2384 output_asm_insn ("sth\t%0, @(%1,%2)", my_operands);
2385
2386 /* If there is a byte left to store then increment the
2387 destination address and shift the contents of the source
2388 register down by 8 bits. We could not do the address
2389 increment in the store half word instruction, because it does
2390 not have an auto increment mode. */
2391 if (bytes > 0) /* assert (bytes == 1) */
2392 {
2393 dst_offset += 2;
2394 last_shift = 8;
2395 }
2396 }
2397 else
2398 last_shift = 24;
2399
2400 if (bytes > 0)
2401 {
2402 my_operands[0] = operands[6];
2403 my_operands[1] = GEN_INT (last_shift);
2404 output_asm_insn ("srai\t%0, #%1", my_operands);
2405 my_operands[0] = operands[6];
2406 my_operands[1] = GEN_INT (dst_offset);
2407 my_operands[2] = operands[0];
2408 output_asm_insn ("stb\t%0, @(%1,%2)", my_operands);
2409 }
2410
2411 /* Update the destination pointer if needed. We have to do
2412 this so that the patterns matches what we output in this
2413 function. */
2414 if (dst_inc_amount
2415 && !find_reg_note (insn, REG_UNUSED, operands[0]))
2416 {
2417 my_operands[0] = operands[0];
2418 my_operands[1] = GEN_INT (dst_inc_amount);
2419 output_asm_insn ("addi\t%0, #%1", my_operands);
2420 }
2421
2422 /* Update the source pointer if needed. We have to do this
2423 so that the patterns matches what we output in this
2424 function. */
2425 if (src_inc_amount
2426 && !find_reg_note (insn, REG_UNUSED, operands[1]))
2427 {
2428 my_operands[0] = operands[1];
2429 my_operands[1] = GEN_INT (src_inc_amount);
2430 output_asm_insn ("addi\t%0, #%1", my_operands);
2431 }
2432
2433 bytes = 0;
2434 }
2435
2436 first_time = 0;
2437 }
2438 }
2439
2440 /* Return true if using NEW_REG in place of OLD_REG is ok. */
2441
2442 int
2443 m32r_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
2444 unsigned int new_reg)
2445 {
2446 /* Interrupt routines can't clobber any register that isn't already used. */
2447 if (lookup_attribute ("interrupt", DECL_ATTRIBUTES (current_function_decl))
2448 && !df_regs_ever_live_p (new_reg))
2449 return 0;
2450
2451 return 1;
2452 }
2453
2454 rtx
2455 m32r_return_addr (int count)
2456 {
2457 if (count != 0)
2458 return const0_rtx;
2459
2460 return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM);
2461 }