]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/m68k/m68k.c
Factor unrelated declarations out of tree.h.
[thirdparty/gcc.git] / gcc / config / m68k / m68k.c
1 /* Subroutines for insn-output.c for Motorola 68000 family.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "calls.h"
26 #include "stor-layout.h"
27 #include "varasm.h"
28 #include "rtl.h"
29 #include "function.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "insn-config.h"
33 #include "conditions.h"
34 #include "output.h"
35 #include "insn-attr.h"
36 #include "recog.h"
37 #include "diagnostic-core.h"
38 #include "expr.h"
39 #include "reload.h"
40 #include "tm_p.h"
41 #include "target.h"
42 #include "target-def.h"
43 #include "debug.h"
44 #include "flags.h"
45 #include "df.h"
46 /* ??? Need to add a dependency between m68k.o and sched-int.h. */
47 #include "sched-int.h"
48 #include "insn-codes.h"
49 #include "ggc.h"
50 #include "opts.h"
51 #include "optabs.h"
52
53 enum reg_class regno_reg_class[] =
54 {
55 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
56 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
57 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
58 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
59 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
60 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
61 ADDR_REGS
62 };
63
64
65 /* The minimum number of integer registers that we want to save with the
66 movem instruction. Using two movel instructions instead of a single
67 moveml is about 15% faster for the 68020 and 68030 at no expense in
68 code size. */
69 #define MIN_MOVEM_REGS 3
70
71 /* The minimum number of floating point registers that we want to save
72 with the fmovem instruction. */
73 #define MIN_FMOVEM_REGS 1
74
75 /* Structure describing stack frame layout. */
76 struct m68k_frame
77 {
78 /* Stack pointer to frame pointer offset. */
79 HOST_WIDE_INT offset;
80
81 /* Offset of FPU registers. */
82 HOST_WIDE_INT foffset;
83
84 /* Frame size in bytes (rounded up). */
85 HOST_WIDE_INT size;
86
87 /* Data and address register. */
88 int reg_no;
89 unsigned int reg_mask;
90
91 /* FPU registers. */
92 int fpu_no;
93 unsigned int fpu_mask;
94
95 /* Offsets relative to ARG_POINTER. */
96 HOST_WIDE_INT frame_pointer_offset;
97 HOST_WIDE_INT stack_pointer_offset;
98
99 /* Function which the above information refers to. */
100 int funcdef_no;
101 };
102
103 /* Current frame information calculated by m68k_compute_frame_layout(). */
104 static struct m68k_frame current_frame;
105
106 /* Structure describing an m68k address.
107
108 If CODE is UNKNOWN, the address is BASE + INDEX * SCALE + OFFSET,
109 with null fields evaluating to 0. Here:
110
111 - BASE satisfies m68k_legitimate_base_reg_p
112 - INDEX satisfies m68k_legitimate_index_reg_p
113 - OFFSET satisfies m68k_legitimate_constant_address_p
114
115 INDEX is either HImode or SImode. The other fields are SImode.
116
117 If CODE is PRE_DEC, the address is -(BASE). If CODE is POST_INC,
118 the address is (BASE)+. */
119 struct m68k_address {
120 enum rtx_code code;
121 rtx base;
122 rtx index;
123 rtx offset;
124 int scale;
125 };
126
127 static int m68k_sched_adjust_cost (rtx, rtx, rtx, int);
128 static int m68k_sched_issue_rate (void);
129 static int m68k_sched_variable_issue (FILE *, int, rtx, int);
130 static void m68k_sched_md_init_global (FILE *, int, int);
131 static void m68k_sched_md_finish_global (FILE *, int);
132 static void m68k_sched_md_init (FILE *, int, int);
133 static void m68k_sched_dfa_pre_advance_cycle (void);
134 static void m68k_sched_dfa_post_advance_cycle (void);
135 static int m68k_sched_first_cycle_multipass_dfa_lookahead (void);
136
137 static bool m68k_can_eliminate (const int, const int);
138 static void m68k_conditional_register_usage (void);
139 static bool m68k_legitimate_address_p (enum machine_mode, rtx, bool);
140 static void m68k_option_override (void);
141 static void m68k_override_options_after_change (void);
142 static rtx find_addr_reg (rtx);
143 static const char *singlemove_string (rtx *);
144 static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
145 HOST_WIDE_INT, tree);
146 static rtx m68k_struct_value_rtx (tree, int);
147 static tree m68k_handle_fndecl_attribute (tree *node, tree name,
148 tree args, int flags,
149 bool *no_add_attrs);
150 static void m68k_compute_frame_layout (void);
151 static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
152 static bool m68k_ok_for_sibcall_p (tree, tree);
153 static bool m68k_tls_symbol_p (rtx);
154 static rtx m68k_legitimize_address (rtx, rtx, enum machine_mode);
155 static bool m68k_rtx_costs (rtx, int, int, int, int *, bool);
156 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
157 static bool m68k_return_in_memory (const_tree, const_tree);
158 #endif
159 static void m68k_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
160 static void m68k_trampoline_init (rtx, tree, rtx);
161 static int m68k_return_pops_args (tree, tree, int);
162 static rtx m68k_delegitimize_address (rtx);
163 static void m68k_function_arg_advance (cumulative_args_t, enum machine_mode,
164 const_tree, bool);
165 static rtx m68k_function_arg (cumulative_args_t, enum machine_mode,
166 const_tree, bool);
167 static bool m68k_cannot_force_const_mem (enum machine_mode mode, rtx x);
168 static bool m68k_output_addr_const_extra (FILE *, rtx);
169 static void m68k_init_sync_libfuncs (void) ATTRIBUTE_UNUSED;
170 \f
171 /* Initialize the GCC target structure. */
172
173 #if INT_OP_GROUP == INT_OP_DOT_WORD
174 #undef TARGET_ASM_ALIGNED_HI_OP
175 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
176 #endif
177
178 #if INT_OP_GROUP == INT_OP_NO_DOT
179 #undef TARGET_ASM_BYTE_OP
180 #define TARGET_ASM_BYTE_OP "\tbyte\t"
181 #undef TARGET_ASM_ALIGNED_HI_OP
182 #define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
183 #undef TARGET_ASM_ALIGNED_SI_OP
184 #define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
185 #endif
186
187 #if INT_OP_GROUP == INT_OP_DC
188 #undef TARGET_ASM_BYTE_OP
189 #define TARGET_ASM_BYTE_OP "\tdc.b\t"
190 #undef TARGET_ASM_ALIGNED_HI_OP
191 #define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
192 #undef TARGET_ASM_ALIGNED_SI_OP
193 #define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
194 #endif
195
196 #undef TARGET_ASM_UNALIGNED_HI_OP
197 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
198 #undef TARGET_ASM_UNALIGNED_SI_OP
199 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
200
201 #undef TARGET_ASM_OUTPUT_MI_THUNK
202 #define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
203 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
204 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
205
206 #undef TARGET_ASM_FILE_START_APP_OFF
207 #define TARGET_ASM_FILE_START_APP_OFF true
208
209 #undef TARGET_LEGITIMIZE_ADDRESS
210 #define TARGET_LEGITIMIZE_ADDRESS m68k_legitimize_address
211
212 #undef TARGET_SCHED_ADJUST_COST
213 #define TARGET_SCHED_ADJUST_COST m68k_sched_adjust_cost
214
215 #undef TARGET_SCHED_ISSUE_RATE
216 #define TARGET_SCHED_ISSUE_RATE m68k_sched_issue_rate
217
218 #undef TARGET_SCHED_VARIABLE_ISSUE
219 #define TARGET_SCHED_VARIABLE_ISSUE m68k_sched_variable_issue
220
221 #undef TARGET_SCHED_INIT_GLOBAL
222 #define TARGET_SCHED_INIT_GLOBAL m68k_sched_md_init_global
223
224 #undef TARGET_SCHED_FINISH_GLOBAL
225 #define TARGET_SCHED_FINISH_GLOBAL m68k_sched_md_finish_global
226
227 #undef TARGET_SCHED_INIT
228 #define TARGET_SCHED_INIT m68k_sched_md_init
229
230 #undef TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE
231 #define TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE m68k_sched_dfa_pre_advance_cycle
232
233 #undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
234 #define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE m68k_sched_dfa_post_advance_cycle
235
236 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
237 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
238 m68k_sched_first_cycle_multipass_dfa_lookahead
239
240 #undef TARGET_OPTION_OVERRIDE
241 #define TARGET_OPTION_OVERRIDE m68k_option_override
242
243 #undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
244 #define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE m68k_override_options_after_change
245
246 #undef TARGET_RTX_COSTS
247 #define TARGET_RTX_COSTS m68k_rtx_costs
248
249 #undef TARGET_ATTRIBUTE_TABLE
250 #define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
251
252 #undef TARGET_PROMOTE_PROTOTYPES
253 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
254
255 #undef TARGET_STRUCT_VALUE_RTX
256 #define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
257
258 #undef TARGET_CANNOT_FORCE_CONST_MEM
259 #define TARGET_CANNOT_FORCE_CONST_MEM m68k_cannot_force_const_mem
260
261 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
262 #define TARGET_FUNCTION_OK_FOR_SIBCALL m68k_ok_for_sibcall_p
263
264 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
265 #undef TARGET_RETURN_IN_MEMORY
266 #define TARGET_RETURN_IN_MEMORY m68k_return_in_memory
267 #endif
268
269 #ifdef HAVE_AS_TLS
270 #undef TARGET_HAVE_TLS
271 #define TARGET_HAVE_TLS (true)
272
273 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
274 #define TARGET_ASM_OUTPUT_DWARF_DTPREL m68k_output_dwarf_dtprel
275 #endif
276
277 #undef TARGET_LEGITIMATE_ADDRESS_P
278 #define TARGET_LEGITIMATE_ADDRESS_P m68k_legitimate_address_p
279
280 #undef TARGET_CAN_ELIMINATE
281 #define TARGET_CAN_ELIMINATE m68k_can_eliminate
282
283 #undef TARGET_CONDITIONAL_REGISTER_USAGE
284 #define TARGET_CONDITIONAL_REGISTER_USAGE m68k_conditional_register_usage
285
286 #undef TARGET_TRAMPOLINE_INIT
287 #define TARGET_TRAMPOLINE_INIT m68k_trampoline_init
288
289 #undef TARGET_RETURN_POPS_ARGS
290 #define TARGET_RETURN_POPS_ARGS m68k_return_pops_args
291
292 #undef TARGET_DELEGITIMIZE_ADDRESS
293 #define TARGET_DELEGITIMIZE_ADDRESS m68k_delegitimize_address
294
295 #undef TARGET_FUNCTION_ARG
296 #define TARGET_FUNCTION_ARG m68k_function_arg
297
298 #undef TARGET_FUNCTION_ARG_ADVANCE
299 #define TARGET_FUNCTION_ARG_ADVANCE m68k_function_arg_advance
300
301 #undef TARGET_LEGITIMATE_CONSTANT_P
302 #define TARGET_LEGITIMATE_CONSTANT_P m68k_legitimate_constant_p
303
304 #undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
305 #define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA m68k_output_addr_const_extra
306
307 /* The value stored by TAS. */
308 #undef TARGET_ATOMIC_TEST_AND_SET_TRUEVAL
309 #define TARGET_ATOMIC_TEST_AND_SET_TRUEVAL 128
310
311 static const struct attribute_spec m68k_attribute_table[] =
312 {
313 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
314 affects_type_identity } */
315 { "interrupt", 0, 0, true, false, false, m68k_handle_fndecl_attribute,
316 false },
317 { "interrupt_handler", 0, 0, true, false, false,
318 m68k_handle_fndecl_attribute, false },
319 { "interrupt_thread", 0, 0, true, false, false,
320 m68k_handle_fndecl_attribute, false },
321 { NULL, 0, 0, false, false, false, NULL, false }
322 };
323
324 struct gcc_target targetm = TARGET_INITIALIZER;
325 \f
326 /* Base flags for 68k ISAs. */
327 #define FL_FOR_isa_00 FL_ISA_68000
328 #define FL_FOR_isa_10 (FL_FOR_isa_00 | FL_ISA_68010)
329 /* FL_68881 controls the default setting of -m68881. gcc has traditionally
330 generated 68881 code for 68020 and 68030 targets unless explicitly told
331 not to. */
332 #define FL_FOR_isa_20 (FL_FOR_isa_10 | FL_ISA_68020 \
333 | FL_BITFIELD | FL_68881 | FL_CAS)
334 #define FL_FOR_isa_40 (FL_FOR_isa_20 | FL_ISA_68040)
335 #define FL_FOR_isa_cpu32 (FL_FOR_isa_10 | FL_ISA_68020)
336
337 /* Base flags for ColdFire ISAs. */
338 #define FL_FOR_isa_a (FL_COLDFIRE | FL_ISA_A)
339 #define FL_FOR_isa_aplus (FL_FOR_isa_a | FL_ISA_APLUS | FL_CF_USP)
340 /* Note ISA_B doesn't necessarily include USP (user stack pointer) support. */
341 #define FL_FOR_isa_b (FL_FOR_isa_a | FL_ISA_B | FL_CF_HWDIV)
342 /* ISA_C is not upwardly compatible with ISA_B. */
343 #define FL_FOR_isa_c (FL_FOR_isa_a | FL_ISA_C | FL_CF_USP)
344
345 enum m68k_isa
346 {
347 /* Traditional 68000 instruction sets. */
348 isa_00,
349 isa_10,
350 isa_20,
351 isa_40,
352 isa_cpu32,
353 /* ColdFire instruction set variants. */
354 isa_a,
355 isa_aplus,
356 isa_b,
357 isa_c,
358 isa_max
359 };
360
361 /* Information about one of the -march, -mcpu or -mtune arguments. */
362 struct m68k_target_selection
363 {
364 /* The argument being described. */
365 const char *name;
366
367 /* For -mcpu, this is the device selected by the option.
368 For -mtune and -march, it is a representative device
369 for the microarchitecture or ISA respectively. */
370 enum target_device device;
371
372 /* The M68K_DEVICE fields associated with DEVICE. See the comment
373 in m68k-devices.def for details. FAMILY is only valid for -mcpu. */
374 const char *family;
375 enum uarch_type microarch;
376 enum m68k_isa isa;
377 unsigned long flags;
378 };
379
380 /* A list of all devices in m68k-devices.def. Used for -mcpu selection. */
381 static const struct m68k_target_selection all_devices[] =
382 {
383 #define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
384 { NAME, ENUM_VALUE, FAMILY, u##MICROARCH, ISA, FLAGS | FL_FOR_##ISA },
385 #include "m68k-devices.def"
386 #undef M68K_DEVICE
387 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
388 };
389
390 /* A list of all ISAs, mapping each one to a representative device.
391 Used for -march selection. */
392 static const struct m68k_target_selection all_isas[] =
393 {
394 #define M68K_ISA(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
395 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
396 #include "m68k-isas.def"
397 #undef M68K_ISA
398 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
399 };
400
401 /* A list of all microarchitectures, mapping each one to a representative
402 device. Used for -mtune selection. */
403 static const struct m68k_target_selection all_microarchs[] =
404 {
405 #define M68K_MICROARCH(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
406 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
407 #include "m68k-microarchs.def"
408 #undef M68K_MICROARCH
409 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
410 };
411 \f
412 /* The entries associated with the -mcpu, -march and -mtune settings,
413 or null for options that have not been used. */
414 const struct m68k_target_selection *m68k_cpu_entry;
415 const struct m68k_target_selection *m68k_arch_entry;
416 const struct m68k_target_selection *m68k_tune_entry;
417
418 /* Which CPU we are generating code for. */
419 enum target_device m68k_cpu;
420
421 /* Which microarchitecture to tune for. */
422 enum uarch_type m68k_tune;
423
424 /* Which FPU to use. */
425 enum fpu_type m68k_fpu;
426
427 /* The set of FL_* flags that apply to the target processor. */
428 unsigned int m68k_cpu_flags;
429
430 /* The set of FL_* flags that apply to the processor to be tuned for. */
431 unsigned int m68k_tune_flags;
432
433 /* Asm templates for calling or jumping to an arbitrary symbolic address,
434 or NULL if such calls or jumps are not supported. The address is held
435 in operand 0. */
436 const char *m68k_symbolic_call;
437 const char *m68k_symbolic_jump;
438
439 /* Enum variable that corresponds to m68k_symbolic_call values. */
440 enum M68K_SYMBOLIC_CALL m68k_symbolic_call_var;
441
442 \f
443 /* Implement TARGET_OPTION_OVERRIDE. */
444
445 static void
446 m68k_option_override (void)
447 {
448 const struct m68k_target_selection *entry;
449 unsigned long target_mask;
450
451 if (global_options_set.x_m68k_arch_option)
452 m68k_arch_entry = &all_isas[m68k_arch_option];
453
454 if (global_options_set.x_m68k_cpu_option)
455 m68k_cpu_entry = &all_devices[(int) m68k_cpu_option];
456
457 if (global_options_set.x_m68k_tune_option)
458 m68k_tune_entry = &all_microarchs[(int) m68k_tune_option];
459
460 /* User can choose:
461
462 -mcpu=
463 -march=
464 -mtune=
465
466 -march=ARCH should generate code that runs any processor
467 implementing architecture ARCH. -mcpu=CPU should override -march
468 and should generate code that runs on processor CPU, making free
469 use of any instructions that CPU understands. -mtune=UARCH applies
470 on top of -mcpu or -march and optimizes the code for UARCH. It does
471 not change the target architecture. */
472 if (m68k_cpu_entry)
473 {
474 /* Complain if the -march setting is for a different microarchitecture,
475 or includes flags that the -mcpu setting doesn't. */
476 if (m68k_arch_entry
477 && (m68k_arch_entry->microarch != m68k_cpu_entry->microarch
478 || (m68k_arch_entry->flags & ~m68k_cpu_entry->flags) != 0))
479 warning (0, "-mcpu=%s conflicts with -march=%s",
480 m68k_cpu_entry->name, m68k_arch_entry->name);
481
482 entry = m68k_cpu_entry;
483 }
484 else
485 entry = m68k_arch_entry;
486
487 if (!entry)
488 entry = all_devices + TARGET_CPU_DEFAULT;
489
490 m68k_cpu_flags = entry->flags;
491
492 /* Use the architecture setting to derive default values for
493 certain flags. */
494 target_mask = 0;
495
496 /* ColdFire is lenient about alignment. */
497 if (!TARGET_COLDFIRE)
498 target_mask |= MASK_STRICT_ALIGNMENT;
499
500 if ((m68k_cpu_flags & FL_BITFIELD) != 0)
501 target_mask |= MASK_BITFIELD;
502 if ((m68k_cpu_flags & FL_CF_HWDIV) != 0)
503 target_mask |= MASK_CF_HWDIV;
504 if ((m68k_cpu_flags & (FL_68881 | FL_CF_FPU)) != 0)
505 target_mask |= MASK_HARD_FLOAT;
506 target_flags |= target_mask & ~target_flags_explicit;
507
508 /* Set the directly-usable versions of the -mcpu and -mtune settings. */
509 m68k_cpu = entry->device;
510 if (m68k_tune_entry)
511 {
512 m68k_tune = m68k_tune_entry->microarch;
513 m68k_tune_flags = m68k_tune_entry->flags;
514 }
515 #ifdef M68K_DEFAULT_TUNE
516 else if (!m68k_cpu_entry && !m68k_arch_entry)
517 {
518 enum target_device dev;
519 dev = all_microarchs[M68K_DEFAULT_TUNE].device;
520 m68k_tune_flags = all_devices[dev]->flags;
521 }
522 #endif
523 else
524 {
525 m68k_tune = entry->microarch;
526 m68k_tune_flags = entry->flags;
527 }
528
529 /* Set the type of FPU. */
530 m68k_fpu = (!TARGET_HARD_FLOAT ? FPUTYPE_NONE
531 : (m68k_cpu_flags & FL_COLDFIRE) != 0 ? FPUTYPE_COLDFIRE
532 : FPUTYPE_68881);
533
534 /* Sanity check to ensure that msep-data and mid-sahred-library are not
535 * both specified together. Doing so simply doesn't make sense.
536 */
537 if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
538 error ("cannot specify both -msep-data and -mid-shared-library");
539
540 /* If we're generating code for a separate A5 relative data segment,
541 * we've got to enable -fPIC as well. This might be relaxable to
542 * -fpic but it hasn't been tested properly.
543 */
544 if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
545 flag_pic = 2;
546
547 /* -mpcrel -fPIC uses 32-bit pc-relative displacements. Raise an
548 error if the target does not support them. */
549 if (TARGET_PCREL && !TARGET_68020 && flag_pic == 2)
550 error ("-mpcrel -fPIC is not currently supported on selected cpu");
551
552 /* ??? A historic way of turning on pic, or is this intended to
553 be an embedded thing that doesn't have the same name binding
554 significance that it does on hosted ELF systems? */
555 if (TARGET_PCREL && flag_pic == 0)
556 flag_pic = 1;
557
558 if (!flag_pic)
559 {
560 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_JSR;
561
562 m68k_symbolic_jump = "jra %a0";
563 }
564 else if (TARGET_ID_SHARED_LIBRARY)
565 /* All addresses must be loaded from the GOT. */
566 ;
567 else if (TARGET_68020 || TARGET_ISAB || TARGET_ISAC)
568 {
569 if (TARGET_PCREL)
570 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_C;
571 else
572 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_P;
573
574 if (TARGET_ISAC)
575 /* No unconditional long branch */;
576 else if (TARGET_PCREL)
577 m68k_symbolic_jump = "bra%.l %c0";
578 else
579 m68k_symbolic_jump = "bra%.l %p0";
580 /* Turn off function cse if we are doing PIC. We always want
581 function call to be done as `bsr foo@PLTPC'. */
582 /* ??? It's traditional to do this for -mpcrel too, but it isn't
583 clear how intentional that is. */
584 flag_no_function_cse = 1;
585 }
586
587 switch (m68k_symbolic_call_var)
588 {
589 case M68K_SYMBOLIC_CALL_JSR:
590 m68k_symbolic_call = "jsr %a0";
591 break;
592
593 case M68K_SYMBOLIC_CALL_BSR_C:
594 m68k_symbolic_call = "bsr%.l %c0";
595 break;
596
597 case M68K_SYMBOLIC_CALL_BSR_P:
598 m68k_symbolic_call = "bsr%.l %p0";
599 break;
600
601 case M68K_SYMBOLIC_CALL_NONE:
602 gcc_assert (m68k_symbolic_call == NULL);
603 break;
604
605 default:
606 gcc_unreachable ();
607 }
608
609 #ifndef ASM_OUTPUT_ALIGN_WITH_NOP
610 if (align_labels > 2)
611 {
612 warning (0, "-falign-labels=%d is not supported", align_labels);
613 align_labels = 0;
614 }
615 if (align_loops > 2)
616 {
617 warning (0, "-falign-loops=%d is not supported", align_loops);
618 align_loops = 0;
619 }
620 #endif
621
622 if (stack_limit_rtx != NULL_RTX && !TARGET_68020)
623 {
624 warning (0, "-fstack-limit- options are not supported on this cpu");
625 stack_limit_rtx = NULL_RTX;
626 }
627
628 SUBTARGET_OVERRIDE_OPTIONS;
629
630 /* Setup scheduling options. */
631 if (TUNE_CFV1)
632 m68k_sched_cpu = CPU_CFV1;
633 else if (TUNE_CFV2)
634 m68k_sched_cpu = CPU_CFV2;
635 else if (TUNE_CFV3)
636 m68k_sched_cpu = CPU_CFV3;
637 else if (TUNE_CFV4)
638 m68k_sched_cpu = CPU_CFV4;
639 else
640 {
641 m68k_sched_cpu = CPU_UNKNOWN;
642 flag_schedule_insns = 0;
643 flag_schedule_insns_after_reload = 0;
644 flag_modulo_sched = 0;
645 }
646
647 if (m68k_sched_cpu != CPU_UNKNOWN)
648 {
649 if ((m68k_cpu_flags & (FL_CF_EMAC | FL_CF_EMAC_B)) != 0)
650 m68k_sched_mac = MAC_CF_EMAC;
651 else if ((m68k_cpu_flags & FL_CF_MAC) != 0)
652 m68k_sched_mac = MAC_CF_MAC;
653 else
654 m68k_sched_mac = MAC_NO;
655 }
656 }
657
658 /* Implement TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE. */
659
660 static void
661 m68k_override_options_after_change (void)
662 {
663 if (m68k_sched_cpu == CPU_UNKNOWN)
664 {
665 flag_schedule_insns = 0;
666 flag_schedule_insns_after_reload = 0;
667 flag_modulo_sched = 0;
668 }
669 }
670
671 /* Generate a macro of the form __mPREFIX_cpu_NAME, where PREFIX is the
672 given argument and NAME is the argument passed to -mcpu. Return NULL
673 if -mcpu was not passed. */
674
675 const char *
676 m68k_cpp_cpu_ident (const char *prefix)
677 {
678 if (!m68k_cpu_entry)
679 return NULL;
680 return concat ("__m", prefix, "_cpu_", m68k_cpu_entry->name, NULL);
681 }
682
683 /* Generate a macro of the form __mPREFIX_family_NAME, where PREFIX is the
684 given argument and NAME is the name of the representative device for
685 the -mcpu argument's family. Return NULL if -mcpu was not passed. */
686
687 const char *
688 m68k_cpp_cpu_family (const char *prefix)
689 {
690 if (!m68k_cpu_entry)
691 return NULL;
692 return concat ("__m", prefix, "_family_", m68k_cpu_entry->family, NULL);
693 }
694 \f
695 /* Return m68k_fk_interrupt_handler if FUNC has an "interrupt" or
696 "interrupt_handler" attribute and interrupt_thread if FUNC has an
697 "interrupt_thread" attribute. Otherwise, return
698 m68k_fk_normal_function. */
699
700 enum m68k_function_kind
701 m68k_get_function_kind (tree func)
702 {
703 tree a;
704
705 gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
706
707 a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
708 if (a != NULL_TREE)
709 return m68k_fk_interrupt_handler;
710
711 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
712 if (a != NULL_TREE)
713 return m68k_fk_interrupt_handler;
714
715 a = lookup_attribute ("interrupt_thread", DECL_ATTRIBUTES (func));
716 if (a != NULL_TREE)
717 return m68k_fk_interrupt_thread;
718
719 return m68k_fk_normal_function;
720 }
721
722 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
723 struct attribute_spec.handler. */
724 static tree
725 m68k_handle_fndecl_attribute (tree *node, tree name,
726 tree args ATTRIBUTE_UNUSED,
727 int flags ATTRIBUTE_UNUSED,
728 bool *no_add_attrs)
729 {
730 if (TREE_CODE (*node) != FUNCTION_DECL)
731 {
732 warning (OPT_Wattributes, "%qE attribute only applies to functions",
733 name);
734 *no_add_attrs = true;
735 }
736
737 if (m68k_get_function_kind (*node) != m68k_fk_normal_function)
738 {
739 error ("multiple interrupt attributes not allowed");
740 *no_add_attrs = true;
741 }
742
743 if (!TARGET_FIDOA
744 && !strcmp (IDENTIFIER_POINTER (name), "interrupt_thread"))
745 {
746 error ("interrupt_thread is available only on fido");
747 *no_add_attrs = true;
748 }
749
750 return NULL_TREE;
751 }
752
753 static void
754 m68k_compute_frame_layout (void)
755 {
756 int regno, saved;
757 unsigned int mask;
758 enum m68k_function_kind func_kind =
759 m68k_get_function_kind (current_function_decl);
760 bool interrupt_handler = func_kind == m68k_fk_interrupt_handler;
761 bool interrupt_thread = func_kind == m68k_fk_interrupt_thread;
762
763 /* Only compute the frame once per function.
764 Don't cache information until reload has been completed. */
765 if (current_frame.funcdef_no == current_function_funcdef_no
766 && reload_completed)
767 return;
768
769 current_frame.size = (get_frame_size () + 3) & -4;
770
771 mask = saved = 0;
772
773 /* Interrupt thread does not need to save any register. */
774 if (!interrupt_thread)
775 for (regno = 0; regno < 16; regno++)
776 if (m68k_save_reg (regno, interrupt_handler))
777 {
778 mask |= 1 << (regno - D0_REG);
779 saved++;
780 }
781 current_frame.offset = saved * 4;
782 current_frame.reg_no = saved;
783 current_frame.reg_mask = mask;
784
785 current_frame.foffset = 0;
786 mask = saved = 0;
787 if (TARGET_HARD_FLOAT)
788 {
789 /* Interrupt thread does not need to save any register. */
790 if (!interrupt_thread)
791 for (regno = 16; regno < 24; regno++)
792 if (m68k_save_reg (regno, interrupt_handler))
793 {
794 mask |= 1 << (regno - FP0_REG);
795 saved++;
796 }
797 current_frame.foffset = saved * TARGET_FP_REG_SIZE;
798 current_frame.offset += current_frame.foffset;
799 }
800 current_frame.fpu_no = saved;
801 current_frame.fpu_mask = mask;
802
803 /* Remember what function this frame refers to. */
804 current_frame.funcdef_no = current_function_funcdef_no;
805 }
806
807 /* Worker function for TARGET_CAN_ELIMINATE. */
808
809 bool
810 m68k_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
811 {
812 return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
813 }
814
815 HOST_WIDE_INT
816 m68k_initial_elimination_offset (int from, int to)
817 {
818 int argptr_offset;
819 /* The arg pointer points 8 bytes before the start of the arguments,
820 as defined by FIRST_PARM_OFFSET. This makes it coincident with the
821 frame pointer in most frames. */
822 argptr_offset = frame_pointer_needed ? 0 : UNITS_PER_WORD;
823 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
824 return argptr_offset;
825
826 m68k_compute_frame_layout ();
827
828 gcc_assert (to == STACK_POINTER_REGNUM);
829 switch (from)
830 {
831 case ARG_POINTER_REGNUM:
832 return current_frame.offset + current_frame.size - argptr_offset;
833 case FRAME_POINTER_REGNUM:
834 return current_frame.offset + current_frame.size;
835 default:
836 gcc_unreachable ();
837 }
838 }
839
840 /* Refer to the array `regs_ever_live' to determine which registers
841 to save; `regs_ever_live[I]' is nonzero if register number I
842 is ever used in the function. This function is responsible for
843 knowing which registers should not be saved even if used.
844 Return true if we need to save REGNO. */
845
846 static bool
847 m68k_save_reg (unsigned int regno, bool interrupt_handler)
848 {
849 if (flag_pic && regno == PIC_REG)
850 {
851 if (crtl->saves_all_registers)
852 return true;
853 if (crtl->uses_pic_offset_table)
854 return true;
855 /* Reload may introduce constant pool references into a function
856 that thitherto didn't need a PIC register. Note that the test
857 above will not catch that case because we will only set
858 crtl->uses_pic_offset_table when emitting
859 the address reloads. */
860 if (crtl->uses_const_pool)
861 return true;
862 }
863
864 if (crtl->calls_eh_return)
865 {
866 unsigned int i;
867 for (i = 0; ; i++)
868 {
869 unsigned int test = EH_RETURN_DATA_REGNO (i);
870 if (test == INVALID_REGNUM)
871 break;
872 if (test == regno)
873 return true;
874 }
875 }
876
877 /* Fixed regs we never touch. */
878 if (fixed_regs[regno])
879 return false;
880
881 /* The frame pointer (if it is such) is handled specially. */
882 if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
883 return false;
884
885 /* Interrupt handlers must also save call_used_regs
886 if they are live or when calling nested functions. */
887 if (interrupt_handler)
888 {
889 if (df_regs_ever_live_p (regno))
890 return true;
891
892 if (!crtl->is_leaf && call_used_regs[regno])
893 return true;
894 }
895
896 /* Never need to save registers that aren't touched. */
897 if (!df_regs_ever_live_p (regno))
898 return false;
899
900 /* Otherwise save everything that isn't call-clobbered. */
901 return !call_used_regs[regno];
902 }
903
904 /* Emit RTL for a MOVEM or FMOVEM instruction. BASE + OFFSET represents
905 the lowest memory address. COUNT is the number of registers to be
906 moved, with register REGNO + I being moved if bit I of MASK is set.
907 STORE_P specifies the direction of the move and ADJUST_STACK_P says
908 whether or not this is pre-decrement (if STORE_P) or post-increment
909 (if !STORE_P) operation. */
910
911 static rtx
912 m68k_emit_movem (rtx base, HOST_WIDE_INT offset,
913 unsigned int count, unsigned int regno,
914 unsigned int mask, bool store_p, bool adjust_stack_p)
915 {
916 int i;
917 rtx body, addr, src, operands[2];
918 enum machine_mode mode;
919
920 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (adjust_stack_p + count));
921 mode = reg_raw_mode[regno];
922 i = 0;
923
924 if (adjust_stack_p)
925 {
926 src = plus_constant (Pmode, base,
927 (count
928 * GET_MODE_SIZE (mode)
929 * (HOST_WIDE_INT) (store_p ? -1 : 1)));
930 XVECEXP (body, 0, i++) = gen_rtx_SET (VOIDmode, base, src);
931 }
932
933 for (; mask != 0; mask >>= 1, regno++)
934 if (mask & 1)
935 {
936 addr = plus_constant (Pmode, base, offset);
937 operands[!store_p] = gen_frame_mem (mode, addr);
938 operands[store_p] = gen_rtx_REG (mode, regno);
939 XVECEXP (body, 0, i++)
940 = gen_rtx_SET (VOIDmode, operands[0], operands[1]);
941 offset += GET_MODE_SIZE (mode);
942 }
943 gcc_assert (i == XVECLEN (body, 0));
944
945 return emit_insn (body);
946 }
947
948 /* Make INSN a frame-related instruction. */
949
950 static void
951 m68k_set_frame_related (rtx insn)
952 {
953 rtx body;
954 int i;
955
956 RTX_FRAME_RELATED_P (insn) = 1;
957 body = PATTERN (insn);
958 if (GET_CODE (body) == PARALLEL)
959 for (i = 0; i < XVECLEN (body, 0); i++)
960 RTX_FRAME_RELATED_P (XVECEXP (body, 0, i)) = 1;
961 }
962
963 /* Emit RTL for the "prologue" define_expand. */
964
965 void
966 m68k_expand_prologue (void)
967 {
968 HOST_WIDE_INT fsize_with_regs;
969 rtx limit, src, dest;
970
971 m68k_compute_frame_layout ();
972
973 if (flag_stack_usage_info)
974 current_function_static_stack_size
975 = current_frame.size + current_frame.offset;
976
977 /* If the stack limit is a symbol, we can check it here,
978 before actually allocating the space. */
979 if (crtl->limit_stack
980 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
981 {
982 limit = plus_constant (Pmode, stack_limit_rtx, current_frame.size + 4);
983 if (!m68k_legitimate_constant_p (Pmode, limit))
984 {
985 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), limit);
986 limit = gen_rtx_REG (Pmode, D0_REG);
987 }
988 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode,
989 stack_pointer_rtx, limit),
990 stack_pointer_rtx, limit,
991 const1_rtx));
992 }
993
994 fsize_with_regs = current_frame.size;
995 if (TARGET_COLDFIRE)
996 {
997 /* ColdFire's move multiple instructions do not allow pre-decrement
998 addressing. Add the size of movem saves to the initial stack
999 allocation instead. */
1000 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1001 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1002 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1003 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1004 }
1005
1006 if (frame_pointer_needed)
1007 {
1008 if (fsize_with_regs == 0 && TUNE_68040)
1009 {
1010 /* On the 68040, two separate moves are faster than link.w 0. */
1011 dest = gen_frame_mem (Pmode,
1012 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1013 m68k_set_frame_related (emit_move_insn (dest, frame_pointer_rtx));
1014 m68k_set_frame_related (emit_move_insn (frame_pointer_rtx,
1015 stack_pointer_rtx));
1016 }
1017 else if (fsize_with_regs < 0x8000 || TARGET_68020)
1018 m68k_set_frame_related
1019 (emit_insn (gen_link (frame_pointer_rtx,
1020 GEN_INT (-4 - fsize_with_regs))));
1021 else
1022 {
1023 m68k_set_frame_related
1024 (emit_insn (gen_link (frame_pointer_rtx, GEN_INT (-4))));
1025 m68k_set_frame_related
1026 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1027 stack_pointer_rtx,
1028 GEN_INT (-fsize_with_regs))));
1029 }
1030
1031 /* If the frame pointer is needed, emit a special barrier that
1032 will prevent the scheduler from moving stores to the frame
1033 before the stack adjustment. */
1034 emit_insn (gen_stack_tie (stack_pointer_rtx, frame_pointer_rtx));
1035 }
1036 else if (fsize_with_regs != 0)
1037 m68k_set_frame_related
1038 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1039 stack_pointer_rtx,
1040 GEN_INT (-fsize_with_regs))));
1041
1042 if (current_frame.fpu_mask)
1043 {
1044 gcc_assert (current_frame.fpu_no >= MIN_FMOVEM_REGS);
1045 if (TARGET_68881)
1046 m68k_set_frame_related
1047 (m68k_emit_movem (stack_pointer_rtx,
1048 current_frame.fpu_no * -GET_MODE_SIZE (XFmode),
1049 current_frame.fpu_no, FP0_REG,
1050 current_frame.fpu_mask, true, true));
1051 else
1052 {
1053 int offset;
1054
1055 /* If we're using moveml to save the integer registers,
1056 the stack pointer will point to the bottom of the moveml
1057 save area. Find the stack offset of the first FP register. */
1058 if (current_frame.reg_no < MIN_MOVEM_REGS)
1059 offset = 0;
1060 else
1061 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1062 m68k_set_frame_related
1063 (m68k_emit_movem (stack_pointer_rtx, offset,
1064 current_frame.fpu_no, FP0_REG,
1065 current_frame.fpu_mask, true, false));
1066 }
1067 }
1068
1069 /* If the stack limit is not a symbol, check it here.
1070 This has the disadvantage that it may be too late... */
1071 if (crtl->limit_stack)
1072 {
1073 if (REG_P (stack_limit_rtx))
1074 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode, stack_pointer_rtx,
1075 stack_limit_rtx),
1076 stack_pointer_rtx, stack_limit_rtx,
1077 const1_rtx));
1078
1079 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
1080 warning (0, "stack limit expression is not supported");
1081 }
1082
1083 if (current_frame.reg_no < MIN_MOVEM_REGS)
1084 {
1085 /* Store each register separately in the same order moveml does. */
1086 int i;
1087
1088 for (i = 16; i-- > 0; )
1089 if (current_frame.reg_mask & (1 << i))
1090 {
1091 src = gen_rtx_REG (SImode, D0_REG + i);
1092 dest = gen_frame_mem (SImode,
1093 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1094 m68k_set_frame_related (emit_insn (gen_movsi (dest, src)));
1095 }
1096 }
1097 else
1098 {
1099 if (TARGET_COLDFIRE)
1100 /* The required register save space has already been allocated.
1101 The first register should be stored at (%sp). */
1102 m68k_set_frame_related
1103 (m68k_emit_movem (stack_pointer_rtx, 0,
1104 current_frame.reg_no, D0_REG,
1105 current_frame.reg_mask, true, false));
1106 else
1107 m68k_set_frame_related
1108 (m68k_emit_movem (stack_pointer_rtx,
1109 current_frame.reg_no * -GET_MODE_SIZE (SImode),
1110 current_frame.reg_no, D0_REG,
1111 current_frame.reg_mask, true, true));
1112 }
1113
1114 if (!TARGET_SEP_DATA
1115 && crtl->uses_pic_offset_table)
1116 emit_insn (gen_load_got (pic_offset_table_rtx));
1117 }
1118 \f
1119 /* Return true if a simple (return) instruction is sufficient for this
1120 instruction (i.e. if no epilogue is needed). */
1121
1122 bool
1123 m68k_use_return_insn (void)
1124 {
1125 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
1126 return false;
1127
1128 m68k_compute_frame_layout ();
1129 return current_frame.offset == 0;
1130 }
1131
1132 /* Emit RTL for the "epilogue" or "sibcall_epilogue" define_expand;
1133 SIBCALL_P says which.
1134
1135 The function epilogue should not depend on the current stack pointer!
1136 It should use the frame pointer only, if there is a frame pointer.
1137 This is mandatory because of alloca; we also take advantage of it to
1138 omit stack adjustments before returning. */
1139
1140 void
1141 m68k_expand_epilogue (bool sibcall_p)
1142 {
1143 HOST_WIDE_INT fsize, fsize_with_regs;
1144 bool big, restore_from_sp;
1145
1146 m68k_compute_frame_layout ();
1147
1148 fsize = current_frame.size;
1149 big = false;
1150 restore_from_sp = false;
1151
1152 /* FIXME : crtl->is_leaf below is too strong.
1153 What we really need to know there is if there could be pending
1154 stack adjustment needed at that point. */
1155 restore_from_sp = (!frame_pointer_needed
1156 || (!cfun->calls_alloca && crtl->is_leaf));
1157
1158 /* fsize_with_regs is the size we need to adjust the sp when
1159 popping the frame. */
1160 fsize_with_regs = fsize;
1161 if (TARGET_COLDFIRE && restore_from_sp)
1162 {
1163 /* ColdFire's move multiple instructions do not allow post-increment
1164 addressing. Add the size of movem loads to the final deallocation
1165 instead. */
1166 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1167 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1168 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1169 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1170 }
1171
1172 if (current_frame.offset + fsize >= 0x8000
1173 && !restore_from_sp
1174 && (current_frame.reg_mask || current_frame.fpu_mask))
1175 {
1176 if (TARGET_COLDFIRE
1177 && (current_frame.reg_no >= MIN_MOVEM_REGS
1178 || current_frame.fpu_no >= MIN_FMOVEM_REGS))
1179 {
1180 /* ColdFire's move multiple instructions do not support the
1181 (d8,Ax,Xi) addressing mode, so we're as well using a normal
1182 stack-based restore. */
1183 emit_move_insn (gen_rtx_REG (Pmode, A1_REG),
1184 GEN_INT (-(current_frame.offset + fsize)));
1185 emit_insn (gen_addsi3 (stack_pointer_rtx,
1186 gen_rtx_REG (Pmode, A1_REG),
1187 frame_pointer_rtx));
1188 restore_from_sp = true;
1189 }
1190 else
1191 {
1192 emit_move_insn (gen_rtx_REG (Pmode, A1_REG), GEN_INT (-fsize));
1193 fsize = 0;
1194 big = true;
1195 }
1196 }
1197
1198 if (current_frame.reg_no < MIN_MOVEM_REGS)
1199 {
1200 /* Restore each register separately in the same order moveml does. */
1201 int i;
1202 HOST_WIDE_INT offset;
1203
1204 offset = current_frame.offset + fsize;
1205 for (i = 0; i < 16; i++)
1206 if (current_frame.reg_mask & (1 << i))
1207 {
1208 rtx addr;
1209
1210 if (big)
1211 {
1212 /* Generate the address -OFFSET(%fp,%a1.l). */
1213 addr = gen_rtx_REG (Pmode, A1_REG);
1214 addr = gen_rtx_PLUS (Pmode, addr, frame_pointer_rtx);
1215 addr = plus_constant (Pmode, addr, -offset);
1216 }
1217 else if (restore_from_sp)
1218 addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
1219 else
1220 addr = plus_constant (Pmode, frame_pointer_rtx, -offset);
1221 emit_move_insn (gen_rtx_REG (SImode, D0_REG + i),
1222 gen_frame_mem (SImode, addr));
1223 offset -= GET_MODE_SIZE (SImode);
1224 }
1225 }
1226 else if (current_frame.reg_mask)
1227 {
1228 if (big)
1229 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1230 gen_rtx_REG (Pmode, A1_REG),
1231 frame_pointer_rtx),
1232 -(current_frame.offset + fsize),
1233 current_frame.reg_no, D0_REG,
1234 current_frame.reg_mask, false, false);
1235 else if (restore_from_sp)
1236 m68k_emit_movem (stack_pointer_rtx, 0,
1237 current_frame.reg_no, D0_REG,
1238 current_frame.reg_mask, false,
1239 !TARGET_COLDFIRE);
1240 else
1241 m68k_emit_movem (frame_pointer_rtx,
1242 -(current_frame.offset + fsize),
1243 current_frame.reg_no, D0_REG,
1244 current_frame.reg_mask, false, false);
1245 }
1246
1247 if (current_frame.fpu_no > 0)
1248 {
1249 if (big)
1250 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1251 gen_rtx_REG (Pmode, A1_REG),
1252 frame_pointer_rtx),
1253 -(current_frame.foffset + fsize),
1254 current_frame.fpu_no, FP0_REG,
1255 current_frame.fpu_mask, false, false);
1256 else if (restore_from_sp)
1257 {
1258 if (TARGET_COLDFIRE)
1259 {
1260 int offset;
1261
1262 /* If we used moveml to restore the integer registers, the
1263 stack pointer will still point to the bottom of the moveml
1264 save area. Find the stack offset of the first FP
1265 register. */
1266 if (current_frame.reg_no < MIN_MOVEM_REGS)
1267 offset = 0;
1268 else
1269 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1270 m68k_emit_movem (stack_pointer_rtx, offset,
1271 current_frame.fpu_no, FP0_REG,
1272 current_frame.fpu_mask, false, false);
1273 }
1274 else
1275 m68k_emit_movem (stack_pointer_rtx, 0,
1276 current_frame.fpu_no, FP0_REG,
1277 current_frame.fpu_mask, false, true);
1278 }
1279 else
1280 m68k_emit_movem (frame_pointer_rtx,
1281 -(current_frame.foffset + fsize),
1282 current_frame.fpu_no, FP0_REG,
1283 current_frame.fpu_mask, false, false);
1284 }
1285
1286 if (frame_pointer_needed)
1287 emit_insn (gen_unlink (frame_pointer_rtx));
1288 else if (fsize_with_regs)
1289 emit_insn (gen_addsi3 (stack_pointer_rtx,
1290 stack_pointer_rtx,
1291 GEN_INT (fsize_with_regs)));
1292
1293 if (crtl->calls_eh_return)
1294 emit_insn (gen_addsi3 (stack_pointer_rtx,
1295 stack_pointer_rtx,
1296 EH_RETURN_STACKADJ_RTX));
1297
1298 if (!sibcall_p)
1299 emit_jump_insn (ret_rtx);
1300 }
1301 \f
1302 /* Return true if X is a valid comparison operator for the dbcc
1303 instruction.
1304
1305 Note it rejects floating point comparison operators.
1306 (In the future we could use Fdbcc).
1307
1308 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
1309
1310 int
1311 valid_dbcc_comparison_p_2 (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
1312 {
1313 switch (GET_CODE (x))
1314 {
1315 case EQ: case NE: case GTU: case LTU:
1316 case GEU: case LEU:
1317 return 1;
1318
1319 /* Reject some when CC_NO_OVERFLOW is set. This may be over
1320 conservative */
1321 case GT: case LT: case GE: case LE:
1322 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
1323 default:
1324 return 0;
1325 }
1326 }
1327
1328 /* Return nonzero if flags are currently in the 68881 flag register. */
1329 int
1330 flags_in_68881 (void)
1331 {
1332 /* We could add support for these in the future */
1333 return cc_status.flags & CC_IN_68881;
1334 }
1335
1336 /* Return true if PARALLEL contains register REGNO. */
1337 static bool
1338 m68k_reg_present_p (const_rtx parallel, unsigned int regno)
1339 {
1340 int i;
1341
1342 if (REG_P (parallel) && REGNO (parallel) == regno)
1343 return true;
1344
1345 if (GET_CODE (parallel) != PARALLEL)
1346 return false;
1347
1348 for (i = 0; i < XVECLEN (parallel, 0); ++i)
1349 {
1350 const_rtx x;
1351
1352 x = XEXP (XVECEXP (parallel, 0, i), 0);
1353 if (REG_P (x) && REGNO (x) == regno)
1354 return true;
1355 }
1356
1357 return false;
1358 }
1359
1360 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL_P. */
1361
1362 static bool
1363 m68k_ok_for_sibcall_p (tree decl, tree exp)
1364 {
1365 enum m68k_function_kind kind;
1366
1367 /* We cannot use sibcalls for nested functions because we use the
1368 static chain register for indirect calls. */
1369 if (CALL_EXPR_STATIC_CHAIN (exp))
1370 return false;
1371
1372 if (!VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl))))
1373 {
1374 /* Check that the return value locations are the same. For
1375 example that we aren't returning a value from the sibling in
1376 a D0 register but then need to transfer it to a A0 register. */
1377 rtx cfun_value;
1378 rtx call_value;
1379
1380 cfun_value = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (cfun->decl)),
1381 cfun->decl);
1382 call_value = FUNCTION_VALUE (TREE_TYPE (exp), decl);
1383
1384 /* Check that the values are equal or that the result the callee
1385 function returns is superset of what the current function returns. */
1386 if (!(rtx_equal_p (cfun_value, call_value)
1387 || (REG_P (cfun_value)
1388 && m68k_reg_present_p (call_value, REGNO (cfun_value)))))
1389 return false;
1390 }
1391
1392 kind = m68k_get_function_kind (current_function_decl);
1393 if (kind == m68k_fk_normal_function)
1394 /* We can always sibcall from a normal function, because it's
1395 undefined if it is calling an interrupt function. */
1396 return true;
1397
1398 /* Otherwise we can only sibcall if the function kind is known to be
1399 the same. */
1400 if (decl && m68k_get_function_kind (decl) == kind)
1401 return true;
1402
1403 return false;
1404 }
1405
1406 /* On the m68k all args are always pushed. */
1407
1408 static rtx
1409 m68k_function_arg (cumulative_args_t cum ATTRIBUTE_UNUSED,
1410 enum machine_mode mode ATTRIBUTE_UNUSED,
1411 const_tree type ATTRIBUTE_UNUSED,
1412 bool named ATTRIBUTE_UNUSED)
1413 {
1414 return NULL_RTX;
1415 }
1416
1417 static void
1418 m68k_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
1419 const_tree type, bool named ATTRIBUTE_UNUSED)
1420 {
1421 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1422
1423 *cum += (mode != BLKmode
1424 ? (GET_MODE_SIZE (mode) + 3) & ~3
1425 : (int_size_in_bytes (type) + 3) & ~3);
1426 }
1427
1428 /* Convert X to a legitimate function call memory reference and return the
1429 result. */
1430
1431 rtx
1432 m68k_legitimize_call_address (rtx x)
1433 {
1434 gcc_assert (MEM_P (x));
1435 if (call_operand (XEXP (x, 0), VOIDmode))
1436 return x;
1437 return replace_equiv_address (x, force_reg (Pmode, XEXP (x, 0)));
1438 }
1439
1440 /* Likewise for sibling calls. */
1441
1442 rtx
1443 m68k_legitimize_sibcall_address (rtx x)
1444 {
1445 gcc_assert (MEM_P (x));
1446 if (sibcall_operand (XEXP (x, 0), VOIDmode))
1447 return x;
1448
1449 emit_move_insn (gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM), XEXP (x, 0));
1450 return replace_equiv_address (x, gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM));
1451 }
1452
1453 /* Convert X to a legitimate address and return it if successful. Otherwise
1454 return X.
1455
1456 For the 68000, we handle X+REG by loading X into a register R and
1457 using R+REG. R will go in an address reg and indexing will be used.
1458 However, if REG is a broken-out memory address or multiplication,
1459 nothing needs to be done because REG can certainly go in an address reg. */
1460
1461 static rtx
1462 m68k_legitimize_address (rtx x, rtx oldx, enum machine_mode mode)
1463 {
1464 if (m68k_tls_symbol_p (x))
1465 return m68k_legitimize_tls_address (x);
1466
1467 if (GET_CODE (x) == PLUS)
1468 {
1469 int ch = (x) != (oldx);
1470 int copied = 0;
1471
1472 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1473
1474 if (GET_CODE (XEXP (x, 0)) == MULT)
1475 {
1476 COPY_ONCE (x);
1477 XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
1478 }
1479 if (GET_CODE (XEXP (x, 1)) == MULT)
1480 {
1481 COPY_ONCE (x);
1482 XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
1483 }
1484 if (ch)
1485 {
1486 if (GET_CODE (XEXP (x, 1)) == REG
1487 && GET_CODE (XEXP (x, 0)) == REG)
1488 {
1489 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
1490 {
1491 COPY_ONCE (x);
1492 x = force_operand (x, 0);
1493 }
1494 return x;
1495 }
1496 if (memory_address_p (mode, x))
1497 return x;
1498 }
1499 if (GET_CODE (XEXP (x, 0)) == REG
1500 || (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
1501 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1502 && GET_MODE (XEXP (XEXP (x, 0), 0)) == HImode))
1503 {
1504 rtx temp = gen_reg_rtx (Pmode);
1505 rtx val = force_operand (XEXP (x, 1), 0);
1506 emit_move_insn (temp, val);
1507 COPY_ONCE (x);
1508 XEXP (x, 1) = temp;
1509 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1510 && GET_CODE (XEXP (x, 0)) == REG)
1511 x = force_operand (x, 0);
1512 }
1513 else if (GET_CODE (XEXP (x, 1)) == REG
1514 || (GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
1515 && GET_CODE (XEXP (XEXP (x, 1), 0)) == REG
1516 && GET_MODE (XEXP (XEXP (x, 1), 0)) == HImode))
1517 {
1518 rtx temp = gen_reg_rtx (Pmode);
1519 rtx val = force_operand (XEXP (x, 0), 0);
1520 emit_move_insn (temp, val);
1521 COPY_ONCE (x);
1522 XEXP (x, 0) = temp;
1523 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1524 && GET_CODE (XEXP (x, 1)) == REG)
1525 x = force_operand (x, 0);
1526 }
1527 }
1528
1529 return x;
1530 }
1531
1532
1533 /* Output a dbCC; jCC sequence. Note we do not handle the
1534 floating point version of this sequence (Fdbcc). We also
1535 do not handle alternative conditions when CC_NO_OVERFLOW is
1536 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
1537 kick those out before we get here. */
1538
1539 void
1540 output_dbcc_and_branch (rtx *operands)
1541 {
1542 switch (GET_CODE (operands[3]))
1543 {
1544 case EQ:
1545 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
1546 break;
1547
1548 case NE:
1549 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
1550 break;
1551
1552 case GT:
1553 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
1554 break;
1555
1556 case GTU:
1557 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
1558 break;
1559
1560 case LT:
1561 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
1562 break;
1563
1564 case LTU:
1565 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
1566 break;
1567
1568 case GE:
1569 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
1570 break;
1571
1572 case GEU:
1573 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
1574 break;
1575
1576 case LE:
1577 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
1578 break;
1579
1580 case LEU:
1581 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
1582 break;
1583
1584 default:
1585 gcc_unreachable ();
1586 }
1587
1588 /* If the decrement is to be done in SImode, then we have
1589 to compensate for the fact that dbcc decrements in HImode. */
1590 switch (GET_MODE (operands[0]))
1591 {
1592 case SImode:
1593 output_asm_insn ("clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1", operands);
1594 break;
1595
1596 case HImode:
1597 break;
1598
1599 default:
1600 gcc_unreachable ();
1601 }
1602 }
1603
1604 const char *
1605 output_scc_di (rtx op, rtx operand1, rtx operand2, rtx dest)
1606 {
1607 rtx loperands[7];
1608 enum rtx_code op_code = GET_CODE (op);
1609
1610 /* This does not produce a useful cc. */
1611 CC_STATUS_INIT;
1612
1613 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1614 below. Swap the operands and change the op if these requirements
1615 are not fulfilled. */
1616 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1617 {
1618 rtx tmp = operand1;
1619
1620 operand1 = operand2;
1621 operand2 = tmp;
1622 op_code = swap_condition (op_code);
1623 }
1624 loperands[0] = operand1;
1625 if (GET_CODE (operand1) == REG)
1626 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
1627 else
1628 loperands[1] = adjust_address (operand1, SImode, 4);
1629 if (operand2 != const0_rtx)
1630 {
1631 loperands[2] = operand2;
1632 if (GET_CODE (operand2) == REG)
1633 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
1634 else
1635 loperands[3] = adjust_address (operand2, SImode, 4);
1636 }
1637 loperands[4] = gen_label_rtx ();
1638 if (operand2 != const0_rtx)
1639 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
1640 else
1641 {
1642 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
1643 output_asm_insn ("tst%.l %0", loperands);
1644 else
1645 output_asm_insn ("cmp%.w #0,%0", loperands);
1646
1647 output_asm_insn ("jne %l4", loperands);
1648
1649 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
1650 output_asm_insn ("tst%.l %1", loperands);
1651 else
1652 output_asm_insn ("cmp%.w #0,%1", loperands);
1653 }
1654
1655 loperands[5] = dest;
1656
1657 switch (op_code)
1658 {
1659 case EQ:
1660 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1661 CODE_LABEL_NUMBER (loperands[4]));
1662 output_asm_insn ("seq %5", loperands);
1663 break;
1664
1665 case NE:
1666 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1667 CODE_LABEL_NUMBER (loperands[4]));
1668 output_asm_insn ("sne %5", loperands);
1669 break;
1670
1671 case GT:
1672 loperands[6] = gen_label_rtx ();
1673 output_asm_insn ("shi %5\n\tjra %l6", loperands);
1674 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1675 CODE_LABEL_NUMBER (loperands[4]));
1676 output_asm_insn ("sgt %5", loperands);
1677 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1678 CODE_LABEL_NUMBER (loperands[6]));
1679 break;
1680
1681 case GTU:
1682 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1683 CODE_LABEL_NUMBER (loperands[4]));
1684 output_asm_insn ("shi %5", loperands);
1685 break;
1686
1687 case LT:
1688 loperands[6] = gen_label_rtx ();
1689 output_asm_insn ("scs %5\n\tjra %l6", loperands);
1690 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1691 CODE_LABEL_NUMBER (loperands[4]));
1692 output_asm_insn ("slt %5", loperands);
1693 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1694 CODE_LABEL_NUMBER (loperands[6]));
1695 break;
1696
1697 case LTU:
1698 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1699 CODE_LABEL_NUMBER (loperands[4]));
1700 output_asm_insn ("scs %5", loperands);
1701 break;
1702
1703 case GE:
1704 loperands[6] = gen_label_rtx ();
1705 output_asm_insn ("scc %5\n\tjra %l6", loperands);
1706 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1707 CODE_LABEL_NUMBER (loperands[4]));
1708 output_asm_insn ("sge %5", loperands);
1709 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1710 CODE_LABEL_NUMBER (loperands[6]));
1711 break;
1712
1713 case GEU:
1714 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1715 CODE_LABEL_NUMBER (loperands[4]));
1716 output_asm_insn ("scc %5", loperands);
1717 break;
1718
1719 case LE:
1720 loperands[6] = gen_label_rtx ();
1721 output_asm_insn ("sls %5\n\tjra %l6", loperands);
1722 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1723 CODE_LABEL_NUMBER (loperands[4]));
1724 output_asm_insn ("sle %5", loperands);
1725 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1726 CODE_LABEL_NUMBER (loperands[6]));
1727 break;
1728
1729 case LEU:
1730 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1731 CODE_LABEL_NUMBER (loperands[4]));
1732 output_asm_insn ("sls %5", loperands);
1733 break;
1734
1735 default:
1736 gcc_unreachable ();
1737 }
1738 return "";
1739 }
1740
1741 const char *
1742 output_btst (rtx *operands, rtx countop, rtx dataop, rtx insn, int signpos)
1743 {
1744 operands[0] = countop;
1745 operands[1] = dataop;
1746
1747 if (GET_CODE (countop) == CONST_INT)
1748 {
1749 register int count = INTVAL (countop);
1750 /* If COUNT is bigger than size of storage unit in use,
1751 advance to the containing unit of same size. */
1752 if (count > signpos)
1753 {
1754 int offset = (count & ~signpos) / 8;
1755 count = count & signpos;
1756 operands[1] = dataop = adjust_address (dataop, QImode, offset);
1757 }
1758 if (count == signpos)
1759 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1760 else
1761 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1762
1763 /* These three statements used to use next_insns_test_no...
1764 but it appears that this should do the same job. */
1765 if (count == 31
1766 && next_insn_tests_no_inequality (insn))
1767 return "tst%.l %1";
1768 if (count == 15
1769 && next_insn_tests_no_inequality (insn))
1770 return "tst%.w %1";
1771 if (count == 7
1772 && next_insn_tests_no_inequality (insn))
1773 return "tst%.b %1";
1774 /* Try to use `movew to ccr' followed by the appropriate branch insn.
1775 On some m68k variants unfortunately that's slower than btst.
1776 On 68000 and higher, that should also work for all HImode operands. */
1777 if (TUNE_CPU32 || TARGET_COLDFIRE || optimize_size)
1778 {
1779 if (count == 3 && DATA_REG_P (operands[1])
1780 && next_insn_tests_no_inequality (insn))
1781 {
1782 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N | CC_NO_OVERFLOW;
1783 return "move%.w %1,%%ccr";
1784 }
1785 if (count == 2 && DATA_REG_P (operands[1])
1786 && next_insn_tests_no_inequality (insn))
1787 {
1788 cc_status.flags = CC_NOT_NEGATIVE | CC_INVERTED | CC_NO_OVERFLOW;
1789 return "move%.w %1,%%ccr";
1790 }
1791 /* count == 1 followed by bvc/bvs and
1792 count == 0 followed by bcc/bcs are also possible, but need
1793 m68k-specific CC_Z_IN_NOT_V and CC_Z_IN_NOT_C flags. */
1794 }
1795
1796 cc_status.flags = CC_NOT_NEGATIVE;
1797 }
1798 return "btst %0,%1";
1799 }
1800 \f
1801 /* Return true if X is a legitimate base register. STRICT_P says
1802 whether we need strict checking. */
1803
1804 bool
1805 m68k_legitimate_base_reg_p (rtx x, bool strict_p)
1806 {
1807 /* Allow SUBREG everywhere we allow REG. This results in better code. */
1808 if (!strict_p && GET_CODE (x) == SUBREG)
1809 x = SUBREG_REG (x);
1810
1811 return (REG_P (x)
1812 && (strict_p
1813 ? REGNO_OK_FOR_BASE_P (REGNO (x))
1814 : REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x))));
1815 }
1816
1817 /* Return true if X is a legitimate index register. STRICT_P says
1818 whether we need strict checking. */
1819
1820 bool
1821 m68k_legitimate_index_reg_p (rtx x, bool strict_p)
1822 {
1823 if (!strict_p && GET_CODE (x) == SUBREG)
1824 x = SUBREG_REG (x);
1825
1826 return (REG_P (x)
1827 && (strict_p
1828 ? REGNO_OK_FOR_INDEX_P (REGNO (x))
1829 : REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (x))));
1830 }
1831
1832 /* Return true if X is a legitimate index expression for a (d8,An,Xn) or
1833 (bd,An,Xn) addressing mode. Fill in the INDEX and SCALE fields of
1834 ADDRESS if so. STRICT_P says whether we need strict checking. */
1835
1836 static bool
1837 m68k_decompose_index (rtx x, bool strict_p, struct m68k_address *address)
1838 {
1839 int scale;
1840
1841 /* Check for a scale factor. */
1842 scale = 1;
1843 if ((TARGET_68020 || TARGET_COLDFIRE)
1844 && GET_CODE (x) == MULT
1845 && GET_CODE (XEXP (x, 1)) == CONST_INT
1846 && (INTVAL (XEXP (x, 1)) == 2
1847 || INTVAL (XEXP (x, 1)) == 4
1848 || (INTVAL (XEXP (x, 1)) == 8
1849 && (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE))))
1850 {
1851 scale = INTVAL (XEXP (x, 1));
1852 x = XEXP (x, 0);
1853 }
1854
1855 /* Check for a word extension. */
1856 if (!TARGET_COLDFIRE
1857 && GET_CODE (x) == SIGN_EXTEND
1858 && GET_MODE (XEXP (x, 0)) == HImode)
1859 x = XEXP (x, 0);
1860
1861 if (m68k_legitimate_index_reg_p (x, strict_p))
1862 {
1863 address->scale = scale;
1864 address->index = x;
1865 return true;
1866 }
1867
1868 return false;
1869 }
1870
1871 /* Return true if X is an illegitimate symbolic constant. */
1872
1873 bool
1874 m68k_illegitimate_symbolic_constant_p (rtx x)
1875 {
1876 rtx base, offset;
1877
1878 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
1879 {
1880 split_const (x, &base, &offset);
1881 if (GET_CODE (base) == SYMBOL_REF
1882 && !offset_within_block_p (base, INTVAL (offset)))
1883 return true;
1884 }
1885 return m68k_tls_reference_p (x, false);
1886 }
1887
1888 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
1889
1890 static bool
1891 m68k_cannot_force_const_mem (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
1892 {
1893 return m68k_illegitimate_symbolic_constant_p (x);
1894 }
1895
1896 /* Return true if X is a legitimate constant address that can reach
1897 bytes in the range [X, X + REACH). STRICT_P says whether we need
1898 strict checking. */
1899
1900 static bool
1901 m68k_legitimate_constant_address_p (rtx x, unsigned int reach, bool strict_p)
1902 {
1903 rtx base, offset;
1904
1905 if (!CONSTANT_ADDRESS_P (x))
1906 return false;
1907
1908 if (flag_pic
1909 && !(strict_p && TARGET_PCREL)
1910 && symbolic_operand (x, VOIDmode))
1911 return false;
1912
1913 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P && reach > 1)
1914 {
1915 split_const (x, &base, &offset);
1916 if (GET_CODE (base) == SYMBOL_REF
1917 && !offset_within_block_p (base, INTVAL (offset) + reach - 1))
1918 return false;
1919 }
1920
1921 return !m68k_tls_reference_p (x, false);
1922 }
1923
1924 /* Return true if X is a LABEL_REF for a jump table. Assume that unplaced
1925 labels will become jump tables. */
1926
1927 static bool
1928 m68k_jump_table_ref_p (rtx x)
1929 {
1930 if (GET_CODE (x) != LABEL_REF)
1931 return false;
1932
1933 x = XEXP (x, 0);
1934 if (!NEXT_INSN (x) && !PREV_INSN (x))
1935 return true;
1936
1937 x = next_nonnote_insn (x);
1938 return x && JUMP_TABLE_DATA_P (x);
1939 }
1940
1941 /* Return true if X is a legitimate address for values of mode MODE.
1942 STRICT_P says whether strict checking is needed. If the address
1943 is valid, describe its components in *ADDRESS. */
1944
1945 static bool
1946 m68k_decompose_address (enum machine_mode mode, rtx x,
1947 bool strict_p, struct m68k_address *address)
1948 {
1949 unsigned int reach;
1950
1951 memset (address, 0, sizeof (*address));
1952
1953 if (mode == BLKmode)
1954 reach = 1;
1955 else
1956 reach = GET_MODE_SIZE (mode);
1957
1958 /* Check for (An) (mode 2). */
1959 if (m68k_legitimate_base_reg_p (x, strict_p))
1960 {
1961 address->base = x;
1962 return true;
1963 }
1964
1965 /* Check for -(An) and (An)+ (modes 3 and 4). */
1966 if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
1967 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
1968 {
1969 address->code = GET_CODE (x);
1970 address->base = XEXP (x, 0);
1971 return true;
1972 }
1973
1974 /* Check for (d16,An) (mode 5). */
1975 if (GET_CODE (x) == PLUS
1976 && GET_CODE (XEXP (x, 1)) == CONST_INT
1977 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x8000, 0x8000 - reach)
1978 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
1979 {
1980 address->base = XEXP (x, 0);
1981 address->offset = XEXP (x, 1);
1982 return true;
1983 }
1984
1985 /* Check for GOT loads. These are (bd,An,Xn) addresses if
1986 TARGET_68020 && flag_pic == 2, otherwise they are (d16,An)
1987 addresses. */
1988 if (GET_CODE (x) == PLUS
1989 && XEXP (x, 0) == pic_offset_table_rtx)
1990 {
1991 /* As we are processing a PLUS, do not unwrap RELOC32 symbols --
1992 they are invalid in this context. */
1993 if (m68k_unwrap_symbol (XEXP (x, 1), false) != XEXP (x, 1))
1994 {
1995 address->base = XEXP (x, 0);
1996 address->offset = XEXP (x, 1);
1997 return true;
1998 }
1999 }
2000
2001 /* The ColdFire FPU only accepts addressing modes 2-5. */
2002 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
2003 return false;
2004
2005 /* Check for (xxx).w and (xxx).l. Also, in the TARGET_PCREL case,
2006 check for (d16,PC) or (bd,PC,Xn) with a suppressed index register.
2007 All these modes are variations of mode 7. */
2008 if (m68k_legitimate_constant_address_p (x, reach, strict_p))
2009 {
2010 address->offset = x;
2011 return true;
2012 }
2013
2014 /* Check for (d8,PC,Xn), a mode 7 form. This case is needed for
2015 tablejumps.
2016
2017 ??? do_tablejump creates these addresses before placing the target
2018 label, so we have to assume that unplaced labels are jump table
2019 references. It seems unlikely that we would ever generate indexed
2020 accesses to unplaced labels in other cases. */
2021 if (GET_CODE (x) == PLUS
2022 && m68k_jump_table_ref_p (XEXP (x, 1))
2023 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2024 {
2025 address->offset = XEXP (x, 1);
2026 return true;
2027 }
2028
2029 /* Everything hereafter deals with (d8,An,Xn.SIZE*SCALE) or
2030 (bd,An,Xn.SIZE*SCALE) addresses. */
2031
2032 if (TARGET_68020)
2033 {
2034 /* Check for a nonzero base displacement. */
2035 if (GET_CODE (x) == PLUS
2036 && m68k_legitimate_constant_address_p (XEXP (x, 1), reach, strict_p))
2037 {
2038 address->offset = XEXP (x, 1);
2039 x = XEXP (x, 0);
2040 }
2041
2042 /* Check for a suppressed index register. */
2043 if (m68k_legitimate_base_reg_p (x, strict_p))
2044 {
2045 address->base = x;
2046 return true;
2047 }
2048
2049 /* Check for a suppressed base register. Do not allow this case
2050 for non-symbolic offsets as it effectively gives gcc freedom
2051 to treat data registers as base registers, which can generate
2052 worse code. */
2053 if (address->offset
2054 && symbolic_operand (address->offset, VOIDmode)
2055 && m68k_decompose_index (x, strict_p, address))
2056 return true;
2057 }
2058 else
2059 {
2060 /* Check for a nonzero base displacement. */
2061 if (GET_CODE (x) == PLUS
2062 && GET_CODE (XEXP (x, 1)) == CONST_INT
2063 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x80, 0x80 - reach))
2064 {
2065 address->offset = XEXP (x, 1);
2066 x = XEXP (x, 0);
2067 }
2068 }
2069
2070 /* We now expect the sum of a base and an index. */
2071 if (GET_CODE (x) == PLUS)
2072 {
2073 if (m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p)
2074 && m68k_decompose_index (XEXP (x, 1), strict_p, address))
2075 {
2076 address->base = XEXP (x, 0);
2077 return true;
2078 }
2079
2080 if (m68k_legitimate_base_reg_p (XEXP (x, 1), strict_p)
2081 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2082 {
2083 address->base = XEXP (x, 1);
2084 return true;
2085 }
2086 }
2087 return false;
2088 }
2089
2090 /* Return true if X is a legitimate address for values of mode MODE.
2091 STRICT_P says whether strict checking is needed. */
2092
2093 bool
2094 m68k_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p)
2095 {
2096 struct m68k_address address;
2097
2098 return m68k_decompose_address (mode, x, strict_p, &address);
2099 }
2100
2101 /* Return true if X is a memory, describing its address in ADDRESS if so.
2102 Apply strict checking if called during or after reload. */
2103
2104 static bool
2105 m68k_legitimate_mem_p (rtx x, struct m68k_address *address)
2106 {
2107 return (MEM_P (x)
2108 && m68k_decompose_address (GET_MODE (x), XEXP (x, 0),
2109 reload_in_progress || reload_completed,
2110 address));
2111 }
2112
2113 /* Implement TARGET_LEGITIMATE_CONSTANT_P. */
2114
2115 bool
2116 m68k_legitimate_constant_p (enum machine_mode mode, rtx x)
2117 {
2118 return mode != XFmode && !m68k_illegitimate_symbolic_constant_p (x);
2119 }
2120
2121 /* Return true if X matches the 'Q' constraint. It must be a memory
2122 with a base address and no constant offset or index. */
2123
2124 bool
2125 m68k_matches_q_p (rtx x)
2126 {
2127 struct m68k_address address;
2128
2129 return (m68k_legitimate_mem_p (x, &address)
2130 && address.code == UNKNOWN
2131 && address.base
2132 && !address.offset
2133 && !address.index);
2134 }
2135
2136 /* Return true if X matches the 'U' constraint. It must be a base address
2137 with a constant offset and no index. */
2138
2139 bool
2140 m68k_matches_u_p (rtx x)
2141 {
2142 struct m68k_address address;
2143
2144 return (m68k_legitimate_mem_p (x, &address)
2145 && address.code == UNKNOWN
2146 && address.base
2147 && address.offset
2148 && !address.index);
2149 }
2150
2151 /* Return GOT pointer. */
2152
2153 static rtx
2154 m68k_get_gp (void)
2155 {
2156 if (pic_offset_table_rtx == NULL_RTX)
2157 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_REG);
2158
2159 crtl->uses_pic_offset_table = 1;
2160
2161 return pic_offset_table_rtx;
2162 }
2163
2164 /* M68K relocations, used to distinguish GOT and TLS relocations in UNSPEC
2165 wrappers. */
2166 enum m68k_reloc { RELOC_GOT, RELOC_TLSGD, RELOC_TLSLDM, RELOC_TLSLDO,
2167 RELOC_TLSIE, RELOC_TLSLE };
2168
2169 #define TLS_RELOC_P(RELOC) ((RELOC) != RELOC_GOT)
2170
2171 /* Wrap symbol X into unspec representing relocation RELOC.
2172 BASE_REG - register that should be added to the result.
2173 TEMP_REG - if non-null, temporary register. */
2174
2175 static rtx
2176 m68k_wrap_symbol (rtx x, enum m68k_reloc reloc, rtx base_reg, rtx temp_reg)
2177 {
2178 bool use_x_p;
2179
2180 use_x_p = (base_reg == pic_offset_table_rtx) ? TARGET_XGOT : TARGET_XTLS;
2181
2182 if (TARGET_COLDFIRE && use_x_p)
2183 /* When compiling with -mx{got, tls} switch the code will look like this:
2184
2185 move.l <X>@<RELOC>,<TEMP_REG>
2186 add.l <BASE_REG>,<TEMP_REG> */
2187 {
2188 /* Wrap X in UNSPEC_??? to tip m68k_output_addr_const_extra
2189 to put @RELOC after reference. */
2190 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2191 UNSPEC_RELOC32);
2192 x = gen_rtx_CONST (Pmode, x);
2193
2194 if (temp_reg == NULL)
2195 {
2196 gcc_assert (can_create_pseudo_p ());
2197 temp_reg = gen_reg_rtx (Pmode);
2198 }
2199
2200 emit_move_insn (temp_reg, x);
2201 emit_insn (gen_addsi3 (temp_reg, temp_reg, base_reg));
2202 x = temp_reg;
2203 }
2204 else
2205 {
2206 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2207 UNSPEC_RELOC16);
2208 x = gen_rtx_CONST (Pmode, x);
2209
2210 x = gen_rtx_PLUS (Pmode, base_reg, x);
2211 }
2212
2213 return x;
2214 }
2215
2216 /* Helper for m68k_unwrap_symbol.
2217 Also, if unwrapping was successful (that is if (ORIG != <return value>)),
2218 sets *RELOC_PTR to relocation type for the symbol. */
2219
2220 static rtx
2221 m68k_unwrap_symbol_1 (rtx orig, bool unwrap_reloc32_p,
2222 enum m68k_reloc *reloc_ptr)
2223 {
2224 if (GET_CODE (orig) == CONST)
2225 {
2226 rtx x;
2227 enum m68k_reloc dummy;
2228
2229 x = XEXP (orig, 0);
2230
2231 if (reloc_ptr == NULL)
2232 reloc_ptr = &dummy;
2233
2234 /* Handle an addend. */
2235 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2236 && CONST_INT_P (XEXP (x, 1)))
2237 x = XEXP (x, 0);
2238
2239 if (GET_CODE (x) == UNSPEC)
2240 {
2241 switch (XINT (x, 1))
2242 {
2243 case UNSPEC_RELOC16:
2244 orig = XVECEXP (x, 0, 0);
2245 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2246 break;
2247
2248 case UNSPEC_RELOC32:
2249 if (unwrap_reloc32_p)
2250 {
2251 orig = XVECEXP (x, 0, 0);
2252 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2253 }
2254 break;
2255
2256 default:
2257 break;
2258 }
2259 }
2260 }
2261
2262 return orig;
2263 }
2264
2265 /* Unwrap symbol from UNSPEC_RELOC16 and, if unwrap_reloc32_p,
2266 UNSPEC_RELOC32 wrappers. */
2267
2268 rtx
2269 m68k_unwrap_symbol (rtx orig, bool unwrap_reloc32_p)
2270 {
2271 return m68k_unwrap_symbol_1 (orig, unwrap_reloc32_p, NULL);
2272 }
2273
2274 /* Helper for m68k_final_prescan_insn. */
2275
2276 static int
2277 m68k_final_prescan_insn_1 (rtx *x_ptr, void *data ATTRIBUTE_UNUSED)
2278 {
2279 rtx x = *x_ptr;
2280
2281 if (m68k_unwrap_symbol (x, true) != x)
2282 /* For rationale of the below, see comment in m68k_final_prescan_insn. */
2283 {
2284 rtx plus;
2285
2286 gcc_assert (GET_CODE (x) == CONST);
2287 plus = XEXP (x, 0);
2288
2289 if (GET_CODE (plus) == PLUS || GET_CODE (plus) == MINUS)
2290 {
2291 rtx unspec;
2292 rtx addend;
2293
2294 unspec = XEXP (plus, 0);
2295 gcc_assert (GET_CODE (unspec) == UNSPEC);
2296 addend = XEXP (plus, 1);
2297 gcc_assert (CONST_INT_P (addend));
2298
2299 /* We now have all the pieces, rearrange them. */
2300
2301 /* Move symbol to plus. */
2302 XEXP (plus, 0) = XVECEXP (unspec, 0, 0);
2303
2304 /* Move plus inside unspec. */
2305 XVECEXP (unspec, 0, 0) = plus;
2306
2307 /* Move unspec to top level of const. */
2308 XEXP (x, 0) = unspec;
2309 }
2310
2311 return -1;
2312 }
2313
2314 return 0;
2315 }
2316
2317 /* Prescan insn before outputing assembler for it. */
2318
2319 void
2320 m68k_final_prescan_insn (rtx insn ATTRIBUTE_UNUSED,
2321 rtx *operands, int n_operands)
2322 {
2323 int i;
2324
2325 /* Combine and, possibly, other optimizations may do good job
2326 converting
2327 (const (unspec [(symbol)]))
2328 into
2329 (const (plus (unspec [(symbol)])
2330 (const_int N))).
2331 The problem with this is emitting @TLS or @GOT decorations.
2332 The decoration is emitted when processing (unspec), so the
2333 result would be "#symbol@TLSLE+N" instead of "#symbol+N@TLSLE".
2334
2335 It seems that the easiest solution to this is to convert such
2336 operands to
2337 (const (unspec [(plus (symbol)
2338 (const_int N))])).
2339 Note, that the top level of operand remains intact, so we don't have
2340 to patch up anything outside of the operand. */
2341
2342 for (i = 0; i < n_operands; ++i)
2343 {
2344 rtx op;
2345
2346 op = operands[i];
2347
2348 for_each_rtx (&op, m68k_final_prescan_insn_1, NULL);
2349 }
2350 }
2351
2352 /* Move X to a register and add REG_EQUAL note pointing to ORIG.
2353 If REG is non-null, use it; generate new pseudo otherwise. */
2354
2355 static rtx
2356 m68k_move_to_reg (rtx x, rtx orig, rtx reg)
2357 {
2358 rtx insn;
2359
2360 if (reg == NULL_RTX)
2361 {
2362 gcc_assert (can_create_pseudo_p ());
2363 reg = gen_reg_rtx (Pmode);
2364 }
2365
2366 insn = emit_move_insn (reg, x);
2367 /* Put a REG_EQUAL note on this insn, so that it can be optimized
2368 by loop. */
2369 set_unique_reg_note (insn, REG_EQUAL, orig);
2370
2371 return reg;
2372 }
2373
2374 /* Does the same as m68k_wrap_symbol, but returns a memory reference to
2375 GOT slot. */
2376
2377 static rtx
2378 m68k_wrap_symbol_into_got_ref (rtx x, enum m68k_reloc reloc, rtx temp_reg)
2379 {
2380 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), temp_reg);
2381
2382 x = gen_rtx_MEM (Pmode, x);
2383 MEM_READONLY_P (x) = 1;
2384
2385 return x;
2386 }
2387
2388 /* Legitimize PIC addresses. If the address is already
2389 position-independent, we return ORIG. Newly generated
2390 position-independent addresses go to REG. If we need more
2391 than one register, we lose.
2392
2393 An address is legitimized by making an indirect reference
2394 through the Global Offset Table with the name of the symbol
2395 used as an offset.
2396
2397 The assembler and linker are responsible for placing the
2398 address of the symbol in the GOT. The function prologue
2399 is responsible for initializing a5 to the starting address
2400 of the GOT.
2401
2402 The assembler is also responsible for translating a symbol name
2403 into a constant displacement from the start of the GOT.
2404
2405 A quick example may make things a little clearer:
2406
2407 When not generating PIC code to store the value 12345 into _foo
2408 we would generate the following code:
2409
2410 movel #12345, _foo
2411
2412 When generating PIC two transformations are made. First, the compiler
2413 loads the address of foo into a register. So the first transformation makes:
2414
2415 lea _foo, a0
2416 movel #12345, a0@
2417
2418 The code in movsi will intercept the lea instruction and call this
2419 routine which will transform the instructions into:
2420
2421 movel a5@(_foo:w), a0
2422 movel #12345, a0@
2423
2424
2425 That (in a nutshell) is how *all* symbol and label references are
2426 handled. */
2427
2428 rtx
2429 legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
2430 rtx reg)
2431 {
2432 rtx pic_ref = orig;
2433
2434 /* First handle a simple SYMBOL_REF or LABEL_REF */
2435 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
2436 {
2437 gcc_assert (reg);
2438
2439 pic_ref = m68k_wrap_symbol_into_got_ref (orig, RELOC_GOT, reg);
2440 pic_ref = m68k_move_to_reg (pic_ref, orig, reg);
2441 }
2442 else if (GET_CODE (orig) == CONST)
2443 {
2444 rtx base;
2445
2446 /* Make sure this has not already been legitimized. */
2447 if (m68k_unwrap_symbol (orig, true) != orig)
2448 return orig;
2449
2450 gcc_assert (reg);
2451
2452 /* legitimize both operands of the PLUS */
2453 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
2454
2455 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
2456 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
2457 base == reg ? 0 : reg);
2458
2459 if (GET_CODE (orig) == CONST_INT)
2460 pic_ref = plus_constant (Pmode, base, INTVAL (orig));
2461 else
2462 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
2463 }
2464
2465 return pic_ref;
2466 }
2467
2468 /* The __tls_get_addr symbol. */
2469 static GTY(()) rtx m68k_tls_get_addr;
2470
2471 /* Return SYMBOL_REF for __tls_get_addr. */
2472
2473 static rtx
2474 m68k_get_tls_get_addr (void)
2475 {
2476 if (m68k_tls_get_addr == NULL_RTX)
2477 m68k_tls_get_addr = init_one_libfunc ("__tls_get_addr");
2478
2479 return m68k_tls_get_addr;
2480 }
2481
2482 /* Return libcall result in A0 instead of usual D0. */
2483 static bool m68k_libcall_value_in_a0_p = false;
2484
2485 /* Emit instruction sequence that calls __tls_get_addr. X is
2486 the TLS symbol we are referencing and RELOC is the symbol type to use
2487 (either TLSGD or TLSLDM). EQV is the REG_EQUAL note for the sequence
2488 emitted. A pseudo register with result of __tls_get_addr call is
2489 returned. */
2490
2491 static rtx
2492 m68k_call_tls_get_addr (rtx x, rtx eqv, enum m68k_reloc reloc)
2493 {
2494 rtx a0;
2495 rtx insns;
2496 rtx dest;
2497
2498 /* Emit the call sequence. */
2499 start_sequence ();
2500
2501 /* FIXME: Unfortunately, emit_library_call_value does not
2502 consider (plus (%a5) (const (unspec))) to be a good enough
2503 operand for push, so it forces it into a register. The bad
2504 thing about this is that combiner, due to copy propagation and other
2505 optimizations, sometimes can not later fix this. As a consequence,
2506 additional register may be allocated resulting in a spill.
2507 For reference, see args processing loops in
2508 calls.c:emit_library_call_value_1.
2509 For testcase, see gcc.target/m68k/tls-{gd, ld}.c */
2510 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), NULL_RTX);
2511
2512 /* __tls_get_addr() is not a libcall, but emitting a libcall_value
2513 is the simpliest way of generating a call. The difference between
2514 __tls_get_addr() and libcall is that the result is returned in D0
2515 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2516 which temporarily switches returning the result to A0. */
2517
2518 m68k_libcall_value_in_a0_p = true;
2519 a0 = emit_library_call_value (m68k_get_tls_get_addr (), NULL_RTX, LCT_PURE,
2520 Pmode, 1, x, Pmode);
2521 m68k_libcall_value_in_a0_p = false;
2522
2523 insns = get_insns ();
2524 end_sequence ();
2525
2526 gcc_assert (can_create_pseudo_p ());
2527 dest = gen_reg_rtx (Pmode);
2528 emit_libcall_block (insns, dest, a0, eqv);
2529
2530 return dest;
2531 }
2532
2533 /* The __tls_get_addr symbol. */
2534 static GTY(()) rtx m68k_read_tp;
2535
2536 /* Return SYMBOL_REF for __m68k_read_tp. */
2537
2538 static rtx
2539 m68k_get_m68k_read_tp (void)
2540 {
2541 if (m68k_read_tp == NULL_RTX)
2542 m68k_read_tp = init_one_libfunc ("__m68k_read_tp");
2543
2544 return m68k_read_tp;
2545 }
2546
2547 /* Emit instruction sequence that calls __m68k_read_tp.
2548 A pseudo register with result of __m68k_read_tp call is returned. */
2549
2550 static rtx
2551 m68k_call_m68k_read_tp (void)
2552 {
2553 rtx a0;
2554 rtx eqv;
2555 rtx insns;
2556 rtx dest;
2557
2558 start_sequence ();
2559
2560 /* __m68k_read_tp() is not a libcall, but emitting a libcall_value
2561 is the simpliest way of generating a call. The difference between
2562 __m68k_read_tp() and libcall is that the result is returned in D0
2563 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2564 which temporarily switches returning the result to A0. */
2565
2566 /* Emit the call sequence. */
2567 m68k_libcall_value_in_a0_p = true;
2568 a0 = emit_library_call_value (m68k_get_m68k_read_tp (), NULL_RTX, LCT_PURE,
2569 Pmode, 0);
2570 m68k_libcall_value_in_a0_p = false;
2571 insns = get_insns ();
2572 end_sequence ();
2573
2574 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2575 share the m68k_read_tp result with other IE/LE model accesses. */
2576 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const1_rtx), UNSPEC_RELOC32);
2577
2578 gcc_assert (can_create_pseudo_p ());
2579 dest = gen_reg_rtx (Pmode);
2580 emit_libcall_block (insns, dest, a0, eqv);
2581
2582 return dest;
2583 }
2584
2585 /* Return a legitimized address for accessing TLS SYMBOL_REF X.
2586 For explanations on instructions sequences see TLS/NPTL ABI for m68k and
2587 ColdFire. */
2588
2589 rtx
2590 m68k_legitimize_tls_address (rtx orig)
2591 {
2592 switch (SYMBOL_REF_TLS_MODEL (orig))
2593 {
2594 case TLS_MODEL_GLOBAL_DYNAMIC:
2595 orig = m68k_call_tls_get_addr (orig, orig, RELOC_TLSGD);
2596 break;
2597
2598 case TLS_MODEL_LOCAL_DYNAMIC:
2599 {
2600 rtx eqv;
2601 rtx a0;
2602 rtx x;
2603
2604 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2605 share the LDM result with other LD model accesses. */
2606 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
2607 UNSPEC_RELOC32);
2608
2609 a0 = m68k_call_tls_get_addr (orig, eqv, RELOC_TLSLDM);
2610
2611 x = m68k_wrap_symbol (orig, RELOC_TLSLDO, a0, NULL_RTX);
2612
2613 if (can_create_pseudo_p ())
2614 x = m68k_move_to_reg (x, orig, NULL_RTX);
2615
2616 orig = x;
2617 break;
2618 }
2619
2620 case TLS_MODEL_INITIAL_EXEC:
2621 {
2622 rtx a0;
2623 rtx x;
2624
2625 a0 = m68k_call_m68k_read_tp ();
2626
2627 x = m68k_wrap_symbol_into_got_ref (orig, RELOC_TLSIE, NULL_RTX);
2628 x = gen_rtx_PLUS (Pmode, x, a0);
2629
2630 if (can_create_pseudo_p ())
2631 x = m68k_move_to_reg (x, orig, NULL_RTX);
2632
2633 orig = x;
2634 break;
2635 }
2636
2637 case TLS_MODEL_LOCAL_EXEC:
2638 {
2639 rtx a0;
2640 rtx x;
2641
2642 a0 = m68k_call_m68k_read_tp ();
2643
2644 x = m68k_wrap_symbol (orig, RELOC_TLSLE, a0, NULL_RTX);
2645
2646 if (can_create_pseudo_p ())
2647 x = m68k_move_to_reg (x, orig, NULL_RTX);
2648
2649 orig = x;
2650 break;
2651 }
2652
2653 default:
2654 gcc_unreachable ();
2655 }
2656
2657 return orig;
2658 }
2659
2660 /* Return true if X is a TLS symbol. */
2661
2662 static bool
2663 m68k_tls_symbol_p (rtx x)
2664 {
2665 if (!TARGET_HAVE_TLS)
2666 return false;
2667
2668 if (GET_CODE (x) != SYMBOL_REF)
2669 return false;
2670
2671 return SYMBOL_REF_TLS_MODEL (x) != 0;
2672 }
2673
2674 /* Helper for m68k_tls_referenced_p. */
2675
2676 static int
2677 m68k_tls_reference_p_1 (rtx *x_ptr, void *data ATTRIBUTE_UNUSED)
2678 {
2679 /* Note: this is not the same as m68k_tls_symbol_p. */
2680 if (GET_CODE (*x_ptr) == SYMBOL_REF)
2681 return SYMBOL_REF_TLS_MODEL (*x_ptr) != 0 ? 1 : 0;
2682
2683 /* Don't recurse into legitimate TLS references. */
2684 if (m68k_tls_reference_p (*x_ptr, true))
2685 return -1;
2686
2687 return 0;
2688 }
2689
2690 /* If !LEGITIMATE_P, return true if X is a TLS symbol reference,
2691 though illegitimate one.
2692 If LEGITIMATE_P, return true if X is a legitimate TLS symbol reference. */
2693
2694 bool
2695 m68k_tls_reference_p (rtx x, bool legitimate_p)
2696 {
2697 if (!TARGET_HAVE_TLS)
2698 return false;
2699
2700 if (!legitimate_p)
2701 return for_each_rtx (&x, m68k_tls_reference_p_1, NULL) == 1 ? true : false;
2702 else
2703 {
2704 enum m68k_reloc reloc = RELOC_GOT;
2705
2706 return (m68k_unwrap_symbol_1 (x, true, &reloc) != x
2707 && TLS_RELOC_P (reloc));
2708 }
2709 }
2710
2711 \f
2712
2713 #define USE_MOVQ(i) ((unsigned) ((i) + 128) <= 255)
2714
2715 /* Return the type of move that should be used for integer I. */
2716
2717 M68K_CONST_METHOD
2718 m68k_const_method (HOST_WIDE_INT i)
2719 {
2720 unsigned u;
2721
2722 if (USE_MOVQ (i))
2723 return MOVQ;
2724
2725 /* The ColdFire doesn't have byte or word operations. */
2726 /* FIXME: This may not be useful for the m68060 either. */
2727 if (!TARGET_COLDFIRE)
2728 {
2729 /* if -256 < N < 256 but N is not in range for a moveq
2730 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
2731 if (USE_MOVQ (i ^ 0xff))
2732 return NOTB;
2733 /* Likewise, try with not.w */
2734 if (USE_MOVQ (i ^ 0xffff))
2735 return NOTW;
2736 /* This is the only value where neg.w is useful */
2737 if (i == -65408)
2738 return NEGW;
2739 }
2740
2741 /* Try also with swap. */
2742 u = i;
2743 if (USE_MOVQ ((u >> 16) | (u << 16)))
2744 return SWAP;
2745
2746 if (TARGET_ISAB)
2747 {
2748 /* Try using MVZ/MVS with an immediate value to load constants. */
2749 if (i >= 0 && i <= 65535)
2750 return MVZ;
2751 if (i >= -32768 && i <= 32767)
2752 return MVS;
2753 }
2754
2755 /* Otherwise, use move.l */
2756 return MOVL;
2757 }
2758
2759 /* Return the cost of moving constant I into a data register. */
2760
2761 static int
2762 const_int_cost (HOST_WIDE_INT i)
2763 {
2764 switch (m68k_const_method (i))
2765 {
2766 case MOVQ:
2767 /* Constants between -128 and 127 are cheap due to moveq. */
2768 return 0;
2769 case MVZ:
2770 case MVS:
2771 case NOTB:
2772 case NOTW:
2773 case NEGW:
2774 case SWAP:
2775 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap. */
2776 return 1;
2777 case MOVL:
2778 return 2;
2779 default:
2780 gcc_unreachable ();
2781 }
2782 }
2783
2784 static bool
2785 m68k_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
2786 int *total, bool speed ATTRIBUTE_UNUSED)
2787 {
2788 switch (code)
2789 {
2790 case CONST_INT:
2791 /* Constant zero is super cheap due to clr instruction. */
2792 if (x == const0_rtx)
2793 *total = 0;
2794 else
2795 *total = const_int_cost (INTVAL (x));
2796 return true;
2797
2798 case CONST:
2799 case LABEL_REF:
2800 case SYMBOL_REF:
2801 *total = 3;
2802 return true;
2803
2804 case CONST_DOUBLE:
2805 /* Make 0.0 cheaper than other floating constants to
2806 encourage creating tstsf and tstdf insns. */
2807 if (outer_code == COMPARE
2808 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
2809 *total = 4;
2810 else
2811 *total = 5;
2812 return true;
2813
2814 /* These are vaguely right for a 68020. */
2815 /* The costs for long multiply have been adjusted to work properly
2816 in synth_mult on the 68020, relative to an average of the time
2817 for add and the time for shift, taking away a little more because
2818 sometimes move insns are needed. */
2819 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS
2820 terms. */
2821 #define MULL_COST \
2822 (TUNE_68060 ? 2 \
2823 : TUNE_68040 ? 5 \
2824 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2825 : (TUNE_CFV2 && TUNE_MAC) ? 4 \
2826 : TUNE_CFV2 ? 8 \
2827 : TARGET_COLDFIRE ? 3 : 13)
2828
2829 #define MULW_COST \
2830 (TUNE_68060 ? 2 \
2831 : TUNE_68040 ? 3 \
2832 : TUNE_68000_10 ? 5 \
2833 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2834 : (TUNE_CFV2 && TUNE_MAC) ? 2 \
2835 : TUNE_CFV2 ? 8 \
2836 : TARGET_COLDFIRE ? 2 : 8)
2837
2838 #define DIVW_COST \
2839 (TARGET_CF_HWDIV ? 11 \
2840 : TUNE_68000_10 || TARGET_COLDFIRE ? 12 : 27)
2841
2842 case PLUS:
2843 /* An lea costs about three times as much as a simple add. */
2844 if (GET_MODE (x) == SImode
2845 && GET_CODE (XEXP (x, 1)) == REG
2846 && GET_CODE (XEXP (x, 0)) == MULT
2847 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2848 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2849 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
2850 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
2851 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
2852 {
2853 /* lea an@(dx:l:i),am */
2854 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
2855 return true;
2856 }
2857 return false;
2858
2859 case ASHIFT:
2860 case ASHIFTRT:
2861 case LSHIFTRT:
2862 if (TUNE_68060)
2863 {
2864 *total = COSTS_N_INSNS(1);
2865 return true;
2866 }
2867 if (TUNE_68000_10)
2868 {
2869 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
2870 {
2871 if (INTVAL (XEXP (x, 1)) < 16)
2872 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
2873 else
2874 /* We're using clrw + swap for these cases. */
2875 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
2876 }
2877 else
2878 *total = COSTS_N_INSNS (10); /* Worst case. */
2879 return true;
2880 }
2881 /* A shift by a big integer takes an extra instruction. */
2882 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2883 && (INTVAL (XEXP (x, 1)) == 16))
2884 {
2885 *total = COSTS_N_INSNS (2); /* clrw;swap */
2886 return true;
2887 }
2888 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2889 && !(INTVAL (XEXP (x, 1)) > 0
2890 && INTVAL (XEXP (x, 1)) <= 8))
2891 {
2892 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
2893 return true;
2894 }
2895 return false;
2896
2897 case MULT:
2898 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
2899 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
2900 && GET_MODE (x) == SImode)
2901 *total = COSTS_N_INSNS (MULW_COST);
2902 else if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
2903 *total = COSTS_N_INSNS (MULW_COST);
2904 else
2905 *total = COSTS_N_INSNS (MULL_COST);
2906 return true;
2907
2908 case DIV:
2909 case UDIV:
2910 case MOD:
2911 case UMOD:
2912 if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
2913 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
2914 else if (TARGET_CF_HWDIV)
2915 *total = COSTS_N_INSNS (18);
2916 else
2917 *total = COSTS_N_INSNS (43); /* div.l */
2918 return true;
2919
2920 case ZERO_EXTRACT:
2921 if (outer_code == COMPARE)
2922 *total = 0;
2923 return false;
2924
2925 default:
2926 return false;
2927 }
2928 }
2929
2930 /* Return an instruction to move CONST_INT OPERANDS[1] into data register
2931 OPERANDS[0]. */
2932
2933 static const char *
2934 output_move_const_into_data_reg (rtx *operands)
2935 {
2936 HOST_WIDE_INT i;
2937
2938 i = INTVAL (operands[1]);
2939 switch (m68k_const_method (i))
2940 {
2941 case MVZ:
2942 return "mvzw %1,%0";
2943 case MVS:
2944 return "mvsw %1,%0";
2945 case MOVQ:
2946 return "moveq %1,%0";
2947 case NOTB:
2948 CC_STATUS_INIT;
2949 operands[1] = GEN_INT (i ^ 0xff);
2950 return "moveq %1,%0\n\tnot%.b %0";
2951 case NOTW:
2952 CC_STATUS_INIT;
2953 operands[1] = GEN_INT (i ^ 0xffff);
2954 return "moveq %1,%0\n\tnot%.w %0";
2955 case NEGW:
2956 CC_STATUS_INIT;
2957 return "moveq #-128,%0\n\tneg%.w %0";
2958 case SWAP:
2959 {
2960 unsigned u = i;
2961
2962 operands[1] = GEN_INT ((u << 16) | (u >> 16));
2963 return "moveq %1,%0\n\tswap %0";
2964 }
2965 case MOVL:
2966 return "move%.l %1,%0";
2967 default:
2968 gcc_unreachable ();
2969 }
2970 }
2971
2972 /* Return true if I can be handled by ISA B's mov3q instruction. */
2973
2974 bool
2975 valid_mov3q_const (HOST_WIDE_INT i)
2976 {
2977 return TARGET_ISAB && (i == -1 || IN_RANGE (i, 1, 7));
2978 }
2979
2980 /* Return an instruction to move CONST_INT OPERANDS[1] into OPERANDS[0].
2981 I is the value of OPERANDS[1]. */
2982
2983 static const char *
2984 output_move_simode_const (rtx *operands)
2985 {
2986 rtx dest;
2987 HOST_WIDE_INT src;
2988
2989 dest = operands[0];
2990 src = INTVAL (operands[1]);
2991 if (src == 0
2992 && (DATA_REG_P (dest) || MEM_P (dest))
2993 /* clr insns on 68000 read before writing. */
2994 && ((TARGET_68010 || TARGET_COLDFIRE)
2995 || !(MEM_P (dest) && MEM_VOLATILE_P (dest))))
2996 return "clr%.l %0";
2997 else if (GET_MODE (dest) == SImode && valid_mov3q_const (src))
2998 return "mov3q%.l %1,%0";
2999 else if (src == 0 && ADDRESS_REG_P (dest))
3000 return "sub%.l %0,%0";
3001 else if (DATA_REG_P (dest))
3002 return output_move_const_into_data_reg (operands);
3003 else if (ADDRESS_REG_P (dest) && IN_RANGE (src, -0x8000, 0x7fff))
3004 {
3005 if (valid_mov3q_const (src))
3006 return "mov3q%.l %1,%0";
3007 return "move%.w %1,%0";
3008 }
3009 else if (MEM_P (dest)
3010 && GET_CODE (XEXP (dest, 0)) == PRE_DEC
3011 && REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
3012 && IN_RANGE (src, -0x8000, 0x7fff))
3013 {
3014 if (valid_mov3q_const (src))
3015 return "mov3q%.l %1,%-";
3016 return "pea %a1";
3017 }
3018 return "move%.l %1,%0";
3019 }
3020
3021 const char *
3022 output_move_simode (rtx *operands)
3023 {
3024 if (GET_CODE (operands[1]) == CONST_INT)
3025 return output_move_simode_const (operands);
3026 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3027 || GET_CODE (operands[1]) == CONST)
3028 && push_operand (operands[0], SImode))
3029 return "pea %a1";
3030 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3031 || GET_CODE (operands[1]) == CONST)
3032 && ADDRESS_REG_P (operands[0]))
3033 return "lea %a1,%0";
3034 return "move%.l %1,%0";
3035 }
3036
3037 const char *
3038 output_move_himode (rtx *operands)
3039 {
3040 if (GET_CODE (operands[1]) == CONST_INT)
3041 {
3042 if (operands[1] == const0_rtx
3043 && (DATA_REG_P (operands[0])
3044 || GET_CODE (operands[0]) == MEM)
3045 /* clr insns on 68000 read before writing. */
3046 && ((TARGET_68010 || TARGET_COLDFIRE)
3047 || !(GET_CODE (operands[0]) == MEM
3048 && MEM_VOLATILE_P (operands[0]))))
3049 return "clr%.w %0";
3050 else if (operands[1] == const0_rtx
3051 && ADDRESS_REG_P (operands[0]))
3052 return "sub%.l %0,%0";
3053 else if (DATA_REG_P (operands[0])
3054 && INTVAL (operands[1]) < 128
3055 && INTVAL (operands[1]) >= -128)
3056 return "moveq %1,%0";
3057 else if (INTVAL (operands[1]) < 0x8000
3058 && INTVAL (operands[1]) >= -0x8000)
3059 return "move%.w %1,%0";
3060 }
3061 else if (CONSTANT_P (operands[1]))
3062 return "move%.l %1,%0";
3063 return "move%.w %1,%0";
3064 }
3065
3066 const char *
3067 output_move_qimode (rtx *operands)
3068 {
3069 /* 68k family always modifies the stack pointer by at least 2, even for
3070 byte pushes. The 5200 (ColdFire) does not do this. */
3071
3072 /* This case is generated by pushqi1 pattern now. */
3073 gcc_assert (!(GET_CODE (operands[0]) == MEM
3074 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
3075 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
3076 && ! ADDRESS_REG_P (operands[1])
3077 && ! TARGET_COLDFIRE));
3078
3079 /* clr and st insns on 68000 read before writing. */
3080 if (!ADDRESS_REG_P (operands[0])
3081 && ((TARGET_68010 || TARGET_COLDFIRE)
3082 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3083 {
3084 if (operands[1] == const0_rtx)
3085 return "clr%.b %0";
3086 if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
3087 && GET_CODE (operands[1]) == CONST_INT
3088 && (INTVAL (operands[1]) & 255) == 255)
3089 {
3090 CC_STATUS_INIT;
3091 return "st %0";
3092 }
3093 }
3094 if (GET_CODE (operands[1]) == CONST_INT
3095 && DATA_REG_P (operands[0])
3096 && INTVAL (operands[1]) < 128
3097 && INTVAL (operands[1]) >= -128)
3098 return "moveq %1,%0";
3099 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
3100 return "sub%.l %0,%0";
3101 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
3102 return "move%.l %1,%0";
3103 /* 68k family (including the 5200 ColdFire) does not support byte moves to
3104 from address registers. */
3105 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
3106 return "move%.w %1,%0";
3107 return "move%.b %1,%0";
3108 }
3109
3110 const char *
3111 output_move_stricthi (rtx *operands)
3112 {
3113 if (operands[1] == const0_rtx
3114 /* clr insns on 68000 read before writing. */
3115 && ((TARGET_68010 || TARGET_COLDFIRE)
3116 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3117 return "clr%.w %0";
3118 return "move%.w %1,%0";
3119 }
3120
3121 const char *
3122 output_move_strictqi (rtx *operands)
3123 {
3124 if (operands[1] == const0_rtx
3125 /* clr insns on 68000 read before writing. */
3126 && ((TARGET_68010 || TARGET_COLDFIRE)
3127 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3128 return "clr%.b %0";
3129 return "move%.b %1,%0";
3130 }
3131
3132 /* Return the best assembler insn template
3133 for moving operands[1] into operands[0] as a fullword. */
3134
3135 static const char *
3136 singlemove_string (rtx *operands)
3137 {
3138 if (GET_CODE (operands[1]) == CONST_INT)
3139 return output_move_simode_const (operands);
3140 return "move%.l %1,%0";
3141 }
3142
3143
3144 /* Output assembler or rtl code to perform a doubleword move insn
3145 with operands OPERANDS.
3146 Pointers to 3 helper functions should be specified:
3147 HANDLE_REG_ADJUST to adjust a register by a small value,
3148 HANDLE_COMPADR to compute an address and
3149 HANDLE_MOVSI to move 4 bytes. */
3150
3151 static void
3152 handle_move_double (rtx operands[2],
3153 void (*handle_reg_adjust) (rtx, int),
3154 void (*handle_compadr) (rtx [2]),
3155 void (*handle_movsi) (rtx [2]))
3156 {
3157 enum
3158 {
3159 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
3160 } optype0, optype1;
3161 rtx latehalf[2];
3162 rtx middlehalf[2];
3163 rtx xops[2];
3164 rtx addreg0 = 0, addreg1 = 0;
3165 int dest_overlapped_low = 0;
3166 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
3167
3168 middlehalf[0] = 0;
3169 middlehalf[1] = 0;
3170
3171 /* First classify both operands. */
3172
3173 if (REG_P (operands[0]))
3174 optype0 = REGOP;
3175 else if (offsettable_memref_p (operands[0]))
3176 optype0 = OFFSOP;
3177 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
3178 optype0 = POPOP;
3179 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
3180 optype0 = PUSHOP;
3181 else if (GET_CODE (operands[0]) == MEM)
3182 optype0 = MEMOP;
3183 else
3184 optype0 = RNDOP;
3185
3186 if (REG_P (operands[1]))
3187 optype1 = REGOP;
3188 else if (CONSTANT_P (operands[1]))
3189 optype1 = CNSTOP;
3190 else if (offsettable_memref_p (operands[1]))
3191 optype1 = OFFSOP;
3192 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
3193 optype1 = POPOP;
3194 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
3195 optype1 = PUSHOP;
3196 else if (GET_CODE (operands[1]) == MEM)
3197 optype1 = MEMOP;
3198 else
3199 optype1 = RNDOP;
3200
3201 /* Check for the cases that the operand constraints are not supposed
3202 to allow to happen. Generating code for these cases is
3203 painful. */
3204 gcc_assert (optype0 != RNDOP && optype1 != RNDOP);
3205
3206 /* If one operand is decrementing and one is incrementing
3207 decrement the former register explicitly
3208 and change that operand into ordinary indexing. */
3209
3210 if (optype0 == PUSHOP && optype1 == POPOP)
3211 {
3212 operands[0] = XEXP (XEXP (operands[0], 0), 0);
3213
3214 handle_reg_adjust (operands[0], -size);
3215
3216 if (GET_MODE (operands[1]) == XFmode)
3217 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
3218 else if (GET_MODE (operands[0]) == DFmode)
3219 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
3220 else
3221 operands[0] = gen_rtx_MEM (DImode, operands[0]);
3222 optype0 = OFFSOP;
3223 }
3224 if (optype0 == POPOP && optype1 == PUSHOP)
3225 {
3226 operands[1] = XEXP (XEXP (operands[1], 0), 0);
3227
3228 handle_reg_adjust (operands[1], -size);
3229
3230 if (GET_MODE (operands[1]) == XFmode)
3231 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
3232 else if (GET_MODE (operands[1]) == DFmode)
3233 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
3234 else
3235 operands[1] = gen_rtx_MEM (DImode, operands[1]);
3236 optype1 = OFFSOP;
3237 }
3238
3239 /* If an operand is an unoffsettable memory ref, find a register
3240 we can increment temporarily to make it refer to the second word. */
3241
3242 if (optype0 == MEMOP)
3243 addreg0 = find_addr_reg (XEXP (operands[0], 0));
3244
3245 if (optype1 == MEMOP)
3246 addreg1 = find_addr_reg (XEXP (operands[1], 0));
3247
3248 /* Ok, we can do one word at a time.
3249 Normally we do the low-numbered word first,
3250 but if either operand is autodecrementing then we
3251 do the high-numbered word first.
3252
3253 In either case, set up in LATEHALF the operands to use
3254 for the high-numbered word and in some cases alter the
3255 operands in OPERANDS to be suitable for the low-numbered word. */
3256
3257 if (size == 12)
3258 {
3259 if (optype0 == REGOP)
3260 {
3261 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
3262 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3263 }
3264 else if (optype0 == OFFSOP)
3265 {
3266 middlehalf[0] = adjust_address (operands[0], SImode, 4);
3267 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3268 }
3269 else
3270 {
3271 middlehalf[0] = adjust_address (operands[0], SImode, 0);
3272 latehalf[0] = adjust_address (operands[0], SImode, 0);
3273 }
3274
3275 if (optype1 == REGOP)
3276 {
3277 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
3278 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3279 }
3280 else if (optype1 == OFFSOP)
3281 {
3282 middlehalf[1] = adjust_address (operands[1], SImode, 4);
3283 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3284 }
3285 else if (optype1 == CNSTOP)
3286 {
3287 if (GET_CODE (operands[1]) == CONST_DOUBLE)
3288 {
3289 REAL_VALUE_TYPE r;
3290 long l[3];
3291
3292 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
3293 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
3294 operands[1] = GEN_INT (l[0]);
3295 middlehalf[1] = GEN_INT (l[1]);
3296 latehalf[1] = GEN_INT (l[2]);
3297 }
3298 else
3299 {
3300 /* No non-CONST_DOUBLE constant should ever appear
3301 here. */
3302 gcc_assert (!CONSTANT_P (operands[1]));
3303 }
3304 }
3305 else
3306 {
3307 middlehalf[1] = adjust_address (operands[1], SImode, 0);
3308 latehalf[1] = adjust_address (operands[1], SImode, 0);
3309 }
3310 }
3311 else
3312 /* size is not 12: */
3313 {
3314 if (optype0 == REGOP)
3315 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3316 else if (optype0 == OFFSOP)
3317 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3318 else
3319 latehalf[0] = adjust_address (operands[0], SImode, 0);
3320
3321 if (optype1 == REGOP)
3322 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3323 else if (optype1 == OFFSOP)
3324 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3325 else if (optype1 == CNSTOP)
3326 split_double (operands[1], &operands[1], &latehalf[1]);
3327 else
3328 latehalf[1] = adjust_address (operands[1], SImode, 0);
3329 }
3330
3331 /* If insn is effectively movd N(sp),-(sp) then we will do the
3332 high word first. We should use the adjusted operand 1 (which is N+4(sp))
3333 for the low word as well, to compensate for the first decrement of sp. */
3334 if (optype0 == PUSHOP
3335 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
3336 && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
3337 operands[1] = middlehalf[1] = latehalf[1];
3338
3339 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
3340 if the upper part of reg N does not appear in the MEM, arrange to
3341 emit the move late-half first. Otherwise, compute the MEM address
3342 into the upper part of N and use that as a pointer to the memory
3343 operand. */
3344 if (optype0 == REGOP
3345 && (optype1 == OFFSOP || optype1 == MEMOP))
3346 {
3347 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
3348
3349 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3350 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3351 {
3352 /* If both halves of dest are used in the src memory address,
3353 compute the address into latehalf of dest.
3354 Note that this can't happen if the dest is two data regs. */
3355 compadr:
3356 xops[0] = latehalf[0];
3357 xops[1] = XEXP (operands[1], 0);
3358
3359 handle_compadr (xops);
3360 if (GET_MODE (operands[1]) == XFmode)
3361 {
3362 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
3363 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
3364 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3365 }
3366 else
3367 {
3368 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
3369 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3370 }
3371 }
3372 else if (size == 12
3373 && reg_overlap_mentioned_p (middlehalf[0],
3374 XEXP (operands[1], 0)))
3375 {
3376 /* Check for two regs used by both source and dest.
3377 Note that this can't happen if the dest is all data regs.
3378 It can happen if the dest is d6, d7, a0.
3379 But in that case, latehalf is an addr reg, so
3380 the code at compadr does ok. */
3381
3382 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3383 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3384 goto compadr;
3385
3386 /* JRV says this can't happen: */
3387 gcc_assert (!addreg0 && !addreg1);
3388
3389 /* Only the middle reg conflicts; simply put it last. */
3390 handle_movsi (operands);
3391 handle_movsi (latehalf);
3392 handle_movsi (middlehalf);
3393
3394 return;
3395 }
3396 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
3397 /* If the low half of dest is mentioned in the source memory
3398 address, the arrange to emit the move late half first. */
3399 dest_overlapped_low = 1;
3400 }
3401
3402 /* If one or both operands autodecrementing,
3403 do the two words, high-numbered first. */
3404
3405 /* Likewise, the first move would clobber the source of the second one,
3406 do them in the other order. This happens only for registers;
3407 such overlap can't happen in memory unless the user explicitly
3408 sets it up, and that is an undefined circumstance. */
3409
3410 if (optype0 == PUSHOP || optype1 == PUSHOP
3411 || (optype0 == REGOP && optype1 == REGOP
3412 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
3413 || REGNO (operands[0]) == REGNO (latehalf[1])))
3414 || dest_overlapped_low)
3415 {
3416 /* Make any unoffsettable addresses point at high-numbered word. */
3417 if (addreg0)
3418 handle_reg_adjust (addreg0, size - 4);
3419 if (addreg1)
3420 handle_reg_adjust (addreg1, size - 4);
3421
3422 /* Do that word. */
3423 handle_movsi (latehalf);
3424
3425 /* Undo the adds we just did. */
3426 if (addreg0)
3427 handle_reg_adjust (addreg0, -4);
3428 if (addreg1)
3429 handle_reg_adjust (addreg1, -4);
3430
3431 if (size == 12)
3432 {
3433 handle_movsi (middlehalf);
3434
3435 if (addreg0)
3436 handle_reg_adjust (addreg0, -4);
3437 if (addreg1)
3438 handle_reg_adjust (addreg1, -4);
3439 }
3440
3441 /* Do low-numbered word. */
3442
3443 handle_movsi (operands);
3444 return;
3445 }
3446
3447 /* Normal case: do the two words, low-numbered first. */
3448
3449 m68k_final_prescan_insn (NULL, operands, 2);
3450 handle_movsi (operands);
3451
3452 /* Do the middle one of the three words for long double */
3453 if (size == 12)
3454 {
3455 if (addreg0)
3456 handle_reg_adjust (addreg0, 4);
3457 if (addreg1)
3458 handle_reg_adjust (addreg1, 4);
3459
3460 m68k_final_prescan_insn (NULL, middlehalf, 2);
3461 handle_movsi (middlehalf);
3462 }
3463
3464 /* Make any unoffsettable addresses point at high-numbered word. */
3465 if (addreg0)
3466 handle_reg_adjust (addreg0, 4);
3467 if (addreg1)
3468 handle_reg_adjust (addreg1, 4);
3469
3470 /* Do that word. */
3471 m68k_final_prescan_insn (NULL, latehalf, 2);
3472 handle_movsi (latehalf);
3473
3474 /* Undo the adds we just did. */
3475 if (addreg0)
3476 handle_reg_adjust (addreg0, -(size - 4));
3477 if (addreg1)
3478 handle_reg_adjust (addreg1, -(size - 4));
3479
3480 return;
3481 }
3482
3483 /* Output assembler code to adjust REG by N. */
3484 static void
3485 output_reg_adjust (rtx reg, int n)
3486 {
3487 const char *s;
3488
3489 gcc_assert (GET_MODE (reg) == SImode
3490 && -12 <= n && n != 0 && n <= 12);
3491
3492 switch (n)
3493 {
3494 case 12:
3495 s = "add%.l #12,%0";
3496 break;
3497
3498 case 8:
3499 s = "addq%.l #8,%0";
3500 break;
3501
3502 case 4:
3503 s = "addq%.l #4,%0";
3504 break;
3505
3506 case -12:
3507 s = "sub%.l #12,%0";
3508 break;
3509
3510 case -8:
3511 s = "subq%.l #8,%0";
3512 break;
3513
3514 case -4:
3515 s = "subq%.l #4,%0";
3516 break;
3517
3518 default:
3519 gcc_unreachable ();
3520 s = NULL;
3521 }
3522
3523 output_asm_insn (s, &reg);
3524 }
3525
3526 /* Emit rtl code to adjust REG by N. */
3527 static void
3528 emit_reg_adjust (rtx reg1, int n)
3529 {
3530 rtx reg2;
3531
3532 gcc_assert (GET_MODE (reg1) == SImode
3533 && -12 <= n && n != 0 && n <= 12);
3534
3535 reg1 = copy_rtx (reg1);
3536 reg2 = copy_rtx (reg1);
3537
3538 if (n < 0)
3539 emit_insn (gen_subsi3 (reg1, reg2, GEN_INT (-n)));
3540 else if (n > 0)
3541 emit_insn (gen_addsi3 (reg1, reg2, GEN_INT (n)));
3542 else
3543 gcc_unreachable ();
3544 }
3545
3546 /* Output assembler to load address OPERANDS[0] to register OPERANDS[1]. */
3547 static void
3548 output_compadr (rtx operands[2])
3549 {
3550 output_asm_insn ("lea %a1,%0", operands);
3551 }
3552
3553 /* Output the best assembler insn for moving operands[1] into operands[0]
3554 as a fullword. */
3555 static void
3556 output_movsi (rtx operands[2])
3557 {
3558 output_asm_insn (singlemove_string (operands), operands);
3559 }
3560
3561 /* Copy OP and change its mode to MODE. */
3562 static rtx
3563 copy_operand (rtx op, enum machine_mode mode)
3564 {
3565 /* ??? This looks really ugly. There must be a better way
3566 to change a mode on the operand. */
3567 if (GET_MODE (op) != VOIDmode)
3568 {
3569 if (REG_P (op))
3570 op = gen_rtx_REG (mode, REGNO (op));
3571 else
3572 {
3573 op = copy_rtx (op);
3574 PUT_MODE (op, mode);
3575 }
3576 }
3577
3578 return op;
3579 }
3580
3581 /* Emit rtl code for moving operands[1] into operands[0] as a fullword. */
3582 static void
3583 emit_movsi (rtx operands[2])
3584 {
3585 operands[0] = copy_operand (operands[0], SImode);
3586 operands[1] = copy_operand (operands[1], SImode);
3587
3588 emit_insn (gen_movsi (operands[0], operands[1]));
3589 }
3590
3591 /* Output assembler code to perform a doubleword move insn
3592 with operands OPERANDS. */
3593 const char *
3594 output_move_double (rtx *operands)
3595 {
3596 handle_move_double (operands,
3597 output_reg_adjust, output_compadr, output_movsi);
3598
3599 return "";
3600 }
3601
3602 /* Output rtl code to perform a doubleword move insn
3603 with operands OPERANDS. */
3604 void
3605 m68k_emit_move_double (rtx operands[2])
3606 {
3607 handle_move_double (operands, emit_reg_adjust, emit_movsi, emit_movsi);
3608 }
3609
3610 /* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
3611 new rtx with the correct mode. */
3612
3613 static rtx
3614 force_mode (enum machine_mode mode, rtx orig)
3615 {
3616 if (mode == GET_MODE (orig))
3617 return orig;
3618
3619 if (REGNO (orig) >= FIRST_PSEUDO_REGISTER)
3620 abort ();
3621
3622 return gen_rtx_REG (mode, REGNO (orig));
3623 }
3624
3625 static int
3626 fp_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3627 {
3628 return reg_renumber && FP_REG_P (op);
3629 }
3630
3631 /* Emit insns to move operands[1] into operands[0].
3632
3633 Return 1 if we have written out everything that needs to be done to
3634 do the move. Otherwise, return 0 and the caller will emit the move
3635 normally.
3636
3637 Note SCRATCH_REG may not be in the proper mode depending on how it
3638 will be used. This routine is responsible for creating a new copy
3639 of SCRATCH_REG in the proper mode. */
3640
3641 int
3642 emit_move_sequence (rtx *operands, enum machine_mode mode, rtx scratch_reg)
3643 {
3644 register rtx operand0 = operands[0];
3645 register rtx operand1 = operands[1];
3646 register rtx tem;
3647
3648 if (scratch_reg
3649 && reload_in_progress && GET_CODE (operand0) == REG
3650 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
3651 operand0 = reg_equiv_mem (REGNO (operand0));
3652 else if (scratch_reg
3653 && reload_in_progress && GET_CODE (operand0) == SUBREG
3654 && GET_CODE (SUBREG_REG (operand0)) == REG
3655 && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
3656 {
3657 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3658 the code which tracks sets/uses for delete_output_reload. */
3659 rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
3660 reg_equiv_mem (REGNO (SUBREG_REG (operand0))),
3661 SUBREG_BYTE (operand0));
3662 operand0 = alter_subreg (&temp, true);
3663 }
3664
3665 if (scratch_reg
3666 && reload_in_progress && GET_CODE (operand1) == REG
3667 && REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
3668 operand1 = reg_equiv_mem (REGNO (operand1));
3669 else if (scratch_reg
3670 && reload_in_progress && GET_CODE (operand1) == SUBREG
3671 && GET_CODE (SUBREG_REG (operand1)) == REG
3672 && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
3673 {
3674 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3675 the code which tracks sets/uses for delete_output_reload. */
3676 rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
3677 reg_equiv_mem (REGNO (SUBREG_REG (operand1))),
3678 SUBREG_BYTE (operand1));
3679 operand1 = alter_subreg (&temp, true);
3680 }
3681
3682 if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
3683 && ((tem = find_replacement (&XEXP (operand0, 0)))
3684 != XEXP (operand0, 0)))
3685 operand0 = gen_rtx_MEM (GET_MODE (operand0), tem);
3686 if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
3687 && ((tem = find_replacement (&XEXP (operand1, 0)))
3688 != XEXP (operand1, 0)))
3689 operand1 = gen_rtx_MEM (GET_MODE (operand1), tem);
3690
3691 /* Handle secondary reloads for loads/stores of FP registers where
3692 the address is symbolic by using the scratch register */
3693 if (fp_reg_operand (operand0, mode)
3694 && ((GET_CODE (operand1) == MEM
3695 && ! memory_address_p (DFmode, XEXP (operand1, 0)))
3696 || ((GET_CODE (operand1) == SUBREG
3697 && GET_CODE (XEXP (operand1, 0)) == MEM
3698 && !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0)))))
3699 && scratch_reg)
3700 {
3701 if (GET_CODE (operand1) == SUBREG)
3702 operand1 = XEXP (operand1, 0);
3703
3704 /* SCRATCH_REG will hold an address. We want
3705 it in SImode regardless of what mode it was originally given
3706 to us. */
3707 scratch_reg = force_mode (SImode, scratch_reg);
3708
3709 /* D might not fit in 14 bits either; for such cases load D into
3710 scratch reg. */
3711 if (!memory_address_p (Pmode, XEXP (operand1, 0)))
3712 {
3713 emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
3714 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
3715 Pmode,
3716 XEXP (XEXP (operand1, 0), 0),
3717 scratch_reg));
3718 }
3719 else
3720 emit_move_insn (scratch_reg, XEXP (operand1, 0));
3721 emit_insn (gen_rtx_SET (VOIDmode, operand0,
3722 gen_rtx_MEM (mode, scratch_reg)));
3723 return 1;
3724 }
3725 else if (fp_reg_operand (operand1, mode)
3726 && ((GET_CODE (operand0) == MEM
3727 && ! memory_address_p (DFmode, XEXP (operand0, 0)))
3728 || ((GET_CODE (operand0) == SUBREG)
3729 && GET_CODE (XEXP (operand0, 0)) == MEM
3730 && !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0))))
3731 && scratch_reg)
3732 {
3733 if (GET_CODE (operand0) == SUBREG)
3734 operand0 = XEXP (operand0, 0);
3735
3736 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3737 it in SIMODE regardless of what mode it was originally given
3738 to us. */
3739 scratch_reg = force_mode (SImode, scratch_reg);
3740
3741 /* D might not fit in 14 bits either; for such cases load D into
3742 scratch reg. */
3743 if (!memory_address_p (Pmode, XEXP (operand0, 0)))
3744 {
3745 emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
3746 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
3747 0)),
3748 Pmode,
3749 XEXP (XEXP (operand0, 0),
3750 0),
3751 scratch_reg));
3752 }
3753 else
3754 emit_move_insn (scratch_reg, XEXP (operand0, 0));
3755 emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_MEM (mode, scratch_reg),
3756 operand1));
3757 return 1;
3758 }
3759 /* Handle secondary reloads for loads of FP registers from constant
3760 expressions by forcing the constant into memory.
3761
3762 use scratch_reg to hold the address of the memory location.
3763
3764 The proper fix is to change PREFERRED_RELOAD_CLASS to return
3765 NO_REGS when presented with a const_int and an register class
3766 containing only FP registers. Doing so unfortunately creates
3767 more problems than it solves. Fix this for 2.5. */
3768 else if (fp_reg_operand (operand0, mode)
3769 && CONSTANT_P (operand1)
3770 && scratch_reg)
3771 {
3772 rtx xoperands[2];
3773
3774 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3775 it in SIMODE regardless of what mode it was originally given
3776 to us. */
3777 scratch_reg = force_mode (SImode, scratch_reg);
3778
3779 /* Force the constant into memory and put the address of the
3780 memory location into scratch_reg. */
3781 xoperands[0] = scratch_reg;
3782 xoperands[1] = XEXP (force_const_mem (mode, operand1), 0);
3783 emit_insn (gen_rtx_SET (mode, scratch_reg, xoperands[1]));
3784
3785 /* Now load the destination register. */
3786 emit_insn (gen_rtx_SET (mode, operand0,
3787 gen_rtx_MEM (mode, scratch_reg)));
3788 return 1;
3789 }
3790
3791 /* Now have insn-emit do whatever it normally does. */
3792 return 0;
3793 }
3794
3795 /* Split one or more DImode RTL references into pairs of SImode
3796 references. The RTL can be REG, offsettable MEM, integer constant, or
3797 CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
3798 split and "num" is its length. lo_half and hi_half are output arrays
3799 that parallel "operands". */
3800
3801 void
3802 split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
3803 {
3804 while (num--)
3805 {
3806 rtx op = operands[num];
3807
3808 /* simplify_subreg refuses to split volatile memory addresses,
3809 but we still have to handle it. */
3810 if (GET_CODE (op) == MEM)
3811 {
3812 lo_half[num] = adjust_address (op, SImode, 4);
3813 hi_half[num] = adjust_address (op, SImode, 0);
3814 }
3815 else
3816 {
3817 lo_half[num] = simplify_gen_subreg (SImode, op,
3818 GET_MODE (op) == VOIDmode
3819 ? DImode : GET_MODE (op), 4);
3820 hi_half[num] = simplify_gen_subreg (SImode, op,
3821 GET_MODE (op) == VOIDmode
3822 ? DImode : GET_MODE (op), 0);
3823 }
3824 }
3825 }
3826
3827 /* Split X into a base and a constant offset, storing them in *BASE
3828 and *OFFSET respectively. */
3829
3830 static void
3831 m68k_split_offset (rtx x, rtx *base, HOST_WIDE_INT *offset)
3832 {
3833 *offset = 0;
3834 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
3835 {
3836 *offset += INTVAL (XEXP (x, 1));
3837 x = XEXP (x, 0);
3838 }
3839 *base = x;
3840 }
3841
3842 /* Return true if PATTERN is a PARALLEL suitable for a movem or fmovem
3843 instruction. STORE_P says whether the move is a load or store.
3844
3845 If the instruction uses post-increment or pre-decrement addressing,
3846 AUTOMOD_BASE is the base register and AUTOMOD_OFFSET is the total
3847 adjustment. This adjustment will be made by the first element of
3848 PARALLEL, with the loads or stores starting at element 1. If the
3849 instruction does not use post-increment or pre-decrement addressing,
3850 AUTOMOD_BASE is null, AUTOMOD_OFFSET is 0, and the loads or stores
3851 start at element 0. */
3852
3853 bool
3854 m68k_movem_pattern_p (rtx pattern, rtx automod_base,
3855 HOST_WIDE_INT automod_offset, bool store_p)
3856 {
3857 rtx base, mem_base, set, mem, reg, last_reg;
3858 HOST_WIDE_INT offset, mem_offset;
3859 int i, first, len;
3860 enum reg_class rclass;
3861
3862 len = XVECLEN (pattern, 0);
3863 first = (automod_base != NULL);
3864
3865 if (automod_base)
3866 {
3867 /* Stores must be pre-decrement and loads must be post-increment. */
3868 if (store_p != (automod_offset < 0))
3869 return false;
3870
3871 /* Work out the base and offset for lowest memory location. */
3872 base = automod_base;
3873 offset = (automod_offset < 0 ? automod_offset : 0);
3874 }
3875 else
3876 {
3877 /* Allow any valid base and offset in the first access. */
3878 base = NULL;
3879 offset = 0;
3880 }
3881
3882 last_reg = NULL;
3883 rclass = NO_REGS;
3884 for (i = first; i < len; i++)
3885 {
3886 /* We need a plain SET. */
3887 set = XVECEXP (pattern, 0, i);
3888 if (GET_CODE (set) != SET)
3889 return false;
3890
3891 /* Check that we have a memory location... */
3892 mem = XEXP (set, !store_p);
3893 if (!MEM_P (mem) || !memory_operand (mem, VOIDmode))
3894 return false;
3895
3896 /* ...with the right address. */
3897 if (base == NULL)
3898 {
3899 m68k_split_offset (XEXP (mem, 0), &base, &offset);
3900 /* The ColdFire instruction only allows (An) and (d16,An) modes.
3901 There are no mode restrictions for 680x0 besides the
3902 automodification rules enforced above. */
3903 if (TARGET_COLDFIRE
3904 && !m68k_legitimate_base_reg_p (base, reload_completed))
3905 return false;
3906 }
3907 else
3908 {
3909 m68k_split_offset (XEXP (mem, 0), &mem_base, &mem_offset);
3910 if (!rtx_equal_p (base, mem_base) || offset != mem_offset)
3911 return false;
3912 }
3913
3914 /* Check that we have a register of the required mode and class. */
3915 reg = XEXP (set, store_p);
3916 if (!REG_P (reg)
3917 || !HARD_REGISTER_P (reg)
3918 || GET_MODE (reg) != reg_raw_mode[REGNO (reg)])
3919 return false;
3920
3921 if (last_reg)
3922 {
3923 /* The register must belong to RCLASS and have a higher number
3924 than the register in the previous SET. */
3925 if (!TEST_HARD_REG_BIT (reg_class_contents[rclass], REGNO (reg))
3926 || REGNO (last_reg) >= REGNO (reg))
3927 return false;
3928 }
3929 else
3930 {
3931 /* Work out which register class we need. */
3932 if (INT_REGNO_P (REGNO (reg)))
3933 rclass = GENERAL_REGS;
3934 else if (FP_REGNO_P (REGNO (reg)))
3935 rclass = FP_REGS;
3936 else
3937 return false;
3938 }
3939
3940 last_reg = reg;
3941 offset += GET_MODE_SIZE (GET_MODE (reg));
3942 }
3943
3944 /* If we have an automodification, check whether the final offset is OK. */
3945 if (automod_base && offset != (automod_offset < 0 ? 0 : automod_offset))
3946 return false;
3947
3948 /* Reject unprofitable cases. */
3949 if (len < first + (rclass == FP_REGS ? MIN_FMOVEM_REGS : MIN_MOVEM_REGS))
3950 return false;
3951
3952 return true;
3953 }
3954
3955 /* Return the assembly code template for a movem or fmovem instruction
3956 whose pattern is given by PATTERN. Store the template's operands
3957 in OPERANDS.
3958
3959 If the instruction uses post-increment or pre-decrement addressing,
3960 AUTOMOD_OFFSET is the total adjustment, otherwise it is 0. STORE_P
3961 is true if this is a store instruction. */
3962
3963 const char *
3964 m68k_output_movem (rtx *operands, rtx pattern,
3965 HOST_WIDE_INT automod_offset, bool store_p)
3966 {
3967 unsigned int mask;
3968 int i, first;
3969
3970 gcc_assert (GET_CODE (pattern) == PARALLEL);
3971 mask = 0;
3972 first = (automod_offset != 0);
3973 for (i = first; i < XVECLEN (pattern, 0); i++)
3974 {
3975 /* When using movem with pre-decrement addressing, register X + D0_REG
3976 is controlled by bit 15 - X. For all other addressing modes,
3977 register X + D0_REG is controlled by bit X. Confusingly, the
3978 register mask for fmovem is in the opposite order to that for
3979 movem. */
3980 unsigned int regno;
3981
3982 gcc_assert (MEM_P (XEXP (XVECEXP (pattern, 0, i), !store_p)));
3983 gcc_assert (REG_P (XEXP (XVECEXP (pattern, 0, i), store_p)));
3984 regno = REGNO (XEXP (XVECEXP (pattern, 0, i), store_p));
3985 if (automod_offset < 0)
3986 {
3987 if (FP_REGNO_P (regno))
3988 mask |= 1 << (regno - FP0_REG);
3989 else
3990 mask |= 1 << (15 - (regno - D0_REG));
3991 }
3992 else
3993 {
3994 if (FP_REGNO_P (regno))
3995 mask |= 1 << (7 - (regno - FP0_REG));
3996 else
3997 mask |= 1 << (regno - D0_REG);
3998 }
3999 }
4000 CC_STATUS_INIT;
4001
4002 if (automod_offset == 0)
4003 operands[0] = XEXP (XEXP (XVECEXP (pattern, 0, first), !store_p), 0);
4004 else if (automod_offset < 0)
4005 operands[0] = gen_rtx_PRE_DEC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4006 else
4007 operands[0] = gen_rtx_POST_INC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4008 operands[1] = GEN_INT (mask);
4009 if (FP_REGNO_P (REGNO (XEXP (XVECEXP (pattern, 0, first), store_p))))
4010 {
4011 if (store_p)
4012 return "fmovem %1,%a0";
4013 else
4014 return "fmovem %a0,%1";
4015 }
4016 else
4017 {
4018 if (store_p)
4019 return "movem%.l %1,%a0";
4020 else
4021 return "movem%.l %a0,%1";
4022 }
4023 }
4024
4025 /* Return a REG that occurs in ADDR with coefficient 1.
4026 ADDR can be effectively incremented by incrementing REG. */
4027
4028 static rtx
4029 find_addr_reg (rtx addr)
4030 {
4031 while (GET_CODE (addr) == PLUS)
4032 {
4033 if (GET_CODE (XEXP (addr, 0)) == REG)
4034 addr = XEXP (addr, 0);
4035 else if (GET_CODE (XEXP (addr, 1)) == REG)
4036 addr = XEXP (addr, 1);
4037 else if (CONSTANT_P (XEXP (addr, 0)))
4038 addr = XEXP (addr, 1);
4039 else if (CONSTANT_P (XEXP (addr, 1)))
4040 addr = XEXP (addr, 0);
4041 else
4042 gcc_unreachable ();
4043 }
4044 gcc_assert (GET_CODE (addr) == REG);
4045 return addr;
4046 }
4047
4048 /* Output assembler code to perform a 32-bit 3-operand add. */
4049
4050 const char *
4051 output_addsi3 (rtx *operands)
4052 {
4053 if (! operands_match_p (operands[0], operands[1]))
4054 {
4055 if (!ADDRESS_REG_P (operands[1]))
4056 {
4057 rtx tmp = operands[1];
4058
4059 operands[1] = operands[2];
4060 operands[2] = tmp;
4061 }
4062
4063 /* These insns can result from reloads to access
4064 stack slots over 64k from the frame pointer. */
4065 if (GET_CODE (operands[2]) == CONST_INT
4066 && (INTVAL (operands[2]) < -32768 || INTVAL (operands[2]) > 32767))
4067 return "move%.l %2,%0\n\tadd%.l %1,%0";
4068 if (GET_CODE (operands[2]) == REG)
4069 return MOTOROLA ? "lea (%1,%2.l),%0" : "lea %1@(0,%2:l),%0";
4070 return MOTOROLA ? "lea (%c2,%1),%0" : "lea %1@(%c2),%0";
4071 }
4072 if (GET_CODE (operands[2]) == CONST_INT)
4073 {
4074 if (INTVAL (operands[2]) > 0
4075 && INTVAL (operands[2]) <= 8)
4076 return "addq%.l %2,%0";
4077 if (INTVAL (operands[2]) < 0
4078 && INTVAL (operands[2]) >= -8)
4079 {
4080 operands[2] = GEN_INT (- INTVAL (operands[2]));
4081 return "subq%.l %2,%0";
4082 }
4083 /* On the CPU32 it is faster to use two addql instructions to
4084 add a small integer (8 < N <= 16) to a register.
4085 Likewise for subql. */
4086 if (TUNE_CPU32 && REG_P (operands[0]))
4087 {
4088 if (INTVAL (operands[2]) > 8
4089 && INTVAL (operands[2]) <= 16)
4090 {
4091 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
4092 return "addq%.l #8,%0\n\taddq%.l %2,%0";
4093 }
4094 if (INTVAL (operands[2]) < -8
4095 && INTVAL (operands[2]) >= -16)
4096 {
4097 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
4098 return "subq%.l #8,%0\n\tsubq%.l %2,%0";
4099 }
4100 }
4101 if (ADDRESS_REG_P (operands[0])
4102 && INTVAL (operands[2]) >= -0x8000
4103 && INTVAL (operands[2]) < 0x8000)
4104 {
4105 if (TUNE_68040)
4106 return "add%.w %2,%0";
4107 else
4108 return MOTOROLA ? "lea (%c2,%0),%0" : "lea %0@(%c2),%0";
4109 }
4110 }
4111 return "add%.l %2,%0";
4112 }
4113 \f
4114 /* Store in cc_status the expressions that the condition codes will
4115 describe after execution of an instruction whose pattern is EXP.
4116 Do not alter them if the instruction would not alter the cc's. */
4117
4118 /* On the 68000, all the insns to store in an address register fail to
4119 set the cc's. However, in some cases these instructions can make it
4120 possibly invalid to use the saved cc's. In those cases we clear out
4121 some or all of the saved cc's so they won't be used. */
4122
4123 void
4124 notice_update_cc (rtx exp, rtx insn)
4125 {
4126 if (GET_CODE (exp) == SET)
4127 {
4128 if (GET_CODE (SET_SRC (exp)) == CALL)
4129 CC_STATUS_INIT;
4130 else if (ADDRESS_REG_P (SET_DEST (exp)))
4131 {
4132 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
4133 cc_status.value1 = 0;
4134 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
4135 cc_status.value2 = 0;
4136 }
4137 /* fmoves to memory or data registers do not set the condition
4138 codes. Normal moves _do_ set the condition codes, but not in
4139 a way that is appropriate for comparison with 0, because -0.0
4140 would be treated as a negative nonzero number. Note that it
4141 isn't appropriate to conditionalize this restriction on
4142 HONOR_SIGNED_ZEROS because that macro merely indicates whether
4143 we care about the difference between -0.0 and +0.0. */
4144 else if (!FP_REG_P (SET_DEST (exp))
4145 && SET_DEST (exp) != cc0_rtx
4146 && (FP_REG_P (SET_SRC (exp))
4147 || GET_CODE (SET_SRC (exp)) == FIX
4148 || FLOAT_MODE_P (GET_MODE (SET_DEST (exp)))))
4149 CC_STATUS_INIT;
4150 /* A pair of move insns doesn't produce a useful overall cc. */
4151 else if (!FP_REG_P (SET_DEST (exp))
4152 && !FP_REG_P (SET_SRC (exp))
4153 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
4154 && (GET_CODE (SET_SRC (exp)) == REG
4155 || GET_CODE (SET_SRC (exp)) == MEM
4156 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
4157 CC_STATUS_INIT;
4158 else if (SET_DEST (exp) != pc_rtx)
4159 {
4160 cc_status.flags = 0;
4161 cc_status.value1 = SET_DEST (exp);
4162 cc_status.value2 = SET_SRC (exp);
4163 }
4164 }
4165 else if (GET_CODE (exp) == PARALLEL
4166 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
4167 {
4168 rtx dest = SET_DEST (XVECEXP (exp, 0, 0));
4169 rtx src = SET_SRC (XVECEXP (exp, 0, 0));
4170
4171 if (ADDRESS_REG_P (dest))
4172 CC_STATUS_INIT;
4173 else if (dest != pc_rtx)
4174 {
4175 cc_status.flags = 0;
4176 cc_status.value1 = dest;
4177 cc_status.value2 = src;
4178 }
4179 }
4180 else
4181 CC_STATUS_INIT;
4182 if (cc_status.value2 != 0
4183 && ADDRESS_REG_P (cc_status.value2)
4184 && GET_MODE (cc_status.value2) == QImode)
4185 CC_STATUS_INIT;
4186 if (cc_status.value2 != 0)
4187 switch (GET_CODE (cc_status.value2))
4188 {
4189 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
4190 case ROTATE: case ROTATERT:
4191 /* These instructions always clear the overflow bit, and set
4192 the carry to the bit shifted out. */
4193 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
4194 break;
4195
4196 case PLUS: case MINUS: case MULT:
4197 case DIV: case UDIV: case MOD: case UMOD: case NEG:
4198 if (GET_MODE (cc_status.value2) != VOIDmode)
4199 cc_status.flags |= CC_NO_OVERFLOW;
4200 break;
4201 case ZERO_EXTEND:
4202 /* (SET r1 (ZERO_EXTEND r2)) on this machine
4203 ends with a move insn moving r2 in r2's mode.
4204 Thus, the cc's are set for r2.
4205 This can set N bit spuriously. */
4206 cc_status.flags |= CC_NOT_NEGATIVE;
4207
4208 default:
4209 break;
4210 }
4211 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
4212 && cc_status.value2
4213 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
4214 cc_status.value2 = 0;
4215 /* Check for PRE_DEC in dest modifying a register used in src. */
4216 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM
4217 && GET_CODE (XEXP (cc_status.value1, 0)) == PRE_DEC
4218 && cc_status.value2
4219 && reg_overlap_mentioned_p (XEXP (XEXP (cc_status.value1, 0), 0),
4220 cc_status.value2))
4221 cc_status.value2 = 0;
4222 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
4223 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
4224 cc_status.flags = CC_IN_68881;
4225 if (cc_status.value2 && GET_CODE (cc_status.value2) == COMPARE
4226 && GET_MODE_CLASS (GET_MODE (XEXP (cc_status.value2, 0))) == MODE_FLOAT)
4227 {
4228 cc_status.flags = CC_IN_68881;
4229 if (!FP_REG_P (XEXP (cc_status.value2, 0))
4230 && FP_REG_P (XEXP (cc_status.value2, 1)))
4231 cc_status.flags |= CC_REVERSED;
4232 }
4233 }
4234 \f
4235 const char *
4236 output_move_const_double (rtx *operands)
4237 {
4238 int code = standard_68881_constant_p (operands[1]);
4239
4240 if (code != 0)
4241 {
4242 static char buf[40];
4243
4244 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4245 return buf;
4246 }
4247 return "fmove%.d %1,%0";
4248 }
4249
4250 const char *
4251 output_move_const_single (rtx *operands)
4252 {
4253 int code = standard_68881_constant_p (operands[1]);
4254
4255 if (code != 0)
4256 {
4257 static char buf[40];
4258
4259 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4260 return buf;
4261 }
4262 return "fmove%.s %f1,%0";
4263 }
4264
4265 /* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
4266 from the "fmovecr" instruction.
4267 The value, anded with 0xff, gives the code to use in fmovecr
4268 to get the desired constant. */
4269
4270 /* This code has been fixed for cross-compilation. */
4271
4272 static int inited_68881_table = 0;
4273
4274 static const char *const strings_68881[7] = {
4275 "0.0",
4276 "1.0",
4277 "10.0",
4278 "100.0",
4279 "10000.0",
4280 "1e8",
4281 "1e16"
4282 };
4283
4284 static const int codes_68881[7] = {
4285 0x0f,
4286 0x32,
4287 0x33,
4288 0x34,
4289 0x35,
4290 0x36,
4291 0x37
4292 };
4293
4294 REAL_VALUE_TYPE values_68881[7];
4295
4296 /* Set up values_68881 array by converting the decimal values
4297 strings_68881 to binary. */
4298
4299 void
4300 init_68881_table (void)
4301 {
4302 int i;
4303 REAL_VALUE_TYPE r;
4304 enum machine_mode mode;
4305
4306 mode = SFmode;
4307 for (i = 0; i < 7; i++)
4308 {
4309 if (i == 6)
4310 mode = DFmode;
4311 r = REAL_VALUE_ATOF (strings_68881[i], mode);
4312 values_68881[i] = r;
4313 }
4314 inited_68881_table = 1;
4315 }
4316
4317 int
4318 standard_68881_constant_p (rtx x)
4319 {
4320 REAL_VALUE_TYPE r;
4321 int i;
4322
4323 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
4324 used at all on those chips. */
4325 if (TUNE_68040_60)
4326 return 0;
4327
4328 if (! inited_68881_table)
4329 init_68881_table ();
4330
4331 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4332
4333 /* Use REAL_VALUES_IDENTICAL instead of REAL_VALUES_EQUAL so that -0.0
4334 is rejected. */
4335 for (i = 0; i < 6; i++)
4336 {
4337 if (REAL_VALUES_IDENTICAL (r, values_68881[i]))
4338 return (codes_68881[i]);
4339 }
4340
4341 if (GET_MODE (x) == SFmode)
4342 return 0;
4343
4344 if (REAL_VALUES_EQUAL (r, values_68881[6]))
4345 return (codes_68881[6]);
4346
4347 /* larger powers of ten in the constants ram are not used
4348 because they are not equal to a `double' C constant. */
4349 return 0;
4350 }
4351
4352 /* If X is a floating-point constant, return the logarithm of X base 2,
4353 or 0 if X is not a power of 2. */
4354
4355 int
4356 floating_exact_log2 (rtx x)
4357 {
4358 REAL_VALUE_TYPE r, r1;
4359 int exp;
4360
4361 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4362
4363 if (REAL_VALUES_LESS (r, dconst1))
4364 return 0;
4365
4366 exp = real_exponent (&r);
4367 real_2expN (&r1, exp, DFmode);
4368 if (REAL_VALUES_EQUAL (r1, r))
4369 return exp;
4370
4371 return 0;
4372 }
4373 \f
4374 /* A C compound statement to output to stdio stream STREAM the
4375 assembler syntax for an instruction operand X. X is an RTL
4376 expression.
4377
4378 CODE is a value that can be used to specify one of several ways
4379 of printing the operand. It is used when identical operands
4380 must be printed differently depending on the context. CODE
4381 comes from the `%' specification that was used to request
4382 printing of the operand. If the specification was just `%DIGIT'
4383 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4384 is the ASCII code for LTR.
4385
4386 If X is a register, this macro should print the register's name.
4387 The names can be found in an array `reg_names' whose type is
4388 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4389
4390 When the machine description has a specification `%PUNCT' (a `%'
4391 followed by a punctuation character), this macro is called with
4392 a null pointer for X and the punctuation character for CODE.
4393
4394 The m68k specific codes are:
4395
4396 '.' for dot needed in Motorola-style opcode names.
4397 '-' for an operand pushing on the stack:
4398 sp@-, -(sp) or -(%sp) depending on the style of syntax.
4399 '+' for an operand pushing on the stack:
4400 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
4401 '@' for a reference to the top word on the stack:
4402 sp@, (sp) or (%sp) depending on the style of syntax.
4403 '#' for an immediate operand prefix (# in MIT and Motorola syntax
4404 but & in SGS syntax).
4405 '!' for the cc register (used in an `and to cc' insn).
4406 '$' for the letter `s' in an op code, but only on the 68040.
4407 '&' for the letter `d' in an op code, but only on the 68040.
4408 '/' for register prefix needed by longlong.h.
4409 '?' for m68k_library_id_string
4410
4411 'b' for byte insn (no effect, on the Sun; this is for the ISI).
4412 'd' to force memory addressing to be absolute, not relative.
4413 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
4414 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
4415 or print pair of registers as rx:ry.
4416 'p' print an address with @PLTPC attached, but only if the operand
4417 is not locally-bound. */
4418
4419 void
4420 print_operand (FILE *file, rtx op, int letter)
4421 {
4422 if (letter == '.')
4423 {
4424 if (MOTOROLA)
4425 fprintf (file, ".");
4426 }
4427 else if (letter == '#')
4428 asm_fprintf (file, "%I");
4429 else if (letter == '-')
4430 asm_fprintf (file, MOTOROLA ? "-(%Rsp)" : "%Rsp@-");
4431 else if (letter == '+')
4432 asm_fprintf (file, MOTOROLA ? "(%Rsp)+" : "%Rsp@+");
4433 else if (letter == '@')
4434 asm_fprintf (file, MOTOROLA ? "(%Rsp)" : "%Rsp@");
4435 else if (letter == '!')
4436 asm_fprintf (file, "%Rfpcr");
4437 else if (letter == '$')
4438 {
4439 if (TARGET_68040)
4440 fprintf (file, "s");
4441 }
4442 else if (letter == '&')
4443 {
4444 if (TARGET_68040)
4445 fprintf (file, "d");
4446 }
4447 else if (letter == '/')
4448 asm_fprintf (file, "%R");
4449 else if (letter == '?')
4450 asm_fprintf (file, m68k_library_id_string);
4451 else if (letter == 'p')
4452 {
4453 output_addr_const (file, op);
4454 if (!(GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (op)))
4455 fprintf (file, "@PLTPC");
4456 }
4457 else if (GET_CODE (op) == REG)
4458 {
4459 if (letter == 'R')
4460 /* Print out the second register name of a register pair.
4461 I.e., R (6) => 7. */
4462 fputs (M68K_REGNAME(REGNO (op) + 1), file);
4463 else
4464 fputs (M68K_REGNAME(REGNO (op)), file);
4465 }
4466 else if (GET_CODE (op) == MEM)
4467 {
4468 output_address (XEXP (op, 0));
4469 if (letter == 'd' && ! TARGET_68020
4470 && CONSTANT_ADDRESS_P (XEXP (op, 0))
4471 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
4472 && INTVAL (XEXP (op, 0)) < 0x8000
4473 && INTVAL (XEXP (op, 0)) >= -0x8000))
4474 fprintf (file, MOTOROLA ? ".l" : ":l");
4475 }
4476 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
4477 {
4478 REAL_VALUE_TYPE r;
4479 long l;
4480 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4481 REAL_VALUE_TO_TARGET_SINGLE (r, l);
4482 asm_fprintf (file, "%I0x%lx", l & 0xFFFFFFFF);
4483 }
4484 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
4485 {
4486 REAL_VALUE_TYPE r;
4487 long l[3];
4488 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4489 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
4490 asm_fprintf (file, "%I0x%lx%08lx%08lx", l[0] & 0xFFFFFFFF,
4491 l[1] & 0xFFFFFFFF, l[2] & 0xFFFFFFFF);
4492 }
4493 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
4494 {
4495 REAL_VALUE_TYPE r;
4496 long l[2];
4497 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4498 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
4499 asm_fprintf (file, "%I0x%lx%08lx", l[0] & 0xFFFFFFFF, l[1] & 0xFFFFFFFF);
4500 }
4501 else
4502 {
4503 /* Use `print_operand_address' instead of `output_addr_const'
4504 to ensure that we print relevant PIC stuff. */
4505 asm_fprintf (file, "%I");
4506 if (TARGET_PCREL
4507 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
4508 print_operand_address (file, op);
4509 else
4510 output_addr_const (file, op);
4511 }
4512 }
4513
4514 /* Return string for TLS relocation RELOC. */
4515
4516 static const char *
4517 m68k_get_reloc_decoration (enum m68k_reloc reloc)
4518 {
4519 /* To my knowledge, !MOTOROLA assemblers don't support TLS. */
4520 gcc_assert (MOTOROLA || reloc == RELOC_GOT);
4521
4522 switch (reloc)
4523 {
4524 case RELOC_GOT:
4525 if (MOTOROLA)
4526 {
4527 if (flag_pic == 1 && TARGET_68020)
4528 return "@GOT.w";
4529 else
4530 return "@GOT";
4531 }
4532 else
4533 {
4534 if (TARGET_68020)
4535 {
4536 switch (flag_pic)
4537 {
4538 case 1:
4539 return ":w";
4540 case 2:
4541 return ":l";
4542 default:
4543 return "";
4544 }
4545 }
4546 }
4547
4548 case RELOC_TLSGD:
4549 return "@TLSGD";
4550
4551 case RELOC_TLSLDM:
4552 return "@TLSLDM";
4553
4554 case RELOC_TLSLDO:
4555 return "@TLSLDO";
4556
4557 case RELOC_TLSIE:
4558 return "@TLSIE";
4559
4560 case RELOC_TLSLE:
4561 return "@TLSLE";
4562
4563 default:
4564 gcc_unreachable ();
4565 }
4566 }
4567
4568 /* m68k implementation of TARGET_OUTPUT_ADDR_CONST_EXTRA. */
4569
4570 static bool
4571 m68k_output_addr_const_extra (FILE *file, rtx x)
4572 {
4573 if (GET_CODE (x) == UNSPEC)
4574 {
4575 switch (XINT (x, 1))
4576 {
4577 case UNSPEC_RELOC16:
4578 case UNSPEC_RELOC32:
4579 output_addr_const (file, XVECEXP (x, 0, 0));
4580 fputs (m68k_get_reloc_decoration
4581 ((enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1))), file);
4582 return true;
4583
4584 default:
4585 break;
4586 }
4587 }
4588
4589 return false;
4590 }
4591
4592 /* M68K implementation of TARGET_ASM_OUTPUT_DWARF_DTPREL. */
4593
4594 static void
4595 m68k_output_dwarf_dtprel (FILE *file, int size, rtx x)
4596 {
4597 gcc_assert (size == 4);
4598 fputs ("\t.long\t", file);
4599 output_addr_const (file, x);
4600 fputs ("@TLSLDO+0x8000", file);
4601 }
4602
4603 /* In the name of slightly smaller debug output, and to cater to
4604 general assembler lossage, recognize various UNSPEC sequences
4605 and turn them back into a direct symbol reference. */
4606
4607 static rtx
4608 m68k_delegitimize_address (rtx orig_x)
4609 {
4610 rtx x;
4611 struct m68k_address addr;
4612 rtx unspec;
4613
4614 orig_x = delegitimize_mem_from_attrs (orig_x);
4615 x = orig_x;
4616 if (MEM_P (x))
4617 x = XEXP (x, 0);
4618
4619 if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode)
4620 return orig_x;
4621
4622 if (!m68k_decompose_address (GET_MODE (x), x, false, &addr)
4623 || addr.offset == NULL_RTX
4624 || GET_CODE (addr.offset) != CONST)
4625 return orig_x;
4626
4627 unspec = XEXP (addr.offset, 0);
4628 if (GET_CODE (unspec) == PLUS && CONST_INT_P (XEXP (unspec, 1)))
4629 unspec = XEXP (unspec, 0);
4630 if (GET_CODE (unspec) != UNSPEC
4631 || (XINT (unspec, 1) != UNSPEC_RELOC16
4632 && XINT (unspec, 1) != UNSPEC_RELOC32))
4633 return orig_x;
4634 x = XVECEXP (unspec, 0, 0);
4635 gcc_assert (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF);
4636 if (unspec != XEXP (addr.offset, 0))
4637 x = gen_rtx_PLUS (Pmode, x, XEXP (XEXP (addr.offset, 0), 1));
4638 if (addr.index)
4639 {
4640 rtx idx = addr.index;
4641 if (addr.scale != 1)
4642 idx = gen_rtx_MULT (Pmode, idx, GEN_INT (addr.scale));
4643 x = gen_rtx_PLUS (Pmode, idx, x);
4644 }
4645 if (addr.base)
4646 x = gen_rtx_PLUS (Pmode, addr.base, x);
4647 if (MEM_P (orig_x))
4648 x = replace_equiv_address_nv (orig_x, x);
4649 return x;
4650 }
4651
4652 \f
4653 /* A C compound statement to output to stdio stream STREAM the
4654 assembler syntax for an instruction operand that is a memory
4655 reference whose address is ADDR. ADDR is an RTL expression.
4656
4657 Note that this contains a kludge that knows that the only reason
4658 we have an address (plus (label_ref...) (reg...)) when not generating
4659 PIC code is in the insn before a tablejump, and we know that m68k.md
4660 generates a label LInnn: on such an insn.
4661
4662 It is possible for PIC to generate a (plus (label_ref...) (reg...))
4663 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
4664
4665 This routine is responsible for distinguishing between -fpic and -fPIC
4666 style relocations in an address. When generating -fpic code the
4667 offset is output in word mode (e.g. movel a5@(_foo:w), a0). When generating
4668 -fPIC code the offset is output in long mode (e.g. movel a5@(_foo:l), a0) */
4669
4670 void
4671 print_operand_address (FILE *file, rtx addr)
4672 {
4673 struct m68k_address address;
4674
4675 if (!m68k_decompose_address (QImode, addr, true, &address))
4676 gcc_unreachable ();
4677
4678 if (address.code == PRE_DEC)
4679 fprintf (file, MOTOROLA ? "-(%s)" : "%s@-",
4680 M68K_REGNAME (REGNO (address.base)));
4681 else if (address.code == POST_INC)
4682 fprintf (file, MOTOROLA ? "(%s)+" : "%s@+",
4683 M68K_REGNAME (REGNO (address.base)));
4684 else if (!address.base && !address.index)
4685 {
4686 /* A constant address. */
4687 gcc_assert (address.offset == addr);
4688 if (GET_CODE (addr) == CONST_INT)
4689 {
4690 /* (xxx).w or (xxx).l. */
4691 if (IN_RANGE (INTVAL (addr), -0x8000, 0x7fff))
4692 fprintf (file, MOTOROLA ? "%d.w" : "%d:w", (int) INTVAL (addr));
4693 else
4694 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
4695 }
4696 else if (TARGET_PCREL)
4697 {
4698 /* (d16,PC) or (bd,PC,Xn) (with suppressed index register). */
4699 fputc ('(', file);
4700 output_addr_const (file, addr);
4701 asm_fprintf (file, flag_pic == 1 ? ":w,%Rpc)" : ":l,%Rpc)");
4702 }
4703 else
4704 {
4705 /* (xxx).l. We need a special case for SYMBOL_REF if the symbol
4706 name ends in `.<letter>', as the last 2 characters can be
4707 mistaken as a size suffix. Put the name in parentheses. */
4708 if (GET_CODE (addr) == SYMBOL_REF
4709 && strlen (XSTR (addr, 0)) > 2
4710 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
4711 {
4712 putc ('(', file);
4713 output_addr_const (file, addr);
4714 putc (')', file);
4715 }
4716 else
4717 output_addr_const (file, addr);
4718 }
4719 }
4720 else
4721 {
4722 int labelno;
4723
4724 /* If ADDR is a (d8,pc,Xn) address, this is the number of the
4725 label being accessed, otherwise it is -1. */
4726 labelno = (address.offset
4727 && !address.base
4728 && GET_CODE (address.offset) == LABEL_REF
4729 ? CODE_LABEL_NUMBER (XEXP (address.offset, 0))
4730 : -1);
4731 if (MOTOROLA)
4732 {
4733 /* Print the "offset(base" component. */
4734 if (labelno >= 0)
4735 asm_fprintf (file, "%LL%d(%Rpc,", labelno);
4736 else
4737 {
4738 if (address.offset)
4739 output_addr_const (file, address.offset);
4740
4741 putc ('(', file);
4742 if (address.base)
4743 fputs (M68K_REGNAME (REGNO (address.base)), file);
4744 }
4745 /* Print the ",index" component, if any. */
4746 if (address.index)
4747 {
4748 if (address.base)
4749 putc (',', file);
4750 fprintf (file, "%s.%c",
4751 M68K_REGNAME (REGNO (address.index)),
4752 GET_MODE (address.index) == HImode ? 'w' : 'l');
4753 if (address.scale != 1)
4754 fprintf (file, "*%d", address.scale);
4755 }
4756 putc (')', file);
4757 }
4758 else /* !MOTOROLA */
4759 {
4760 if (!address.offset && !address.index)
4761 fprintf (file, "%s@", M68K_REGNAME (REGNO (address.base)));
4762 else
4763 {
4764 /* Print the "base@(offset" component. */
4765 if (labelno >= 0)
4766 asm_fprintf (file, "%Rpc@(%LL%d", labelno);
4767 else
4768 {
4769 if (address.base)
4770 fputs (M68K_REGNAME (REGNO (address.base)), file);
4771 fprintf (file, "@(");
4772 if (address.offset)
4773 output_addr_const (file, address.offset);
4774 }
4775 /* Print the ",index" component, if any. */
4776 if (address.index)
4777 {
4778 fprintf (file, ",%s:%c",
4779 M68K_REGNAME (REGNO (address.index)),
4780 GET_MODE (address.index) == HImode ? 'w' : 'l');
4781 if (address.scale != 1)
4782 fprintf (file, ":%d", address.scale);
4783 }
4784 putc (')', file);
4785 }
4786 }
4787 }
4788 }
4789 \f
4790 /* Check for cases where a clr insns can be omitted from code using
4791 strict_low_part sets. For example, the second clrl here is not needed:
4792 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
4793
4794 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
4795 insn we are checking for redundancy. TARGET is the register set by the
4796 clear insn. */
4797
4798 bool
4799 strict_low_part_peephole_ok (enum machine_mode mode, rtx first_insn,
4800 rtx target)
4801 {
4802 rtx p = first_insn;
4803
4804 while ((p = PREV_INSN (p)))
4805 {
4806 if (NOTE_INSN_BASIC_BLOCK_P (p))
4807 return false;
4808
4809 if (NOTE_P (p))
4810 continue;
4811
4812 /* If it isn't an insn, then give up. */
4813 if (!INSN_P (p))
4814 return false;
4815
4816 if (reg_set_p (target, p))
4817 {
4818 rtx set = single_set (p);
4819 rtx dest;
4820
4821 /* If it isn't an easy to recognize insn, then give up. */
4822 if (! set)
4823 return false;
4824
4825 dest = SET_DEST (set);
4826
4827 /* If this sets the entire target register to zero, then our
4828 first_insn is redundant. */
4829 if (rtx_equal_p (dest, target)
4830 && SET_SRC (set) == const0_rtx)
4831 return true;
4832 else if (GET_CODE (dest) == STRICT_LOW_PART
4833 && GET_CODE (XEXP (dest, 0)) == REG
4834 && REGNO (XEXP (dest, 0)) == REGNO (target)
4835 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
4836 <= GET_MODE_SIZE (mode)))
4837 /* This is a strict low part set which modifies less than
4838 we are using, so it is safe. */
4839 ;
4840 else
4841 return false;
4842 }
4843 }
4844
4845 return false;
4846 }
4847
4848 /* Operand predicates for implementing asymmetric pc-relative addressing
4849 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
4850 when used as a source operand, but not as a destination operand.
4851
4852 We model this by restricting the meaning of the basic predicates
4853 (general_operand, memory_operand, etc) to forbid the use of this
4854 addressing mode, and then define the following predicates that permit
4855 this addressing mode. These predicates can then be used for the
4856 source operands of the appropriate instructions.
4857
4858 n.b. While it is theoretically possible to change all machine patterns
4859 to use this addressing more where permitted by the architecture,
4860 it has only been implemented for "common" cases: SImode, HImode, and
4861 QImode operands, and only for the principle operations that would
4862 require this addressing mode: data movement and simple integer operations.
4863
4864 In parallel with these new predicates, two new constraint letters
4865 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
4866 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
4867 In the pcrel case 's' is only valid in combination with 'a' registers.
4868 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
4869 of how these constraints are used.
4870
4871 The use of these predicates is strictly optional, though patterns that
4872 don't will cause an extra reload register to be allocated where one
4873 was not necessary:
4874
4875 lea (abc:w,%pc),%a0 ; need to reload address
4876 moveq &1,%d1 ; since write to pc-relative space
4877 movel %d1,%a0@ ; is not allowed
4878 ...
4879 lea (abc:w,%pc),%a1 ; no need to reload address here
4880 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
4881
4882 For more info, consult tiemann@cygnus.com.
4883
4884
4885 All of the ugliness with predicates and constraints is due to the
4886 simple fact that the m68k does not allow a pc-relative addressing
4887 mode as a destination. gcc does not distinguish between source and
4888 destination addresses. Hence, if we claim that pc-relative address
4889 modes are valid, e.g. TARGET_LEGITIMATE_ADDRESS_P accepts them, then we
4890 end up with invalid code. To get around this problem, we left
4891 pc-relative modes as invalid addresses, and then added special
4892 predicates and constraints to accept them.
4893
4894 A cleaner way to handle this is to modify gcc to distinguish
4895 between source and destination addresses. We can then say that
4896 pc-relative is a valid source address but not a valid destination
4897 address, and hopefully avoid a lot of the predicate and constraint
4898 hackery. Unfortunately, this would be a pretty big change. It would
4899 be a useful change for a number of ports, but there aren't any current
4900 plans to undertake this.
4901
4902 ***************************************************************************/
4903
4904
4905 const char *
4906 output_andsi3 (rtx *operands)
4907 {
4908 int logval;
4909 if (GET_CODE (operands[2]) == CONST_INT
4910 && (INTVAL (operands[2]) | 0xffff) == -1
4911 && (DATA_REG_P (operands[0])
4912 || offsettable_memref_p (operands[0]))
4913 && !TARGET_COLDFIRE)
4914 {
4915 if (GET_CODE (operands[0]) != REG)
4916 operands[0] = adjust_address (operands[0], HImode, 2);
4917 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
4918 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4919 CC_STATUS_INIT;
4920 if (operands[2] == const0_rtx)
4921 return "clr%.w %0";
4922 return "and%.w %2,%0";
4923 }
4924 if (GET_CODE (operands[2]) == CONST_INT
4925 && (logval = exact_log2 (~ INTVAL (operands[2]) & 0xffffffff)) >= 0
4926 && (DATA_REG_P (operands[0])
4927 || offsettable_memref_p (operands[0])))
4928 {
4929 if (DATA_REG_P (operands[0]))
4930 operands[1] = GEN_INT (logval);
4931 else
4932 {
4933 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4934 operands[1] = GEN_INT (logval % 8);
4935 }
4936 /* This does not set condition codes in a standard way. */
4937 CC_STATUS_INIT;
4938 return "bclr %1,%0";
4939 }
4940 return "and%.l %2,%0";
4941 }
4942
4943 const char *
4944 output_iorsi3 (rtx *operands)
4945 {
4946 register int logval;
4947 if (GET_CODE (operands[2]) == CONST_INT
4948 && INTVAL (operands[2]) >> 16 == 0
4949 && (DATA_REG_P (operands[0])
4950 || offsettable_memref_p (operands[0]))
4951 && !TARGET_COLDFIRE)
4952 {
4953 if (GET_CODE (operands[0]) != REG)
4954 operands[0] = adjust_address (operands[0], HImode, 2);
4955 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4956 CC_STATUS_INIT;
4957 if (INTVAL (operands[2]) == 0xffff)
4958 return "mov%.w %2,%0";
4959 return "or%.w %2,%0";
4960 }
4961 if (GET_CODE (operands[2]) == CONST_INT
4962 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
4963 && (DATA_REG_P (operands[0])
4964 || offsettable_memref_p (operands[0])))
4965 {
4966 if (DATA_REG_P (operands[0]))
4967 operands[1] = GEN_INT (logval);
4968 else
4969 {
4970 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4971 operands[1] = GEN_INT (logval % 8);
4972 }
4973 CC_STATUS_INIT;
4974 return "bset %1,%0";
4975 }
4976 return "or%.l %2,%0";
4977 }
4978
4979 const char *
4980 output_xorsi3 (rtx *operands)
4981 {
4982 register int logval;
4983 if (GET_CODE (operands[2]) == CONST_INT
4984 && INTVAL (operands[2]) >> 16 == 0
4985 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
4986 && !TARGET_COLDFIRE)
4987 {
4988 if (! DATA_REG_P (operands[0]))
4989 operands[0] = adjust_address (operands[0], HImode, 2);
4990 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4991 CC_STATUS_INIT;
4992 if (INTVAL (operands[2]) == 0xffff)
4993 return "not%.w %0";
4994 return "eor%.w %2,%0";
4995 }
4996 if (GET_CODE (operands[2]) == CONST_INT
4997 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
4998 && (DATA_REG_P (operands[0])
4999 || offsettable_memref_p (operands[0])))
5000 {
5001 if (DATA_REG_P (operands[0]))
5002 operands[1] = GEN_INT (logval);
5003 else
5004 {
5005 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
5006 operands[1] = GEN_INT (logval % 8);
5007 }
5008 CC_STATUS_INIT;
5009 return "bchg %1,%0";
5010 }
5011 return "eor%.l %2,%0";
5012 }
5013
5014 /* Return the instruction that should be used for a call to address X,
5015 which is known to be in operand 0. */
5016
5017 const char *
5018 output_call (rtx x)
5019 {
5020 if (symbolic_operand (x, VOIDmode))
5021 return m68k_symbolic_call;
5022 else
5023 return "jsr %a0";
5024 }
5025
5026 /* Likewise sibling calls. */
5027
5028 const char *
5029 output_sibcall (rtx x)
5030 {
5031 if (symbolic_operand (x, VOIDmode))
5032 return m68k_symbolic_jump;
5033 else
5034 return "jmp %a0";
5035 }
5036
5037 static void
5038 m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
5039 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
5040 tree function)
5041 {
5042 rtx this_slot, offset, addr, mem, insn, tmp;
5043
5044 /* Avoid clobbering the struct value reg by using the
5045 static chain reg as a temporary. */
5046 tmp = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5047
5048 /* Pretend to be a post-reload pass while generating rtl. */
5049 reload_completed = 1;
5050
5051 /* The "this" pointer is stored at 4(%sp). */
5052 this_slot = gen_rtx_MEM (Pmode, plus_constant (Pmode,
5053 stack_pointer_rtx, 4));
5054
5055 /* Add DELTA to THIS. */
5056 if (delta != 0)
5057 {
5058 /* Make the offset a legitimate operand for memory addition. */
5059 offset = GEN_INT (delta);
5060 if ((delta < -8 || delta > 8)
5061 && (TARGET_COLDFIRE || USE_MOVQ (delta)))
5062 {
5063 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), offset);
5064 offset = gen_rtx_REG (Pmode, D0_REG);
5065 }
5066 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5067 copy_rtx (this_slot), offset));
5068 }
5069
5070 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
5071 if (vcall_offset != 0)
5072 {
5073 /* Set the static chain register to *THIS. */
5074 emit_move_insn (tmp, this_slot);
5075 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
5076
5077 /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
5078 addr = plus_constant (Pmode, tmp, vcall_offset);
5079 if (!m68k_legitimate_address_p (Pmode, addr, true))
5080 {
5081 emit_insn (gen_rtx_SET (VOIDmode, tmp, addr));
5082 addr = tmp;
5083 }
5084
5085 /* Load the offset into %d0 and add it to THIS. */
5086 emit_move_insn (gen_rtx_REG (Pmode, D0_REG),
5087 gen_rtx_MEM (Pmode, addr));
5088 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5089 copy_rtx (this_slot),
5090 gen_rtx_REG (Pmode, D0_REG)));
5091 }
5092
5093 /* Jump to the target function. Use a sibcall if direct jumps are
5094 allowed, otherwise load the address into a register first. */
5095 mem = DECL_RTL (function);
5096 if (!sibcall_operand (XEXP (mem, 0), VOIDmode))
5097 {
5098 gcc_assert (flag_pic);
5099
5100 if (!TARGET_SEP_DATA)
5101 {
5102 /* Use the static chain register as a temporary (call-clobbered)
5103 GOT pointer for this function. We can use the static chain
5104 register because it isn't live on entry to the thunk. */
5105 SET_REGNO (pic_offset_table_rtx, STATIC_CHAIN_REGNUM);
5106 emit_insn (gen_load_got (pic_offset_table_rtx));
5107 }
5108 legitimize_pic_address (XEXP (mem, 0), Pmode, tmp);
5109 mem = replace_equiv_address (mem, tmp);
5110 }
5111 insn = emit_call_insn (gen_sibcall (mem, const0_rtx));
5112 SIBLING_CALL_P (insn) = 1;
5113
5114 /* Run just enough of rest_of_compilation. */
5115 insn = get_insns ();
5116 split_all_insns_noflow ();
5117 final_start_function (insn, file, 1);
5118 final (insn, file, 1);
5119 final_end_function ();
5120
5121 /* Clean up the vars set above. */
5122 reload_completed = 0;
5123
5124 /* Restore the original PIC register. */
5125 if (flag_pic)
5126 SET_REGNO (pic_offset_table_rtx, PIC_REG);
5127 }
5128
5129 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
5130
5131 static rtx
5132 m68k_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
5133 int incoming ATTRIBUTE_UNUSED)
5134 {
5135 return gen_rtx_REG (Pmode, M68K_STRUCT_VALUE_REGNUM);
5136 }
5137
5138 /* Return nonzero if register old_reg can be renamed to register new_reg. */
5139 int
5140 m68k_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
5141 unsigned int new_reg)
5142 {
5143
5144 /* Interrupt functions can only use registers that have already been
5145 saved by the prologue, even if they would normally be
5146 call-clobbered. */
5147
5148 if ((m68k_get_function_kind (current_function_decl)
5149 == m68k_fk_interrupt_handler)
5150 && !df_regs_ever_live_p (new_reg))
5151 return 0;
5152
5153 return 1;
5154 }
5155
5156 /* Value is true if hard register REGNO can hold a value of machine-mode
5157 MODE. On the 68000, we let the cpu registers can hold any mode, but
5158 restrict the 68881 registers to floating-point modes. */
5159
5160 bool
5161 m68k_regno_mode_ok (int regno, enum machine_mode mode)
5162 {
5163 if (DATA_REGNO_P (regno))
5164 {
5165 /* Data Registers, can hold aggregate if fits in. */
5166 if (regno + GET_MODE_SIZE (mode) / 4 <= 8)
5167 return true;
5168 }
5169 else if (ADDRESS_REGNO_P (regno))
5170 {
5171 if (regno + GET_MODE_SIZE (mode) / 4 <= 16)
5172 return true;
5173 }
5174 else if (FP_REGNO_P (regno))
5175 {
5176 /* FPU registers, hold float or complex float of long double or
5177 smaller. */
5178 if ((GET_MODE_CLASS (mode) == MODE_FLOAT
5179 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5180 && GET_MODE_UNIT_SIZE (mode) <= TARGET_FP_REG_SIZE)
5181 return true;
5182 }
5183 return false;
5184 }
5185
5186 /* Implement SECONDARY_RELOAD_CLASS. */
5187
5188 enum reg_class
5189 m68k_secondary_reload_class (enum reg_class rclass,
5190 enum machine_mode mode, rtx x)
5191 {
5192 int regno;
5193
5194 regno = true_regnum (x);
5195
5196 /* If one operand of a movqi is an address register, the other
5197 operand must be a general register or constant. Other types
5198 of operand must be reloaded through a data register. */
5199 if (GET_MODE_SIZE (mode) == 1
5200 && reg_classes_intersect_p (rclass, ADDR_REGS)
5201 && !(INT_REGNO_P (regno) || CONSTANT_P (x)))
5202 return DATA_REGS;
5203
5204 /* PC-relative addresses must be loaded into an address register first. */
5205 if (TARGET_PCREL
5206 && !reg_class_subset_p (rclass, ADDR_REGS)
5207 && symbolic_operand (x, VOIDmode))
5208 return ADDR_REGS;
5209
5210 return NO_REGS;
5211 }
5212
5213 /* Implement PREFERRED_RELOAD_CLASS. */
5214
5215 enum reg_class
5216 m68k_preferred_reload_class (rtx x, enum reg_class rclass)
5217 {
5218 enum reg_class secondary_class;
5219
5220 /* If RCLASS might need a secondary reload, try restricting it to
5221 a class that doesn't. */
5222 secondary_class = m68k_secondary_reload_class (rclass, GET_MODE (x), x);
5223 if (secondary_class != NO_REGS
5224 && reg_class_subset_p (secondary_class, rclass))
5225 return secondary_class;
5226
5227 /* Prefer to use moveq for in-range constants. */
5228 if (GET_CODE (x) == CONST_INT
5229 && reg_class_subset_p (DATA_REGS, rclass)
5230 && IN_RANGE (INTVAL (x), -0x80, 0x7f))
5231 return DATA_REGS;
5232
5233 /* ??? Do we really need this now? */
5234 if (GET_CODE (x) == CONST_DOUBLE
5235 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
5236 {
5237 if (TARGET_HARD_FLOAT && reg_class_subset_p (FP_REGS, rclass))
5238 return FP_REGS;
5239
5240 return NO_REGS;
5241 }
5242
5243 return rclass;
5244 }
5245
5246 /* Return floating point values in a 68881 register. This makes 68881 code
5247 a little bit faster. It also makes -msoft-float code incompatible with
5248 hard-float code, so people have to be careful not to mix the two.
5249 For ColdFire it was decided the ABI incompatibility is undesirable.
5250 If there is need for a hard-float ABI it is probably worth doing it
5251 properly and also passing function arguments in FP registers. */
5252 rtx
5253 m68k_libcall_value (enum machine_mode mode)
5254 {
5255 switch (mode) {
5256 case SFmode:
5257 case DFmode:
5258 case XFmode:
5259 if (TARGET_68881)
5260 return gen_rtx_REG (mode, FP0_REG);
5261 break;
5262 default:
5263 break;
5264 }
5265
5266 return gen_rtx_REG (mode, m68k_libcall_value_in_a0_p ? A0_REG : D0_REG);
5267 }
5268
5269 /* Location in which function value is returned.
5270 NOTE: Due to differences in ABIs, don't call this function directly,
5271 use FUNCTION_VALUE instead. */
5272 rtx
5273 m68k_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
5274 {
5275 enum machine_mode mode;
5276
5277 mode = TYPE_MODE (valtype);
5278 switch (mode) {
5279 case SFmode:
5280 case DFmode:
5281 case XFmode:
5282 if (TARGET_68881)
5283 return gen_rtx_REG (mode, FP0_REG);
5284 break;
5285 default:
5286 break;
5287 }
5288
5289 /* If the function returns a pointer, push that into %a0. */
5290 if (func && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (func))))
5291 /* For compatibility with the large body of existing code which
5292 does not always properly declare external functions returning
5293 pointer types, the m68k/SVR4 convention is to copy the value
5294 returned for pointer functions from a0 to d0 in the function
5295 epilogue, so that callers that have neglected to properly
5296 declare the callee can still find the correct return value in
5297 d0. */
5298 return gen_rtx_PARALLEL
5299 (mode,
5300 gen_rtvec (2,
5301 gen_rtx_EXPR_LIST (VOIDmode,
5302 gen_rtx_REG (mode, A0_REG),
5303 const0_rtx),
5304 gen_rtx_EXPR_LIST (VOIDmode,
5305 gen_rtx_REG (mode, D0_REG),
5306 const0_rtx)));
5307 else if (POINTER_TYPE_P (valtype))
5308 return gen_rtx_REG (mode, A0_REG);
5309 else
5310 return gen_rtx_REG (mode, D0_REG);
5311 }
5312
5313 /* Worker function for TARGET_RETURN_IN_MEMORY. */
5314 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
5315 static bool
5316 m68k_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
5317 {
5318 enum machine_mode mode = TYPE_MODE (type);
5319
5320 if (mode == BLKmode)
5321 return true;
5322
5323 /* If TYPE's known alignment is less than the alignment of MODE that
5324 would contain the structure, then return in memory. We need to
5325 do so to maintain the compatibility between code compiled with
5326 -mstrict-align and that compiled with -mno-strict-align. */
5327 if (AGGREGATE_TYPE_P (type)
5328 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (mode))
5329 return true;
5330
5331 return false;
5332 }
5333 #endif
5334
5335 /* CPU to schedule the program for. */
5336 enum attr_cpu m68k_sched_cpu;
5337
5338 /* MAC to schedule the program for. */
5339 enum attr_mac m68k_sched_mac;
5340
5341 /* Operand type. */
5342 enum attr_op_type
5343 {
5344 /* No operand. */
5345 OP_TYPE_NONE,
5346
5347 /* Integer register. */
5348 OP_TYPE_RN,
5349
5350 /* FP register. */
5351 OP_TYPE_FPN,
5352
5353 /* Implicit mem reference (e.g. stack). */
5354 OP_TYPE_MEM1,
5355
5356 /* Memory without offset or indexing. EA modes 2, 3 and 4. */
5357 OP_TYPE_MEM234,
5358
5359 /* Memory with offset but without indexing. EA mode 5. */
5360 OP_TYPE_MEM5,
5361
5362 /* Memory with indexing. EA mode 6. */
5363 OP_TYPE_MEM6,
5364
5365 /* Memory referenced by absolute address. EA mode 7. */
5366 OP_TYPE_MEM7,
5367
5368 /* Immediate operand that doesn't require extension word. */
5369 OP_TYPE_IMM_Q,
5370
5371 /* Immediate 16 bit operand. */
5372 OP_TYPE_IMM_W,
5373
5374 /* Immediate 32 bit operand. */
5375 OP_TYPE_IMM_L
5376 };
5377
5378 /* Return type of memory ADDR_RTX refers to. */
5379 static enum attr_op_type
5380 sched_address_type (enum machine_mode mode, rtx addr_rtx)
5381 {
5382 struct m68k_address address;
5383
5384 if (symbolic_operand (addr_rtx, VOIDmode))
5385 return OP_TYPE_MEM7;
5386
5387 if (!m68k_decompose_address (mode, addr_rtx,
5388 reload_completed, &address))
5389 {
5390 gcc_assert (!reload_completed);
5391 /* Reload will likely fix the address to be in the register. */
5392 return OP_TYPE_MEM234;
5393 }
5394
5395 if (address.scale != 0)
5396 return OP_TYPE_MEM6;
5397
5398 if (address.base != NULL_RTX)
5399 {
5400 if (address.offset == NULL_RTX)
5401 return OP_TYPE_MEM234;
5402
5403 return OP_TYPE_MEM5;
5404 }
5405
5406 gcc_assert (address.offset != NULL_RTX);
5407
5408 return OP_TYPE_MEM7;
5409 }
5410
5411 /* Return X or Y (depending on OPX_P) operand of INSN. */
5412 static rtx
5413 sched_get_operand (rtx insn, bool opx_p)
5414 {
5415 int i;
5416
5417 if (recog_memoized (insn) < 0)
5418 gcc_unreachable ();
5419
5420 extract_constrain_insn_cached (insn);
5421
5422 if (opx_p)
5423 i = get_attr_opx (insn);
5424 else
5425 i = get_attr_opy (insn);
5426
5427 if (i >= recog_data.n_operands)
5428 return NULL;
5429
5430 return recog_data.operand[i];
5431 }
5432
5433 /* Return type of INSN's operand X (if OPX_P) or operand Y (if !OPX_P).
5434 If ADDRESS_P is true, return type of memory location operand refers to. */
5435 static enum attr_op_type
5436 sched_attr_op_type (rtx insn, bool opx_p, bool address_p)
5437 {
5438 rtx op;
5439
5440 op = sched_get_operand (insn, opx_p);
5441
5442 if (op == NULL)
5443 {
5444 gcc_assert (!reload_completed);
5445 return OP_TYPE_RN;
5446 }
5447
5448 if (address_p)
5449 return sched_address_type (QImode, op);
5450
5451 if (memory_operand (op, VOIDmode))
5452 return sched_address_type (GET_MODE (op), XEXP (op, 0));
5453
5454 if (register_operand (op, VOIDmode))
5455 {
5456 if ((!reload_completed && FLOAT_MODE_P (GET_MODE (op)))
5457 || (reload_completed && FP_REG_P (op)))
5458 return OP_TYPE_FPN;
5459
5460 return OP_TYPE_RN;
5461 }
5462
5463 if (GET_CODE (op) == CONST_INT)
5464 {
5465 int ival;
5466
5467 ival = INTVAL (op);
5468
5469 /* Check for quick constants. */
5470 switch (get_attr_type (insn))
5471 {
5472 case TYPE_ALUQ_L:
5473 if (IN_RANGE (ival, 1, 8) || IN_RANGE (ival, -8, -1))
5474 return OP_TYPE_IMM_Q;
5475
5476 gcc_assert (!reload_completed);
5477 break;
5478
5479 case TYPE_MOVEQ_L:
5480 if (USE_MOVQ (ival))
5481 return OP_TYPE_IMM_Q;
5482
5483 gcc_assert (!reload_completed);
5484 break;
5485
5486 case TYPE_MOV3Q_L:
5487 if (valid_mov3q_const (ival))
5488 return OP_TYPE_IMM_Q;
5489
5490 gcc_assert (!reload_completed);
5491 break;
5492
5493 default:
5494 break;
5495 }
5496
5497 if (IN_RANGE (ival, -0x8000, 0x7fff))
5498 return OP_TYPE_IMM_W;
5499
5500 return OP_TYPE_IMM_L;
5501 }
5502
5503 if (GET_CODE (op) == CONST_DOUBLE)
5504 {
5505 switch (GET_MODE (op))
5506 {
5507 case SFmode:
5508 return OP_TYPE_IMM_W;
5509
5510 case VOIDmode:
5511 case DFmode:
5512 return OP_TYPE_IMM_L;
5513
5514 default:
5515 gcc_unreachable ();
5516 }
5517 }
5518
5519 if (GET_CODE (op) == CONST
5520 || symbolic_operand (op, VOIDmode)
5521 || LABEL_P (op))
5522 {
5523 switch (GET_MODE (op))
5524 {
5525 case QImode:
5526 return OP_TYPE_IMM_Q;
5527
5528 case HImode:
5529 return OP_TYPE_IMM_W;
5530
5531 case SImode:
5532 return OP_TYPE_IMM_L;
5533
5534 default:
5535 if (symbolic_operand (m68k_unwrap_symbol (op, false), VOIDmode))
5536 /* Just a guess. */
5537 return OP_TYPE_IMM_W;
5538
5539 return OP_TYPE_IMM_L;
5540 }
5541 }
5542
5543 gcc_assert (!reload_completed);
5544
5545 if (FLOAT_MODE_P (GET_MODE (op)))
5546 return OP_TYPE_FPN;
5547
5548 return OP_TYPE_RN;
5549 }
5550
5551 /* Implement opx_type attribute.
5552 Return type of INSN's operand X.
5553 If ADDRESS_P is true, return type of memory location operand refers to. */
5554 enum attr_opx_type
5555 m68k_sched_attr_opx_type (rtx insn, int address_p)
5556 {
5557 switch (sched_attr_op_type (insn, true, address_p != 0))
5558 {
5559 case OP_TYPE_RN:
5560 return OPX_TYPE_RN;
5561
5562 case OP_TYPE_FPN:
5563 return OPX_TYPE_FPN;
5564
5565 case OP_TYPE_MEM1:
5566 return OPX_TYPE_MEM1;
5567
5568 case OP_TYPE_MEM234:
5569 return OPX_TYPE_MEM234;
5570
5571 case OP_TYPE_MEM5:
5572 return OPX_TYPE_MEM5;
5573
5574 case OP_TYPE_MEM6:
5575 return OPX_TYPE_MEM6;
5576
5577 case OP_TYPE_MEM7:
5578 return OPX_TYPE_MEM7;
5579
5580 case OP_TYPE_IMM_Q:
5581 return OPX_TYPE_IMM_Q;
5582
5583 case OP_TYPE_IMM_W:
5584 return OPX_TYPE_IMM_W;
5585
5586 case OP_TYPE_IMM_L:
5587 return OPX_TYPE_IMM_L;
5588
5589 default:
5590 gcc_unreachable ();
5591 }
5592 }
5593
5594 /* Implement opy_type attribute.
5595 Return type of INSN's operand Y.
5596 If ADDRESS_P is true, return type of memory location operand refers to. */
5597 enum attr_opy_type
5598 m68k_sched_attr_opy_type (rtx insn, int address_p)
5599 {
5600 switch (sched_attr_op_type (insn, false, address_p != 0))
5601 {
5602 case OP_TYPE_RN:
5603 return OPY_TYPE_RN;
5604
5605 case OP_TYPE_FPN:
5606 return OPY_TYPE_FPN;
5607
5608 case OP_TYPE_MEM1:
5609 return OPY_TYPE_MEM1;
5610
5611 case OP_TYPE_MEM234:
5612 return OPY_TYPE_MEM234;
5613
5614 case OP_TYPE_MEM5:
5615 return OPY_TYPE_MEM5;
5616
5617 case OP_TYPE_MEM6:
5618 return OPY_TYPE_MEM6;
5619
5620 case OP_TYPE_MEM7:
5621 return OPY_TYPE_MEM7;
5622
5623 case OP_TYPE_IMM_Q:
5624 return OPY_TYPE_IMM_Q;
5625
5626 case OP_TYPE_IMM_W:
5627 return OPY_TYPE_IMM_W;
5628
5629 case OP_TYPE_IMM_L:
5630 return OPY_TYPE_IMM_L;
5631
5632 default:
5633 gcc_unreachable ();
5634 }
5635 }
5636
5637 /* Return size of INSN as int. */
5638 static int
5639 sched_get_attr_size_int (rtx insn)
5640 {
5641 int size;
5642
5643 switch (get_attr_type (insn))
5644 {
5645 case TYPE_IGNORE:
5646 /* There should be no references to m68k_sched_attr_size for 'ignore'
5647 instructions. */
5648 gcc_unreachable ();
5649 return 0;
5650
5651 case TYPE_MUL_L:
5652 size = 2;
5653 break;
5654
5655 default:
5656 size = 1;
5657 break;
5658 }
5659
5660 switch (get_attr_opx_type (insn))
5661 {
5662 case OPX_TYPE_NONE:
5663 case OPX_TYPE_RN:
5664 case OPX_TYPE_FPN:
5665 case OPX_TYPE_MEM1:
5666 case OPX_TYPE_MEM234:
5667 case OPY_TYPE_IMM_Q:
5668 break;
5669
5670 case OPX_TYPE_MEM5:
5671 case OPX_TYPE_MEM6:
5672 /* Here we assume that most absolute references are short. */
5673 case OPX_TYPE_MEM7:
5674 case OPY_TYPE_IMM_W:
5675 ++size;
5676 break;
5677
5678 case OPY_TYPE_IMM_L:
5679 size += 2;
5680 break;
5681
5682 default:
5683 gcc_unreachable ();
5684 }
5685
5686 switch (get_attr_opy_type (insn))
5687 {
5688 case OPY_TYPE_NONE:
5689 case OPY_TYPE_RN:
5690 case OPY_TYPE_FPN:
5691 case OPY_TYPE_MEM1:
5692 case OPY_TYPE_MEM234:
5693 case OPY_TYPE_IMM_Q:
5694 break;
5695
5696 case OPY_TYPE_MEM5:
5697 case OPY_TYPE_MEM6:
5698 /* Here we assume that most absolute references are short. */
5699 case OPY_TYPE_MEM7:
5700 case OPY_TYPE_IMM_W:
5701 ++size;
5702 break;
5703
5704 case OPY_TYPE_IMM_L:
5705 size += 2;
5706 break;
5707
5708 default:
5709 gcc_unreachable ();
5710 }
5711
5712 if (size > 3)
5713 {
5714 gcc_assert (!reload_completed);
5715
5716 size = 3;
5717 }
5718
5719 return size;
5720 }
5721
5722 /* Return size of INSN as attribute enum value. */
5723 enum attr_size
5724 m68k_sched_attr_size (rtx insn)
5725 {
5726 switch (sched_get_attr_size_int (insn))
5727 {
5728 case 1:
5729 return SIZE_1;
5730
5731 case 2:
5732 return SIZE_2;
5733
5734 case 3:
5735 return SIZE_3;
5736
5737 default:
5738 gcc_unreachable ();
5739 }
5740 }
5741
5742 /* Return operand X or Y (depending on OPX_P) of INSN,
5743 if it is a MEM, or NULL overwise. */
5744 static enum attr_op_type
5745 sched_get_opxy_mem_type (rtx insn, bool opx_p)
5746 {
5747 if (opx_p)
5748 {
5749 switch (get_attr_opx_type (insn))
5750 {
5751 case OPX_TYPE_NONE:
5752 case OPX_TYPE_RN:
5753 case OPX_TYPE_FPN:
5754 case OPX_TYPE_IMM_Q:
5755 case OPX_TYPE_IMM_W:
5756 case OPX_TYPE_IMM_L:
5757 return OP_TYPE_RN;
5758
5759 case OPX_TYPE_MEM1:
5760 case OPX_TYPE_MEM234:
5761 case OPX_TYPE_MEM5:
5762 case OPX_TYPE_MEM7:
5763 return OP_TYPE_MEM1;
5764
5765 case OPX_TYPE_MEM6:
5766 return OP_TYPE_MEM6;
5767
5768 default:
5769 gcc_unreachable ();
5770 }
5771 }
5772 else
5773 {
5774 switch (get_attr_opy_type (insn))
5775 {
5776 case OPY_TYPE_NONE:
5777 case OPY_TYPE_RN:
5778 case OPY_TYPE_FPN:
5779 case OPY_TYPE_IMM_Q:
5780 case OPY_TYPE_IMM_W:
5781 case OPY_TYPE_IMM_L:
5782 return OP_TYPE_RN;
5783
5784 case OPY_TYPE_MEM1:
5785 case OPY_TYPE_MEM234:
5786 case OPY_TYPE_MEM5:
5787 case OPY_TYPE_MEM7:
5788 return OP_TYPE_MEM1;
5789
5790 case OPY_TYPE_MEM6:
5791 return OP_TYPE_MEM6;
5792
5793 default:
5794 gcc_unreachable ();
5795 }
5796 }
5797 }
5798
5799 /* Implement op_mem attribute. */
5800 enum attr_op_mem
5801 m68k_sched_attr_op_mem (rtx insn)
5802 {
5803 enum attr_op_type opx;
5804 enum attr_op_type opy;
5805
5806 opx = sched_get_opxy_mem_type (insn, true);
5807 opy = sched_get_opxy_mem_type (insn, false);
5808
5809 if (opy == OP_TYPE_RN && opx == OP_TYPE_RN)
5810 return OP_MEM_00;
5811
5812 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM1)
5813 {
5814 switch (get_attr_opx_access (insn))
5815 {
5816 case OPX_ACCESS_R:
5817 return OP_MEM_10;
5818
5819 case OPX_ACCESS_W:
5820 return OP_MEM_01;
5821
5822 case OPX_ACCESS_RW:
5823 return OP_MEM_11;
5824
5825 default:
5826 gcc_unreachable ();
5827 }
5828 }
5829
5830 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM6)
5831 {
5832 switch (get_attr_opx_access (insn))
5833 {
5834 case OPX_ACCESS_R:
5835 return OP_MEM_I0;
5836
5837 case OPX_ACCESS_W:
5838 return OP_MEM_0I;
5839
5840 case OPX_ACCESS_RW:
5841 return OP_MEM_I1;
5842
5843 default:
5844 gcc_unreachable ();
5845 }
5846 }
5847
5848 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_RN)
5849 return OP_MEM_10;
5850
5851 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM1)
5852 {
5853 switch (get_attr_opx_access (insn))
5854 {
5855 case OPX_ACCESS_W:
5856 return OP_MEM_11;
5857
5858 default:
5859 gcc_assert (!reload_completed);
5860 return OP_MEM_11;
5861 }
5862 }
5863
5864 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM6)
5865 {
5866 switch (get_attr_opx_access (insn))
5867 {
5868 case OPX_ACCESS_W:
5869 return OP_MEM_1I;
5870
5871 default:
5872 gcc_assert (!reload_completed);
5873 return OP_MEM_1I;
5874 }
5875 }
5876
5877 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_RN)
5878 return OP_MEM_I0;
5879
5880 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM1)
5881 {
5882 switch (get_attr_opx_access (insn))
5883 {
5884 case OPX_ACCESS_W:
5885 return OP_MEM_I1;
5886
5887 default:
5888 gcc_assert (!reload_completed);
5889 return OP_MEM_I1;
5890 }
5891 }
5892
5893 gcc_assert (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM6);
5894 gcc_assert (!reload_completed);
5895 return OP_MEM_I1;
5896 }
5897
5898 /* Data for ColdFire V4 index bypass.
5899 Producer modifies register that is used as index in consumer with
5900 specified scale. */
5901 static struct
5902 {
5903 /* Producer instruction. */
5904 rtx pro;
5905
5906 /* Consumer instruction. */
5907 rtx con;
5908
5909 /* Scale of indexed memory access within consumer.
5910 Or zero if bypass should not be effective at the moment. */
5911 int scale;
5912 } sched_cfv4_bypass_data;
5913
5914 /* An empty state that is used in m68k_sched_adjust_cost. */
5915 static state_t sched_adjust_cost_state;
5916
5917 /* Implement adjust_cost scheduler hook.
5918 Return adjusted COST of dependency LINK between DEF_INSN and INSN. */
5919 static int
5920 m68k_sched_adjust_cost (rtx insn, rtx link ATTRIBUTE_UNUSED, rtx def_insn,
5921 int cost)
5922 {
5923 int delay;
5924
5925 if (recog_memoized (def_insn) < 0
5926 || recog_memoized (insn) < 0)
5927 return cost;
5928
5929 if (sched_cfv4_bypass_data.scale == 1)
5930 /* Handle ColdFire V4 bypass for indexed address with 1x scale. */
5931 {
5932 /* haifa-sched.c: insn_cost () calls bypass_p () just before
5933 targetm.sched.adjust_cost (). Hence, we can be relatively sure
5934 that the data in sched_cfv4_bypass_data is up to date. */
5935 gcc_assert (sched_cfv4_bypass_data.pro == def_insn
5936 && sched_cfv4_bypass_data.con == insn);
5937
5938 if (cost < 3)
5939 cost = 3;
5940
5941 sched_cfv4_bypass_data.pro = NULL;
5942 sched_cfv4_bypass_data.con = NULL;
5943 sched_cfv4_bypass_data.scale = 0;
5944 }
5945 else
5946 gcc_assert (sched_cfv4_bypass_data.pro == NULL
5947 && sched_cfv4_bypass_data.con == NULL
5948 && sched_cfv4_bypass_data.scale == 0);
5949
5950 /* Don't try to issue INSN earlier than DFA permits.
5951 This is especially useful for instructions that write to memory,
5952 as their true dependence (default) latency is better to be set to 0
5953 to workaround alias analysis limitations.
5954 This is, in fact, a machine independent tweak, so, probably,
5955 it should be moved to haifa-sched.c: insn_cost (). */
5956 delay = min_insn_conflict_delay (sched_adjust_cost_state, def_insn, insn);
5957 if (delay > cost)
5958 cost = delay;
5959
5960 return cost;
5961 }
5962
5963 /* Return maximal number of insns that can be scheduled on a single cycle. */
5964 static int
5965 m68k_sched_issue_rate (void)
5966 {
5967 switch (m68k_sched_cpu)
5968 {
5969 case CPU_CFV1:
5970 case CPU_CFV2:
5971 case CPU_CFV3:
5972 return 1;
5973
5974 case CPU_CFV4:
5975 return 2;
5976
5977 default:
5978 gcc_unreachable ();
5979 return 0;
5980 }
5981 }
5982
5983 /* Maximal length of instruction for current CPU.
5984 E.g. it is 3 for any ColdFire core. */
5985 static int max_insn_size;
5986
5987 /* Data to model instruction buffer of CPU. */
5988 struct _sched_ib
5989 {
5990 /* True if instruction buffer model is modeled for current CPU. */
5991 bool enabled_p;
5992
5993 /* Size of the instruction buffer in words. */
5994 int size;
5995
5996 /* Number of filled words in the instruction buffer. */
5997 int filled;
5998
5999 /* Additional information about instruction buffer for CPUs that have
6000 a buffer of instruction records, rather then a plain buffer
6001 of instruction words. */
6002 struct _sched_ib_records
6003 {
6004 /* Size of buffer in records. */
6005 int n_insns;
6006
6007 /* Array to hold data on adjustements made to the size of the buffer. */
6008 int *adjust;
6009
6010 /* Index of the above array. */
6011 int adjust_index;
6012 } records;
6013
6014 /* An insn that reserves (marks empty) one word in the instruction buffer. */
6015 rtx insn;
6016 };
6017
6018 static struct _sched_ib sched_ib;
6019
6020 /* ID of memory unit. */
6021 static int sched_mem_unit_code;
6022
6023 /* Implementation of the targetm.sched.variable_issue () hook.
6024 It is called after INSN was issued. It returns the number of insns
6025 that can possibly get scheduled on the current cycle.
6026 It is used here to determine the effect of INSN on the instruction
6027 buffer. */
6028 static int
6029 m68k_sched_variable_issue (FILE *sched_dump ATTRIBUTE_UNUSED,
6030 int sched_verbose ATTRIBUTE_UNUSED,
6031 rtx insn, int can_issue_more)
6032 {
6033 int insn_size;
6034
6035 if (recog_memoized (insn) >= 0 && get_attr_type (insn) != TYPE_IGNORE)
6036 {
6037 switch (m68k_sched_cpu)
6038 {
6039 case CPU_CFV1:
6040 case CPU_CFV2:
6041 insn_size = sched_get_attr_size_int (insn);
6042 break;
6043
6044 case CPU_CFV3:
6045 insn_size = sched_get_attr_size_int (insn);
6046
6047 /* ColdFire V3 and V4 cores have instruction buffers that can
6048 accumulate up to 8 instructions regardless of instructions'
6049 sizes. So we should take care not to "prefetch" 24 one-word
6050 or 12 two-words instructions.
6051 To model this behavior we temporarily decrease size of the
6052 buffer by (max_insn_size - insn_size) for next 7 instructions. */
6053 {
6054 int adjust;
6055
6056 adjust = max_insn_size - insn_size;
6057 sched_ib.size -= adjust;
6058
6059 if (sched_ib.filled > sched_ib.size)
6060 sched_ib.filled = sched_ib.size;
6061
6062 sched_ib.records.adjust[sched_ib.records.adjust_index] = adjust;
6063 }
6064
6065 ++sched_ib.records.adjust_index;
6066 if (sched_ib.records.adjust_index == sched_ib.records.n_insns)
6067 sched_ib.records.adjust_index = 0;
6068
6069 /* Undo adjustement we did 7 instructions ago. */
6070 sched_ib.size
6071 += sched_ib.records.adjust[sched_ib.records.adjust_index];
6072
6073 break;
6074
6075 case CPU_CFV4:
6076 gcc_assert (!sched_ib.enabled_p);
6077 insn_size = 0;
6078 break;
6079
6080 default:
6081 gcc_unreachable ();
6082 }
6083
6084 if (insn_size > sched_ib.filled)
6085 /* Scheduling for register pressure does not always take DFA into
6086 account. Workaround instruction buffer not being filled enough. */
6087 {
6088 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
6089 insn_size = sched_ib.filled;
6090 }
6091
6092 --can_issue_more;
6093 }
6094 else if (GET_CODE (PATTERN (insn)) == ASM_INPUT
6095 || asm_noperands (PATTERN (insn)) >= 0)
6096 insn_size = sched_ib.filled;
6097 else
6098 insn_size = 0;
6099
6100 sched_ib.filled -= insn_size;
6101
6102 return can_issue_more;
6103 }
6104
6105 /* Return how many instructions should scheduler lookahead to choose the
6106 best one. */
6107 static int
6108 m68k_sched_first_cycle_multipass_dfa_lookahead (void)
6109 {
6110 return m68k_sched_issue_rate () - 1;
6111 }
6112
6113 /* Implementation of targetm.sched.init_global () hook.
6114 It is invoked once per scheduling pass and is used here
6115 to initialize scheduler constants. */
6116 static void
6117 m68k_sched_md_init_global (FILE *sched_dump ATTRIBUTE_UNUSED,
6118 int sched_verbose ATTRIBUTE_UNUSED,
6119 int n_insns ATTRIBUTE_UNUSED)
6120 {
6121 #ifdef ENABLE_CHECKING
6122 /* Check that all instructions have DFA reservations and
6123 that all instructions can be issued from a clean state. */
6124 {
6125 rtx insn;
6126 state_t state;
6127
6128 state = alloca (state_size ());
6129
6130 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
6131 {
6132 if (INSN_P (insn) && recog_memoized (insn) >= 0)
6133 {
6134 gcc_assert (insn_has_dfa_reservation_p (insn));
6135
6136 state_reset (state);
6137 if (state_transition (state, insn) >= 0)
6138 gcc_unreachable ();
6139 }
6140 }
6141 }
6142 #endif
6143
6144 /* Setup target cpu. */
6145
6146 /* ColdFire V4 has a set of features to keep its instruction buffer full
6147 (e.g., a separate memory bus for instructions) and, hence, we do not model
6148 buffer for this CPU. */
6149 sched_ib.enabled_p = (m68k_sched_cpu != CPU_CFV4);
6150
6151 switch (m68k_sched_cpu)
6152 {
6153 case CPU_CFV4:
6154 sched_ib.filled = 0;
6155
6156 /* FALLTHRU */
6157
6158 case CPU_CFV1:
6159 case CPU_CFV2:
6160 max_insn_size = 3;
6161 sched_ib.records.n_insns = 0;
6162 sched_ib.records.adjust = NULL;
6163 break;
6164
6165 case CPU_CFV3:
6166 max_insn_size = 3;
6167 sched_ib.records.n_insns = 8;
6168 sched_ib.records.adjust = XNEWVEC (int, sched_ib.records.n_insns);
6169 break;
6170
6171 default:
6172 gcc_unreachable ();
6173 }
6174
6175 sched_mem_unit_code = get_cpu_unit_code ("cf_mem1");
6176
6177 sched_adjust_cost_state = xmalloc (state_size ());
6178 state_reset (sched_adjust_cost_state);
6179
6180 start_sequence ();
6181 emit_insn (gen_ib ());
6182 sched_ib.insn = get_insns ();
6183 end_sequence ();
6184 }
6185
6186 /* Scheduling pass is now finished. Free/reset static variables. */
6187 static void
6188 m68k_sched_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
6189 int verbose ATTRIBUTE_UNUSED)
6190 {
6191 sched_ib.insn = NULL;
6192
6193 free (sched_adjust_cost_state);
6194 sched_adjust_cost_state = NULL;
6195
6196 sched_mem_unit_code = 0;
6197
6198 free (sched_ib.records.adjust);
6199 sched_ib.records.adjust = NULL;
6200 sched_ib.records.n_insns = 0;
6201 max_insn_size = 0;
6202 }
6203
6204 /* Implementation of targetm.sched.init () hook.
6205 It is invoked each time scheduler starts on the new block (basic block or
6206 extended basic block). */
6207 static void
6208 m68k_sched_md_init (FILE *sched_dump ATTRIBUTE_UNUSED,
6209 int sched_verbose ATTRIBUTE_UNUSED,
6210 int n_insns ATTRIBUTE_UNUSED)
6211 {
6212 switch (m68k_sched_cpu)
6213 {
6214 case CPU_CFV1:
6215 case CPU_CFV2:
6216 sched_ib.size = 6;
6217 break;
6218
6219 case CPU_CFV3:
6220 sched_ib.size = sched_ib.records.n_insns * max_insn_size;
6221
6222 memset (sched_ib.records.adjust, 0,
6223 sched_ib.records.n_insns * sizeof (*sched_ib.records.adjust));
6224 sched_ib.records.adjust_index = 0;
6225 break;
6226
6227 case CPU_CFV4:
6228 gcc_assert (!sched_ib.enabled_p);
6229 sched_ib.size = 0;
6230 break;
6231
6232 default:
6233 gcc_unreachable ();
6234 }
6235
6236 if (sched_ib.enabled_p)
6237 /* haifa-sched.c: schedule_block () calls advance_cycle () just before
6238 the first cycle. Workaround that. */
6239 sched_ib.filled = -2;
6240 }
6241
6242 /* Implementation of targetm.sched.dfa_pre_advance_cycle () hook.
6243 It is invoked just before current cycle finishes and is used here
6244 to track if instruction buffer got its two words this cycle. */
6245 static void
6246 m68k_sched_dfa_pre_advance_cycle (void)
6247 {
6248 if (!sched_ib.enabled_p)
6249 return;
6250
6251 if (!cpu_unit_reservation_p (curr_state, sched_mem_unit_code))
6252 {
6253 sched_ib.filled += 2;
6254
6255 if (sched_ib.filled > sched_ib.size)
6256 sched_ib.filled = sched_ib.size;
6257 }
6258 }
6259
6260 /* Implementation of targetm.sched.dfa_post_advance_cycle () hook.
6261 It is invoked just after new cycle begins and is used here
6262 to setup number of filled words in the instruction buffer so that
6263 instructions which won't have all their words prefetched would be
6264 stalled for a cycle. */
6265 static void
6266 m68k_sched_dfa_post_advance_cycle (void)
6267 {
6268 int i;
6269
6270 if (!sched_ib.enabled_p)
6271 return;
6272
6273 /* Setup number of prefetched instruction words in the instruction
6274 buffer. */
6275 i = max_insn_size - sched_ib.filled;
6276
6277 while (--i >= 0)
6278 {
6279 if (state_transition (curr_state, sched_ib.insn) >= 0)
6280 /* Pick up scheduler state. */
6281 ++sched_ib.filled;
6282 }
6283 }
6284
6285 /* Return X or Y (depending on OPX_P) operand of INSN,
6286 if it is an integer register, or NULL overwise. */
6287 static rtx
6288 sched_get_reg_operand (rtx insn, bool opx_p)
6289 {
6290 rtx op = NULL;
6291
6292 if (opx_p)
6293 {
6294 if (get_attr_opx_type (insn) == OPX_TYPE_RN)
6295 {
6296 op = sched_get_operand (insn, true);
6297 gcc_assert (op != NULL);
6298
6299 if (!reload_completed && !REG_P (op))
6300 return NULL;
6301 }
6302 }
6303 else
6304 {
6305 if (get_attr_opy_type (insn) == OPY_TYPE_RN)
6306 {
6307 op = sched_get_operand (insn, false);
6308 gcc_assert (op != NULL);
6309
6310 if (!reload_completed && !REG_P (op))
6311 return NULL;
6312 }
6313 }
6314
6315 return op;
6316 }
6317
6318 /* Return true, if X or Y (depending on OPX_P) operand of INSN
6319 is a MEM. */
6320 static bool
6321 sched_mem_operand_p (rtx insn, bool opx_p)
6322 {
6323 switch (sched_get_opxy_mem_type (insn, opx_p))
6324 {
6325 case OP_TYPE_MEM1:
6326 case OP_TYPE_MEM6:
6327 return true;
6328
6329 default:
6330 return false;
6331 }
6332 }
6333
6334 /* Return X or Y (depending on OPX_P) operand of INSN,
6335 if it is a MEM, or NULL overwise. */
6336 static rtx
6337 sched_get_mem_operand (rtx insn, bool must_read_p, bool must_write_p)
6338 {
6339 bool opx_p;
6340 bool opy_p;
6341
6342 opx_p = false;
6343 opy_p = false;
6344
6345 if (must_read_p)
6346 {
6347 opx_p = true;
6348 opy_p = true;
6349 }
6350
6351 if (must_write_p)
6352 {
6353 opx_p = true;
6354 opy_p = false;
6355 }
6356
6357 if (opy_p && sched_mem_operand_p (insn, false))
6358 return sched_get_operand (insn, false);
6359
6360 if (opx_p && sched_mem_operand_p (insn, true))
6361 return sched_get_operand (insn, true);
6362
6363 gcc_unreachable ();
6364 return NULL;
6365 }
6366
6367 /* Return non-zero if PRO modifies register used as part of
6368 address in CON. */
6369 int
6370 m68k_sched_address_bypass_p (rtx pro, rtx con)
6371 {
6372 rtx pro_x;
6373 rtx con_mem_read;
6374
6375 pro_x = sched_get_reg_operand (pro, true);
6376 if (pro_x == NULL)
6377 return 0;
6378
6379 con_mem_read = sched_get_mem_operand (con, true, false);
6380 gcc_assert (con_mem_read != NULL);
6381
6382 if (reg_mentioned_p (pro_x, con_mem_read))
6383 return 1;
6384
6385 return 0;
6386 }
6387
6388 /* Helper function for m68k_sched_indexed_address_bypass_p.
6389 if PRO modifies register used as index in CON,
6390 return scale of indexed memory access in CON. Return zero overwise. */
6391 static int
6392 sched_get_indexed_address_scale (rtx pro, rtx con)
6393 {
6394 rtx reg;
6395 rtx mem;
6396 struct m68k_address address;
6397
6398 reg = sched_get_reg_operand (pro, true);
6399 if (reg == NULL)
6400 return 0;
6401
6402 mem = sched_get_mem_operand (con, true, false);
6403 gcc_assert (mem != NULL && MEM_P (mem));
6404
6405 if (!m68k_decompose_address (GET_MODE (mem), XEXP (mem, 0), reload_completed,
6406 &address))
6407 gcc_unreachable ();
6408
6409 if (REGNO (reg) == REGNO (address.index))
6410 {
6411 gcc_assert (address.scale != 0);
6412 return address.scale;
6413 }
6414
6415 return 0;
6416 }
6417
6418 /* Return non-zero if PRO modifies register used
6419 as index with scale 2 or 4 in CON. */
6420 int
6421 m68k_sched_indexed_address_bypass_p (rtx pro, rtx con)
6422 {
6423 gcc_assert (sched_cfv4_bypass_data.pro == NULL
6424 && sched_cfv4_bypass_data.con == NULL
6425 && sched_cfv4_bypass_data.scale == 0);
6426
6427 switch (sched_get_indexed_address_scale (pro, con))
6428 {
6429 case 1:
6430 /* We can't have a variable latency bypass, so
6431 remember to adjust the insn cost in adjust_cost hook. */
6432 sched_cfv4_bypass_data.pro = pro;
6433 sched_cfv4_bypass_data.con = con;
6434 sched_cfv4_bypass_data.scale = 1;
6435 return 0;
6436
6437 case 2:
6438 case 4:
6439 return 1;
6440
6441 default:
6442 return 0;
6443 }
6444 }
6445
6446 /* We generate a two-instructions program at M_TRAMP :
6447 movea.l &CHAIN_VALUE,%a0
6448 jmp FNADDR
6449 where %a0 can be modified by changing STATIC_CHAIN_REGNUM. */
6450
6451 static void
6452 m68k_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
6453 {
6454 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
6455 rtx mem;
6456
6457 gcc_assert (ADDRESS_REGNO_P (STATIC_CHAIN_REGNUM));
6458
6459 mem = adjust_address (m_tramp, HImode, 0);
6460 emit_move_insn (mem, GEN_INT(0x207C + ((STATIC_CHAIN_REGNUM-8) << 9)));
6461 mem = adjust_address (m_tramp, SImode, 2);
6462 emit_move_insn (mem, chain_value);
6463
6464 mem = adjust_address (m_tramp, HImode, 6);
6465 emit_move_insn (mem, GEN_INT(0x4EF9));
6466 mem = adjust_address (m_tramp, SImode, 8);
6467 emit_move_insn (mem, fnaddr);
6468
6469 FINALIZE_TRAMPOLINE (XEXP (m_tramp, 0));
6470 }
6471
6472 /* On the 68000, the RTS insn cannot pop anything.
6473 On the 68010, the RTD insn may be used to pop them if the number
6474 of args is fixed, but if the number is variable then the caller
6475 must pop them all. RTD can't be used for library calls now
6476 because the library is compiled with the Unix compiler.
6477 Use of RTD is a selectable option, since it is incompatible with
6478 standard Unix calling sequences. If the option is not selected,
6479 the caller must always pop the args. */
6480
6481 static int
6482 m68k_return_pops_args (tree fundecl, tree funtype, int size)
6483 {
6484 return ((TARGET_RTD
6485 && (!fundecl
6486 || TREE_CODE (fundecl) != IDENTIFIER_NODE)
6487 && (!stdarg_p (funtype)))
6488 ? size : 0);
6489 }
6490
6491 /* Make sure everything's fine if we *don't* have a given processor.
6492 This assumes that putting a register in fixed_regs will keep the
6493 compiler's mitts completely off it. We don't bother to zero it out
6494 of register classes. */
6495
6496 static void
6497 m68k_conditional_register_usage (void)
6498 {
6499 int i;
6500 HARD_REG_SET x;
6501 if (!TARGET_HARD_FLOAT)
6502 {
6503 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);
6504 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6505 if (TEST_HARD_REG_BIT (x, i))
6506 fixed_regs[i] = call_used_regs[i] = 1;
6507 }
6508 if (flag_pic)
6509 fixed_regs[PIC_REG] = call_used_regs[PIC_REG] = 1;
6510 }
6511
6512 static void
6513 m68k_init_sync_libfuncs (void)
6514 {
6515 init_sync_libfuncs (UNITS_PER_WORD);
6516 }
6517
6518 /* Implements EPILOGUE_USES. All registers are live on exit from an
6519 interrupt routine. */
6520 bool
6521 m68k_epilogue_uses (int regno ATTRIBUTE_UNUSED)
6522 {
6523 return (reload_completed
6524 && (m68k_get_function_kind (current_function_decl)
6525 == m68k_fk_interrupt_handler));
6526 }
6527
6528 #include "gt-m68k.h"