]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/m32r/m32r.h
target.h (targetm.calls.arg_partial_bytes): New.
[thirdparty/gcc.git] / gcc / config / m32r / m32r.h
1 /* Definitions of target machine for GNU compiler, Renesas M32R cpu.
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 2, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Things to do:
23 - longlong.h?
24 */
25
26 #undef SWITCH_TAKES_ARG
27 #undef WORD_SWITCH_TAKES_ARG
28 #undef HANDLE_SYSV_PRAGMA
29 #undef SIZE_TYPE
30 #undef PTRDIFF_TYPE
31 #undef WCHAR_TYPE
32 #undef WCHAR_TYPE_SIZE
33 #undef TARGET_VERSION
34 #undef CPP_SPEC
35 #undef ASM_SPEC
36 #undef LINK_SPEC
37 #undef STARTFILE_SPEC
38 #undef ENDFILE_SPEC
39 #undef SUBTARGET_SWITCHES
40
41 #undef ASM_APP_ON
42 #undef ASM_APP_OFF
43 \f
44
45 /* M32R/X overrides. */
46 /* Print subsidiary information on the compiler version in use. */
47 #define TARGET_VERSION fprintf (stderr, " (m32r/x/2)");
48
49 /* Additional flags for the preprocessor. */
50 #define CPP_CPU_SPEC "%{m32rx:-D__M32RX__ -D__m32rx__ -U__M32R2__ -U__m32r2__} \
51 %{m32r2:-D__M32R2__ -D__m32r2__ -U__M32RX__ -U__m32rx__} \
52 %{m32r:-U__M32RX__ -U__m32rx__ -U__M32R2__ -U__m32r2__} \
53 "
54
55 /* Assembler switches. */
56 #define ASM_CPU_SPEC \
57 "%{m32r} %{m32rx} %{m32r2} %{!O0: %{O*: -O}} --no-warn-explicit-parallel-conflicts"
58
59 /* Use m32rx specific crt0/crtinit/crtfini files. */
60 #define STARTFILE_CPU_SPEC "%{!shared:crt0.o%s} %{m32rx:m32rx/crtinit.o%s} %{!m32rx:crtinit.o%s}"
61 #define ENDFILE_CPU_SPEC "-lgloss %{m32rx:m32rx/crtfini.o%s} %{!m32rx:crtfini.o%s}"
62
63 /* Extra machine dependent switches. */
64 #define SUBTARGET_SWITCHES \
65 { "32rx", TARGET_M32RX_MASK, "Compile for the m32rx" }, \
66 { "32r2", TARGET_M32R2_MASK, "Compile for the m32r2" }, \
67 { "32r", -(TARGET_M32RX_MASK+TARGET_M32R2_MASK), "" },
68
69 /* Define this macro as a C expression for the initializer of an array of
70 strings to tell the driver program which options are defaults for this
71 target and thus do not need to be handled specially when using
72 `MULTILIB_OPTIONS'. */
73 #define SUBTARGET_MULTILIB_DEFAULTS , "m32r"
74
75 /* Number of additional registers the subtarget defines. */
76 #define SUBTARGET_NUM_REGISTERS 1
77
78 /* 1 for registers that cannot be allocated. */
79 #define SUBTARGET_FIXED_REGISTERS , 1
80
81 /* 1 for registers that are not available across function calls. */
82 #define SUBTARGET_CALL_USED_REGISTERS , 1
83
84 /* Order to allocate model specific registers. */
85 #define SUBTARGET_REG_ALLOC_ORDER , 19
86
87 /* Registers which are accumulators. */
88 #define SUBTARGET_REG_CLASS_ACCUM 0x80000
89
90 /* All registers added. */
91 #define SUBTARGET_REG_CLASS_ALL SUBTARGET_REG_CLASS_ACCUM
92
93 /* Additional accumulator registers. */
94 #define SUBTARGET_ACCUM_P(REGNO) ((REGNO) == 19)
95
96 /* Define additional register names. */
97 #define SUBTARGET_REGISTER_NAMES , "a1"
98 /* end M32R/X overrides. */
99
100 /* Print subsidiary information on the compiler version in use. */
101 #ifndef TARGET_VERSION
102 #define TARGET_VERSION fprintf (stderr, " (m32r)")
103 #endif
104
105 /* Switch Recognition by gcc.c. Add -G xx support. */
106
107 #undef SWITCH_TAKES_ARG
108 #define SWITCH_TAKES_ARG(CHAR) \
109 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
110
111 /* Names to predefine in the preprocessor for this target machine. */
112 /* __M32R__ is defined by the existing compiler so we use that. */
113 #define TARGET_CPU_CPP_BUILTINS() \
114 do \
115 { \
116 builtin_define ("__M32R__"); \
117 builtin_define ("__m32r__"); \
118 builtin_assert ("cpu=m32r"); \
119 builtin_assert ("machine=m32r"); \
120 builtin_define (TARGET_BIG_ENDIAN \
121 ? "__BIG_ENDIAN__" : "__LITTLE_ENDIAN__"); \
122 if (flag_pic) \
123 { \
124 builtin_define ("__pic__"); \
125 builtin_define ("__PIC__"); \
126 } \
127 } \
128 while (0)
129
130 /* This macro defines names of additional specifications to put in the specs
131 that can be used in various specifications like CC1_SPEC. Its definition
132 is an initializer with a subgrouping for each command option.
133
134 Each subgrouping contains a string constant, that defines the
135 specification name, and a string constant that used by the GCC driver
136 program.
137
138 Do not define this macro if it does not need to do anything. */
139
140 #ifndef SUBTARGET_EXTRA_SPECS
141 #define SUBTARGET_EXTRA_SPECS
142 #endif
143
144 #ifndef ASM_CPU_SPEC
145 #define ASM_CPU_SPEC ""
146 #endif
147
148 #ifndef CPP_CPU_SPEC
149 #define CPP_CPU_SPEC ""
150 #endif
151
152 #ifndef CC1_CPU_SPEC
153 #define CC1_CPU_SPEC ""
154 #endif
155
156 #ifndef LINK_CPU_SPEC
157 #define LINK_CPU_SPEC ""
158 #endif
159
160 #ifndef STARTFILE_CPU_SPEC
161 #define STARTFILE_CPU_SPEC "%{!shared:crt0.o%s} crtinit.o%s"
162 #endif
163
164 #ifndef ENDFILE_CPU_SPEC
165 #define ENDFILE_CPU_SPEC "-lgloss crtfini.o%s"
166 #endif
167
168 #ifndef RELAX_SPEC
169 #if 0 /* Not supported yet. */
170 #define RELAX_SPEC "%{mrelax:-relax}"
171 #else
172 #define RELAX_SPEC ""
173 #endif
174 #endif
175
176 #define EXTRA_SPECS \
177 { "asm_cpu", ASM_CPU_SPEC }, \
178 { "cpp_cpu", CPP_CPU_SPEC }, \
179 { "cc1_cpu", CC1_CPU_SPEC }, \
180 { "link_cpu", LINK_CPU_SPEC }, \
181 { "startfile_cpu", STARTFILE_CPU_SPEC }, \
182 { "endfile_cpu", ENDFILE_CPU_SPEC }, \
183 { "relax", RELAX_SPEC }, \
184 SUBTARGET_EXTRA_SPECS
185
186 #define CPP_SPEC "%(cpp_cpu)"
187
188 #undef CC1_SPEC
189 #define CC1_SPEC "%{G*} %(cc1_cpu)"
190
191 /* Options to pass on to the assembler. */
192 #undef ASM_SPEC
193 #define ASM_SPEC "%{v} %(asm_cpu) %(relax) %{fpic:-K PIC} %{fPIC:-K PIC}"
194
195 #define LINK_SPEC "%{v} %(link_cpu) %(relax)"
196
197 #undef STARTFILE_SPEC
198 #define STARTFILE_SPEC "%(startfile_cpu)"
199
200 #undef ENDFILE_SPEC
201 #define ENDFILE_SPEC "%(endfile_cpu)"
202
203 #undef LIB_SPEC
204 \f
205 /* Run-time compilation parameters selecting different hardware subsets. */
206
207 extern int target_flags;
208
209 /* If nonzero, tell the linker to do relaxing.
210 We don't do anything with the option, other than recognize it.
211 LINK_SPEC handles passing -relax to the linker.
212 This can cause incorrect debugging information as line numbers may
213 turn out wrong. This shouldn't be specified unless accompanied with -O2
214 [where the user expects debugging information to be less accurate]. */
215 #define TARGET_RELAX_MASK (1 << 0)
216
217 /* For miscellaneous debugging purposes. */
218 #define TARGET_DEBUG_MASK (1 << 1)
219 #define TARGET_DEBUG (target_flags & TARGET_DEBUG_MASK)
220
221 /* Align loops to 32 byte boundaries (cache line size). */
222 /* ??? This option is experimental and is not documented. */
223 #define TARGET_ALIGN_LOOPS_MASK (1 << 2)
224 #define TARGET_ALIGN_LOOPS (target_flags & TARGET_ALIGN_LOOPS_MASK)
225
226 /* Change issue rate. */
227 #define TARGET_LOW_ISSUE_RATE_MASK (1 << 3)
228 #define TARGET_LOW_ISSUE_RATE (target_flags & TARGET_LOW_ISSUE_RATE_MASK)
229
230 /* Change branch cost */
231 #define TARGET_BRANCH_COST_MASK (1 << 4)
232 #define TARGET_BRANCH_COST (target_flags & TARGET_BRANCH_COST_MASK)
233
234 /* Target machine to compile for. */
235 #define TARGET_M32R 1
236
237 /* Support extended instruction set. */
238 #define TARGET_M32RX_MASK (1 << 5)
239 #define TARGET_M32RX (target_flags & TARGET_M32RX_MASK)
240 #undef TARGET_M32R
241 #define TARGET_M32R (! TARGET_M32RX)
242
243 /* Support extended instruction set of m32r2. */
244 #define TARGET_M32R2_MASK (1 << 6)
245 #define TARGET_M32R2 (target_flags & TARGET_M32R2_MASK)
246 #undef TARGET_M32R
247 #define TARGET_M32R (! TARGET_M32RX && ! TARGET_M32R2)
248
249 /* Little Endian Flag. */
250 #define LITTLE_ENDIAN_BIT (1 << 7)
251 #define TARGET_LITTLE_ENDIAN (target_flags & LITTLE_ENDIAN_BIT)
252 #define TARGET_BIG_ENDIAN (! TARGET_LITTLE_ENDIAN)
253
254 /* This defaults us to big-endian. */
255 #ifndef TARGET_ENDIAN_DEFAULT
256 #define TARGET_ENDIAN_DEFAULT 0
257 #endif
258
259 /* This defaults us to m32r. */
260 #ifndef TARGET_CPU_DEFAULT
261 #define TARGET_CPU_DEFAULT 0
262 #endif
263
264 /* Macro to define tables used to set the flags.
265 This is a list in braces of pairs in braces,
266 each pair being { "NAME", VALUE }
267 where VALUE is the bits to set or minus the bits to clear.
268 An empty string NAME is used to identify the default VALUE. */
269
270 #ifndef SUBTARGET_SWITCHES
271 #define SUBTARGET_SWITCHES
272 #endif
273
274 #ifndef TARGET_DEFAULT
275 #define TARGET_DEFAULT (TARGET_CPU_DEFAULT | TARGET_ENDIAN_DEFAULT)
276 #endif
277
278 #define TARGET_SWITCHES \
279 { \
280 /* { "relax", TARGET_RELAX_MASK, "" }, \
281 { "no-relax", -TARGET_RELAX_MASK, "" },*/ \
282 { "debug", TARGET_DEBUG_MASK, \
283 N_("Display compile time statistics") }, \
284 { "align-loops", TARGET_ALIGN_LOOPS_MASK, \
285 N_("Align all loops to 32 byte boundary") }, \
286 { "no-align-loops", -TARGET_ALIGN_LOOPS_MASK, "" }, \
287 { "issue-rate=1", TARGET_LOW_ISSUE_RATE_MASK, \
288 N_("Only issue one instruction per cycle") }, \
289 { "issue-rate=2", -TARGET_LOW_ISSUE_RATE_MASK, "" }, \
290 { "branch-cost=1", TARGET_BRANCH_COST_MASK, \
291 N_("Prefer branches over conditional execution") }, \
292 { "branch-cost=2", -TARGET_BRANCH_COST_MASK, "" }, \
293 SUBTARGET_SWITCHES \
294 { "", TARGET_DEFAULT, "" } \
295 }
296
297 extern const char * m32r_model_string;
298 extern const char * m32r_sdata_string;
299
300 /* Cache-flush support. */
301 extern const char * m32r_cache_flush_func;
302 extern const char * m32r_cache_flush_trap_string;
303 extern int m32r_cache_flush_trap;
304
305 #ifndef SUBTARGET_OPTIONS
306 #define SUBTARGET_OPTIONS
307 #endif
308
309 #define TARGET_OPTIONS \
310 { \
311 { "model=", & m32r_model_string, \
312 N_("Code size: small, medium or large"), 0}, \
313 { "sdata=", & m32r_sdata_string, \
314 N_("Small data area: none, sdata, use"), 0}, \
315 { "no-flush-func", & m32r_cache_flush_func, \
316 N_("Don't call any cache flush functions") }, \
317 { "flush-func=", & m32r_cache_flush_func, \
318 N_("Specify cache flush function") }, \
319 { "no-flush-trap", & m32r_cache_flush_trap_string, \
320 N_("Don't call any cache flush trap") }, \
321 { "flush-trap=", & m32r_cache_flush_trap_string, \
322 N_("Specify cache flush trap number") } \
323 SUBTARGET_OPTIONS \
324 }
325
326 /* Code Models
327
328 Code models are used to select between two choices of two separate
329 possibilities (address space size, call insn to use):
330
331 small: addresses use 24 bits, use bl to make calls
332 medium: addresses use 32 bits, use bl to make calls (*1)
333 large: addresses use 32 bits, use seth/add3/jl to make calls (*2)
334
335 The fourth is "addresses use 24 bits, use seth/add3/jl to make calls" but
336 using this one doesn't make much sense.
337
338 (*1) The linker may eventually be able to relax seth/add3 -> ld24.
339 (*2) The linker may eventually be able to relax seth/add3/jl -> bl.
340
341 Internally these are recorded as TARGET_ADDR{24,32} and
342 TARGET_CALL{26,32}.
343
344 The __model__ attribute can be used to select the code model to use when
345 accessing particular objects. */
346
347 enum m32r_model { M32R_MODEL_SMALL, M32R_MODEL_MEDIUM, M32R_MODEL_LARGE };
348
349 extern enum m32r_model m32r_model;
350 #define TARGET_MODEL_SMALL (m32r_model == M32R_MODEL_SMALL)
351 #define TARGET_MODEL_MEDIUM (m32r_model == M32R_MODEL_MEDIUM)
352 #define TARGET_MODEL_LARGE (m32r_model == M32R_MODEL_LARGE)
353 #define TARGET_ADDR24 (m32r_model == M32R_MODEL_SMALL)
354 #define TARGET_ADDR32 (! TARGET_ADDR24)
355 #define TARGET_CALL26 (! TARGET_CALL32)
356 #define TARGET_CALL32 (m32r_model == M32R_MODEL_LARGE)
357
358 /* The default is the small model. */
359 #ifndef M32R_MODEL_DEFAULT
360 #define M32R_MODEL_DEFAULT "small"
361 #endif
362
363 /* Small Data Area
364
365 The SDA consists of sections .sdata, .sbss, and .scommon.
366 .scommon isn't a real section, symbols in it have their section index
367 set to SHN_M32R_SCOMMON, though support for it exists in the linker script.
368
369 Two switches control the SDA:
370
371 -G NNN - specifies the maximum size of variable to go in the SDA
372
373 -msdata=foo - specifies how such variables are handled
374
375 -msdata=none - small data area is disabled
376
377 -msdata=sdata - small data goes in the SDA, special code isn't
378 generated to use it, and special relocs aren't
379 generated
380
381 -msdata=use - small data goes in the SDA, special code is generated
382 to use the SDA and special relocs are generated
383
384 The SDA is not multilib'd, it isn't necessary.
385 MULTILIB_EXTRA_OPTS is set in tmake_file to -msdata=sdata so multilib'd
386 libraries have small data in .sdata/SHN_M32R_SCOMMON so programs that use
387 -msdata=use will successfully link with them (references in header files
388 will cause the compiler to emit code that refers to library objects in
389 .data). ??? There can be a problem if the user passes a -G value greater
390 than the default and a library object in a header file is that size.
391 The default is 8 so this should be rare - if it occurs the user
392 is required to rebuild the libraries or use a smaller value for -G. */
393
394 /* Maximum size of variables that go in .sdata/.sbss.
395 The -msdata=foo switch also controls how small variables are handled. */
396 #ifndef SDATA_DEFAULT_SIZE
397 #define SDATA_DEFAULT_SIZE 8
398 #endif
399
400 enum m32r_sdata { M32R_SDATA_NONE, M32R_SDATA_SDATA, M32R_SDATA_USE };
401
402 extern enum m32r_sdata m32r_sdata;
403 #define TARGET_SDATA_NONE (m32r_sdata == M32R_SDATA_NONE)
404 #define TARGET_SDATA_SDATA (m32r_sdata == M32R_SDATA_SDATA)
405 #define TARGET_SDATA_USE (m32r_sdata == M32R_SDATA_USE)
406
407 /* Default is to disable the SDA
408 [for upward compatibility with previous toolchains]. */
409 #ifndef M32R_SDATA_DEFAULT
410 #define M32R_SDATA_DEFAULT "none"
411 #endif
412
413 /* Define this macro as a C expression for the initializer of an array of
414 strings to tell the driver program which options are defaults for this
415 target and thus do not need to be handled specially when using
416 `MULTILIB_OPTIONS'. */
417 #ifndef SUBTARGET_MULTILIB_DEFAULTS
418 #define SUBTARGET_MULTILIB_DEFAULTS
419 #endif
420
421 #ifndef MULTILIB_DEFAULTS
422 #define MULTILIB_DEFAULTS { "mmodel=small" SUBTARGET_MULTILIB_DEFAULTS }
423 #endif
424
425 /* Sometimes certain combinations of command options do not make
426 sense on a particular target machine. You can define a macro
427 `OVERRIDE_OPTIONS' to take account of this. This macro, if
428 defined, is executed once just after all the command options have
429 been parsed.
430
431 Don't use this macro to turn on various extra optimizations for
432 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
433
434 #ifndef SUBTARGET_OVERRIDE_OPTIONS
435 #define SUBTARGET_OVERRIDE_OPTIONS
436 #endif
437
438 #define OVERRIDE_OPTIONS \
439 do \
440 { \
441 /* These need to be done at start up. \
442 It's convenient to do them here. */ \
443 m32r_init (); \
444 SUBTARGET_OVERRIDE_OPTIONS \
445 } \
446 while (0)
447
448 #ifndef SUBTARGET_OPTIMIZATION_OPTIONS
449 #define SUBTARGET_OPTIMIZATION_OPTIONS
450 #endif
451
452 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
453 do \
454 { \
455 if (LEVEL == 1) \
456 flag_regmove = TRUE; \
457 \
458 if (SIZE) \
459 { \
460 flag_omit_frame_pointer = TRUE; \
461 flag_strength_reduce = FALSE; \
462 } \
463 \
464 SUBTARGET_OPTIMIZATION_OPTIONS \
465 } \
466 while (0)
467
468 /* Define this macro if debugging can be performed even without a
469 frame pointer. If this macro is defined, GCC will turn on the
470 `-fomit-frame-pointer' option whenever `-O' is specified. */
471 #define CAN_DEBUG_WITHOUT_FP
472 \f
473 /* Target machine storage layout. */
474
475 /* Define this if most significant bit is lowest numbered
476 in instructions that operate on numbered bit-fields. */
477 #define BITS_BIG_ENDIAN 1
478
479 /* Define this if most significant byte of a word is the lowest numbered. */
480 #define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
481
482 /* Define this if most significant word of a multiword number is the lowest
483 numbered. */
484 #define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
485
486 /* Define this macro if WORDS_BIG_ENDIAN is not constant. This must
487 be a constant value with the same meaning as WORDS_BIG_ENDIAN,
488 which will be used only when compiling libgcc2.c. Typically the
489 value will be set based on preprocessor defines. */
490 /*#define LIBGCC2_WORDS_BIG_ENDIAN 1*/
491
492 /* Width of a word, in units (bytes). */
493 #define UNITS_PER_WORD 4
494
495 /* Define this macro if it is advisable to hold scalars in registers
496 in a wider mode than that declared by the program. In such cases,
497 the value is constrained to be within the bounds of the declared
498 type, but kept valid in the wider mode. The signedness of the
499 extension may differ from that of the type. */
500 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
501 if (GET_MODE_CLASS (MODE) == MODE_INT \
502 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
503 { \
504 (MODE) = SImode; \
505 }
506
507 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
508 #define PARM_BOUNDARY 32
509
510 /* Boundary (in *bits*) on which stack pointer should be aligned. */
511 #define STACK_BOUNDARY 32
512
513 /* ALIGN FRAMES on word boundaries */
514 #define M32R_STACK_ALIGN(LOC) (((LOC) + 3) & ~ 3)
515
516 /* Allocation boundary (in *bits*) for the code of a function. */
517 #define FUNCTION_BOUNDARY 32
518
519 /* Alignment of field after `int : 0' in a structure. */
520 #define EMPTY_FIELD_BOUNDARY 32
521
522 /* Every structure's size must be a multiple of this. */
523 #define STRUCTURE_SIZE_BOUNDARY 8
524
525 /* A bit-field declared as `int' forces `int' alignment for the struct. */
526 #define PCC_BITFIELD_TYPE_MATTERS 1
527
528 /* No data type wants to be aligned rounder than this. */
529 #define BIGGEST_ALIGNMENT 32
530
531 /* The best alignment to use in cases where we have a choice. */
532 #define FASTEST_ALIGNMENT 32
533
534 /* Make strings word-aligned so strcpy from constants will be faster. */
535 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
536 ((TREE_CODE (EXP) == STRING_CST \
537 && (ALIGN) < FASTEST_ALIGNMENT) \
538 ? FASTEST_ALIGNMENT : (ALIGN))
539
540 /* Make arrays of chars word-aligned for the same reasons. */
541 #define DATA_ALIGNMENT(TYPE, ALIGN) \
542 (TREE_CODE (TYPE) == ARRAY_TYPE \
543 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
544 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
545
546 /* Set this nonzero if move instructions will actually fail to work
547 when given unaligned data. */
548 #define STRICT_ALIGNMENT 1
549
550 /* Define LAVEL_ALIGN to calculate code length of PNOP at labels. */
551 #define LABEL_ALIGN(insn) 2
552 \f
553 /* Layout of source language data types. */
554
555 #define SHORT_TYPE_SIZE 16
556 #define INT_TYPE_SIZE 32
557 #define LONG_TYPE_SIZE 32
558 #define LONG_LONG_TYPE_SIZE 64
559 #define FLOAT_TYPE_SIZE 32
560 #define DOUBLE_TYPE_SIZE 64
561 #define LONG_DOUBLE_TYPE_SIZE 64
562
563 /* Define this as 1 if `char' should by default be signed; else as 0. */
564 #define DEFAULT_SIGNED_CHAR 1
565
566 #define SIZE_TYPE "long unsigned int"
567 #define PTRDIFF_TYPE "long int"
568 #define WCHAR_TYPE "short unsigned int"
569 #define WCHAR_TYPE_SIZE 16
570 \f
571 /* Standard register usage. */
572
573 /* Number of actual hardware registers.
574 The hardware registers are assigned numbers for the compiler
575 from 0 to just below FIRST_PSEUDO_REGISTER.
576 All registers that the compiler knows about must be given numbers,
577 even those that are not normally considered general registers. */
578
579 #define M32R_NUM_REGISTERS 19
580
581 #ifndef SUBTARGET_NUM_REGISTERS
582 #define SUBTARGET_NUM_REGISTERS 0
583 #endif
584
585 #define FIRST_PSEUDO_REGISTER (M32R_NUM_REGISTERS + SUBTARGET_NUM_REGISTERS)
586
587 /* 1 for registers that have pervasive standard uses
588 and are not available for the register allocator.
589
590 0-3 - arguments/results
591 4-5 - call used [4 is used as a tmp during prologue/epilogue generation]
592 6 - call used, gptmp
593 7 - call used, static chain pointer
594 8-11 - call saved
595 12 - call saved [reserved for global pointer]
596 13 - frame pointer
597 14 - subroutine link register
598 15 - stack pointer
599 16 - arg pointer
600 17 - carry flag
601 18 - accumulator
602 19 - accumulator 1 in the m32r/x
603 By default, the extension registers are not available. */
604
605 #ifndef SUBTARGET_FIXED_REGISTERS
606 #define SUBTARGET_FIXED_REGISTERS
607 #endif
608
609 #define FIXED_REGISTERS \
610 { \
611 0, 0, 0, 0, 0, 0, 0, 0, \
612 0, 0, 0, 0, 0, 0, 0, 1, \
613 1, 1, 1 \
614 SUBTARGET_FIXED_REGISTERS \
615 }
616
617 /* 1 for registers not available across function calls.
618 These must include the FIXED_REGISTERS and also any
619 registers that can be used without being saved.
620 The latter must include the registers where values are returned
621 and the register where structure-value addresses are passed.
622 Aside from that, you can include as many other registers as you like. */
623
624 #ifndef SUBTARGET_CALL_USED_REGISTERS
625 #define SUBTARGET_CALL_USED_REGISTERS
626 #endif
627
628 #define CALL_USED_REGISTERS \
629 { \
630 1, 1, 1, 1, 1, 1, 1, 1, \
631 0, 0, 0, 0, 0, 0, 1, 1, \
632 1, 1, 1 \
633 SUBTARGET_CALL_USED_REGISTERS \
634 }
635
636 #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
637
638 /* Zero or more C statements that may conditionally modify two variables
639 `fixed_regs' and `call_used_regs' (both of type `char []') after they
640 have been initialized from the two preceding macros.
641
642 This is necessary in case the fixed or call-clobbered registers depend
643 on target flags.
644
645 You need not define this macro if it has no work to do. */
646
647 #ifdef SUBTARGET_CONDITIONAL_REGISTER_USAGE
648 #define CONDITIONAL_REGISTER_USAGE SUBTARGET_CONDITIONAL_REGISTER_USAGE
649 #else
650 #define CONDITIONAL_REGISTER_USAGE \
651 do \
652 { \
653 if (flag_pic) \
654 { \
655 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
656 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
657 } \
658 } \
659 while (0)
660 #endif
661
662 /* If defined, an initializer for a vector of integers, containing the
663 numbers of hard registers in the order in which GCC should
664 prefer to use them (from most preferred to least). */
665
666 #ifndef SUBTARGET_REG_ALLOC_ORDER
667 #define SUBTARGET_REG_ALLOC_ORDER
668 #endif
669
670 #if 1 /* Better for int code. */
671 #define REG_ALLOC_ORDER \
672 { \
673 4, 5, 6, 7, 2, 3, 8, 9, 10, \
674 11, 12, 13, 14, 0, 1, 15, 16, 17, 18 \
675 SUBTARGET_REG_ALLOC_ORDER \
676 }
677
678 #else /* Better for fp code at expense of int code. */
679 #define REG_ALLOC_ORDER \
680 { \
681 0, 1, 2, 3, 4, 5, 6, 7, 8, \
682 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 \
683 SUBTARGET_REG_ALLOC_ORDER \
684 }
685 #endif
686
687 /* Return number of consecutive hard regs needed starting at reg REGNO
688 to hold something of mode MODE.
689 This is ordinarily the length in words of a value of mode MODE
690 but can be less for certain modes in special long registers. */
691 #define HARD_REGNO_NREGS(REGNO, MODE) \
692 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
693
694 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
695 extern const unsigned int m32r_hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
696 extern unsigned int m32r_mode_class[];
697 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
698 ((m32r_hard_regno_mode_ok[REGNO] & m32r_mode_class[MODE]) != 0)
699
700 /* A C expression that is nonzero if it is desirable to choose
701 register allocation so as to avoid move instructions between a
702 value of mode MODE1 and a value of mode MODE2.
703
704 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
705 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
706 MODE2)' must be zero. */
707
708 /* Tie QI/HI/SI modes together. */
709 #define MODES_TIEABLE_P(MODE1, MODE2) \
710 ( GET_MODE_CLASS (MODE1) == MODE_INT \
711 && GET_MODE_CLASS (MODE2) == MODE_INT \
712 && GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD \
713 && GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD)
714
715 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
716 m32r_hard_regno_rename_ok (OLD_REG, NEW_REG)
717 \f
718 /* Register classes and constants. */
719
720 /* Define the classes of registers for register constraints in the
721 machine description. Also define ranges of constants.
722
723 One of the classes must always be named ALL_REGS and include all hard regs.
724 If there is more than one class, another class must be named NO_REGS
725 and contain no registers.
726
727 The name GENERAL_REGS must be the name of a class (or an alias for
728 another name such as ALL_REGS). This is the class of registers
729 that is allowed by "g" or "r" in a register constraint.
730 Also, registers outside this class are allocated only when
731 instructions express preferences for them.
732
733 The classes must be numbered in nondecreasing order; that is,
734 a larger-numbered class must never be contained completely
735 in a smaller-numbered class.
736
737 For any two classes, it is very desirable that there be another
738 class that represents their union.
739
740 It is important that any condition codes have class NO_REGS.
741 See `register_operand'. */
742
743 enum reg_class
744 {
745 NO_REGS, CARRY_REG, ACCUM_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
746 };
747
748 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
749
750 /* Give names of register classes as strings for dump file. */
751 #define REG_CLASS_NAMES \
752 { "NO_REGS", "CARRY_REG", "ACCUM_REGS", "GENERAL_REGS", "ALL_REGS" }
753
754 /* Define which registers fit in which classes.
755 This is an initializer for a vector of HARD_REG_SET
756 of length N_REG_CLASSES. */
757
758 #ifndef SUBTARGET_REG_CLASS_CARRY
759 #define SUBTARGET_REG_CLASS_CARRY 0
760 #endif
761
762 #ifndef SUBTARGET_REG_CLASS_ACCUM
763 #define SUBTARGET_REG_CLASS_ACCUM 0
764 #endif
765
766 #ifndef SUBTARGET_REG_CLASS_GENERAL
767 #define SUBTARGET_REG_CLASS_GENERAL 0
768 #endif
769
770 #ifndef SUBTARGET_REG_CLASS_ALL
771 #define SUBTARGET_REG_CLASS_ALL 0
772 #endif
773
774 #define REG_CLASS_CONTENTS \
775 { \
776 { 0x00000 }, \
777 { 0x20000 | SUBTARGET_REG_CLASS_CARRY }, \
778 { 0x40000 | SUBTARGET_REG_CLASS_ACCUM }, \
779 { 0x1ffff | SUBTARGET_REG_CLASS_GENERAL }, \
780 { 0x7ffff | SUBTARGET_REG_CLASS_ALL }, \
781 }
782
783 /* The same information, inverted:
784 Return the class number of the smallest class containing
785 reg number REGNO. This could be a conditional expression
786 or could index an array. */
787 extern enum reg_class m32r_regno_reg_class[FIRST_PSEUDO_REGISTER];
788 #define REGNO_REG_CLASS(REGNO) (m32r_regno_reg_class[REGNO])
789
790 /* The class value for index registers, and the one for base regs. */
791 #define INDEX_REG_CLASS GENERAL_REGS
792 #define BASE_REG_CLASS GENERAL_REGS
793
794 #define REG_CLASS_FROM_LETTER(C) \
795 ( (C) == 'c' ? CARRY_REG \
796 : (C) == 'a' ? ACCUM_REGS \
797 : NO_REGS)
798
799 /* These assume that REGNO is a hard or pseudo reg number.
800 They give nonzero only if REGNO is a hard reg of the suitable class
801 or a pseudo reg currently allocated to a suitable hard reg.
802 Since they use reg_renumber, they are safe only once reg_renumber
803 has been allocated, which happens in local-alloc.c. */
804 #define REGNO_OK_FOR_BASE_P(REGNO) \
805 ((REGNO) < FIRST_PSEUDO_REGISTER \
806 ? GPR_P (REGNO) || (REGNO) == ARG_POINTER_REGNUM \
807 : GPR_P (reg_renumber[REGNO]))
808
809 #define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_BASE_P(REGNO)
810
811 /* Given an rtx X being reloaded into a reg required to be
812 in class CLASS, return the class of reg to actually use.
813 In general this is just CLASS; but on some machines
814 in some cases it is preferable to use a more restrictive class. */
815 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
816
817 /* Return the maximum number of consecutive registers
818 needed to represent mode MODE in a register of class CLASS. */
819 #define CLASS_MAX_NREGS(CLASS, MODE) \
820 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
821
822 /* The letters I, J, K, L, M, N, O, P in a register constraint string
823 can be used to stand for particular ranges of immediate operands.
824 This macro defines what the ranges are.
825 C is the letter, and VALUE is a constant value.
826 Return 1 if VALUE is in the range specified by C. */
827 /* 'I' is used for 8 bit signed immediates.
828 'J' is used for 16 bit signed immediates.
829 'K' is used for 16 bit unsigned immediates.
830 'L' is used for 16 bit immediates left shifted by 16 (sign ???).
831 'M' is used for 24 bit unsigned immediates.
832 'N' is used for any 32 bit non-symbolic value.
833 'O' is used for 5 bit unsigned immediates (shift count).
834 'P' is used for 16 bit signed immediates for compares
835 (values in the range -32767 to +32768). */
836
837 /* Return true if a value is inside a range. */
838 #define IN_RANGE_P(VALUE, LOW, HIGH) \
839 (((unsigned HOST_WIDE_INT)((VALUE) - (LOW))) \
840 <= ((unsigned HOST_WIDE_INT)((HIGH) - (LOW))))
841
842 /* Local to this file. */
843 #define INT8_P(X) ((X) >= - 0x80 && (X) <= 0x7f)
844 #define INT16_P(X) ((X) >= - 0x8000 && (X) <= 0x7fff)
845 #define CMP_INT16_P(X) ((X) >= - 0x7fff && (X) <= 0x8000)
846 #define UPPER16_P(X) (((X) & 0xffff) == 0 \
847 && ((X) >> 16) >= - 0x8000 \
848 && ((X) >> 16) <= 0x7fff)
849 #define UINT16_P(X) (((unsigned HOST_WIDE_INT) (X)) <= 0x0000ffff)
850 #define UINT24_P(X) (((unsigned HOST_WIDE_INT) (X)) <= 0x00ffffff)
851 #define UINT32_P(X) (((unsigned HOST_WIDE_INT) (X)) <= 0xffffffff)
852 #define UINT5_P(X) ((X) >= 0 && (X) < 32)
853 #define INVERTED_SIGNED_8BIT(VAL) ((VAL) >= -127 && (VAL) <= 128)
854
855 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
856 ( (C) == 'I' ? INT8_P (VALUE) \
857 : (C) == 'J' ? INT16_P (VALUE) \
858 : (C) == 'K' ? UINT16_P (VALUE) \
859 : (C) == 'L' ? UPPER16_P (VALUE) \
860 : (C) == 'M' ? UINT24_P (VALUE) \
861 : (C) == 'N' ? INVERTED_SIGNED_8BIT (VALUE) \
862 : (C) == 'O' ? UINT5_P (VALUE) \
863 : (C) == 'P' ? CMP_INT16_P (VALUE) \
864 : 0)
865
866 /* Similar, but for floating constants, and defining letters G and H.
867 Here VALUE is the CONST_DOUBLE rtx itself.
868 For the m32r, handle a few constants inline.
869 ??? We needn't treat DI and DF modes differently, but for now we do. */
870 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
871 ( (C) == 'G' ? easy_di_const (VALUE) \
872 : (C) == 'H' ? easy_df_const (VALUE) \
873 : 0)
874
875 /* A C expression that defines the optional machine-dependent constraint
876 letters that can be used to segregate specific types of operands,
877 usually memory references, for the target machine. It should return 1 if
878 VALUE corresponds to the operand type represented by the constraint letter
879 C. If C is not defined as an extra constraint, the value returned should
880 be 0 regardless of VALUE. */
881 /* Q is for symbolic addresses loadable with ld24.
882 R is for symbolic addresses when ld24 can't be used.
883 S is for stores with pre {inc,dec}rement
884 T is for indirect of a pointer.
885 U is for loads with post increment. */
886
887 #define EXTRA_CONSTRAINT(VALUE, C) \
888 ( (C) == 'Q' ? ((TARGET_ADDR24 && GET_CODE (VALUE) == LABEL_REF) \
889 || addr24_operand (VALUE, VOIDmode)) \
890 : (C) == 'R' ? ((TARGET_ADDR32 && GET_CODE (VALUE) == LABEL_REF) \
891 || addr32_operand (VALUE, VOIDmode)) \
892 : (C) == 'S' ? (GET_CODE (VALUE) == MEM \
893 && STORE_PREINC_PREDEC_P (GET_MODE (VALUE), \
894 XEXP (VALUE, 0))) \
895 : (C) == 'T' ? (GET_CODE (VALUE) == MEM \
896 && memreg_operand (VALUE, GET_MODE (VALUE))) \
897 : (C) == 'U' ? (GET_CODE (VALUE) == MEM \
898 && LOAD_POSTINC_P (GET_MODE (VALUE), \
899 XEXP (VALUE, 0))) \
900 : 0)
901 \f
902 /* Stack layout and stack pointer usage. */
903
904 /* Define this macro if pushing a word onto the stack moves the stack
905 pointer to a smaller address. */
906 #define STACK_GROWS_DOWNWARD
907
908 /* Offset from frame pointer to start allocating local variables at.
909 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
910 first local allocated. Otherwise, it is the offset to the BEGINNING
911 of the first local allocated. */
912 /* The frame pointer points at the same place as the stack pointer, except if
913 alloca has been called. */
914 #define STARTING_FRAME_OFFSET \
915 M32R_STACK_ALIGN (current_function_outgoing_args_size)
916
917 /* Offset from the stack pointer register to the first location at which
918 outgoing arguments are placed. */
919 #define STACK_POINTER_OFFSET 0
920
921 /* Offset of first parameter from the argument pointer register value. */
922 #define FIRST_PARM_OFFSET(FNDECL) 0
923
924 /* Register to use for pushing function arguments. */
925 #define STACK_POINTER_REGNUM 15
926
927 /* Base register for access to local variables of the function. */
928 #define FRAME_POINTER_REGNUM 13
929
930 /* Base register for access to arguments of the function. */
931 #define ARG_POINTER_REGNUM 16
932
933 /* Register in which static-chain is passed to a function.
934 This must not be a register used by the prologue. */
935 #define STATIC_CHAIN_REGNUM 7
936
937 /* These aren't official macros. */
938 #define PROLOGUE_TMP_REGNUM 4
939 #define RETURN_ADDR_REGNUM 14
940 /* #define GP_REGNUM 12 */
941 #define CARRY_REGNUM 17
942 #define ACCUM_REGNUM 18
943 #define M32R_MAX_INT_REGS 16
944
945 #ifndef SUBTARGET_GPR_P
946 #define SUBTARGET_GPR_P(REGNO) 0
947 #endif
948
949 #ifndef SUBTARGET_ACCUM_P
950 #define SUBTARGET_ACCUM_P(REGNO) 0
951 #endif
952
953 #ifndef SUBTARGET_CARRY_P
954 #define SUBTARGET_CARRY_P(REGNO) 0
955 #endif
956
957 #define GPR_P(REGNO) (IN_RANGE_P ((REGNO), 0, 15) || SUBTARGET_GPR_P (REGNO))
958 #define ACCUM_P(REGNO) ((REGNO) == ACCUM_REGNUM || SUBTARGET_ACCUM_P (REGNO))
959 #define CARRY_P(REGNO) ((REGNO) == CARRY_REGNUM || SUBTARGET_CARRY_P (REGNO))
960 \f
961 /* Eliminating the frame and arg pointers. */
962
963 /* A C expression which is nonzero if a function must have and use a
964 frame pointer. This expression is evaluated in the reload pass.
965 If its value is nonzero the function will have a frame pointer. */
966 #define FRAME_POINTER_REQUIRED current_function_calls_alloca
967
968 #if 0
969 /* C statement to store the difference between the frame pointer
970 and the stack pointer values immediately after the function prologue.
971 If `ELIMINABLE_REGS' is defined, this macro will be not be used and
972 need not be defined. */
973 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
974 ((VAR) = m32r_compute_frame_size (get_frame_size ()))
975 #endif
976
977 /* If defined, this macro specifies a table of register pairs used to
978 eliminate unneeded registers that point into the stack frame. If
979 it is not defined, the only elimination attempted by the compiler
980 is to replace references to the frame pointer with references to
981 the stack pointer.
982
983 Note that the elimination of the argument pointer with the stack
984 pointer is specified first since that is the preferred elimination. */
985
986 #define ELIMINABLE_REGS \
987 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
988 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
989 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM }}
990
991 /* A C expression that returns nonzero if the compiler is allowed to
992 try to replace register number FROM-REG with register number
993 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
994 defined, and will usually be the constant 1, since most of the
995 cases preventing register elimination are things that the compiler
996 already knows about. */
997
998 #define CAN_ELIMINATE(FROM, TO) \
999 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1000 ? ! frame_pointer_needed \
1001 : 1)
1002
1003 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1004 specifies the initial difference between the specified pair of
1005 registers. This macro must be defined if `ELIMINABLE_REGS' is
1006 defined. */
1007
1008 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1009 do \
1010 { \
1011 int size = m32r_compute_frame_size (get_frame_size ()); \
1012 \
1013 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1014 (OFFSET) = 0; \
1015 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1016 (OFFSET) = size - current_function_pretend_args_size; \
1017 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1018 (OFFSET) = size - current_function_pretend_args_size; \
1019 else \
1020 abort (); \
1021 } \
1022 while (0)
1023 \f
1024 /* Function argument passing. */
1025
1026 /* If defined, the maximum amount of space required for outgoing
1027 arguments will be computed and placed into the variable
1028 `current_function_outgoing_args_size'. No space will be pushed
1029 onto the stack for each call; instead, the function prologue should
1030 increase the stack frame size by this amount. */
1031 #define ACCUMULATE_OUTGOING_ARGS 1
1032
1033 /* Value is the number of bytes of arguments automatically
1034 popped when returning from a subroutine call.
1035 FUNDECL is the declaration node of the function (as a tree),
1036 FUNTYPE is the data type of the function (as a tree),
1037 or for a library call it is an identifier node for the subroutine name.
1038 SIZE is the number of bytes of arguments passed on the stack. */
1039 #define RETURN_POPS_ARGS(DECL, FUNTYPE, SIZE) 0
1040
1041 /* Define a data type for recording info about an argument list
1042 during the scan of that argument list. This data type should
1043 hold all necessary information about the function itself
1044 and about the args processed so far, enough to enable macros
1045 such as FUNCTION_ARG to determine where the next arg should go. */
1046 #define CUMULATIVE_ARGS int
1047
1048 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1049 for a call to a function whose data type is FNTYPE.
1050 For a library call, FNTYPE is 0. */
1051 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1052 ((CUM) = 0)
1053
1054 /* The number of registers used for parameter passing. Local to this file. */
1055 #define M32R_MAX_PARM_REGS 4
1056
1057 /* 1 if N is a possible register number for function argument passing. */
1058 #define FUNCTION_ARG_REGNO_P(N) \
1059 ((unsigned) (N) < M32R_MAX_PARM_REGS)
1060
1061 /* The ROUND_ADVANCE* macros are local to this file. */
1062 /* Round SIZE up to a word boundary. */
1063 #define ROUND_ADVANCE(SIZE) \
1064 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1065
1066 /* Round arg MODE/TYPE up to the next word boundary. */
1067 #define ROUND_ADVANCE_ARG(MODE, TYPE) \
1068 ((MODE) == BLKmode \
1069 ? ROUND_ADVANCE ((unsigned int) int_size_in_bytes (TYPE)) \
1070 : ROUND_ADVANCE ((unsigned int) GET_MODE_SIZE (MODE)))
1071
1072 /* Round CUM up to the necessary point for argument MODE/TYPE. */
1073 #define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) (CUM)
1074
1075 /* Return boolean indicating arg of type TYPE and mode MODE will be passed in
1076 a reg. This includes arguments that have to be passed by reference as the
1077 pointer to them is passed in a reg if one is available (and that is what
1078 we're given).
1079 This macro is only used in this file. */
1080 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
1081 (ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) < M32R_MAX_PARM_REGS)
1082
1083 /* Determine where to put an argument to a function.
1084 Value is zero to push the argument on the stack,
1085 or a hard register in which to store the argument.
1086
1087 MODE is the argument's machine mode.
1088 TYPE is the data type of the argument (as a tree).
1089 This is null for libcalls where that information may
1090 not be available.
1091 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1092 the preceding args and about the function being called.
1093 NAMED is nonzero if this argument is a named parameter
1094 (otherwise it is an extra parameter matching an ellipsis). */
1095 /* On the M32R the first M32R_MAX_PARM_REGS args are normally in registers
1096 and the rest are pushed. */
1097 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1098 (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1099 ? gen_rtx_REG ((MODE), ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE))) \
1100 : 0)
1101
1102 /* Update the data in CUM to advance over an argument
1103 of mode MODE and data type TYPE.
1104 (TYPE is null for libcalls where that information may not be available.) */
1105 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1106 ((CUM) = (ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) \
1107 + ROUND_ADVANCE_ARG ((MODE), (TYPE))))
1108
1109 /* If defined, a C expression that gives the alignment boundary, in bits,
1110 of an argument with the specified mode and type. If it is not defined,
1111 PARM_BOUNDARY is used for all arguments. */
1112 #if 0
1113 /* We assume PARM_BOUNDARY == UNITS_PER_WORD here. */
1114 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1115 (((TYPE) ? TYPE_ALIGN (TYPE) : GET_MODE_BITSIZE (MODE)) <= PARM_BOUNDARY \
1116 ? PARM_BOUNDARY : 2 * PARM_BOUNDARY)
1117 #endif
1118 \f
1119 /* Function results. */
1120
1121 /* Define how to find the value returned by a function.
1122 VALTYPE is the data type of the value (as a tree).
1123 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1124 otherwise, FUNC is 0. */
1125 #define FUNCTION_VALUE(VALTYPE, FUNC) gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
1126
1127 /* Define how to find the value returned by a library function
1128 assuming the value has mode MODE. */
1129 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
1130
1131 /* 1 if N is a possible register number for a function value
1132 as seen by the caller. */
1133 /* ??? What about r1 in DI/DF values. */
1134 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
1135
1136 /* Tell GCC to use TARGET_RETURN_IN_MEMORY. */
1137 #define DEFAULT_PCC_STRUCT_RETURN 0
1138 \f
1139 /* Function entry and exit. */
1140
1141 /* Initialize data used by insn expanders. This is called from
1142 init_emit, once for each function, before code is generated. */
1143 #define INIT_EXPANDERS m32r_init_expanders ()
1144
1145 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1146 the stack pointer does not matter. The value is tested only in
1147 functions that have frame pointers.
1148 No definition is equivalent to always zero. */
1149 #define EXIT_IGNORE_STACK 1
1150
1151 /* Output assembler code to FILE to increment profiler label # LABELNO
1152 for profiling a function entry. */
1153 #undef FUNCTION_PROFILER
1154 #define FUNCTION_PROFILER(FILE, LABELNO) \
1155 do \
1156 { \
1157 if (flag_pic) \
1158 { \
1159 fprintf (FILE, "\tld24 r14,#mcount\n"); \
1160 fprintf (FILE, "\tadd r14,r12\n"); \
1161 fprintf (FILE, "\tld r14,@r14\n"); \
1162 fprintf (FILE, "\tjl r14\n"); \
1163 } \
1164 else \
1165 { \
1166 if (TARGET_ADDR24) \
1167 fprintf (FILE, "\tbl mcount\n"); \
1168 else \
1169 { \
1170 fprintf (FILE, "\tseth r14,#high(mcount)\n"); \
1171 fprintf (FILE, "\tor3 r14,r14,#low(mcount)\n"); \
1172 fprintf (FILE, "\tjl r14\n"); \
1173 } \
1174 } \
1175 fprintf (FILE, "\taddi sp,#4\n"); \
1176 } \
1177 while (0)
1178 \f
1179 /* Trampolines. */
1180
1181 /* On the M32R, the trampoline is:
1182
1183 mv r7, lr -> bl L1 ; 178e 7e01
1184 L1: add3 r6, lr, #L2-L1 ; 86ae 000c (L2 - L1 = 12)
1185 mv lr, r7 -> ld r7,@r6+ ; 1e87 27e6
1186 ld r6, @r6 -> jmp r6 ; 26c6 1fc6
1187 L2: .word STATIC
1188 .word FUNCTION */
1189
1190 #ifndef CACHE_FLUSH_FUNC
1191 #define CACHE_FLUSH_FUNC "_flush_cache"
1192 #endif
1193 #ifndef CACHE_FLUSH_TRAP
1194 #define CACHE_FLUSH_TRAP "12"
1195 #endif
1196
1197 /* Length in bytes of the trampoline for entering a nested function. */
1198 #define TRAMPOLINE_SIZE 24
1199
1200 /* Emit RTL insns to initialize the variable parts of a trampoline.
1201 FNADDR is an RTX for the address of the function's pure code.
1202 CXT is an RTX for the static chain value for the function. */
1203 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1204 do \
1205 { \
1206 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 0)), \
1207 GEN_INT \
1208 (TARGET_LITTLE_ENDIAN ? 0x017e8e17 : 0x178e7e01)); \
1209 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), \
1210 GEN_INT \
1211 (TARGET_LITTLE_ENDIAN ? 0x0c00ae86 : 0x86ae000c)); \
1212 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 8)), \
1213 GEN_INT \
1214 (TARGET_LITTLE_ENDIAN ? 0xe627871e : 0x1e8727e6)); \
1215 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 12)), \
1216 GEN_INT \
1217 (TARGET_LITTLE_ENDIAN ? 0xc616c626 : 0x26c61fc6)); \
1218 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 16)), \
1219 (CXT)); \
1220 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 20)), \
1221 (FNADDR)); \
1222 if (m32r_cache_flush_trap_string && m32r_cache_flush_trap_string[0]) \
1223 emit_insn (gen_flush_icache (validize_mem (gen_rtx_MEM (SImode, TRAMP)),\
1224 GEN_INT (m32r_cache_flush_trap) )); \
1225 else if (m32r_cache_flush_func && m32r_cache_flush_func[0]) \
1226 emit_library_call (m32r_function_symbol (m32r_cache_flush_func), \
1227 0, VOIDmode, 3, TRAMP, Pmode, \
1228 GEN_INT (TRAMPOLINE_SIZE), SImode, \
1229 GEN_INT (3), SImode); \
1230 } \
1231 while (0)
1232 \f
1233 #define RETURN_ADDR_RTX(COUNT, FRAME) m32r_return_addr (COUNT)
1234
1235 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)
1236
1237 /* Addressing modes, and classification of registers for them. */
1238
1239 /* Maximum number of registers that can appear in a valid memory address. */
1240 #define MAX_REGS_PER_ADDRESS 1
1241
1242 /* We have post-inc load and pre-dec,pre-inc store,
1243 but only for 4 byte vals. */
1244 #define HAVE_PRE_DECREMENT 1
1245 #define HAVE_PRE_INCREMENT 1
1246 #define HAVE_POST_INCREMENT 1
1247
1248 /* Recognize any constant value that is a valid address. */
1249 #define CONSTANT_ADDRESS_P(X) \
1250 ( GET_CODE (X) == LABEL_REF \
1251 || GET_CODE (X) == SYMBOL_REF \
1252 || GET_CODE (X) == CONST_INT \
1253 || (GET_CODE (X) == CONST \
1254 && ! (flag_pic && ! m32r_legitimate_pic_operand_p (X))))
1255
1256 /* Nonzero if the constant value X is a legitimate general operand.
1257 We don't allow (plus symbol large-constant) as the relocations can't
1258 describe it. INTVAL > 32767 handles both 16 bit and 24 bit relocations.
1259 We allow all CONST_DOUBLE's as the md file patterns will force the
1260 constant to memory if they can't handle them. */
1261
1262 #define LEGITIMATE_CONSTANT_P(X) \
1263 (! (GET_CODE (X) == CONST \
1264 && GET_CODE (XEXP (X, 0)) == PLUS \
1265 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
1266 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1267 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (X, 0), 1)) > 32767))
1268
1269 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1270 and check its validity for a certain class.
1271 We have two alternate definitions for each of them.
1272 The usual definition accepts all pseudo regs; the other rejects
1273 them unless they have been allocated suitable hard regs.
1274 The symbol REG_OK_STRICT causes the latter definition to be used.
1275
1276 Most source files want to accept pseudo regs in the hope that
1277 they will get allocated to the class that the insn wants them to be in.
1278 Source files for reload pass need to be strict.
1279 After reload, it makes no difference, since pseudo regs have
1280 been eliminated by then. */
1281
1282 #ifdef REG_OK_STRICT
1283
1284 /* Nonzero if X is a hard reg that can be used as a base reg. */
1285 #define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
1286 /* Nonzero if X is a hard reg that can be used as an index. */
1287 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1288
1289 #else
1290
1291 /* Nonzero if X is a hard reg that can be used as a base reg
1292 or if it is a pseudo reg. */
1293 #define REG_OK_FOR_BASE_P(X) \
1294 (GPR_P (REGNO (X)) \
1295 || (REGNO (X)) == ARG_POINTER_REGNUM \
1296 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1297 /* Nonzero if X is a hard reg that can be used as an index
1298 or if it is a pseudo reg. */
1299 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1300
1301 #endif
1302
1303 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1304 that is a valid memory address for an instruction.
1305 The MODE argument is the machine mode for the MEM expression
1306 that wants to use this address. */
1307
1308 /* Local to this file. */
1309 #define RTX_OK_FOR_BASE_P(X) (REG_P (X) && REG_OK_FOR_BASE_P (X))
1310
1311 /* Local to this file. */
1312 #define RTX_OK_FOR_OFFSET_P(X) \
1313 (GET_CODE (X) == CONST_INT && INT16_P (INTVAL (X)))
1314
1315 /* Local to this file. */
1316 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X) \
1317 (GET_CODE (X) == PLUS \
1318 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
1319 && RTX_OK_FOR_OFFSET_P (XEXP (X, 1)))
1320
1321 /* Local to this file. */
1322 /* For LO_SUM addresses, do not allow them if the MODE is > 1 word,
1323 since more than one instruction will be required. */
1324 #define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1325 (GET_CODE (X) == LO_SUM \
1326 && (MODE != BLKmode && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD)\
1327 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
1328 && CONSTANT_P (XEXP (X, 1)))
1329
1330 /* Local to this file. */
1331 /* Is this a load and increment operation. */
1332 #define LOAD_POSTINC_P(MODE, X) \
1333 (((MODE) == SImode || (MODE) == SFmode) \
1334 && GET_CODE (X) == POST_INC \
1335 && GET_CODE (XEXP (X, 0)) == REG \
1336 && RTX_OK_FOR_BASE_P (XEXP (X, 0)))
1337
1338 /* Local to this file. */
1339 /* Is this an increment/decrement and store operation. */
1340 #define STORE_PREINC_PREDEC_P(MODE, X) \
1341 (((MODE) == SImode || (MODE) == SFmode) \
1342 && (GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
1343 && GET_CODE (XEXP (X, 0)) == REG \
1344 && RTX_OK_FOR_BASE_P (XEXP (X, 0)))
1345
1346 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1347 do \
1348 { \
1349 if (RTX_OK_FOR_BASE_P (X)) \
1350 goto ADDR; \
1351 if (LEGITIMATE_OFFSET_ADDRESS_P ((MODE), (X))) \
1352 goto ADDR; \
1353 if (LEGITIMATE_LO_SUM_ADDRESS_P ((MODE), (X))) \
1354 goto ADDR; \
1355 if (LOAD_POSTINC_P ((MODE), (X))) \
1356 goto ADDR; \
1357 if (STORE_PREINC_PREDEC_P ((MODE), (X))) \
1358 goto ADDR; \
1359 } \
1360 while (0)
1361
1362 /* Try machine-dependent ways of modifying an illegitimate address
1363 to be legitimate. If we find one, return the new, valid address.
1364 This macro is used in only one place: `memory_address' in explow.c.
1365
1366 OLDX is the address as it was before break_out_memory_refs was called.
1367 In some cases it is useful to look at this to decide what needs to be done.
1368
1369 MODE and WIN are passed so that this macro can use
1370 GO_IF_LEGITIMATE_ADDRESS.
1371
1372 It is always safe for this macro to do nothing. It exists to recognize
1373 opportunities to optimize the output. */
1374
1375 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1376 do \
1377 { \
1378 if (flag_pic) \
1379 (X) = m32r_legitimize_pic_address (X, NULL_RTX); \
1380 if (memory_address_p (MODE, X)) \
1381 goto WIN; \
1382 } \
1383 while (0)
1384
1385 /* Go to LABEL if ADDR (a legitimate address expression)
1386 has an effect that depends on the machine mode it is used for. */
1387 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1388 do \
1389 { \
1390 if ( GET_CODE (ADDR) == PRE_DEC \
1391 || GET_CODE (ADDR) == PRE_INC \
1392 || GET_CODE (ADDR) == POST_INC \
1393 || GET_CODE (ADDR) == LO_SUM) \
1394 goto LABEL; \
1395 } \
1396 while (0)
1397 \f
1398 /* Condition code usage. */
1399
1400 /* Return nonzero if SELECT_CC_MODE will never return MODE for a
1401 floating point inequality comparison. */
1402 #define REVERSIBLE_CC_MODE(MODE) 1 /*???*/
1403 \f
1404 /* Costs. */
1405
1406 /* Compute extra cost of moving data between one register class
1407 and another. */
1408 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) 2
1409
1410 /* Compute the cost of moving data between registers and memory. */
1411 /* Memory is 3 times as expensive as registers.
1412 ??? Is that the right way to look at it? */
1413 #define MEMORY_MOVE_COST(MODE,CLASS,IN_P) \
1414 (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD ? 6 : 12)
1415
1416 /* The cost of a branch insn. */
1417 /* A value of 2 here causes GCC to avoid using branches in comparisons like
1418 while (a < N && a). Branches aren't that expensive on the M32R so
1419 we define this as 1. Defining it as 2 had a heavy hit in fp-bit.c. */
1420 #define BRANCH_COST ((TARGET_BRANCH_COST) ? 2 : 1)
1421
1422 /* Nonzero if access to memory by bytes is slow and undesirable.
1423 For RISC chips, it means that access to memory by bytes is no
1424 better than access by words when possible, so grab a whole word
1425 and maybe make use of that. */
1426 #define SLOW_BYTE_ACCESS 1
1427
1428 /* Define this macro if it is as good or better to call a constant
1429 function address than to call an address kept in a register. */
1430 #define NO_FUNCTION_CSE
1431 \f
1432 /* Section selection. */
1433
1434 #define TEXT_SECTION_ASM_OP "\t.section .text"
1435 #define DATA_SECTION_ASM_OP "\t.section .data"
1436 #define BSS_SECTION_ASM_OP "\t.section .bss"
1437
1438 /* Define this macro if jump tables (for tablejump insns) should be
1439 output in the text section, along with the assembler instructions.
1440 Otherwise, the readonly data section is used.
1441 This macro is irrelevant if there is no separate readonly data section. */
1442 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
1443 \f
1444 /* Position Independent Code. */
1445
1446 /* The register number of the register used to address a table of static
1447 data addresses in memory. In some cases this register is defined by a
1448 processor's ``application binary interface'' (ABI). When this macro
1449 is defined, RTL is generated for this register once, as with the stack
1450 pointer and frame pointer registers. If this macro is not defined, it
1451 is up to the machine-dependent files to allocate such a register (if
1452 necessary). */
1453 #define PIC_OFFSET_TABLE_REGNUM 12
1454
1455 /* Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is
1456 clobbered by calls. Do not define this macro if PIC_OFFSET_TABLE_REGNUM
1457 is not defined. */
1458 /* This register is call-saved on the M32R. */
1459 /*#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED*/
1460
1461 /* By generating position-independent code, when two different programs (A
1462 and B) share a common library (libC.a), the text of the library can be
1463 shared whether or not the library is linked at the same address for both
1464 programs. In some of these environments, position-independent code
1465 requires not only the use of different addressing modes, but also
1466 special code to enable the use of these addressing modes.
1467
1468 The FINALIZE_PIC macro serves as a hook to emit these special
1469 codes once the function is being compiled into assembly code, but not
1470 before. (It is not done before, because in the case of compiling an
1471 inline function, it would lead to multiple PIC prologues being
1472 included in functions which used inline functions and were compiled to
1473 assembly language.) */
1474
1475 #define FINALIZE_PIC m32r_finalize_pic ()
1476
1477 /* A C expression that is nonzero if X is a legitimate immediate
1478 operand on the target machine when generating position independent code.
1479 You can assume that X satisfies CONSTANT_P, so you need not
1480 check this. You can also assume `flag_pic' is true, so you need not
1481 check it either. You need not define this macro if all constants
1482 (including SYMBOL_REF) can be immediate operands when generating
1483 position independent code. */
1484 #define LEGITIMATE_PIC_OPERAND_P(X) m32r_legitimate_pic_operand_p (X)
1485 \f
1486 /* Control the assembler format that we output. */
1487
1488 /* A C string constant describing how to begin a comment in the target
1489 assembler language. The compiler assumes that the comment will
1490 end at the end of the line. */
1491 #define ASM_COMMENT_START ";"
1492
1493 /* Output to assembler file text saying following lines
1494 may contain character constants, extra white space, comments, etc. */
1495 #define ASM_APP_ON ""
1496
1497 /* Output to assembler file text saying following lines
1498 no longer contain unusual constructs. */
1499 #define ASM_APP_OFF ""
1500
1501 /* Globalizing directive for a label. */
1502 #define GLOBAL_ASM_OP "\t.global\t"
1503
1504 /* We do not use DBX_LINES_FUNCTION_RELATIVE or
1505 dbxout_stab_value_internal_label_diff here because
1506 we need to use .debugsym for the line label. */
1507
1508 #define DBX_OUTPUT_SOURCE_LINE(file, line, counter) \
1509 do \
1510 { \
1511 rtx begin_label = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);\
1512 char label[64]; \
1513 ASM_GENERATE_INTERNAL_LABEL (label, "LM", counter); \
1514 \
1515 dbxout_begin_stabn_sline (line); \
1516 assemble_name (file, label); \
1517 putc ('-', file); \
1518 assemble_name (file, begin_label); \
1519 fputs ("\n\t.debugsym ", file); \
1520 assemble_name (file, label); \
1521 putc ('\n', file); \
1522 counter += 1; \
1523 } \
1524 while (0)
1525
1526 /* How to refer to registers in assembler output.
1527 This sequence is indexed by compiler's hard-register-number (see above). */
1528 #ifndef SUBTARGET_REGISTER_NAMES
1529 #define SUBTARGET_REGISTER_NAMES
1530 #endif
1531
1532 #define REGISTER_NAMES \
1533 { \
1534 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1535 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", \
1536 "ap", "cbit", "a0" \
1537 SUBTARGET_REGISTER_NAMES \
1538 }
1539
1540 /* If defined, a C initializer for an array of structures containing
1541 a name and a register number. This macro defines additional names
1542 for hard registers, thus allowing the `asm' option in declarations
1543 to refer to registers using alternate names. */
1544 #ifndef SUBTARGET_ADDITIONAL_REGISTER_NAMES
1545 #define SUBTARGET_ADDITIONAL_REGISTER_NAMES
1546 #endif
1547
1548 #define ADDITIONAL_REGISTER_NAMES \
1549 { \
1550 /*{ "gp", GP_REGNUM },*/ \
1551 { "r13", FRAME_POINTER_REGNUM }, \
1552 { "r14", RETURN_ADDR_REGNUM }, \
1553 { "r15", STACK_POINTER_REGNUM }, \
1554 SUBTARGET_ADDITIONAL_REGISTER_NAMES \
1555 }
1556
1557 /* A C expression which evaluates to true if CODE is a valid
1558 punctuation character for use in the `PRINT_OPERAND' macro. */
1559 extern char m32r_punct_chars[256];
1560 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1561 m32r_punct_chars[(unsigned char) (CHAR)]
1562
1563 /* Print operand X (an rtx) in assembler syntax to file FILE.
1564 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1565 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1566 #define PRINT_OPERAND(FILE, X, CODE) \
1567 m32r_print_operand (FILE, X, CODE)
1568
1569 /* A C compound statement to output to stdio stream STREAM the
1570 assembler syntax for an instruction operand that is a memory
1571 reference whose address is ADDR. ADDR is an RTL expression. */
1572 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1573 m32r_print_operand_address (FILE, ADDR)
1574
1575 /* If defined, C string expressions to be used for the `%R', `%L',
1576 `%U', and `%I' options of `asm_fprintf' (see `final.c'). These
1577 are useful when a single `md' file must support multiple assembler
1578 formats. In that case, the various `tm.h' files can define these
1579 macros differently. */
1580 #define REGISTER_PREFIX ""
1581 #define LOCAL_LABEL_PREFIX ".L"
1582 #define USER_LABEL_PREFIX ""
1583 #define IMMEDIATE_PREFIX "#"
1584
1585 /* This is how to output an element of a case-vector that is absolute. */
1586 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1587 do \
1588 { \
1589 char label[30]; \
1590 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1591 fprintf (FILE, "\t.word\t"); \
1592 assemble_name (FILE, label); \
1593 fprintf (FILE, "\n"); \
1594 } \
1595 while (0)
1596
1597 /* This is how to output an element of a case-vector that is relative. */
1598 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)\
1599 do \
1600 { \
1601 char label[30]; \
1602 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1603 fprintf (FILE, "\t.word\t"); \
1604 assemble_name (FILE, label); \
1605 fprintf (FILE, "-"); \
1606 ASM_GENERATE_INTERNAL_LABEL (label, "L", REL); \
1607 assemble_name (FILE, label); \
1608 fprintf (FILE, "\n"); \
1609 } \
1610 while (0)
1611
1612 /* The desired alignment for the location counter at the beginning
1613 of a loop. */
1614 /* On the M32R, align loops to 32 byte boundaries (cache line size)
1615 if -malign-loops. */
1616 #define LOOP_ALIGN(LABEL) (TARGET_ALIGN_LOOPS ? 5 : 0)
1617
1618 /* Define this to be the maximum number of insns to move around when moving
1619 a loop test from the top of a loop to the bottom
1620 and seeing whether to duplicate it. The default is thirty.
1621
1622 Loop unrolling currently doesn't like this optimization, so
1623 disable doing if we are unrolling loops and saving space. */
1624 #define LOOP_TEST_THRESHOLD (optimize_size \
1625 && !flag_unroll_loops \
1626 && !flag_unroll_all_loops ? 2 : 30)
1627
1628 /* This is how to output an assembler line
1629 that says to advance the location counter
1630 to a multiple of 2**LOG bytes. */
1631 /* .balign is used to avoid confusion. */
1632 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1633 do \
1634 { \
1635 if ((LOG) != 0) \
1636 fprintf (FILE, "\t.balign %d\n", 1 << (LOG)); \
1637 } \
1638 while (0)
1639
1640 /* Like `ASM_OUTPUT_COMMON' except takes the required alignment as a
1641 separate, explicit argument. If you define this macro, it is used in
1642 place of `ASM_OUTPUT_COMMON', and gives you more flexibility in
1643 handling the required alignment of the variable. The alignment is
1644 specified as the number of bits. */
1645
1646 #define SCOMMON_ASM_OP "\t.scomm\t"
1647
1648 #undef ASM_OUTPUT_ALIGNED_COMMON
1649 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
1650 do \
1651 { \
1652 if (! TARGET_SDATA_NONE \
1653 && (SIZE) > 0 && (SIZE) <= g_switch_value) \
1654 fprintf ((FILE), "%s", SCOMMON_ASM_OP); \
1655 else \
1656 fprintf ((FILE), "%s", COMMON_ASM_OP); \
1657 assemble_name ((FILE), (NAME)); \
1658 fprintf ((FILE), ",%u,%u\n", (int)(SIZE), (ALIGN) / BITS_PER_UNIT);\
1659 } \
1660 while (0)
1661
1662 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1663 do \
1664 { \
1665 if (! TARGET_SDATA_NONE \
1666 && (SIZE) > 0 && (SIZE) <= g_switch_value) \
1667 named_section (0, ".sbss", 0); \
1668 else \
1669 bss_section (); \
1670 ASM_OUTPUT_ALIGN (FILE, floor_log2 (ALIGN / BITS_PER_UNIT)); \
1671 last_assemble_variable_decl = DECL; \
1672 ASM_DECLARE_OBJECT_NAME (FILE, NAME, DECL); \
1673 ASM_OUTPUT_SKIP (FILE, SIZE ? SIZE : 1); \
1674 } \
1675 while (0)
1676 \f
1677 /* Debugging information. */
1678
1679 /* Generate DBX and DWARF debugging information. */
1680 #define DBX_DEBUGGING_INFO 1
1681 #define DWARF2_DEBUGGING_INFO 1
1682
1683 /* Use DWARF2 debugging info by default. */
1684 #undef PREFERRED_DEBUGGING_TYPE
1685 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1686
1687 /* Turn off splitting of long stabs. */
1688 #define DBX_CONTIN_LENGTH 0
1689 \f
1690 /* Miscellaneous. */
1691
1692 /* Specify the machine mode that this machine uses
1693 for the index in the tablejump instruction. */
1694 #define CASE_VECTOR_MODE (flag_pic ? SImode : Pmode)
1695
1696 /* Define if operations between registers always perform the operation
1697 on the full register even if a narrower mode is specified. */
1698 #define WORD_REGISTER_OPERATIONS
1699
1700 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1701 will either zero-extend or sign-extend. The value of this macro should
1702 be the code that says which one of the two operations is implicitly
1703 done, UNKNOWN if none. */
1704 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1705
1706 /* Max number of bytes we can move from memory
1707 to memory in one reasonably fast instruction. */
1708 #define MOVE_MAX 4
1709
1710 /* Define this to be nonzero if shift instructions ignore all but the low-order
1711 few bits. */
1712 #define SHIFT_COUNT_TRUNCATED 1
1713
1714 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1715 is done just by pretending it is already truncated. */
1716 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1717
1718 /* Specify the machine mode that pointers have.
1719 After generation of rtl, the compiler makes no further distinction
1720 between pointers and any other objects of this machine mode. */
1721 /* ??? The M32R doesn't have full 32 bit pointers, but making this PSImode has
1722 it's own problems (you have to add extendpsisi2 and truncsipsi2).
1723 Try to avoid it. */
1724 #define Pmode SImode
1725
1726 /* A function address in a call instruction. */
1727 #define FUNCTION_MODE SImode
1728 \f
1729 /* Define the information needed to generate branch and scc insns. This is
1730 stored from the compare operation. Note that we can't use "rtx" here
1731 since it hasn't been defined! */
1732 extern struct rtx_def * m32r_compare_op0;
1733 extern struct rtx_def * m32r_compare_op1;
1734
1735 /* M32R function types. */
1736 enum m32r_function_type
1737 {
1738 M32R_FUNCTION_UNKNOWN, M32R_FUNCTION_NORMAL, M32R_FUNCTION_INTERRUPT
1739 };
1740
1741 #define M32R_INTERRUPT_P(TYPE) ((TYPE) == M32R_FUNCTION_INTERRUPT)
1742
1743 /* Define this if you have defined special-purpose predicates in the
1744 file `MACHINE.c'. This macro is called within an initializer of an
1745 array of structures. The first field in the structure is the name
1746 of a predicate and the second field is an array of rtl codes. For
1747 each predicate, list all rtl codes that can be in expressions
1748 matched by the predicate. The list should have a trailing comma. */
1749
1750 #define PREDICATE_CODES \
1751 { "reg_or_zero_operand", { REG, SUBREG, CONST_INT }}, \
1752 { "conditional_move_operand", { REG, SUBREG, CONST_INT }}, \
1753 { "carry_compare_operand", { EQ, NE }}, \
1754 { "eqne_comparison_operator", { EQ, NE }}, \
1755 { "signed_comparison_operator", { EQ, NE, LT, LE, GT, GE }}, \
1756 { "move_dest_operand", { REG, SUBREG, MEM }}, \
1757 { "move_src_operand", { REG, SUBREG, MEM, CONST_INT, \
1758 CONST_DOUBLE, LABEL_REF, CONST, \
1759 SYMBOL_REF }}, \
1760 { "move_double_src_operand", { REG, SUBREG, MEM, CONST_INT, \
1761 CONST_DOUBLE }}, \
1762 { "two_insn_const_operand", { CONST_INT }}, \
1763 { "symbolic_operand", { SYMBOL_REF, LABEL_REF, CONST }}, \
1764 { "int8_operand", { CONST_INT }}, \
1765 { "uint16_operand", { CONST_INT }}, \
1766 { "reg_or_int16_operand", { REG, SUBREG, CONST_INT }}, \
1767 { "reg_or_uint16_operand", { REG, SUBREG, CONST_INT }}, \
1768 { "reg_or_cmp_int16_operand", { REG, SUBREG, CONST_INT }}, \
1769 { "reg_or_eq_int16_operand", { REG, SUBREG, CONST_INT }}, \
1770 { "cmp_int16_operand", { CONST_INT }}, \
1771 { "call_address_operand", { SYMBOL_REF, LABEL_REF, CONST }}, \
1772 { "extend_operand", { REG, SUBREG, MEM }}, \
1773 { "small_insn_p", { INSN, CALL_INSN, JUMP_INSN }}, \
1774 { "m32r_block_immediate_operand",{ CONST_INT }}, \
1775 { "large_insn_p", { INSN, CALL_INSN, JUMP_INSN }}, \
1776 { "seth_add3_operand", { SYMBOL_REF, LABEL_REF, CONST }},
1777